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This dissertation is concerned with the study of
certain lrreducible representations, over the field of
complex numbers, of finite groups of Lie type, and especi-
ally with the characters afforded by these representations.
The methods are bagsed on the theory of blocks with cyclic
defect groups for certain primes different from the
characteristic, called special primes, for which the groups
have cyclic Sylow subgroups.

To be more specific, let T be a maximal torus of a
finite group G of Lie type, whose order is divisidle by at
least one special prime. Then a family of irreducible

characters of G 1s constructed from the local character
theory of G relative to T. In other words, the characters

in the family are parameterized by certain characters of
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Ng(T).

Chapter I 1s a collectlion of the results on flnite
groups of Lle type, special conjugacy classes, block theory,
and the Deligne-Lusztig theory which are used later, In
chapter 1I, special primes are shown to exist for a wide
class of tori.

In chapter III, using Brauer‘s theory of blocks as
developed further by Dade, the corresponding families of
characters are shown to exist. Suzukil's theory of special
conjugacy classes (as described by G. Higman) is then
employed to discuss the compatibillity of the block theories
relative to distinct special primes, and to investigate the
properties of the irreducible characters in the above
families., Indeed, if T is a maximal torus of G whose order
1s divisible by at least one special prime, and if 6 is an
irreducible representation of T, set N = NG(T) and e =
[Ng:T], where Ny is the stabilizer of © in N, and let X be.
the set of elements of T whose orders are divisible by some
speclal prime. Then the above methods are used to show that

there exlist irreducible characters Xl.....X of G and signs

e
El,...,Sé such that for each 1, Xi,x = (€1/e)eN]X. Charac-
ter values for the characters X, are alsoc given, up to a
particular congruence, on the other elements of T. This

includes, of course, a result on character dsgrees.

One of the primary objectives In the study of the

representations of finlte groups of Llie type is the



decomposition of the Deligne-Lusztlig virtual characters in
cases where this has n&t yet been acbomplished. This 1s the
subjJect of chapter IV, If G ils 2 connected reductlive affine
algebraic group giving rise to & finite group G of Lie type,
and 1f T 1s & maximal torus of G glving rise to a maximal
torus T of G such that |T| is divisible by some special
prime, then using the previous notation, the result obtained
is that R%(e) = 21:1 £,Xy+ The Deligne-Lusztig theory is

then used to sharpen some of the results of chapter III,
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NOTATION

We establish here some notational conventions which
we shall use throughout.

If X apd Y are sets, we shall denote the containment of
X as a subset of Y by X £ Y.

Let G be a group. G¥* wlll denote the set of non-
trivial elements of G. If x, g € G and X £ G, then g'lxg
(respectively {g'lygz Yy € X}) will be denoted exponentially
by x8 (respectively X&). If r is & prime number, then we
shall call X ¢ G an r'-element of G if the order of X in G
is relatively prime to r. If G acts on a set C and ¢ & C,
then by StabG(c) we shall mean the isotropy group
{g € G: g¢ = c}.

Assume now that G is a finlte group. Then by Irr(G)
we shall denote the set of irreduclble characters of G over
C. If G happens to be abelian, then Irr{(G) has a natural
group structure (under which 1t 1s isomorphic to G)., We
shall emphasize this by using the symbothA to denote this
group. Let H be a subgroup of G, let g € G, and let X be a
clags function of H over C. Then by X% we shall mean the

class function of H® defined by

AE(h8) = A(h)

for all h ¢ H. Of course if X € Irr(H), then A& ¢ Irr(H8).



Let K be a fleld. We shall denote by K¥* the group of
units in K. Let G be an affine algebralc group over K.
Then G° will denote the connected component of the identity
element of G. If F1G —+ G 1s a morphism of affine algebraic
groups and H is an F=stable closed subgroup of G, then by gF
we shall mean the set {h € H: th) = hi.



CHAPTER I. PRELIMINARIES FROM GROUP THEORY
AND REPRESENTATION THEORY

81, Finite Groups of Lie Iype

Given a prime number p and a positive integer %, set
a4 = p. and denote by F, the finite fleld of order q, viewed
as a subfield of 1its algebrailec closure K.

Let G be a connected reductive affine algebraic group
over K with affine coordinate ring A, and let %Fqé= A be an
Fq-rational structure such that the induced Frobenius map
F1G —7G 1s a homomorphism of abstract groups. It follows
that F is a bljective morphism of algebraic groups such that
1ts fixed point set Gp 1s finite. In particular, Gp is 2

finite group, which we denote by G.

(1,1) DEFINITION. Any group G arising in the above

manner 1s called a finite group of Lie type.

We retain the Ppreceding notation throughout. It 1is
shown by Springer and Steinberg in [13] that F-stable maximel
torl of G exist, and that If x € G 1s semisimple and F(x) = x,

then there exists an F-stable maximal torus of G contailning x.

(1.2) DEFINITION. Let T be an F-stable maximal torus of

G. Then the abellan subgroup Tp of G = Gp 18 called a



maximal torus of G.

The maximal torl of G can be classified in the following
manner. Let T*' be an F-stable maximal torus of G, set N' =
Ng(T*), and let W(T') = N'/T* be the corresponding Weyl group.
Clearly G permutes its maximal torl by conjugacy. Denote by
D the set of orbits under this action. Now since T' is
F-stable, F induces in the obvious manner an endomorphism of
W(g'), which we shall continue to denote by F. We say that
two elements w1, w2 ¢ W(T') are Faconjugate Af there exists
an element W4 € W(I') such that wp = w3w1F(w3)'1.

F-conjugacy 1s clearly an egulivalence relation, and we denote
the set of equivalence classes by C. Given w = n T’ ¢ W{T'),
where n, ¢ N*, Lang's Theorem (see [13]1) guarantees the
existence of an element g &€ G satisfying n, = gF(g)'l. It
follows easily that T = g'lg'g is an F-stable maximal torus
of G, hence we obtain a maximal torus T = Ip of G. It can be
shown that the G-conjugacy class of T depends only upon the
F-conjugacy class of w, Our discussion therefore produces a
well-defined function f:C —D, which can in fact be shown to
be biljective. In the following definitlon we abuse the

language slightly since T is unigue only up to G-conjugacy.

(1.3) DEFINITION., T is called the maximal torus of G

obtained from T*' by twisting by w & W(T*).

If F induces the trivial endomorphism on W(T*), then



the F-conjugacy classes of W(T*') are just the usual conju-
gacy classes, so in this case the meximal tori of G are (up
to G-conjugacy) in biljective correspondence with the
conjugacy classes of W(T'). Suppose we have singled out a
fundamental system in the set of roots relative to I'. If
J £ W(T') 1s the corresponding set of fundamental reflec-
tions, then (W(T°), J) 1s a Coxeter system, so we may speak
of the conjugacy class of Coxeter elements 1n W(T') (see

Bourbaki [17).

(1.4) DEFINITION. Suppose F acts trivially on W(T'),
and let w € W(g') be a Coxeter element, If T 1s a maximal
torus of G obtalined from T' by twistlng by w, then we call

T the Coxeter torus of G relative to W(T').

In chapter II we shall need the following result,

(1.5) PROPOSITION. Let T = Tp be & maximal torus of

G = EF obtalned from T' by twisting by w = nT' € W = W(E'),

where n € Ng(T'). Assume that

(1-6) NE(E)F = NG(T)n

and let

Ty = {tl € T*s n‘ltln = F(tl)},

Nl = {n]_ & NG(!;.)I n-lnln = F(nl)}l

and



C*'(w) = {wl E Ws wleﬁwi)'l = W},

Then T4 1s a normal subgroup of Nji, and the following
conditions holds

(a) There exists an element & ¢ G such that aTa-l = Ty
1

and aNa™" = Ny.
(b) Ng(T)/T = Ny/T4 £ C*(w),

(c) If F acts trivially on W and Cy(w) = {w), then

there exists an element nq € Ni such that N{/Ty = <p1T1> and

n1~ltyng = P(ty) for all ti € T4.

PROOF. Clearly T; 1s a normal subgroup of Nye In view
of (1.6), (a) and (b) follow from the discussion in chapter
II of Srinivasan [14].

As for (e¢), suppose that F acts trivially on W and that
Cyl{w) = {(w). Then C'(w) = {(w), so by (b), Ny/Ty & <w>.
Choose ny € Ny such that n,T; generates Ny/T1 and set w; =
nyT* in W. Then n'lnln = F(ny) implles that w'lwlw = F(wq)
= Wy, so that wy lies in Cy(w) = {w). Moreover, the order
of Wy in W is equel to the order of n;Ty in Ny/T3, so {wj) =
{w?. It follows that we may choose ny € Ny in such a way
that Ni/Tq = (niTq) and n;T* = w = nI', Thus, for all

tl & Tl' nl-ltlni = n'ltln = F(tl)" as desired.

The condition (1.6) is not very restrictive. Indeed,
it is shown in [13] that (1.6) holds if no root relative to

T contains EF in its kernel., 1In case G 1is semisimple,



Veldkamp ([17]) 1lists the exceptions to the latter condition.
Curtis [3], Springer-Steinberg [13], and Srinilvasan

(147 serve as good general references for this section.

§2. The Theory of Special Conljugacy Classes

In the remalning sectlons of thls chapter, we dlscuss
some results from representation theory of finite groups
which wlll prove useful in the sequel. From now on, unless
we explicltly indicate an exception, "character" will nmean

"complex character."

(2.1) DEFINITION. (a) Let G be a finite group and
H £ G a2 subgroup containing elements hy,+..,h, whose
respective conjugacy classes in H are El""'Eh' and assume
that the following conditions hold:

(1) For all i, Cs(hy) £ H.

(11) If 3 # J, then hy and hy are not conjugate in G.

(111) If for some 1, h € H satisfies (h) = {hy), then
h € Ky for some j.

Then Ky,...45, are called special conjugacy classes of

H An G,

(b} A trivial intersection set (T.I, set) of G is a

non-empty subset X of G such that if g §& N;(X), then
x50 x < {1}.



(2.2) PROPOSITION (Suzuki, Higman)., Let G, H, and
hy € £y (1 £1%n) be ag in (2.1a). Then
(a) X =U{Kys 1 £1 ¢n} is a T.I. set of G such that

Ng(X) = H.

(b) There 1is a basis 61,..448, of virtual characters
of H for the C-space of gl.aés functlons of H vénishi‘ng— off X.
(0) Let II'I'(G) = {x:]_. ves .xs} , let II‘I‘(H) = {‘?1. tes .('Pm}.

and set 0y = 53Ty 8;yf; and 6,% = 0,5, by 4%,

(141 %n). Then

ZkS1 Pikbyx = Tyl1 8gy8gy

for a1l 1,J € {1,440on}. In particuiar,

2

2
Jes1 P = k=1 81k

for'all 1 € {1;...,n}.

