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Anomalous Dynamics in Macromolecular Liquids
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Abstract: Macromolecular liquids display short-time anomalous behaviors in disagreement with
conventional single-molecule mean-field theories. In this study, we analyze the behavior of the
simplest but most realistic macromolecular system that displays anomalous dynamics, i.e., a melt
of short homopolymer chains, starting from molecular dynamics simulation trajectories. Our study
sheds some light on the microscopic molecular mechanisms responsible for the observed anomalous
behavior. The relevance of the correlation hole, a unique property of polymer liquids, in relation to
the observed subdiffusive dynamics, naturally emerges from the analysis of the van Hove distribution
functions and other properties.

Keywords: anomalous subdiffusive dynamics; unentangled polymers; Rouse equation; cooperative
many-chain dynamics

1. Introduction

The dynamics of synthetic and natural macromolecular fluids (e.g., polymer melts [1],
proteins [2–5], DNAs [6–8], and cellular microfilaments [9]) is described conventionally
by mean-field theories of single-molecule motion. The underlying assumption in these
approaches is that the relaxation of the surrounding fluid occurs on a different timescale
compared to the dynamics of the tagged molecule. When this hypothesis holds, it is
possible to derive a single-chain equation of motion by projecting, through Mori–Zwanzig
techniques [10], the dynamics of the entire fluid onto a set of slow relevant variables
(here, the coordinates of the tagged chain). The single-chain equation of motion is a
generalized Langevin equation that, in the limit of completely flexible polymers and when
the memory function is discarded, reduces to the popular Rouse equation of motion for
the dynamics of unentangled polymer melts [11–13]. The Rouse model provides a simple
description of chain dynamics for long polymer chains (the degree of polymerization is
assumed to go to infinity), while predicting the scaling exponents of chain dynamics in
remarkable agreement with experiments [1,14]. To introduce a more realistic description
of the polymer chains, the Rouse model has been modified by adopting intramolecular
chain distributions that include local semiflexibility [15], which accounts for the complex
nature of local energy barriers [16,17], and monomer-dependent friction coefficients [18,19].
Furthermore, monomer fluctuations that are harmonic in a body-centered description of
the dynamics, are intrinsically anharmonic in the lab reference system of a Rouse-like
description due to the coupling of internal fluctuations with the molecular rotational and
translational dynamic [20,21]. Summarizing, the simple mean-field formalism of the Rouse
model provides a useful general description of the polymer dynamics, which one can
improve by including a more realistic molecular description than the typical chain of
beads connected by harmonic springs. Nevertheless, the fundamental hypothesis of the
separation of timescales that motivates the Rouse formalism, i.e., a Langevin equation in
the lab-frame for the monomer (beads) coordinates, becomes questionable when describing
systems where the “solute” and the “solvent” relax on the same timescale [22].

The hypothesis of the separation of timescales for the dynamics of one polymer chain
with respect to its surroundings, which is the fundamental hypothesis in the Mori–Zwanzig
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projection operator method, holds for macromolecular systems in dilute solutions of small-
molecule solvents, where the slowest timescale of relaxation is reduced by the small size of
the solvent molecules. However, its validity may require further scrutiny for concentrated
polymer solutions [22], melts [14,23,24], blends [25,26], and particles in crowded cellular
environments [27,28]. For these systems, experimental and computational data show dis-
crepancies with the theoretical predictions, which are conventionally termed “anomalous
dynamics”. In this work, we investigate the microscopic physical picture behind anomalous
dynamics and relate this picture to a theoretical model, i.e., an extended Rouse equation,
for a subensemble of slowly moving, interacting chains undergoing cooperative dynamics,
where “solute” and “solvent” relax on the same timescale [29–31]. We focus on the simplest
realistic macromolecular fluid that exhibits this general behavior, i.e., a melt of short ho-
mopolymer chains well above its glass transition. From the analysis of molecular dynamics
(MD) simulations of unentangled polyethylene (PE) melts, we propose an intuitive physical
explanation for the observed anomalous dynamics.

2. Materials and Methods

We analyzed united atom MD simulation trajectories of unentangled, linear polyethy-
lene (PE) melts with an increasing number of units (N = 10, 16, 30, 44, 66, and 96), using
data from the literature [25,26,32], and from our own simulations [33–36], where the en-
tanglement molecular weight Ne = 130. MD simulations were performed in the canonical
ensemble in a cubic box with periodic boundary conditions in the three dimensions. More
details on the simulations are available in the referenced papers [25,26,33–36]. Here, we

present the results for two systems: N = 30 at density ρ = 0.0317094 sites/
.

