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Abstract 

While previous studies have demonstrated that social behavior plays an important role in gut 
microbial variation, there is limited understanding of how changes in social cohesion affect the 
gut microbiome. This study provides a comprehensive examination of this longitudinal 
relationship in a population of black-and-white colobus monkey (Colobus vellerosus) at the 
Boabeng-Fiema Monkey Sanctuary (BFMS) in Ghana. Adult female C. vellerosus display increases 
in social interaction after the birth of an infant, indicating a social shift which I utilized to 
explore the association between changes in social cohesion and the gut microbiome. I used 
previously collected field data (2018–2020) across four social groups, resulting in 218 total fecal 
samples and a mean of 17.2 hours of behavioral data per female. These data sets were employed 
to characterize microbiomes using 16S rRNA sequencing and quantify changes in social 
cohesion via social network analysis. Infant presence was significantly associated with gut 
microbial similarity (PERMANOVA: p<0.01), and for three of the social groups, gut microbiomes 
became more similar after infant birth (GLMM: p<0.036). Social network analysis did not reveal 
significant changes in social cohesion with infant presence, indicating that other changes in 
social interactions not included in this analysis may explain this pattern. Future work would aim 
to evaluate the basis for differences in gut microbial variation between social groups and explore 
the presence of grooming with an infant present. Investigating the relationship between social 
interactions and microbial variation ultimately contributes to our understanding of the factors 
influencing the assembly, composition, and diversity of the gut microbiome. 

 

1. Introduction 

1.1. The Gut Microbiome and the Host 

The gut microbiome consists of the community of 
microbes inhabiting the gastrointestinal tract of a 
host organism. In vertebrates, while the gut is 
initially colonized at birth and perhaps in utero, 
the microbiome exhibits considerable 
compositional variation throughout an 
individual’s lifetime. These fluctuations have a 
range of implications on host physiological 

development and function. Gut microbial 
composition is essential for nutrient uptake and 
the prevention of pathogenic invasion (Suzuki et 
al., 2017), immune system development (Hooper 
et al., 2012), and the development and function of 
the brain and associated behavior via the gut-
brain axis (Jena et al., 2020). Imbalances in the 
gut microbiome, known as dysbiosis, may lead to 
disruptions in these processes and cause negative 
consequences for the host. For example, studies 
have found evidence of associations between 
dysbiosis and obesity (Amabebe et al., 2020), 
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depression (Kelly et al., 2016; Radjabzadeh et al., 
2022), anxiety (Clapp et al., 2017) autism-like 
symptoms (Hsiao et al., 2013), and diabetes (Li et 
al., 2020). The extensive consequences of 
dysbiosis have caused the gut microbiome to 
attract considerable attention in clinical research 
as a system which has important implications for 
human health. Research in this area seeks to 
develop methods which could utilize gut 
microbes for medical applications concerning 
preemptive and ad hoc therapeutics for disorders 
correlated with dysbiosis. While our 
understanding of the relationship between host 
function and the gut microbiome continues to 
advance, we still lack a basic understanding of 
which factors act to shape the host microbiome 
and cause natural variation. 

1.2. Social Factors Shaping the Gut 
Microbiome 

Prior research has described factors at both the 
host and environmental level which have some 
influence on gut microbiome variation, including 
host diet, genetics, and social environment 
(Archie & Theis, 2011). The influences of host diet 
and genetics on gut microbial composition have 
been studied extensively. However, less work has 
been done to investigate the aspects of the host’s 
social environment which influence the gut 
microbiome. As clinical intervention continues to 
develop at the forefront of microbiome research, 
understanding these social factors that contribute 
to microbial variation has valuable implications 
for the host which could ultimately inform 
approaches to shape a healthier gut microbiome. 
Exploring the social transmission of gut microbes 
may also help explain the evolution of sociality, 
as the sharing of microbes has been found to 
confer benefits for group members such as 
increased pathogen resistance and host immunity 
(Abt & Pamer, 2014; Ezenwa et al., 2016; Koch & 
Schmid-Hempel, 2011; Lombardo, 2008).  

Some evidence of microbial transmission 
through social mechanisms has been explored in 

human subjects; studies have found cases of 
socially mediated microbial transmission through 
evaluations of cohabitation in adulthood (Gacesa 
et al., 2022; Lax et al., 2014; Song et al., 2013; 
Valles-Colomer et al., 2023) and infant adoption 
(Tavalire et al., 2021). While human studies 
provide valuable evidence of socially mediated 
microbial transmission, detailed characterization 
of human social behavior can be difficult due to 
the complexity of human spatial movement and 
social interactions on a day-to-day basis, which 
present a number of confounding environmental 
factors. Non-human primates present an ideal 
alternative study system for questions related to 
sociality and the gut microbiome due to their 
highly studied nature, the ability to collect 
detailed behavioral, dietary, and biological 
relatedness data, and their behavioral and 
phylogenetic similarities to humans. Studies in 
this area have worked to isolate and evaluate the 
relationship between host social environment 
and the non-human primate gut microbial 
composition in several different species. 

In one of the earlier papers on this subject, 
Tung et al. (2015) evaluated the importance of 
social group membership and social networks on 
the structuring of the gut microbiome in a wild 
population of baboons. Excluding kinship, shared 
diet, and shared environment in their evaluation, 
the study found social grooming networks to be 
predictive of gut microbial similarity; rates of 
interaction between individuals directly related to 
compositional variation in the gut microbiome. 
Other studies have found similar evidence of 
socially mediated gut microbial transmission in 
this population of baboons (Grieneisen et al., 
2017) as well as other non-human primate species 
including Verreaux’s sifaka (Perofsky et al., 2017), 
black howler monkeys (Amato et al., 2017), and 
ring-tailed lemurs (Bennett et al., 2016).  