(d) There exist unigue complex numbers Cyx
(1 £ J,k £ n) satisfying Pi(hy) = Zly cpdyy (1€ 16 m,
1% 3 ©£n). Moreover, the cj, also satisfy Xi(hj) =

Zkill cjkbki ‘I(léi‘é'—s. 1‘—'—-3-‘—-11).

PROOF. See Dornhoff [ 8.

(2.3) PROPOSITION. Let X be & T.I. set in G and let

N = N;(X). Let & and ¥ be class funetions of N vanishing

off X, and assume that 8(1) = 0. Then
(2) oSy = o|x.
(v) (&%, ¥%); = (o, ¥y



PROOF. See [87.

We do not include here the standard results on
exceptional character theory, because there is no need to
invoke them explicitly in the sequel. We wlll use Dade's
results on blocks with a cyclic defect group however ([6]),

and his proofs do employ exceptlonal character theory.

§3. Block Thecry

We discuss now the results we shall need later
concerning Brauer's organization of Irr(G) into blocks., For
reference, see Curtis and Reiner [l,5], Dornhorf [8], or
Isaacs [10].

Let G be a finite group and r a prime number. Then
there exists a complete Noetherlian local integral domain S
with Jacobson radical J(S)} and quectient field L such that

(a) r & J(8).

(b) Both L and S = S/J(S) are splitting fields for
every subgroup of G.

(¢} The integral closure Lo of Z in L may be assumed
to be cént&ined in C,

For example, extend the r-adic valuation from Q to

th

Q(&71), where g = |G| and &7 denotes the set of g'! roots

of 1 in €. If L is the completion of Q(&T) and S the
corresponding valuation ring in L, then S and L satisfy the

above conditions.



Let IBr{(G) denote the set of irreducible Brauer
characters of G, Then for each X € Irr(G) and each ¥ ¢

IBr(G), there is a non-negative integer dyy such that

X(x) = ) . dypP(x)
PeIBr(G)

for all r'aelements x of G.

(3.1) DEFINITION. The integers dyp are called the

decompoglition numbers of G.

Let Cqy4..,K, be the conjugacy classes of G and for
each 1, let Ei denote the sum of the elements of Ei in the
group algebra LG. Then {ﬁi’ 1&£ 14 & n} forms an L-basls for
Z2(LG). For each 1, fix gy ¢ [y, and for each X € Irr(G),

define a linear map wx:Z(LG)—i’L by

|

wally) = [Fy)X(g)/X(1) (141 &7,

Then.wx_is an L-algebra homomorphism andcdx(ﬁi) € S8 for all
1. Let the image of a € SG under the projection SG — 8G be
denoted by & (or by a~ when 1t 1s convenient). Now for each
X € Irr(G), we may view Wy &s an S-algebra homomorphism from
Z(SG) to S. As such, it induces a well-defined S-algebra
homomorphism Q—J;:‘Z(ﬁG)—-? S via Wx(z) = CJ;{_(-;) where Zz 1s the
element of Z(§G) represented by z € Z{SG). We may define an
equivalence relation ~ on Irr(G) by declaring Xy ~ X, if and

only 1fi3;1 = E&é. If, for any field Xk, a central character



of kG 1s defined to be a k-algebra homomorphism from Z(kG)
onto k, then {@y:1 X ¢ Irr(G)} 1s the set of all central

characters of SG.

(3.2) DEFINITION. An r-block of G is any subset
B = B(r) of Irr(G) U IBr(G) such that

(a) BN Irr(G) is an equivalence class under v,

(b) B /1 IBr(G) = {CP € IBr(G): dy # 0 for some
X € BN Irr(c)}.

We denote by Bl(G) = B1l.(G) the set of all r-blocks of
G, and if B € B1(G), we denote by B' (respectively B") the
set BN Irr(G) (respectively B N IBr(G)).,

Clearly we have disjJoint unions

U{B*:s B € B1(G)},
U{B": B € B1(G)].

(303) II’I‘(G)
IBr(G)

Moreover, there is a bijection between B1(G) and the set of

central characters of 3G, given by
(3.4) B<—->Cf?'¢

where X is any element of B'.
Let B € B1{(G). It can be shown that there exlsts & class
A —
Ly of & such that (a) if X & B°, then & ((L4)7) # 0 end (D) 1ir

x € [y then (1/161) 7, o, MOX(x™H)™ # 0. select x € L,
and let D € 8yl,.(Cgz(x)). Then the set of all D arising from

B 1n this manner forms a conjugacy clasgss of subgroups of G.
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(3.5) DEFINITION. D is called a defect group of B, and

|D| the defect of B.

ﬁow let H be a subgroup of G and let b € B1{(H). Then
an 1rreducible character V¥ € b' gives rise to an algebra
homomorphism CﬁsZ(éH)-‘?g. Since {Ufi)‘n 1 £1 £ n} forms
an S-basis of Z(SG), we may determine a unique S-linear map
EﬁFiZ(éG)—ﬁ’g by setting
FEUEDT) = T (S h)
heﬁinH
for all i, where the argument of Gﬂkis taken to be an
element of SH (which plainly lies in Z(SH)) in case Ky N H
# @, and is interpreted as 0 if L, NH= . Now if Eﬂ?
is in fact a central character of SG, then (3.4) implies
that c;? = E;_for some X € Irr(G), thus determining a unique

block B € B1(G) such that X e B',

(3.6) DEFINITION. Whenever the map CJ;,,G is a central

character of SG, we say that bG is defined, and we set it

equal to the block B, which 1s said to be induced from b.

Induction of blocks 1s transitive; If H, £ Hy < G and

Hp

b € B1(H,;) 1s such that b2 and (v72)C are both defined, then

bG

is also defined, and it colncides with (bH2)G.
Henceforth, statements such as bl = B, made without further
qualification, will be taken to mean both that bl isg defined,

and that it 1s equal to E,.
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(3.7) PROPOSITION. (a) Let H £ G be a subgroup, let

b € B1{H) be such that vC is defined, let Dy be a defect

group of b, and let D be a defect group of %, Then there

exlsts gé element g € G such that Dlg*e D,

{(v) (Brauer’'s Second Main Theorem) Let x be an

r-element of G. Then for each X € Irr(G) and each ¢ &

IBr(CG(x)). there is a uniguely determined algebraic integer

dif? (called a higher decomposition number) suéh that for

all X € Irr(G) and all r'‘-elements y ¢ Cg(x),

Xixy) = =4 a¥ oT(y).
feIBr(Co(x)) '

Moreover, if ¢ € b" for some b € Bl(CG(x)),'X € B' for some

B € B1(G), and a} , # O, then t% = B.
PROOF. See [47], [8], or [10].

Let R be an r-subgroup of G, let b € Bl(CG(R)), and let
y & NG(R). Then since CG(H) <9 Ng(R), y induces a
permutation of Bl(Cg(R)) as follows: for all X € Irr(Cg(R))
and all ¥ € IBr(Cy(R)), it is not difficult to show that
XY & Irr(Cg(R)) and ¢Y & IBr(Cg(R))s It can be argued then
that there 1s a unique block by € B1(Cg(R)) such that b.' =

i

(b)Y and bl“ = (b“)y go we set v’ = Dy. In thiz menner,

NG(B) acts on B1(Cg(R)). Note that if b € B1(Cq(R)), then
Cg(R) 2 StabNG(R)(b).
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(3.8) PROPOSITION (Dade). Let B € B1(G) have non-trivial

cyclic defect group D and let [Df =2 > 1. If 0 £k £ a,

deflne subgroups Dk' Ck. and Nk of G Qi [D:Dk] = rk. Ck =

Cg(Dy)s and N, = Ny(Dy). Then for all k & a - 1, we have

Dysyq = Dyps Cp = Cpyq, 2and Ny = Ny 9y and for all k, we have

4 .
Dké=ck“'Nk' There is at least one block b0 of Cq

satisfying bo® = B. Set E = Stabyy(bg), and e = [Ei1Cq].

c
For 14k &a -1, by X is defined, and we denote it by by.

The following assertions hold:

(a) Let b € B1(Cy). Then b® is defined, amd b° = B &>

bh = bo for some h & NO’

(b) If k < a, then bk" conslsts of & unigue irreduci-

ble Brauer character ?&, and for all h € Ny (bkh)” consists

of the unigque irreducible Brauer character (¢k)h.

(c) B' contains certain distinct irreducible charac-

ters Xqsee+0X, of G for which the non-zero higher

decomposition numbers satisfy the following: there exist

81808 £y40e046es Yps¥10ness Va1 Such that if (x) = Dy and
x
h € Nk’ then dxi'((fk)h = Eiyk'
(d) The Ei and Xk may be chosen so that Y5 = 1.

Having done this, replace G by Cg_1. The block by_1 of Cq_1

has defect group D, hence the foregolng results hold for

Ca-1 2nd by 3, giving us new signs (¥g)',e.ey(¥a_1)", Where

We may assume that (X0)° = 1. Then KO = (TO)',....Ia_l =
(X _1)°-
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PROOF. See Dade [ 6].

(3.9) LEMMA. Retaining the notation of (3.8), assume

that G = Cy. Then e = 1 and (3.8) holds with &4 = ¥ =

¥ =eee= Y44 = 1.

PROOF. Thils is Proposition 2.1 of [61.

§%, The Deligne-Lusztig Theory

We return now to the notation of §1. In [7], Deligne
and Lusztlg establish the exlistence of a set of virtual
representations of G = Gp (l.e., elements of the
Grothendieck group of finite dimensional representations of
G over ﬁi, the algebralc closure of the field Ql of l-adic
numbers, where 1 is any prime distinct from p) parameterized
bty pairs (T, 6) where T is an F-stable maximal torus of G
and 6 an lrreducible representation of Tr. For the precise
definition of these representatlons as alternating sums, in
the Grothendieck group, of certain ﬁi-subSpaces of the
l-adic cohomclogy groups of a particular variety, and for
their propertles, we refer the reader to [7] or to [14].

We shall confine our attentlon here to the corres-
ponding virtual characters of G, the one associated with
the pair (T, ©) being denoted by R%(e) (or by BT(G). or even
by R(8) 1f the references to G and to T are und;rstcod).

