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Abstract 

Multidisciplinary Design Optimization is a field that enables the solution of challenging 
engineering problems involving multiple technical specializations and design/performance 
constraints. In this work, I optimize the design of the PSAS Launch Vehicle 4 (LV4). To that end, 
I evaluate different optimization approaches—such as RBFOpt Global Optimization, Nelder-
Mead minimization, and Simplicial Homology Global Optimization with Nelder-Mead and 
COBYLA local minimization techniques, calculate structural analysis information for different 
stages of flight, outline a method of simulating fin “staging”—the dropping of a larger initial fin 
can at a certain altitude to reduce the required engine thrust and drag in the upper atmosphere 
and optimize fin parameters. I converged on the ideal design vector. This led to an apogee of 107 
km with a 9.8 kN engine (realized with two 5 kN engines). Further debugging is required to 
resolve the apparent 120 km vehicle drift. 

 

1. Introduction 

The Portland State Aerospace Society (PSAS) 
Launch Vehicle 4 is the fourth iteration of their 
student-built rocket. PSAS is a feeder 
organization for those interested in working in 
spaceflight and we care about optimizing it to 
give young professionals experience in relevant 
problem solving to real-world problems, and to 
achieve the above 100 km apogee target while 
meeting performance constraints. The 
constraints given to the optimizer are real-world 
engineering constraints that must be met for this 
to be realized. Previous optimization efforts 
included a design vector involving various 
components of the rocket, and my approach to 
include fin parameters and scale them down 
when a near optimal design was converged on 
was an improvement. The goals of this research 
project were to improve and extend the existing 
Multidisciplinary Design Optimization (MDO) 

simulation code and to converge on a design 
vector satisfying engineering and performance 
constraints. 

2. Methodology 

Our approach minimizes the gross lift-off weight 
(GLOW) of LV4 without sacrificing apogee. Given 

the Tsiolkovsky rocket equation 𝛿𝛿𝛿𝛿
𝛿𝛿𝑒𝑒

= 𝑙𝑙𝑙𝑙 𝑚𝑚0
𝑚𝑚𝑓𝑓

 , where 

𝑣𝑣𝑒𝑒 represents the effective exhaust velocity, 𝛿𝛿𝑣𝑣 
the total change in velocity, 𝑚𝑚0 the GLOW and 𝑚𝑚𝑓𝑓 
the final dry mass of the rocket, we isolate 𝑚𝑚0 and 
construct an objective function. This approach 
has previously been characterized:  

[M]inimizing GLOW while demanding a 
certain apogee is equivalent to 
simultaneously minimizing structural mass, 
maximizing engine performance, and 
balancing the conflicting goals of minimizing 
losses due to gravity and aerodynamics. Note 
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that the sources of this conflict are the 
incentive to expel propellant rapidly to avoid 
the cost of carrying propellant in a 
gravitational field and the incentive to reduce 
velocity in lower atmosphere since drag is 
proportional to air pressure and the square of 
velocity. (MDO Jupyter Notebook)  

To represent our problem constraints, we use 
barrier and penalty functions. Both bind the 
generated rockets to a feasible region in the 
design space: barrier functions use an absolute 
constraint that may not be violated under any 
circumstances, whereas penalty functions 
slightly disincentivize convergence in sections of 
the design space far from a set of more lenient 
constraints. 

Adding the objective, barrier, and penalty 
functions, we construct a pseudo-objective merit 
function, which takes in an array of values 
sufficient to describe the mathematical model of 
the rocket and its performance. Given that each 
evaluation of this merit function consists of 
simulating the rocket’s trajectory, we are unable 
to use an optimization algorithm involving 
differentiation or a finite difference method. To 
navigate this limitation, we use a Nelder-Mead 
simplex method: a geometry-based optimization 
algorithm that does not perform well for higher 
dimensions but is satisfactory for our purposes. A 
genetic algorithm, which can handle higher-
dimensional spaces, would also serve this 
function, but it incurs an additional 
computational cost. 

The barrier and penalty functions are 
weighted by user-selected parameters before 
their addition to the objective function. Given 
that an overly low weighting will lead to the 
optimizer’s neglect of the constraints and an 
overly high weighting to the optimizer ignoring 
the objective, we run an iterative sequence of 
Nelder-Mead optimizations, starting with very 
low weights and increasing them for every 
successive optimization. This gives the optimizer 
more global coverage of the design space early on 

so that it may find a suitable neighbourhood and 
then restricts its freedom once it has done so. 

The All-at-Once (AAO) problem statement is a 
fundamental optimization problem from which 
all others may be derived. It includes an 
objective/pseudo-objective function to be 
minimized with respect to a design vector and 
subject to certain constraints. For this problem, 
we are estimating the optimal design vector, �̅�𝑥 
according to 𝑙𝑙𝑙𝑙𝑚𝑚

𝑛𝑛→∞
μ𝑛𝑛 = 0, 𝑙𝑙𝑙𝑙𝑚𝑚

𝑛𝑛→∞
ρ𝑛𝑛 = ∞, 𝑓𝑓𝑛𝑛(�̅�𝑥) =

𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜(�̅�𝑥) + μ𝑛𝑛 ∑ ℎ𝑖𝑖(�̅�𝑥)𝑖𝑖 + ρ𝑛𝑛 ∑ 𝑔𝑔𝑜𝑜(�̅�𝑥)𝑜𝑜 . 
x�n = 𝑚𝑚𝑙𝑙𝑙𝑙�̅�𝑥 𝑓𝑓𝑛𝑛(�̅�𝑥), 𝑙𝑙𝑙𝑙𝑚𝑚

𝑛𝑛→∞
x�n = x�∗, where �̅�𝑥 =

(𝑚𝑚𝑝𝑝𝑝𝑝𝑜𝑜𝑝𝑝, �̇�𝑚, 𝑝𝑝𝑒𝑒) is the design vector containing the 
total propellant mass, unadjusted propellent 
mass, mass flow rate, nozzle exit pressure, total 
tankage length, airframe diameter, airframe total 
length, GLOW, ballast mass, conical component 
of nosecone length, fin root chord, fin tip chord, 
fin sweep angle, fin span, and fin thickness. This 
information is necessary for the evaluation of the 
constraint functions, ℎ𝑜𝑜𝑏𝑏𝑝𝑝𝑝𝑝𝑖𝑖𝑒𝑒𝑝𝑝 = 108401𝑚𝑚 < ℎ <

