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When introduced with any equation, whether it is given by a polynomial or cubic 

polynomial, the first question we typically ask ourselves is, what is the solution? In many cases, 

like in the equation 𝑥𝑥 + 2 = 5, we can easily determine that the solution is 𝑥𝑥 = 3. But, in other 

scenarios, like finding rational or integer solutions to certain cubic equations, the answer may be 

difficult to find, or, in some cases, there may not be a definitive way to find an answer at all. It is 

especially the case for elliptic curves. Elliptic curves of the Weierstrass form are equations of the 

form 𝑦𝑦2 = 𝑓𝑓(𝑥𝑥) = 𝑥𝑥3 + 𝐴𝐴𝑥𝑥 + 𝐵𝐵, where 𝐴𝐴,𝐵𝐵 ∈ ℤ. Although solutions to cubic equations are well-

understood with real numbers, the challenge appears when we try to find integers and rational 

solutions in cubic equations, which are not yet well understood. Independent rational solutions on 

elliptic curves, defined by the rank of a curve, have proven difficult to uncover. This thesis is 

interested in developing a better understanding of how to find rational solutions and understanding 

the ranks of elliptic curves.   



 

iii 
 

Acknowledgements 

 

First, I would like to thank Dr. Victor Ostrik for his continuous encouragement and 

support throughout the past year with the investigation of this thesis. With his guidance, I have 

developed and explored a topic I otherwise would not have encountered. Also, I would like to 

extend my gratitude to every mathematics professor and Clark Honors College professor and 

faculty who taught me during my four years at the University of Oregon. Their inspiring and 

creative thinking provided an engaging environment in which to learn.  

I would also like to thank my family and friends for providing unconditional support. 

Their continuous words of encouragement kept me motivated through the highs and lows of this 

journey. Thank you for listening and enduring my ongoing talks about mathematics. I cannot 

express my appreciation for everyone's support! 

  



 

iv 
 

Table of Contents 

1 Introduction and Background 1 

1.1 Groups and Fields 2 

1.2 Projective Plane 6 

1.3  Conics 8 

1.4  Cubics 11 

2  Mordell’s Theorem 14 

2.1  Weierstrass Normal Form 14 

2.2  Group Law 15 

2.3  Group Law Explicit Formulas 18 

2.4  Points of Order 2 19 

2.5  Proof of Mordell’s Theorem 21 

3  Ranks of Elliptic Curves 32 

3.1  Ranks 32 

3.2  Investigating Ranks of Elliptic Curves 34 

4  Conclusion 36 

Glossary 37 

References 38 

 
 

  



 

v 
 

List of Figures  

Figure 1.1. Parallel lines intersect at points “at infinity” 8 

Figure 1.2. Example of Conics 9 

Figure 1.3. Projecting a conic onto a line 10 

Figure 1.4. Circle:  𝑦𝑦2 + 𝑥𝑥2 = 4 10 

Figure 1.5. Parabolas: 𝑦𝑦 = 𝑥𝑥2 11 

Figure 1.6. Two Distinct Points on a Cubic 12 

Figure 1.7. Two Non-Distinct Pints on a Cubic 12 

Figure 1.8. The group law on a cubic 16 

Figure 1.9. Verifying identity element 17 

Figure 1.10. The inverse of a point 17 

Figure 1.11. Verifying the associative law 18 

Figure 1.12. Adding points on a Weierstrass cubic 19 
 
 
 
 
  



 

vi 
 

 

List of Tables  

Table 1.1. Cayley Table for (ℤ4, +) 3 

Table 1.2. Cayley Table for (ℤ3, +) 5 

Table 1.3. Cayley Table for (ℤ3,×) 5 

Table 1.4. Rank Records 34 

Table 1.5. Rank for the curves of the form 𝐶𝐶:𝑦𝑦2 = 𝑥𝑥3 + 𝐴𝐴𝑥𝑥2 + 𝐵𝐵𝑥𝑥 35 

Table 1.6. Rank for the curves of the form 𝐶𝐶:𝑦𝑦2 = 𝑥𝑥3 + 𝐵𝐵𝑥𝑥 35 



 
 

1 
 

1 Introduction and Background  

Most individuals indirectly interact with elliptic curves daily without even knowing. While 

many aspects of elliptic curves are still not well-understood, many contemporary applications and 

developments have influenced humans' everyday lives. Whether conducting online transactions or 

using secure messaging apps, elliptic curves manage to keep data secure and information private. 

In these situations, the applications of elliptic curves are in the form of elliptic curve cryptography 

(EEC). Cryptography focuses on encryption and decryption, where communicating private 

information is done securely. While there are many forms of public key cryptography, ECC has 

proven to be one of the most effective in recent years. 

Although ECC is the most common application for elliptic curves, there are other 

applications in which elliptic curves have been beneficial: factoring large integers, primality 

proving, and proof of Fermat’s Last Theorem. ECC has become the newest and most relevant form 

of cryptography because it has successfully defended against a plethora of attacks and is more 

efficient than previous forms of asymmetric cryptographic security, most notably RSA [4]. While 

the applications of elliptic curves are interesting, there are still many unknowns regarding the topic. 

This thesis will focus on developing concepts in the mathematical fields of algebra and number 

theory to construct a better understanding of elliptic curves.  

This section will focus on developing a basic understanding of the concepts necessary to 

understand the elliptic curves: groups, fields, conics, and cubics. Ultimately, these concepts will 

develop the essential tools to understand Mordell's Theorem, which is the leading theorem for 

understanding rational points on elliptic curves. 
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1.1 Groups and Fields 

Definition 1.1. A group is a nonempty set 𝐺𝐺 with a binary operation ∗ that satisfies the following 

axioms: 

(a) Associativity: For all elements 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 ∈ 𝐺𝐺 it holds that 𝑎𝑎 ∗ ( 𝑏𝑏 ∗ 𝑐𝑐) = (𝑎𝑎 ∗ 𝑏𝑏) ∗ c. 

(b) Identity: There exists an identity element 𝑒𝑒 ∈ 𝐺𝐺 such that for every element 𝑎𝑎 ∈ 𝐺𝐺 it 

holds that 𝑎𝑎 ∗ 𝑒𝑒 = 𝑎𝑎 = 𝑒𝑒 ∗ 𝑎𝑎. 

(c) Inverse: For all elements  𝑎𝑎 ∈ 𝐺𝐺, there exists an inverse element 𝑑𝑑 ∈ 𝐺𝐺 such that 𝑎𝑎 ∗

𝑑𝑑 = 𝑒𝑒 and 𝑑𝑑 ∗ 𝑎𝑎 = 𝑒𝑒. 

A group 𝐺𝐺 is also called an Abelian Group if it satisfies the following axiom: 

(d) Commutativity: For every element 𝑎𝑎, 𝑏𝑏 ∈ 𝐺𝐺 it holds that 𝑎𝑎 ∗ 𝑏𝑏 = 𝑏𝑏 ∗ 𝑎𝑎 [3]. 

This discussion is an introduction to a concept in algebra known as groups. To better 

understand elliptic curves, it is necessary to comprehend the characteristics and properties of a 

group. A group is a nonempty set with a binary operation, such as addition or multiplication. The 

operation must be associative, contain an identity and inverse element, and can be commutative.  

Example 1.1. Show that the set ℤ4 = {0, 1, 2, 3} under the operation + forms a group. 

+ 0 1 2 3 

0 0 1 2 3 

1 1 2 3 0 

2 2 3 0 1 
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3 3 0 1 2 

Table 1.1. Cayley Table for (ℤ4, +) 

Solution. First, consider the definition of a group: associative, inverse element, and identity 

element. The identity element for the set is 𝑒𝑒 = 01, such that, 

0 + 01 = 0 = 01 + 0  1 + 01 = 1 = 01 + 1 

2 + 01 = 2 = 01 + 2  3 + 01 = 3 = 01 + 3. 

Additionally, every element of the set contains an inverse element, which is denoted by the 

subscript 𝑖𝑖, 

0 + 0𝑖𝑖 = 0 = 0𝑖𝑖 + 0  1 + 3𝑖𝑖 = 0 = 3𝑖𝑖 + 1 

2 + 2𝑖𝑖 = 0 = 2𝑖𝑖 + 2  3 + 1𝑖𝑖 = 0 = 1𝑖𝑖 + 3. 

Lastly, the associative property holds for all combinations of 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 ∈ ℤ4, where the following are 

just a few cases that illustrate the associative property holds, 

0 + (1 + 2) = 3 = (0 + 1) + 2   1 + (2 + 3) = 6 = (1 + 2) + 3. 

Thus, this proves that the (ℤ4, +) is a group. Furthermore, to show that the group is also 

commutative, it must be that for all combinations of 𝑎𝑎, 𝑏𝑏 ∈ ℤ4, the property holds, where the 

following are just a few cases that illustrate the commutative property holds, 

2 + 3 = 1 = 3 + 2   1 + 3 = 0 = 3 + 1, 

because 1 ≡ 5 (𝑚𝑚𝑚𝑚𝑑𝑑 4) and  0 ≡ 4 (𝑚𝑚𝑚𝑚𝑑𝑑 4). Generally, this would be sufficient to indicate 

(ℤ4, +) is an abelian group. 

Another concept from algebra that is important for understanding elliptic curves and that 

builds on groups is fields. Like a group, a field has different properties that must be satisfied to 

maintain its structure such as distributivity, commutativity, and associativity.  
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Definition 1.2. A field is a nonempty set 𝐹𝐹 with the operations + and × that satisfies the following 

axioms: 

(a) Associativity: For all elements 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 ∈ 𝐹𝐹 it holds that 𝑎𝑎 + ( 𝑏𝑏 + 𝑐𝑐) = (𝑎𝑎 + 𝑏𝑏) + c 

and 𝑎𝑎 × ( 𝑏𝑏 × 𝑐𝑐) = (𝑎𝑎 × 𝑏𝑏) × c. 

(b) Identity: There exist identity elements 0𝐹𝐹 , 1𝐹𝐹 ∈ 𝐹𝐹, where 1𝐹𝐹 ≠  0𝐹𝐹, such that for every 

element 𝑎𝑎 ∈ 𝐹𝐹 it holds that 𝑎𝑎 + 0 = 𝑎𝑎 = 0 + 𝑎𝑎 and 𝑎𝑎 × 1 = 𝑎𝑎 = 1 × 𝑎𝑎. 

(c) Inverse: For every element 𝑎𝑎 ∈ 𝐹𝐹, where 𝑎𝑎 ≠  0𝐹𝐹 for multiplication, there exists an 

element −𝑎𝑎,𝑎𝑎−1 ∈ 𝐹𝐹 such that 𝑎𝑎 + (−𝑎𝑎) = 0 = (−𝑎𝑎) + 𝑎𝑎 and 𝑎𝑎−1 × 𝑎𝑎 = 1 =

𝑎𝑎 × 𝑎𝑎−1. 

(d) Commutativity: For every element 𝑎𝑎, 𝑏𝑏 ∈ 𝐹𝐹 it holds that 𝑎𝑎 + 𝑏𝑏 = 𝑏𝑏 + 𝑎𝑎 and 𝑎𝑎 × 𝑏𝑏 =

𝑏𝑏 × 𝑎𝑎. 

