
Oregon Undergraduate Research Journal: McNair Special Issue
21.3 (2023) ISSN: 2160-617X (online)
ourj.uoregon.edu

*Aaron Casserly (casser.aero@gmail.com) is a Jamaican immigrant and lawful permanent resident of the United States. He arrived in Oregon in
April of 2019 and enrolled at the University of Oregon later that year. He is now a graduate with a Bachelor of Science in Mathematics and
double minor in Physics and Computer Science with final GPA of 3.7/4. He plans to attend Northwestern University for a master’s degree in
electrical engineering in the Fall of 2024.

Multidisciplinary Design Optimization of Portland State Aerospace
Society (PSAS) Launch Vehicle 4
Aaron Casserly*

Abstract

Multidisciplinary Design Optimization is a field that enables the solution of challenging
engineering problems involving multiple technical specializations and design/performance
constraints. In this work, I optimize the design of the PSAS Launch Vehicle 4 (LV4). To that end,
I evaluate different optimization approaches—such as RBFOpt Global Optimization, Nelder-
Mead minimization, and Simplicial Homology Global Optimization with Nelder-Mead and
COBYLA local minimization techniques, calculate structural analysis information for different
stages of flight, outline a method of simulating fin “staging”—the dropping of a larger initial fin
can at a certain altitude to reduce the required engine thrust and drag in the upper atmosphere
and optimize fin parameters. I converged on the ideal design vector. This led to an apogee of 107
km with a 9.8 kN engine (realized with two 5 kN engines). Further debugging is required to
resolve the apparent 120 km vehicle drift.

1. Introduction

The Portland State Aerospace Society (PSAS)
Launch Vehicle 4 is the fourth iteration of their
student-built rocket. PSAS is a feeder
organization for those interested in working in
spaceflight and we care about optimizing it to
give young professionals experience in relevant
problem solving to real-world problems, and to
achieve the above 100 km apogee target while
meeting performance constraints. The
constraints given to the optimizer are real-world
engineering constraints that must be met for this
to be realized. Previous optimization efforts
included a design vector involving various
components of the rocket, and my approach to
include fin parameters and scale them down
when a near optimal design was converged on
was an improvement. The goals of this research
project were to improve and extend the existing
Multidisciplinary Design Optimization (MDO)

simulation code and to converge on a design
vector satisfying engineering and performance
constraints.

2. Methodology

Our approach minimizes the gross lift-off weight
(GLOW) of LV4 without sacrificing apogee. Given

the Tsiolkovsky rocket equation 𝛿𝛿𝛿𝛿
𝛿𝛿𝑒𝑒

= 𝑙𝑙𝑙𝑙 𝑚𝑚0
𝑚𝑚𝑓𝑓

 , where

𝑣𝑣𝑒𝑒 represents the effective exhaust velocity, 𝛿𝛿𝑣𝑣
the total change in velocity, 𝑚𝑚0 the GLOW and 𝑚𝑚𝑓𝑓
the final dry mass of the rocket, we isolate 𝑚𝑚0 and
construct an objective function. This approach
has previously been characterized:

[M]inimizing GLOW while demanding a
certain apogee is equivalent to
simultaneously minimizing structural mass,
maximizing engine performance, and
balancing the conflicting goals of minimizing
losses due to gravity and aerodynamics. Note

Oregon Undergraduate Research Journal: McNair Special Issue Casserly

Multidisciplinary Design Optimization 9

that the sources of this conflict are the
incentive to expel propellant rapidly to avoid
the cost of carrying propellant in a
gravitational field and the incentive to reduce
velocity in lower atmosphere since drag is
proportional to air pressure and the square of
velocity. (MDO Jupyter Notebook)

To represent our problem constraints, we use
barrier and penalty functions. Both bind the
generated rockets to a feasible region in the
design space: barrier functions use an absolute
constraint that may not be violated under any
circumstances, whereas penalty functions
slightly disincentivize convergence in sections of
the design space far from a set of more lenient
constraints.

Adding the objective, barrier, and penalty
functions, we construct a pseudo-objective merit
function, which takes in an array of values
sufficient to describe the mathematical model of
the rocket and its performance. Given that each
evaluation of this merit function consists of
simulating the rocket’s trajectory, we are unable
to use an optimization algorithm involving
differentiation or a finite difference method. To
navigate this limitation, we use a Nelder-Mead
simplex method: a geometry-based optimization
algorithm that does not perform well for higher
dimensions but is satisfactory for our purposes. A
genetic algorithm, which can handle higher-
dimensional spaces, would also serve this
function, but it incurs an additional
computational cost.

The barrier and penalty functions are
weighted by user-selected parameters before
their addition to the objective function. Given
that an overly low weighting will lead to the
optimizer’s neglect of the constraints and an
overly high weighting to the optimizer ignoring
the objective, we run an iterative sequence of
Nelder-Mead optimizations, starting with very
low weights and increasing them for every
successive optimization. This gives the optimizer
more global coverage of the design space early on

so that it may find a suitable neighbourhood and
then restricts its freedom once it has done so.

The All-at-Once (AAO) problem statement is a
fundamental optimization problem from which
all others may be derived. It includes an
objective/pseudo-objective function to be
minimized with respect to a design vector and
subject to certain constraints. For this problem,
we are estimating the optimal design vector, �̅�𝑥
according to 𝑙𝑙𝑙𝑙𝑚𝑚

𝑛𝑛→∞
μ𝑛𝑛 = 0, 𝑙𝑙𝑙𝑙𝑚𝑚

𝑛𝑛→∞
ρ𝑛𝑛 = ∞, 𝑓𝑓𝑛𝑛(�̅�𝑥) =

𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜(�̅�𝑥) + μ𝑛𝑛 ∑ ℎ𝑖𝑖(�̅�𝑥)𝑖𝑖 + ρ𝑛𝑛 ∑ 𝑔𝑔𝑜𝑜(�̅�𝑥)𝑜𝑜 .
x�n = 𝑚𝑚𝑙𝑙𝑙𝑙�̅�𝑥 𝑓𝑓𝑛𝑛(�̅�𝑥), 𝑙𝑙𝑙𝑙𝑚𝑚

𝑛𝑛→∞
x�n = x�∗, where �̅�𝑥 =

(𝑚𝑚𝑝𝑝𝑝𝑝𝑜𝑜𝑝𝑝, �̇�𝑚, 𝑝𝑝𝑒𝑒) is the design vector containing the
total propellant mass, unadjusted propellent
mass, mass flow rate, nozzle exit pressure, total
tankage length, airframe diameter, airframe total
length, GLOW, ballast mass, conical component
of nosecone length, fin root chord, fin tip chord,
fin sweep angle, fin span, and fin thickness. This
information is necessary for the evaluation of the
constraint functions, ℎ𝑜𝑜𝑏𝑏𝑝𝑝𝑝𝑝𝑖𝑖𝑒𝑒𝑝𝑝 = 108401𝑚𝑚 < ℎ <

