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Abstract

We demonstrate that when power scaling occurs for an individual tree and in a forest, there is great resulting simplicity notwithstand-
ing the underlying complexity characterizing the system over many size scales. Our scaling framework unifies seemingly distinct
trends in a forest and provides a simple yet promising approach to quantitatively understand a bewilderingly complex many-body
system with imperfectly known interactions. We show that the effective dimension, Dtree, of a tree is close to 3, whereas a mature forest
has Dforest approaching 1. We discuss the energy equivalence rule and show that the metabolic rate–mass relationship is a power law
with an exponent D/(D + 1) in both cases leading to a Kleiber’s exponent of 3/4 for a tree and 1/2 for a forest. Our work has implications
for understanding carbon sequestration and for climate science.
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Significance Statement:

Forests are terrestrial ecosystems with a high degree of structural and functional diversity: in the tropics, there often are hundreds
of coexisting plant species with different habitats and thousands of consumers, each of them with inter-specific relationships
with plant species. A forest is, thus a complex many body system spanning multiple scales with imperfectly known temporally
and spatially varying interactions. A pressing goal in ecology is to understand how general trends and patterns emerge in spite of
such complexity. It is of great societal relevance to understand whether the approximate scale-free behavior of a forest can result
in underlying simplicity in a bewilderingly complex system that is directly relevant to climate science.

Introduction
Forests cover about 30% of the land surface and have an essen-
tial role in regulating the Earth-climate system. They are respon-
sible for about 50% of the total net primary productivity (NPP)
and they act as a climate cooler because of evapotranspiration,
while also affecting the planetary water cycle. They influence
the energy budget of the planet by having a low surface albedo.
All these functions are essentially determined by the amount of
leaves within the forest community and by the length of the grow-
ing season. As a consequence, forest attributes (number of trees,
tree size distributions, total leaf area, and so on) are key traits to be
studied for understanding the effective role of tree communities
in different sites and environmental conditions (1–3).

We build on the well-known empirical observations that trees
span an enormous range of sizes from a seedling to a fully grown
tree. Power law scaling (4, 5) relationships, also known as allo-
metric scaling (6), are pervasive in tree communities. Here, we
derive a unified theoretical framework for elucidating the role
of geometry in determining the metabolic rate–mass relation-

ship of a tree and the NPP–biomass density relationship of a
forest.

When quantities in a system vary over many orders of mag-
nitude, it is not uncommon that they exhibit power law scaling
behavior with finite-size effects. We make the constructive hy-
pothesis that such behavior holds and study the consequences,
especially those that provide nontrivial links between seemingly
disparate quantities. We find good accord with empirical data and
prior expectations suggesting that our basic hypothesis may in-
deed be valid. Such scaling analysis is useful when the overarch-
ing behavior emerges despite the plethora of specific and often
imprecisely known details.

We begin with a discussion of plant allometry and then turn
to an understanding of the assembly of a forest. We will postu-
late power law relationships characterized by scaling exponents,
an assumption that is supported by empirical data. As is well-
known in the context of critical phenomena (4, 7, 8), we show
that even here the exponents turn out to be related to each other
linking seemingly distinct processes and phenomena. Unlike
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physical systems, here there is no fine-tuning involved and the
power law behavior is only approximate but the trends are robust.

Metabolic Scaling
The ability of a living organism to sustain itself, to grow, and to
reproduce depends on its metabolic rate or energy available to it
from its environment per unit time. An organism utilizes a frac-
tion of the energy taken in and the rest is radiated out to the en-
vironment. Generally, the rate at which energy is radiated out by
an organism is proportional to its surface area times the velocity
with which energy is transported at its surface (9). Thus, the de-
pendence of the metabolic rate of a living organism is a function
of the dependencies of the surface area and transport velocity at
the surface on the organism mass. For an animal characterized by
a tissue density independent of mass, the surface area scales as
the volume to the 2/3 power or equivalently to the 2/3 power of
the organism mass. It has been argued (10) and there is empirical
evidence (11) that the transport velocity for an animal scales as
the 1/12 power of its mass yielding Kleiber’s law or 3/4 scaling of
the metabolic rate on animal mass. This result does not invoke or
require fractality of the underlying circulatory network (10, 12).