With their work in [7], Deligne and Lusztig solved the well
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known Macdonald conjectures (see [11]) and provide a frame-
WOfk crucial to the problem of finding ail irreduclble
representations of all finite groups of Lle type., Since
each irreducible character of G is a constituent of some
B—(e). the problem of finding all irreducible characters of
G may be solved by decomposing each B'—(e) as a Z-linear
comblnatlon of 1ts irreducible constltuents. In chapter IV
this 1s done for particular maximal tori T. The remainder
of this sectlon is devoted to the results from the Deligne-
Lusztig theory which are necessary for this task.

We begin with notatlion and several definitions., If T
and T* are F-stable maximal tori of G, define N(T, T') to be
the set {n ¢ G En = 2‘}. Then 1t is easily shown that
N(T, I') is F-stable and that T = Iy acts by left
translation on the set N(I, T'); of fixed points of N(I, I').
If 6¢T" and ne N(T, 2*)p, then 6™ & (T')", where T* = I'..
Since o7 depends only upcon the orbit w of n 1In the 'orbit
space T\N(T, T')p, Wwe may write 6", Now in case I' = T,

T\N(Z, I')p becomes the quotient group N;(T)gz/T.

(4.1) DEFINITION. If T is an P-stable maximal torus of

G and T = Tp, then & € T" 1s said to be in general position
o} = {1}

Now let T be an F-stable maximal torus of G with T =

1f {w € Ng(T)p/Ts 0¥

Ip» and denote by u 2 unipotent element of G (i.e., u is

unipotent as an element of the affine algebralc group g).
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G

Then Deligne and Lusztig ([7]) have shown that Ra(e)(u) is
G G =

independent of © € T", i,e., that Bp(e)(u) = Bx(1p)(u) for

all e &€ T,

(4#.2) DEFINITION. Let T be as above, and let U be the
set of 211 unipotent elements of G. Then the function
G G G
Q,;:U — ¢ defined by QE(u) = R‘T-( 1p){u) for all u € U is

called Green's function (relative to T).

For any closed, connected, reductive, F-stable subgroup
H of G, denote by o (H) the common dimension of all maximal

E"‘q-split torl of H.

(4.3} PROPOSITION (Deligne and Lusztig). Let T and T°

be F-stable maximal tori of G, and let 6 € (Ip)" and o' ¢

(_‘I‘_'F)'\. Then the following assertions hold:
(8) (Bpl@), Rpe(0*))g = |fw e Tp\N(T, T*)pt 0" = 8'}],

(b) BRp(e) is (up to sign) an irreducible character if

and only if 6 1s in general position. If this is the case,

then ERT(G) € Irr(G), where ¢ = (-1)6(2)(-1)0—(g).

(¢) If x=su (ssemisimple, uunipotent) is the Jordan

decompositlionin G of x€G, then cc_(gsg'l)" 1s reductive and

o (- Cglgsg™ ) :
()(x) = |cg(s) g lg;é QTE T (puad(ges™h)

i

where 6 colncides with o on T and _jﬁ 0 on G ~T.

(&) RE(B)(x) = eG(x) for all x € Tp satisfying
cg(x)" = T.



PROOF.

See [7].

16
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CHAPTER II. REGULAR SEMISIMPLE ELEMENTS
AND SPECIAL PRIMES

Throughout this chapter (and succeeding ones), let G =

Gpbea finite group of Lie type with notation as in §1.

%5. Definitions and Properties

If x € G 1s semlisimple, then X i1s contained in some
F-stable maximal torus T of G, and if in addition Cgu(x)° =
T, then T is clearly the unlque maximal torus of G which

contains x.

(5.1) DEFINITION, Let x € G be semisimple and let T be
an F-stable maximal torus of G such that x € T = Ir. Set
N = Ng(T). Then

(a} x is called regular 1if Cg(x)o = T.

(b} =x 1is called locally regular (relative to T) if

CN(X) = To

We obsexrve that by our preeeding remark, the notion of

regularity is well-defined.

(5.2) LEMMA., Let T = Ty be a maximal torus of G, and

let x € T. Then the following assertions hold:

(a) If x is locally regular (relative to T), then x 1is

regular.
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(b) x is locally regular (relative to T) if and only

_1'2 CG(X) = T,

PROOF. (a) is proved by Springer in [12]. Plainly
Cg({x) = T implies that CN(x) = T, so only the converse of
thls remains to be shown. If CN(x) = T, then by (a),
CG(x)° = T. The connected component of an affine algebralc
s;oup 1s a normal subgroup, so T < Cu(x), and it follows
that Cg(x) E.Nc(i). Now Ng(I)p £« Ng(T), therefore since
Ce(x) = Cp(x)p, 1t follows that Cg(x) & N;(T). Hence Cg(x)

= Cyx(x) = T, and the proof 1s complete.

It is implied by (5.2a) that if a semisimple element
X € G is locally regular (relative to T), then T is the
unigque maximal torus of G which contains x. Hence the

phrase "relative to T" 1s superfluous, and we shall omit it.

(5.3) DEFINITION. Let T be & maximal torus of G. A

prime number r ls called a special prime of G relative to T

(or simply a special prime i1f the references to G and T are
understood) if the following conditions hold:

(a) rilTi.

(b) For all x ¢ T, r |{x| implies that x is locally
regular.

We denote by S(G,T) the set of all special primes of G

relative to T.

The next result, for the proof of which the author is
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indebted to Gary Seitz, implies that blocks of G relatlve to
a special prime r have cyclic defect groups, thereby

enabling us to invoke (3.8).

(5.4) PROPOSITION., Let G = Gp be & finite group of Lie

typé with maximal torus T = gF. Assume that T £ G, and let

r € S(G,T). Then each R & Sy1_(G) is cyclic, and there

exists a unigque such R contained in T.

PROOF. We mayfchoose x € T such that [x| = r. Then
x & R for some R & Sylr(G). We show first that R < T.
Let 1 # 2z ¢ Z(R). CG(z) = T by (5.2b) since x is locally
regular, Therefore 2z, which centralizes x, must lie 1In T,
Now since z has order divisible by r, Zz is locally regular,
so R £ Cz(z) = T by (5.2b)., Since T is abelian, it follows
by Sylow theory that R 1s the unique element of Sylr(G)
contained in T.

Now we show that R is cyclic, from which it follows
that the same holds for all elements of Syl.(G), thus
concluding the proof. Suppose that R is not cyclic, and
recalling that T £ G, let giT —7K* be a root. Let Uy e the
corresponding root group of G and xg:K—~ Hﬁ an isomorphism
of affine algebrelc groups (where K is viewed additively as
an affine algebraic group). Then for all t € T and all
a € K, txg(a)t™" = xg(g(t)a). Since (R) 1s & finite
subgroup of K*, it is & cyclic subgroup, therefore since R

1s not cyclic there exists a non-trivial element y ¢
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R N Ker(ﬁ). It follows that yxﬁ(a)y'l = xp(a) for all

(=]
a ¢ K, so‘g/g écg(y). Now H,s < Cg(y) since Hﬁ is connected.
But y 1s locally regular, so (5.22) implies that gp <7, a

contradiction. Hence H 1s cyclic.

It need not be true that all locally regular elements
of T have order divisible by some r € S(G,T). For example,
let G = SL(2,K) where K is the algebraic closure of Fq with

b ower map g—gl@) for a1l

q = 27, and let F be the q°
g € G (where g(q) is the matrix obtained from g by raising
each entry to the power q). Then G = Gp 1s SL(2,27), Let
T be the Coxeter torus of G, Then T is cyclic of order

qa+ 1= 22'7 (see 1,10 in chapter II of [13]) and the only

elements of T which are not locally regular are

(1 o) (71 o)

and
0 1 0 -1
(see Theorem 38.1 and Step 1 of 1its proof in [8]).
Therefore, S(G,T) = {7}, and an element of T having order 4
completes our example.

Now let G = SL(2,q) with q = 5°. Then as above, the
Coxeter torus T is cyclic of order q + 1 = 2'32°? and
S(G,T) = {3.?}. Thus in general, we may have |S(G,T)[ > 1,
It 1s also possible however, that S(G,T) = #. For example,
argulng as before, we see that the Coxeter torus T of

G = SL(2,3) has order 2%, but the element
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-1 0
0 =1
of T, which has order divisible by 2, is not locally regular,

Therefore S(G,T) = ﬁ. We shall see in the next section

however, that this last example 1s exceptional.

§6. Exlstence of Special Primes

We give in this section conditions which lead to the

existence of specilal primes in a variety of examples,

(6.1) DEFINITION. Given a prime number s and a

positive integer a, the pair (s,a} 1s sald to be compatible

if none of the following condltions hold:

(a) s=2and a=1,

(b) s =2 and a = 6,

(¢) a=2 and s = 2@ _ 1 for some positive integer
m z 2,

Otherwise {s,a) 1s sald to be incompatible,

(6.2) PROPOSITION (Zsigmondy). If (s,a) is a

cémpatible pailr, then there exists & prime number r such that

r|s? - 1, but for all positive integers b < a, r'fsb -1,

PROOF, See [18],

As in §1, let G = Gp be a finite group of Lie type

where F is the Frobenius map assoclated with an Fq-rational
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structure of G, @ = p°» T is a maximal torus of G, and
N = NG(T). For all positive integers m, denote by fp(X) the

mth cyclotomic polynomial,

(6.,3) PROPOSITION. In order that there exist a speclal

prime r of G relative to T, 1t is sufficlent that N/T be

cyclic with a generator nT (n € N) of order m satisfying the

follé%iﬁg céﬂdifions:

(a) n~ltn = t% for al1 t ¢ T,
() ty(a)|]7] -

(¢c) (p,m) is a compatible pair.,

PROOF. Suppose n¢ N, N=<{nT), |nT| = m, and (a), (b),
and (c¢) hold., Since (p,m) is compatible, (6.2) implies that
there exists a prime number r such that r lqm - 1, but for
all b { m, rJ(qb - 1. Since ¢ - 1 = T[f(a) where the
product is taken over all positive integers b dividing m,

r must divide fb(q) for some b. If b { m, then r ,qb -1
contradicts the property deflning r. Hence r ‘fm(Q)' and by

(b) 1t follows that rl[T

To complete the proof, we must show that if x € T
satisfles ri|x|, then Cy(x)} = T. But 1f such is not the
case, then T 4 Cy(x) since T is abelian. Thus b = [NiCy(x)]
is less than m. Now by (a), the conjugacy class of N

containing x 1is

{x,xq,....xqb-l}
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b q°-1 b
and x4° = x. Hence x = 1, and it follows that r | q° - 1,
contrary to the property defining r. Therefore x is locally

regular, and the proposition 1is prOVed;

We indicate now how (6.3) can be used to establish the
existence of specilal primes in certain cases.

