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Spatialization of Time in the
Entorhinal-Hippocampal System
Troy M. Houser*
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The functional role of the entorhinal-hippocampal system has been a long withstanding
mystery. One key theory that has become most popular is that the entorhinal-
hippocampal system represents space to facilitate navigation in one’s surroundings. In
this Perspective article, I introduce a novel idea that undermines the inherent uniqueness
of spatial information in favor of time driving entorhinal-hippocampal activity. Specifically,
by spatializing events that occur in succession (i.e., across time), the entorhinal-
hippocampal system is critical for all types of cognitive representations. I back up this
argument with empirical evidence that hints at a role for the entorhinal-hippocampal
system in non-spatial representation, and computational models of the logarithmic
compression of time in the brain.

Keywords: place cells and time cells, grid cells, concept cells, temporal context, cognitive maps, hippocampus,
entorhinal cortex

INTRODUCTION

It has been almost 20 years since the first report of “concept cells,” following single unit recordings
of cells in the medial temporal lobe that fired selectively to different concepts (Quiroga et al., 2005).
Specifically, these cells fired in response to participants being presented with pictures referring to
the same concept, even when the pictures shared no sensory information (Quiroga et al., 2005;
Quiroga, 2012; Rey et al., 2020; Quian Quiroga, 2021). From these data, it has become clear that
structures in the medial temporal lobe, such as the hippocampus and entorhinal cortex, do not only
care about representing the environment. Traditionally, this is the function that the hippocampus
and surrounding cortices have been proposed to have. In this Perspective, I will first explain how
neuroscience and psychology came to that conclusion. Then, I will briefly review nascent findings
for non-spatial representation in the entorhinal-hippocampal system. Finally, I will introduce the
idea that cognitive maps depend on temporal continuity by bridging the philosophy of Henri
Bergson and computational models of logarithmic time in the brain.

WHAT IS A COGNITIVE MAP?

The idea that the hippocampus and surrounding cortices represent the environment emerged from
the seminal work of Edward Tolman, who showed that rats could make accurate spatial inferences.
For example, in the sunburst maze experiment of Tolman et al. (1946a,b), rats were given access to
a single path that changed direction three times before leading to a goal box. Importantly, the goal
box was close to the starting point but could only be reached via the roundabout path. Then, the
authors blocked the former path and introduced 18 new paths, one of which led directly to the goal
box. Most rats chose correctly, despite having no experience with these new paths. Tolman (1948)
suggested that animals form representations of the spatial layout—cognitive maps—to flexibly
navigate their surroundings.
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Neurophysiological support for cognitive maps came with
the discovery of place cells in the hippocampus (O’Keefe and
Dostrovsky, 1971) that fire when an animal occupies a specific
spatial location. Serial activation of place cells was found to
represent adjacent places (Muller and Kubie, 1989), making
them a likely candidate for facilitating navigation (Buzsáki and
Moser, 2013). Thus, O’keefe and Nadel (1979) posited that the
hippocampus is the neurophysiological instantiation of cognitive
maps. This sparked considerable debate as to what a cognitive
map actually is. At the time, many treated a cognitive map as
equal to other stimuli (Estes, 1955a,b, 1960; Rescorla, 1967, 1968,
1969), but this view quickly fell out of favor in light of findings
that behavior could become conditioned to background cues
(Jones and Skinner, 1939; Penick and Solomon, 1991; Phillips and
LeDoux, 1992, 1994; Pavlov, 2010), or tonic stimuli (Konorski,
1967; Flynn, 1969). However, this still begged the question,
“Which background cues?”

The radial arm maze experiment (Olton and Samuelson,
1976; Olton, 1987) provided evidence that it was not specific
stimuli that induced cognitive map-like representation in the
brain, but the spatial relationships between stimuli, or the global
configuration (Chun and Jiang, 1998). The radial arm maze
consists of a circular chamber with eight arms extending from
it. At the end of each arm is a food reward. Attached to the
walls just beyond the ends of the arms are (extramaze) visual
cues. Rats are tested for efficiency in completing the maze, which
consists of collecting each reward. Thus, the most efficient route
is to visit each arm once and none repeatedly. As a result, this
task relies on memory for which arms were previously visited.
When the visual cues are rotated, so that each cue maintains its
relationship with all the other cues, performance in the maze does
not change; however, when the cues are transposed (i.e., when
the spatial relations change), performance is disrupted (Suzuki
et al., 1980). These studies revealed both that cognitive maps are
critical for memory and that they are constituted by relationships
between stimuli.