151401𝑚𝑚, and 𝑔𝑔𝑝𝑝𝑒𝑒𝑛𝑛𝑏𝑏𝑝𝑝𝑝𝑝𝑝𝑝 = �𝐹𝐹 ≤ 6𝑘𝑘𝑘𝑘, 𝐿𝐿𝐿𝐿 ≥

22𝑚𝑚/𝑠𝑠, 𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚
𝑔𝑔0

≤ 15𝑔𝑔′𝑠𝑠,𝑇𝑇𝑇𝑇𝑇𝑇 ≥ 2, 𝐿𝐿/𝐷𝐷 ≤ 21, 𝑝𝑝𝑒𝑒
𝑝𝑝𝑚𝑚
≥

0.35�. ℎ𝑜𝑜𝑏𝑏𝑝𝑝𝑝𝑝𝑖𝑖𝑒𝑒𝑝𝑝 is the strict apogee constraint, and 
the looser penalty constraints are: Thrust (F)—the 
Electric Feed System (EFS) that deals with 
pressurizing before propellant injection is not 
feasible for powerful engines, Launch Speed 
(LS)—ensuring stable take-off, Thrust to Weight 
Ratio (TWR), Length to Diameter Ratio (L/D), 
maximum acceleration, and nozzle over-
expansion. 

The unaltered optimization code produces an 
.ork rocket file for further testing in OpenRocket, 
as seen in Figure 1. 

 
Figure 1. Example generated rocket. 
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It is then possible to run the simulation with 
settings emulating the launch site (WGS84 
ellipsoid for Geodetic calculations), pictured in 
Figure 2. 

 
Figure 2. Settings to emulate the launch site. 

These calculations produce a launch data 
graphic, pictured in Figure 3. 

 
Figure 3. OpenRocket launch data graphic. 

Review of uncertainty-based multidisciplinary 
design optimization methods for aerospace vehicles 
(Yao et al.) covers Uncertainty-Based 
Multidisciplinary Design Optimization (UMDO) 
theory and the cutting edge methods of that time. 
Throughout the lifecycle of the aerospace vehicle 
(design, manufacture, operation, 
disposal/repurposing), there exist many 
uncertainties related to the vehicle system itself, 
along with environmental and operational 
conditions. Before describing the UMDO 
procedure, several important definitions are 
given: uncertainty—incompleteness in knowledge 
and inherent variability of the system and 

operational environment; robustness—measure 
of insensitivity to variations in both the system 
and environment; reliability—likelihood of a 
component/system to perform intended function 
for a given period of time under the determined 
operating conditions; deterministic design 
optimization—process of obtaining optimal 
designs with all variables, models, parameters 
and simulations involved being deterministic; 
robust design optimization (RDO)—optimizing 
design such that it is insensitive to many 
variations; and reliability-based design 
optimization (RBDO)—obtaining optimal design 
while meeting reliability constraints. The 
combination of these last two, RDO and RBDO, is 
the basis for reliability-based robust design 
optimization (RBRDO): Find 𝒙𝒙 minimizing 

𝑓𝑓(𝒙𝒙,𝒑𝒑) = 𝐹𝐹 �μ𝑓𝑓(𝒙𝒙,𝒑𝒑),σ𝑓𝑓(𝒙𝒙,𝒑𝒑)� subject to (s.t.) 

𝑃𝑃[𝒈𝒈(𝒙𝒙,𝒑𝒑) ≤ 0] ≥ 𝑹𝑹, 𝒙𝒙𝐿𝐿 ≤ 𝒙𝒙 ≤ 𝒙𝒙𝑈𝑈, where 𝒙𝒙 
represents the design variable vector, 𝒑𝒑 
represents the system constant parameter vector, 
𝒙𝒙𝐿𝐿 and 𝒙𝒙𝑈𝑈 define the boundaries of the design 
space, μ𝑓𝑓 and σ𝑓𝑓 are the mean and standard 
deviation of the original optimization objective 
function, F is the reformulated optimization 
function with respect to μ𝑓𝑓 and σ𝑓𝑓, g is the 
unequal constraint vector, P is the probability of 
the statement in brackets to be true, and R is the 
reliability vector related to this. Yao et al. provide 
illustrations related to RDO and RBDO, seen in 
Figures 4 and 5. 

 
Figure 4. Graphical illustration of RDO. 
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Figure 5. Graphical illustration of RBDO. 

The actual UMDO procedure organizes the 
elements involved in uncertainty-based design 
optimization: system optimization, system 
analysis, disciplinary analysis, and uncertainty 
analysis. The key to realizing UMDO for a large, 
complex system is efficiently arranging these 
elements into an execution sequence so that it 
may be implemented on a computer; the 
coupling relationship related to disciplinary 
analysis and computationally intensive system 
analysis make for a very time-consuming 
procedure. The computational burden of UMDO 
can be understood by the following modification 
to the RBRDO formulation: Find 𝒙𝒙 minimizing 

𝑓𝑓(𝒙𝒙,𝒑𝒑,𝒚𝒚) = 𝐹𝐹 �μ𝑓𝑓(𝒙𝒙,𝒑𝒑,𝒚𝒚),σ𝑓𝑓(𝒙𝒙,𝒑𝒑,𝒚𝒚)� s.t. 