A
3

and tempera-

ture T = 400 K, and N = 96 at density ρ = 0.0328194 sites/
.

A
3

and temperature T = 448 K.
Both follow intramolecular Gaussian chain statistics. The first represents a system far from
the entanglement crossover and the second a system close to it. All the samples and the
chain lengths we studied display similar behavior so that the results of this analysis are
general and pertinent to polymer melts. Note that polymer melts with different monomeric
architectures show anomalous dynamics consistent with the results presented here [37].

3. Results

The single-chain Rouse equation correctly predicts the scaling with the degree of
polymerization, N, of the diffusion coefficient, D, and shear viscosity [1,14]. However, the
Rouse equation does not describe the anomalous dynamics observed in the short-time
regime [14,23,38] when one samples the dynamics at time intervals ∆t < τRouse, where
τRouse ∼ R2

g/D is the longest intramolecular relaxation time. Thus, the longest Rouse time
is the time a molecule requires to diffuse a distance comparable to its dimension, Rg. The ra-
dius of gyration, Rg, is defined for long chains (obeying Gaussian statistics) as R2

g = Nl2/6,
and l is the statistical segment length. The Rouse equation is compatible with a freely

jointed chain representation [1], where 〈
→
li ·
→
lj 〉 = 0 for i 6= j and i, j = 1, . . . , N [39]. Experi-

mentally observed anomalous dynamical behavior in unentangled polymer melts includes
(i) subdiffusive center-of-mass (c.o.m.) dynamics, (ii) anomalous segmental diffusion, and
(iii) stretched exponential decay of local and global normal modes of motion. Figure 1
displays the mean-squared displacement of the center of mass of polyethylene, measured
at T = 509 K, density ρ = 0.733 gr/cm3, and with an increasing degree of polymerization,
N = 36 (τRouse = 0.85 ns), N = 106 (τRouse = 21.79 ns), N = 192 (τRouse = 83.69 ns), and
N = 377 (τRouse = 534.08 ns), measured by neutron spin echo (NSE) [40,41]. The symbols
represent the experimental data, and the red dashed lines are the Rouse diffusive c.o.m.
dynamics. Clearly, NSE experiments show that the dynamics at times shorter than the
Rouse longest relaxation time are subdiffusive.
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106 (up triangles), 192 (open circles), and 377 (filled squares). The light-blue lines are the predictions 

of the theory for cooperative dynamics (CD-GLE). The red dashed lines represent diffusive dynam-

ics, i.e., the predictions of the Rouse theory. The vertical bars are the longest Rouse relaxation time. 
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Figure 1. Mean-squared displacement of the center of mass of PE chains with an increasing degree
of polymerization. Symbols are from neutron spin echo experiments for N = 36 (down triangles),
106 (up triangles), 192 (open circles), and 377 (filled squares). The light-blue lines are the predictions
of the theory for cooperative dynamics (CD-GLE). The red dashed lines represent diffusive dynamics,
i.e., the predictions of the Rouse theory. The vertical bars are the longest Rouse relaxation time. Data
are reproduced with permission from reference [41] Copyright © 2008, American Chemical Society.

The direct observation of the center-of-mass trajectories from MD simulations, sampled
for ∆t < τRouse, shows that every single polymer’s c.o.m. undergoes transient periods of
small-amplitude motion followed by periods of large-amplitude displacements (see an
example in Figure 2). At any instant, molecules are partitioned between mobile and less
mobile sub-populations, but the identity of the molecules assigned to either group changes
in time. These features recall the anomalous dynamics observed in undercooled “fragile”
glass-forming liquids. Thus, we apply the conventional analysis of anomalous dynamics
for undercooled liquids to the trajectories from the polymer melt simulations. Note that the
temperatures in the canonical simulations are higher than the glass transition temperature
of linear polyethylene ( Tg ∼ 148 K) [42].

To quantitatively characterize the heterogeneous dynamics as a function of the length
of the time interval, we calculated the distribution of the center-of-mass displacement

for each molecule i, Ri(t) =
∣∣∣∣∣∣∣∣→r i

CM(t2)−
→
r

i
CM(t1)

∣∣∣∣∣∣∣∣, at a given time interval t = t2 − t1,

where, for convenience, we set t1 = 0. The displacement distributions should follow a
single-mode Gaussian function if the center-of-mass dynamics were purely diffusive (i.e.,
a Brownian motion). Figure 2a compares P(R, t) for a melt of C30H62 chains to a sample
chain’s center-of-mass trajectory, where both are analyzed at the same fixed time interval.

We start from a time interval much shorter than τRouse and then we increase the time
interval until we reach the longest Rouse relaxation time (from top to bottom in the figure).