If the hippocampus, which supports cognitive map learning,
creates global configurations of any set of stimuli, why would
cognitive maps be made only for spatial environments? That
is, the brain makes connections via Hebbian learning (Attneave
and Hebb, 1950), which is associative. If associations in the
brain can represent spatial relations, they should also be
able to represent other types of relations. Indeed, evidence
implicates the hippocampus in encoding these associations.
One study found greater hippocampal activity for remembering
correct details associated with words (Eldridge et al., 2000).
Another study found that hippocampal activation increased
when participants associated a person with a house (Henke
et al., 1997). Face-name associations have been shown to elicit
greater hippocampal subfield activation (Zeineh et al., 2003).
These are just a few examples of the hippocampus associating
non-spatial information. Perhaps, the hippocampus cares more
about associations in general than spatial relations in particular
(Eichenbaum et al., 1992, 1994, 1999, 2007; Eichenbaum, 2004).
This notion is consistent with the hippocampal index theory
(Teyler and DiScenna, 1986; Teyler and Rudy, 2007; Goode et al.,
2020) that says that the hippocampus is a content-free index

of associations between sensory information supported by the
neocortex. Thus, the hippocampus can support spatial, temporal,
conceptual, etc., relations (Eichenbaum, 2014, 2017a,b,c; Howard
et al., 2014; Howard and Eichenbaum, 2015; Buzsáki and Tingley,
2018). Empirical data supporting this notion shows that transitive
inferences depend on the hippocampus (Dusek and Eichenbaum,
1997). Transitive inference is a form of deductive reasoning that
allows one to infer A < C from learning A < B and B < C. It
is also a form of higher-order conditioning (Bouchekioua et al.,
2021), initially shown by Pavlov (2010) and Brogden (1939).
To illustrate, a dog may learn that a bell signals food. Then,
the food is replaced with a light. Finally, the light alone is
shown and the dog salivates, despite having never experienced
the light with the food. Remarkably, transitive inference can
explain cognitive maps without any recourse to spatial relations.
For example, in the sunburst maze experiment, rats traversed
three arms before reaching the goal box (Tolman et al., 1946a,b).
Each of these arms can be represented as a vector encoded
by a population pattern of neural firing rates (Pouget et al.,
2003). Thus, computing the location of the goal box relative to
the starting point becomes a matter of simple vector addition
and subtraction, which is also the basis for path integration
(Mittelstaedt and Mittelstaedt, 1980; Wehner and Srinivasan,
1981; Müller and Wehner, 1994; Blair et al., 1997; Sharp, 1999;
Etienne and Jeffery, 2004; McNaughton et al., 2006; Sharp and
Koester, 2008; Savelli and Knierim, 2019; Bicanski and Burgess,
2020; Stangl et al., 2020; Bouchekioua et al., 2021).

If aspects of the world (i.e., single variables) can be represented
by the activity of a population of neurons (Pouget et al., 2000,
2003; Panzeri et al., 2015; Saxena and Cunningham, 2019; Ebitz
and Hayden, 2021), there is no reason to assume that those
aspects have to be spatial. Indeed, a significant number of recent
studies have found that the entorhinal-hippocampal system is
critical for representing conceptual information, as anticipated
by Quiroga et al. (2005). Specifically, the entorhinal-hippocampal
system enacts a transformation of categorical to dimensional
data, making this system the locus for prototypical knowledge
(Zeithamova et al., 2012; Bowman and Zeithamova, 2018; Mack
et al., 2018; Bowman et al., 2020). This category-to-dimension
transformation idea is akin to the hippocampus as an associator
of discontiguous events (Wallenstein et al., 1998), which has been
largely confirmed with the discovery of time cells (MacDonald
et al., 2011; Kraus et al., 2013; Eichenbaum, 2014; Salz et al.,
2016). Time cells fire during the temporal gaps between salient
events. Specifically, their activity tiles the gap to create evenly
spaced timestamps.