𝑃𝑃[𝑔𝑔𝑖𝑖(𝒙𝒙,𝒑𝒑,𝒚𝒚) ≤ 0] ≥ 𝑹𝑹𝒊𝒊, 𝑙𝑙 = 1,2, … ,𝑙𝑙𝑔𝑔, 𝒙𝒙𝐿𝐿 ≤ 𝒙𝒙 ≤ 𝒙𝒙𝑈𝑈. 
𝒚𝒚 represents the intermediate state variables of 
the multidisciplinary analysis. We denote the 
output vector of disciplinary analysis i as 𝒚𝒚𝑖𝑖, the 
coupling state vector output from disciplinary 
analysis i and input into disciplinary analysis j as 
𝒚𝒚𝑖𝑖𝑜𝑜, the complete set of output vectors from 
discipline 𝑙𝑙 coupled with other disciplines 𝒚𝒚𝑖𝑖., and 
the complete set of coupling state vectors input 
into disciplinary analysis i as 𝒚𝒚.𝑖𝑖. With these 
conventions, we have 𝒚𝒚 = [𝒚𝒚𝑖𝑖 , 𝑙𝑙 = 1,2, … ,𝑙𝑙𝐷𝐷], 𝒚𝒚.𝑖𝑖 =
�𝒚𝒚𝑜𝑜𝑖𝑖 , 𝑗𝑗 = 1,2, … ,𝑙𝑙𝐷𝐷, 𝑗𝑗 ≠ 𝑙𝑙�, 𝒚𝒚𝑖𝑖. = 𝒚𝒚𝑖𝑖.(𝒙𝒙𝑖𝑖 ,𝒑𝒑,𝒚𝒚.𝑖𝑖) and 
𝑦𝑦𝑖𝑖. = �𝑦𝑦𝑖𝑖𝑜𝑜 , 𝑗𝑗 = 1,2, … ,𝑙𝑙𝐷𝐷, 𝑗𝑗 ≠ 𝑙𝑙�. 𝒙𝒙𝑖𝑖 is the local 
design variable vector of discipline i, and 𝒑𝒑 is the 
system parameter vector. The paper provides a 
figure with information related to the coupling 
relationship for a three-discipline system, 
pictured in Figure 6. 

 
Figure 6. The coupling relationship of a three-discipline 

UMDO problem. 

Yao et al. also provide an illustration of the 
conventional double-loop UMDO procedure, 
pictured in Figure 7. 

 
Figure 7. The conventional double-loop UMDO procedure. 

I set out to review the existing open-source 
optimization code to analyze the dependencies 
and components of these procedures such that I 
would be able to isolate areas for potential 
improvements. In making modifications, I set out 
to compare simulated trajectory results and the 
optimized design vectors. The following is a list of 
planned improvements: 

1. The majority of the Aerodynamics model 
is based on OpenRocket’s source code, 
which is an oversimplification of reality. 
The first instance of a possible 
improvement to the Jupyter Notebook 
detailing the aerodynamics model is 
related to the fin-body interference 
coefficient. This can be improved using 
MIL-HDBK-762 (Handbook). 

2. The optimization program generates 
designs based on a template OpenRocket 
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file. It will be necessary to update this to 
the latest airframe design, as the design 
fed into the optimizer is still based on the 
airframe of a previous iteration. 

3. Implement fin “staging”; this will be done 
by dropping a large fin can. Essentially, 
larger fins enable a reduction in the 
required launch velocity, and, therefore, 
the engine size may be reduced. 
Dropping the can mid-flight will reduce 
the drag due to large fins. I will develop a 
method of simulating this effect. 

4. Add to MDO capability via reading-in a 
database of aerodynamic coefficients 
created by CFD. 

5. Improve the “UI” such that those 
unfamiliar with the code may set 
parameters and understand the process. 
Work on documentation and comments 
in relation to better user interaction. 

6. Add structural analysis output such as 
weight, stresses, acceleration, 
acceleration in propellants, axial load 
down the rocket, and heatmap to show 
where the axial load is the highest. 

7. If efforts to reduce engine weight have 
failed and we need a large engine (on the 
order of 10 kN), the use two 5 kN engines 
or four 2.5 kN engines would be optimal. 
This would reduce chamber pressure; 
additionally, lower-thrust engines are 
more feasible to build. 

8. Compare efficiency/quality (merit 
function evaluation) of optimization 
approaches such as global optimization 
using RBFOpt, iterative Nelder-Mead, and 
Simplicial Homology Global Optimization 
(SHGO). 

3. Results 

3.1. Aerodynamics 

The majority of the Aerodynamics model is based 
on source code from OpenRocket, which does not 

account for the additional complexity of reality. 
The first improvement I made in relation to this 
was to adjust the fin-body interference coefficient 
using MIL-HDBK-762. Using the slender-body 
theory approach (where the slenderness of the 
modelled body is used to create an approximation 
to the field surrounding it), the ratio of the fin 
normal force gradient—the resulting corrective 
force perpendicular to the z-axis of the rocket—in 
the presence of a cylindrical body compared to 
that of an isolated fin is given by 𝐾𝐾𝐹𝐹(𝑜𝑜) =

2
π

�1−𝑑𝑑𝑏𝑏�
2 ��1 + 𝑑𝑑4

𝑜𝑜4
� �1

2
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙 �1

2
�𝑜𝑜
𝑝𝑝
− 𝑑𝑑

𝑜𝑜
�� + π

4
� −

𝑑𝑑2

𝑜𝑜2
��𝑜𝑜
𝑑𝑑
− 𝑑𝑑

𝑜𝑜
� + 2𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙 �𝑑𝑑

𝑜𝑜
��� , where 𝑎𝑎 is half the 

fin span (𝑏𝑏) and 𝑑𝑑 is the body diameter, as 
pictured in Figure 8. 

 
Figure 8. Fin span and body diameter of LV4. 

The trajectory simulation component of the 
open-source code outputs the angle of attack— 
the difference between the rocket’s z-axis and 
relative velocity vector—of the vehicle as a 
function of time, seen in Figure 9. 

 
Figure 9. Angle of attack as a function of time. 

The optimized design vector before and after 
this modification is represented in Figure 10.
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Figure 10. Optimized design vector before and after fin-body 

interference modification. 

The increased total propellant mass and gross 
lift-off weight indicate that increased resistance 
to the fin normal force is required. The higher 
nozzle exit pressure is related to the optimization 
program minimizing nozzle over-expansion 
(Monte).  

An over/under-expanded nozzle is one in 
which the exit pressure is greater or lower than 
the atmospheric pressure. The combustion 
chamber generates high pressure, high 
temperature gas, and the ideal nozzle (shape and 
length optimized) converts this thermal energy 
into thrust as in Figure 11. An over-expanded 
nozzle is one in which the atmospheric pressure 
is greater than the exit pressure, which causes a 
pinching effect and decreases the efficiency of 
the nozzle as sections of the nozzle inner wall are 
not used to produce thrust. Figure 12 
demonstrates an over-expanded nozzle. Under-
expansion is the opposite: the atmospheric 
pressure is less than the nozzle exit pressure, 
which causes the flow to fan out after exiting the 
nozzle and results in inefficiency, as the 

expansion is not fully converted into thrust by the 
nozzle inner wall. Figure 13 demonstrates an 
under-expanded nozzle. 