While these studies provide a better 
understanding of the social factors that serve as 
mechanisms for microbial transmission at a 
specific cross-section in time, the rapidly 
changing nature of the gut microbiome implores 
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future work in this area to focus on more 
comprehensive longitudinal surveys with daily to 
weekly sampling of individuals spanning multiple 
years (Björk et al., 2019). There are several recent 
studies which have taken this approach in non-
human primates and have begun to disentangle 
the factors which may contribute to inter- and 
intra-individual gut microbial variation. Analyses 
of well documented populations of chimpanzees 
over eight years (Moeller et al., 2016) and wild 
baboons over 13 years (Ren et al., 2016) revealed 
microbial variation correlating with both host-
specific (diet, age, social behavior) and 
environmental factors (season, annual rainfall). 
In Verreaux’s sifaka, environmental factors were 
found to define the population-level gut microbial 
signature, while patterns of host social 
interactions facilitated the persistence and 
variation of gut microbial communities over time 
within groups (Perofsky et al., 2021; Rudolph et 
al., 2022). In red-bellied lemurs, patterns of social 
contact (group membership and position within 
the social network) predicted gut microbial 
composition (Raulo et al., 2018), and distinct gut 
microbial profiles were detected in two resultant 
groups of black-and-white colobus monkeys less 
than nine months after a new social group split 
off from the main group (Goodfellow et al., 2019). 
This research project aims to add to this growing 
body of work using a combination of fine-grained 
data on primate social behavior and deep 
longitudinal sampling of individual gut microbial 
compositions within social groups.  

With a longitudinal approach in mind, I was 
specifically interested in evaluating how changes 
in social cohesion influence gut microbial 
variation. In the context of my project, social 
cohesion refers to the average physical 
proximities between members of a social group. 
To my knowledge, there is only one paper that 
has directly evaluated this mechanism. The 2019 
study examined human cohabitation and 
closeness in relationships, taking siblings and 
married couples (all in late adulthood) as their 
study subjects. As in previous studies, they found 

that individuals cohabitating with a spouse or 
partner had more similar gut microbiomes than 
unmarried, non-cohabitating individuals. Most 
importantly for the purposes of my project, the 
authors found that that spouses and siblings that 
rated themselves as having relatively “close” 
relationships had more similar gut microbiomes 
than pairs which did not rate themselves as 
having “close” relationships (Dill-McFarland et 
al., 2019). My research builds on these results by 
tracking expected changes in social cohesion and 
gut microbial variation over time in a well-
documented non-human primate population. 

1.3. Research Objectives and Hypotheses 

To explore my research question, I focused on a 
population of black-and-white colobus monkeys 
(Colobus vellerosus) at the Boabeng-Fiema Monkey 
Sanctuary (BFMS) in central Ghana. The 
population of colobus monkeys at this site has 
been studied since 2000, leading to a detailed 
record of their behavior and group compositions. 
There are approximately 28 social groups in the 
area composed of uni- or multi-male/multi-
female social groups with sizes ranging from 9–38 
individuals (Kankam & Sicotte, 2013; Wong & 
Sicotte, 2006). Recent research on the BFMS 
black-and-white colobus population compared 
diet, relatedness, and the one-meter proximity 
network to determine which factor was the best 
predictor of differences in the gut microbiome 
across eight social groups. The study found that 
models of social connectedness in the one-meter 
proximity network best predicted variation in the 
gut microbiome composition between individuals 
(Wikberg et al., 2020). As in other non-human 
primate species, these results support the 
concept of social interaction as a factor mediating 
gut microbial transmission. The study also 
demonstrated that microbial transmission can 
occur in species with low rates of social 
interaction (grooming, time in close proximity) 
relative to other gregarious primate species 
(Teichroeb et al., 2003) and that proximity 
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networks can be sufficient for predicting 
microbial transmission. 

The subfamily of monkeys to which black-
and-white colobus belong (subfamily Colobinae, 
or colobine monkeys) are known to exhibit 
relatively high levels of allomothering behavior, 
described as an individual’s attraction to and 
handling of another’s infant (Bădescu et al., 2015; 
McKenna, 1979). In order to gain access to a 
young infant, females spend increased amounts 
of time grooming the mother, and thus overall 
grooming rates increase and individuals spend 
more time in close proximity when an infant 
younger than three months old is present in a 
group (Wikberg et al., 2015). Thus, based on 
previous research that showed 1) social 
interactions affect gut microbial variation, and 2) 
social interactions change in the presence of an 
infant, I used black-and-white colobus monkeys 
as a model to evaluate the following question, 
objectives, and hypotheses: 

• Question: How is gut microbial similarity 
influenced by the presence of infants within 
social groups of adult female black-and-white 
colobus monkeys? 

• Objective 1: Compare gut microbial 
similarities of adult females during time 
periods with and without a young infant 
(under three months old) present. 

• Objective 2: Evaluate changes in social 
cohesion during time periods with and 
without a young infant present.  

• Hypothesis 1: Female group members will 
have more similar gut microbiome 
compositions when a young infant is present 
in their social group than they will in the 
absence of a young infant.  

• Hypothesis 2: Adult female group members 
will display higher levels of social cohesion 
when a young infant is present in a social 
group than they will in the absence of a 
young infant.  
 