151401𝑚𝑚, and 𝑔𝑔𝑝𝑝𝑒𝑒𝑛𝑛𝑏𝑏𝑝𝑝𝑝𝑝𝑝𝑝 = �𝐹𝐹 ≤ 6𝑘𝑘𝑘𝑘, 𝐿𝐿𝐿𝐿 ≥

22𝑚𝑚/𝑠𝑠, 𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚
𝑔𝑔0

≤ 15𝑔𝑔′𝑠𝑠,𝑇𝑇𝑇𝑇𝑇𝑇 ≥ 2, 𝐿𝐿/𝐷𝐷 ≤ 21, 𝑝𝑝𝑒𝑒
𝑝𝑝𝑚𝑚
≥

0.35�. ℎ𝑜𝑜𝑏𝑏𝑝𝑝𝑝𝑝𝑖𝑖𝑒𝑒𝑝𝑝 is the strict apogee constraint, and
the looser penalty constraints are: Thrust (F)—the
Electric Feed System (EFS) that deals with
pressurizing before propellant injection is not
feasible for powerful engines, Launch Speed
(LS)—ensuring stable take-off, Thrust to Weight
Ratio (TWR), Length to Diameter Ratio (L/D),
maximum acceleration, and nozzle over-
expansion.

The unaltered optimization code produces an
.ork rocket file for further testing in OpenRocket,
as seen in Figure 1.

Figure 1. Example generated rocket.

Oregon Undergraduate Research Journal: McNair Special Issue Casserly

Multidisciplinary Design Optimization 10

It is then possible to run the simulation with
settings emulating the launch site (WGS84
ellipsoid for Geodetic calculations), pictured in
Figure 2.

Figure 2. Settings to emulate the launch site.

These calculations produce a launch data
graphic, pictured in Figure 3.

Figure 3. OpenRocket launch data graphic.

Review of uncertainty-based multidisciplinary
design optimization methods for aerospace vehicles
(Yao et al.) covers Uncertainty-Based
Multidisciplinary Design Optimization (UMDO)
theory and the cutting edge methods of that time.
Throughout the lifecycle of the aerospace vehicle
(design, manufacture, operation,
disposal/repurposing), there exist many
uncertainties related to the vehicle system itself,
along with environmental and operational
conditions. Before describing the UMDO
procedure, several important definitions are
given: uncertainty—incompleteness in knowledge
and inherent variability of the system and

operational environment; robustness—measure
of insensitivity to variations in both the system
and environment; reliability—likelihood of a
component/system to perform intended function
for a given period of time under the determined
operating conditions; deterministic design
optimization—process of obtaining optimal
designs with all variables, models, parameters
and simulations involved being deterministic;
robust design optimization (RDO)—optimizing
design such that it is insensitive to many
variations; and reliability-based design
optimization (RBDO)—obtaining optimal design
while meeting reliability constraints. The
combination of these last two, RDO and RBDO, is
the basis for reliability-based robust design
optimization (RBRDO): Find 𝒙𝒙 minimizing

𝑓𝑓(𝒙𝒙,𝒑𝒑) = 𝐹𝐹 �μ𝑓𝑓(𝒙𝒙,𝒑𝒑),σ𝑓𝑓(𝒙𝒙,𝒑𝒑)� subject to (s.t.)

𝑃𝑃[𝒈𝒈(𝒙𝒙,𝒑𝒑) ≤ 0] ≥ 𝑹𝑹, 𝒙𝒙𝐿𝐿 ≤ 𝒙𝒙 ≤ 𝒙𝒙𝑈𝑈, where 𝒙𝒙
represents the design variable vector, 𝒑𝒑
represents the system constant parameter vector,
𝒙𝒙𝐿𝐿 and 𝒙𝒙𝑈𝑈 define the boundaries of the design
space, μ𝑓𝑓 and σ𝑓𝑓 are the mean and standard
deviation of the original optimization objective
function, F is the reformulated optimization
function with respect to μ𝑓𝑓 and σ𝑓𝑓, g is the
unequal constraint vector, P is the probability of
the statement in brackets to be true, and R is the
reliability vector related to this. Yao et al. provide
illustrations related to RDO and RBDO, seen in
Figures 4 and 5.

Figure 4. Graphical illustration of RDO.

Oregon Undergraduate Research Journal: McNair Special Issue Casserly

Multidisciplinary Design Optimization 11

Figure 5. Graphical illustration of RBDO.

The actual UMDO procedure organizes the
elements involved in uncertainty-based design
optimization: system optimization, system
analysis, disciplinary analysis, and uncertainty
analysis. The key to realizing UMDO for a large,
complex system is efficiently arranging these
elements into an execution sequence so that it
may be implemented on a computer; the
coupling relationship related to disciplinary
analysis and computationally intensive system
analysis make for a very time-consuming
procedure. The computational burden of UMDO
can be understood by the following modification
to the RBRDO formulation: Find 𝒙𝒙 minimizing

𝑓𝑓(𝒙𝒙,𝒑𝒑,𝒚𝒚) = 𝐹𝐹 �μ𝑓𝑓(𝒙𝒙,𝒑𝒑,𝒚𝒚),σ𝑓𝑓(𝒙𝒙,𝒑𝒑,𝒚𝒚)� s.t.

𝑃𝑃[𝑔𝑔𝑖𝑖(𝒙𝒙,𝒑𝒑,𝒚𝒚) ≤ 0] ≥ 𝑹𝑹𝒊𝒊, 𝑙𝑙 = 1,2, … ,𝑙𝑙𝑔𝑔, 𝒙𝒙𝐿𝐿 ≤ 𝒙𝒙 ≤ 𝒙𝒙𝑈𝑈.
𝒚𝒚 represents the intermediate state variables of
the multidisciplinary analysis. We denote the
output vector of disciplinary analysis i as 𝒚𝒚𝑖𝑖, the
coupling state vector output from disciplinary
analysis i and input into disciplinary analysis j as
𝒚𝒚𝑖𝑖𝑜𝑜, the complete set of output vectors from
discipline 𝑙𝑙 coupled with other disciplines 𝒚𝒚𝑖𝑖., and
the complete set of coupling state vectors input
into disciplinary analysis i as 𝒚𝒚.𝑖𝑖. With these
conventions, we have 𝒚𝒚 = [𝒚𝒚𝑖𝑖 , 𝑙𝑙 = 1,2, … ,𝑙𝑙𝐷𝐷], 𝒚𝒚.𝑖𝑖 =
�𝒚𝒚𝑜𝑜𝑖𝑖 , 𝑗𝑗 = 1,2, … ,𝑙𝑙𝐷𝐷, 𝑗𝑗 ≠ 𝑙𝑙�, 𝒚𝒚𝑖𝑖. = 𝒚𝒚𝑖𝑖.(𝒙𝒙𝑖𝑖 ,𝒑𝒑,𝒚𝒚.𝑖𝑖) and
𝑦𝑦𝑖𝑖. = �𝑦𝑦𝑖𝑖𝑜𝑜 , 𝑗𝑗 = 1,2, … ,𝑙𝑙𝐷𝐷, 𝑗𝑗 ≠ 𝑙𝑙�. 𝒙𝒙𝑖𝑖 is the local
design variable vector of discipline i, and 𝒑𝒑 is the
system parameter vector. The paper provides a
figure with information related to the coupling
relationship for a three-discipline system,
pictured in Figure 6.