 
Figure 11. Nozzle and combustion chamber of LV4. 

 
Figure 12. Over-expanded nozzle of LV4. 

 
Figure 13. Under-expanded nozzle of LV4. 
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Ideally, we would like nozzle exit pressure to 
equal atmospheric pressure, and minimizing 
over-expansion is our best option. The higher exit 
pressure after increasing the accuracy of the fin-
body interference coefficient indicates that the 
atmospheric pressure is higher, likely due to an 
increased fin normal force gradient. 

In relation to enabling the MDO to read CFD 
data, I obtained a demo aerodynamics database—
shown in Figure 14—with the goal of building an 
interpolation space in the variables. 

 
Figure 14. Aerodynamic coefficients database. 

I created a new notebook to complete this 
task and used the SciPy interpolate module 
(Scipy.Interpolate.Interp1d — SciPy v1.8.1 Manual) 
along with the built-in Python CSV module. 
Figure 15 displays the first from-scratch code 
contribution I made. 

 
Figure 15. Code for processing database of Aerodynamic 

coefficients. 

I initialize a list “matrix” to store the data 
along with a dictionary “Dict” to index into a 
variable’s list of values. Using the csv module, we 
read in the data and construct a 2-dimensional 
matrix. We then use a nested structure to 

construct each variable’s list of values, with 
which we populate the dictionary. We are now 
ready to perform interpolation, as shown in 
Figure 16. 

 
Figure 16. Cubic interpolation in the qbar variable. 

We use the “interp1d” function to 
approximate a continuous function given our 
discrete data points. Figure 17 displays another 
example, this time with linear interpolation. 

 
Figure 17. Linear interpolation in the Cx variable. 

3.2. Optimization Method 
Efficiency/Quality Analysis 

The three options for optimization that I 
considered were global optimization using 
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RBFOpt (black-box optimization), 
scipy.optimize’s Nelder-Mead minimization, and 
Simplicial Homology Global Optimization 
(SHGO). It is important to note that our merit 
function is a combination of an objective function 
and a penalty function. This means that the 
constraints are captured by the penalty 
component and are not passed into the 
optimization methods directly. Therefore, we 
have in each case an unconstrained global 
optimization which approximates a constrained 
optimization. 

The Nelder-Mead algorithm is designed to 
minimize a non-linear function 𝑓𝑓:𝑹𝑹𝑛𝑛 → 𝑹𝑹 using 
function values at a few points in 𝑹𝑹𝑛𝑛. It can be 
viewed as a simplex-based search algorithm. A 
simplex in 𝑹𝑹𝑛𝑛 is defined as the convex hull of 𝑙𝑙 +
1 vertices. For example, a simplex in 𝑹𝑹2 is a 
triangle, while 𝑹𝑹3 would be a tetrahedron, shown 
in Figure 18. 

 
Figure 18. Simplexes in two- and three-dimensional space. 

The method begins with a set of points 
𝑥𝑥0, … , 𝑥𝑥𝑛𝑛 ∈ 𝑹𝑹𝑛𝑛, which are the vertices of our 
simplex, and their merit function evaluations. 
The algorithm will then perform a series of 
transformations on the working simplex with the 
goal of decreasing the merit function evaluation 
at the vertices. This process is terminated when 
the absolute errors in the optimal design vector 
and its function evaluation are sufficiently small 
(Minimize(Method=’Nelder-Mead’) — SciPy v1.8.0 
Manual). A simplification of the algorithm is the 
following: 

1. Construct initial working simplex 𝐿𝐿. 

2. Repeat until termination test is satisfied. 
a. Calculate termination test 

information (absolute error). 
b. If termination test is satisfied, 

transform the working simplex. 
3. Return the best vertex of the current 

simplex 𝐿𝐿 and the merit function 
evaluation. 

We can construct the initial simplex by 
generating 𝑙𝑙 + 1 vertices (𝑥𝑥0, … , 𝑥𝑥𝑛𝑛) around some 
input point in 𝑹𝑹𝑛𝑛. For practical purposes, we use 
𝑥𝑥0 so that the algorithm may be restarted. The 
remaining n vertices are then generated to obtain 
a regular simplex, with all edges having the same 
length. 

A key component is the simplex 
transformation algorithm, which consists of three 
stages: 

1. Ordering to determine the worst (h), 
second-worst (s), and best (l) vertices in 
the current working simplex: 𝑓𝑓ℎ =
𝑚𝑚𝑎𝑎𝑥𝑥𝑜𝑜𝑓𝑓𝑜𝑜, 𝑓𝑓𝑠𝑠 = 𝑚𝑚𝑎𝑎𝑥𝑥𝑜𝑜≠ℎ𝑓𝑓𝑜𝑜, 𝑓𝑓𝑝𝑝 = 𝑚𝑚𝑙𝑙𝑙𝑙𝑜𝑜≠ℎ𝑓𝑓𝑜𝑜.  

2. Calculation of the centroid of the best 
side, which is opposite the h-vertex (𝑎𝑎 ≔
1
𝑛𝑛
∑ 𝑥𝑥𝑜𝑜𝑜𝑜≠ℎ ). 

3. Computation of the new working simplex 
via transforming the current. 

We attempt to replace the worst vertex using 
reflection, contraction or expansion with respect 
to the best side. The test points lie on the line 
from the worst point (𝑥𝑥ℎ) to the centroid of the 
best side, as previously calculated. At most, two 
such points are calculated in each iteration. If 
successful, this accepted point becomes the new 
vertex of our working simplex. Otherwise, we 
shrink the simplex towards the best vertex (𝑥𝑥𝑝𝑝), 
and it is necessary to compute 𝑙𝑙 new vertices. 

On testing the Nelder-Mead approach, I 
reduced the termination conditions to an 
absolute difference between optimal design 
vectors of 1 and an absolute difference between 
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merit function evaluations of 0.1. The results 
indicate that this will produce a locally feasible 
design; however, this is not ideal for the global 
optimization that we desire. Combining this with 
SHGO should improve results. The output of this 
is shown in Figure 19. 

 
Figure 19. Iterative Nelder-Mead optimization output. 

