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This dissertation is concerned with the study of 

certain irreducible representations, over the field of 

complex numbers, of finite groups of Lie type, and especi­

ally with the characters afforded by these representations. 

The methods are based on the theory of blocks with cyclic 

defect groups for certain primes different from the 

characteristic, called special primes, for which the groups 
' 

have cyclic Sylow subgroups, 

To be more specific, let T be a maximal torus of a 

finite group G of Lie type, whose order is divisible by at 

least one special prime. Then a family of irreducible 

characters of G is constructed from the local character 

theory of G relative to T. In other words, the characters 

in the family are parameterized by certain characters of 
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Chapter I 1s a collection of the results on finite 

groups of Lie type, special conjugacy classes, block theory, 

and the Del1gne-Luszt1g theory which are used later, In 

chapter II, special primes are shown to exist for a wide 

class of tori, 

In chapter III, using Brauer's theory of blocks as 

developed further by Dade, the corresponding families of 

characters are shown to exist, Suzuki's theory of special 

conjugacy classes (as described by G, Higman) 1s then 

employed to discuss the compat1b111ty of the block theories 

relative to distinct special primes, and to investigate the 

properties of the irreducible characters 1n the above 

families, Indeed, if T 1s a maximal torus of G whose order 

1s divisible by at least one special prime, and if e 1s an 

irreducible representation of T, set N = NG(T) and e = 
[Ne IT], where Ne 1s the stabilizer of e 1n N·, and let X be 

the set of elements of T whose orders are divisible by some 

special prime, Then the above methods are used to show that 

there exist irreducible characters X1 , ... ,Xe of G and signs 

[ 1 , ..• ,Ge such that for each 1, X1 )x = (£1/e)eN)x• Charac­

ter values for the characters J1 are also given, up to a 

particular congruence, on the other elements of T, This 

1nclud~s, of course, a result on character degrees, 

One of the primary objectives 1n the study of the 

representations of finite groups of Lie type 1s the 
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decomposition of the Deligne-Lusztig virtual characters in 

cases where this has not yet been accomplished, This is the 

subject of chapter IV, If~ is a connected reductive affine 

algebraic group giving rise to a finite group G of Lie type, 

and if! is a maximal torus of G giving rise to a maximal 

torus T of G such that ITI is divisible by some special 

prime, then using the previous notation, the result obtained 
G e 

is that RT(e) = ['.i=l EiXi' The Deligne-Lusztig theory is 

then used to sharpen some of the results of chapter III, 
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NOTATION 

We establish here some notational conventions which 

we shall use throughout. 

ix 

If X and Y are sets, we shall denote the containment of 

X as a subset of Y by XL Y. 

Let G be a group. G* will denote the set of non­

trivial elements of G. If :x, g ~ G and X ~ G, then g-1xg 

( respectively f g-1yg1 y 1: X J) will be denoted e:xponen-tially 

by xg (respectively Xg). If r is a prime number, then we 

shall call x f Gan r'-element of G if the order of x in G 

is relatively prime tor. If G acts on a set C and c EC, 

then by StabG(c) we shall mean the isotropy group 

[g E G1 gc = cJ. 

Assume now that G is a finite group. Then by Irr(G) 

we shall denote the set of irreducible characters of Gover 

IC. If G happens to be abelian, then Irr(G) has a natural 

group structure (under which it is isomorphic to G). We 

shall emphasize this by using the symbol GA to denote this 

group. Let H be a subgroup of G, let g e G, and let X be a 

class function of Hover IC. Then by Xg we shall mean the 

class function of Hg defined by 

for all h ~ H. Of course if X 1: Irr(H), then x_g E Irr(Hg). 



Let K be a field. We shall denote by K* the group of 

units in K. Let Q be an affine algebraic group over K. 

Then .Q.
0 will denote the connected component of the identity 

element of .Q.• If F1G - G is a morphism of affine algebraic - -

X 

groups and His an F-stable closed subgroup of .Q., then by Hp 

we shall mean the set {h c li1 F(h) = hJ. 



CHAPTER I, PRELIMINARIES FROM GROUP THEORY 

AND REPRESENTATION THEORY 

~1. Finite Groups of lli Tyne 

Given a prime number panda positive integer~. set 

q = p~ and denote by Fq the finite field of order q, viewed 

as a subfield of its algebraic closure K. 

Let G be a connected reductive affine algebraic group 

over K with affine coordinate ring A, and let Air, ~ A be an 
q 

Fq-rational structure such that the induced Frobenius map 

FsQ--'tQ is a homomorphism of abstract groups. It follows 

that Fis a bijective morphism of algebraic groups such that 

its fixed point set Gp is finite, In particular, QF is a 

finite group, which we denote by G, 

(1,1) DEFINITION. Any group G arising in the above 

manner is called a finite group 2f. lli ~-

1 

We retain the Preceding notation throughout. It is 

shown by Springer and Steinberg in [13] that F-stable maximal 

tori of Q exist, and that if x e G is semisimple and F(x) = x, 

then there exists an F-stable maximal torus of G containing x. 

(1,2) DEFINITION. Let T be an F-stable maximal torus of 

Q, Then the abelian subgroup !F of G = Qp is called a 
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maximal torus of G. 

The maximal tori of G can be classified in the following 

manner. Let!' be an F-stable maximal torus of Q, set N' = 

NG(!'),. and let W(!') = ,N'/T' be the corresponding Weyl group. 

Clearly G permutes its maximal tori by conjugacy. Denote by 

D the set of orbits under this action. Now since!' is 

F-stable, F induces in the obvious manner an endomorphism of 

W(T'), which we shall continue to denote by F, We say that 

two elements w1, w2 c W(!') are F-conjugate if there exists 

an element w3 e W(!') such that w2 = w3w1F(w3)-1. 