Metabolic scaling of a tree
We begin by defining a few key geometrical measures of a tree as
follows:

� Tree height: the height of a typical tree.
� Crown length: the difference between tree height and the

height of the lowest living branch.
� Crown area: the projected area of the crown.
� Tree diameter DBH (diameter at breast height): the diameter

of the stem approximately 1.3 m from the ground. We denote
the tree diameter by the symbol r.

A power law distribution is scale-free with no characteristic
scale. The height distribution of trees in a forest may have a mini-
mum height, hmin, which sets the unit of measure (akin to the role
of a lattice parameter setting the scale for a discrete lattice in sta-
tistical mechanics). Due to resource limitations and physiological
constraints (e.g. weight and gravity, wind, and structural stability)
there may also be an upper cutoff hmax. This implies that finite
size corrections to a pure power law distribution need to be taken
into account, resulting in the emergence of a finite, nonzero, char-
acteristic height. Most ecologically relevant lengths in the verti-
cal direction are proportional to this characteristic height. Here,
we consider the constraint of resource availability and calculate
the corrections to power law scaling and verify them with data.
We find a scaling collapse of the forest data, which demonstrates
the validity of the finite size scaling ansatz on determining the ef-
fects of cutoffs on the otherwise scale-free distribution through a
process, which is well-acknowledged in statistical physics yet of
general nature.

A tree of height h maximizes its metabolic rate by filling its
volume, V, with surface elements, its leaves. Earlier work (9) has
shown that the transport velocity at the surface is independent
of tree mass. Thus, it follows that the metabolic rate B scales (the
symbol ∼ denotes “scales as” and does not include constants of
proportionality that would provide the right units) as the crown
volume V (which scales as the product of the crown length and
the crown area)

B ∼ V ∼ h1+2H ≡ hDtree , (1)

where H is the Hurst exponent (13) characterizing the scaling of
the crown radius with height. The crown length is postulated to
scale as the tree height accounting for the one in the exponent,
and therefore, the exponent Dtree = 1 + 2H. In the simplest case of
trees in tropical forests (14), H = 1 and Dtree = 3. This result arises
for a tree with a maximum capacity of expanding its crown. More
generally, Dtree seems to vary depending on the latitude and cli-
mate. Temperate forest trees expand their crown less than trees
in a tropical forest and are characterized by an exponent lower
than 3 (15). The exponent is larger when the resources are plenti-
ful.

A tree is characterized not only by its height but also by its stem
diameter and empirical observations confirm that the 2 length
scales are linked (6) (Fig. 1). We postulate that the allometric rela-
tionship between the metabolic rate B and the diameter at breast
height (DBH) of a tree r (a quantity commonly measured for trees)
is given by

B ∼ rλ. (2)

Eqs. (1) and (2) provide a link between the height and the DBH of a
tree. In the simplest situation, when the metabolic rate is propor-
tional to an effective cross-sectional area, λ = 2. It is important to
note that the situation is more complex because the stem com-
prises both active biomass (the sapwood) and nonactive biomass
(the heartwood) and the composition varies with the height from
the ground. The well-known structural stability analysis (6) (Fig. 1)
suggests that the DBH r of a tree scales approximately as a power
of its height, h, h3/2. This relation allows us to write λ as a function
of the Hurst exponent H:

λ = 2
3

Dtree. (3)

Note that the idealized exponents, Dtree = 3 and λ = 2, are consis-
tent with Eq. (3).

We now introduce the key variable—the tree mass, M. Water
from the ground must be transported to the leaves where the wa-
ter is transpired. The mass of the tree must scale at least as the
mass of the water being transported within the tree. A general
theorem on transportation networks (16) states that the mass of a
tree must scale at least as hDtree+1 because there are water columns
of mean height h for each of the hDtree leaves. In fact, this is a lower
bound for the tree mass and holds when the water is transported
from the ground in a directed manner: there is no significant back-
tracking in the water transport route. This yields:

M ∼ hDtree+1 ∼ rλh, (4)

and

B ∼ hDtree ∼ rλ ∼ MDtree/(Dtree+1). (5)

When Dtree = 3, the metabolic rate–mass relationship is the cel-
ebrated Kleiber’s law (17) (Fig. 2). For juvenile trees, for which the
entire mass is metabolically active (18–20), B scales as M, which
crosses over to Kleiber’s law for large mass (9).