We can see here that the peak altitude is less 
than desired. Overall, this approach is time-
intensive, given a more stringent termination 
condition, and will at best produce locally 
feasible designs. The limited design space 
exploration of the Nelder-Mead algorithm can be 
understood via Figure 20. 

 
Figure 20. Iterative Nelder-Mead design space exploration. 

The RBFOpt (Coin-or/Rbfopt) global 
optimization method provides excellent coverage 
of the design space and runs to completion in 
under two hours. To perform this optimization, 
we construct a black box using the 
RbfoptUserBlackBox class and execute 
RbfoptAlgorithm on it. The values comprising the 
two arrays in the definition of the black box were 
set based on a feasible range for the design 
variables. Figure 21 displays a snippet of our 
code. 

 
Figure 21. RBFOpt Global Optimization code snippet. 

This design variable range works in 
conjunction with Bonmin (Bonmin) (Basic Open-
source Nonlinear Mixed Integer programming) to 
find a design vector that minimizes the merit 
function. With this approach, the majority of our 
constraints are satisfied, as seen in Figure 22. 

 
Figure 22. RBFOpt Global Optimization Constraint 

Satisfaction. 

Simplicial Homology Global Optimization 
(SHGO), in conjunction with Nelder-Mead 
minimization, provides good results with a 
completion time of about 2 hours. The theoretical 
advantages of SHGO are guaranteed when the 
objective function is Lipschitz smooth (objective 
function is continuous, convex, and smooth); 
however, if this is not the case, the algorithm will 
converge to the global optimum if the default 
“simplicial” sampling method is used 
(Scipy.Optimize.Shgo — SciPy v1.8.0 Manual). 
SHGO is a general-purpose global optimization 
algorithm that approximates the homology 
groups of a complex built on a hypersurface that 
is homeomorphic (similar in form) to a complex 
on the objective function. This facilitates 
approximations of locally convex subdomains in 
the search space (multidimensional space 
consisting of design vector parameters and their 
constraints) and provides an excellent visual tool 
for characterising and solving higher-
dimensional black box optimization problems. 
The complex is created using sampling points 
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within the feasible search space as vertices. The 
algorithm is best suited to finding all local 
minima of an objective function with a 
computationally expensive evaluation (such as 
ours, which involves simulating the trajectory of 
the design). 

Using the sampled points of an objective 
function as vertices, this method constructs a 
simplicial complex. The resulting directed 
subgraph contains the set of all 1-chains from the 
elements of ℋ1 ∈ ℋ and enables the finding of 
minimizer pools (Endres et al.) Sperner’s lemma 
enables us to approximate the domains of 
stationary points for our objective function in the 
feasible search space, denoted by Ω. The 
homology groups produced from the 
construction of ℋ will be invariant given an 
adequate sampling set. It follows that for the 
given sampling set of vertices ℋ0 ∈ ℋ, we are 
guaranteed to extract the optimal minimiser pool. 
The algorithm has four steps: 

1. Sampling point generation of N vertices 
in the search space from which 0-chains 
of ℋ0 are constructed. 

2. Triangulation of the vertices to construct 
the directed simplicial complex ℋ. 

3. Construction of the minimiser pool using 
Sperner’s lemma. 

4. Local minimization using the starting 
points defined in the minimiser pool 
(Nelder-Mead method). 

Given a set of sampling points 𝒫𝒫, we wish to 
describe a discrete mapping ℎ: 𝒫𝒫 ⟶ℋ that will 
provide a simplicial approximation for the 
surface of the merit function. To begin, we need 
to formally define the set of vertices forming the 
0-chains of the simplicial complex and the edges 
forming the 1-chains of ℋ. The following are 
useful definitions: 

1. 𝜒𝜒 is the set of sampling points created by 
a sampling sequence in a bounded 

hyperrectangle (rectangle generalized to 
higher dimensions).  

2. The set 𝒫𝒫 = [𝒙𝒙𝜖𝜖𝜒𝜒|𝒈𝒈(𝒙𝒙) ≥ 0] describes a 
set of points within the feasible set Ω. 

3. Given an objective function 𝑓𝑓,ℱ 
represents the set of scalar outputs 
mapped by the objective function 𝑓𝑓: 𝒫𝒫 ⟶
ℱ in relation to a sampling set 𝒫𝒫 ⊆ Ω ⊆
ℝ𝑛𝑛. 

4. If ℋ is a directed simplicial complex, 
then ℋ0  ≔ 𝒫𝒫 is the set of all vertices of 
ℋ. 

5. Given a set of vertices ℋ0, we construct 
the simplicial complex ℋ by a 
triangulation connecting every vertex in 
ℋ0. This supplies a set of undirected 
edges 𝐸𝐸. 

6. ℋ1 is a set constructed by directing every 
edge in 𝐸𝐸. This is done by selecting a 
vertex 𝑣𝑣𝑖𝑖 ∈ ℋ0 and connecting to another 
vertex 𝑣𝑣𝑜𝑜 by an edge within 𝐸𝐸. This edge is 
directed as 𝑣𝑣𝑖𝑖𝑣𝑣𝑜𝑜 from 𝑣𝑣𝑖𝑖 to 𝑣𝑣𝑜𝑜 if and only if 
the merit function evaluation at the 
former is lesser than the latter. It is 
directed as 𝑣𝑣𝑜𝑜𝑣𝑣𝑖𝑖 from 𝑣𝑣𝑜𝑜 to 𝑣𝑣𝑖𝑖 if and only if 
the merit function evaluation at the 
former is greater than the latter. In these 
cases, we have 𝜕𝜕�𝑣𝑣𝑖𝑖𝑣𝑣𝑜𝑜� = 𝑣𝑣𝑜𝑜 − 𝑣𝑣𝑖𝑖 and 
𝜕𝜕�𝑣𝑣𝑜𝑜𝑣𝑣𝑖𝑖� = 𝑣𝑣𝑖𝑖 − 𝑣𝑣𝑜𝑜. The case in which 
𝑓𝑓(𝑣𝑣𝑖𝑖) = 𝑓𝑓�𝑣𝑣𝑜𝑜�, with neither 𝑣𝑣𝑖𝑖 nor 𝑣𝑣𝑜𝑜 
already being a minimizer, we use the 
rule that “the incidence direction of the 
connecting edge is always directed 
towards the vertex that was generated 
earliest by the sampling point sequence.” 
If 𝑣𝑣𝑖𝑖 is not connected to another vertex 
𝑣𝑣𝑘𝑘, then our convention will be to leave 
𝑣𝑣𝑖𝑖𝑣𝑣𝑘𝑘 undefined, with 𝜕𝜕(𝑣𝑣𝑖𝑖𝑣𝑣𝑘𝑘) = 0. The 
higher dimensional simplices ℋ𝑘𝑘,𝑘𝑘 =
2, 3, …𝑙𝑙 + 1 may be directed in an 
arbitrary direction to complete the 
construction of the complex ℎ ∶  𝒫𝒫 ⟶ℋ. 
This will be used to find the minimiser 
pool for the local minimization starting 
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points required by the algorithm. 
7. 𝑣𝑣𝑖𝑖 is a minimiser if and only if all edges 