F-conjugacy is clearly an equivalence relation, and we denote 

the set of equivalence classes by C, Given w = ¾!' c W(!'), 

where¾ e .N', Lang's Theorem (see [1J]) guarantees the 

existence of an element g e Q satisfying¾= gF(g)- 1• It 

follows easily that T = g-1!'g is an F-stable maximal torus 

of Q, hence we obtain a maximal torus T = !F of G, It can be 

shown that the G-conjugacy class of T depends only upon the 

F-conjugacy class of w, Our discussion therefore produces a 

well-defined function f1C -,,n, which can in fact be shown to 

be bijective. In the following definition we abuse the 

language slightly since Tis unique only up to G-conjugacy. 

(1.J) DEFINITION, Tis called the maximal torus of G 

obtained from!' by twisting by w E W(!'). 

If F induces the trivial endomorphism on W(!'), then 



the F-conjugacy classes of W(!') are just the usual conju­

gacy classes, so in this case the maximal tori of Gare (up 

to G-conjugacy) in bijective correspondence with the 

conjugacy classes of W(:!'.'). Suppose we have singled out a 

fundamental system in the set of roots relative to T', If 

J ~ W(:!'.') is the corresponding set of fundamental reflec­

tions, then (W(!'), J) is a Coxeter system, so we may speak 

of the conjugacy class of Coxeter elements in W(!') (see 

Bourbaki [1]). 

(1,4) DEFINITION. Suppose Facts trivially on W(!'), 

and let w E W(:!'.') be a Coxeter element, If Tis a maximal 

torus of G obtained from!' by twisting by w, then we call 

T the Coxeter torus of G relative to W(!'), 

In chapter II we shall need the following result, 

(1,5) PROPOSITION, Let T = TF ~~maximal torus 2f 
G = GF obtained fl:£!!!:!'.' ~ twisting~ w = nT' 6 W = W(!'), 

Assume that -
( 1. 6) 

T1 = {t1 & 1'.'1 n-1t1n = F(t1)}, 

N1 = {n1 E NG(!')1 n- 1n1n = F(n1)}, 

and 

J 



~ T 1 ,!! ! normal subgroup .2f N 1 , ~ ~ following 

conditions~• 

4 

(a) There exists an element a c:: Q !.!!£.!:! ~ aTa- 1 = T1 

and aNa- 1 = Ni, 

(b) NG(T)/T ~ N1/T1 ~ C'(w), 

(c) ll F ~ trivially 2!! W ~ Cw(w) = (w), ~ 

there exists ~ element n1 E N1 !.!!£.!:! ~ N1/T1 = (n1T1) ~ 

n1- 1t1n1 = F(t1) f2! ,ill t1 E T1, 

PROOF, Clearly T1 is a normal subgroup of N1 , In view 

of (1,6), (a) and (b) follow from the discussion in chapter 

II of Srinivasan [14]. 

As for (c), suppose that Facts trivially on Wand that 

Cw(w) = (w>, Then C'(w) = (w), so by (b), N1/T1 ~ (w). 

Choose n1 ~ N1 such that n1T1 generates N1/T1 and set w1 = 
n 1!' in W, Then n- 1n1n = F(n1 ) implies that w- 1w1w = F(w1 ) 

= w1, so that w1 lies in Cw(w) = (w). Moreover, the order 

of Wl in W is equal to the order of n1T1 in N1/T1, so <w1) 

(w), It follows that we may choose n1 E N1 in such a way 

that N1/T1 = (n1T1> and n1!• = w = n!', Thus, for all 

t1 E. T1, -1 n- 1t 1n F(t1)-, as desired, n1 t1n1 = = 

The condition (1,6) is not very restrictive, Indeed, 

it is shown in [lJ] that (1,6) holds if no root relative to 

! contains TF in its kernel, In case Q is semisimple, 

= 
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Veldkamp ([17]) lists the exceptions to the latter condition. 

Curtis [3], Springer-Steinberg [13], and Srinivasan 

[14] serve as good general references for this section. 

~ 2, ru Theory .£! Special Con.1ugacy Classes 

In the remaining sections of this chapter, we discuss 

some results from representation theory of finite groups 

which will prove useful in the sequel, From now on, unless 

we explicitly indicate an exception, "character" will mean 

"complex character," 

(2,1) DEFINITION, (a) Let G be a finite group and 

H ~Ga subgroup containing elements h 1 , ••• ,hn whose 

respective conjugacy classes in Hare C1 , .•• ,[n• and assume 

that the following conditions holds 

( 1) For all 1, CG(h1) ~ H, 

(11) If 1 'F j • then h 1 and hj are not conjugate in G, 

(111) If for some 1, h E: H satisfies (h) = <h1), then 

h E Cj for some j, 

Then i:1 • • • ' • en are called special con.Jugacy classes of 

H in G, 

(b) A trivial intersection set (T.I, set) of G is a 

non-empty subset X of G such that if g ~ NG(X), then 

Xg (\ X ~ ( 1}, 



(2.2) PROPOSITION (Suzuki, Higman). ~ G, H, ~ 

h1 ~ (1 (1 £:; 1 f: n) ~~.!a (2.la). ~ 

(a) X = UlC::1 1 1 ~ 1 ~ n} ll !: !d:. ~ 2f G ~ ~ 

NG(X) = H. 

(b) There ll !: basis e 1 , ••• ,en 2f virtual characters 

6 

2f H ,Du:~ ~-space 2f class functions 2f H vanishing 2!.f X. 

(c) ~ Irr(G) = fX1,••••XsJ• ,!tl Irr(H) = (Cf'1,•• 1 .Cf'm}• 

~ ~ 81 = Zj!l a1/f'j and 81G = Zj!l bijxj 

(1 b 1 ~ n). ~ 

f.2.!-!:ll 1 E f 1,,., ,n}. 
(d) There exist unique complex numbers cjk 

(1 e J,k ~ n) satisfying Cfi(hj) = I'.~1 cjkaki (1 L. i ~ m, 

1 ~ j ~n). Moreover,~ cjk .!!!:1.:!2. satisfy Xi(hj) = 

[:~1 cjkbk1 (1 f: i L.. s, 1 ~ j ~ n). 

PROOF, See Dornhoff [8]. 