Evaluating information within the context of a
representational dimension is what enables us to make
inferences, generalize, and abstract. It is at the heart of higher-
order cognition. Dimensions require metrics so that information
can be assessed relative to dimension axes. Since their discovery,
grid cells have been posited to form a metric space in the medial
entorhinal cortex (McNaughton et al., 2006; Giocomo et al., 2011;
Dang et al., 2021). Grid cells fire at the vertices of tessellating,
equilateral triangles representing space (Hafting et al., 2005).
Like the hippocampus, however, grid cells are also not specifically
tuned for space, as their properties have been described with

Frontiers in Behavioral Neuroscience | www.frontiersin.org 2 January 2022 | Volume 15 | Article 807197

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


fnbeh-15-807197 December 31, 2021 Time: 13:13 # 3

Houser Spatialization of Time

FIGURE 1 | Encoding and retrieval of events in neural population activity via temporal context cells. (A–C) Encoding. Panels (A) through (C) depict the exponential
diffusion of stimulus traces through a population of neurons. Within each panel, the left column is the stimuli active at a given timestep (t0–t2) and the right column is
an internal representation of that time step (t0*–3*). Each node indicates a stimulus and arrows connect stimuli to their internal representations as represented by
neural populations. If we focus on just the blue trace [i.e., the first stimulus, present in panel (A)], we see that is spreads out, or diffuses with time, contacting more
and more nodes with each time step. The same diffusion process occurs for the green trace, but to a lesser extent given that it was only presented at the second
time step [panel (B)]. Critically, with the diffusion of a stimulus trace comes weaker individual traces, which corresponds to equal areas under their distributions.
(D) Retrieval. Panel (D) depicts probability densities for three populations of neurons each with varying exponential decay rates. Thus, the blue trace from panels
(A–C) is more spread out and causes activation at time 0 (the present moment) with low probability. Inset shows location and scale parameters (mu and lambda,
respectively). A crucial prediction that this distribution makes is that, as time shifts away from 0, the traces with longer decay rates will have higher probabilities for
activation, which has been shown in hippocampal time cells that have wider time fields later in a delay (Salz et al., 2016).

computational principles (Dordek et al., 2016; Stachenfeld et al.,
2017; Baram et al., 2018; Behrens et al., 2018; Gershman, 2018;
Momennejad and Howard, 2018; Bicanski and Burgess, 2019;
Mark et al., 2020; Momennejad, 2020; Rueckemann et al., 2021),
specifically, as a (basis) set of vectors that can linearly combine
to represent any point in two dimensions. This “grid code” has
since been found to facilitate non-spatial representation, such as
for virtual (Doeller et al., 2010), imagined (Bellmund et al., 2016;
Horner et al., 2016), conceptual (Constantinescu et al., 2016),
visual (Julian et al., 2018; Nau et al., 2018), odor (Bao et al., 2019),
egocentric (Moon et al., 2020), social (Park et al., 2021), semantic
(Viganò et al., 2021), and contextual (Julian and Doeller, 2021)
information in humans.

Consider the recent study by Park et al. (2021), which also
revealed that the grid code helps to make inferences. Participants
learned pairs of 16 faces (AB) and how they compared along the
dimension of popularity (e.g., A < B). Then, they learned how the
same faces differed along the dimension of competence. Together,
the faces formed a 4 × 4 grid that differed along popularity and
competence axes (i.e., dimensions). While scanned, participants
were shown a face and subsequently shown a pair of faces with the
task of inferring which of the pair would make a better business
partner for the first face. When comparisons featured an angle
between faces on the 4 × 4 grid that aligned with the grid axes
of grid cell activity, the entorhinal cortex displayed significant
modulation. These findings indicate that participants used the
grid code to navigate the non-spatial (i.e., social) cognitive map.

WHAT IS TEMPORAL CONTEXT?

The entorhinal-hippocampal system thus seems to only
worry about space because it is worried about continuity,
and our construct for space is intimately bound up with
continuity. However, it is important to note that space, as it is

experienced, is discontiguous. Everywhere we turn, we will see
the sharp contours outlining objects. To imagine an empty and
homogenous container in the absence of all objects is exactly
that: imagination. Instead, continuity can be derived from time,
which is an experienced phenomenon. Moreover, time can be
accurately inferred by measuring the accumulation of changes
along representational dimensions. I suggest that the brain co-
opts its computational mechanisms used to represent the passage
of time to represent dimensions of any type of information.
Firstly, how does the brain represent time?