When ∆t is small and corresponding to a fraction of τRouse (here, ∆t = τRouse/73 ∼
10 ps), the motion of the molecule’s c.o.m. alternates from fluctuations in a limited spatial
region, i.e., the so-called “caged” dynamics, to large, directional displacements. For larger
time intervals with ∆t < τRouse, the trajectory is still dynamically heterogeneous, with
alternating periods of confined and free dynamics. The corresponding distributions, P(R,t),
show a non-Gaussian tail in the large-displacement region due to fast dynamical processes,
which is the second signature of heterogeneous dynamics. At ∆t = τRouse ( τRouse ∼ 730 ps
for C30H62), the distribution becomes Gaussian, and the c.o.m. motion becomes diffusive.
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Accordingly, the dynamical heterogeneities are averaged out at this time interval, and the
c.o.m. trajectory follows a Brownian motion.
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Figure 2. (a) Left panels: the MD trajectory of a single polymer’s center of mass in a melt of C30H62

polyethylene chains. The trajectory is sampled every ∆t = τRouse/73, ∆t = τRouse/2, and ∆t = τRouse

(from top to bottom), where τRouse ∼ 730 ps for C30H62. Right panels: the normalized distribution
of center-of-mass mean-squared displacements, sampled at the same time intervals sampled in the
left panels. Lines: the best Gaussian fits of the slow part of the distributions. (b) The MD trajectory
(left) and normalized distribution of center-of-mass mean-squared displacements (right) for a melt
of C96H194 polyethylene chains, shown using the same convention as in Figure 1a. The trajectory
is sampled every ∆t = τRouse/32, ∆t = τRouse/8, and ∆t = τRouse (from top to bottom), where
τRouse ∼ 12 ns for C96H194. Lines: best Gaussian fits of the slow part of the distributions.

Figure 2b displays a similar behavior for the C96H194 sample. The normalized probabil-
ity distribution shows that some molecules undergo a slow diffusive motion, represented by
a Gaussian distribution when sampled at a short time interval. In contrast, others undergo
a fast large-displacement diffusion, corresponding to the tail in the weighted probability
distribution. The nature of the slow diffusive motion becomes clear when one compares
the distributions sampled at increasing time intervals. At ∆t = τRouse (bottom panels),
the polymer c.o.m. trajectory becomes diffusive, and the distribution of displacements is
well represented by a Gaussian function. Note that the anomalous dynamics trajectory
follows a three-dimensional path, which appears to be different from a Lévy flight (not a
heavy-tailed distribution). The trajectory suggests a complex free energy landscape with
several minima, where the molecule tends to localize (small displacement), and which
are separated by energy barriers that the molecule overcomes, thereby undergoing large
displacements. This description agrees with the probability distribution, P(R, t), where one
observes at least two populations, one with molecules undergoing slow dynamics and a
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tail with molecules undergoing fast dynamic. At the given time interval of sampling, the
logarithm of the probability distribution, F(R, t) = −kBT log P(R, t), gives the normalized
free energy as a function of the chain displacement. Thus, the population of chains that
undergo large displacements is smaller and energetically less favorable than the population
undergoing a slow diffusion. Further analysis of the energetics is reported towards the
end of this manuscript, where we show how rare, large-scale displacements correlate with
energetically unfavorable chain stretching for the C96H194 sample.

Note that the trajectories reported here for one chain represent the dynamics of all the
polymers in the simulation box and are similar for all the simulated systems. We observe
that, while the polymers are partitioned into slow- and fast-diffusing molecules when
sampled at short time intervals, for a time interval ∆t ≥ τRouse, the population becomes
uniform, and the system becomes ergodic. The features detected in this analysis are in
accord with the mechanisms of anomalous dynamics observed in undercooled “fragile”
glass-forming liquids [43,44]. However, our fragile systems are not undercooled. The
presence of these dynamical anomalies seems to be related to the competition between chain
connectivity and intermolecular excluded volume interactions, which induces frustration
and an anomalous slowing down of global dynamics even far from the glass transition.
The competition between these two effects is unique to polymer melts and polymers in
concentrated solutions, and is the physical origin of the “correlation hole” in the structure
of polymer melts [45,46].