(2.J) PROPOSITION. ~ X ~ ,! !:1.:. ~ .!a G ~ ,!tl 

N = NG(X). ~ e ~ '( be class functions 2f N vanishing 

2!.f X, ~assume~ e( ~) = o, ~ 

(a) eG!x = e/x• 
(b) (eG' rG)G = (e, t)N. 



PROOF, See [8], 

We do not include here the standard results on 

exceptional character theory, because there is no need to 

invoke them explicitly in the sequel. We will use Dade's 

results on blocks with a cyclic defect group however ([6]), 

and his proofs do employ exceptional character theory, 

§:,, Block Theory 

? 

We discuss now the results we shall need later 

concerning Brauer's organization of Irr(G) into blocks, For 

reference, see Curtis and Reiner[4,5],Dornhoff [8], or 

Isaacs [10]. 

Let G be a finite group and r a prime number. Then 

there exists a complete Noetherian local integral domain S 

with Jacobson radical J(S) and quotient field L such that 

(a) r E: J(S). 

(b) Both Land S = S/J(S) are splitting fields for 

every subgroup of G. 

(c) The integral closure Lo of~ in L may be assumed 

to be conta.ined in IC. 

For example, extend the r-adic valuation from~ to 

~(iji'), where g = jGI and M denotes the set of gth roots 

of 1 in IC. If Lis the completion of ~({Yi') and S the 

corresponding valuation ring in L, then Sand L satisfy the 

above conditions. 



Let IBr{G) denote the set of irreducible Brauer 

characters of G, Then for each XE Irr{G) and each~~ 

IBr{G), there is a non-negative integer dx~ such that 

X<x) = 

for all r'-elements x of G, 

{J,l) DEFINITION, The integers dX~ are called the 

decomposition numbers of G. 

Let C1 , •. ,,Cn be the conjugacy classes of G and for 

" each 1, let C1 denote the sum of the elements of C1 in the 

8 

group algebra LG, Then {e1 , 1 ~ 

Z(LG), For each 1, fix g1 E: r:::1, 

define a linear map Wx_1Z(LG) ➔ L 

1 b. n} forms an L-basis for 

and for each 'X- E: Irr(G), 

by 

(lbif:.n). 

I\ 

Then w~ is an L-algebra homomorphism andwx(C1 ) 6 S for all 

1, Let the image of a E:. SG under the projection SG --'r SG be 

denoted by a (or by a- when it is convenient). Now for each 

X E. Irr(G), we may view w?( as an S-algebra homomorphism from 

Z(SG) to s. As such, it induces a well-defined S-algebra 

homomorphism W,x •,Z ( SG) _,, S via W;< ( z) = w?( ( z) where z is the 

element of Z{SG) represented by z f Z(SG). We may define an 

equivalence relation/Von Irr(G) by declaring X1 ~ X2 if and 

only if w_x:
1 

= w_x
2

• If, for any field k, a central character 



of kG is defined to beak-algebra homomorphism from Z(kG) 

onto k, then {wx1 X 6 Irr(G)} is the set of all central 

characters of SG, 

(J,2) DEFINITION, An r-block of G is any subset 

B - B(r) of Irr(G) 0 IBr(G) such that 

(a) B n Irr(G) is an equivalence class under"', 

(b) B n IBr(G) = { Cf' I:: IBr(G) 1 dj{,'f f O :for some 

'X,E. B n Irr(G)}, 

We denote by Bl(G) = Blr(G) the set of all r-blocks of 

G, and i:f BE Bl(G), we denote by B' (respectively B") the 

set B n Irr(G) (respectively B (\ IBr(G)), 

( J. J) 

Clearly we have disjoint unions 

Irr(G) = U{B' 1 B E. Bl(G)}, 

IBr(G) = U[B"1 BE Bl(G)}, 

Moreover, there is a bijection between Bl(G) and the set of 

central characters of SG, given by 

( J. 4) 

where Xis any element of B'. 

9 

Let B t Bl(G), It can be shown that there ~xists a class 

" C1 of G such that (a) if XE B0 , then ~((Ci)-) j O and (b) if 

x G (i' then (1/IG\ >Zxe.B• xc1JX(:x-
1

)- f o. Select x E C1 

and let D E'Sylr(CG(x)). Then the aet of' all D arising from 

Bin this manner forms a conjugacy class o:f subgroups o:f G, 
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(3.5) DEFINITION. Dis called a defect group of B, and 

!DI the defect of B. 

Now let H be a subgroup of G and let be Bl(H). Then 

an irreducible character~ e b' gives rise to an algebra 

A -homomorphism w.,,,z(SH) ➔ s. Since {o:1 ) , 1 ~ 1 ~ n} forms 

an S-basis of Z(SG), we may determine a unique S-linear map 

~GiZ(SG)- S by setting 

for all 1, where the argument of wtis taken to be an 

element of SH (which plainly lies in Z(SH)) in case Ci n H 

j ~• and is interpreted as O if [ 1 n H = ~- Now if wtG 

is in fact a central character of SG, then (J.4) implies 

that wrG = ~~for some X. ~ Irr(G), thus determining a unique 

block BE Bl(G) such that 'J- EB'. 

(J.6) DEFINITION. Whenever the map w~G is a central 

character of SG, we say that bG is defined, and we set 1t 

equal to the block B, which is said to be induced from b. 

Induction of blocks is transitive, If H1 ~ H2 ~ G and 

b E Bl ( H1 ) is such that bH2 and ( bH2) G are both defined, then 

bG is also defined, and it coincides with (bH2 )G. 

Henceforth, statements such as bG = B, made without further 

qualification, will be taken to mean both that bG is defined, 

and that it is equal to B. 