I used detailed demographic, behavioral, and 

microbial sampling from four social groups of 
black-and-white colobus monkeys at BFMS to 
quantify the longitudinal relationship between 
social environment and gut microbial variation. I 
first tested whether periods with and without 
young infants present correlated with variation in 
the gut microbial compositions of adult females 
in each social group. I then evaluated the type of 
variation that was occurring. If it was in line with 
my hypothesis, I expected to see adult female gut 
microbiomes becoming more similar to each 
other when a young infant was present. Next, I 
used social network analysis based on one-meter 
proximity networks to evaluate changes in social 
cohesion with a young infant present. Here, I 
hypothesized that changes in social cohesion 
(proximity) based on allocare behavior could be a 
factor contributing to the microbial variation I 
tested for in the first part of my analysis. This 
research is novel and significant because it 
utilizes a longitudinal approach to known social 
shifts surrounding infant care and employs a 
fine-grained data set with well-coupled 
behavioral and microbial sample components. 
The results of this study expand our 
understanding of the effects of changes in the 
social environment on the compositional 
variation of the gut microbiome on defined 
temporal scales.  

2. Methods 

2.1. Fieldwork and Labwork 

University of Oregon graduate student Diana 
Christie conducted the fieldwork and labwork 
portions of this research. This included 
behavioral data collection and fecal sample 
collection from the study population (Colobus 
vellerosus; Boabeng-Fiema Monkey Sanctuary; 
Ghana). These methods have been described 
elsewhere (e.g., Goodfellow et al. 2019; Wikberg 
et al. 2020), but they are briefly documented here 
to provide context for the downstream data 
processing and analyses that I conducted.  
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Christie and her field assistants focused on 
four social groups for behavioral data collection 
(Redtail/RT, Wawa/WW, Winter/WT, and 
Splinter/SP), each containing habituated and 
identified individuals. Behavioral data were 
collected from all adult females within the four 
groups between 2018 and 2020, yielding two 
consecutive dry seasons of data. Samples were 
collected in the dry season (~December to April) 
to avoid the effects of seasonal variability on gut 
microbial composition (Gomez et al., 2015; 
Springer et al., 2017). Behavioral data were 
collected via continuous focal sampling, which 
involves tracking one individual at a time and 
recording frequency, duration, and type of 
behavior exhibited by the focal subject. This 
method was used to record behaviors during 10-
minute intervals for all adult females in each 
social group. Social and feeding behaviors were 
recorded continuously. During a focal, point 
samples were also taken every two and a half 
minutes identifying all individuals within zero, 
one, three, and five meters of the focal subject. 
Behavioral data collection yielded a total of 240.84 
hours of focal samples (mean 17.2 hours per 
female SD +/- 3.96).  

Christie and her field assistants collected 
fecal samples during the same periods of time 
they were collecting behavioral data. Multiple 
samples were systematically collected from each 
focal subject to be used for gut microbial 
composition characterization via 16S rRNA 
sequencing. Fecal samples were collected 
monthly for adult females. After an identified 
individual defecated, 1–2 g of feces were collected 
using gloves and sterile collection sticks and 
dissolved in 4 ml of RNAlater®. The samples were 
stored in a freezer on site before being shipped to 
the Ting Lab at University of Oregon for storage 
at –20 °C. For the purposes of this study, these 
samples were used to represent the gut 
microbiome. However, there may be differences 
between the microbial composition of the 
samples and the true microbial communities of 
the host gut microbiome. Therefore, although it is 

more accurate to say that the samples 
characterized the hindgut or fecal microbiome, 
they were used in this context to evaluate socially 
mediated transmission of gut microbes between 
individuals.  

Christie extracted DNA from each fecal 
sample using the Qiagen PowerFecal Pro kit, and 
DNA extracts were quantified on a Qubit 
Fluorometer. The V4 hypervariable region of the 
16S rRNA gene was targeted for sequencing, as 
this region is useful for identifying taxa at the 
level of genus or species (Bukin et al., 2019). 
Library preparation followed protocols described 
in Goodfellow et al. (2019), and sequencing was 
conducted on a 300 base pair paired-end run on 
the Illumina MiSeq platform. Demultiplexing was 
completed by the core, matching each sample 
name with its appropriate set of sequenced rRNA 
reads. These steps produced fastq format files for 
each sample containing all reads for that specific 
sample. 

2.2. Data Processing 

2.2.1. Behavioral Data 

The raw behavioral data were encoded in CSV 
files. I processed these using a combination of 
Microsoft Excel, Microsoft Command Prompt 
(CMD), and R (R Core Team, 2021). I first 
manually cleaned the data in Excel; any cells that 
were flagged for missing information were 
corrected and additional information was added 
where necessary. I then ran each sheet of focal 
data through a series of Command Prompt checks 
which involved ensuring files were in CSV 
format, removing Excel-formatted files, 
eliminating any spaces in file names or quotation 
marks in cells, then checking for missed 
corrections from the manual cleaning. Any 
missed corrections were subsequently fixed again 
in Excel, and the processing steps above were 
repeated. Incorrect ethogram codes were also 
located using an R script which would return a 
file with problem focal sheets. These codes were 
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corrected, and the script was rerun to ensure all 
inaccuracies were accounted for before the data 
were formatted for use in R. The overall results of 
the behavioral data processing included monthly 
pairwise social matrices for all adult females, and 
presence/absence of infants under three months. 
If infants were present, the number of infants 
under three months was also included.  