(e) Distributivity: For all elements 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 ∈ 𝐹𝐹 it holds that 𝑎𝑎 × ( 𝑏𝑏 + 𝑐𝑐) = (𝑎𝑎 × 𝑏𝑏) +

(𝑎𝑎 × 𝑐𝑐) and ( 𝑏𝑏 + 𝑐𝑐) × 𝑎𝑎 = (𝑏𝑏 × 𝑎𝑎) + (𝑐𝑐 × 𝑎𝑎). 

Example 1.2. Show that the set ℤ3 = {0, 1, 2} under the operation + and × forms a group. 

+ 0 1 2 

0 0 1 2 

1 1 2 0 

2 2 0 1 
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Table 1.2. Cayley Table for (ℤ3, +) 

× 0 1 2 

0 0 0 0 

1 0 1 2 

2 0 2 1 

Table 1.3. Cayley Table for (ℤ3,×) 

Solution. To show that the set ℤ3 is a group under the operation + and ×, considering the previous 

axioms. It is determined that the identity elements for the set are 𝑒𝑒1 = 01 and 𝑒𝑒2 = 11, such that:   

0 + 01 = 0 = 01 + 0   0 × 11 = 0 = 11 × 0 

1 + 01 = 1 = 01 + 1  1 × 11 = 1 = 11 × 1 

2 + 01 = 2 = 01 + 2  2 × 11 = 2 = 11 × 2. 

Every element of the set contains an inverse element: 

0 + 0 = 0 = 0 + 0  1 × 1 = 1 = 1 × 1 

1 + 2 = 0 = 2 + 1  2 × 2 = 1 = 2 × 2. 

In the last case, 2 × 2 = 1 = 2 × 2 because 1 ≡ 4 (𝑚𝑚𝑚𝑚𝑑𝑑 3). Also, the associative property holds 

for all combinations of 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 ∈ ℤ3, where the following are just a few cases that illustrate the 

associative property holds: 

1 + (1 + 2) = 1 = (1 + 1) + 2  1 × (1 × 2) = 0 = (1 × 1) × 2. 
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To show that the set is commutative, it follows that for all combinations of 𝑎𝑎, 𝑏𝑏 ∈ ℤ3, the property 

holds, where the following are just a few cases that illustrate the commutative property holds: 

2 + 3 = 2 = 3 + 2   2 × 3 = 0 = 3 × 2. 

Lastly, the distributive property must hold for all combinations of 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 ∈ ℤ3, where the following 

are just a few cases that illustrate the distributive property holds: 

1 × (2 + 3) = 2 = (1 × 2) + (1 × 3)  (1 + 2) × 3 = 0 = (1 × 3) + (2 × 3). 

Thus, this would be sufficient to indicate (ℤ3, +, ×) is a field. 

Ultimately, elliptic curves are defined over fields, which represent the plane with points of 

that specified field. For the purposes of this thesis, it is essential to look at elliptic curves over the 

rational field, ℚ. 

1.2 Projective Plane  

To better understand elliptic curves, it is also necessary to understand the projective plane. 

The following will define the projective plane from both an algebraic and geometric perspective. 

It is essential to begin the discussion of the algebraic projective plane with an understanding of the 

following Fermat’s equation 

    𝑥𝑥𝑁𝑁 + 𝑦𝑦𝑁𝑁 = 1,          (1.1) 

where 𝑥𝑥,𝑦𝑦 ∈ ℚ. Now, suppose there is a solution such that 𝑥𝑥 = 𝑎𝑎
𝑐𝑐
 and 𝑦𝑦 = 𝑏𝑏

𝑑𝑑
 are in the lowest terms 

with a positive denominator. This substitution will result in  

𝑎𝑎𝑁𝑁𝑑𝑑𝑁𝑁 + 𝑏𝑏𝑁𝑁𝑐𝑐𝑁𝑁 = 𝑐𝑐𝑁𝑁𝑑𝑑𝑁𝑁. 

Now, it can be determined that   

𝑐𝑐𝑁𝑁|𝑎𝑎𝑁𝑁𝑑𝑑𝑁𝑁, where gcd(𝑎𝑎,𝑑𝑑) = 1 and  𝑑𝑑𝑁𝑁| 𝑏𝑏𝑁𝑁𝑐𝑐𝑁𝑁, where gcd(𝑏𝑏,𝑑𝑑) = 1. 
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So, it must be that 𝑐𝑐|𝑑𝑑 and 𝑑𝑑|𝑐𝑐. Thus, 𝑐𝑐 = 𝑑𝑑 and any solution to (1.1) in rational numbers, �𝑎𝑎
𝑐𝑐

, 𝑏𝑏
𝑐𝑐
�, 

gives a solution in the integers of the form (𝑎𝑎, 𝑏𝑏, 𝑐𝑐) for the following homogeneous Fermat 

equation 

    𝑋𝑋𝑁𝑁 + 𝑌𝑌𝑁𝑁 = 𝑍𝑍𝑁𝑁.         (1.2) 

It is possible to find rational and integer solutions given that you have the solution to either of the 

previous equations.  

Definition 1.3. (Projective Plane ℙ𝟐𝟐; Algebraic definition). A projective plane is a set of triplets 

of the form  [𝑎𝑎, 𝑏𝑏, 𝑐𝑐] with 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 not all zero, and consider two triples [𝑎𝑎, 𝑏𝑏, 𝑐𝑐] and [𝑎𝑎′, 𝑏𝑏′, 𝑐𝑐′] the 

same point if there exists a non-zero 𝑡𝑡 such that  

𝑎𝑎 = 𝑡𝑡𝑎𝑎′, 𝑏𝑏 = 𝑡𝑡𝑏𝑏′, 𝑐𝑐 = 𝑡𝑡𝑐𝑐′. 

ℙ2 is the projective plane defined by the set of equivalence classes of triples [𝑎𝑎, 𝑏𝑏, 𝑐𝑐], except the 

triple [0,0,0]. 

Now, for the geometric projective plane, a line is defined as a set of points [𝑎𝑎, 𝑏𝑏, 𝑐𝑐] ∈ ℙ2 

whose coordinates satisfy the equation 

𝛼𝛼𝑋𝑋 + 𝛽𝛽𝑌𝑌 + 𝛾𝛾𝑍𝑍 = 0, 

for constants 𝛼𝛼,𝛽𝛽, 𝛾𝛾 not all zero, where the homogenous points are also solutions.  

Since parallel lines in the geometric plane do not intersect, there needs to be an additional 

point defined where they intersect. We define 𝔸𝔸2 = {(𝑥𝑥,𝑦𝑦)|𝑥𝑥 𝑎𝑎𝑎𝑎𝑑𝑑 𝑦𝑦 𝑎𝑎𝑎𝑎𝑒𝑒 𝑎𝑎𝑛𝑛𝑚𝑚𝑏𝑏𝑒𝑒𝑎𝑎𝑛𝑛} as the 

Euclidean plane. Thus, each line in the projective plane ℙ2 consists of a line in 𝔸𝔸2 and the set of 

directions of the line: the point at infinity.  
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 Figure 1.1. Parallel lines intersect at points “at infinity” 

Definition 1.4. (Projective Plane ℙ𝟐𝟐; Geometric Definition). The projective plane is  

ℙ2 = 𝔸𝔸2 ∪ {the set of directions in 𝔸𝔸2} 

where the additional points are associated with direction.  

Two lines are said to have the same direction if and only if they are parallel. Thus, the 

geometric definition eliminates the need to distinguish between parallel and non-parallel lines: it 

has no parallel lines [1]. 

1.3  Conics  

To better understand the proceeding discussion on finding rational points on cubics, this 

discussion begins by finding rational points on conics. As mentioned earlier, finding rational points 

on cubics can be more difficult than finding points on conics. To find rational points, first, let 𝑃𝑃 =

(𝑥𝑥,𝑦𝑦), where 𝑥𝑥,𝑦𝑦 𝜖𝜖 ℚ, on a conic. A conic refers to a curve, of degree 2, that is generated from the 

intersection of a circular surface with a plane.  

In this case, the conic must be rational, which implies that the coefficients of our equation 

will need to be rational numbers. A number is said to be rational if it is of the form 𝑝𝑝
𝑞𝑞
, where 𝑝𝑝 and 
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𝑞𝑞 are integers, and 𝑞𝑞 ≠ 0. Some examples of conics are circles, ellipses, parabolas, and hyperbolas 

(Figure 1.2). As a disclaimer, ellipse and elliptic curves do not represent the same concept. An 

ellipse is a set of points whose distance to two fixed points on a plane adds up to a constant. 

Meanwhile, an elliptic curve is defined by the equation 𝑦𝑦2 = 𝑓𝑓(𝑥𝑥) = 𝑥𝑥3 + 𝐴𝐴𝑥𝑥2 + 𝐵𝐵𝑥𝑥 + 𝐶𝐶. 

 
 Figure 1.2. Example of Conics 

Now, assume that there is a rational point 𝒪𝒪 on a conic (Figure 1.3). To find the other 

rational point on the conic, there needs to be a projection of the point 𝒪𝒪 onto an arbitrary rational 

line ℓ1. As a result, there will be a projection from 𝒪𝒪 onto a rational point 𝑄𝑄 of our arbitrary rational 

line ℓ1. This will result in there being a new rational point on the conic, 𝑃𝑃. Thus, rational points on 

conics have a one-to-one correspondence to rational points on a line. Additionally, we determined 

that a line ℓ2 and conic intersect at exactly two points. Furthermore, the two points of intersection 

are rational if and only if the roots of the quadratic equation (for the x-coordinates of the 

intersection points) are also rational.  
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 Figure 1.3. Projecting a conic onto a line 

Theorem 1.1. Let 𝐶𝐶 be a rational conic, 𝒪𝒪 be a rational point and ℓ1 be a rational line. Let  ℓ2 be 

a line that connects 𝒪𝒪 with ℓ1 and that intersects the conic again at point 𝑃𝑃. Let the intersection 

of ℓ1 and ℓ2 be the point 𝑄𝑄. The point 𝑃𝑃 is a rational point if and only if 𝑄𝑄 is a rational point.  

Example 1.3. Are there any rational solutions to the circle 𝑦𝑦2 = −𝑥𝑥2 + 4? 

Solution. Let 𝑥𝑥 = 𝑋𝑋
𝑍𝑍
 and 𝑦𝑦 = 𝑌𝑌

𝑍𝑍
 so that we have the homogenous form 𝑌𝑌2 = −𝑋𝑋2 + 4𝑍𝑍2, where 𝑋𝑋, 

𝑌𝑌, and 𝑍𝑍 have no common factors. Since the equation has integers solutions, namely  (±2, 0) and 

(0, ±2), then it follows that the circle 𝑦𝑦2 = −𝑥𝑥2 + 4 has rational solutions. 

 
 Figure 1.4. Circle:  𝑦𝑦2 + 𝑥𝑥2 = 4 

Example 1.4. Are there any rational solutions to the parabola  𝑦𝑦2 = 𝑥𝑥2? 
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Solution. Given the rational point 𝒪𝒪 = (0, 3), we can easily find another rational point 𝑃𝑃 by 

projecting the line 𝐿𝐿(𝑥𝑥) = 2𝑥𝑥 − 3 through 𝒪𝒪, and find that 𝑃𝑃 = (2, 1). 