(3,7) PROPOSITION, (a) ~ H ~ G ~~subgroup, let 

b E: Bl(H) ~ ~ ~ bG is defined, ~ D1 ~~defect 

group q_£ b, ~ ~ D be! defect group 2f bG, Then there 

exists an element g I: G ~ ~ D1 g ~ D, 

(b) (Brauer's Second~ Theorem) Let x be an --
r-element 2f G, ~ for~ X. €: Irr(G) ~ ~ 'f €: 

11 

IBr(CG(x)), there 1§. ! uniquely determined algebraic integer 

d~,f (called! higher decomposition number) such~!£! 

ill X c Irr(G) ~ ill r'-elements y e CG(x), 

Moreover, if (fl E: b" .Du:~ b E: Bl(CG(x)), -X E B' for~ 

B €: Bl(G), ~ d~,cp 'f O, .!llim bG = B, 

PROOF. See [4], [8], or [10], 

Let R be an r-subgroup of G, let b E Bl(CG(R)), and let 

y E. NG(R). Then since CG(R) <J NG(R), y induces a 

permutation of Bl(CG(R)) as follows, for all XE:: Irr(CG(R)) 

and all~ E IBr(CG(R)), it is not difficult to show that 

Xy €: Irr(CG(R)) and <pY e IBr(CG(R)), It can be argued then 

that there is a unique block b1 E: Bl(CG(R)) such that b 1 • = 

(b' )Y and b 1
11 = (b" )Y ao we set by ., b1 • In this manner, 

NG(R) acts on Bl(Co(R)), Note that if b €: Bl(CG(R)), then 

CG(R) 6 StabNo(R) (b), 
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(J.8) PROPOSITION (Dade), Let BE: Bl(G) have non-trivial 
•• - - --

cyclic defect group D and _!tl !DI= ra > 1. If O ~ k ~ a, 

define subgroups Dk, Ck,~ Nk of G £l [D,Dk] = rk, Ck= 
. 

CG(Dk), ~ Nk = NG(Dk). ~!£!ill k fc a - 1, ~ ~ 

Dk+l = Dk, Ck= Ck+l• ~ Nk 6 Nk+l• ~!£!ill k, ~ ~ 

Dk f. Ck~ Nk" There ~ at least ~ block bo of c0 

satisfying b 0G = B. ~ E = stabN0 (b0 ), ~ e = [E,c0]. 
Ck !'.£!: 1 f: k = a - 1, b 0 ~defined,~~ denote ll £l bk. 

The following assertions h£1!!1 

(a) Let b E Bl(C 0 ). ~ bG is defined, and bG = B~ 

bh = bo !2.! ~ h I=. No, 

(b) If k <.a,~ bk" consists .2f ~ unique irreduci­

ble Brauer character fk, ~ for ill h E Nk, (bkh)" consists 

.2f iill!_ unigue irreducible Brauer character (9k)h. 

(c) B' contains certain distinct irreducible charac-

~ X1 , •••,Xe 2£ G !£! which iill!_ ~-~ higher 

decomposition numbers satisfy iill!_ following, there exist 

signs £1,••••Ee,io,¥1,••••0a-l ~ ~ 1f. <x> =Dk~ 

h E: Nk, ~ dli,(~k)h = £i¥k• 

(d) ~ £1 and Yk may ~ chosen~~ 'to = 1. 

Having~ !.!ll..!!, replace G £l Ca-1• ~ block ba-1 £! Ca-1 

~ defect group D, hence iill!_ foregoing results h£1!! for 

Ca-1 ~ ba-1• giving!!§.~ signs (10 )•, ••• ,CYa-1)', where 

~ may assume ~ ( ( o) ' = 1. ~ o O "' p' o) ' ,. •. , t a-1 = 

(Ya-1l'. 



PROOF, See Dade [6], 

(3,9) LEMMA, 

that G = cO• Then 

'(. 1 = 1, a-

Retaining~ notation 2f. (3,8), assume 

e = 1 ~ (3,8) holds !!.ll,h £1 = 'l'o = 

PROOF. This ls Proposition 2,1 of [6]. 

94, ~ Deligne-Lusztlg Theory 
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We return now to the notation of 91, In [7], Deligne 

and Lusztlg establish the existence of a set of virtual 

representations of G = Qp (1,e,, elements of the 

Grothendleck group of finite dimensional representations of 

Gover Q1 , the algebraic closure of the field Q1 of 1-adlc 

numbers, where 1 is any prime distinct from p) parameterized 

by pairs(!, 9) where Tis an F-stable maximal torus of G 

and 9 an irreducible representation of !p• For the precise 

definition of these representations as alternating sums, ln 

the Grothendleck group, of certain Q1-subspaces of the 

1-adlc cohomology groups of a particular variety, and for 

their properties, we refer the reader to [7] or to [14]. 

We shall confine our attention here to the corres-

ponding virtual characters of 

the pair (T, e) being denoted 

G, the one associated with 
G 

by RT(e) (or by RT(e), or even 

by R(e) if the references to G and to! are understood), 

With their work ln [7], Deligne and Lusztig solved the well 
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known Macdonald conjectures (see [11]) and provide a frame­

work crucial to the problem of finding all irreducible 

representations of all finite groups of Lie type. Since 

each irreducible character of G is a constituent of some 
G RT(e), the problem of finding all irreducible characters of 

G 
G may be solved by decomposing each RT(e) as a 2Z-linear 

combination of its irreducible constituents. In chapter rv 
this is done for particular maximal tori!• The remainder 

of this section is devoted to the results from the Deligne­

Lusztig theory which are necessary for this task, 

We begin with notation and several definitions, If T 

and T' are F-stable maximal tori of G, define N(!, !') to be 

the set {n 1:: G1 Tn = T'}, Then it is easily shown that 

N(!, T') is F-stable and that T = Tp acts by left 

translation on the set N(!, !')p of fixed points of N(!, !'). 

If e 1:: T' and n EN(!• '.!' )p, then en E:: (T' )", where T' = !'p• 

Since en depends only upon the orbit w of n in the·orbit 

space T\N(!, T')p, we may write ew, Now in case T' = !, 

T\N(!, !'lp becomes the quotient group NG(T)p/T, 

(4,1) DEFINITION. If Tis an F-stable maximal torus of 

G and T = Tp, then e ET" is said to be in general position 

if {w ~ NG(!lp/Ts ew = e} = {1J. 