Figure 6. The coupling relationship of a three-discipline

UMDO problem.

Yao et al. also provide an illustration of the
conventional double-loop UMDO procedure,
pictured in Figure 7.

Figure 7. The conventional double-loop UMDO procedure.

I set out to review the existing open-source
optimization code to analyze the dependencies
and components of these procedures such that I
would be able to isolate areas for potential
improvements. In making modifications, I set out
to compare simulated trajectory results and the
optimized design vectors. The following is a list of
planned improvements:

1. The majority of the Aerodynamics model
is based on OpenRocket’s source code,
which is an oversimplification of reality.
The first instance of a possible
improvement to the Jupyter Notebook
detailing the aerodynamics model is
related to the fin-body interference
coefficient. This can be improved using
MIL-HDBK-762 (Handbook).

2. The optimization program generates
designs based on a template OpenRocket

Oregon Undergraduate Research Journal: McNair Special Issue Casserly

Multidisciplinary Design Optimization 12

file. It will be necessary to update this to
the latest airframe design, as the design
fed into the optimizer is still based on the
airframe of a previous iteration.

3. Implement fin “staging”; this will be done
by dropping a large fin can. Essentially,
larger fins enable a reduction in the
required launch velocity, and, therefore,
the engine size may be reduced.
Dropping the can mid-flight will reduce
the drag due to large fins. I will develop a
method of simulating this effect.

4. Add to MDO capability via reading-in a
database of aerodynamic coefficients
created by CFD.

5. Improve the “UI” such that those
unfamiliar with the code may set
parameters and understand the process.
Work on documentation and comments
in relation to better user interaction.

6. Add structural analysis output such as
weight, stresses, acceleration,
acceleration in propellants, axial load
down the rocket, and heatmap to show
where the axial load is the highest.

7. If efforts to reduce engine weight have
failed and we need a large engine (on the
order of 10 kN), the use two 5 kN engines
or four 2.5 kN engines would be optimal.
This would reduce chamber pressure;
additionally, lower-thrust engines are
more feasible to build.

8. Compare efficiency/quality (merit
function evaluation) of optimization
approaches such as global optimization
using RBFOpt, iterative Nelder-Mead, and
Simplicial Homology Global Optimization
(SHGO).

3. Results

3.1. Aerodynamics

The majority of the Aerodynamics model is based
on source code from OpenRocket, which does not

account for the additional complexity of reality.
The first improvement I made in relation to this
was to adjust the fin-body interference coefficient
using MIL-HDBK-762. Using the slender-body
theory approach (where the slenderness of the
modelled body is used to create an approximation
to the field surrounding it), the ratio of the fin
normal force gradient—the resulting corrective
force perpendicular to the z-axis of the rocket—in
the presence of a cylindrical body compared to
that of an isolated fin is given by 𝐾𝐾𝐹𝐹(𝑜𝑜) =

2
π

�1−𝑑𝑑𝑏𝑏�
2 ��1 + 𝑑𝑑4

𝑜𝑜4
� �1

2
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙 �1

2
�𝑜𝑜
𝑝𝑝
− 𝑑𝑑

𝑜𝑜
�� + π

4
� −

𝑑𝑑2

𝑜𝑜2
��𝑜𝑜
𝑑𝑑
− 𝑑𝑑

𝑜𝑜
� + 2𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙 �𝑑𝑑

𝑜𝑜
��� , where 𝑎𝑎 is half the

fin span (𝑏𝑏) and 𝑑𝑑 is the body diameter, as
pictured in Figure 8.

Figure 8. Fin span and body diameter of LV4.

The trajectory simulation component of the
open-source code outputs the angle of attack—
the difference between the rocket’s z-axis and
relative velocity vector—of the vehicle as a
function of time, seen in Figure 9.

Figure 9. Angle of attack as a function of time.

The optimized design vector before and after
this modification is represented in Figure 10.

Oregon Undergraduate Research Journal: McNair Special Issue Casserly

Multidisciplinary Design Optimization 13

Figure 10. Optimized design vector before and after fin-body

interference modification.

The increased total propellant mass and gross
lift-off weight indicate that increased resistance
to the fin normal force is required. The higher
nozzle exit pressure is related to the optimization
program minimizing nozzle over-expansion
(Monte).

An over/under-expanded nozzle is one in
which the exit pressure is greater or lower than
the atmospheric pressure. The combustion
chamber generates high pressure, high
temperature gas, and the ideal nozzle (shape and
length optimized) converts this thermal energy
into thrust as in Figure 11. An over-expanded
nozzle is one in which the atmospheric pressure
is greater than the exit pressure, which causes a
pinching effect and decreases the efficiency of
the nozzle as sections of the nozzle inner wall are
not used to produce thrust. Figure 12
demonstrates an over-expanded nozzle. Under-
expansion is the opposite: the atmospheric
pressure is less than the nozzle exit pressure,
which causes the flow to fan out after exiting the
nozzle and results in inefficiency, as the

expansion is not fully converted into thrust by the
nozzle inner wall. Figure 13 demonstrates an
under-expanded nozzle.

Figure 11. Nozzle and combustion chamber of LV4.

Figure 12. Over-expanded nozzle of LV4.

Figure 13. Under-expanded nozzle of LV4.

Oregon Undergraduate Research Journal: McNair Special Issue Casserly

Multidisciplinary Design Optimization 14

Ideally, we would like nozzle exit pressure to
equal atmospheric pressure, and minimizing
over-expansion is our best option. The higher exit
pressure after increasing the accuracy of the fin-
body interference coefficient indicates that the
atmospheric pressure is higher, likely due to an
increased fin normal force gradient.

In relation to enabling the MDO to read CFD
data, I obtained a demo aerodynamics database—
shown in Figure 14—with the goal of building an
interpolation space in the variables.

Figure 14. Aerodynamic coefficients database.