 
 Figure 1.5. Parabolas: 𝑦𝑦 = 𝑥𝑥2 

1.4  Cubics 

Meanwhile, a cubic curve, which is of degree 3, has the general form 𝑎𝑎𝑥𝑥2  +  𝑏𝑏𝑥𝑥2𝑦𝑦 +

 𝑐𝑐𝑥𝑥𝑦𝑦2 +  𝑒𝑒𝑥𝑥2  +  𝑓𝑓𝑥𝑥𝑦𝑦 +  𝑔𝑔𝑦𝑦2 +  ℎ𝑥𝑥 +  𝑖𝑖𝑦𝑦 +  𝑗𝑗, with coefficients 𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑, 𝑒𝑒,𝑓𝑓,𝑔𝑔, ℎ, 𝑖𝑖, 𝑗𝑗. Once 

again, the cubic must have rational points, so it means that the coefficients must be rational. If two 

rational points can be found on are given on curve 𝐶𝐶, then we can find the third point. If we can 

find the intersection of a rational line with a rational cubic, we can find a cubic equation. Also, if 

the cubic equation has two rational roots, then it must have a third rational root. So, if given two 

rational points, 𝑃𝑃, and 𝑄𝑄, on a cubic curve 𝐶𝐶, then we can find a third rational point, 𝑃𝑃 ∗ 𝑄𝑄 (Figure 

1.6). This can be done by drawing a line through both rational points on the curve.  
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 Figure 1.6. Two Distinct Points on a Cubic 

However, if only one rational point is known on the curve 𝐶𝐶, then we can find one 

additional point (Figure 1.7). If 𝑃𝑃 is the only rational point known on the curve 𝐶𝐶, we can draw a 

tangent line at 𝑃𝑃, so that 𝑃𝑃 is a double root of the cubic equation. Thus, the last, third root, must 

be rational.  

 
 Figure 1.7. Two Non-Distinct Pints on a Cubic 

Now that it is understood how to find rational points on cubics, we need to understand what 

we can do with this information. However, finding a third point doesn’t imply a group of rational 

points because there may not be an identity element. A more thorough discussion on rational points 

forming a group and how to find these points will be in the next section. As a reminder, there is 
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no guaranteed way of determining whether an arbitrary rational cubic has rational points. So, what 

is the best method of determining a group of rational points on a curve? 
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2  Mordell’s Theorem  

Theorem 2.1 Mordell’s Theorem. If 𝐶𝐶 is a non-singular rational cubic curve, then there is a 

finite set of rational points such that all other rational points can be obtained by repeatedly 

drawing lines and intersections.  

For the remainder of this section, the focus will be on developing different ideas to 

understand the central theorem for elliptic curves: Mordell’s Theorem. This will be completed by 

developing the tools necessary for understanding Mordell’s theorem. First, for finding a group of 

rational points on an elliptic curve it is necessary to use a group law under addition. This is 

completed by first understanding the Weierstrass normal form of a non-singular cubic curve. A 

cubic curve is considered non-singular if has no points at which both the partial derivatives vanish.  

In addition, there is one special point that was previously discussed in the Projective Plane 

discussion, that is important for understanding the group law: the point “at infinity”. The point at 

infinity is denoted by 𝒪𝒪. Ultimately, these properties will be used to obtain a better understating 

of Mordell’s theorem, and the interesting results of the unique properties.  

2.1  Weierstrass Normal Form  

Theorem 2.2 The equation of any cubic curve with a rational point can be written in the form  

𝑦𝑦2 = 4𝑥𝑥3 − 𝑔𝑔2𝑥𝑥 − 𝑔𝑔3, 

where a rational point is a point with rational coordinates.  

The Weierstrass normal form equation is usually denoted by 𝑦𝑦2 = 4𝑥𝑥3 − 𝑔𝑔2𝑥𝑥 − 𝑔𝑔3, but, 

with a few modifications, can be denoted by 𝑦𝑦2 = 𝑥𝑥3 + 𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑥𝑥 + 𝑐𝑐. To make the Weierstrass 

normal form equation homogeneous. suppose that 𝑥𝑥 = 𝑋𝑋/𝑍𝑍 and 𝑦𝑦 = 𝑌𝑌/𝑍𝑍 to obtain 𝑌𝑌2𝑍𝑍 = 𝑋𝑋3 +

𝑎𝑎𝑋𝑋2𝑍𝑍 + 𝑏𝑏𝑋𝑋𝑍𝑍2 + 𝑐𝑐𝑍𝑍3. For this cubic in Weierstrass normal form, suppose that  𝒪𝒪 is a rational point 
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“at infinity” of this non-singular curve. It is a point on every vertical line. Further discussion about 

the point 𝒪𝒪 will be included in the proceeding section. 

2.2  Group Law 

As previously mentioned, an essential theorem for understanding elliptic curves is 

Mordell’s Theorem. It states that for non-singular rational cubic curves, then there exists a finitely 

generated set of rational points. Thus, we can find a set of rational points on a curve and make it 

into a group. To do this, we begin by denoting 𝒪𝒪 as the rational point at infinity and denoting + as 

the group law operation, which will be commutative. The point at infinity is a special point on the 

curve because it serves as the identity point for the additive group law. As a disclaimer, point 

addition on a curve is not related to arithmetic addition. Although both arithmetic addition and 

point addition on elliptic curves represent the same properties, they do not represent the same 

ideas. We recall that we can obtain a third point on the curve by drawing a line between two 

established points over the curve 𝐶𝐶 in Weierstrass normal form, namely 𝑃𝑃 and 𝑄𝑄, and obtain 𝑃𝑃 ∗ 𝑄𝑄 

(Figure 1.8). Now, to add 𝑃𝑃 and 𝑄𝑄, take the third intersection point we found, 𝑃𝑃 ∗ 𝑄𝑄, and join it to  

𝒪𝒪 with a line, and we find that the point 𝑃𝑃 + 𝑄𝑄 is the addition of points 𝑃𝑃 and 𝑄𝑄. Since all elliptic 

curves are symmetric over the 𝑥𝑥-axis, then it can be thought of as reflecting the point 𝑃𝑃 ∗ 𝑄𝑄 over 

the 𝑥𝑥-axis to obtain 𝑃𝑃 + 𝑄𝑄. To define the + commutative group law, it must be that the operation 

is associative, verify that 𝒪𝒪 is the identity element, that every point contains an inverse (a negative 

of the point), and that it is commutative.  
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 Figure 1.8. The group law on a cubic 

Theorem 2.3. The field 𝐶𝐶(ℚ), where 𝐶𝐶 is a non-singular curve on the projective plane, establishes 

a commutative group under the operation + and the identity element 𝒪𝒪. 

Proof. Since the line from P to Q is the same line from Q to P, then we determine that P ∗ Q = Q ∗

P. So, we can conclude that P + Q = Q + P from the argument above. Thus, it is abelian: 

commutative. Since a rational line intersects the points P and Q on the rational cubic curve, then 

the third point must also be rational, which implies that P ∗ Q and P + Q are also rational. Thus, 

the set of rational points is closed and well-defined under the operation +. 

Now, to verify the point 𝒪𝒪 is the identity element. If we draw a line through 𝑃𝑃 and 𝒪𝒪, then 

we find the third intersection point 𝑃𝑃 ∗ 𝒪𝒪 (Figure 1.9). Now, if we draw a line through 𝒪𝒪 and 𝑃𝑃 ∗

𝒪𝒪, then we get that the 𝑃𝑃 + 𝒪𝒪 is the addition of the points 𝒪𝒪 and 𝑃𝑃 ∗ 𝒪𝒪. Thus, it indicates that 𝑃𝑃 +

𝒪𝒪 = 𝑃𝑃 = 𝒪𝒪 + 𝑃𝑃 by commutativity, and that verifies that 𝒪𝒪 is the identity element. 
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 Figure 1.9. Verifying identity element 

Now, it follows to demonstrate that the group law holds by showing that every point 𝑃𝑃 

contains an inverse. The additive inverse of the point 𝑄𝑄 = (𝑥𝑥, 𝑦𝑦) is −𝑄𝑄 = (𝑥𝑥,−𝑦𝑦). First, we draw 

the tangent through the point at 𝒪𝒪 twice and determine that 𝑆𝑆 = 𝒪𝒪 ∗ 𝒪𝒪 (Figure 1.10). It follows 

that given a point 𝑄𝑄, the line through 𝑄𝑄 and 𝑆𝑆 gives the point −𝑄𝑄 = 𝑄𝑄 ∗ 𝑆𝑆. Since the tangent line 

through the points 𝒪𝒪 and 𝑆𝑆 intersect 𝒪𝒪 twice, then, by drawing a line through the points 𝑄𝑄 and −𝑄𝑄, 

we get that 𝑄𝑄 + (−𝑄𝑄) = (−𝑄𝑄) + 𝑄𝑄 = 𝒪𝒪. As a result, we have verified that every element 𝑄𝑄 

contains an inverse, namely (−𝑄𝑄). 

 
 Figure 1.10. The inverse of a point 

 Lastly, it needs to be determined that the operation is associative. Suppose we are given 

the points 𝑃𝑃,𝑄𝑄,𝑅𝑅, and identity 𝒪𝒪. It is known that another point can be found by drawing lines 

through any two known points. So, using this method we can find the points 𝑄𝑄 ∗ 𝑅𝑅 = 𝑅𝑅 ∗ 𝑄𝑄 and 
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𝑃𝑃 ∗ 𝑄𝑄 = 𝑃𝑃 ∗ 𝑄𝑄. Now, using what we know about connecting these new points with the identity 𝒪𝒪, 

we can find the points 𝑄𝑄 + 𝑅𝑅 = 𝑅𝑅 + 𝑄𝑄 and 𝑃𝑃 + 𝑄𝑄 = 𝑄𝑄 + 𝑃𝑃. Additionally, we need to find the 

point that joins all three points, which is found through a complex construction of the previous 

lines which produces (𝑃𝑃 + 𝑄𝑄) ∗ 𝑅𝑅 =  𝑃𝑃 ∗ (𝑄𝑄 + 𝑅𝑅), which implies that  (𝑃𝑃 + 𝑄𝑄) + 𝑅𝑅 =  𝑃𝑃 +

(𝑄𝑄 + 𝑅𝑅) (Figure 1.11).  

 
 Figure 1.11. Verifying the associative law 

Thus, we have roughly shown that a non-singular rational cubic curve 𝐶𝐶 has points that form a 

commutative group under the operation +.              ∎  

2.3  Group Law Explicit Formulas 

Any cubic can be transformed into a special form known as Weierstrass normal form. As 

previously mentioned, the general Weierstrass equation takes the form 𝑦𝑦2 = 𝑥𝑥3 + 𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑥𝑥 + 𝑐𝑐. 

