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Abstract 

A goal of memory research is to understand how the brain remembers similar events. Analyzing 
data from human subjects, we explore how competition between memories of images influences 
their recall by answering the question Does studying images from similar or differently themed 
categories affect the verbal content used to describe them? The competitive condition was composed 
of images from a single category (“Pond 1,” “Pond 2”), whereas the non-competitive condition 
was a set of images from different categories (“Pond 1,” “Library 1”). Specifically, we aimed to 
quantify how verbal memories of these images varied depending on the study condition. To 
quantify subjects’ verbal memories, we used natural language processing to map subjects’ 
descriptions of the images onto points in a high-dimensional “text embedding” space. We 
performed dimensionality reduction and clustering analyses on these text embeddings and 
found that semantic representations of images studied in the competitive condition were 
similarly differentiated compared with those in the non-competitive condition. Our results 
suggest that verbal memories of images were influenced by the similarity of subjects’ memories 
and that highly similar memories may push their respective representations away from one 
another. 

 

1. Introduction 

One of the main regions of interest involved in 
learning and memory is the hippocampus 
(Eichenbaum, 2000). Investigation of place cells 
in the rodent hippocampus has been able to 
demonstrate that perceived environmental 
differences can affect patterns of neural activity 
recorded in this brain region (Colgin et al., 2008). 
These patterns of activity are subject to sudden 
changes that come about when the rodent moves 
through space over time. It has also been shown 
that these patterns of neural activity can be 
affected by internal differences that reflect 
change due to experience (Bostock et al., 1991). 
The change in hippocampal neural activity tied to 

the rodent’s movement and experience is 
referred to as “remapping.” Remapping 
highlights a connection between the reported 
differences in rodent hippocampal activity and 
the study of memory interference in humans. 
Since many events that a person might 
experience are likely to share similar physical 
features or have been presented at a common 
point in time, it is appealing to posit that 
interference between episodic memories, 
particularly highly similar memories, could be 
resolved through this process of hippocampal 
remapping. 

In human subjects, remapping can also be 
thought of in terms of the “repulsion” that has 
been observed when similar memories 

https://www.zotero.org/google-docs/?tGnXxy
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overlapping in representational space appear to 
move away from each other. In one behavioral 
experiment, subjects studied nearly identical 
images of objects paired with faces, with the 
colors of the objects serving as the independent 
variable (Chanales et al., 2021). This study found 
that subjects’ “color memories” for objects 
sharing a high degree of color similarity were 
reported as being more different from one 
another than the objects’ actual appearances 
would suggest. Repulsion among highly similar 
color memories was most pronounced in subjects 
who displayed the fewest interference errors 
during associative recall. This finding is 
consistent with the notion that interference 
between similar memories drives remapping and 
reduces interference. 

Previous cognitive neuroscience research in 
humans has explored this prediction further 
using fMRI experiments to test recall (Favila et 
al., 2016; Wanjia et al., 2021). In one experimental 
paradigm, subjects studied paired images of 
similar objects and scenes (Wanjia et al., 2021). 
For example, one pairing might include the 
object “Guitar 1” and the scene “Lighthouse 1,” 
whereas another pairing might be “Guitar 2” and 
“Lighthouse 2.” Subjects were tasked with 
learning these associations over multiple pairing 
trials. During the testing phase, the scenes were 
presented to the subjects, where the subjects’ goal 
was to correctly identify the object associated 
with the scene. Learning was defined to have 
occurred once subjects could verbally recall these 
associations with high confidence. The study 
found that changes in certain subregions of the 
hippocampus shared a correspondence with 
learning over time—something that has similarly 
been found in rodent experiments examining 
activity in those subfields (Lee et al., 2004). More 
specifically, memories that shared a high degree 
of similarity before learning had occurred 
displayed a greater decorrelation amongst their 
hippocampal representations after memory 
interference had been resolved.  

Taken together, these findings suggest that 

hippocampal representations of episodic 
memories that are very similar to one another 
become differentiated as their interference with 
one another is minimized across learning trials. 
Notably, this repulsion effect can be captured by 
the extent to which these similar representations 
shift according to a reduction in interference. Our 
data analysis here attempts to extend this 
research to verbal memories by investigating 
whether this repulsion effect occurs for verbal 
descriptions of similar images in different 
behavioral conditions by using natural language 
processing techniques to quantify the degree of 
similarity between descriptions of related versus 
unrelated images. 