First, let G be & finite (untwisted) Chevalley group
over F, as defined in Steinberg [151. Then G = Gy where G
is the corresponding Chevalley group over the algebraic
closure K of Fq and F 1s the usual Frobenius map induced on
G by the field automorphism ar—a% of K. We assume for
convenience that the root system associated wlth this
group 18 1indecomposable. The dlagonal subgroup H of G is &
maximal torus and F acts trivlially on the Weyl group W =
W(H). Let T = Tp be the Coxeter torus of G relative to
W(H), so that T is obtained from H by twisting by a Coxeter
element w € W, Assume that NG(E)F = Ng(T) (see §1). and
dencte this group by N. We a;sert that if q = p°< is chosen
so that (p,|wl) 1s a compatible pair, then S(G,T) # @.

To prove this, we apply (1.5) (and borrow its notation)

to see that

and that there exists an element n; ¢ Ny such that Ny/Ty =
<n1T1> and ny~ltyn; = F(t4) for all t4 &€ T3. Now F(x) = x4

for all x & g. S0 nl-ltlnl = tiq for all tl £ Tl' Again by
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(1.5), 1t follows that there 1s an element n ¢ N such that

N/T = <n$> and
n~ltn = t4

for all t € T. Let m = [w!, and let X(H) denote the
character group of H. By Theorem 2,10 of [i#j. [TI =
|Py(a)| ,» where Pu(X) is the characteristic polynomial of w
acting as a linear transformation on the R-space X({H) @%ZIR.
It can be checked by consulting Carter's list (table 3 of
[2]) of polynomials P,(X) for all indecomposable root
systems, that fm(q)IIT[. Now (6.3) finishes the proof of
our assertion.

The slgebraie groups considered above ars all semlsim-
ple. However, by essentially the saeme discussion, S(G,T)
can be shown to be non-empty for certaln finlte groups
G = Gp of Lle type where G 1s not semisimple. For example,
let G = GL(n,q), where @ = p*. If K 1s the closure of Fqo
then G = GL(n.K)F, where F is the usual Frobenlus map. Let
H, w € W(H), and T = Ty be as in the previous discussion.
Then provided that Ngp . y){(T)p=DN;(T) and that (p,Iwl) 1s
compatible, S(G,T) £ g. It is not difficult to show that
|T| = q" - 1, and that [wl = n (w may be viewed as an
n-cycle in S,).

We return now to the case where G = G, 1s a finlte
(untwisted) Chevalley group over Fq (@ = p7), G the

corresponding Chevalley group over K, and F the usual
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Frobenius map. Again we assume for convenlence that the
associated root system 1s indecomposable, and again we base
our classification of the maximal torl of G on the dlagonal
subgroup H of G. Our discussion for the Coxeter torus
provides us with & method for using (1.5) and (6.3) to -
produce other maximal tori T = Tp of G, corresponding to
elements w € W = W(H), for which S(G,T) # ¢, Let P (X) be
the characterlstic polynomisl of w on X(g)dqz B. Since F
acts trivially on W and F(x) = x9 for all x ¢ H, verifica-
tion that the following conditions hold wlll suffice:

(a) Ng(D)p = Ng(T).

(b) Cylw) = <{w).

() £y (Q) |Py(a).

(d) (p,iwl) is a compatible pair,

Conditions (b) and (ec) are the important ones since the
failure of {(a) or (d) 1s incidental and rare (see the
remarks at the end of %1, and see (6.1)). The Weyl group
elements w for which (b} and (c¢) hold can be determined by
using the tables in [27]. Below in tabular form, we give the
verification that (b) and (c¢)} hold for four examples where
Ww 1s not a Coxeter element of W. Using Carter's notaticn,
the second column gives the admissible diagram [ assoclated

wlith the conjugacy c¢lass of w in W,



root

(6.4) TABLE

system I |w| lekW)] flwl{q) Py(q)
Eg Eg(2q) 9 9 q®+q7s1 a®4a741
En E7(a1) 14 14 qs-q5+q“'-q3+q2 (q6-q5+qu—q3+q2-q+1)(Q+1)
Eg E8(a1) 24 24 q8-q4+1 qB-qu+1
Eg Eg(ap) 20 20 q8-q%4q"-q%1 q8-q%4q*-q%s1

9¢
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Using a slightly more general version of (6.3), our
discussion applies to the twlsted analogues of the finite
Chevalley groups. Lemme 1 of Surowski in [16] suggests the
manner in which (6.3) should be altered.

Qur general method (6.3) for showing that S(G,T) + ¢

requires that N;(T)/T be cyclic. This is not an accident.

(6.5) PROPOSITION. Let G = Gp be & finite group of Lie

type and let T = Tp be a maximal torus of G such that

S(G,T) # . Then Ng(T)/T is cyclic.

PROOF. Let r € 8(G,T), and let x € T have order r.
Set N = NG(T). Then since x is locally regular (relative to

T), we have
Cy(<x)) = cylx) = T.

Therefore N/T is embedded in Aut({x))., But x 1is cyclic of

prime order, so Aut{<x)) is cyclic, and the result follows,

We conclude this section with the remark that S(G,T) #

ﬁ implies by {5.2a) that T contains regular elements.
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CEAPTER III. MAIN RESULTS

In thls chapter and in the next, let G = Gp be a finlte
group of Lie type. Fix a maximal torus T = ZF of G, and set
N = Ng(T). Assume that T £ G, and that the set S(G,T) =
{r{ssses7,} of special primes of G relative to T is rot
empty. The assumption that T % G will be used, without

further reference, as justification for invoking (5.4)}.

%?. Special Conjugacy Classes

and Special Priﬁes

N acts on T" by conjugation since T < N. Denote by Ny

the stabilizer Iin N of 6 ¢ 17",

(7.1) DEFINITION. © ¢ T" is said to be regular if

N9=To

Note that Ny(T)p £ N, so that if ® ¢ T" is regular,
then 1t is in ge;eral position. The two notions are
equivalent if NC(Q)F = N,

For each J_(l & J £n), let Rj bte the unique rJ-Sylow
subgroup of G contained in T whose existence 1is guaranteed
by (5.4). Let R = Byx‘:*-xR,, and let Q be the unique
subgroup of T satisfying T = @ ¥ R. Set Q7 = {P e ™

R £ ker(F)} and R = {A € T*: Q £ ker(A)}. Let Y denote the
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set of regular elements ia T, and Y the set of regular

characters in T'. As remarked earlier, Y # p. Set

X

X € Ty ry]|x| for some Ji,
il

and

XA

fo e T rJ||a[ for some j}.

By the definition of special prime and (5.2a), X £ ¥,

Each element x € T can be expressed uniquely in the form
X = ab (2 € @, b € R).

It follows from the definitions that x ¢ X if and only if
b £ 1,
Analogous conditions hold in TA, which is isomorphic to

o~

T. Clearly ™ = Q@7 x R™, so that each character @ € 7" can

te written unliguely in the form
8 = VA (e Q™. A &€ B,
Moreover, & € X/ if and only if A # 1.
(7.2) LEMMA. X" £ Y".

PROOF. Let & = ¥4 ¢ X" (¥ ¢ Q7, ) € R™). Then /A # 1.
Let h € Nyg. By (7.1), we must show that h € T. Now ¥} =

h,h ~
(P)® = ¢™AP P ¢ @7 and AP ¢ BY stnce Q4 N and R4 N, so
by uniqueness of expression, h €& NA' and it follows that
1
h™* ¢ N, as well.



30

R = Ry¥*'"XR, is cycllic because each Rj is cyclic and
the orders |Ry| are pairwise relatively prime. It follows

that R, which 1is isomorphic to R, 1is also cyclic. Let

R = (x)and RV= {Ag). Choose i such that 0 < 1 < [R| and
A= Aoi. There 1s an integer k such that h~1xh = x¥, 1%
follows that /\Oh = )\Ok. Therefore )\Ois </\Oi)h =)\01k' so
Aot¥t = 19, whence ]Rl’ik - 1. Now x¥1 - 1, and x! =

ik -1

x1¥ = h™'xlh rollows. Thus h € Cglxl). But cy(x) =T
Since xi € R* by our choice of i. Therefore h € T, and the

proof 1s complete.

(7.3) LEMMA., X 1s the union of a set of special

conjugacy classes of N in G,

PROOF. This result is a consequence of the fact that
the set Y of regular elements in T is the union of a set of
speclial classes of N in G. We prove the latter first,
beginn;ng with the observation that Y is in faect a unlon of
conjugacy classes of N. Indeed, if y € Y and h € N, then
since conjugation by h induces an automorphism of the affine
algebralc group G, we have CG(h"lyh)o = h'ch(y)oh = h'lgh.
Now h'lgh is an F-stable maximal torus of G containing
h'lyh. so by definition (5.1), h‘lyh i3 regular, and our
observation follows. Let {yl.....ym} be a complete set of
representatives of the classes of N contained in Y.

For each i, T = Cg(yi)°<ﬂ CG(yi). thus forcing Cg(yi) £
Ng(Z). It follows that Cglyy) = Cglyy)p & Ng(D)p & N



Now 1if g'lyig

Y for some i, some k, and some g ¢

G = Gp, then g'lgg

g 1Cg(y,) 8 = Co(e71y18)° = Cglyy) =
T, so that g € NG(E)F £ N.

Finally, su;pose that {y) = <y£> for some y € N and
some i. Then cg(y)o = cg(<y>)° = CE(<yi>)° = cg(yi)" =T,
and it follows that y 1s conjugate in N to some y,. We have
shown that Y is the union of a set of special conjugacy
classes of N in G.

.X is clearly a unlon of conjugacy classes of N, and we
represent these classes by elements Xi,...,Xg of X. In
order to show that these classes form a set of speclal
classes of N 1n G, we must verify that the x; satisfy (L),
(11), and (ii1) of (2.1a), But (i) and (1i) follow by
inheritance from Y since X £ Y. As for (11i), if x &€ N
satisfies {x) = (x,) for some 1, then |x| = |x;| implies
that rjllxl for some ). Hence x ¢ X, 86 X is conjugate in N

to some xy,. This concludes the proof of the lemma.

Now (2.2b) guarantees the existence of a basis of
virtual characters of N for the C-space of class functions
of N which vanish off X. Our goal 18 the construction of
such é basis.

Since Q@ <« N, N acts on Qh'by conjJQugation. Fix a
complete set SLof orbit representatives for this action.

R <N, so for each ¥¢€(L, Ny acts on Rﬁ'\‘[lT} by conjuga-

tion. Fix a complete set /Ay of orbit representatives for
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this action.