I created a new notebook to complete this
task and used the SciPy interpolate module
(Scipy.Interpolate.Interp1d — SciPy v1.8.1 Manual)
along with the built-in Python CSV module.
Figure 15 displays the first from-scratch code
contribution I made.

Figure 15. Code for processing database of Aerodynamic

coefficients.

I initialize a list “matrix” to store the data
along with a dictionary “Dict” to index into a
variable’s list of values. Using the csv module, we
read in the data and construct a 2-dimensional
matrix. We then use a nested structure to

construct each variable’s list of values, with
which we populate the dictionary. We are now
ready to perform interpolation, as shown in
Figure 16.

Figure 16. Cubic interpolation in the qbar variable.

We use the “interp1d” function to
approximate a continuous function given our
discrete data points. Figure 17 displays another
example, this time with linear interpolation.

Figure 17. Linear interpolation in the Cx variable.

3.2. Optimization Method
Efficiency/Quality Analysis

The three options for optimization that I
considered were global optimization using

Oregon Undergraduate Research Journal: McNair Special Issue Casserly

Multidisciplinary Design Optimization 15

RBFOpt (black-box optimization),
scipy.optimize’s Nelder-Mead minimization, and
Simplicial Homology Global Optimization
(SHGO). It is important to note that our merit
function is a combination of an objective function
and a penalty function. This means that the
constraints are captured by the penalty
component and are not passed into the
optimization methods directly. Therefore, we
have in each case an unconstrained global
optimization which approximates a constrained
optimization.

The Nelder-Mead algorithm is designed to
minimize a non-linear function 𝑓𝑓:𝑹𝑹𝑛𝑛 → 𝑹𝑹 using
function values at a few points in 𝑹𝑹𝑛𝑛. It can be
viewed as a simplex-based search algorithm. A
simplex in 𝑹𝑹𝑛𝑛 is defined as the convex hull of 𝑙𝑙 +
1 vertices. For example, a simplex in 𝑹𝑹2 is a
triangle, while 𝑹𝑹3 would be a tetrahedron, shown
in Figure 18.

Figure 18. Simplexes in two- and three-dimensional space.

The method begins with a set of points
𝑥𝑥0, … , 𝑥𝑥𝑛𝑛 ∈ 𝑹𝑹𝑛𝑛, which are the vertices of our
simplex, and their merit function evaluations.
The algorithm will then perform a series of
transformations on the working simplex with the
goal of decreasing the merit function evaluation
at the vertices. This process is terminated when
the absolute errors in the optimal design vector
and its function evaluation are sufficiently small
(Minimize(Method=’Nelder-Mead’) — SciPy v1.8.0
Manual). A simplification of the algorithm is the
following:

1. Construct initial working simplex 𝐿𝐿.

2. Repeat until termination test is satisfied.
a. Calculate termination test

information (absolute error).
b. If termination test is satisfied,

transform the working simplex.
3. Return the best vertex of the current

simplex 𝐿𝐿 and the merit function
evaluation.

We can construct the initial simplex by
generating 𝑙𝑙 + 1 vertices (𝑥𝑥0, … , 𝑥𝑥𝑛𝑛) around some
input point in 𝑹𝑹𝑛𝑛. For practical purposes, we use
𝑥𝑥0 so that the algorithm may be restarted. The
remaining n vertices are then generated to obtain
a regular simplex, with all edges having the same
length.

A key component is the simplex
transformation algorithm, which consists of three
stages:

1. Ordering to determine the worst (h),
second-worst (s), and best (l) vertices in
the current working simplex: 𝑓𝑓ℎ =
𝑚𝑚𝑎𝑎𝑥𝑥𝑜𝑜𝑓𝑓𝑜𝑜, 𝑓𝑓𝑠𝑠 = 𝑚𝑚𝑎𝑎𝑥𝑥𝑜𝑜≠ℎ𝑓𝑓𝑜𝑜, 𝑓𝑓𝑝𝑝 = 𝑚𝑚𝑙𝑙𝑙𝑙𝑜𝑜≠ℎ𝑓𝑓𝑜𝑜.

2. Calculation of the centroid of the best
side, which is opposite the h-vertex (𝑎𝑎 ≔
1
𝑛𝑛
∑ 𝑥𝑥𝑜𝑜𝑜𝑜≠ℎ).

3. Computation of the new working simplex
via transforming the current.

We attempt to replace the worst vertex using
reflection, contraction or expansion with respect
to the best side. The test points lie on the line
from the worst point (𝑥𝑥ℎ) to the centroid of the
best side, as previously calculated. At most, two
such points are calculated in each iteration. If
successful, this accepted point becomes the new
vertex of our working simplex. Otherwise, we
shrink the simplex towards the best vertex (𝑥𝑥𝑝𝑝),
and it is necessary to compute 𝑙𝑙 new vertices.

On testing the Nelder-Mead approach, I
reduced the termination conditions to an
absolute difference between optimal design
vectors of 1 and an absolute difference between

Oregon Undergraduate Research Journal: McNair Special Issue Casserly

Multidisciplinary Design Optimization 16

merit function evaluations of 0.1. The results
indicate that this will produce a locally feasible
design; however, this is not ideal for the global
optimization that we desire. Combining this with
SHGO should improve results. The output of this
is shown in Figure 19.

Figure 19. Iterative Nelder-Mead optimization output.

We can see here that the peak altitude is less
than desired. Overall, this approach is time-
intensive, given a more stringent termination
condition, and will at best produce locally
feasible designs. The limited design space
exploration of the Nelder-Mead algorithm can be
understood via Figure 20.

Figure 20. Iterative Nelder-Mead design space exploration.

The RBFOpt (Coin-or/Rbfopt) global
optimization method provides excellent coverage
of the design space and runs to completion in
under two hours. To perform this optimization,
we construct a black box using the
RbfoptUserBlackBox class and execute
RbfoptAlgorithm on it. The values comprising the
two arrays in the definition of the black box were
set based on a feasible range for the design
variables. Figure 21 displays a snippet of our
code.

Figure 21. RBFOpt Global Optimization code snippet.

This design variable range works in
conjunction with Bonmin (Bonmin) (Basic Open-
source Nonlinear Mixed Integer programming) to
find a design vector that minimizes the merit
function. With this approach, the majority of our
constraints are satisfied, as seen in Figure 22.

Figure 22. RBFOpt Global Optimization Constraint

Satisfaction.