2. Methods 

Our data analysis is based upon a study of 120 
participants at the University of Oregon (Figure 
1). After providing their consent to participate, 
subjects were asked to study six different 
categories of scenes (“Indoor Pool,” “Library,” 
“Downtown Street,” “Soccer Stadium,” “Ice 
Skating,” or “Pond”), each containing six unique 
images. During the study phase of the 
experiment, subjects were presented with images 
from these categories paired with an image of a 
random human face (Figure 1a). Subjects in the 
baseline condition studied scenes belonging to 
different categories, whereas those in the 
competitive condition studied images belonging 
to the same category. During the testing phase, 
subjects’ memories were measured by how well 
they could recall the scene associated with the 
presented face from the study phase (Figure 1b). 
Subjects were then asked to use at least ten words 
to verbalize their memory of the studied images 
in as much detail as possible. 

Subjects’ words and phrases were recorded as 
the verbal memory input, and a natural language 
processing (NLP) algorithm called MPNET was 
used to convert the verbal memories into 
numeric values representing how images were 
remembered by subjects during the testing phase 
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(Song et al., 2020). This process allowed us to 
code the different descriptions that subjects 
provided into a set of numbers that could help us 
analyze the language people used to 
communicate their memory of an image. This 
tool generated a quantitative representation of 
subjects’ verbal memories of scenes by 
transforming words and phrases into a 768-length 
vector through a process known as a “text 
embedding.” Each column of the dataset can be 
thought of as a “feature” value of the text 
embedding, with 768 features per image (Figure 
1c). The feature values of the subjects’ verbal 
memories across both conditions were pooled 
together to perform most of our analysis. 

 
Figure 1. (a) Subjects studied images of scenes paired with a 
random human face. (b) Subjects’ memories of scenes were 
tested when they were asked to remember and describe the 

correct scene that was associated with the face from the study 
phase. (c) The verbal descriptions of scenes from memory 
became transformed through the NLP MPNET model into 

numeric variables used to represent the meaning of the 
subjects’ responses. 

We normalized the dataset around a standard 
normal distribution with a mean of 0 and 
standard deviation of 1. After performing 
normalization on the dataset of verbal memories, 
we conducted principal components analysis 
(PCA) on the text embeddings to reduce the 
number of features—or dimensions—
corresponding to the verbal memories of scenes. 
PCA is a mathematical technique that can help 

improve interpretability of large datasets. Instead 
of using all 768 features created through the NLP 
transformation process, PCA allowed us to 
“compress” our dataset into its principal 
components. The principal components 
represent linear transformations of the text 
embeddings into unrelated variables that can be 
used to communicate the maximum amount of 
information about the verbal memories while 
reducing the number of overall features used to 
express the dataset. We were able to reduce the 
number of features from the initial 768-length 
vector generated by the NLP algorithm to six 
principal components and plotted the proportion 
of variance explained by each component in 
either condition. 

After the PCA dimensionality reduction, we 
then used a k-means clustering algorithm to 
group verbal memory representations together 
based on their similarity. While PCA reduces the 
number of dimensions of the data to display it in 
a more concise way through the creation of 
principal components, k-means clustering 
attempts to represent the data in the form of the 
tightest clusters. The assignment of each data 
point to a cluster is determined by how far away 
the point is from the center of the cluster, with 
the objective of maintaining a tight cluster. We 
decided to use six clusters for our k-means 
clustering of the principal components by 
measuring the within-cluster sum of squares 
error to determine the point at which an increase 
in the number of clusters would provide 
diminishing returns for our analysis. We plotted 
the within-cluster sum of squares error found in 
either condition and created graphs containing 
subplots of the clustering results to compare 
baseline and competitive verbal memory 
representations in the PCA space. 

3. Results 

PCA dimensionality reduction on our dataset 
revealed a decline in the amount of variation 
amongst the text embeddings that could be 
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explained by each subsequent component 
following the fifth component (Figure 2). We 
found that five principal components could 
explain over half of the cumulative variance in 
the verbal descriptions (Figure 3). This supports 
the idea that dimensionality reduction can be 
used to explore the same data with fewer 
variables, improving the quality of visualization. 

 
Figure 2. Proportion of variance captured by principal 

components constructed from the pooled set of text 
embeddings and plotted according to explained variance. 

 
Figure 3. Proportion of variance captured by principal 

components constructed from data separated by condition 
and plotted according to explained variance. 

Likewise, this result informed us that 
retaining more than five principal components to 
represent the information expressed by the text 
embeddings would only be marginally beneficial 
at capturing any additional information about the 
content of the verbal memories. Furthermore, to 
ensure that our k-means analysis would also be 
reflective of the most important information 
captured by the NLP algorithm for assessing 

similarity, we chose to keep six principal 
components to perform clustering analysis on the 
verbal memories delivered by subjects. By 
measuring the within-cluster sum of squares 
error and plotting it as a function of the number 
of clusters, we were able to observe the point at 
which adding more clusters into our analysis 
would not provide any noticeable increase to the 
tightness of each cluster (Figure 4; Figure 5). 