(7.4) DEFINITION, For each ¥¢& (1, and each A ¢ Ay, set
951'”\ = *N - ((JLA)N-

It 1s plain that N acts by conjugation on X .

(7.5) LEMMA, {¥A: Y€ LL, A e I\-q,} is a complete set of

representatives for the orbits of X" under the action of N,

PROOF., If ¥ €Jland A€ Ay, then A # 1, so that by an
earller comment, YA € X*. Now let ¥;, ¥5 € (L, A € A'f'l' and
)\2 € Aq,-z, and suppose that ('J"lAl)h = V’z/\z for some h € N.
Then ‘f’lh/\lh = ¥5,),s hence by uniqueness of expression,

"f’lh = '1"2 and /\1h = /\2. Therefore ‘f’l = ?2- forcing h £ Ny, .
Now by our definition oqu,l. it follows that /\1 = )\2. We
have shown that ¥;A; and ¥,A, represent distinct orbits
unless Y, = 4’2 and Al = )\2.

Now let ¥ ¢ @ and A ¢ R ~ {11}, so that ¥A is an
arbltrary member of XA. We show that there exists an ele-
ment ¥, ¢ {Land an element ), e.[\.\yl such that ¥} and Y¥;A, are
conjugate under the action of N. Choose ‘Pl ¢ (Land h e N
such that ¥, = B, mhen (P1)B - *fl}\h. Now choose )\1 E'A‘Vl
and h'¢ Ny, such that (AM)B" = A;. Then (PAHPRT o (Y AMDY =
Y AP 2w M, as desired.

(7.6) COROLLARY. As Y ranges over fl, and for each such

¥, as A ranges over A*, the characters _jﬂ TA of the form
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Y and ¥} are palrwise non—coﬁjugate under N and compfisé a

complete set of representatives for the orbits of T" under

the action of N.

PROOF. T = Q™ U X" (disjoint)., so the corollary

follows from (7.5) and the definition of (L,

We are now prepared to discuss the 1rreduclble charac-
ters of N. Henceforth, for each ¥ € S, we denote by Cy the

N
set of irreducible constituents of ¥ *, and by ny the index

[N\}AT].

(7.7) PROPOSITION. (a) For all ¥en, §" # 8" if

§1» &2 € Cy are distinct, and (YAl)N % (*AZ)N if Al' AZ € [&+
are distinct.
(0) Irz(w) = U ({{M § € cp} U (PN A e Ayd), and
all of these unions are disjoint,
(c) EQE each ¥ €, ‘}"'N = Zsec? 5(1)5N .&E n‘P =
2
(d) Let ¥e(t. Then

*N)x = 'n?ZAeAp(“)NIX'

and for each § € Cyo

N N
sVl = -5(1)%&11,,(“) |-

PROOF. Denote by A the set of representatives of the

orbits of T" under the action of N which are given in (7.6).
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Since T < N, the Clifford theory (see [10]) implies that all
irreducible characters are obtalned, each once, in the form
SeN. where © ranges over A, and for each & €A, Se ranges
over the irreducible constituents of eNe. By (7.2), each

8 € /\ which takes the form YA for some ¥ ¢ L and some

A E-AP, has stabilizer T, so GN is irreducible. Hence (a)
and (b) are proved.

Let Y€ fL., Then agaln by the Clifford theory, wN
E:SéC¢ &SSN where for each § € Cy, ag is an integer
satisfying S}T = as?. Therefore, §{1) = as%il) = agc, This
proves that‘f'N Z:SéCy 5(1)8N. It follows that [N:T] =
[N:T]H(1) = Y’N(l) = dec? scnysN() = Zséc"o 5(1)2[N:N+] =
[N,NLP]Z'.S&C? §(1)%. Hence [NyiT] = Dgeq, $(1)2, and this

completes the proof of (c).

Now fix ¥ ¢ {1, let B be a right transversal of T in N,
C a right transversal of T in Ny, and D a right transversal
of Ny in N. Then {yh: y ¢ C, h € D} is also a right
transversal of T in N, therefore 2. ‘P(H")\)N}X =

ren
Baea, (V1T By P03y = Ty p Tiep (N7 =
Zyeay Pnen Dyec W’\)yh,x = Zpep Zeny Zypeq (w‘)yhlx
thD ZAERN\{lT} (%\)hix - ZhED ZAGR"\{lT} Wh’\h)‘x -
Znep P x Thers L} /\h|x = Theo My ZMHN\{lT} A'X'

Let /0 denote the regular character of R. A typical

=
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element of X has the form xy where 1 £ x ¢ R and y £ Q. Now

Z/\ERM\{I.T} /\(xy) = Z)\&RN\ {1T})\(I) = /o(x) -1l = =1
since 1 # x € R. Hence ZAEAW(M)N'X - -ZhED uf,hlx =
-(1/|Ny|) z:hélehkx = -(1/n?)$N1X. which proves the first

equality of (d4d).
If Y€ {Land 5§ € Cy, then as shown in the proof of (c),

SIT = $(1)Y¥, whence for each x ¢ X, SN(x) =

(1/n) 2 §(x™) = (/a)/ i) 2 (Dt =

héN héN 6

(8(1)/nw)?N(x). The second equality of (d) now follows from

the first.

In view of the fact that by (6.5), N/T is cyclic, it
can be shown that for Y€l and $ € C¢, $(1) = 1. This fact
1s not necessary however, in the sequel, so we do not wish

to emphasize 1it.

(7.8) PROPOSITION. The set {68, 4t ¥€.0, )¢ Ny} of

virtual characters of N forms & basis for the C-space of

class functions of N vanlshing off X.

PROOF. If ¥¢ (L and A€y, then 6y, = ¥ )N 2
[ ?A)N is clearly a virtual character of N and vanishes

on N~ X since ¥ - ¥A vanishes on T~ X = Q.

We use the fact that Irr(N) forms a basils for the
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C-space of all class functlions of N to show that the

functions G?DA are linearly independent. Suppose that

the_n_z)\e[wa\#’.)xel}'.x =0

where a%

A ¢ ¢ for each ¥ ¢ L and each ) ¢ A’F—‘ Then
9

Zyen Zpeny 24arl(Zgee, ST - (th'] = o,
or equivalently,

N N
Zyeq Zpeny Dsec, 2yp 818 = Ly 2, ey (W) = o

It is clear now that a,, = 0 for all ¢ ¢l and all AE Nyo
Hence the functions 8?.A are linearly independent.

Since the set of functions, each of which arises as the
characterlistic function on some class of N cdntained in X,
forms a basls for the C=-space V of c¢lass functions of N

vanishing off X,
dim(V) = }i[ 1 L is a class of N, L & X}‘.

Each x € X is locally regular, hence the size of the class
of N containing x 1s [N;T]. It follows that the number of
N-classes contained in X is {X}/[NiT]. A similar argument
shows that the number of N-orbits of T* contained in X" 1s
IX* /[N:T]. Now T £ T", hence |X"| = |X|, and it follows

that

dim(V) = ]{O 1 O is an N-orbit, J < x"}|,
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which, by (7.5). 1s equal to |{¥A: ¢ e (L, Ae Apl| <
I{e?.hl'fé L, A€ /\+?'. Hence the functions 6y , form a

basis for V, and the proof 1s complete,

§8. Block Theory for Special Primes

In this section we employ the notation of §3. with the

agreement that r 1s replaced by some Ty

(8.1) LEMMA. Fix ry € S(G,T) and let B(rj) € Blp,(G)

have non-trivial defect. Then Rj 1s a defect grouv of

B(rj)o

PROOF., Since the set of defect groups of B(rj) forms a
conjugacy class of rj—subgroups of G, there is a defect
group D of B(r,) such that {1} 4 D& Ry. D is cyclic
because Ry is, and Cg(D) = T, for if <x> = D, then x 1s
locally regular, so by (5.2b) Cg(D) = Cg(x) = T,

By (3.8) there exists an rJ-block b(rj) of T satisfying
b(rJ)G = B(rj). Let D' be a defect group of b(rj). Since
T is abellan, (3.7a} implies that D* ¢ D, But by the
definition (3.5) of defect group, D' € Sylrj(CT(t)) for some
t € T, hence D' = Ry since Cp(t) = T It follows that

D = RJ, and the lemma is proved,

Qur objective now is to apply Dade's results (3.8) to
G. (8.2c) and (8.4) constitute what is essentlally a

translation of these results to our present setting.
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For each Jj, let QJ be the unique subgroup of T

satisfying T = Qy X R,. Set Q" = {e ¢ T Ry £ ker(e)} and

3 J

R{" = {0 € T™ Q, £ ker(0)}. Since Q,< N, N acts on Q;” by

J
conjugation. Let QJ be a complete set of orbit representa-
tives for this action. We may, and henceforth we shall,
assume that Iléaﬂj, Set X, = {x e Ty rJ‘{xl}. Then clearly

.
XJ_-X.
(8.2) LEMMA. (a) For each j, the set

{olry)ee b(r;) € Bl (T)

coincldes with the set of cosets of Rjﬂllﬂ T,
(b) For each J, if b(ry) € BlrJ(T). then b(r4)"

contains precisely one element ¥ which is uniquely deter-

mined by the property that for all & € b{r.)*, ¥ = @ .

(c) For each j, there 1s a bljection

Ny <> {B(ry) ¢ Bly,(G)s B(ry) has non-trivial defect }

given by
‘Pé—-?b(rj)G,

where b(rJ) is the unigue rj~block of T satisfying Y&

b(rJ)'. Moreover, if by, b, € BlrJ(T)' then blc = by 1if

h
and only if b, = by for some h € N,

PROOF, Note that the arguments given here for (a) and

(b) are valld for any finite abelian group T and any prime
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Tye Recall from %3 the properties of the ring S.