Simplicial Homology Global Optimization
(SHGO), in conjunction with Nelder-Mead
minimization, provides good results with a
completion time of about 2 hours. The theoretical
advantages of SHGO are guaranteed when the
objective function is Lipschitz smooth (objective
function is continuous, convex, and smooth);
however, if this is not the case, the algorithm will
converge to the global optimum if the default
“simplicial” sampling method is used
(Scipy.Optimize.Shgo — SciPy v1.8.0 Manual).
SHGO is a general-purpose global optimization
algorithm that approximates the homology
groups of a complex built on a hypersurface that
is homeomorphic (similar in form) to a complex
on the objective function. This facilitates
approximations of locally convex subdomains in
the search space (multidimensional space
consisting of design vector parameters and their
constraints) and provides an excellent visual tool
for characterising and solving higher-
dimensional black box optimization problems.
The complex is created using sampling points

Oregon Undergraduate Research Journal: McNair Special Issue Casserly

Multidisciplinary Design Optimization 17

within the feasible search space as vertices. The
algorithm is best suited to finding all local
minima of an objective function with a
computationally expensive evaluation (such as
ours, which involves simulating the trajectory of
the design).

Using the sampled points of an objective
function as vertices, this method constructs a
simplicial complex. The resulting directed
subgraph contains the set of all 1-chains from the
elements of ℋ1 ∈ ℋ and enables the finding of
minimizer pools (Endres et al.) Sperner’s lemma
enables us to approximate the domains of
stationary points for our objective function in the
feasible search space, denoted by Ω. The
homology groups produced from the
construction of ℋ will be invariant given an
adequate sampling set. It follows that for the
given sampling set of vertices ℋ0 ∈ ℋ, we are
guaranteed to extract the optimal minimiser pool.
The algorithm has four steps:

1. Sampling point generation of N vertices
in the search space from which 0-chains
of ℋ0 are constructed.

2. Triangulation of the vertices to construct
the directed simplicial complex ℋ.

3. Construction of the minimiser pool using
Sperner’s lemma.

4. Local minimization using the starting
points defined in the minimiser pool
(Nelder-Mead method).

Given a set of sampling points 𝒫𝒫, we wish to
describe a discrete mapping ℎ: 𝒫𝒫 ⟶ℋ that will
provide a simplicial approximation for the
surface of the merit function. To begin, we need
to formally define the set of vertices forming the
0-chains of the simplicial complex and the edges
forming the 1-chains of ℋ. The following are
useful definitions:

1. 𝜒𝜒 is the set of sampling points created by
a sampling sequence in a bounded

hyperrectangle (rectangle generalized to
higher dimensions).

2. The set 𝒫𝒫 = [𝒙𝒙𝜖𝜖𝜒𝜒|𝒈𝒈(𝒙𝒙) ≥ 0] describes a
set of points within the feasible set Ω.

3. Given an objective function 𝑓𝑓,ℱ
represents the set of scalar outputs
mapped by the objective function 𝑓𝑓: 𝒫𝒫 ⟶
ℱ in relation to a sampling set 𝒫𝒫 ⊆ Ω ⊆
ℝ𝑛𝑛.

4. If ℋ is a directed simplicial complex,
then ℋ0 ≔ 𝒫𝒫 is the set of all vertices of
ℋ.

5. Given a set of vertices ℋ0, we construct
the simplicial complex ℋ by a
triangulation connecting every vertex in
ℋ0. This supplies a set of undirected
edges 𝐸𝐸.

6. ℋ1 is a set constructed by directing every
edge in 𝐸𝐸. This is done by selecting a
vertex 𝑣𝑣𝑖𝑖 ∈ ℋ0 and connecting to another
vertex 𝑣𝑣𝑜𝑜 by an edge within 𝐸𝐸. This edge is
directed as 𝑣𝑣𝑖𝑖𝑣𝑣𝑜𝑜 from 𝑣𝑣𝑖𝑖 to 𝑣𝑣𝑜𝑜 if and only if
the merit function evaluation at the
former is lesser than the latter. It is
directed as 𝑣𝑣𝑜𝑜𝑣𝑣𝑖𝑖 from 𝑣𝑣𝑜𝑜 to 𝑣𝑣𝑖𝑖 if and only if
the merit function evaluation at the
former is greater than the latter. In these
cases, we have 𝜕𝜕�𝑣𝑣𝑖𝑖𝑣𝑣𝑜𝑜� = 𝑣𝑣𝑜𝑜 − 𝑣𝑣𝑖𝑖 and
𝜕𝜕�𝑣𝑣𝑜𝑜𝑣𝑣𝑖𝑖� = 𝑣𝑣𝑖𝑖 − 𝑣𝑣𝑜𝑜. The case in which
𝑓𝑓(𝑣𝑣𝑖𝑖) = 𝑓𝑓�𝑣𝑣𝑜𝑜�, with neither 𝑣𝑣𝑖𝑖 nor 𝑣𝑣𝑜𝑜
already being a minimizer, we use the
rule that “the incidence direction of the
connecting edge is always directed
towards the vertex that was generated
earliest by the sampling point sequence.”
If 𝑣𝑣𝑖𝑖 is not connected to another vertex
𝑣𝑣𝑘𝑘, then our convention will be to leave
𝑣𝑣𝑖𝑖𝑣𝑣𝑘𝑘 undefined, with 𝜕𝜕(𝑣𝑣𝑖𝑖𝑣𝑣𝑘𝑘) = 0. The
higher dimensional simplices ℋ𝑘𝑘,𝑘𝑘 =
2, 3, …𝑙𝑙 + 1 may be directed in an
arbitrary direction to complete the
construction of the complex ℎ ∶ 𝒫𝒫 ⟶ℋ.
This will be used to find the minimiser
pool for the local minimization starting

Oregon Undergraduate Research Journal: McNair Special Issue Casserly

Multidisciplinary Design Optimization 18

points required by the algorithm.
7. 𝑣𝑣𝑖𝑖 is a minimiser if and only if all edges

connected to 𝑣𝑣𝑖𝑖 are directed away from
𝑣𝑣𝑖𝑖; formally, that is ∂�𝑣𝑣𝑖𝑖𝑣𝑣𝑜𝑜� = �𝑣𝑣𝑜𝑜≠𝑖𝑖 − 𝑣𝑣𝑖𝑖� ∨
0 ∀vj≠i ∈ ℋ0. The set of all minimisers is
the minimiser pool ℳ.

8. The star of a vertex 𝑣𝑣𝑖𝑖 [𝑠𝑠𝑎𝑎(𝑣𝑣𝑖𝑖)] is the set of
all points 𝒬𝒬 s.t. every simplex containing
𝒬𝒬 contains 𝑣𝑣𝑖𝑖.

9. The 𝑘𝑘-chain 𝐶𝐶(ℋ𝑘𝑘), 𝑘𝑘 = 𝑙𝑙 + 1 of
simplices in st (𝑣𝑣𝑖𝑖) results in a boundary

cycle ∂�𝐶𝐶(ℋ𝑛𝑛+1)� with ∂ �∂�𝐶𝐶(ℋ𝑛𝑛+1)�� =

 ∅. The bounds of the domain defined by
s.t. (𝑣𝑣𝑖𝑖) form the faces of ∂(ℋ𝑛𝑛+1).