It is noteworthy that Kleiber’s law also holds approximately for
animals, but with important underlying differences. A tree and
an animal have very different geometries. A tree is approximately
fractal over a range of size scales, it is rooted, its surface area
or the number of leaves scales as the volume, it has no pump,
and it is inhomogeneous in its mass distribution—the trunk and
branches are denser than the metabolically active leaves. In con-
trast, an animal is not self-similar, it can move, its surface area
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Fig. 1. Cross plot of the diameter versus height of trees (adapted from Ref. (6)). The straight line indicates 3/2 power law scaling. Each data point
represents a distinct tree species and the points plotted are record specimens or the largest recorded tree of each species.

Fig. 2. Log–log plots of metabolic rate versus mass for trees show deviations from pure power law behavior. Shigeta Mori (21) provided the tree data. At
small masses the metabolic rate grows linearly with M and slows down to M3/4 at large masses. Both piecewise fits and crossover of exponent values
are shown. Interestingly, one obtains a leading exponent indistinguishable from 3/4 if one chooses to make it an adjustable parameter (22). This
figure was adapted from (9).

scales in the standard Euclidean manner as the volume to the
2/3 power, it has a pump, the heart, and the mass distribution is
homogeneous. In spite of their distinct geometries, animals and
plants both satisfy Kleiber’s law and are metabolically equally ef-
ficient (9). Recall that the metabolic rate is proportional to product
of the surface area and the velocity of heat transport at the sur-
face. For an animal (tree), the former scales with an exponent of
2/3 (3/4) and the latter with an exponent of 1/12 (0) yielding the
same Kleiber’s law exponent of 3/4.

The overall density of a tree is the ratio of its mass (scaling as
hDtree+1) to its volume (scaling as hDtree ) and scales as its height. This
is a rather odd-sounding result and has simple consequences.
First, it suggests that there must be a limiting height a tree can
attain at which its density matches that of the trunk density. Sec-
ond, the fraction of the tree volume occupied by the dense trunk
and branches is bigger as the tree grows larger, demonstrating the

larger overhead needed to sustain a large tree. A self-similar tree,
therefore, has a natural upper cutoff scale for its fractal branching
behavior.

From dimensional analysis, the characteristic time scale asso-
ciated with a tree scales as M/B or equivalently is proportional to
the tree height. This may be rationalized by noting that, in a sta-
tionary state, the total amount of metabolites present in the plant
is proportional to the plant mass, M. The average time before a
metabolite is used/consumed multiplied by B (the rate at which
metabolites enter the plant) has to be equal to the total num-
ber of metabolites present. Thus, the characteristic time scale is
proportional to M/B and typical rates such as the mortality rate
scale as 1/h ∼ 1/rλ/Dtree in accord with empirical data (23). Finally,
the cross-sectional area of a tree crown, Ac, is predicted to scale
as Ac ∼ h2H = hDtree−1 ∼ rθ with θ = λ(Dtree − 1)/Dtree. Plugging in
the canonical values of λ = 2 and Dtree = 3, one predicts θ = 4/3
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Fig. 3. Best fit of the exponent Dforest characterizing the algebraic dependence of the NPP versus the biomass density as a function of forest age class for
the continental United States (data taken and figure adapted from Ref. (26)). Note that these forests are managed in an even-age silviculture. As the
forest matures, Dforest approaches the theoretically predicted value of 1 (thin horizontal line).

in accord with the results of a recent empirical and theoretical
study (24).

The analysis of the scaling behavior of a single tree has built-
in power laws and relationships between tree mass, tree height,
trunk diameter, and the metabolic rate, so that knowledge of 1
attribute can be used to deduce the others.

Metabolic scaling of a forest
We now turn to a forest made up of trees of different species and
sizes that compete for resources (25). The NPP, or the net flux of
carbon from the atmosphere into the forest per unit time, is gov-
erned by the sum of the metabolic rates of all the trees comprising
the forest or, equivalently, the Leaf Area Index (LAI) or the num-
ber of leaves in the forest. Our goal is to understand the scaling of
NPP with the total biomass of the forest. We invoke an optimiza-
tion principle: the space available to the trees in a mature forest
is fully utilized to house its leaves.