Figure 3 displays the van Hove distribution function, which at time ∆t = 0 is the
equilibrium radial distribution function, g(r) [10]. At equilibrium, the probability of finding
two monomers belonging to different chains at a distance r becomes 100% successful only
at a distance larger than the polymer radius of gyration. In the meantime, the probability
of finding another polymer at a distance smaller than Rg is finite, i.e., it is not zero. These
observations indicate that polymers interpenetrate inside the “correlation hole,” which is
the spherical volume defined by the polymer radius of gyration, V ∼ R3

g = N3/2l3/63/2.
In that volume, there are statistically n = ρV/N interpenetrating chains, where ρ ∼ 1 in
the monomer density. Thus, each polymer is in contact with n− 1 ∝ N1/2 other polymers
at any time in the simulation.
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τRouse is the time needed for a chain to escape from its correlation hole, completely
renewing its local contacts. It is also the characteristic relaxation time of the dynamical
heterogeneities (Figure 1). Note that a time of the order of τRouse is also needed to equilibrate
a polymer simulation. The related length scale of Rg corresponds to the average size of the
dynamical heterogeneities (~0.8 nm for C30H62 and ~1.6 nm for C96H194).

In Figure 3, the monomer van Hove distribution function shows two different char-
acteristic times of relaxation. The first defines the time necessary for the fluid to lose the
memory of its initial configuration on the local scale, corresponding to an intermolecular
distance r ∼ l, and to a short relaxation, ~20 ps, which is needed for the loss of the fine
monomeric structure. This process is identical for C30H62 and for C96H194, and it is molecu-
lar weight-independent. In fact, on the local scale, the monomer dynamics depend on the
chain stiffness and the local monomer density. Still, it is independent of the polymer length
unless the chain’s length is short and comparable to the persistence length. The monomer
relaxation, however, is sensitive to the specific chemical structure of the monomer, i.e.,
the local conformational energy barriers. Its timescale depends on the chemical structure
of the monomer [15,47]. On the global scale of Rg, i.e., of the correlation hole, the van
Hove function decays on a timescale comparable to τRouse. Thus, this second timescale
is N dependent. The decay is bounded by an intermolecular distance of the order of the
correlation hole, r ∼ Rg.

The effective, time-dependent intermolecular mean force potential associated with
the van Hove function is defined as W(r, t) ∝ −kBT ln G(r, t). This potential couples the
single-chain dynamics with the motion of the chains surrounding the “tagged” chain inside
the correlation hole. The motion of two molecules can be considered to be uncorrelated
only when their dynamics are sampled at a distance larger than the range of the potential,
∆R > Rg, i.e., the correlation hole, or on a time interval ∆t > τRouse. Because τRouse is
also the longest intramolecular relaxation time, this simple analysis suggests that there
is no separation of timescales between the relaxation of a given macromolecule and the
relaxation of its surroundings. Thus, the leading hypothesis that justifies the derivation of
the generalized Langevin equation, and the Rouse equation, from the Hamiltonian of the
melt by Mori–Zwanzig projection operator is not fulfilled in the case of isotropic, uniform,
one-component liquids, including polymer melts.

Thus, the dynamics of a given chain is coupled through a time-dependent potential
of mean force to the motion of its surrounding matrix in the timescale ∆t ≤ τRouse. This
observation explains the inability of the mean-field Rouse equation to correctly predict
the dynamics in the timescale shorter than the time necessary for the coupling potential
to decay to zero. Therefore, the following natural step is the derivation from the Liouville
equation of the dynamics of a group of interacting chains, where the motion is coupled by
the time-dependent potential of mean force just observed. If one follows these steps and
solves the Langevin equation for a group of n′ interacting polymers, one can derive a set
of coupled Rouse-like equations that predict anomalous dynamics [29–31]. In this model,
which we called the cooperative dynamics generalized Langevin equation (CD-GLE), there
is one free parameter, n′, which is optimized by direct comparison with data of c.o.m.
mean-squared displacement. When the theory is compared with data of mean-squared
displacement from simulations or from experiments, one finds that the optimal number
of correlated chains obeys the predicted scaling of n′ ∝ N1/2, which is in agreement with
the simple analysis just presented. For example, for the data in Figure 1, one finds that for
N = 36, n′ ∼ 2, N = 106, n′ ∼ 4, N = 192, n′ ∼ 9, and N = 377, n′ ∼ 12 [41].