To place these constructions in a practical
context, we minimize the Ursem01 function in
two dimensions, which is defined as:

min 𝑓𝑓(𝒙𝒙) = −𝑠𝑠𝑙𝑙𝑙𝑙(2𝑥𝑥1 − 0.5π) − 3𝑎𝑎𝑐𝑐𝑠𝑠(𝑥𝑥2) −
0.5𝑥𝑥1, 𝑥𝑥 ∈ Ω = [0,9] × [−2.5, 2.5]

A plot of this function with its three local
minima is shown in Figure 23.

Figure 23. The Ursem01 Function.

The set 𝒫𝒫 contains 𝑘𝑘 = 15 sampling points
from the 2-dimensional Sobol sequence. Figure
24 contains a mapping of the objective function
values.

Figure 24. Objective function values using sampling points

from Sobol sequence.

From Definition 4 above, we have ℋ0 from 𝒫𝒫.
Definition 5 enables us to construct ℋ using
Delaunay triangulation to find a set of connected
edges. The edges are then directed according to
Definition 6. Definition 7 enables us to find the
minimiser set, which in this case is ℳ =
{𝑣𝑣1,𝑣𝑣7, 𝑣𝑣13}. Figure 25 is the resulting structure,
which highlights the domain of s.t. (𝑣𝑣1).

Figure 25. A directed complex ℋ—asimplicial approximation

for an objective function.

Increasing the sampling size to 𝑘𝑘 = 150 and
repeating the procedure produces the complex in
Figure 26.

Oregon Undergraduate Research Journal: McNair Special Issue Casserly

Multidisciplinary Design Optimization 19

Figure 26. A directed complex ℋ—asimplicial approximation

for an objective function with 150 vertices.

This has different minimiser vertices that are
better approximations to the local minima, but
|ℳ| is unchanged. This points to the SHGO
property: if the number of initial sampling points
is adequate, |ℳ| ceases to grow with increasing
𝑘𝑘, which provides a heuristic for the number of
sampling points needed to approximately map
the local minima of a merit function.

3.3. User Interface and Documentation
Improvements

In relation to making the workings of the code
more understandable, I added the following prior
to the code block containing the three main
techniques: The optimization approaches are
RBFOpt Global Optimization, Iterative Nelder-
Mead, and Simplicial Homology Global
Optimization using Nelder-Mead at the local
minima. RBFOpt produces results in about 2
hours, depending on your machine. The two
array arguments passed to the
RbfoptUserBlackBox class define the bounds of
the black box and correspond to minimum and
maximum feasible values for the design vector.
Iterative Nelder-Mead does take a while;
however, in the iterate function in the above code
block, you may change the “xatol” and “fatol”
parameters to relax the termination condition.
These correspond to the absolute error in the

design vector and its merit function evaluation
between iterations such that the optimization will
terminate. Simplicial Homology is my preferred
method as it finds approximations to local
minima and then uses iterative Nelder-Mead at
each of these to find the global minimum. This
method is theoretically guaranteed to find the
global minimum when using the 'simplicial'
sampling method. However, for a merit function
as complex as ours (involving trajectory
simulation), it is inefficient. The “sobol” sampling
method will approximate the global minimum
with an execution time of about 2 hours. I have
also added comments to the code related to
setting (black box/design vector) boundaries.

3.4. Initial Design Modifications

In coordination with Hayden Reinhold from the
PSAS airframe team, I have updated the initial
template.ork OpenRocket file to approximate the
current design. This involved modifying
component weights and lengths, along with using
an approximate thickness to model our isogrid
plate bulkheads as having uniform density,
demonstrated in Figure 27.

Figure 27. Isogrid plate bulkhead.

The updated initial design fed into the
optimizer produced the diagram found in Figure
28.

Figure 28. Updated initial design.

Oregon Undergraduate Research Journal: McNair Special Issue Casserly

Multidisciplinary Design Optimization 20

The main changes were made to the
weight/length of Nosecone, Electrical Recovery
System (ERS), N2 tank/Reaction Control System
(RCS), Avionics/Camera module, Liquid Oxygen
(LOX) tank, and fin can. A SHGO simulation with
this updated model resulted in global coverage of
the design space, as in Figure 29.

Figure 29. SHGO coverage of design space with updated

design.

We met the majority of our constraints;
however, manifesting a 10.6 kN engine poses a
problem, displayed in Figure 30.

Figure 30. SHGO constraint satisfaction with updated design.

Our apogee estimate is slightly conservative,
so 95.6 km is excellent. Trajectory information
indicates a successful launch is possible with the
design in Figure 31.

Figure 31. LV4 Trajectory Information with SHGO Approach.

3.5. Structural Analysis Output

Related to the goal of improving the MDO via
providing structural analysis output, I added a
new notebook that ported relevant code from the
structural model notebook. This code contains a
structural analysis function that calculates the
axial and lateral loads along with bending
moments at launch (tip-off), maximum
aerodynamic pressure (max Q), and before and
after engine burnout. The axial forces consist of
friction along the body, parasitic drags related to
each passthru module, and drag coefficient
contributions. Lateral load is calculated via
summing normal forces, and the bending
moment is calculated considering the shear at the
top of each component along with the lateral load
at the middle. Using the structural plot function
in the Display_Information notebook, the main
MDO notebook now outputs the graphs seen in
Figure 32.

Oregon Undergraduate Research Journal: McNair Special Issue Casserly

Multidisciplinary Design Optimization 21

Figure 32. Structural analysis information added to

MDOoutput.

3.6. Other Modifications

In order to make weight reductions easier, Peter
McCloud (a scientist affiliated with NASA
Aerothermodynamics) suggested that a pie chart
with the mass breakdown be added to the MDO
output. Figure 33 displays a code snippet and
Figure 34 the result.

Figure 33. Mass breakdown code added.

Figure 34. Mass breakdown pie chart.

The only non-trivial component of this is
calculating the airframe mass. The volume of the
tube was first calculated given the existing
airframe length, diameter, and thickness

Oregon Undergraduate Research Journal: McNair Special Issue Casserly

Multidisciplinary Design Optimization 22

variables. Given the 2700 𝑘𝑘𝑔𝑔/𝑚𝑚3 density of 6061-
T6 aluminum, the mass is calculated. The pie
chart was constructed with reference to the
matplotlib documentation (Basic Pie Chart —
Matplotlib 3.5.2 Documentation).