In this scenario, the total number of leaves or the metabolic
rate of the forest, Bforest, ought to be proportional to the forest vol-
ume, Ahmax, where A is the total area of the forest and hmax is
the height of the tallest tree that sets the scale of the height of
the forest. For a scale-free forest, there are only 2 characteristic
length scales, hmin and hmax, and the relevant scale here is hmax.
This expression can also be rewritten trivially as Ah

D forest
max with the

effective forest dimension Dforest = 1. This is tantamount to not-
ing that the volume of a forest of fixed area or the total num-
ber of leaves in the forest scales as the height of the forest or
its tallest tree. This assumes that there is no lateral growth or
that the area remains constant. The total mass of all the trees
in the forest, Mforest, would at least have an extra power propor-

tional to hmax, i.e. M forest ∼ Ah
D forest+1
max . This follows from the need

for columns of water of height proportional to hmax supplying wa-
ter in a directed manner to each of the leaves of the forest. For
a forest of constant area, the metabolic rate–mass relationship
becomes B forest ∼ M

D forest/(D forest+1)
forest = M1/2

forest . This result corresponds
to a forest of constant area behaving like an effective 1D “tree”.
The scaling exponent, Dforest, of the forest is independent of the ex-
ponent, Dtree, characterizing the scaling of the tree but, generally,
the forest dimension cannot exceed the tree dimension. The 2 are

equal in the special case of a forest comprised of well-separated
trees, a situation more likely to be found at high latitudes.

Figure 3 is an adaptation of the plot of the data from Kempes
et al. (26) demonstrating how Dforest depends on the age of a for-
est and increases as the forest matures. One would expect that
during maturation, the active mass becomes a smaller fraction of
the total mass. Note that because the data of Kempes et al. refer
to the scaling of the NPP on total mass and not just on the active
mass, Dforest is typically less than or equal to 1 (Fig. 3). It is inter-
esting to note that the forests that we will analyze have a more
complex structure than those considered by Kempes et al. (26),
because they comprise trees of different ages and sizes leading to
better space filling.

How Does Your Forest Grow?
We turn now to the derivation of how a forest is assembled in
order to conform to the expectations in the previous section. The
key assumptions of our analysis are:

(a) The forest is a nonequilibrium system with a continuous in-
put of energy. For simplicity, we will assume that the forest
is in a quasi-stationary state.

(b) The forest has trees of distinct species—we will focus on
the size distribution of trees, but will not consider the dif-
ferences between species. This simplification is akin to the
neutrality assumption (27).

(c) Optimal transportation of water and metabolites governs
the scaling behavior of a tree. Along the same lines, we pos-
tulate optimal resource utilization leading to maximal fill-
ing of the forest volume with leaves. Power law distributions
often arise from optimal packing considerations (28, 29).

We turn now to our derivations and observations.

(1) Recall that the total number of leaves in a forest is postu-
lated to be proportional to h

D forest
max with the effective forest

dimension Dforest = 1. Recall also that the number of leaves
associated with a tree of height h scales as hDtree . Let P(h)dh
represent the fraction of trees of the forest with height
between h and h + dh. Thus, the total number of leaves in
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Table 1. Summary of key results. The energy equivalence principle postulating that equal energy is consumed in each tree class is
satisfied only if one divides the trees into height classes and Dforest = 1. For simplicity, here we assume isometric scaling between active
biomass and total biomass of a tree. Scaling analyses of forest structure and dynamics were first presented by West, Brown, and Enquist
(32, 33).

Idealized values of exponents Dtree = 3; Dforest = 1; λ = 2Dtree/3

Tree height, h
Scale of height of tallest tree in a forest, hmax

Cutoff tree diameter beyond which there are
deviations from a power law distribution of sizes, rcut

Metabolic rate, B B ∼ hDtree ∼ rλ ∼ MDtree/(Dtree+1)

Tree mass, M M ∼ hDtree+1 ∼ rλ(Dtree+1)/Dtree

Tree DBH, r r ∼ hDtree/λ ∼ h3/2

Crown area, Ac Ac ∼ hDtree−1 ∼ rθ , where θ = λ −
λ/Dtree

Structural stability Dtree ∼ 3λ/2

Net primary productivity NPP, Leaf area index LAI NPP ∼ LAI ∼ h
D forest

cut ∼ ρD forest /(D forest +1)

Biomass density of forest (e.g. measured in kg/m2), ρ ρ ∼ h
D forest +1
cut

Mortality rate of tree ∼ 1/h ∼ r−λ/Dtree

Growth rate of tree dh/dt ∼ constant; dr/dt ∼ r1−λ/Dtree

Probability distribution of tree sizes in a forest P(h)dh ∼ hD forest −Dtree−1dh,
P(M)dM ∼ M(D forest −2Dtree−1)/(Dtree+1)dM,

P(r)dr ∼ r−(λ+1)+ λD forest
Dtree dr

the forest is proportional to

h
D forest
max ∼

∫ hmax

hDtree P(h)dh, (6)

yielding

P(h)dh ∼ hD forest−Dtree−1dh (7)

with Dforest = 1, leading to, upon changing variables (M ∼
hDtree+1 and r ∼ hDtree/λ),

P(M)dM ∼ M(D forest−2Dtree−1)/(Dtree+1)dM (8)

and P(r)dr ∼ r−(λ+1)+ λD forest
Dtree dr.