Now let T be an F-stable maximal torus of G with T = 
Tp, and denote by u a unipotent element of G (1,e,, u is 

unipotent as an element of the affine algebraic group£), 
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G 
Then Deligne and Lusztig ([?]) have shown that RT(e)(u) is 

" G G -independent of e ~ T, i.e., that RT(e)(u) = ~(lT)(u) for - -all 0 E: T", 

(4,2) DEFINITION, Let T be as above, and let Ube the 

set of all unipotent elements of G, Then the function 
G G G 

~,u-~ defined by ~(u) = ~(1T)(u) for all u € U is 

called Green's function (relative to T). 

For any closed, connected, reductive, F-stable subgroup 

Hof~. denote bya-(~) the common dimension of all maximal 

~ -split tori of H. 
q -

(4,J) PROPOSITION (Deligne ~ Lusztig), ~ ! ~ !' 

be F-stable maximal tori .Qf Q., ~ ill e c. (,!pl" ~ e• E. 

(!'pl",~~ following assertions .12£1£1 

(a) (RT(e), ~,(e•))G = j[w 1: ,!p\N(!, !'lpr ew = e•]/, - -
(b) RT(e) j£ (fil? !Q sign)~ irreducible character if 

~ only ,ll e j£ ~ general position, 1f ~ is the ~• 

~ ERT(e) '= Irr(G), where E = (-l)o-(!\_1),,-(G), 

(c) .!f X= su (s semlsim:i:,le, u un1potent) .!! ~ Jordan 

decom11os1t1on_!!! $l !l!. x e G, ~ Cg;(gsg- 1 )° l!! reductive ~ 

G 
~(e) (x) = 

. 
where 0 coincides withe on T and is O on G, T, 

(d) RT(e)(x) = eG(x) !£! ill x c !F satisfying 

CG(x)
0 

= T. 
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PROOF, See [7], 



CHAPTER II, REGULAR SEMISIMPLE ELEMENTS 

AND SPECIAL PRIMES 

17 

Throughout this chapter (and succeeding ones), let G = 
Qp be a finite group of Lie type with notation as in ~ 1, 

95, Definitions and Properties 

If x E G is semisimple, then xis contained in some 

F-stable maximal torus T of G, and if in addition CG(x) 0 = 
T, then! is clearly the unique maximal torus of G which 

contains x. 

(5,1) DEFINITION, Let x E G be semisimple and let! be 

an F-stable maximal torus of Q such that x c T = !p• Set 

N = NG ( T). Then 

(a) Xis called regular if CG(x) 
0 

= T. 

(b) X is called locall;z regular (relative to T) if 

We observe that by our ·pr31nid.1ng remark, the notion of 

regularity is well-defined, 

(5,2) LEMMA, ~ T = Tp ~~maximal torus of G, ~ 

~ x e T. ~~following assertions hold: 

(a) If x .1§. locally regular (relative to T), then xis 

regular. 



(b) xis locally regular (relative to T) 1f. !!:!! only 

if CG(x) = T, 

PROOF. (a) is proved by Springer in [12], Plainly 

CG(x) = T implies that CN(x) = T, so only the converse of 

this remains to be shown, If CN(x) = T, then by (a), 
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CG(x)0 = T. The connected component of an affine algebraic 

group is a normal subgroup, so T ~ CG(x), and it follows -·-
that C£(x) ~ NG(,!), Now NG(.!)F £:. NG(T), therefore si:nce 

CG(x) = CG(x)F• it follows that CG(x) ,:_ NG(T). Hence CG(x) 

= CN(x) = T, and the proof is complete, 

It is implied by (5,2a) that if a semisimple element 

x e G is locally regular (relative to T), then,! is the 

unique maximal torus of£ which contains x, Hence the 

phrase "relative to T" is superfluous, and we shall omit it, 

(5,J) DEFINITION. Let T be a maximal torus of G. A 

prime number r is called a special prime of G relative to T 

(or simply a special prime if the references to Gan~ Tare 

understood) if the following conditions holda 

(a) r\lTI, 

(b) For all x f T, r ljxl implies that xis locally 

regular, 

We denote by S(G,T) the set of all special primes of G 

relative to T, 

The next result, for the proof of which the author is 
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indebted to Gary Seitz, implies that blocks of G relative to 

a special primer have cyclic defect groups, thereby 

enabling us to invoke (J.8). 

(5,4) PROPOSITION, Let G = QF be~ finite group of Lie 
-

!lE.!:. ~ maximal torus T = !p• Assume~ T ~Q, ~ let 

r E S(G,T). Then each Re Syl (G) is cyclic, and there r - -
exists~ unique such R contained in T. 

PROOF. We may choose x e T such that /xi= r. Then 

x 6 R for some R t. Sylr(G). We show first that R £:. T. 

Let 1 f z E Z(R). CG(x) = T by (5,2b) since xis locally 

regular. Therefore z, which centralizes x, must lie in T. 

Now since z has order divisible by r, z is locally regular, 

so R ~ CG(z) = T by (5,2b). Since Tis abelian, it follows 

by Sylow theory that R is the unique element of Sylr(G) 

contained in T. 

Now we show that R is cyclic, from which it follows 

that the same holds for all elements of Sylr(G), thus 

concluding the proof, Suppose that R is not cyclic, and 

recalling that,! i Q, let-131! ➔ K* be a root. Let Jl.p be the 

corresponding root group of Q and x~ 1 K ➔ Jl..,a an isomorphism 

of affine algebraic groups (where K is viewed additively as 

an affine algebraic group). Then for all t t T and all 

a e K, tx~(a)t- 1 = x~(f(t)a), Since ~(R) is a finite 

subgroup of K*, it is a cyclic subgroup, therefore since R 

is not cyclic there exists a non-trivial ele~ent y E 
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Rn Ker(p). It follows that yx~(a)y- 1 = xp(a) for all 

But y is locally regular, so (5.2a) implies 

contradiction. Hence R is cyclic, 

Ufa is connected. 

that !!p f:. !, a 

It need not be true that all locally regular elements 

of T have order divisible by some r 6 S(G,T), For example, 

let G = SL(2,K) where K is the algebraic closure of 1Fq with 

q = 27, and let F be the q th power map g i----,, g( q) for all 

g E: g_ (where g(q) is the matrix obtained from g by raising 

each entry to the power q). Then G = 2.F is SL(2,27). Let 

T be the Coxeter torus of G, Then Tis cyclic of order 

q + 1 = 22•7 (see 1.10 in chapter II of [lJ]) and the only 

elements of T which are not locally regular are 

and (
-1 0) 

0 -1 

(see Theorem JB.1 and Step 1 of its proof in [8]). 