Another issue is related to the engine thrust
constraint. It is not feasible for the engine to have
a thrust much greater than 6 kN. Since the thrust
constraint is lenient, I experimented with setting
the CONS_THRUST parameter to 5.5 kN. Figure
35 contains the results using Simplicial Homology
with the simplicial sampling method (guaranteed
optimality) and COBYLA local minimization.

Figure 35. Constraint satisfaction with 5.5 kN engine thrust

constraint.

The result is a roughly 9 kN engine with 90
km apogee. Reducing the constraint to 5.4 kN, I
found that the optimal apogee was a scant 14 km.
The sweet spot for the constraint is 5.49698 kN,
which produces an apogee of 83 km with an
engine thrust of 9 kN, shown in Figure 36.

Figure 36. Constraint satisfaction with optimized engine

thrust constraint.

Building a launch rail greater than 10 meters
is difficult; therefore, I ran the simulation with
the LAUNCH_TOWER parameter set to 9.8 m,
shown in Figure 37.

Figure 37. Launch Parameters with reduced launch rail
length.

The optimal CONS_THRUST parameter in
this case is somewhere between 5599.6 and
5599.7. Figure 38 displays the results for those
two options.

Figure 38. Constraint satisfaction to find sweet spot of
CONS_THRUST parameter.

The apogee is dismal for the first and the
engine thrust is too high for the second. With a
9.8 m launch rail, along with the CONS_THRUST
parameter set to 5599.67, we have an apogee of
roughly 83 km and engine power of 9.8 kN. The
result is still too powerful of an engine, so we
need to experiment with the initial fin
parameters to reduce the required thrust. We will
investigate the velocity off the launch rail related
to the engine thrust. The “event_manager”
function shown in Figure 39 contains the desired
parameter and Figure 40 shows the related
launch velocity analysis code.

Figure 39. Velocity off launch rail (rkt.launch_speed
parameter).

Oregon Undergraduate Research Journal: McNair Special Issue Casserly

Multidisciplinary Design Optimization 23

Figure 40. Launch velocity analysis code.

With the standard fins and unoptimized
initial design vector, we have a launch velocity of
23.47 m/s and engine thrust of 14 kN. We would
like to reduce the engine thrust to around 10 kN,
which means the optimized design should be < 7
kN. The plan was to drop a rectangular fin can,
meaning that only the fin root and tip chord
lengths would be changed. Increasing the fin root
and tip chords by 8 m, the velocity off the launch
rail decreases to 19.3 m/s; however, the engine
thrust remains unchanged at 14 kN.

3.7. Fin Staging/Optimization

Fin geometry is defined by the root, tip, sweep
angle, semispan, and thickness, as in Figure 41.

Figure 41. Typical Fin Nomenclature (Barrowman Package —

Barrowman 0.0.1 Documentation).

To simulate dropping a fin can mid-flight, we
create a second rocket object with new fin
parameters. The idea here is to reduce the
required engine thrust by starting out with larger
fins, and then the smaller fins will reduce drag in
the upper atmosphere. The function pictured in
Figure 42 performs fin resizing.

Figure 42. Fin resizing function.

In the trajectory simulation notebook, I have
modified the event_manager, time_step,
integration, and trajectory functions to
accommodate fin staging, in particular the code
seen in Figure 43.

Figure 43. Fin staging condition in event manager function.

The stage_drop_ECEF—Earth-centred, Earth-
fixed coordinate system (‘Earth-Centred, Earth-
Fixed Coordinate System’)—parameter
determines the altitude at which we drop the fin
can module. To convert from altitude to ECEF,
the function pictured in Figure 44 is used.

Figure 44. Altitude to ECEF for entry in trajectory function.

The trajectory function now includes
parameters related to fin staging, seen in Figure
45.

Figure 45. Trajectory function arguments.

Figure 46 displays the documentation added
to the main MDO notebook.

Figure 46. Fin staging simulation instructions.

Oregon Undergraduate Research Journal: McNair Special Issue Casserly

Multidisciplinary Design Optimization 24

To test the code, we drop the ECEF at 50 km
and leave the fin parameters unchanged, with
zero mass reduction, as seen in Figure 47.

Figure 47. Fin staging test arguments.

The simulation produces the same output as
was produced prior to adding this functionality,
indicating that the code is sound.

To find the ideal altitude for dropping the
larger fin can, we must find the point at which
the smaller fins are passively stable. McCloud
suggested that this be done when the ratio of the
center of pressure to the center of mass is around
2. The stability_margin in the MDO calculates this
information, shown in Figure 48.

Figure 48. Center of mass vs. center of pressure metric.

Figure 49 contains the code to find the ideal
drop time.

Figure 49. Time after launch to drop the fin can.

Now, the MDO has a component that
simulates performance with the smaller fins (post
dropping) to find the altitude at which they are
passively stable, as seen in Figure 50.

Figure 50. Finding the ideal drop altitude.

The code shown in Figure 51 prints the
altitude at which the fins are dropped, as well as
the Mach number at that point.

Figure 51. Displaying fin drop altitude and the Mach number

at that point.

In Figure 52, a plot of the stability margin
versus time has been added in order to double-
check the fin drop logic and find ideal fin sizing.
This process, shown in Figure 53, involved
modifications to the Trajectory_Simulation,
Display_Information, and MDO notebooks, as the
rocket_plot function required an additional
parameter “stability” for the stability margin list.

Figure 52. Calibers vs Time plot in MDO Notebook.

Figure 53. Modifications to Display_Information enabling

stability (calibers) vs. time plot.

The initial fluctuation (especially that of the
negative section of the graph) does not seem to be
physical; rather, when the wind is turned on in
the trajectory simulation, and before the rocket
has left the launch rail, there is an interval during
which the wind velocity dominates the rocket’s
velocity, meaning that the angle of attack is ~ 45
degrees or more. This interferes with the update
[1][5][6] (indexing into multidimensional array)
parameter in Fig. 48, which is the center of
pressure and the seventh element of the array
returned by the aero function in the
Aerodynamics_Model notebook, as in Figure 54.

Figure 54. Array returned by the aero function in the

Aerodynamics Model.

Oregon Undergraduate Research Journal: McNair Special Issue Casserly

Multidisciplinary Design Optimization 25

This explanation has been verified by turning
off the wind and viewing the stability plot, seen in
Figure 55.

Figure 55. Stability plot with wind turned off (now strictly

positive).

A plot of the first five seconds of the stability
metric was added, given the fluctuating
behaviour, with a line indicating the time at
which the rocket has left the launch rail, as in
Figure 56.

Figure 56A. Stability metric code.

Figure 56B. Stability metric: first five seconds post-launch.

Given that the stability is quite high without
fin staging, I reduced the fin root and tip chords

by 0.2 m. The result, shown in Figure 57, is a
minimum just above 2.

Figure 57. Calibers vs. time with reduced fin length.