For a constant forest area, the characteristic height of a for-
est scales linearly with resource availability (14). This linear
dependence does not hold for other otherwise equivalent
tree variables such as the tree diameter or the tree mass.

(2) The result above can be confirmed through an alternative
derivation of P(r)dr, the fraction of trees with diameter be-
tween r and r + dr. The crown area, Ac, of a tree scales as
h2H = hDtree−1 ∼ rθ , where θ = λ − λ/Dtree. A tree of DBH r is as-
sociated with a distinct height h, which increases monoton-
ically with r. The number of trees of a given size class that
can fit (24) within an available constant total area scales as
r−θ —note that the constancy of the area for any size class
follows from an implicit assumption of Dforest = 1. Thus, the
number of trees with size between r and r + dr is obtained
by taking a derivative of r−θ and is given by P(r)dr ∼ r−(θ + 1)dr.
This derivation is inspired by the results of a recent study
by Farrior et al. (24) of the behavior of the diameter distri-
bution of trees comprising a forest and is in accord with our
previous result, when Dforest = 1.

(3) Our analysis bears directly on what is commonly called the
energy equivalence principle (30, 31). Imagine a resource
reservoir with a constant power output Bres. Consider a set
of individual trees of a given mass M, a height h, and a trunk
diameter r. Such a reservoir can sustain an abundance
of trees N = Bres/B ∼ M−Dtree/(Dtree+1) ∼ h−Dtree ∼ r−λ. This sim-

ple and exact observation does not tell us anything about
a population of coexisting trees of differing sizes nor does
it require that the energy utilized per unit time by distinct
size classes is the same. This latter point has been a source
of confusion in the literature. In addition, when considering
diverse sizes, one has to be careful about which variable one
uses to characterize the size. This could lead to distinct re-
sults because of the nonlinear scaling relationship between
the different size variables.
Eq. (7) satisfies the energy equivalence principle when Dforest

= 1 because the product of the metabolic rate, scaling as
hDtree , and the abundance of the height class, scaling as
h−Dtree , is independent of h and the height class. The key
point is that this does not hold if one considers partition-
ing the classes along either the r or the M axes or if Dforest

�= 1. There have been examples in the literature of the mis-
leading conclusion: e.g. P(r)dr ∼ r−λdr by noting that B ∼ rλ

and invoking the energy equivalence principle with the tree
diameter variable (32, 33).

(4) For a forest in steady state, as trees grow and graduate from
one height class to the next, the mortality of trees in a given
size class (governed by the mortality rate ∼1/h) times its
abundance (scaling as hD forest−Dtree−1) exactly accounts for the
abundance difference between neighboring classes (scaling
as the derivative of the abundance or as hD forest−Dtree−2). This
ensures that a forest in steady state remains in steady state.

Table 1 presents the predictions of our analyses for both a tree
and a forest.

Universal Size Distribution of Tropical
Forest Trees
In order to get a measure of the NPP, we need information on the
size distribution of trees in a forest so we can obtain a measure
of the total number of leaves in the forest. Based on just a few
hypotheses, we have derived power law distributions for various
tree traits. However, these are “ideal” distributions that ignore con-
straints such as resource limitations or the fact, mentioned before,
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Fig. 4. Fitting curve and scaling collapse plot for the Ranomafana forest data. (A) Empirical cumulative distribution of the tree diameters of the
Ranomafana tropical forest. The light-blue curve is the fitting line obtained with rcut as the only adjustable parameter. (B) We generated 100 data sets
from the fitting distribution and we compared the resulting distributions with the distribution of the original forest. For each bin in the r coordinate,
the light-blue band represents the 1-SD interval around the mean values of the 100 computer-generated data sets, whereas the black points denote
the empirical distribution P(r) of the Ranomafana forest. (C) The black points have been obtained via the rescaling of the empirical diameter
distribution of the tropical forest, whereas the light-blue curve represents the 1-SD interval around mean values within each logarithmic bin of the
rescaled r/rcut coordinates. The blue curve is our prediction for the scaling collapse curve, e−xλ

. Note that the collapse exponent is 4/3 because the
rescaled coordinates are presented in a logarithmic scale. Were one to use a linear scale for the x-axis, we would need to instead compute K · P(r) · r7/3.

that the tree height cannot grow indefinitely. But such distribu-
tions deviate from power laws at large sizes close to a cutoff size
beyond which there are very few trees.