2.2.2. Sequence Data 

Data processing of 16S sequence reads was 
carried out on the University of Oregon’s high 
performance computing cluster, Talapas, using 
the bioinformatics processing pipeline QIIME2 
(Bolyen et al., 2019). I began by creating a bash 
script which would allow me to run slurm jobs as 
I worked through the pipeline. I used the DADA2 
(Callahan et al., 2016) plugin for the next series of 
steps in processing. As each sample was read in 
both the forward and reverse direction during 
sequencing, I chose parameters to allow for the 
appropriate level of overlap between the reads 
before they were realigned, a process known as 
denoising. Too much overlap causes the program 
to throw out more reads as it detects a higher 
number of unmatched bases, but too little 
overlap runs the risk of incorrect matches 
between reads. The values I ended up choosing 
were determined using a combination of quality 
score plots generated in the demultiplexing 
summary and through trial and error. My 
parameters specified a total length of 274 base 
pairs (~20 base pair overlap), resulting in an 
average of 88.3% of reads successfully merged 
per sample. Once the sequences were aligned, the 
final step in processing was choosing appropriate 
sampling depth parameters, a process that results 
in the removal of samples with relatively low 
numbers of reads to maintain a robust data set for 
analysis. I conducted taxonomic classification 
using the SILVA database (Quast et al., 2013). The 
outcomes of microbial sample processing 
included an ASV table, a phylogenetic tree, and 
taxonomies.  

2.2.3. Metadata File Creation  

Using demographic and sample data, I produced 
a metadata file in CSV format which contained 
information related to each fecal sample. This 
metadata file was used for much of the initial 
processing and in QIIME2 as well as other 
downstream analyses. Pertinent metadata 
information for each sample included collection 
month, field season, fecal time point (a period of 
days within a field season where fecal samples 
were collected for all adult females in a social 
group), infant presence, and number of infants 
present. Infant presence was calculated by 
referring to a demography data sheet which lists 
all birth and death/disappearance dates for 
infants in each of the four social groups. Based on 
work in mice where microbial variation was 
tracked after cohousing (Caruso et al., 2019), I 
estimated the length of time for the gut 
microbiome to show significant levels of 
compositional change in an individual to be three 
days after the birth of an infant, with the 
assumption of social changes immediately after 
birth. After this window of time was determined, 
I reviewed the infant presence periods I created 
and found no instances of samples collected 
within three days of an infant birth or an infant 
death/disappearance and thus no samples needed 
to be removed from my data set.   

2.2.4. Generating a Distance Matrix  

I used the qiime2R package (Bisanz, 2018) to 
import my data from the QIIME2 pipeline into R. 
With the features table, phylogenetic tree, and 
taxonomy table from QIIME2 and the metadata 
file, I used the phyloseq package to create a 
phyloseq object, a way for microbial information 
to be stored, manipulated, and analyzed in R 
(McMurdie and Holmes, 2013). The data were 
then filtered to remove any samples with fewer 
than 5000 reads for quality control, removing 
nine samples out of the original 218. As there was 
a chance some taxa would have only appeared in 
those samples that were removed, I included a 
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command to remove empty spaces in the 
taxonomy table. I also included a command to 
remove sequence reads that mapped to 
chloroplasts or mitochondria instead of the ASVs 
I was interested in analyzing, as DNA derived 
from these organelles also contains the 16S gene 
and can represent a source of contamination.  

The next step in preparing the data for 
statistical analysis was creating a distance matrix 
of beta diversity indices using Aitchison distance. 
Beta diversity refers to the compositional 
dissimilarity between microbial communities. 
Evaluating levels of similarity between samples 
allows for the partitioning of how various factors 
may influence the compositional similarity of the 
gut microbiome between individuals. I first 
centered log-ratio (CLR) transformed the data, 
converting the values from total counts to the 
dominance for each taxon relative to the mean of 
all taxa (Gloor et al., 2017). Next, the distance 
matrix was generated with these data using the 
Euclidean method. These two steps generate an 
Aitcheson distance matrix. This distance is widely 
employed for microbiome work, as it better 
accounts for the compositional nature of 
microbial data and avoids compositionality bias 
(Quinn et al., 2018). The distance matrix itself 
gives dyadic measurements of microbial 
similarity between all individuals in which the 
numerical measures in this case are based on the 
Aitchison beta diversity metric. 

2.3. Statistical Analysis  

2.3.1. Preliminary Analysis  

Before beginning my analyses, I used a 
microbiome analytics tutorial to obtain 
preliminary statistics for my data set and to 
develop microbiome analysis skills in R using real 
data. I calculated and plotted the relative 
abundance of the phyla and observed richness 
using the phyloseq (McMuride and Holmes, 2013) 
and ggplot (Wickham, 2016) packages in R. For 
beta diversity analysis, I generated an Aitchison 

distance principal coordinate analysis using the 
packages microbiome (Lahti and Shetty, 2017) 
and vegan (Oksanen et al., 2022).    

2.3.2. PERMANOVA: Testing for the Presence of 
Changes in Microbial Similarity 

A permutational multivariate analysis of variance 
(PERMANOVA) identifies the effects of various 
factors on microbial variation and their 
interactions with each other via a permutational 
ANOVA of a distance matrix (Anderson, 2001). 
Broadly, the test asks if microbial variability is 
greater between groups or within groups for a 
given sample, displaying significance if 
variability is greater between groups. I ran a 
specialty version of a PERMANOVA called an 
adonis using the adonis2 function of the R 
package vegan. For the purposes of my study, I 
tested for differences in gut microbial similarity 
between time periods with and without a young 
infant present while controlling for other factors 
shown to have significant effects on gut microbial 
variation. While collection year and field season 
were both included in the metadata sheet, I chose 
to exclude collection year as a factor, as it is 
similar to field season, and field season better 
describes temporal changes between collection 
periods.  