Now, the interest is adding two points to a cubic equation in Weierstrass form, which are explicit 

formulas of the group law. For that, let 𝑃𝑃1 = (𝑥𝑥1,𝑦𝑦1), 𝑃𝑃2 = (𝑥𝑥2,𝑦𝑦2), 𝑃𝑃1 ∗ 𝑃𝑃2 = (𝑥𝑥3,𝑦𝑦3), and 𝑃𝑃1 +
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𝑃𝑃2 = (𝑥𝑥3,−𝑦𝑦3), where we have an equation that joins the points 𝑃𝑃1 and 𝑃𝑃2. The line connecting 𝑃𝑃1 

and 𝑃𝑃2 is defined by the equation: 

𝑦𝑦 = 𝜆𝜆𝑥𝑥 + 𝑣𝑣, where 𝜆𝜆 = 𝑦𝑦2−𝑦𝑦1
𝑥𝑥2−𝑥𝑥1

 and 𝑣𝑣 = 𝑦𝑦1 − 𝜆𝜆𝑥𝑥1 = 𝑦𝑦2 − 𝜆𝜆𝑥𝑥2. 

So, we determine that the third point 𝑃𝑃1 + 𝑃𝑃2 = (𝑥𝑥3,−𝑦𝑦3) has the coordinates 𝑥𝑥3 = 𝜆𝜆2 − 𝑎𝑎 − 𝑥𝑥1 −

𝑥𝑥2 and 𝑦𝑦3 = 𝜆𝜆𝑥𝑥3 + 𝑣𝑣. 

 
 Figure 1.12. Adding points on a Weierstrass cubic 

Example 2.1. Are there any rational points on the curve  𝑦𝑦2 = 3𝑥𝑥2 + 12? 

Solution. Now, suppose that it is known that the cubic curve  𝑦𝑦2 = 3𝑥𝑥3 + 12 contains the points  

𝑃𝑃1 = (−1, 3) and 𝑃𝑃2 = (2,−6). To compute 𝑃𝑃1 + 𝑃𝑃2, find the line through 𝑃𝑃1 and 𝑃𝑃2 to be: 

𝑦𝑦 = (−3)𝑥𝑥 + 0, where 𝜆𝜆 = −9
3

= −3 and 𝑣𝑣 = 3 − (−3)(−1) = (−6) − (−3)(2) = 0. 

So, we find that  𝑥𝑥3 = (−3)2 − 0 − (−1) − (3) = 7 and 𝑦𝑦3 = (−3)(7) + 0 = −21. Thus, it must 

be that,  

𝑃𝑃1 + 𝑃𝑃2 = (𝑥𝑥3,−𝑦𝑦3) = (7,−21). 

2.4  Points of Order 2 

Definition 2.1. The order of a point 𝑃𝑃 is the smallest positive power of a point 𝑚𝑚 which results in 

the identity element 
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𝑚𝑚𝑃𝑃 = 𝒪𝒪. 

Any point 𝑃𝑃 of a group has order 𝑚𝑚 if 𝑚𝑚𝑃𝑃 = 𝑃𝑃 + ⋯+ 𝑃𝑃 = 𝒪𝒪, where there are 𝑚𝑚 sums of 

𝑃𝑃, and 𝑚𝑚′𝑃𝑃 ≠  𝒪𝒪 for all integers 1 ≤ 𝑚𝑚′ < 𝑚𝑚. So, if there is such 𝑚𝑚, then the point 𝑃𝑃 is of finite 

order. Otherwise, the point has infinite order. The Weierstrass normal form equation 𝑦𝑦2 = 𝑥𝑥3 +

𝐴𝐴𝑥𝑥2 + 𝐵𝐵𝑥𝑥 + 𝐶𝐶 and the point at infinity 𝒪𝒪 are used for the group law. Now, when does 2𝑃𝑃 = 𝒪𝒪 or 

its equivalent 𝑃𝑃 = −𝑃𝑃? 

Theorem 2.4. Points of Order Two. Let 𝐶𝐶 be a non-singular cubic curve   

𝑦𝑦2 = 𝑓𝑓(𝑥𝑥) = 𝑥𝑥3 + 𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑥𝑥 + 𝑐𝑐 

(Recall that 𝐶𝐶 is non-singular provided that 𝑓𝑓(𝑥𝑥) and 𝑓𝑓′(𝑥𝑥) have no common complex roots, or 

equivalently if 𝑓𝑓(𝑥𝑥) does not have a double root.) 

(a) A point 𝑃𝑃 = (𝑥𝑥,𝑦𝑦) ≠ 𝒪𝒪 on 𝐶𝐶 has order two if and only if 𝑦𝑦 = 0. 

Proof. The condition 2𝑃𝑃 = 𝒪𝒪 implies that P has order 2, which is equivalent to 𝑃𝑃 = −𝑃𝑃. It is 

known that −𝑃𝑃 = −(𝑥𝑥,𝑦𝑦) = (𝑥𝑥,−𝑦𝑦), so it must be that 𝑃𝑃 has order 2 when 𝑦𝑦 = −𝑦𝑦. Thus, it must 

be that 𝑦𝑦 = 0. Conversely, if 𝑦𝑦 = 0, then 𝑃𝑃 = −𝑃𝑃, and 𝑃𝑃 has order 2.           ∎ 

Lastly, two theorems that will be important later are the following: 

Theorem 2.5. (Mazur’s Theorem) Let 𝐶𝐶 be a non-singular rational cubic curve and suppose that 

𝐶𝐶(ℚ) contains a point of finite order 𝑚𝑚. Then either  

1 ≤ 𝑚𝑚 ≤ 10 and 𝑚𝑚 = 12. 

More precisely, the set of points of finite order in 𝐶𝐶(ℚ) forms a subgroup that has one of the 

following forms: 

(a) A cyclic group of order 𝑁𝑁 with 1 ≤ 𝑁𝑁 ≤ 10 or 𝑁𝑁 = 12. 

(b) The product of a cyclic group of order two and a cyclic group of order 2𝑁𝑁 with 1 ≤

𝑁𝑁 ≤ 4 
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Theorem 2.6. (Nagell-Lutz Theorem) Let  

𝑦𝑦2 = 𝑓𝑓(𝑥𝑥) = 𝑥𝑥3 + 𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑥𝑥 + 𝑐𝑐 

be a non-singular cubic curve with integer coefficients 𝑎𝑎, 𝑏𝑏, 𝑐𝑐, and let 𝐷𝐷 be the discriminant of the 

cubic polynomial 

𝐷𝐷 = −4𝑎𝑎3𝑐𝑐 + 𝑎𝑎2𝑏𝑏2 + 18𝑎𝑎𝑏𝑏𝑐𝑐 − 4𝑏𝑏3 − 27𝑐𝑐2 

Let 𝑃𝑃 = (𝑥𝑥,𝑦𝑦) be a rational point of finite order. Then 𝑥𝑥 and 𝑦𝑦 are integers, and either 𝑦𝑦 = 0, in 

which case 𝑃𝑃 has order two, or else 𝑦𝑦 divides 𝐷𝐷. 

2.5  Proof of Mordell’s Theorem   

Theorem 2.1. Mordell’s Theorem. (for curves with rational points of order two) Let 𝐶𝐶 be a non-

singular cubic curve given by an equation 

    𝐶𝐶:𝑦𝑦2 = 𝑥𝑥3 + 𝐴𝐴𝑥𝑥2 + 𝐵𝐵𝑥𝑥, 

where 𝐴𝐴 and 𝐵𝐵 are integers. Then the group of rational points 𝐶𝐶(ℚ) is a finitely generated abelian 

group.  

To prove Mordell’s Theorem, it needs to be shown that 𝐶𝐶(ℚ) satisfies the conditions for 

the Descent Theorem.  

Theorem 2.7 (Descent Theorem) Let 𝛤𝛤 be a commutative group and suppose that there is a 

function 

ℎ:𝛤𝛤 → [0,∞) 

with the following four conditions: 

(a) For every real number M, the set {𝑃𝑃 ∈ 𝐶𝐶(ℚ) | ℎ(𝑃𝑃) ≤ 𝑀𝑀} is finite. 

(b) For every  𝑃𝑃0 ∈ 𝛤𝛤 there is a constant 𝜅𝜅0 so that 

ℎ(𝑃𝑃 +  𝑃𝑃0) ≤  2ℎ(𝑃𝑃) +  𝜅𝜅0 for all 𝑃𝑃 ∈ 𝛤𝛤. 

(c) There is a constant κ so that 
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ℎ(2𝑃𝑃) ≤  4ℎ(𝑃𝑃) − 𝜅𝜅  for all 𝑃𝑃 ∈ 𝛤𝛤. 

(d) The subgroup 2𝛤𝛤 has a finite index in 𝛤𝛤.  

Then 𝛤𝛤 is finitely generated. 

Now, it needs to be shown that the group of rational points 𝐶𝐶(ℚ) is finitely generated, to 

prove Mordell’s Theorem. There are four key lemmas to define a finite generation of rational 

points on 𝐶𝐶(ℚ). Before discussing the lemmas, it is important to know that for a non-singular cubic 

with integer coefficients  𝑎𝑎, 𝑏𝑏, and 𝑐𝑐, and rational point 𝑃𝑃1 = (𝑥𝑥1,𝑦𝑦1), then the height of the point 

is  

𝐻𝐻(𝑃𝑃) = 𝐻𝐻(𝑥𝑥1), 

which is its complexity from a number theory perspective. The height of a point is always a positive 

integer 𝑥𝑥 = 𝑚𝑚
𝑛𝑛

, such that it is the maximum of the absolute value of the numerator and denominator: 

𝐻𝐻(𝑥𝑥1) = max{|𝑚𝑚|, |𝑎𝑎|}. We also have the property, 

ℎ(𝑃𝑃) = log𝐻𝐻(𝑃𝑃), 

which is the “small h height” and is a non-negative real number. Lastly, the Finiteness Property of 

the Height states that the set of all rational numbers whose height is less than some fixed number 

is a finite set. 

Since we want to prove that the group of rational points 𝐶𝐶(ℚ) is finitely generated, we will 

use the following four lemmas: Lemma 2.1, 2.2, 2.4, and 2.6.  

Lemma 2.1. For every real number M, the set 

{𝑃𝑃 ∈ 𝐶𝐶(ℚ) | ℎ(𝑃𝑃) ≤ 𝑀𝑀} 

is finite. 

Proof.  First, note that the rational points on curve 𝐶𝐶 fulfill the finiteness property. Thus, if 𝑀𝑀 is 

any positive number, then 
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{𝑃𝑃 ∈ 𝐶𝐶(ℚ) | 𝐻𝐻(𝑃𝑃) ≤ 𝑀𝑀} 

is a finite set.                            ∎ 

It is a finite set because there is a finite amount of 𝑥𝑥-coordinates, and each of those 

coordinates only has two possibilities of a 𝑦𝑦-coordinate. Additionally, it follows that we can 

replace 𝐻𝐻(𝑃𝑃) with ℎ(𝑃𝑃). 

Lemma 2.2. Let 𝑃𝑃0 be a fixed rational point of 𝐶𝐶. There is a constant 𝜅𝜅0 that depends on 𝑃𝑃0 and 

on 𝑎𝑎, 𝑏𝑏, and 𝑐𝑐, so that 

ℎ(𝑃𝑃 +  𝑃𝑃0) ≤  2ℎ(𝑃𝑃) +  𝜅𝜅0 for all 𝑃𝑃 ∈ 𝐶𝐶(ℚ). 