We carry out our analysis with the variable r, the trunk DBH,
which is straightforward to measure empirically. Let us postulate
a power law with a decay exponent, which we denote by α. It is
straightforward to convert our expressions to any other variable
including the tree height h. Our aim is to deduce the deviation
from power law behavior for large size trees. We present 2 an-
alytic derivations (see Supplementary Information), which yield
the same result. Both rely on the same basic premise that there is
a ceiling on the number of leaves that a forest of a given size can
hold because of metabolic limitations. We find analytically that
the tree diameter distribution is

P(r) = 1
K

r−αe−rλ/rλ
cut , (9)

where rcut is a cutoff diameter governing the cross-over diameter
scale beyond which the distribution deviates from a power law
and there are few trees and 1/K is the normalization constant. The
distribution (9) is obtained on postulating a Poisson tree distribu-
tion and using the results of (34) or using the maximum entropy
principle (35, 36). Moreover, the power law exponent is predicted
to be α = λ + 1 − λDforest/Dtree. α depends on the 2 parameters Dforest

and Dtree, because, by Eq. (3), λ is a function of Dtree. By considering
the ideal case of Dforest = 1 and H = 1, the latter being in accord with
the empirical data (see Supplementary Information), one finds
that α = 7/3, which is close to the value derived by Farrior et al. (24)
based on the empirical scaling of the crown area of a tree on its
diameter (37). We, thus predict a universal diameter distribution
for tropical forests with rcut as the only adjustable parameter. In
particular, from Eq. (9), we find that KP(r)rα = e−rλ/rλ

cut := g(r/rcut ), is
a function of r/rcut. Thus, we predict that, with 1 adjustable pa-
rameter rcut for each forest, the diameter distributions of tropical
forests ought to collapse on top of each other when g(x) is plotted
versus the rescaled coordinate x = r/rcut. We now proceed to a test

of our prediction with empirical data from tropical forests around
our planet.

Comparison of theoretical predictions of
diameter distribution with forest data
In order to test our predictions, we analyzed data from 14 tropical
forests provided by the Tropical Ecology, Assessment and Monitor-
ing (“TEAM”) Network (http://www.teamnetwork.org/, accessed in
May 2021). For each forest, we considered all trees with diame-
ters (DBH) greater than 10 cm and smaller than 500 cm. By fitting
the theoretical distribution (9) to the data, we found the set of
14 rcut values, which best describe the empirical forest diameter
distributions (see Supporting Information). In Fig. 4, we show the
results for the Ranomafana forest in Madagascar. Panel A shows
the best-fit distribution (light-blue) curve against the forest data
(black dots). Remarkably, the distribution (9) with just 1 adjustable
parameter captures the behavior of the empirical tree diameter
distribution. As an additional check, we generated 100 data sets
from the fitted distribution and we compared the original and
the computer-generated diameter distributions (Panel B of Fig. 4).
We then binned both the original and computer-generated data
along the DBH axis and computed the average and SD among the
100 computer data sets at each bin. The black points in the fig-
ure are empirical values of P(r) of the Ranomafana forest, whereas
the light-blue band corresponds to the 1-SD interval around the
mean values of P(r) for the generated data (see Supplementary
Information for the graphics of the other 13 forests we analyzed).
Finally, Panel C of Fig. 4 shows the plot of the rescaled distribution
KP(r)rα := g(r/rcut) against the scaled coordinates r/rcut. We find that
both the original points (black dots) and the generated data (light-
blue band) are in agreement with the predicted curve e−xλ

(blue
curve).