(a) Given b(rJ) € BlrJ(T) and 04 € b(rJ)', a character
8, € T" satisfies 82 € b(ry)* if and only 1f1351 = g, (see
(3.2)), View T as embedded in Z(ST). Then since T 1is
abelian.55;1|T = 8; (1= 1,2), where for & ¢ T", B denotes
the linear character of T over S defined by 8(t) = 6(t) for
all £t € T. Let T denote the group of linear characters of T
over 5. Since &y, =Yg, if and only if §; = &, it follows
that the set {b(rj)': b(rj) € BlrJ(T)} colncides with the
set of all cosets in T" of the kernel of the group homomor-
phism £31T"— T defined by f£(e) = 8 for all & ¢ T, Hence to
prove (a), it suffices to show that ker(f) = BJN. But since

Char(g) = I‘J,
8= 1p&yQ < ker(d) &0 € B,

(b) The irreducible S-characters of T are precisely
those of the form © (8 ¢ T"), If ¥ is the irreducible
Brauer character affordesd by €, then 1t follows easily fron
the definition of Brauer character (see L51) that ¢ = equ.
Let b(rj) be the unique element of Blrj(T) such that o €
b(rJ)'. Then by (3.2), ¢ & b(rj)", and by (a), b(rj)' =
{81¢e1"s el[st:(F}. It 1s clear now that ¥ is the unique
element of b(rj)“. and (b) is proved,

(c) The last assertion of (c¢) is & consequence of
(3.8a) (Here D is replaced by BJ and Cqo by T. Recall that
we may write BJ = <x> where x is locally regular, so that by
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(5.2b), Cg(R,) = Cglx) = D)y |

Now let ?6.ILJ, and let b(rj) be the unique element of
BlrJ(T) setisfying ¥ € b(rJ)'. By (3.8a), b(rj)G is defined.
Since T is abelian and Bj € Sylrj(T). Rj is a defect group
of b(rJ). Therefore, since Rd € SylrJ(G), (3.7a) implies
that Ry 1s also a defect group of b(ry)%. 1In particuler,

b(rj)G has non-trivial defect, hence we may define a func-

ticn
ﬁ:ﬂj-—%'{B(rJ) ¢ BlrJ(G): B(rj) has non-trivial defect}

G
by B(F) = b(r,)”, where b(ry) € Blrj(T). ¥ € blry)*. By
(3.8a) and the definition of.Qj. ﬂ 1s one-to~cne. One of
the opening assertions of (3.8), together with (3.8a),

implies that ﬂ is onto. This completes the proof of (8.2).

(8.3) DEFINITION. For each J, and each 4’6.01, denote
by b?(rj) the unique rj-block of T satisfying b?(rj)' =
?Ri“. and denote by BP(rJ) the rj-block of G gilven by

B?(rj) = b%(rJ)G.

(8.4) PROPOSITION. Fix ¥ € (1;. Then By(ry)' contains

dertain distinct irreducible characters

Ypprr e Xym,

of G whose higher decompositlon numbers are given as

follows:
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N - .
there exist signs 6911""'6?1nT such that for each x € Rg '

each 1, and each ¥ € IBr(T),

& _ Ey,1 1f P e (bY(rJ)h)“ fgg some h &€ N
Xy,10% 0 otherwise.

PROOF, By (8.2¢), (8.1), and (5.4), B = B?(rj) has
non-trivial cyclic defect group Rj' so we may apply (3.8)

with r=1r, and D = RJ. We begin by translating some of the

J
notation of (3.8).

For 0 £ k # a, Cp =T and Ny = Ng(T) (= N). We prove
this assertlion in steps (1)-(11i) belcw, making implicit use
of (5.2b) .

(1) Ng(T) & Nya  If h € N (T), tnhen D! & Syl. (T), so

J
that D' = D because T 1s abelian. Thus Dy £ D implies that
th = D, But Dy 1s the unique subgroup of D of order [Dkl,
hence th = Dy. Therefore h &€ Ng(Dy) = Ny '

(11) Cy = T: {1} # Dy = {x) for some x & D, hence
Cyx = Cg(Dy) = Cq(x). But x is locally regular since Ty|lxi,
(11), Cy =T, so T < Ny, implies that Nk & NG(T).

This proves our assertion, so we replace =ach Cp by T
and each Ny by N = Ng(T) in (3.8). Now bq,(rj)G = B, so we
may take b, = b?(rj) in (3.8). Prom (a) and {b) of (8.2),

and from the fact that T" = Q. x R,™y 1t follows that
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in (398). Hence e = [N?ITJ = n\r 1n (3-8).

Now by (b) and (¢) of (3.8), there exist characters
’X\{,,'l'l-o"xly'n?é B' and Signs E*’lgoocgt{;.nq" XO'XJ.""'XE-I
such that for all k < a, if {(X) = Dy and if ¥ € IBr(T) =

IBr(Cq(x)), then

dx _ E‘F.iyk ir LP € (bg},(rj)h)" for some h & N
Ay,10 € 0 otherwise.

Therefore 1t suffices to show that we may choose the signs
€y,, and 5 in such a way that XO = ) meee= ¥gq_1 =1,
Invoking (3.8d), we choose the E%}i and the Xk so that
3’0 = 1, and we apply (3.8) to C,_4 and b,_i. But since
Cau1 = T =Co and by_q = b‘f'(rj) , We are in effect applying
(3.8} to Cy and b?(rj). Therefore by (3.9) we obtain new
signs (fg)® = (¥1)* =-++= (¥5.3)° = 1, which, by (3.84),
forces ¥y = ¥ =+++= ¥Ya_1 = 1, as desired. This concludes

the proof of the proposition,

The charactersx,f_1 of (8.4) are called by Dade the
L ]

“non-exceptional characters" in By(r,) (see [61).

(8.5) COROLLARY. With notation as in (B.4),

Xy,

for all Ye(ly and 211 1 € {1,...,ny}s

P
x5~ (€, /o) ¥ ’Xf}




43

PROOF. A typical element of XJ has the form %y, where
x € RJ* and y € Qe Let ¢ be the unique element of b+(rj)“
(see (8.2b)). Then ¥ = ?,QJ and for all h € N, the unique
Ry h - +
element of (bY(rJ) " is Y, Since StabN(b?(rj)) = Ny, the
conjugates of bw(rj) under the action of N are obtained,

each once, in the form bY(rJ)h. as h ranges over a left

transversal L of NW in N. Therefore we may calculate as

followsa
P h
Ay (xr) = Do ST At (by (3.7b), (8.2))
-1
= Tpez o1 FO70) (by (8.4))
= (Ey /[N T, T (by (8.20))
= (&g /M) 20 o TEEzT)™) (since ¥ €Qq")

(Ey, /) (/1T e Y (x0™)

(€y 4/ny) P (xy),
as desired.

Recall that for all j e {1,...,n}, (L5201, and Xye X,
so that a class function of T which vanishes on T ~ X nust

also vanish on T \‘XJ'

(8.6) CORCLLARY. With notatlon as in (8.4), if Y ¢ (1

and A € My, then (Y, 4, € - (¥N)0) = €y for a1
1 € {1,9...1‘1?}.
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PROOF. For the following calculation, we recall that
N
C? denotes the set of irreducible constituents of Y ?, and

we observe that Y - Y) vanishes on Qy=TN Xy

Ky, 40 Y€ = (PN = Ky, e ¥ - YAIe (Frobentius

reciprocity)

= (Ey /g ¥ - Ay (by (8.5))

I}

(€, 1/n) (PN, N < (PN (Frobenius

reciprocity)
= (E‘f’.l/n?)(TN' lfo)I\r (by (7.7))
- / 1)2 b .
(Eg,1/np) Zigeq, 81 (by (7.7))
= fy,1 (by (7.7)).

In %8. we have dealt with an individual prime rje
S{G,T). It is desirsbie however, to treat all primes in
5(G,T) simultaneously. For exampie, it is natural to ask
whether the formula of (8.5) holds on all of X, and whether
the set {X?.1°""x?1nl of non-exceptional characters in
B?(rj)' is independent of ry € 3{(G;T}). In the next section
we shall answer these questions affirmatively and introduce
some additional characters in Irr(G) for which the formula

holds.
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§9. Character Values

In this section we make liberal use of the notation

introduced in §7 and in 88. Denote by E the set

{g € Gt rJ,|SI for some J € {1.....n}}.

Then E = y\eJG x¥, 1Indeed, it is obvious that X £ E. On
the other hand, if rjllg[. then we may wrlte g = ab where
lal = rJS for some positive integer s, (|bl, ry) = 1, and

ab = ba, Since the rJ-Sylow subgroup R‘j of G is contalined
in T, Sylow's theorem implies that there exists an element

y € G such that a¥ ¢ T, Now b € Cp(a) implies that bY &
Cg(a¥). But a¥ is loeally regular in T sinee r; 27|, so by
(5.2b), ¥ ¢™. Henee g7 =a’bye T, and it foilows taat g¥e X,
whence g & Xy-l. This proves the assertion, which implies
that if the values of a class function of G are known on X,

then they are known on E as well.

(9.1) THEOREM. Let ¥ ¢ (L. Then there exists a sign

E\f,. for each 1 € {1....,n\f,} there exists a sign E\P i and an
1}

irreducible character ¥, 4 of G, 2nd for each Ae A, Lhere
, Lnere

exlsts an irreducible character X? y of G, such that the
1

following assertions hold:

(a) For each Ve [l and each A€ A,

G G Ny
oo (YA = (T E‘P.iy‘f'.i) - E\r}(%,\.
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Moreover, the map

ra{ (¥, 0 Yell, )\eA?} U {(t,1): pen, 1€ {1,..0n0} > Irx(a),

given by
ECCH ) = Xy g0

1s injective.
(b) For each r; & 5(G,T), the set {X,,+ 1 £ 1 ¢ nyf

coincj:des wii-:h the set of non—exéeptional characters 1

By(ry) given by (B.4).

(¢) For each VY& (] and each 1 € {1.....n4,}.

€p,akp,alx = (1/aptNy = ~E¢ Doy eny Toan|x:
In particular, 5%117(?.111'5 = E‘P’-iz](‘f’.iz‘E ﬂ;_gg_]_,_];‘f'eﬂ

and all 11, 12 € {1,...,n4}.

(d) For each Y e (L and each A€ Ny

e lx = 0Ty,

and
Ny
EeXem e = Tyl €y, 10y 1 oz
In particular, ’XY,,\IIG\E = X?’,AzlG*E for all Y ¢ () and

(e) Let X ¢ Irr(G) be distinct from a1l Xy , &nd all

X%)\ . Then X vanishes on E.
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PROOF. (a) Let Y€l and A€ Ay. Since ﬂéﬂ_i,
(8.4), (8.5), and {8.6) imply that there exist signs
E‘{’,l"' . E‘i’.n\y and distinct irreducible characters
Xy_l....,x\y.n? in By(ry)*' such that for all i,

(9.2) X-‘V.ilxl = (E%i/nty)‘f’ulxlv and

Xy,10 8y\"lg = Eya0

where 6, N = ‘f’N - (YMN, For each {e Irr(N) and each X ¢
]
G
Irr{G), let 8y = (f.fe?.A)N and by = (X, 8%}\ Jgr» So that
G X
- a = b, A,
Sy,\ = Z‘7‘5’EIrr(N) $7 end v = ZXGIrr(G) x Then,
since by (7.6) X 1s 2 union of special classes of N in G,
and since by (7.8) all such Oy 5 form a basis of virtual
?

characters of N fcr the C-space of class functions of N

vanishing off X, we may apply (2.2c) to obtain

b 2 2
Z’XGIrr(G) * = ?:féIrr(N) 2.