Therefore, S(G,T) = [7}, and an element of T having order 4 

completes our example. 

Now let G = SL(2,q) with q = 53 , Then as above, the 
2 Coxeter torus T 1.s cyclic of order q + 1 = 2 • J • 7 and 

S(G,T) = [J,7}, Thus in general, we may have 1s(G,T)/ > 1, 

It is also possible however, that S(G,T) = p. For example, 

arguing as before, we see that the Coxeter torus T of 

G = SL(2,J) has order 22 , but the element 



(-1 0\ 
\ 0 -1 / 
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of T, which has order divisible by 2, ls not locally regular. 

Therefore S(G,T) = ?• We shall see in the next section 

however, that this last example ls exceptional, 

96. Existence 2f Special Primes 

We give in this section conditions which lead to the 

existence of special primes in a variety of examples. 

(6.1) DEFINITION. Given a prime numbers and a 

positive integer a, the pair (s,a) is said to be compatible 

if none of the following conditions hold1 

(a) s = 2 and a= 1. 

( b ) s = 2 and a = 6 • 

(c) a= 2 ands= 2m - 1 for some positive integer 

m ~ 2, 

Otherwise (s,a) ls said to be incompatible. 

(6.2) PROPOSITION (Zsigmondy). lf. (s,a) ~ ~ 

compatible pair,~ there exists~ Prime number r ~ ~ 

r I sa - 1, but _Du: ill positive integers b <. a, r f sb - 1, 

PROOF. See [18]. 

As in ~1, let G = ~F be a finite group of Lie type 

where Fis the Frobenius map associated with an 1Pq-rational 
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structure of Q, q = p~, Tis a maximal torus of G, and 

N = NG(T). For all positive integers m, denote by fm(X) the 

mth cyclotomic polynomial. 

(6.3) PROPOSITION. In order that there exist! special 

prime r 2.£ G relative !£ T, it ll sufficient ~ N/T be 

cyclic~! generator nT (n e N) of order m satisfying the 

following conditions, 

(a) n-1tn = t 4 f2! ~ t ~ T. 

(b) fm(q) / /T/. 

(c) (p,m) ll ! compatible pair, 

PROOF, Sup:pose nE:N, N=<nT). /nT/,., m, and (a), (b), 

and (c) hold, Since (p,m) is compatible, 

there exists a prime 

all b I.. m , r f q b - 1. 

number r such that r 

implies that 

1, but for 

Since qm - 1 = Tffb(q) where the 

product is taken over all pos1t1ve integers b d1v1d1ng m, 

r must divide fb(q) for some b, If b 

contradicts the property defining r. 

(b) it follows that r / !Tj, 

< m, then r / qb 

Hence r / f m ( q) , 

To complete the proof, we must show that 1f x ~ T 

- 1 

and by 

satisfies r11xl, then CN(x) = T. But if such 1s not the 

case, then T ~ CN(x) since T ls abelian, Thus b = [N,CN(x)] 

1s less than m. Now by (a), the conjugacy class of N 

containing x 1s 
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qb xqb-1 1 I b and x = x. Hence = , and it follows that r q - 1, 

contrary to the property defining r. Therefore xis locally 

regular, and the proposition is proved. 

We indicate now how (6,J) can be used to establish the 

existence of special primes in certain cases. 

First, let G be a finite (untwisted) Chevalley group 

over ~q as defined 1n Steinberg [15]. Then G = Qp where G 

is the corresponding Chevalley group over the algebraic 

closure K of Fq and Fis the usual Frobenius map induced on 

Q by the field automorphism a i----+ aq of K. We assume for 

convenience that the root system associated with this 

group 1s indecomposable. The diagonal subgroup 1! of G is a 

maximal torus and Facts trivially on the Weyl group W = 

W(li)• Let T = Tp be the Coxeter torus of G relative to 

W(H), so that Tis obtained from 1! by twisting by a Coxeter 

element w ~ W. Assume that NG(!lp = NG(T) (see §1), and 

denote this group by N. 0( We assert that if q = p is chosen 

so that (p, lwl) is a compatible pair, then S(G,T) / ¢. 
To prove this, we apply (1,5) (and borrow its notation) 

to see that 

N/T f; N1/T1 
rv 

(w>, 

and that there exists an element n1 E: N1 such that N1/T1 = 

(n1T1> and n1- 1t1n1 = F(t1) for all t1 t: T1, Now F(x) = xq 

for all x €: H, -1 t q t1 t: so n1 t 1n1 = 1 for all T1, Again by 



(1.5), lt follows that there ls an element n f N such that 

N/T = (nT/ and 
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for all t ET. Let m = /wl, and let X(li) denote the 

character group of H. By Theorem 2.10 of [14], [Tl= 

jPw(q)j, where Pw(X) ls the characterlstlc polynomlal of w 

actlng as a llnear transformatlon on the ~-space X(lil &12Z ffi, 

It can be checked by consultlng Carter's 11st (table J of 

[2]) of polynomials Pw(X) for all indecomposable root 

systems, that fm(q)J JTI. Now (6,J) flnishes the proof of 

our assertlon. 