In Fig. 5, we show the scaling collapse of the empirical tree di-
ameter distributions of all the tropical forests. Interestingly, the
theoretical curve e−xλ

(the red line in Fig. 5) accurately captures
the qualitative trends of the data. The black curve in Fig. 5 repre-
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Fig. 5. Scaling collapse of the empirical diameter distributions of the 14
tropical forests. The gray dots are empirical rescaled points (r/rcut, K · P(r)
· r4/3) for each forest, where rcut is the best-fit value of the single
adjustable parameter for each forest, K is the inverse of the
normalization constant of the corresponding P(r) distribution and the
exponent 4/3 = α − 1 due to the choice of logarithmic binning). The
black curve depicts the mean values of empirical points within each bin
of the rescaled r/rcut coordinates, while the red curve represents our
prediction for the scaling collapse curve, e−xλ

.

sents the average value among the 14 forest data points, depicted
as gray dots, along the binned r/rcut axis. The key lesson is that the
tail of the diameter distribution contains valuable information on
the dependence of the metabolic energy of a tree on its diameter.
However, the statistics in the tail of the distribution is poor. In-
terestingly, the scaling analysis links the power law exponent to
the deviation of the distribution from power law behavior for large
diameters.

Scaling of the NPP with Total Biomass
Density ρ of a Forest
We are now ready to study the metabolic scaling of the forest and
its dependence on the dimensionalities of a forest and the trees
comprising it. We switch to the height variable from the DBH vari-
able, r, to obtain the analog of Eq. (9). P̃ is a function different from
the function P of the DBH variable. The specific form of the distri-
bution function arises because the characteristic energy of a tree
of height hcut scales as hDtree

cut . The NPP and the total biomass den-
sity, ρ, scale as averages of a tree’s number of leaves, hDtree , and a
tree’s mass, hDtree+1, respectively, over all the trees in the forest:

NPP ∼
∫ hmax

hmin

hDtree P̃(h)e−
(

h
hcut

)Dtree

dh ∼ h
D forest

cut , (10)

ρ ∼
∫ hmax

hmin

hDtree+1P̃(h)e−
(

h
hcut

)Dtree

dh ∼ h
D forest+1
cut , (11)

where hmin and hmax are the heights of the smallest and largest tree
classes, respectively (we assume that hmin � hmax). In typical cases,
one would expect that hcut is less than or of order hmax and either
of these heights represent the characteristic tree height in the for-
est. For Dforest < Dtree, P̃(h) ∼ hD forest−Dtree−1 yielding NPP ∼ h

D forest

cut , ρ ∼
h

D forest+1
cut , and therefore, NPP ∼ ρD forest/(D forest+1). When Dforest = Dtree,

any P̃(h) ∼ hμ−1
cut h−μ with μ < 1 is satisfactory and when Dforest >

Dtree, none is.
It is intriguing that the B − M scaling of a tree and NPP − ρ scal-

ing of a forest have similar functional forms with the exponent
of the forest being at most as effective as a single tree. It is espe-
cially noteworthy that the NPP of a forest is primarily controlled
by the single length scale hcut. Kempes et al. (26) have also pro-
posed a theory that obtains a scaling relationship between NPP

and the biomass density of a forest. Our analysis is distinct from
their work.

Conclusion
Forests are complex many-body systems spanning multiple
scales. We demonstrate how general trends and patterns emerge
in forests from scale-free behaviors of their various components.
By enforcing geometrical and physical constraints, our analysis of
large bodies of empirical data on metabolic scaling of trees and
forests suggest a notable underlying simplicity despite the high
degree of structural and functional diversity of these key ecosys-
tems. We analytically derive a universal tree size distribution for
tropical forests. Our theory captures the scaling behavior of em-
pirical data from 14 tropical forests.

Our work has implications for understanding carbon seques-
tration and in climate science. The quasi-equilibrium state of a
community depends sensitively on the value of Dforest. When it is
close to 1, the net-primary productivity reaches a limiting value
with a maximal number of leaves and biomass in relation to the
available resources. The amount of carbon stoked within the com-
munity attains its maximum value in this limit. Furthermore, in
this situation, the forest community reaches a quasi-equilibrium
state, with a negligible net flux of carbon dioxide (forest uptake-
emissions). In contrast, when Dforest < 1, the forest behaves as
a sink of carbon dioxide with an overall net community growth
(measured by the increase in the total biomass) with time. The
evapotranspiration of the forest is large as is the dissipation of la-
tent heat. The forest acts as a cooling system for the atmosphere
with a large water cycle characterized by water uptake from the
soil followed by evaporation and condensation. Such information
is vital for understanding the role of forests in mitigating the car-
bon dioxide increase in the atmosphere and in determining the
effects of deforestation causing additional atmosphere warming.
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