Proof. Assume that there is a fixed rational point 𝑃𝑃0 such that 𝑃𝑃0 ≠ 𝒪𝒪 and that 𝑃𝑃0 = (𝑥𝑥0,𝑦𝑦0). 

Additionally, it is sufficient to prove this lemma for 𝑃𝑃 ∉ {𝑃𝑃0,−𝑃𝑃0,𝒪𝒪}. Also, we define 𝑃𝑃 = (𝑥𝑥,𝑦𝑦). 

Next, we write 𝑃𝑃 + 𝑃𝑃0 = (𝜉𝜉, 𝜂𝜂) and we must obtain the height. To do so, we note that  

𝜉𝜉 + 𝑥𝑥 + 𝑥𝑥0 = 𝜆𝜆2 − 𝑎𝑎 with 𝜆𝜆 = 𝑦𝑦−𝑦𝑦0
𝑥𝑥−𝑥𝑥0

, 

which can be expanded to 

𝜉𝜉 =
(𝑦𝑦 − 𝑦𝑦0)2

(𝑥𝑥 − 𝑥𝑥0)2 − 𝑎𝑎 − 𝑥𝑥 − 𝑥𝑥0 

                          =
(𝑦𝑦 − 𝑦𝑦0)2 − (𝑥𝑥 − 𝑥𝑥0)2(𝑥𝑥 + 𝑥𝑥0 + 𝑎𝑎)

(𝑥𝑥 − 𝑥𝑥0)2  

If we expand the numerator, we will obtain 𝑦𝑦2 − 𝑥𝑥3. Since we know that the point 𝑃𝑃 lies on the 

curve we are on, then we can replace 𝑦𝑦2 − 𝑥𝑥3 with 𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑥𝑥 + 𝑐𝑐 because we know that the curves 

are of the form 𝑦𝑦2 = 𝑥𝑥3 + 𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑥𝑥 + 𝑐𝑐. Then, rearranging and replacing the previous equation 

we obtain  

𝜉𝜉 =
𝐴𝐴𝑦𝑦 + 𝐵𝐵𝑥𝑥2 + 𝐶𝐶𝑥𝑥 + 𝐷𝐷
𝐸𝐸𝑥𝑥2 + 𝐹𝐹𝑥𝑥 + 𝐺𝐺

, 

where 𝐴𝐴,𝐵𝐵,𝐶𝐶,𝐷𝐷,𝐸𝐸,𝐹𝐹,𝐺𝐺 are integers that depend and are expressed in terms of 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 and (𝑥𝑥0,𝑦𝑦0).  
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Next, we want to substitute 𝑥𝑥 = 𝑚𝑚
𝑒𝑒2

 and 𝑦𝑦 = 𝑛𝑛
𝑒𝑒2

 and multiplying both the numerator and 

denominator by 𝑒𝑒4. Then, we obtain 

𝜉𝜉 =
𝐴𝐴𝑎𝑎𝑒𝑒 + 𝐵𝐵𝑚𝑚2 + 𝐶𝐶𝑚𝑚𝑒𝑒2 + 𝐷𝐷𝑒𝑒4

𝐸𝐸𝑚𝑚2 + 𝐹𝐹𝑚𝑚𝑒𝑒2 + 𝐺𝐺𝑒𝑒4
. 

Now, since we know the equation has a numerator and denominator that are integers, we can find 

the height of 𝜉𝜉 such that  

𝐻𝐻(𝜉𝜉) ≤ max{|𝐴𝐴𝑎𝑎𝑒𝑒 + 𝐵𝐵𝑚𝑚2 + 𝐶𝐶𝑚𝑚𝑒𝑒2 + 𝐷𝐷𝑒𝑒4|, |𝐸𝐸𝑚𝑚2 + 𝐹𝐹𝑚𝑚𝑒𝑒2 + 𝐺𝐺𝑒𝑒4|}, 

and using the following properties  

𝑒𝑒 ≤ 𝐻𝐻(𝑃𝑃)
1
2 , 𝑎𝑎 ≤ 𝐾𝐾𝐻𝐻(𝑃𝑃)

3
2, and 𝑚𝑚 ≤ 𝐻𝐻(𝑃𝑃), 

where 𝐾𝐾 depends on 𝑎𝑎, 𝑏𝑏, 𝑐𝑐, we use the triangle inequality to determine  

|𝐴𝐴𝑎𝑎𝑒𝑒 + 𝐵𝐵𝑚𝑚4 + 𝐶𝐶𝑚𝑚𝑒𝑒2 + 𝐷𝐷𝑒𝑒4| ≤ |𝐴𝐴𝑎𝑎𝑒𝑒| + |𝐵𝐵𝑚𝑚2| + |𝐶𝐶𝑚𝑚𝑒𝑒2| + |𝐷𝐷𝑒𝑒4| 

≤ (|𝐴𝐴𝐾𝐾| + |𝐵𝐵| + |𝐶𝐶| + |𝐷𝐷|)𝐻𝐻(𝑃𝑃)2,   

and  

|𝐸𝐸𝑚𝑚2 + 𝐹𝐹𝑚𝑚𝑒𝑒2 + 𝐺𝐺𝑒𝑒4| ≤ |𝐸𝐸𝑚𝑚2| + |𝐹𝐹𝑚𝑚𝑒𝑒2| + |𝐺𝐺𝑒𝑒4| 

   ≤ (|𝐸𝐸| + |𝐹𝐹| + |𝐺𝐺|)𝐻𝐻(𝑃𝑃)2. 

Thus, we find that 

𝐻𝐻(𝑃𝑃 + 𝑃𝑃0) = 𝐻𝐻(𝜉𝜉) ≤ max{|𝐴𝐴𝐾𝐾| + |𝐵𝐵| + |𝐶𝐶| + |𝐷𝐷|, |𝐸𝐸| + |𝐹𝐹| + |𝐺𝐺| }𝐻𝐻(𝑃𝑃)2, 

and if we take the log of both sides, we obtain  

ℎ(𝑃𝑃 + 𝑃𝑃0) ≤ 2ℎ(𝑃𝑃) + 𝜅𝜅0, 

such that 𝜅𝜅0 = log max{|𝐴𝐴𝐾𝐾| + |𝐵𝐵| + |𝐶𝐶| + |𝐷𝐷|, |𝐸𝐸| + |𝐹𝐹| + |𝐺𝐺| }, which only depends on 

𝑎𝑎, 𝑏𝑏, 𝑐𝑐 and (𝑥𝑥0,𝑦𝑦0) and not on 𝑃𝑃.                ∎ 
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Before continuing there must be an additional lemma that will help with the lemmas 

necessary for Mordell’s Theorem. It is necessary to prove the following lemma involving heights 

and polynomials before continuing.  

Lemma 2.3. Let 𝜙𝜙(𝑋𝑋) and 𝜓𝜓(𝑋𝑋) be polynomials with integer coefficients and no common complex 

roots. Let 𝑑𝑑 be the maximum of the degrees of 𝜙𝜙 and 𝜓𝜓. 

(a) There is an integer 𝑅𝑅 ≥  1, depending on 𝜙𝜙 and 𝜓𝜓, so that for all rational numbers 𝑚𝑚
𝑛𝑛

, 

𝑔𝑔𝑐𝑐𝑑𝑑 �𝑎𝑎𝑑𝑑𝜙𝜙 �
𝑚𝑚
𝑎𝑎
� ,𝑎𝑎𝑑𝑑𝜓𝜓 �

𝑚𝑚
𝑎𝑎
��𝑑𝑑𝑖𝑖𝑣𝑣𝑖𝑖𝑑𝑑𝑒𝑒𝑛𝑛 𝑅𝑅. 

(b) There are constants 𝜅𝜅1 and 𝜅𝜅2, depending on 𝜙𝜙 and 𝜓𝜓, so that for all rational numbers 𝑚𝑚
𝑛𝑛

 

that are not roots of 𝜓𝜓,   

𝑑𝑑ℎ �𝑚𝑚
𝑛𝑛
� − 𝜅𝜅1 ≤ ℎ �

𝜙𝜙�𝑚𝑚𝑛𝑛�

𝜓𝜓�𝑚𝑚𝑛𝑛�
 � ≤ 𝑑𝑑ℎ �𝑚𝑚

𝑛𝑛
� + 𝜅𝜅2. 

Proof. (a) We note that 𝑎𝑎𝑑𝑑𝜙𝜙 �𝑚𝑚
𝑛𝑛
�  𝑎𝑎𝑎𝑎𝑑𝑑  𝑎𝑎𝑑𝑑𝜓𝜓 �𝑚𝑚

𝑛𝑛
� are integers and we let 𝑑𝑑𝑒𝑒𝑔𝑔(𝜙𝜙) = 𝑑𝑑 and 

deg(𝜓𝜓) = 𝑒𝑒 ≤ 𝑑𝑑, so we obtain  

𝑎𝑎𝑑𝑑𝜙𝜙 �
𝑚𝑚
𝑎𝑎
� = 𝑎𝑎0𝑚𝑚𝑑𝑑 + 𝑎𝑎1𝑚𝑚𝑑𝑑−1𝑎𝑎 + ⋯+ 𝑎𝑎𝑑𝑑𝑎𝑎𝑑𝑑 = Φ(m, n), 

𝑎𝑎𝑑𝑑𝜓𝜓 � 
𝑚𝑚
𝑎𝑎

 � = 𝑏𝑏0𝑚𝑚𝑒𝑒𝑎𝑎𝑑𝑑−𝑒𝑒 + 𝑏𝑏1𝑚𝑚𝑒𝑒−1𝑎𝑎𝑑𝑑−𝑒𝑒+1 + ⋯+ 𝑏𝑏𝑒𝑒𝑎𝑎𝑑𝑑 = Ψ(𝑚𝑚,𝑎𝑎). 

Now, we must note that since 𝜙𝜙(𝑋𝑋) and 𝜓𝜓(𝑋𝑋) have no common roots, then in the Euclidean ring 

ℚ[𝑋𝑋] they are relatively prime, so there exists polynomials 𝐹𝐹(𝑋𝑋) and 𝐺𝐺(𝑋𝑋) such that  

𝐹𝐹(𝑋𝑋)𝜙𝜙(𝑋𝑋) + 𝐺𝐺(𝑋𝑋)𝜓𝜓(𝑋𝑋) = 1. 
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Now, let 𝐴𝐴 be an integer such that 𝐴𝐴𝐹𝐹(𝑋𝑋) and 𝐴𝐴𝐺𝐺(𝑋𝑋) have integer coefficients and 𝐷𝐷 be the 

maximum degree of both 𝐹𝐹 and 𝐺𝐺, which do not depend on polynomials 𝑚𝑚 and 𝑎𝑎. By substituting 

𝑋𝑋 = 𝑚𝑚
𝑛𝑛

, we obtain 

𝑎𝑎𝐷𝐷𝐴𝐴𝐹𝐹 �𝑚𝑚
𝑛𝑛
� ⋅ 𝑎𝑎𝑑𝑑𝜙𝜙 �𝑚𝑚

𝑛𝑛
� + 𝑎𝑎𝐷𝐷𝐴𝐴𝐺𝐺 �𝑚𝑚

𝑛𝑛
� ⋅ 𝑎𝑎𝑑𝑑𝜓𝜓 �𝑚𝑚

𝑛𝑛
� = 𝐴𝐴𝑎𝑎𝐷𝐷+𝑑𝑑. 