The algebraic groups considered above are all semisim­

ple, However, by essentially the same discusslon, S(G,T) 

can be shown to be non-empty for certain flnite groups 

G = QF of Lle type where G is not semisimple. For example, 

let G = GL(n,q), where q = p~. If K is the closure of ~q• 

then G = GL(n,K)F, where Fis the usual Frobenius map. Let 

~. w E W(~), and T = TF be as in the previous discussion, 

Then provided that NGL(n,K) (!,lp"" NG(T) and that (p, /wl) is 

compatible, S(G,T) / ¢. It is not difficult to show that 

ITI = c;t - 1, and that lwl = n (w may be viewed as an 

n-cycle in Sn), 

We return now to the case where G = GF ls a finite 

(untwisted) Chevalley group over ~q (q = p~), Q the 

corresponding Chevalley group over K, and F the usual 
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Frobenius map, Again we assume for convenience that the 

associated root system is indecomposable, and again we base 

our classification of the maximal tori of G on the diagonal 

subgroup g of~- Our discussion for the Coxeter torus 

provides us with a method for using (1,5) and (6,J) to 

produce other maximal tori T = !F of G, corresponding to 

elements w ~ W = W(~), for which S(G,T) f '/• Let Pw(X) be 

the characteristic polynomial of won X(H) @'.iZ ~. Since F 

acts trivially on Wand F(x) = xq for all x ~ li, verifica­

tion that the following conditions hold will suffices 

(a) NG(!)F = NG(T), 

(b) cw(w) = (w). 

(c) f!wl(q) JPw(q), 

(d) (p,lwl) is a compatible pair, 

Conditions (b) and (c) are the important ones since the 

failure of (a) or (d) is incidental and rare (see the 

remarks at the end of ~1, and see (6.1)). The Weyl group 

elements w for which ( b) and ( c) hold can be determined by 

using the tables in [2], Below in tabular form, we give the 

verification that (b) and (c) hold for four examples where 

w is not a Coxeter element of W. Using Carter's notation, 

the second column gives the admissible diagram 1 associated 

with the conjugacy class of win W, 



( 6,4) TABLE 

root 
system r IWI I Cw(w) l r lwl (q) Pw(q) 

E6 E6(a1) 9 9 q6+qJ+l q6+qJ+1 

E7 E7(a1) 14 14 q6-q5+q4-qJ+q2-q+l (q6-q5+q4-qJ+q2-q+l)(q+l) 

Es Es(a 1 ) 24 24 qS-q4+1 qS-q4+1 

Es Es(a2 ) 20 20 S 6 4 2 q -q +q -q +1 qS-q6+q4-q2+1 
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Usir.g a slightly more general version of (6,J), our 

discussion applies to the twisted analogues of the finite 

Chevalley groups. Lemma 1 of Surowski in [16] suggests the 

manner in which (6,J) should be altered, 

our general method (6.J) for showing that S(G,T) ~ ¢ 
requires that NG(T)/T be cyclic, This is not an accident, 

(6,5) PROPOSITION. ~ G = £p ~~finite group 2£. lli 

~ ~ ~ T = !p ~~maximal torus of G ~ ~ 

S(G,T) f ~. ~ NG(T)/T .!.!!, cyclic, 

PROOF, Let r c S(G,T), and let x e T have order r, 

Set N = NG(T), Then since xis locally regular (relative to 

T), we have 

Therefore N/T is embedded in Aut(<x)), But xis cyclic of 

prime order, so Aut(<x)) is cyclic, and the result follows, 

We conclude this section with the remark that S(G,T) f 
p implies by (5,2a) that T contains regular elements, 
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CHAPTER III, ~.AIN RESULTS 

In this chapter and in the next, let G = Q.p be a finite 

group of Lie type, Fix a maximal torus T = TF of G, and 

N = Na(T), Assume that Ti- Q, and that the set S(G,T) = 

{r1, .. ,,rnJ of special primes of G relative to T is not 

empty, The assumption that!~ Q will be used, without 

further reference, as justification for invoking (5,4). 

~ 7. Special Conjugacy Classes 

and Special Primes 

set 

N acts on T" by conjugation since T ~ N, Denote by Ne 

the stabilizer in N of e e TA, 

(7,1) DEFINITION, e 6 TA ls said to be regular if 

Ne= T, 

A 
Note that NQ(!lp = N, so that if e ~ T ls regular, 

then it ls in general position, The two notions are 

equivalent if Na(!)F = N, 

For each j (1 ~ j 6:-n), let Rj be the unique rj-Sylow 

subgroup of G contained in T whose existence ls guaranteed 

by (5,4), Let R = R1x·••xRn, and let Q be the unique 

subgroup of T satisfying T = Q x R. Set Q~ = { 'f' E': T''. 

R f: ker('I')} and R"' = fA E. T", Q::: ker(>-.)}. Let Y denote the 



I\ set of regular elements in T, and Y the set of regular 

characters in T', As remarked earlier, Y F ¢. Set 

and 

x" = [e e T"1 rj j le/ for some j\. 

By the definition of special prime and (5.2a), X ~ Y, 

Each element x 6 T can be expressed uniquely in the form 

29 

X = ab (ac:Q,bE-R), 

It follows from the definitions that x ~ X if and only if 

b f 1, 
I\ Analogous conditions hold in T, which is isomorphic to 

T, Clearly TA= Q,.., x R~, so that each character e E: T" can 

be written uniquely in the form 

e = '/'A 

Moreover, e E- x1 if and only if>.~ lT' 

(7,2) LEMMA. XA f: y". 

PROOF, Let 0 = 'f',1 e: xi\ (Y, t: Q,..,, ). E: R~), Then;\ -/, lT. 