Shankar and Howard (2010, 2012) put forth a model that
consists of two feedforward neural network layers that may
explain how the brain represents dimensional information, such
as intensity, time, space, and, as discussed, concepts. The authors
label each layer, respectively, as the timing mechanism and
the associative learning mechanism. The timing mechanism is
initiated by a vector of neural activity that activates a sequence
of leaky integrators (Jaeger et al., 2007), or population of cells
that have varying time constants (i.e., rates of decay; Figure 1).
These cell populations are similar to filters for exponentially
decaying frequencies, whose activity enacts the Laplace transform
(Shankar and Howard, 2010, 2012; Howard et al., 2014, 2015a,b;
Howard and Shankar, 2018). Recent studies have confirmed
the existence of the timing mechanism with what have been
deemed “temporal context cells” in the entorhinal cortex (Tsao
et al., 2018; Bright et al., 2020). The associative learning
mechanism performs the inverse Laplace transform to create,
essentially, a number line of time, represented by time cells
whose receptive fields are logarithmically compressed (Howard,
2018; Howard and Shankar, 2018). Logarithmically compressed
representations of time have been found in hippocampal time
cells (Cao et al., 2021).

The logarithmic compression of time is intuitive for at least
two reasons: (1) it is reflective of the Weber-Fechner law that
is ubiquitous in perception, and (2) it is an efficient way to
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represent dimensionality. The Weber-Fechner law says that there
is a logarithmic relationship between stimulus intensity and
perception (J and Fechner, 1889). For example, it is easier
to discriminate 1 dot from 2 dots than 100 dots from 101
dots, despite their differences being the same. For episodic
memory, this means that there will be greater resolution for
things that happened in the recent past than the distant past.
Moreover, logarithms themselves are an efficient way to represent
large quantities, such as dimensions, which are infinitely large.
Breaking a number down by its base conveys this idea clearly:
967 = (9 × 102) + (6 × 101) + (7 × 100). Here, 967 is represented
using base ten means, where base corresponds to the value of
each digit. Thus, each temporal context cell has a base that
corresponds to the width of its receptive field (for time), i.e., its
time constant or decay rate. According to Shankar and Howard
(2010, 2012), there should be more temporal context cells with
narrow receptive fields centered on the present, corresponding
to greater representational resolution, analogous to the clustering
of cells with narrow tuning curves in the fovea (Howard,
2018; Howard and Hasselmo, 2020). Notably, the population of
temporal context cells supporting a representation is a priori
indicative of an event’s timing. The same way that retinal activity
a priori indexes location in space by way of the organization of
retinal ganglia, the decay rates of temporal context cell activity
indexes time. This means that what and when information is
decodable from the entorhinal cortex.

While this theory of temporal context is still in its infancy,
a number of predictions can be made according to its
computational principles. For example, in this framework,
time becomes congruent with distance, and as such, spatial
representations should have more cells underpinning nearby
locations. Indeed, border cells, found in the medial entorhinal
cortex fire maximally when animals are close to the boundary
of an environment, with rates that decay with increasing
distance from said boundary (Solstad et al., 2008). The current
theory predicts that these firing rates decay exponentially with
distance. This distribution of time coverage by individual
temporal context cells has also been observed in place cells
(Mizuseki et al., 2012). How temporal context fits with the
work surrounding theta cycles is an interesting next step as
well. That is, what are the differing predictions made by either
mechanism for time? Can one mechanism subsume the other
in explanatory power? An interesting hypothesis by Foster and
Wilson (2006) suggests that reverse replay, which is associated
with theta sequences, is associated with a gradually decaying
dopamine signal. This idea could potentially link temporal
context with decision-making and reward seeking behavior.
Moreover, head direction cells which are crucial for the brain’s
navigation system may control attention to a specific location
along the internal timeline that the hippocampus constructs.
This hypothesis is highly speculative but nevertheless reflects
the head direction cell function of orienting in (abstract)
space (Bicanski and Burgess, 2020). Finally, a recent study
found that unipolar brush cells in the cerebellum adhere to
logarithmically compressed basis functions associated with a
gradient of metabotropic signaling (Guo et al., 2021), suggesting
that regions outside the medial temporal lobe that must

keep track of time may utilize similar mechanisms (Ranck,
1979). This diverse range of applications of the logarithmic
compression of time suggests that all dimensional data—
spatial, temporal, conceptual, etc.,—is governed by the same
computational principles.