In setting up the command, each factor could 
be incorporated in an additive fashion; or, if I 
wanted to test for interactions between factors, it 
could be incorporated in a multiplicative fashion 
with another factor. Preliminary analysis 
involved running the PERMANOVA with different 
variations of factor interactions, which revealed 
significant interactions between social group and 
infant status, and between field season and 
collection month. Therefore, the final formula 
structure I used included a multiplicative 
interaction between social group and infant 
status, a multiplicative interaction between field 
season and collection month, and individual ID as 
an additive factor to account for repeat sampling 
among individuals.  
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2.3.3. Generalized Linear Mixed Model (GLMM): 
Evaluating Changes in Distance to Centroid  

In the second part of my microbial analysis, I 
specifically wanted to test if changes in beta 
diversity (microbial similarity) with the presence 
of an infant were being driven by individuals in a 
group becoming more similar to one another in 
gut microbial composition. To do this, I modeled 
the effect of infant presence on distance to 
centroid (DTC), which measures how dispersed 
members of a group are from a central location. 
Because, in this case, dispersion of points 
correlates with the level of microbial similarity 
between samples, the measure of distance to 
centroid can be used to compare microbial 
similarity between groups (see Figure 1). I used 
phyloseq to subset the data by fecal time point 
and create Aitchison distance (beta diversity) 
matrices, then used the usedist package 
(Bittinger, 2020) to generate distance to centroid 
measurements for each fecal time point.  

 
Figure 1. Conceptual figure of distance to centroid. Distance 
to centroid measures how dispersed all members of a group 
are in relation to a central point (centroid location). In this 

case, individual samples refer to the microbial samples, and 
the distance to centroid was calculated based on Aitchison 

distance metrics (Quinn et al., 2018). 

The most appropriate way to handle repeat 
sampling in my data was to utilize a mixed effects 
model to account for random effects in addition 
to fixed effects. A Shapiro test for normality 
revealed the data were non-normal and thus unfit 
for a linear mixed effects model. Therefore, the 
glmmTMB package (Brooks et al., 2017) was used 
to run a generalized linear mixed model (GLMM) 
as it does not rely on normality as an assumption. 

To improve the fit of the GLMM, the outcome 
variable (DTC) was also log transformed. The best 
factor interactions for the gamma fit test were 
determined using AIC-based model selection 
(models with lowest AIC values were chosen) and 
the drop function in R. The selected model 
structure included the log link model of the 
GLMM with infant status as a fixed effect and 
group, ID, and collection month as random 
effects. Field season was excluded as a factor, as 
it could not converge as a fixed or random effect. 
The model was compared to the null model which 
fitted the data by only the random effects without 
infant status. The effects of the model were 
plotted using the effects package in R (Fox and 
Weisberg, 2019; Fox, 2003) to visualize the 
interactions between the DTC and infant status.   

Because the social group Winter (WT) 
showed divergent patterns in the results of the 
GLMM (see Results), it was eventually removed 
from the data set, and model selection and drop 
were used to determine the best factor 
interactions. Without WT, this was a log link 
model of the GLMM with infant status as a fixed 
effect and ID and collection month as additive 
random effects. This model was also compared to 
the null model, and the effects of the model were 
plotted again using the effects package in R.  

2.3.4. Social Networks and Centralization: 
Evaluating Changes in Social Cohesion  

Social cohesion in this study refers to the average 
level of physical proximities between all adult 
female members in a social group. Higher social 
cohesion, for example, would correlate with 
individuals spending more time in close 
proximity. In order to explore changes in social 
cohesion associated with infant presence, I used 
social network analysis, a method of calculating 
standardized sociability measures that allows for 
evaluation of relationships within social groups 
(de Lima & Ferreira, 2021). This approach 
generates social networks in which points (nodes) 
represent individuals and the lines between 
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points (edges) represent the social interactions of 
those individuals.  

For each social group, the time periods where 
infants were present and absent were 
determined, and the data were subset by infant 
status (young infant present = Y or N). This 
resulted in nine social networks being generated; 
there were two “Y” and one “N” infant status time 
periods for each social group. All networks were 
constructed using continuous approaches to 
within one meter from the focal follows collected 
by Christie during field sampling. The social 
group Redtail (RT) was excluded from this 
analysis because it did not have a minimum of 
one “Y” and one “N” infant status period with 
sufficiently dense behavioral data. Each distance 
matrix was loaded into R studio and converted to 
an undirected weighted edgelist using igraph 
(Csardi and Nepusz, 2006). Exploratory 
modularity analysis was run for each matrix 
using igraph, applying an optimization algorithm 
which identified groups of strongly connected 
individuals (“communities”) in the network, 
differentiating each via color overlays on the 
social networks (Brandes et al., 2008). igraph was 
also used to run a statistical analysis of network-
level metrics for the centralization of the social 
groups, which included evaluation of degree, 
closeness, betweenness, and eigenvector 
centralization values, each measuring different 
aspects of social structure within a group. Given 
the relatively small size and well-connected 
nature of the social groups, I chose to focus on 
eigenvector values for my statistical analysis, as 
they consider both number and strength of 
connections, capturing the greatest amount of 
variation in my data (Hanneman and Riddle, 
2005). 