If we let 𝛾𝛾 = 𝛾𝛾(𝑚𝑚,𝑎𝑎) be the gcd(Φ (𝑚𝑚,𝑎𝑎),Ψ(m, n)), we obtain 

�𝑎𝑎𝐷𝐷𝐴𝐴𝐹𝐹 �
𝑚𝑚
𝑎𝑎
�� 𝑎𝑎𝑑𝑑𝜙𝜙 �

𝑚𝑚
𝑎𝑎
�+ �𝑎𝑎𝐷𝐷𝐴𝐴𝐺𝐺 �

𝑚𝑚
𝑎𝑎
��𝑎𝑎𝑑𝑑𝜓𝜓 �

𝑚𝑚
𝑎𝑎
� = 𝐴𝐴𝑎𝑎𝐷𝐷+𝑑𝑑 

where 𝛾𝛾 divides 𝐴𝐴𝑎𝑎𝐷𝐷+𝑑𝑑. Also, since 𝛾𝛾 divides Φ(𝑚𝑚, 𝑎𝑎), then it divides  

𝐴𝐴𝑎𝑎𝐷𝐷+𝑑𝑑−1Φ(𝑚𝑚, 𝑎𝑎) = 𝐴𝐴𝑎𝑎0𝑚𝑚𝑑𝑑𝑎𝑎𝐷𝐷+𝑑𝑑−1 + 𝐴𝐴𝑎𝑎1𝑚𝑚𝑑𝑑−1𝑎𝑎𝐷𝐷+𝑑𝑑 + ⋯+ 𝐴𝐴𝑎𝑎𝑑𝑑𝑎𝑎𝐷𝐷+2𝑑𝑑−1, 

where 𝛾𝛾 divides 𝐴𝐴𝑎𝑎0𝑚𝑚𝑑𝑑𝑎𝑎𝐷𝐷+𝑑𝑑−1. Therefore, we know that 𝛾𝛾 divides gcd(𝐴𝐴𝑎𝑎𝐷𝐷+𝑑𝑑,𝐴𝐴𝑎𝑎0𝑚𝑚𝑑𝑑𝑎𝑎𝐷𝐷+𝑑𝑑−1). 

Also, since 𝑚𝑚 and 𝑎𝑎 are relatively prime, then we can further conclude that 𝛾𝛾 divides 𝐴𝐴𝑎𝑎0𝑎𝑎𝐷𝐷+𝑑𝑑−1. 

Ultimately, by continuously showing that 𝛾𝛾 is a divisor of 𝐴𝐴𝑎𝑎02𝑎𝑎𝐷𝐷+𝑑𝑑−2Φ(𝑚𝑚,𝑎𝑎), we can eventually 

find that 𝛾𝛾 divides 𝐴𝐴𝑎𝑎0𝐷𝐷+𝑑𝑑. 

(b) First, we will only prove the lower bound. We assume that the rational number 𝑚𝑚
𝑛𝑛

 is not 

a root of 𝜙𝜙. We note that if 𝑎𝑎 is any non-zero rational number, then ℎ(𝑎𝑎) = ℎ �1
𝑟𝑟
�. Also, assume 

that  𝑑𝑑𝑒𝑒𝑔𝑔(𝜙𝜙) = 𝑑𝑑 and deg(𝜓𝜓) = 𝑒𝑒 ≤ 𝑑𝑑. Then, we find that  

𝜉𝜉 =
𝜙𝜙 �𝑚𝑚𝑎𝑎�

𝜓𝜓 �𝑚𝑚𝑎𝑎�
=  

𝑎𝑎𝑑𝑑𝜙𝜙 �𝑚𝑚𝑎𝑎�

𝑎𝑎𝑑𝑑𝜓𝜓 �𝑚𝑚𝑎𝑎�
=
Φ(m, n)
Ψ(𝑚𝑚,𝑎𝑎), 

so 𝐻𝐻(𝜉𝜉) = max(|Φ(𝑚𝑚,𝑎𝑎)|, |Ψ(m, n)|), where there is an 𝑅𝑅 ≥  1 such that the greatest common 

divisor of Φ(m, n) and  Ψ(m, n) divides 𝑅𝑅, where we can obtain  
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𝐻𝐻(𝜉𝜉) ≥
1
𝑅𝑅

max{|Φ(m, n)|, |Ψ(𝑚𝑚,𝑎𝑎)|} 

                =
1
𝑅𝑅

max ��𝑎𝑎𝑑𝑑𝜙𝜙 �
𝑚𝑚
𝑎𝑎
�� , �𝑎𝑎𝑑𝑑𝜓𝜓 �

𝑚𝑚
𝑎𝑎
��� 

              =
1

2𝑅𝑅
��𝑎𝑎𝑑𝑑𝜙𝜙 �

𝑚𝑚
𝑎𝑎
�� + �𝑎𝑎𝑑𝑑𝜓𝜓 �

𝑚𝑚
𝑎𝑎
���. 

Next, we must observe that  

𝐻𝐻 �
𝑚𝑚
𝑎𝑎
�
𝑑𝑑

= max{|𝑚𝑚|𝑑𝑑, |𝑎𝑎|𝑑𝑑} 

and we consider  

𝐻𝐻(𝜉𝜉)

𝐻𝐻 �𝑚𝑚𝑎𝑎�
𝑑𝑑 ≥

1
2𝑅𝑅

⋅  
�𝑎𝑎𝑑𝑑𝜙𝜙 �𝑚𝑚𝑎𝑎�� + �𝑎𝑎𝑑𝑑𝜓𝜓 �𝑚𝑚𝑎𝑎��

max{|𝑚𝑚|𝑑𝑑, |𝑎𝑎|𝑑𝑑}
 

       =
1

2𝑅𝑅
⋅  
�𝜙𝜙 �𝑚𝑚𝑎𝑎�� + �𝜓𝜓 �𝑚𝑚𝑎𝑎��

max ��𝑚𝑚𝑎𝑎 �
𝑑𝑑

, 1�
. 

If we consider the equation 𝑝𝑝(𝑡𝑡) =
�𝜙𝜙�𝑚𝑚𝑛𝑛��+�𝜓𝜓�

𝑚𝑚
𝑛𝑛��

max��𝑚𝑚𝑛𝑛�
𝑑𝑑

,1�
, then there is a constant 𝐶𝐶1 > 0 such that 𝑝𝑝(𝑡𝑡) ≥

𝐶𝐶1. So we determine that  

𝐻𝐻(𝜉𝜉)

𝐻𝐻 �𝑚𝑚𝑎𝑎�
𝑑𝑑 ≥

1
2𝑅𝑅

⋅  𝑝𝑝 �
𝑚𝑚
𝑎𝑎
� 

and conclude that  

𝐻𝐻(𝜉𝜉) ≥
𝐶𝐶1
2𝑅𝑅

⋅ 𝐻𝐻 �
𝑚𝑚
𝑎𝑎
�
𝑑𝑑

. 

Additionally, we can derive the inequality  
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    ℎ(𝜉𝜉) ≥ 𝑑𝑑ℎ �𝑚𝑚
𝑛𝑛
� − 𝜅𝜅1 with 𝑘𝑘1 = log(2𝑅𝑅

𝐶𝐶1
).    

So, we have completed the proof for the lower bound.             ∎ 

Now, it is possible to move forward with the essential lemma for Mordell’s Theorem. 

Lemma 2.4. There is a constant κ, depending on 𝑎𝑎, 𝑏𝑏, and 𝑐𝑐, so that 

ℎ(2𝑃𝑃) ≤  4ℎ(𝑃𝑃) − 𝜅𝜅  for all 𝑃𝑃 ∈ 𝐶𝐶(ℚ). 

Proof. Suppose 𝑃𝑃 = (𝑥𝑥,𝑦𝑦) and 2𝑃𝑃 = (𝜉𝜉, 𝜂𝜂), and because of the duplication formula, we know that  

𝜉𝜉 + 2𝑥𝑥 = 𝜆𝜆2 − 𝑎𝑎 with 𝜆𝜆 = 𝑓𝑓′(𝑥𝑥)
2𝑦𝑦

 

and by setting 𝑦𝑦2 = 𝑓𝑓(𝑥𝑥), we can get  

𝜉𝜉 =
𝑓𝑓′(𝑥𝑥)2 − (8𝑥𝑥 + 4𝑎𝑎)𝑓𝑓(𝑥𝑥)

4𝑓𝑓(𝑥𝑥)
=

𝑥𝑥4 + ⋯
4𝑥𝑥3 + ⋯

 

where 𝑓𝑓(𝑥𝑥) ≠ 0 because 2𝑃𝑃 ≠ 𝒪𝒪. Also, there are no common roots between the numerator and 

denominator of 𝜉𝜉. Now, using Lemma 2.3, we derived the inequality  

ℎ(𝜉𝜉) ≥ 𝑑𝑑ℎ �𝑚𝑚
𝑛𝑛
� − 𝜅𝜅1 with 𝑘𝑘1 = log(2𝑅𝑅

𝐶𝐶1
). 

Then, can determine that 

   ℎ(2𝑃𝑃) ≤  4ℎ(𝑃𝑃) − κ  for all 𝑃𝑃 ∈ 𝐶𝐶(ℚ).            ∎ 

Now, we will complete the last lemma necessary for understanding Mordell’s Theorem. 

For this last lemma, we will only want to prove it for cubics with one rational point, which implies 

that there is at least one rational point (𝑥𝑥0, 0) of order 2. Since we want the cubic 𝑓𝑓(𝑥𝑥) to contain 

at least one rational root 𝑥𝑥0, then it follows that 𝑓𝑓(𝑥𝑥0) = 0. This curve is of the form 𝐶𝐶:𝑦𝑦2 =

𝑓𝑓(𝑥𝑥) = 𝑥𝑥3 + 𝐴𝐴𝑥𝑥2 + 𝐵𝐵𝑥𝑥, where 𝐴𝐴,𝐵𝐵 ∈ ℤ, with a discriminant 𝐷𝐷 = 𝑏𝑏2(𝑎𝑎2 − 4𝑏𝑏) that is non-zero. 

Additionally, there are a few tools that need to be developed before the completion of the last 

lemma. 
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Proposition 2.1. Let 𝐶𝐶 and 𝐶𝐶̅ be elliptic curves given by the equations  

𝐶𝐶:𝑦𝑦2 = 𝑥𝑥3 + 𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑥𝑥 and 𝐶𝐶̅:𝑦𝑦2 = 𝑥𝑥3 + 𝑎𝑎�𝑥𝑥2 + 𝑏𝑏�𝑥𝑥, 

and let 𝑇𝑇 = (0,0) ∈ 𝐶𝐶. It follows that  

(a) There is a homomorphism 𝜙𝜙:𝐶𝐶 ⟼  𝐶𝐶̅ defined by 

𝜙𝜙(𝑃𝑃) = �
�
𝑦𝑦2

𝑥𝑥2
,
𝑦𝑦(𝑥𝑥2 − 𝑏𝑏)

𝑥𝑥2
� ,       𝑖𝑖𝑓𝑓  𝑃𝑃 = (𝑥𝑥,𝑦𝑦) ≠ 𝒪𝒪,𝑇𝑇,

𝒪𝒪� ,                        𝑖𝑖𝑓𝑓  𝑃𝑃 = 𝒪𝒪 𝑚𝑚𝑎𝑎 𝑃𝑃 = 𝑇𝑇 .
 