connected to 𝑣𝑣𝑖𝑖 are directed away from 
𝑣𝑣𝑖𝑖; formally, that is ∂�𝑣𝑣𝑖𝑖𝑣𝑣𝑜𝑜� = �𝑣𝑣𝑜𝑜≠𝑖𝑖 − 𝑣𝑣𝑖𝑖� ∨
0 ∀vj≠i ∈ ℋ0. The set of all minimisers is 
the minimiser pool ℳ. 

8. The star of a vertex 𝑣𝑣𝑖𝑖 [𝑠𝑠𝑎𝑎(𝑣𝑣𝑖𝑖)] is the set of 
all points 𝒬𝒬 s.t. every simplex containing 
𝒬𝒬 contains 𝑣𝑣𝑖𝑖. 

9. The 𝑘𝑘-chain 𝐶𝐶(ℋ𝑘𝑘), 𝑘𝑘 = 𝑙𝑙 + 1 of 
simplices in st (𝑣𝑣𝑖𝑖) results in a boundary 

cycle ∂�𝐶𝐶(ℋ𝑛𝑛+1)� with ∂ �∂�𝐶𝐶(ℋ𝑛𝑛+1)��  =

 ∅. The bounds of the domain defined by 
s.t. (𝑣𝑣𝑖𝑖) form the faces of ∂(ℋ𝑛𝑛+1). 

To place these constructions in a practical 
context, we minimize the Ursem01 function in 
two dimensions, which is defined as: 

min 𝑓𝑓(𝒙𝒙) = −𝑠𝑠𝑙𝑙𝑙𝑙(2𝑥𝑥1 − 0.5π) − 3𝑎𝑎𝑐𝑐𝑠𝑠(𝑥𝑥2) −
0.5𝑥𝑥1, 𝑥𝑥 ∈  Ω = [0,9] × [−2.5, 2.5] 

A plot of this function with its three local 
minima is shown in Figure 23. 

 
Figure 23. The Ursem01 Function. 

The set 𝒫𝒫 contains 𝑘𝑘 = 15 sampling points 
from the 2-dimensional Sobol sequence. Figure 
24 contains a mapping of the objective function 
values. 

 
Figure 24. Objective function values using sampling points 

from Sobol sequence. 

From Definition 4 above, we have ℋ0 from 𝒫𝒫. 
Definition 5 enables us to construct ℋ using 
Delaunay triangulation to find a set of connected 
edges. The edges are then directed according to 
Definition 6. Definition 7 enables us to find the 
minimiser set, which in this case is ℳ =
{𝑣𝑣1,𝑣𝑣7, 𝑣𝑣13}. Figure 25 is the resulting structure, 
which highlights the domain of s.t. (𝑣𝑣1). 

 
Figure 25. A directed complex ℋ—asimplicial approximation 

for an objective function. 

Increasing the sampling size to 𝑘𝑘 = 150 and 
repeating the procedure produces the complex in 
Figure 26. 
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Figure 26. A directed complex ℋ—asimplicial approximation 

for an objective function with 150 vertices. 

This has different minimiser vertices that are 
better approximations to the local minima, but 
|ℳ| is unchanged. This points to the SHGO 
property: if the number of initial sampling points 
is adequate, |ℳ| ceases to grow with increasing 
𝑘𝑘, which provides a heuristic for the number of 
sampling points needed to approximately map 
the local minima of a merit function. 

3.3. User Interface and Documentation 
Improvements 

In relation to making the workings of the code 
more understandable, I added the following prior 
to the code block containing the three main 
techniques: The optimization approaches are 
RBFOpt Global Optimization, Iterative Nelder-
Mead, and Simplicial Homology Global 
Optimization using Nelder-Mead at the local 
minima. RBFOpt produces results in about 2 
hours, depending on your machine. The two 
array arguments passed to the 
RbfoptUserBlackBox class define the bounds of 
the black box and correspond to minimum and 
maximum feasible values for the design vector. 
Iterative Nelder-Mead does take a while; 
however, in the iterate function in the above code 
block, you may change the “xatol” and “fatol” 
parameters to relax the termination condition. 
These correspond to the absolute error in the 

design vector and its merit function evaluation 
between iterations such that the optimization will 
terminate. Simplicial Homology is my preferred 
method as it finds approximations to local 
minima and then uses iterative Nelder-Mead at 
each of these to find the global minimum. This 
method is theoretically guaranteed to find the 
global minimum when using the 'simplicial' 
sampling method. However, for a merit function 
as complex as ours (involving trajectory 
simulation), it is inefficient. The “sobol” sampling 
method will approximate the global minimum 
with an execution time of about 2 hours. I have 
also added comments to the code related to 
setting (black box/design vector) boundaries. 

3.4. Initial Design Modifications 

In coordination with Hayden Reinhold from the 
PSAS airframe team, I have updated the initial 
template.ork OpenRocket file to approximate the 
current design. This involved modifying 
component weights and lengths, along with using 
an approximate thickness to model our isogrid 
plate bulkheads as having uniform density, 
demonstrated in Figure 27. 

 
Figure 27. Isogrid plate bulkhead. 

The updated initial design fed into the 
optimizer produced the diagram found in Figure 
28. 

 
Figure 28. Updated initial design. 
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The main changes were made to the 
weight/length of Nosecone, Electrical Recovery 
System (ERS), N2 tank/Reaction Control System 
(RCS), Avionics/Camera module, Liquid Oxygen 
(LOX) tank, and fin can. A SHGO simulation with 
this updated model resulted in global coverage of 
the design space, as in Figure 29. 