To evaluate the relationship between infant 
status and the social cohesion (eigenvector 
centralization) of adult females in a social group, 
I used a nested ANOVA in R. For my data sheet, I 
included the eigenvector values in a table along 
with IDs for each social network (SPY1, SPN1, 
etc.), social group (SP, WW, WT), and infant 

status (Y/N). To test for a significant difference in 
social cohesion with or without a young infant 
present across all social groups, I ran the nested 
ANOVA with social group nested within infant 
status.  

I also ran the same set of tests with a different 
social network metric called mean network 
strength. While eigenvector centralization 
describes the extent of cohesion around 
particular focal individuals in a group, mean 
strength more generally describes how connected 
all individuals are to each other, which is similar 
to the method used in Wikberg et al. (2015). To 
calculate this metric, I found the average value 
for each social network matrix, making sure to 
have each dyad represented one time. I ran the 
same nested ANOVA discussed above using this 
second network metric. I chose to run tests using 
both types of network metrics because they 
measure social structure in slightly different 
ways, and significant results for either one would 
provide insight into how social cohesion might 
vary with the presence of an infant. 

3. RESULTS 

3.1 Preliminary Analysis 

After filtering, there were 209 total samples with 
an average of 79254 reads per sample. There were 
30 phyla and 3828 taxa represented in the data 
set. As expected, observed amplicon sequence 
variants (ASV) correlated with total read count. 
From a visual overview, the principal coordinate 
analysis (PCoA) displayed subtle differences in 
gut microbial clustering and dispersion between 
the four social groups (Figure 2). 
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Figure 2. Principal coordinate analysis. Ordination plot 
generated from the identified principal coordinates of my 
data set. The four social groups displayed differences in 
clustering and dispersion based on Aitchison distance 

metrics. 

3.2. PERMANOVA 

All factors of interest showed significant effects 
on beta diversity (microbial similarity); collection 
month (R2=0.04456, p<0.001) and field season 
(R2=0.03502, p<0.001) explained a moderate 
amount of variation in beta diversity and had a 
significant interaction (R2=0.01995, p<0.001). 
After controlling for all other variables, infant 
presence had a small but significant effect on gut 
microbial variation (R2=0.007131, p<0.001). Social 
group and infant presence also had a significant 
interaction after controlling for other variables 
(R2=0.01907, p<0.001). See Table 1 for a full 
summary of PERMANOVA results.  

Table 1. Summary of PERMANOVA results. All factors of 
interest showed significant effects on beta diversity. Infant 

presence exerted a small but significant effect on beta 
diversity (R2=0.007131, p<0.001). Social group and infant 

presence also showed a significant interaction (R2=0.01907, 
p<0.001). 

 

3.3. Generalized Linear Mixed Model 

Across all four social groups, infant presence was 
not found to have a significant influence on 
distance to centroid and the null model was 
selected over the full model (Table 2). However, 
visually there was a slight decrease in DTC when 
a young infant was present (Figure 3). The social 
group WT stood out as being significantly 
different than the other three social groups in the 
GLMM (group [WT]: p<0.021, Table 2). 

Table 2. Generalized linear mixed model for distance to 
centroid across all social groups. Infant status did not show a 

significant effect on distance to centroid across all social 
groups (p<0.319). The social group Winter (WT) was 

significantly different than the other three social groups 
(p<0.021). 

 

 
Figure 3. Effects plot of infant presence on distance to 

centroid across all social groups. The plotted effects of the 
GLMM showed a decrease in distance to centroid with a young 

infant present, however as seen in the GLMM results, this 
trend did not rise to the level of significance with all four 

social groups (p<0.319). 
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The effects plot revealed that WT also had 
lower distances to centroid across time points 
and showed a different pattern of directional 
differences in distance to centroid in response to 
infant presence (Figure 4). Based on these results, 
WT was removed from the data set, and the tests 
were rerun. The results of this second test 
without WT (Table 3) showed significant results 
for infant presence affecting distance to centroid 
across all remaining groups (p< 0.036) and the full 
model was selected over the null. The plotted 
effects again showed a decrease in distance to 
centroid when a young infant was present (Figure 
5).  

 
Figure 4. Effects plot of infant status on distance to centroid 
partitioned by social group. A visualization of the interaction 

between infant status and distance to centroid by social group 
showed that WT had an overall lower distance to centroid 

across time periods and showed a different pattern of 
directional changes in distance to centroid with a young infant 

present. 

Table 3. Generalized linear mixed model for distance to 
centroid without WT. With the social group WT removed, 
infant presence showed a significant effect on distance to 

centroid for the remaining three groups in the GLMM (young 
infant present [Y]: p<0.036). 

 

 
Figure 5. Effects plot of infant status on distance to centroid 
without WT. With WT removed from the data set, the other 

three social groups showed a decrease in distance to centroid 
with a young infant present (young.infant.present = Y). 

3.4. Social Networks and Centralization 

There was not a significant difference in social 
cohesion between time periods with or without a 
young infant present across all social groups 
based on either metric I used for my analysis 
(eigenvector centralization, p<0.152; mean 
strength, p<0.496). Based on a visual overview, I 
did see structural differences with and without a 
young infant present in the weighted edge list 
visualizations; the social groups SP and WW 
changed in some way between time periods 
whereas WT does not show such distinct changes. 
WT also lacked the sub-structuring seen in the 
other social groups, visualized through 
differences in the color overlays (Figure 6).    
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Figure 6. Weighted and undirected social networks with 
modularity for SP, WT, and WW. Distance matrices 

constructed from one-meter approaches were used to create 
undirected weighted edge lists with modularity analysis 

overlays. The edge weights denote the connection strength 
between individuals, and the color overlays distinguish 

different modules (“communities”) within the network. The 
name of each set of matrices identifies the group (SP, WT, 
WW) and infant presence (Y, N). The numbers denote the 

time periods, differentiating between the two infant presence 
= Y periods, and the letters in the nodes are individuals in the 
group. The social group RT was excluded from the analysis as 
it did not have sufficient behavioral data. WT having a single-

color overlay for all individuals (no sub-structuring) suggested 
that all members in the group were closely connected. 