But by (7.7)s Oy, = (Lgeq, S(1EN = (YAY 15 a
decomposition of 6? A as 2 llnear combinatlicon of its
1)
distinet irreducible constituents, hence by (7.7c), ny + 1 =
2 2
Z‘S af = Ex bx . NOW by (9.2;. fOI‘ 1 e {1.-...1’1?}, bX'f’,1=
n
= %1 ¥ = ng.
Eg, 1 , so that Jl, % ®yy,, = v+ It follows that

there exlists a sign Eq, A and an irreduclible character 'X‘? N
] ’

G
¥ad

of G, dlstinet from each of the X, ,, such that o
’

Ny
(i1 €uih,n) = €y g
Now we apply (2.2¢) again to show that for each ¥ € (1,
the signs ES".}\ are lndependent of A ¢ Ay, Indeed, since for

,
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cach e QL and Mg € Ay (k= 1,2), Oy, = (Dgeq, S(1SH) -
(A" and ey, O = (T4l Eya¥wn) - €y Ky (2.20)
asserts that (232 €412 + €y, 600, = (Tgec, 5D 41
By (7.7¢), this becomes €$5A1E@1A2 = 1, which forces E?3A1 =
E*?Az' Thus we are justified in replacing E?gA by £y and
the proof of the first part of (a) is complete.

Although its proof is relatively long, the second part
of (a) will play a crucial role in our arguments for (e¢) and
(d4). We have remarked already that for each Y € (L and each
A€Ay, the characters Xk},'l.....%\},.n*.x%(\ are distinct.

Moreover, if ¥ € () and ’\1- A2 EAKPO then ’X‘{/,)q = X‘h/\g im-

G G
vod1 = Pan ¢

(2,3b), inductlon is an isometry from the C-space of class

plies by the first part of (a) that o Now by
functions of N vanishing off X into the C-space of class
functions of G. Therefore it is a monomorphism, and we
N

conclude that 84 ,, = By ), It follows that (YA)™ =
(W\Z)N, and by (7.72), this forces Ay = Ajp.

Thus to finish the proof of the second part of (a), we
must show that 1if le *é ¢ {1 are distinct with Ai ef\?l and
Ag 511?2. then any irreducible constituent of eylphl cannot

be an irreducible constituent of eyz But due to the way

sho?
1n which the characters Xq&'i and X*z,k arose,

{XW1.1’ 1£1 ¢ nyl} & qu(rl)', and {sz.k’ 1l ck <& nY21 4
sz(rl)'. Since the unions (3.3) are disjoint,

By,(r1)* N By,(r1)' = ¢ because by (8.2¢c), By, (ry) ¢

By,(rq). Thersfore the problem reduces to showing that we
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cannot have X‘i’l.i = X?’g,/\ for some 1 & {1....,!1\;/1} and some
re Ay, |

In order to do this, we shall invoke (2.2d). The set
{e‘hz\’ Y€ O, 5.(\.4,} may be indexed by the set
{(r,\)s ¥en, x¢ A‘P}' Let C be a set of representatives
of the classes of N contgined in X. By (2.2d), there exist
unigquely determined complex numbers Sx, (¥,A) (x € ¢, ¥ell,

A € Ay) satisfying

(9.3) fix) = gilAéA? Cx, (¥ )2y, 1) S

-

for all § ¢ Irr(N) and all x € C, where agy )y g =(5, 8y )y
? L

Moreover, the cx'(‘h“ also satisfy

(90’4') ’X(x) = S%_Q_}\%\s’; cX.(*.A)b(Yoh)t’x

for all X ¢ Irr(G) and 2ll x € C, where b(‘f',A),X""
(X, GW.AG)G‘ Now by (7.7), for Y€l and A€ Ay,

§(1) 1r 5= sV (5 e cy)
(9.5) & 4yq = {-1 ird = N
0 1f § € Irr(N) is otherwise.

And by the first part of (a), for all ¥ ¢ [Land al1 A ¢ Ny

EL!’,i 1f X = X"I".i (l & {1.....1'11;/})
(9.6) By gy = 1=y X=%,,
0 At X € Irr(G) is otherwise.

We are now prepared to finlsh the proof of (a). Fix
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\Poe'_()—and ie¢ {l,..o.nxyo-i- Set

B = {HVe_()_: X‘Po.i = th)\ for some )\61\.?}5

We must show that B = . By our previous discussion, we
xnow that ¥, ¢ B, and that if ¥ € B, then there is a unlque
Ay €Ay such that Xy 3 = Xyaye Let 1 # x & X3 N R, Then
by (9.2), (9.4), (9.6), (9.5), (9.3), and (7.7d) respec-
tively, (Eq,o'i/nq,o)‘f’oN(x) = X¢g,1(%)

= I E‘M 2 (VP (0) s X1

,\Z»:;‘Ad,o Cxa (Yo, M E¥0t * T Cx,(v,4,) (7EY)

- -EVO’i /\;_A_\yo cxu(‘yo'l\)a(lpool\)o("yo)\)N +

b n, T R ()t

N N
'E\yo'i }\EGAA?O (YOA) (x) + E_;},(q’)\v) (x)

YeB

N N
(€45,1/0¥9) Y0 (X) + E.B Ew (YAy) (x)

It follows that Liy.g Ee(¥Ae) () = 0.

Next we observe thet for each ¥ & B, Ey(¥Ap)V(x) =
X¢yay (X)o  Indeed, by the first part of (a), (9.2), and
(2.33), we have E4Xy,), (%) = (Digh €¢ xXy(x)) -

(¥ - %) = T2 (/) - (Nx) - (AR NR)) =
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(WA*)N(x). and the observation follows. Therefore, 0 =
Zipen Xugag (X) = Zyp Xy, 1(x) = 181Xy (%) =
[BI(E?O’l/n*O)?bN(x) by (9.2). Finally, since Y, ¢ Q7 and

x € R, ¥oNx) = (1/1T]) Tpey YolxP) = INI/|T|, so we have

0 = |ElE+b'1[NaN?b]. which forces |B| = 0. Hence B = ¢, and
the proof of (a} is complete.

(b) In the proof of (a), the charactersj{w}i (1 £1 &
nY) arose as the characters in B?(rl) given by (8.4). So if
S(G,T) = {rl}. there 1s nothing left to prove. Assunme
otherwise, and let Ty € S(G,T) be distinct from ry. Let
Ay (1 21 < ny} be the charecters in B?(rj)' given by (8.4),
Then arguing as in the proof of (a), for all 1 and all
AE Ny 11 is an irreducible constltuent of ¥C - (¥A)G,
Suppose that X; & {K+;ka 12 x ¢ n*} for some i. It follows
from the first part of (a) that Xi = *;qx for all A € M.

By the second part of (a), this forces[l\?‘ = 1,

Now R < N, and since R 1s c¢yclic, each subgroup of B 1s
21so normal in N. Thus in view of the definition of Ay,
Ayl = 1 implies that R™ = R,”. Since R & R™, it follows
that 38(G,T) = {rl}. contradicting the existence of Ty This
concludes the proof of (b).

(e),(d) Let Wbé:jl, i € {1.....n*0}. and x € C, Then
by (9.4), the first part of (a) together with (9.6), (9.5),

(9.3), and (7.7d) respectively, X*b Jx) =

D

'f;?_ &AYGXQ(L}I-)\)b(l{’cA)g)(YO'i = A};Aipo CI.(L{"O,)\)E?O'i
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€4y, 1 ZV O (Yo M) 2 (Yo A) s (Yo DY
(o)

"t D FoNTx) = (€ 1/npp)¥p" (X)),

and this establishes the first equelity of (e},
Now let Yp €dl, Ag € Ay, @nd x € C. We proceed
similarly to obtain.'x*b'AO(x) =

q’&-o- EA*CX.(Y’A)b(Y'A)"X\FO.AO = CX'(YO'AO)(-EVO)

N
= E¥Cx, (Yo, 40)%(Yorho) s (Yoho) ¥ = E¥olYoho) (),

thus establishing the first equality of (d).
We use this equality, together with (7.74), to estab-

l1ish the second equality of (¢). If Ve ), then

- = -f Eo (PN =
Ly A%‘F Ko |x vEA* ¥ Ix
N N
L x = (1/n)Y"|x.

The proof of (c) is now complete,

Since by (?.8).‘YN - (+A)Y vanishes on N ~ X for each
Ye O and each A ¢ Ay, ¥& - (YA)S = (YN - (v})M)F vanishes
on G \.gégxg = G~NE, By (a), thils establishes the second
equality of (d), and the proof of (d) 1s complete.

(e) IrX € Irr(G) 1s distinct from all qui and all

Xy,»» then (a) implies that for all Ve (L and all A e Ny,



53

b = 0. Thus (9.4) implies that X vanishes on X, and
(VoA) X

1t follows that X vanishes on E. This concludes the proof

of the theolren,

(9.7) COROLLARY. The wvirtual characters of G 1

{€h1Xy,1 * E?A%‘qu»,,\' e, 1 e {1,...n4},

together with all X € Irr{G) which are distinct from 2ll

X?;i and all'X?,h. form & basis for the C-space of class

functions of G which vanish on E.

PROOF. Irr(G) forms a hasis for the space of all class
functions of G, hence by (9.l1a), the set (8 of class func-
tions given in (9.7) is linearly independent. The elements
of B vanish on E by (9.1c) and (9.1e),

Now E = g%b X% 1s a union of conjugacy classes of G,
hence the same 1s true of G ~ E, and since by (7.3) X is the
union of a set of special classes of N in G, the number of
classes of G contained in E is e?qual to the number of
classes of N contalned in X, Since the set of functions,
each of which arlses as the characteristic functlon on some

class of G contained in G -~ E, forms & basis for the C-space

V of class functions of G vanishing cn E, we have dim(V) =
[{Ca Lis aclass of G, K £G ~ EJ] =

[{E: [ 15 a class of G}[ - l“:: L 4s & class of N, [L £ X}}.
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Now since HE: L 1s a class of G}| = |Irr(G)|, since by
(7.9) I{[:: £ is a class of N, L «X]}| = [{(H",/\); Yen, ,\é_/\_q,}[,
and by (9.1a), we obtain dim(V)

1]

[Ter(G) - [{{¥ A)s Yell, Aenyl] =

JTrr(e)] = [{Xy,nt $ e 2o A DY

But agaln by (9.1a), this number is equal to lﬁgl. It

follows that 7 spans V, and thils concludes the proof.