THE SPATIALIZATION OF TIME IN THE
BRAIN

Assuming that the entorhinal-hippocampal system converts the
logarithmic relationship among temporal context cell activity
into the serial positions of time cells, it makes sense that the
same system supports cognitive map learning. Logarithmically
compressed time in the brain enables representation of Bergson;
Bergson; Bergson’s (1889; 1908; 1911) duration. Duration was
a construct that the philosopher, Henri Bergson, formulated
to distinguish phenomenological time from mathematical time.
Mathematical time is a succession of points. There is always a gap
between the points, no matter how small, which Bergson argued
cannot convey the continuity of bodily experience. As we have
seen, our brains manage to simulate continuity via transforming
temporal context into serial order. This notion can also be

FIGURE 2 | Conceptual framework for the associative mechanism. This figure
is meant to illustrate the associative mechanism of temporal context.
Specifically, we have a Laplace distribution of six different exponentially
decaying stimulus traces. The eye icon represents the mind’s eye that looks
back on an event that happened in the past. The arrow cutting across the
different stimulus traces shows how the Weber-Fechner law manifests in a
Laplace distribution: stimulus traces further in the past become clustered
closer together, making it more difficult to tell them apart. This distribution is
converted to a rank order of sequential memory, enacted by time cells. Rank
order can be computed a number of different ways, one of which would be to
compute the similarity between each trace and the present (or, meaningful
zero marker). Thus, in the figure, traces further from the eye indicate greater
dissimilarity, and are thus ranker further in the past.
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represented with a hierarchical (Bayesian) framework, where
higher levels contextualize lower levels (Kiebel et al., 2008;
Ramstead et al., 2018; Badcock et al., 2019; Friston, 2019; Cao
et al., 2021). In this framework, like the timing mechanism of
Shankar and Howard (2010, 2012), time is not only successive
because each succession is reflective of (i.e., contextualized by)
the temporal context that gradually drifts. The computational
principles of duration can be used for any continuous
representation, e.g., cognitive maps. Call this the “spatialization
of time” (Bergson, 1889; Buonomano and Maass, 2009;
Buonomano, 2017). The spatialization of time corresponds to
treating any timepoint as if it were in the present, so that
all timepoints can be represented simultaneously. In other
words, it is the idea that things that occurred in succession
can be represented in the brain simultaneously. The present
becomes a “meaningful zero,” by which the brain can measure
representational distance (Figure 2). More dissimilarity means
greater distances. Then, dissimilar representations get ranked
by associating with time cells that enact serial position. This
associative mechanism is a simple chaining tool that reflects
discrete successions that nevertheless maintains the continuous
(i.e., logarithmically compressed) structure in the background.
Discrete successions are of course more easily recognized, and
hence, serve many adaptive functions, which is probably why
our brain adopted such computational strategies. Moreover,
this systematic transformation of phenomenological time to
mathematical time in the brain can be used for any continuous
information. That is to say that cognitive maps (Tolman, 1948;
O’keefe and Nadel, 1979; Behrens et al., 2018), cognitive spaces
(Gärdenfors, 2015; Bellmund et al., 2018), transitive inference
(Wallenstein et al., 1998; Eichenbaum, 2014), memory indexes
(Teyler and DiScenna, 1986), concept cells (Quiroga et al., 2005;
Quiroga, 2012), and cognitive representations in general are all
underpinned by the temporal context becoming spatialized in the
entorhinal-hippocampal system.

CONCLUDING REMARKS

Since the discovery of concept cells by Quiroga et al. (2005),
the capacity of the entorhinal-hippocampal system for cognitive
representation has been a perplexing issue. The search for a

unifying theory to explain this system’s function has an even
richer history. The discovery of place cells led to its hypothesized
role in spatial representation, which remains the dominant
view. However, relational learning, such as transitive inference,
has become a solid contender. Further, concept, or prototype,
learning may become popular soon, given the growing evidence
of this system’s involvement in navigating so-called conceptual
spaces. Subsuming, but not necessarily refuting, all of these
hypothesized roles is that of transforming continuous time
into successive time points. This idea was first put forth by
Henri Bergson, who was a forerunner to the phenomenological
philosophies of Husserl, Heidegger, and Merleau-Ponty. Since
then, behavioral and computational neuroscience has provided
substantial support for such a transformation occurring in
the entorhinal-hippocampal system. This framework has the
advantage of unifying decades of medial temporal lobe research
with psychophysical theories of perception.
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