4. Discussion 

4.1. Infant Presence Influences Gut 
Microbial Similarity in Adult Females  

Through my first objective, I aimed to test 
whether changes occurred in gut microbial 
composition in adult female black-and-white 
colobus monkeys between time periods with and 
without a young infant present. Using a 
PERMANOVA, I found significant evidence of 
changes in gut microbial similarity between time 
periods while controlling for confounding 
variables (collection month, field season, ID). 
While this analysis did reveal that the presence of 
an infant was having a small but significant effect 
on gut microbial similarity, the test was quite 
broad and did not indicate what change was 
occurring. The significant interaction between 
social group and infant presence in the 
PERMANOVA also suggested that in some way, 
infant status was differentially affecting gut 
microbial similarity between social groups. 

4.2. Gut Microbiomes Become More 
Similar with Infant Presence in Most 
Study Groups 

While the PERMANOVA suggested that changes 
in microbial similarity were indeed present 
across groups, I was specifically interested in 
testing whether the gut microbiomes of adult 
females in social groups became more similar in 
the presence of a young infant. I hypothesized 
that the gut microbiomes of adult females would 
become more similar in the presence of a young 
infant. Across all groups, I did not see a 
significant interaction between infant presence 
and distance to centroid in the GLMM results, 
suggesting that infant presence was not 
increasing gut microbial similarity across all 
social groups. However, as shown in the 
PERMANOVA results (Table 1), it is possible that 
the presence of infants affected the social groups 
in different ways, supporting an inquiry into how 
certain social groups influenced the GLMM 
result. The GLMM results by group (Table 2) and 
the effects plot for the interaction between infant 
presence and distance to centroid (Figure 4) 
showed that the social group Winter (WT) was 
different than the other three social groups. 
Because of this trend, I hypothesized that WT 
could be disproportionately influencing the 
results of the GLMM, so I removed it and ran the 
test again. Once WT was removed, there was a 
significant effect of infant presence on gut 
microbial similarity for the remaining three 
social groups; the trends of WT seemed to be 
masking the significant results of the other 
groups (Table 3). The plotted effects of the model 
excluding WT showed a decrease in distance to 
centroid with a young infant present (Figure 5), 
suggesting that in social groups with a young 
infant, the overall gut microbial compositions of 
the female members became more similar to 
each other, thus supporting Hypothesis 1. It is 
important to interpret the results of the DTC 
analysis with caution; while I found evidence for 
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an increase in gut microbial similarity with infant 
presence, this effect may be group- or context-
dependent, as it arose in only three out of four 
groups and thus requires further exploration at a 
group level.   

4.3. No Correlation Between Infant 
Presence and Social Cohesion between 
Groups 

After finding evidence of variation in gut 
microbial similarity following changes in infant 
status, my second objective aimed to explore if 
this variation was in fact a result of changes in 
social cohesion. This idea was based on a 
previously documented increase in grooming 
with a young infant present among black-and-
white colobus monkeys (Wikberg et al., 2015), 
and the fact that social proximity was found to be 
the best predictor of gut microbial similarity 
within the same study population (Wikberg et al., 
2020). I hypothesized that when a young infant 
was present in a group, there would be an 
increase in social proximity among adult females. 
This could in turn facilitate increased gut 
microbial transmission, leading to the increase in 
gut microbial similarity I observed in the first 
part of my analysis.  

I did not find a significant difference in social 
proximity between time periods with and without 
a young infant present for any of the social 
groups, which suggests that infant presence did 
not exert a significant influence on social 
network cohesion. This result failed to support 
Hypothesis 2. However, it is possible that using a 
one-meter proximity network was too broad of a 
method to evaluate changes in social cohesion; 
allomothering has nuances that may not have 
been detected within the parameters of my 
analyses. Research on a semi-free-ranging group 
of capuchin monkeys found that lactating 
females (having recently given birth) did have a 
larger number of grooming partners, but this did 
not result in significant changes in social 
proximity (de Lima and Ferreira, 2021). This 

finding suggests that although Wikberg et al. 
(2015) did note increases in grooming behavior 
with a young infant present, this does not 
necessarily translate to an increase in social 
proximity. Female black-and-white colobus 
monkeys are also more likely to participate in 
allomothering behavior with the infants of their 
maternal kin (Bădescu et al., 2015). These same 
kin members have been found to generally spend 
more time in close proximity within social groups 
independent of allomothering behavior (Wikberg 
et al., 2014). If the prospective allomothers and 
the mother were already spending time in close 
proximity, when an infant was born there may 
not have been a change in the amount of one-
meter approaches between these individuals 
(tested in my analysis) but rather a change in the 
amount of direct contact via females grooming 
the mother to gain access to the infant as well as 
females grooming the infant itself (Bădescu et al., 
2015; McKenna, 1979). As in other primate 
species, grooming on its own is likely a mediator 
for transmission of gut microbes in this study 
population with the most direct mechanism being 
anogenital grooming (Tung et al., 2015), however 
any direct contact between the mouth and hands 
of one individual and the fur of another could 
provide a means of transmission. Adult-female-
to-adult-female grooming could lead to direct 
transmission of gut microbes. Similarly, an infant 
could act as a microbial reservoir and allow for an 
indirect source of microbial transmission 
between handlers.    