 
Figure 4. Elbow method plot constructed from the pooled set 

of principal components, useful for finding the optimal 
number of clusters to group principal components. The 

within-cluster sum of squares error decreases as the number 
of clusters increases. The “elbow” can be seen where the 

number of clusters approaches six. 

 
Figure 5. Elbow method plot constructed from the separated 

data of principal components in each condition. 

Reducing the 768-length vectors of text 
embeddings via PCA allowed us to qualitatively 
visualize how subjects in each condition recalled 
images using these new values to represent their 
words and phrases. We conducted this 
visualization by generating subplots to compare 
the different principal components across both 
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conditions using the six predefined clusters 
(Figure 6). Moreover, though we had to select the 
number of clusters for our k-means analysis, 
verbal memories of each category appear 
distributed according to each of the six categories 
of the behavioral experiment. This finding 
reinforces our decision for the selection of six 
clusters, as it confirms that information about 
images from the same categories in the dataset 
aggregated together. 

 
Figure 6. K-means clustering results separated by condition 

and plotted according to information represented along each 
principal component. The categories are distinguished by 

color to highlight the effects of the clustering on their 
separation. 

Upon plotting the clusters with respect to 
each of our principal components, we identified 
that the distribution of verbal memory 
representations in the PCA space using six 
predefined cluster segments captured 
differentiation between categories in either 
condition. While we have not specifically 
performed any statistical analysis on this 
relationship here, Figure 6 reveals a minor 

qualitative difference in the tightness of 
clustering between conditions. This could suggest 
that when subjects study multiple scenes from 
the same category, their verbal recall tends to 
emphasize information that differentiates those 
scenes, though we cannot draw that conclusion 
based on these results alone. 

4. Discussion 

We showed using dimensionality reduction that 
verbal memories of similar images from the 
competitive condition, and of images studied 
under the baseline condition from unrelated 
categories, could be compared using text 
embeddings created with the NLP MPNET model. 
After normalizing the dataset and performing 
PCA and k-means clustering on text embeddings, 
we found that the plotted representations of 
verbal memories group tightly into six predefined 
clusters that become separated by category. This 
validates that the NLP algorithm was able to 
detect similarity between verbal recall, such that 
two images from the same category are found to 
group more closely together than two images 
from different categories. The clustering pattern 
of the principal components found in either 
condition suggests that scenes from different 
categories are differentiated by subjects’ verbal 
memories delivered during the testing phase. The 
visual differences found by clustering the verbal 
memories address our question as to whether the 
content used to describe the images changes 
depending on the similarity of the studied 
images. 

Based on the theory that inference occurs 
when memories compete for recall, we would 
have expected to see evidence of more diffuse 
clustering between the similar memories of each 
category in the competitive condition compared 
to the unrelated images seen in the baseline 
condition. However, our prediction that this 
differentiation would be more exaggerated when 
memories for two images compete to be 
remembered cannot be supported by our current 
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analysis. The subtle differences captured in 
Figures 3 and 5, rather, demonstrate the capacity 
for NLP to tease apart nuanced ways in which 
similar images become remembered differently 
as a result of interference. The qualitative results 
displayed in Figure 6 convey that these small 
variabilities between conditions can be 
represented graphically to the extent of the 
principal components’ ability to capture variance 
from within either condition. 

While the scope of our data analysis is not 
able to support conclusions about the 
involvement of specific subregions of the 
hippocampus that might be involved in learning 
to differentiate these scenes, it could be the case 
that memories remap according to prediction 
errors calculated through dissociations in the 
specified subregions (Dimsdale-Zucker et al., 
2018; Keinath et al., 2020). Our findings support 
existing research that aims to assess how verbal 
memories taken at a recall during behavioral 
experiments compare to neuroimaging data from 
the same subjects while being scanned in an MRI 
machine. 

Future research efforts might explore NLP 
text embeddings using representational similarity 
analysis to correlate representations in the brain 
at specific timepoints during learning 
(Kriegeskorte et al., 2008). NLP methods could 
help make inferences about the types of 
information that correspond to hippocampal 
remapping of specific memories. Performing 
analysis on text embeddings recovered before 
and after learning might reveal quantitative 
differences about how people remember images 
over time as interference is minimized. Our 
analysis of NLP text embeddings here is an 
important first step towards that goal by offering 
some justification for the use of these methods in 
the context of verbal memory analysis. 
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