The kernel of 𝜙𝜙 is {𝒪𝒪,𝑇𝑇}. 

(b) Applying the same process 𝐶𝐶̅ gives the map 𝜙𝜙�:𝐶𝐶̅ ⟼  𝐶𝐶̿. The curve 𝐶𝐶̿is isomorphic to 𝐶𝐶 via 

the map (𝑥𝑥,𝑦𝑦) ⟼ �1
4
𝑥𝑥, 1

8
𝑦𝑦�. There is thus a homomorphism 𝜓𝜓 ∶ 𝐶𝐶̅ ⟼ 𝐶𝐶 defined by  

𝜓𝜓(𝑃𝑃�) = ��
𝑦𝑦�2

�̅�𝑥2
,
𝑦𝑦�(�̅�𝑥2 − 𝑏𝑏�)

�̅�𝑥2
� ,       𝑖𝑖𝑓𝑓  𝑃𝑃� = (�̅�𝑥,𝑦𝑦�) ≠ 𝒪𝒪�,𝑇𝑇� ,

𝒪𝒪 ,                                  𝑖𝑖𝑓𝑓  𝑃𝑃� = 𝒪𝒪� 𝑚𝑚𝑎𝑎 𝑃𝑃� = 𝑇𝑇�  .
 

(c) The composition 𝜓𝜓 ∘ 𝜙𝜙:  𝐶𝐶 → 𝐶𝐶 is the multiplication by the two maps, 

𝜓𝜓 ∘ 𝜙𝜙(𝑃𝑃) = 2𝑃𝑃. 

Proposition 2.2. 

(a) The map 𝛼𝛼: Γ → ℚ∗/ℚ∗2described above is a homomorphism. 

(b) The kernel of 𝛼𝛼 is the image 𝜓𝜓(Γ�). Hence 𝛼𝛼 induces a one-to-one homomorphism  

Γ/𝜓𝜓(Γ�) ↪ ℚ∗/ℚ∗2  . 

(c) Let 𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝𝑡𝑡 be the distinct primes dividing 𝑏𝑏. Then the image of 𝛼𝛼 is contained in the 

subgroup ℚ∗/ℚ∗2consisting of the elements  {±𝑝𝑝1
𝜖𝜖1 ,𝑝𝑝2

𝜖𝜖2 , … ,𝑝𝑝𝑡𝑡
𝜖𝜖𝑡𝑡|𝑒𝑒𝑎𝑎𝑐𝑐ℎ 𝜖𝜖𝑖𝑖 𝑒𝑒𝑞𝑞𝑛𝑛𝑎𝑎𝑒𝑒 0 𝑚𝑚𝑎𝑎 1 }. 

(d) The index  (Γ:𝜓𝜓(Γ�)) is at most 2𝑡𝑡+1. 
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Lemma 2.5. Let 𝐴𝐴 and 𝐵𝐵 be abelian groups, and suppose that 𝜙𝜙:𝐴𝐴 → 𝐵𝐵 and 𝛹𝛹:𝐵𝐵 → 𝐴𝐴 are 

homomorphisms satisfying  

𝜓𝜓 ∘ 𝜙𝜙(𝑎𝑎) = 2𝑎𝑎 𝑓𝑓𝑚𝑚𝑎𝑎 𝑎𝑎𝑒𝑒𝑒𝑒 𝑎𝑎 ∈ 𝐴𝐴 and 𝜙𝜙 ∘ 𝜓𝜓(𝑏𝑏) = 2𝑏𝑏 𝑓𝑓𝑚𝑚𝑎𝑎 𝑎𝑎𝑒𝑒𝑒𝑒 𝑏𝑏 ∈ 𝐵𝐵. 

Suppose further that 𝜙𝜙(𝐴𝐴) has a finite index in 𝐵𝐵 and 𝜓𝜓(𝐵𝐵) has a finite index in 𝐴𝐴. Then 2𝐴𝐴 has 

a finite index in 𝐴𝐴. More, precisely, the indices satisfy   

(𝐴𝐴: 2𝐴𝐴) ≤ �𝐴𝐴:𝜓𝜓(𝐵𝐵)��𝐵𝐵:𝜙𝜙(𝐴𝐴)�. 

Proof. Since 𝜓𝜓(𝐵𝐵) has a finite index in 𝐴𝐴 and 𝜙𝜙(𝐴𝐴) has a finite index in 𝐵𝐵, we state that  

{𝑎𝑎𝑖𝑖 + 𝜓𝜓�𝑏𝑏𝑗𝑗�: 1 ≤ 𝑖𝑖 ≤ 𝑎𝑎, 1 ≤ 𝑗𝑗 ≤ 𝑚𝑚} 

is a set that represents the cosets of 2𝐴𝐴 in 𝐴𝐴. Then, we can determine that 

𝑎𝑎 = 𝑎𝑎𝑖𝑖 + 𝜓𝜓(𝑏𝑏) = 𝑎𝑎𝑖𝑖 + 𝜓𝜓(𝑏𝑏𝑗𝑗 + 𝜙𝜙(𝑎𝑎′)) 

                    = 𝑎𝑎𝑖𝑖 + 𝜓𝜓(𝑏𝑏𝑗𝑗) + 𝜓𝜓(𝜙𝜙(𝑎𝑎′)) 

                         = 𝑎𝑎𝑖𝑖 + 𝜓𝜓�𝑏𝑏𝑗𝑗� + 2𝑎𝑎′, 

so it holds that  

    (𝐴𝐴: 2𝐴𝐴) ≤ �𝐴𝐴:𝜓𝜓(𝐵𝐵)��𝐵𝐵:𝜙𝜙(𝐴𝐴)�.       ∎ 

Now, there are sufficient tools to complete the last lemma of the Descent Theorem for 

𝐶𝐶(ℚ). 

Lemma 2.6.  The index (𝐶𝐶(ℚ) | 2𝐶𝐶(ℚ)) is finite.  

Proof. We determined that the form of the cubic is  
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𝐶𝐶:𝑦𝑦2 = 𝑓𝑓(𝑥𝑥) = 𝑥𝑥3 + 𝐴𝐴𝑥𝑥2 + 𝐵𝐵𝑥𝑥. 

Since we are interested in (Γ: 2Γ), we need the map from 𝑃𝑃 ⟼ 2𝑃𝑃 as a composition of two maps 

of degree two, so need another curve  

𝐶𝐶̅:𝑦𝑦2 = 𝑥𝑥3 + 𝑎𝑎�𝑥𝑥2 + 𝑏𝑏�𝑥𝑥, 

𝐶𝐶̿:𝑦𝑦2 = 𝑥𝑥3 + 𝑎𝑎�𝑥𝑥2 + 𝑏𝑏�𝑥𝑥 

such that  𝑎𝑎� = −2𝑎𝑎 and 𝑏𝑏� = 𝑎𝑎2 − 4𝑏𝑏, and 𝑎𝑎� = −2𝑎𝑎� = 4 and 𝑏𝑏� = 𝑎𝑎�2 − 4𝑏𝑏� = 16𝑏𝑏. Important to 

note that 𝐶𝐶 and 𝐶𝐶̿ have an isomorphic group under rational numbers such that you can obtain the 

latter through transformation. This can be simplified into Proposition 2.1. 

 Next, we use the following claims to have an understanding of the image of the 

homomorphism 𝜙𝜙:𝐶𝐶 ↦ 𝐶𝐶̅ and 𝜓𝜓:𝐶𝐶̅ ⟼ 𝐶𝐶 such that the compositions are  

𝜙𝜙 ∘ 𝜓𝜓:𝐶𝐶̅ ↦ 𝐶𝐶̅ and 𝜓𝜓 ∘ 𝜙𝜙:𝐶𝐶 ⟼ 𝐶𝐶. 

The claims are, 

(a) 𝒪𝒪� ∈ 𝜙𝜙(Γ) 

(b) 𝑇𝑇� = (0,0) ∈ 𝜙𝜙(Γ) if and only if  𝑏𝑏� = 𝑎𝑎2 − 4𝑏𝑏 is a perfect square. 

(c) Let 𝑃𝑃� = (�̅�𝑥,𝑦𝑦�) ∈ Γ� with �̅�𝑥 ≠ 0. Then 𝑃𝑃� ∈ 𝜙𝜙(Γ�) if and only if �̅�𝑥 is the square of a 

rational number.  

It follows from Proposition 2.2 we can find the necessary mappings. Lastly, using the previous 

tools and Lemma 2.6, we prove that  

    (𝐶𝐶(ℚ) | 2𝐶𝐶(ℚ)) is finite.      ∎ 

Thus, by satisfying the four conditions of the Descent Theorem and the proof of 𝐶𝐶(ℚ) for 

Mordell’s Theorem [2]. 
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3  Ranks of Elliptic Curves 

In the previous section, it was discussed how to find rational points on a cubic curve to 

form a group. It was discussed that points could be added to find additional points on a curve using 

group law, and how to find these points using explicit formulas. Now, these properties and tools 

will be used to determine the rank of a curve. These sections will focus on looking at previous 

achievements associated with investigating the ranks of elliptic curves. Additionally, they will 

investigate ranks of specific elliptic curves: 𝑦𝑦2 = 𝑥𝑥3 + 𝐴𝐴𝑥𝑥2 + 𝐵𝐵𝑥𝑥 and 𝑦𝑦2 = 𝑥𝑥3 + 𝐵𝐵𝑥𝑥. 

3.1  Ranks  

Definition 3.1, The rank of an elliptic curve is the number of independent points of infinite order. 

 We define the group Γ of rational points on the curve 𝐶𝐶:𝑦𝑦2 = 𝑥𝑥3 + 𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑥𝑥 as a finitely 

generated abelian group. We denote the additive group of integers as (ℤ, +) and ℤ𝑚𝑚 denote the 

cyclic group (ℤ/𝑚𝑚ℤ, +)  of integers modulo 𝑚𝑚. Also, we can interpret this form as  

𝑃𝑃1, … ,𝑃𝑃𝑟𝑟 ,𝑄𝑄1, … ,𝑄𝑄𝑠𝑠 ∈ Γ, 

such that every 𝑃𝑃 ∈ Γ is of the form 𝑃𝑃 = 𝑎𝑎1𝑃𝑃1. + ⋯+ 𝑎𝑎𝑟𝑟𝑃𝑃𝑟𝑟 + 𝑚𝑚1𝑄𝑄1 + ⋯+ 𝑚𝑚𝑠𝑠𝑄𝑄𝑠𝑠. The group Γ is 

finite if and only if it has rank 𝑎𝑎 = 0. Then, Γ takes the form  

Γ ≅ ℤ⊕ ℤ⊕ …⊕ℤ⊕ℤ𝑝𝑝1𝑣𝑣1 ⊕  ℤ𝑝𝑝2𝑣𝑣2 ⊕ …⊕ℤ𝑝𝑝𝑠𝑠𝑣𝑣𝑠𝑠 ,  

where ℤ𝑝𝑝1𝑣𝑣1 ⊕  ℤ𝑝𝑝2𝑣𝑣2 ⊕ …⊕ℤ𝑝𝑝𝑠𝑠𝑣𝑣𝑠𝑠  corresponds to the finite order in Γ, and 𝑝𝑝1
𝑣𝑣1𝑝𝑝2

𝑣𝑣2 … 𝑝𝑝𝑠𝑠
𝑣𝑣𝑠𝑠 is the order 

of the torsion subgroup of Γ.  