 
Figure 29. SHGO coverage of design space with updated 

design. 

We met the majority of our constraints; 
however, manifesting a 10.6 kN engine poses a 
problem, displayed in Figure 30. 

 
Figure 30. SHGO constraint satisfaction with updated design. 

Our apogee estimate is slightly conservative, 
so 95.6 km is excellent. Trajectory information 
indicates a successful launch is possible with the 
design in Figure 31. 

 

 

Figure 31. LV4 Trajectory Information with SHGO Approach. 

3.5. Structural Analysis Output 

Related to the goal of improving the MDO via 
providing structural analysis output, I added a 
new notebook that ported relevant code from the 
structural model notebook. This code contains a 
structural analysis function that calculates the 
axial and lateral loads along with bending 
moments at launch (tip-off), maximum 
aerodynamic pressure (max Q), and before and 
after engine burnout. The axial forces consist of 
friction along the body, parasitic drags related to 
each passthru module, and drag coefficient 
contributions. Lateral load is calculated via 
summing normal forces, and the bending 
moment is calculated considering the shear at the 
top of each component along with the lateral load 
at the middle. Using the structural plot function 
in the Display_Information notebook, the main 
MDO notebook now outputs the graphs seen in 
Figure 32. 
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Figure 32. Structural analysis information added to 

MDOoutput. 

3.6. Other Modifications 

In order to make weight reductions easier, Peter 
McCloud (a scientist affiliated with NASA 
Aerothermodynamics) suggested that a pie chart 
with the mass breakdown be added to the MDO 
output. Figure 33 displays a code snippet and 
Figure 34 the result. 

 
Figure 33. Mass breakdown code added. 

 

Figure 34. Mass breakdown pie chart. 

The only non-trivial component of this is 
calculating the airframe mass. The volume of the 
tube was first calculated given the existing 
airframe length, diameter, and thickness 
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variables. Given the 2700 𝑘𝑘𝑔𝑔/𝑚𝑚3 density of 6061-
T6 aluminum, the mass is calculated. The pie 
chart was constructed with reference to the 
matplotlib documentation (Basic Pie Chart — 
Matplotlib 3.5.2 Documentation). 

Another issue is related to the engine thrust 
constraint. It is not feasible for the engine to have 
a thrust much greater than 6 kN. Since the thrust 
constraint is lenient, I experimented with setting 
the CONS_THRUST parameter to 5.5 kN. Figure 
35 contains the results using Simplicial Homology 
with the simplicial sampling method (guaranteed 
optimality) and COBYLA local minimization. 

 
Figure 35. Constraint satisfaction with 5.5 kN engine thrust 

constraint. 

The result is a roughly 9 kN engine with 90 
km apogee. Reducing the constraint to 5.4 kN, I 
found that the optimal apogee was a scant 14 km. 
The sweet spot for the constraint is 5.49698 kN, 
which produces an apogee of 83 km with an 
engine thrust of 9 kN, shown in Figure 36. 

 
Figure 36. Constraint satisfaction with optimized engine 

thrust constraint. 

Building a launch rail greater than 10 meters 
is difficult; therefore, I ran the simulation with 
the LAUNCH_TOWER parameter set to 9.8 m, 
shown in Figure 37. 

 

Figure 37. Launch Parameters with reduced launch rail 
length. 

The optimal CONS_THRUST parameter in 
this case is somewhere between 5599.6 and 
5599.7. Figure 38 displays the results for those 
two options. 

 

 

Figure 38. Constraint satisfaction to find sweet spot of 
CONS_THRUST parameter. 

The apogee is dismal for the first and the 
engine thrust is too high for the second. With a 
9.8 m launch rail, along with the CONS_THRUST 
parameter set to 5599.67, we have an apogee of 
roughly 83 km and engine power of 9.8 kN. The 
result is still too powerful of an engine, so we 
need to experiment with the initial fin 
parameters to reduce the required thrust. We will 
investigate the velocity off the launch rail related 
to the engine thrust. The “event_manager” 
function shown in Figure 39 contains the desired 
parameter and Figure 40 shows the related 
launch velocity analysis code. 

Figure 39. Velocity off launch rail (rkt.launch_speed 
parameter). 
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Figure 40. Launch velocity analysis code. 

With the standard fins and unoptimized 
initial design vector, we have a launch velocity of 
23.47 m/s and engine thrust of 14 kN. We would 
like to reduce the engine thrust to around 10 kN, 
which means the optimized design should be < 7 
kN. The plan was to drop a rectangular fin can, 
meaning that only the fin root and tip chord 
lengths would be changed. Increasing the fin root 
and tip chords by 8 m, the velocity off the launch 
rail decreases to 19.3 m/s; however, the engine 
thrust remains unchanged at 14 kN. 

3.7. Fin Staging/Optimization 

Fin geometry is defined by the root, tip, sweep 
angle, semispan, and thickness, as in Figure 41.  

 
Figure 41. Typical Fin Nomenclature (Barrowman Package — 

Barrowman 0.0.1 Documentation). 

To simulate dropping a fin can mid-flight, we 
create a second rocket object with new fin 
parameters. The idea here is to reduce the 
required engine thrust by starting out with larger 
fins, and then the smaller fins will reduce drag in 
the upper atmosphere. The function pictured in 
Figure 42 performs fin resizing. 

 
Figure 42. Fin resizing function. 

In the trajectory simulation notebook, I have 
modified the event_manager, time_step, 
integration, and trajectory functions to 
accommodate fin staging, in particular the code 
seen in Figure 43.  

 
Figure 43. Fin staging condition in event manager function. 

The stage_drop_ECEF—Earth-centred, Earth-
fixed coordinate system (‘Earth-Centred, Earth-
Fixed Coordinate System’)—parameter 
determines the altitude at which we drop the fin 
can module. To convert from altitude to ECEF, 
the function pictured in Figure 44 is used. 

 
Figure 44. Altitude to ECEF for entry in trajectory function. 

The trajectory function now includes 
parameters related to fin staging, seen in Figure 
45. 

 
Figure 45. Trajectory function arguments. 

Figure 46 displays the documentation added 
to the main MDO notebook. 

 
Figure 46. Fin staging simulation instructions. 
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To test the code, we drop the ECEF at 50 km 
and leave the fin parameters unchanged, with 
zero mass reduction, as seen in Figure 47. 