In chapter IV, we shall see that the sign 5‘? appearing
in (9.1) 1s independent of Y €(L, and that it is in fact
equal to £ = (-1)0—(2)(-1)0-(9) (see (U4,3b)). We shall see

also that we may extend to a2ll of Y the formulas
N
(5.5) Xl = Eqarmnty.
Xx{;',\!x = E\F(*A)Nb{o

Xx = ©

(for a11 YELL, all 1 € {1,,..,ny}, 821 A ¢ Ly, and all
X € Irr(G) which are distinct from all Xy, ; and all X, ,)
which are given in (9.1).

Assuming that the structure of T, the structure of N/T,
and the manner in which N/T acts on T are known, (9,8)
provides (up %o sign) certain values for all irreducible
characters gf Go Thls assumption is of"ten gquite reasonatle,

That the structure of T is kxnown 1in many cases can be seen
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by reference to Springer and Steinberg [13] and to Gager
[9]. By (6.5), N/T is cyclic, so we need only its order to
determine its structure entirely. Finally, (l.5c) gives the
action of N/T on T under commonly occurring conditions.

By way of contrast with (9.8), which treats character
values on E, we now discuss character values on the elements
of G ~ E which are conjugate to some element of T. We
retain the notation of (9.1). Let { be the subring of ¢
obtained by adjolning to Z all lQlth roots of 1. Then ()R]
is an ideal in (. |

(9.9) THEOREM. (a) Let Ye land 1 € {1,...,n4}.
Then in ({,

Ay, 1(t)

(€4, 1/0)¥(t)  (mod QIR

for all t € Q%, and in Z,

X\P,i(l) = E‘f‘.i[N’NY»] (mod [R[).

(b) Let Ye QL and ) ¢ A Then in (1,

Y.
X alt) = E(¥AV(E)  (moa [RI)
for all t € Q*, and in Z,

Xpa(1) = EIMT] (mod [R).

(¢) Let X € Irr(G) be distinct from 211 ¥, ; and all

X?’u\' Then in (1,
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0 (mod ('[R])

X(t)

n

for all t€Q*, and in Z,

X(1)

0 (mod [R|).

PROOF. (a) Fix Y €(land 1 € {1,...,ny}. Set O =
_Q.\ [‘f’o} « By Frobenius reciprocity and (9,1a), for all
teland all A€N,

(Y= ¥A Xy gdp = (F0 = (NS, Xy 4o

Lo If W4 ¥

Therefore, setting a, = (Y, X‘i’o,i)T for each ¥ € (L, we have
(YA, X\"O.i)T = 2y for all A € Ay if Y€ (*, and
(Yo Xyy,1)p = Byg - €yp,1 Tor 811 A € Ay,

For each ¥ € {1, let Dy be a right transversal of Ny in
N. Recall that each element of T" can be expressed uniquely
in the form YA (¥ € Q¥, A € R™), and that if t € Q, then
YA(t) = Y(t). If e & T" and h € N, then by Frobenius reci-
procity, (ol, Xg o) = (60T, Xgy,1dy = (8", Xypo1 N =
(8, }(?,0.1).1.. By virtue of these considerations we compute
that for each t € Q, X, ,(t) = Llgepn (8, Xy 4)po(t)

= Z\ E ZN a\u‘f’h/}\(t) +
¥€(1' h€Dy AeR

h h
h%‘i’o Srofo (D) + Ae([ér')* (21 = Eyg,1) o AlE)]
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= \R\a**h(t) 4+
ve(! héDq,,

5

T [agborced + (1H] - Dayy - &4 1Yo (8]

héthO

R () - Pe)
| [Eﬂhgb AR YE;_’LDYO to (=]

h
t)e
&fo,l h%'-!’o Yo (€)

All summands of the last expression lie in a, so X*Po,i(t) €
N
(L. Since ZhEDL}’O f'oh(t) = (1/nq,0)‘f’0 (t), the first part of
(a) follows, Setting t = 1 gives the second part.
(b) Fix Yo €L and /\0 eAVO' Then by Frobenius

reciprocity and (9.1a), for all Y é () and all /\EA\F.

-f?,if‘}’= l}’oand/\=Ao

4] otherwise.

(¥ = YA Ayg,0)T = {

Now an argument very much in the spirit of the proof of (a)
proves (b).

(c) Let X & Irr(G) be distinct from all ka and all
X\}',A“ Then for all Y € (L and all AéAy, (9.1e) and the
fact that ¥ - ¥\ vanishes on T ~ X imply that
(Y- %A, X)T = 0. Again we conclude the proof by arguing as

fer (a)e

(9.10) COROLLARY. Let X € Irr(G). Then |R||X(1) if X 1is

distinct from all X\f’,i and all X‘{' A and X(1) is relatively
?
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prime to |R| otherwise.

PROOF. Since R < N and each element of R¥ is locally
regular, R¥ 1s a unlon of conjugacy classes of N, each of
which has order [N:TJ]. Therefore [N:T]|([B] - 1), and it
follows that ([N:T], IR|}) = 1. In view of this remark, the

corollary 1s an lmmedlate consequence of the theoren.
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CHAPTER IV. THE CONNECTION WITH THE

DELIGNE-LUSZTIG THEORY

The notation and assumptions with whiech we opened
In

chapter III remaln in force throughout this chapter.

addition, we shall use the notatlon introduced 1in sectlons

4, 7, and 9.

G
810, Decomposing,Bz(e)

In §9 we utilized the fact that if { is a class

function of N vanishing off X, then XG(X = Xlx (see (2.3a)).

In thils sectlon however, we shall need the following

stronger result.

If Y is any class functlion of N, then

(10.1) LEMMA.
XG[x = V|x-
PROOF. Let x ¢ X. Then XG(x) = (1/|N|)EZSEG %Ig‘lxg)

where / is the function on G which agrees with ¥ on N and
takes the value 0 elsewhere, Hence 1t suffices to show that

if g~ xg € N, then g € N,
Let y = g'lxg € N, x & X implies that rJ |y| for sone
Therefore there exist elements a, © € N such that y = ab

J.
Now HJ €

= ba and |al = ry

s for some positive integer s.
Syl,. (G), so RJ & SylrJ(N) as well. Moreover, RJAG T < N,
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and R, 1s characteristic in T, hence H‘j <] No It follows

J
that a ¢ RJ% £ X, therefore a is locally regular in T. Now
by (5.2b), b € CG(a) = T, so g"lxg = ab ¢ X. Since by (7.3)
and (2.2a) X is a T.I. set in G with normalizer N, it

follows that g ¢ N, as deslred.
Let 5 = (_1)6’(2)(_1)0"(&)' as 1in §‘+o

(10.2) THEOREM. For each ve (), gach 1 & {1,...,n¢},
and each Aé_A*. let g, 10 Eg 10 Xe and £, be as in (9.1).
Then £, = £. Moreover, (after a possible relabeling of the

characters X‘f‘ 1,000'%‘}, n .Z'll’ and the Sig‘nS Ev, qreven E\r n?’
oA G
€ in case jAy| = 1) B.T(Lf'/\) = ¢ Xy and R-(H Zi 129;11”9'. .

PRCOF. For any © & T", we write RE;(B) in the abbre-
viated form R(0). PFix ¥ ¢ ] and AO EA;. Since by (5.2a)
each element of X is regular, (4.3d) implies that for all
A€ Ay, BR(Y) - B(YA) and ‘f’G - ('f’/l)G agree on E = gLeJG x8.
From the fact that for all A ¢ Ays ¥ - ¥A vanishes on
T~X, 1t follows immedlately that ‘PG - (‘J’A)G vanishes on
G ~ E, and it follows from the character formula (4.3¢c) that

R(¥) - R(¥A) vanishes on G~ E as well. Thus by (9.11a),

(10.3) R(Y) = ROVA) = (2% €4,0%p1) = &y

for all A é—.A-g.-'
ny
Now it suffices to show that R{Y) = Z 1 E‘a"ix"}’ g

Indeed, since YA is regular for all A C_A\f,, it is in general
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position, hence by {4.3b) ER(YA) € Irr(G)., Since by (4.3a)
(R(Y¥), R(")"/\o)) = 0, 1t will follow at once that R(‘f’/\o) =
EXy, ), Moveover, using (10.1) and (9.1d), £y = £ Will then

be a consequence of the fact that

fx*.,\o]x - R(Ho)lx = (HO)GIX = W"O)N’x - E4 Xy, holx*

So suppose that R(Y) # Z;:fi E‘]’.lx‘hi‘ For all A€ _Alf,,
£R(YA) € Irr(G) and (R(Y), R(YA)) = 0. Thus (10.3) implies
that fR(YA,) = Xy i for some k. It follows that X‘f’,k is not

an irreducible constituent of R(¥). But then by (10,3)
again, Xy . = ER(TA) for all A€ A, . By (9.1a), this forces
[Agl = 1,

Now R 1s a cyeclle normal subgroup of N, so the same
holds for all subgroups of R. Therefore fromfjk+] = 1, which
implies that the number of conjugacy classes of N contained
in B* is also 1, we may conclude that R 1s simple, 1l.e.,
that R = {x), where x € B has order r and r 1s the unique
member of S(G,T).

It follows that the irreducible characters in B?(r)'
consist precisely of Xv;1-----x¥;n* (the non-exceptional
characters in B*(r)“). and XV?AO (the unique exceptional
character in By(r)*). Since S(G,T) = {r}. all of our
previous results follow as & direct consequence of Dade's
work in Eé] without the intercession of a result such as
(9.1} to reconclle the information provided by the block

theorles relative to several dlstinct special primes. But
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'AW:= {AO}' hence Dade's results are independent of which
character among x*zl"‘°'xﬁsn?'X%on is called the
exceptional character in By{r)' (see p. 38 of Eéj). There-
fore all of our previous results hold if we relabel these
characters (and the corresponding signs) in such a way that

x*lho = £B(YAy)s After such a relabeling, it follows that

RO) = T Egalya

as desired. This concludes the proof of the theorem.

It should be remarked that the informatlon contained in

(10,2) is complete in the sense that
{ B e T 2y Yel, heny
(@) @ T}={B,£( M ' o

This follows by (7.6) and the character formula (4.3c).
Thanks to (10.2), the multiplicity of each X & Irr(G)

in each H%(e) 1s ¥nown (up to sign). Therefore for X €

Irr(G), ﬁ; mey apply the formula 7.6.2 of Deligne-Lusztig

[7]. which states that for all regular elements y in T,

AP = Egeqn 00 (Xs Bxlo)).

A computation which is by now familiar then shows that the

formulas (9.,8) are valid with X replaced by Y.
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