 Now, Mordell’s Theorem allowed for the determination of the quotient group Γ/2Γ and 

can find that  

2Γ ≅ 2ℤ⊕ 2ℤ⊕ …⊕2ℤ⊕ 2ℤ𝑝𝑝1𝑣𝑣1 ⊕  2ℤ𝑝𝑝2𝑣𝑣2 ⊕ …⊕2ℤ𝑝𝑝𝑠𝑠𝑣𝑣𝑠𝑠 , and  

Γ/2Γ ≅ ℤ/2ℤ⊕ ℤ/2ℤ⊕ …⊕ℤ/2ℤ⊕ ℤ/2ℤ𝑝𝑝1𝑣𝑣1 ⊕ ℤ/2ℤ𝑝𝑝2𝑣𝑣2 ⊕ …⊕ℤ/2ℤ𝑝𝑝𝑠𝑠𝑣𝑣𝑠𝑠 . 



 

33 
 

Ultimately, it can be derived that  

(Γ: 2Γ) = 2𝑟𝑟 ⋅ #Γ[2], 

such that, for this purpose,  

#Γ[2] = �    2, 𝑖𝑖𝑓𝑓 𝑎𝑎2 − 4𝑏𝑏 𝑖𝑖𝑛𝑛 𝑎𝑎𝑚𝑚𝑡𝑡 𝑛𝑛𝑞𝑞𝑛𝑛𝑎𝑎𝑎𝑎𝑒𝑒,
4, 𝑖𝑖𝑓𝑓 𝑎𝑎2 − 4𝑏𝑏 𝑖𝑖𝑛𝑛 𝑎𝑎 𝑛𝑛𝑞𝑞𝑛𝑛𝑎𝑎𝑎𝑎𝑒𝑒 ,

 

and serves as the formula for any finitely generated abelian groups of rank 𝑎𝑎. Along these lines, 

we can define another definition for Mordell’s Theorem using the torsion subgroup. 

Theorem 2.1. Mordell’s Theorem The group 𝐸𝐸(ℚ) is a finitely generated abelian group. Thus 

𝐸𝐸(ℚ) ≅  𝐸𝐸(ℚ)𝑡𝑡𝑡𝑡𝑟𝑟𝑠𝑠 × ℤ𝑟𝑟, 

where the torsion subgroup 𝐸𝐸(ℚ)𝑡𝑡𝑡𝑡𝑟𝑟𝑠𝑠 is a finite abelian group corresponding to the elements of 

𝐸𝐸(ℚ) with finite order, and 𝑎𝑎 is the rank of 𝐸𝐸(ℚ). 

Example 3.1. What is the group 𝐸𝐸(ℚ) of the curve 𝑦𝑦2 = 𝑥𝑥3 − 𝑥𝑥? 

Solution. It can be determined that 𝐸𝐸(ℚ) = 𝐸𝐸(ℚ)𝑡𝑡𝑡𝑡𝑟𝑟𝑠𝑠 × ℤ0 ≅ ℤ/2ℤ × ℤ/2ℤ for 𝑦𝑦2 = 𝑥𝑥3 − 𝑥𝑥, so 

the rank of the curve is 𝑎𝑎 = 0. Also, the points (0,0), (±1,0) have order 2 in 𝐸𝐸(ℚ). 

Rank ≥ Year Author(s)   

3 1938 Billing  
4 1945 Wiman  

6 1974 Penney - Pomerance  

7 1975 Penney - Pomerance  

8 1977 Grunewald – Zimmert                   
9 1977 Brumer – Kramer  

12 1982 Mestre  

14 1986 Mestre  

15 1992 Mestre  

17 1992 Nagao  

19 1992 Fermigier  

20 1993 Nagao  

21 1994 Nagao – Kouya  

22 1997 Fermigier  

23 1998 Martin – McMillen  

24 2000 Martin - McMillen  
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28 2006 Elkies  

Table 1.4. Rank Records [6] 

3.2  Investigating Ranks of Elliptic Curves  

Theorem 3.1. (Bhargava, Shankar) The average rank of all elliptic curves over ℚ is less than 1. 

 More precisely, the average rank is greater than 0.2 and less than 0.9. It is believed to be 

exactly ½: half rank 0 and half rank 1. 

 Now that there is a general understanding of elliptic curves and some of their properties, 

one recent investigation about elliptic curves is the bound of the rank of elliptic curves: the 

minimum number of generators. Thus, one unanswered question about the rank of elliptic curves 

is the Birch and Swinnerton-Dyer conjecture, a Millennium Prize Problem.  

Conjecture 3.1 (Birch and Swinnerton-Dyer) The Taylor expansion of 𝐿𝐿(𝐶𝐶, 𝑛𝑛) at 𝑛𝑛 = 1 has the 

form  

𝐿𝐿(𝐶𝐶, 𝑛𝑛) = 𝑐𝑐(𝑛𝑛 − 1)𝑟𝑟 + ℎ𝑖𝑖𝑔𝑔ℎ𝑒𝑒𝑎𝑎 𝑚𝑚𝑎𝑎𝑑𝑑𝑒𝑒𝑎𝑎 𝑡𝑡𝑒𝑒𝑎𝑎𝑚𝑚𝑛𝑛 

with 𝑐𝑐 ≠ 0 and 𝑎𝑎 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘�𝐶𝐶(ℚ)� [5]. 

 In particular, this conjecture asserts that 𝐿𝐿(𝐶𝐶, 1) = 0 ⟺ 𝐶𝐶(ℚ) is infinite.  

It implies that the average rank is bound. The following illustrates different forms of elliptic curves 

and their ranks across their coefficients. 

Rank A = B  Independent Points 

0 1, 2, 3, 5, 7, 8, 9, 10, 

11, 14, 15, 16, 20, 

23,25, 26, 27, 29, 30, 

31, 32, 35, 37, 44, 45, 

47, 50 
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1 6, 12, 13, 17, 

18, 19, 21, 24, 28, 

33, 34, 36, 39, 

40, 41, 

43, 46, 48, 

49 

[(-3,3)], [(-6,12)], [(4,18)], [(361/144, 22211/1728)], 

[(-6,18)], [(729/64, 33021/512)], [(4,22)], [(1,7)], [(9,57)], 

[(64, 632)], [(9/4, 129/8)], [(-18, 72)], [(624, 16068)], 

[(1,9)], [(961/144, 84599/1728)],  

[(14161/2304, 5093081/110592)], [(81/4, 1341/8)], [(4,32)], 

[(16,132)] 

2 22, 42 [(-18,30), (-11,33)], [(-27,99), (-14,70)] 

Table 1.5. Rank for the curves of the form 𝐶𝐶: 𝑦𝑦2 = 𝑥𝑥3 + 𝐴𝐴𝑥𝑥2 + 𝐵𝐵𝑥𝑥 

Rank 
B  Independent Points 

0 1, 2, 4, 6, 7, 10, 11, 12, 

16, 17, 22, 23, 25, 26, 27, 

30, 32, 36, 38, 41,42,43, 

44, 45, 50 

 

1 3, 5, 8, 9, 13, 15, 

18, 19, 20, 21, 24, 28, 

31, 35, 37, 

40, 47, 48, 49 

[(1,2)], [(20,90)], [(1,3)], [(4,10)], [(9/4, 51/8)], [(1,4)], 

[(3,9)], [(9,30)], [(4,12)], [(25/4, 155/8)], [(1,5)], [(2,8)], 

[(25/9, 280/27)], [(1,6)], [(22801/900, 3540799/27000)], 

[(9,33)], [(289/25, 5712/125)], [(4,16)], [(16/9, 260/27)] 

2 14, 33, 34,  

39, 46 

[(2,6), (18,78)], [(4,14), (16,68)], [(8,28), (32,184)], 

[(3,12), (27,144)], [(2,10), (1127,37835)] 

Table 1.6. Rank for the curves of the form 𝐶𝐶: 𝑦𝑦2 = 𝑥𝑥3 + 𝐵𝐵𝑥𝑥 
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4  Conclusion 

This thesis focused on informing and investigating concepts about elliptic curves that still 

have unanswered questions. Primarily, it focused on finding independent rational points on 

elliptic curves of the Weierstrass normal form. While this thesis focused on elliptic curves over 

the rational fields, understating elliptic curves over other number fields is essential for obtaining 

a holistic understanding of them.  

The inclusion of the final conjectures and theorems is indicative that there is still much 

work that needs to be done in this field. But acknowledges some advances in the field, such as 

the boundedness of ranks, by Manjul Bhargava and Arul Shankar, in the last few decades. 

However, the understanding of ranks on elliptic curves is still limited and there is a lot of work 

that needs to be accomplished to further the understanding of this mathematical field. It will be 

interesting to see the application of elliptic curves as we continue to obtain a greater 

understanding of them. 
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Glossary 

Associative: When performing an operation, the grouping in which the operation is executed is 
trivial  

Binary Operation: An operation that uses two elements to produce another element.  

Commutative: Changing the order of the operands will not change the results  

Cubic Polynomial:  An equation of degree 3.  

Discriminant: A value that helps determine the smoothness and singularity of a curve. 

Elliptic Curves: Equations of the form 𝑦𝑦2 = 𝑓𝑓(𝑥𝑥) = 𝑥𝑥3 + 𝐴𝐴𝑥𝑥2 + 𝐵𝐵𝑥𝑥 + 𝐶𝐶, where 𝐴𝐴,𝐵𝐵,𝐶𝐶 are 
coefficients on a field.  

Field: An established set where addition, subtraction, multiplication, and division are well-
defined according to the given operation. 

Group: An established set with an operation that combines elements of a set to produce another 
element in that same set. The operation must be associative, the set must contain an 
identity, and there must be an inverse for every element in the set. 

Height: Assigns a measure of complexity or size to a point on a curve.  

Integers: ℤ = {… ,−2,−1, 0, 1, 2, … } 

Nonsingular curve: The curve has no cusps or intersections or where both partial derivatives 
simultaneously vanish. 

Order: The cardinality or the number of elements that form a set or group. 

Polynomial:  An equation of degree 2. 

Rank: The maximum number of independent points on an elliptic curve based on the group 
structure.  

Rational Numbers:  ℚ = �𝑝𝑝
𝑞𝑞

 � 𝑝𝑝, 𝑞𝑞 ∈ ℤ 𝑎𝑎𝑎𝑎𝑑𝑑 𝑞𝑞 ≠ 0 } 
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