While my statistical analyses did not detect 
significant changes in social cohesion, the social 
networks generated in igraph did show notable 
changes in edge weight (connection strength) and 
modularity (sub-structuring) between time 
periods. These results further indicate that my 
evaluation of changes in social cohesion may not 
have been granular enough to capture changes 
occurring across time periods, suggesting the 
need for an investigation of other measures of 
social cohesion within this study population. As 
in the microbial analysis, WT also stood out from 
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the other social groups, in this case because it did 
not show changes in sub-structuring between 
time periods. This is consistent with the fact that 
WT had the most similar gut microbial 
compositions (lowest DTC) across time periods, 
and again demonstrates the need to further 
investigate differences between social groups.  

4.4. Study Group Winter (WT) Is an Outlier 

My results for both the microbial and social 
network analyses suggest that WT may have 
experienced very different dynamics than the 
other three social groups during the sampling 
periods. At this time, it is unclear what the cause 
of this difference is, but it could have been due to 
sampling bias and/or biological differences. I 
checked for any variance in sampling that could 
have given rise to the differences seen for WT. 
There were no significant differences in time 
between sample collection or the number of 
samples for each group. I did find that for both 
the number of days and the number of samples 
collected with a young infant present, there was 
unevenness across social groups, but the GLMM 
model fit I used for my DTC analysis has been 
shown to be relatively robust to uneven sampling 
(Pinheiro, 2014). The trends seen for the social 
group WT fail to support Hypothesis 1, which 
again predicted an increase in gut microbial 
similarity among adult females with an infant 
present.  

It is possible that there were behavioral 
differences between WT and the other groups 
that gave rise to the differences seen in my 
analyses. Higher overall affiliation rates within 
the group could drive gut microbiome 
homogenization, resulting in the lower overall 
DTC values observed in WT and reducing the 
likelihood of a significant change in social 
structure or DTC with a young infant present. 
Females tend to exhibit increased rates of 
affiliation and grooming in periods of high stress 
(Cheney & Seyfarth, 2009; Engh et al., 2006; 
Rodrigues, 2013). If there was a threat present 

during time periods of data collection, such as an 
alpha male takeover or male immigration, the 
females in WT may have already been spending 
time in close proximity. Kinship between females 
has also been shown to predict rates of grooming 
and affiliation in other primate species (Sueur et 
al., 2011; Tinsley Johnson et al., 2014), and it is 
possible that if the females in WT had a higher 
degree of relatedness, then they may have 
already been participating in higher rates of 
grooming and affiliation. Conversely, 
allomothering behavior tends to happen among 
related females in this population (Bădescu et al. 
2015), so if WT females had a lower degree of 
relatedness, perhaps they displayed less 
allomothering behaviors, thus explaining why the 
presence of an infant did not have much of an 
effect on gut microbial similarity.   

5. Future Directions 

The results of this study offer promising insights. 
However, further research needs to be conducted 
to fully explore the nuances of my study 
population in relation to my research question. 
While there were significant changes in gut 
microbial similarity between time periods, the 
change was not consistent and requires further 
analysis at the group level. One future direction 
would be evaluating WT for any biological 
differences compared to the other groups 
including kin composition or instances of high 
stress during the sampling period. As adult 
females in WT showed more similar gut 
microbial compositions overall (GLMM effects 
plot) and did not show changes in sub-structuring 
within their group (social network visualizations) 
between time periods with and without a young 
infant present, directly testing overall rates of 
affiliative behavior may be another way to help 
explain the differences seen in WT.  

Another future direction for this work would 
be to evaluate social changes within groups when 
a young infant is present using metrics beyond 
one-meter approaches—mainly grooming and 
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infant handling. For example, it could be 
beneficial to create and analyze grooming rates 
and networks as opposed to proximity networks 
for each social group or weight the proximity 
networks with grooming rates. Future directions 
could also include more complex statistical 
approaches for determining small-scale changes 
in social networks. Understanding the source of 
microbial variation seen in my data, even if it is 
not the same mechanism I initially proposed, 
would still offer insight into the role of the social 
environment in shaping the composition of the 
gut microbiome on a temporal scale.  

6. Conclusions 

The gut microbiome has gained considerable 
attention as a system which has important 
implications for many aspects of host health and 
function. Current research has focused on 
investigating how gut microbial variation affects 
host systems. However, it is of equal importance 
to understand what causes gut microbial 
variation in the first place. This study aims to 
provide a more comprehensive longitudinal 
evaluation of how changes in social environment 
influence gut microbial similarity using known 
social changes among black-and-white colobus 
monkeys after the birth of an infant. I found 
evidence of increases in gut microbial similarity 
during time periods with an infant present. 
However, the effect was small and seems to be 
context- or group-dependent, motivating further 
investigation into the compositional and 
behavioral differences between social groups. 
This trend was also not found to be associated 
with any change in social proximity, and further 
research is required to investigate more fine-
grained behavioral changes that may lead to this 
variation. While the means of microbial 
transmission was not fully revealed, this work 
provides insight into the temporal nature of 
microbial variation and builds on an 
understanding of how social context may 
influence compositional variation of the gut 

microbiome over time. Given the important role 
of the microbiome in host physiology, 
establishing a comprehensive understanding of 
the factors contributing to natural inter- and 
intra- individual variation could ultimately 
inform strategies to investigate, maintain, and 
shape a healthier gut microbiome.  
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