 
Figure 47. Fin staging test arguments. 

The simulation produces the same output as 
was produced prior to adding this functionality, 
indicating that the code is sound. 

To find the ideal altitude for dropping the 
larger fin can, we must find the point at which 
the smaller fins are passively stable. McCloud 
suggested that this be done when the ratio of the 
center of pressure to the center of mass is around 
2. The stability_margin in the MDO calculates this 
information, shown in Figure 48. 

 
Figure 48. Center of mass vs. center of pressure metric. 

Figure 49 contains the code to find the ideal 
drop time. 

 
Figure 49. Time after launch to drop the fin can. 

Now, the MDO has a component that 
simulates performance with the smaller fins (post 
dropping) to find the altitude at which they are 
passively stable, as seen in Figure 50. 

 
Figure 50. Finding the ideal drop altitude. 

The code shown in Figure 51 prints the 
altitude at which the fins are dropped, as well as 
the Mach number at that point. 

 

 
Figure 51. Displaying fin drop altitude and the Mach number 

at that point. 

In Figure 52, a plot of the stability margin 
versus time has been added in order to double-
check the fin drop logic and find ideal fin sizing. 
This process, shown in Figure 53, involved 
modifications to the Trajectory_Simulation, 
Display_Information, and MDO notebooks, as the 
rocket_plot function required an additional 
parameter “stability” for the stability margin list. 

 
Figure 52. Calibers vs Time plot in MDO Notebook. 

 

 
Figure 53. Modifications to Display_Information enabling 

stability (calibers) vs. time plot. 

The initial fluctuation (especially that of the 
negative section of the graph) does not seem to be 
physical; rather, when the wind is turned on in 
the trajectory simulation, and before the rocket 
has left the launch rail, there is an interval during 
which the wind velocity dominates the rocket’s 
velocity, meaning that the angle of attack is ~ 45 
degrees or more. This interferes with the update 
[1][5][6] (indexing into multidimensional array) 
parameter in Fig. 48, which is the center of 
pressure and the seventh element of the array 
returned by the aero function in the 
Aerodynamics_Model notebook, as in Figure 54. 

 
Figure 54. Array returned by the aero function in the 

Aerodynamics Model. 
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This explanation has been verified by turning 
off the wind and viewing the stability plot, seen in 
Figure 55. 

 
Figure 55. Stability plot with wind turned off (now strictly 

positive). 

A plot of the first five seconds of the stability 
metric was added, given the fluctuating 
behaviour, with a line indicating the time at 
which the rocket has left the launch rail, as in 
Figure 56. 

 
Figure 56A. Stability metric code. 

 
Figure 56B. Stability metric: first five seconds post-launch. 

Given that the stability is quite high without 
fin staging, I reduced the fin root and tip chords 

by 0.2 m. The result, shown in Figure 57, is a 
minimum just above 2. 

 
Figure 57. Calibers vs. time with reduced fin length. 

On adding the fin root and tip chords to the 
design vector along with boundaries for these 
values incentivizing a larger root than tip chord, 
SHGO produces the design parameters pictured 
in Figure 58. 

 
Figure 58. Optimized fin root and tip chords. 

The stability was still quite high for this 
iteration, so McCloud recommended that the 
semispan be added to the design vector, shown in 
Figure 59. 

 
Figure 59. Modified design vector variables. 

Figure 60 displays the boundaries given to 
SHGO. 

 
Figure 60. Boundaries on design vector values given to SHGO. 

Figure 61A–C contains the results. 
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Figure 61A. Trajectory and stability metric: optimized fins. 

 
Figure 61B. Design vector: optimized fins. 

 
Figure 61C. Constraint satisfaction information indicating 

acceptable apogee with 9 kN engine: optimized fins. 

Here, we achieve feasible fins and a 95 km 
apogee with a 9 kN engine. The root and tip 
chords are relatively small, making for a 
reasonable altitude (less drag), and the larger 
span corresponds to greater stability, which 
contributes to a reduced engine thrust. 

The minimum stability is still quite high, so 
we scale down the optimized fin parameters to 
80%, reducing the fin area. The result is an 
apogee of 107 km with a 9.8 kN engine, seen in 
Figure 62. 
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Figure 62A. Trajectory and stability metric: optimized 

fins scaled down to 80%. 

 

 
Figure 62B. Design vector and constraint satisfaction 

information indicating ideal apogee with 9.8 kN engine: 
optimized fins scaled down to 80%. 

This is the ideal design. The 9.8 kN thrust 
may be realized by using two 5 kN engines. What 
remains unexplained is the 120 km vehicle drift 
(calculated by considering the coordinates at 
launch and apogee, as in Figure 63). 

 
Figure 63. Coordinates at launch and apogee. 

Setting the wind parameter to False in the 
trajectory function increases drift to 121 km, 
which means there is either an error in the MDO 
or the wind does not contribute to the drift. 
Therefore, I have added a plot of the angle of 
attack from when the rocket leaves the launch 
rail to just before engine burnout, pictured in 
Figure 64. 

 
Figure 64. Angle of attack from leaving the launch rail to just 

before engine burnout. 

Pictured is a non-zero angle of attack; 
however, it is not significant enough to constitute 
a 120 km drift. One potential hypothesis is that 
the drift is due to the combination of the Coriolis 
acceleration and the wind; however, upon setting 
these variables to zero and false, respectively, the 
drift actually increased to 126 km, which means 
that there must be some computational error in 
the MDO notebook. 
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4. Conclusion 

In this work, I set out to improve and extend the 
existing open-source Multidisciplinary Design 
Optimization (MDO) simulation code. I evaluated 
different optimization approaches such as 
standard global optimization with RBFOpt, 
Nelder-Mead with different local minimization 
approaches, and Simplicial Homology Global 
Optimization. I found the SHGO approach to be 
the most effective and converged on the ideal 
design vector upon including fin parameters and 
scaling down given stability margin information. 
The 120 km vehicle drift was caused by some 
computational error in the notebook. This has 
been confirmed by running trajectory 
simulations with the design variables returned by 
the MDO, which indicate that the wind is the 
cause of the large vehicle drift. Further 
debugging and testing are required. However, the 
convergence of that ideal design vector serves as 
a theoretical guidance to the PSAS engineering 
team going forward. 
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