Finally, we analyze the mechanism that leads to the interchanging between slow-
and fast-diffusing center-of-mass motion. We see that the fast cooperative dynamics
involve long-range unidirectional center-of-mass displacements that are correlated with
the appearance of intramolecular polymer configurations having a high percentage of trans
(stretched) conformations (~40% of bonds in the chain, as shown below). Thus, we calculate
the square end-to-end distance for the average conformation assumed by each molecule i
during a given time interval ∆t.
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In Figure 4, we plot the joint distribution of center-of-mass displacements and the
averaged square end-to-end distances for the time interval that maximizes the contribution
due to fast dynamical processes, as determined from Figure 2 (∆tmax = τRouse/2 for C30H62
and ∆tmax = τRouse/8 for C96H194). The different colors represent the contours of the
three-dimensional normalized distribution function. The melt of short polymer chains
(Figure 4a) clearly shows that fast dynamical relaxation is correlated with the appearance
of persistent all-trans configurations. This correlation cannot be explained by the Rouse
model, where center-of-mass diffusion and internal dynamics (stretching) are rigorously
uncoupled when the friction is uniform along the chain (non-uniform friction is known to
couple rotation and translation dynamics with internal fluctuations).
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Figure 4. Contour plots of the normalized joint distribution for center-of-mass displacements and
averaged square end-to-end distances: (a) for a melt of C30H62 polyethylene chains during a time
window ∆tmax = 365 ps; (b) for a melt of C96H194 polyethylene chains during a time window
∆tmax = 1500 ps. The encircled region highlights the presence of persistent stretched configurations
that facilitate the enhanced chain displacement.

In the C30H62 sample (Figure 4a), the mean-squared end-to-end distance is < R2
ete >=

480
.
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2
, while a fully extended chain would have < R2

ete > extended = (30·1.54)2 .
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correspond to ∼ 36% of chain stretching.

Completely stretched configurations are entropically unfavorable and become less
probable with increasing polymer lengths. In fact, for C96H194 the appearance of stretched
configurations becomes a rare event, as exemplified by the isolated group of dots encircled
in Figure 4b, which parts from the main distribution. This observation highlights the
presence of microscopic mechanisms of dynamical relaxation in polymer melts that become
increasingly suppressed with the increasing polymer molecular weight.

An analysis of the molecules undergoing fast diffusion shows that they follow coop-
erative mechanisms of motion, both inter- and intramolecular in character. Large-scale
intramolecular displacements involve a string-like motion of monomers comprising the
polymer chain, which corresponds to local chain stretching, as shown in Figure 4. Fast
intermolecular cooperative dynamics can occur in one of two ways: (i) a single polymer
undergoes a large displacement to a nearest-neighbor position, while a second polymer
immediately replaces its initial position with the two chains following each other (a mecha-
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nism analogous to the one observed in undercooled colloidal fluids); or (ii) neighboring
polymer chains may also diffuse by stretching and moving together, following parallel
trajectories to final neighbor positions (a new mechanism pertaining to polymer fluids).
Given that fast motion occurs via the partial stretching of the chains, which is entropi-
cally unfavorable, the pairing of two chains facilitates intermolecular packing, increasing
the entropy of the surrounding chains by freeing the free volume in a mechanism that is
reminiscent of a depletion effect.

At higher molecular weights, the effect of entanglement takes place, where the dy-
namics present scaling exponents different from the unentangled dynamics [1]. Still, in the
motion occurring “inside the tube,” one can detect the same anomalous chain dynamics
observed in unentangled chains with a subdiffusive c.o.m. motion. The application of
a theory for many chains interacting through a time-dependent potential of mean force
where entanglements are present shows a remarkable agreement with the relaxation of the
dynamic structure factor, as measured by experiments of the neutron spin echo [48–50].

4. Conclusions

The microscopic analysis of simulation trajectories presented here supports the concept
that the observed anomalous dynamics of a single chain in a polymer melt is related to the
presence of interacting and interpenetrating chains inside the chain’s correlation hole. The
distinct part of the van Hove function shows that intermolecular contributions are relevant
in the global single-chain dynamics in polymer melts because of the mean-force potential.
This observation suggests that single-chain models, such as the Rouse model, may be
limited when describing chain dynamics in the range of timescales and length scales where
the intermolecular potential of mean force is active (∆t ≤ τRouse). In fact, the range and
timescale of the time-dependent intermolecular potential of mean force define a region in
space and time where the onset of dynamical heterogeneities is detected. We also observe
novel mechanisms of fast intermolecular cooperative dynamics that involve chain stretching
and, thus, are specific to polymer melts. These mechanisms are coupled to entropy-sensitive,
conformational transitions from coiled to stretched polymer configurations.

The observed separation of timescales between slow- and fast-relaxing domains in the
short time regime justifies the projection of the dynamics of the fluid onto the coordinates
of a group of slow, interacting molecules, obtaining, in this way, a set of coupled equations
of motion for the region of slowly rearranging dynamics that reproduce well the observed
anomalous dynamics [49,50]. The analysis presented here formally connects the observed
anomalous dynamics to microscopic mechanisms of heterogeneous dynamics and provides
a consistent picture of the physical phenomena underlying the observed anomalous, slow
center-of-mass diffusion in polymer melts.
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