On adding the fin root and tip chords to the
design vector along with boundaries for these
values incentivizing a larger root than tip chord,
SHGO produces the design parameters pictured
in Figure 58.

Figure 58. Optimized fin root and tip chords.

The stability was still quite high for this
iteration, so McCloud recommended that the
semispan be added to the design vector, shown in
Figure 59.

Figure 59. Modified design vector variables.

Figure 60 displays the boundaries given to
SHGO.

Figure 60. Boundaries on design vector values given to SHGO.

Figure 61A–C contains the results.

Oregon Undergraduate Research Journal: McNair Special Issue Casserly

Multidisciplinary Design Optimization 26

Figure 61A. Trajectory and stability metric: optimized fins.

Figure 61B. Design vector: optimized fins.

Figure 61C. Constraint satisfaction information indicating

acceptable apogee with 9 kN engine: optimized fins.

Here, we achieve feasible fins and a 95 km
apogee with a 9 kN engine. The root and tip
chords are relatively small, making for a
reasonable altitude (less drag), and the larger
span corresponds to greater stability, which
contributes to a reduced engine thrust.

The minimum stability is still quite high, so
we scale down the optimized fin parameters to
80%, reducing the fin area. The result is an
apogee of 107 km with a 9.8 kN engine, seen in
Figure 62.

Oregon Undergraduate Research Journal: McNair Special Issue Casserly

Multidisciplinary Design Optimization 27

Figure 62A. Trajectory and stability metric: optimized

fins scaled down to 80%.

Figure 62B. Design vector and constraint satisfaction

information indicating ideal apogee with 9.8 kN engine:
optimized fins scaled down to 80%.

This is the ideal design. The 9.8 kN thrust
may be realized by using two 5 kN engines. What
remains unexplained is the 120 km vehicle drift
(calculated by considering the coordinates at
launch and apogee, as in Figure 63).

Figure 63. Coordinates at launch and apogee.

Setting the wind parameter to False in the
trajectory function increases drift to 121 km,
which means there is either an error in the MDO
or the wind does not contribute to the drift.
Therefore, I have added a plot of the angle of
attack from when the rocket leaves the launch
rail to just before engine burnout, pictured in
Figure 64.

Figure 64. Angle of attack from leaving the launch rail to just

before engine burnout.

Pictured is a non-zero angle of attack;
however, it is not significant enough to constitute
a 120 km drift. One potential hypothesis is that
the drift is due to the combination of the Coriolis
acceleration and the wind; however, upon setting
these variables to zero and false, respectively, the
drift actually increased to 126 km, which means
that there must be some computational error in
the MDO notebook.

Oregon Undergraduate Research Journal: McNair Special Issue Casserly

Multidisciplinary Design Optimization 28

4. Conclusion

In this work, I set out to improve and extend the
existing open-source Multidisciplinary Design
Optimization (MDO) simulation code. I evaluated
different optimization approaches such as
standard global optimization with RBFOpt,
Nelder-Mead with different local minimization
approaches, and Simplicial Homology Global
Optimization. I found the SHGO approach to be
the most effective and converged on the ideal
design vector upon including fin parameters and
scaling down given stability margin information.
The 120 km vehicle drift was caused by some
computational error in the notebook. This has
been confirmed by running trajectory
simulations with the design variables returned by
the MDO, which indicate that the wind is the
cause of the large vehicle drift. Further
debugging and testing are required. However, the
convergence of that ideal design vector serves as
a theoretical guidance to the PSAS engineering
team going forward.

Acknowledgements

Thank you to PSAS mentors Andrew Greenberg,
Cory Gillette, Peter McCloud, and Max Eltzroth
for their guidance and expertise throughout the
duration of the project. Thanks also to
Christabelle Dragoo and Denise Elder from the
UO McNair team for their support.

Bibliography

Barrowman Package — Barrowman 0.0.1
Documentation. https://open-aerospace.
github.io/barrowman/barrowman.html.

Basic Pie Chart — Matplotlib 3.5.2 Documentation.
https://matplotlib.org/stable/gallery/pie_and_
polar_charts/pie_features.html.

Bonmin. 2014. COIN-OR Foundation, 2022.
GitHub, https://github.com/coin-or/Bonmin.

Coin-or/Rbfopt. 2015. COIN-OR Foundation, 2022.
GitHub, https://github.com/coin-or/rbfopt.

Design of Aerodynamically Stabilized Free Rockets,
Military Handbook.

‘Earth-Centered, Earth-Fixed Coordinate System’.
Wikipedia, 6 Mar. 2022. Wikipedia,
https://en.wikipedia.org/w/index.php?title=E
arth-centered,_Earth-
fixed_coordinate_system&oldid=1075493103.

Endres, Stefan C., et al. ‘A Simplicial Homology
Algorithm for Lipschitz Optimisation’. Journal
of Global Optimization, vol. 72, no. 2, Oct.
2018, pp. 181–217. Springer Link,
https://doi.org/10.1007/s10898-018-0645-y.

Martins, Joaquim R. R. A., and Andrew B. Lambe.
‘Multidisciplinary Design Optimization: A
Survey of Architectures’. AIAA Journal, vol.
51, no. 9, 2013, pp. 2049–75. American Institute
of Aeronautics and Astronautics,
https://doi.org/10.2514/1.J051895.

Minimize(Method=’Nelder-Mead’) — SciPy v1.8.0
Manual. https://docs.scipy.org/doc/scipy/
reference/optimize.minimize-neldermead.
html#optimize-minimize-neldermead.

Monte, Vaughn. Over-Under Expanded Nozzle -
Propulsion 1 - Aerospace Notes. https://aero
spacenotes.com/propulsion-1/over-under-
expanded-nozzle/.

Scipy.Interpolate.Interp1d — SciPy v1.8.1 Manual.
https://docs.scipy.org/doc/scipy/reference/ge
nerated/scipy.interpolate.interp1d.html.

Scipy.Optimize.Shgo — SciPy v1.8.0 Manual.
https://docs.scipy.org/doc/scipy/reference/ge
nerated/scipy.optimize.shgo.html.

Shyy, Wei, et al. ‘Global Design Optimization for
Aerodynamics and Rocket Propulsion
Components’. Progress in Aerospace Sciences,
vol. 37, no. 1, Jan. 2001, pp. 59–118.
ScienceDirect, https://doi.org/10.1016/S0376-
0421(01)00002-1.

Yao, Wen, et al. ‘Review of Uncertainty-Based
Multidisciplinary Design Optimization
Methods for Aerospace Vehicles’. Progress in
Aerospace Sciences, vol. 47, no. 6, Aug. 2011,
pp. 450–79. ScienceDirect,
https://doi.org/10.1016/j.paerosci.2011.05.001.