Leth t N9 . By (7,1), we must show that h ~ T. Now 1A = 

( '" I ) h = ,1,h I h. ,/, h ...... \ h ,,.., 
Tf\ r II r t Q and /I t: R since QA N and RAN, so 

by uniqueness of expression, h E- NA, and it follows that 
1 

h-. t N~ as well, 



R = R1~••·xRn is cyclic because each Rj 1s cyclic and 

the orders IRjJ are pairwise relatively prime, It follows 

that R~, which is 1somorph1c to R, 1s also cyclic, Let 

R = (x>and R~= <>.0), Choose 1 such that O ~ 1 < IHI and 

).. = A0
1 • There 1s an integer k such that h- 1xh = xk, It 

JO 

h-1 \ k 1 1 i h-l 1 1k follows that )..0 = 1,0 • Therefore 110 "" (/\ 0 ) = 110 , so 

,\0
1k-i = lT• whence IR/) 1k - 1, Now x 1k-i = 1, and x 1 = 

x 1k = h-1x 1h follows, Thus h l CN{x 1 ). But CN(x1 ) = T 

since x 1 E R* by our choice of 1, Therefore h E: T, and the 

proof 1s complete, 

(7,J) LEMrr!A, X ~~union of!! set of special 

conjugacy classes 2f N 1!! G, 

PROOF. This result 1s a consequence of the fact that 

the set Y of regular elements 1n Tis the union of a set of 

special classes of Nin G, We prove the latter first, 

beginning with the observation that Y is in fact a union of 

conjugacy classes of N, Indeed, if y c Y and h ~ N, then 

since conjugation by h induces an automorphism of the affine 

algebraic group£, we have CG(h- 1yh)
0 

= h-1cG(y)
0

h = h- 1!h, 

Now h-1Th is an F-stable maximal torus of G containing 

h-1yh, so by definition (5,1), h- 1yh is regular, and our 

observation follows, Let {Y1•••••Ym} be a complete set of 

representatives of the classes of N contained 1n Y. 
0 

For each 1, T ., Cg_ (Yi) <J CG (Yi), thus forcing Cg_ ( y i) f=. 

NG(!), It follows that CG(Y1) = Cg_(y1 )p ~ N£(T)F ~ N, 
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Now if g- 1y1g = yk for some i, some k, and some g c 

1 -1 ( )0 G = £F• then g- !g = g CQ y1 g = 
!, so that g c NG(!)F ~ N. 

Finally, suppose that <Y) = <Y 1) for some y I= N and 

o <>o < o o some i, Then C£(y) = CG( y) = CQ( y1)) = CQ(Y1) = T, 

and it follows that y is conjugate in N to some Yk• We have 

shown that Y is the union of a set of special conjugacy 

classes of Nin G. 

Xis clearly a union of conjugacy classes of N, and we 

represent these classes by elements x1,,,,,xs of X. In 

order to show that these classes form a set of special 

classes of Nin G, we must verify that the x1 satisfy (1), 

(ii), and (111) of (2.la), But (1) and (ii) follow by 

inheritance from Y since XL Y. As for (111), if x c N 

satisfies <,x) = (x1) for some 1, then )xi= Jx1J implies 

that rj Jixl for some j. Hence x c: X, so x ls conjugate in 

to some xk. This concludes the proof of the lemma. 

Now (2.2b) guarantees the existence of a basis of 

virtual characters of N for the ~-space of class functions 

of N which vanish off X, Our goal is the construction of 

such a basis. 

~ Since Q ~ N, N acts on Q by conjugation. Fix a 

complete set .fl. of orbit re:i:,reaenta'l;iv.as for this action. 

R <l N, so for each 'YE: JL, Nr acts on R""' , PTJ by conjuga­

tion. Fix a complete set A.,, of orbit representatives for 

N 



)2 

this action. 

( 7. 4) DEFINITION, For each 'f i;_ 12., and each A ~ A,;,, set 

9 '/' • >, = 'f'N - ( f ,.\ ) N • 

" It is plain that N acts by conjugation on X. 

(7,5) LEMMA. {'f'Ar 'I'€: fl, A c Ay,} ~ ~ complete~ of 

representatives!.£! .lh2 orbits 2.f xA under~ action of N, 

PROOF. If 'f' c .n.. and A f Ay,, then A ,f, lT, so that by an 

earlier comment, if').. f. X11
• Now let 'f 1 , 'f 2 f. .a., A 1 E. A'f

1
, and 

A2 E. A.,,,
2

, and suppose that ( '/' 1,.\ 1 ) h = l/-'2,.\ 2 for some h c N. 

Then t 1h).1h = Y,,2 )..2 , hence by uniqueness of expression, 

lf'1 h = '/'2 and A1 h = A2. Therefore '1'1 = 'f'2, forcing h 6 N'f'
1

• 

Now by our definition ofi\.'f'
1

, it follows that .A1 = .>.2, We 

have shown that '-/'1A1 and f2 A2 represent distinct orbits 

unless r1 = y,2 and Al= A2· 

Now let 'f c Q~ and A t. R"'-.. tlT}. so that </'A is an 

A 
arbitrary member of X. We show that there exists an ele-

ment Y-'1 E': fl and an element A1 €: Ar
1 

such that <f!Ji. and !/'1A1 are 

conjugate under the action of N. Choose '1'1 E. fl.. and h b N 

such that '/\ = '/'h, Then ('i'A)h = '/'1 'Ah, Now choose A1 E. A'\'
1 

and h'" N'/'
1 

such that (Ah)h' = A1 • Then (V'A)hh' = (1/\,\h)h' = 

t1Ahh' = r1A1, as desired. 

(7,6) COROLLARY. ~ 'f' ranges ~.Q., and. £2E ~ ~ 

r. ~ ). ranges ~ Ar, !!2::. characters in TA of ~ form 



t ~ r~ ~ pairwise .!!Q!!-conjugate under N and comprise a 

complete~ of representatives for the orbits of Th under 

the action of N. 

PROOF. Th= Q~u Xh (disjoint), so the corollary 

follows from (7.5) and the definition of0.. 
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We are now prepared to discuss the irreducible charac­

ters of N. Henceforth, for each 'r f. .D.., we denote by Ct the 

set of irreducible constituents of tNr, and by nt the index 

[NtiT], 

(7.7) PROPOSITION. (a) For~ f't..f1., S°1N f i 2N if 

~1• b2 c Ct~ distinct, and crA1lN f (fA2)N .1£ A11 A2 t At 

are distinct, 

(b) Irr(N) = 'i'Yn.Cf,1N1 ! e Cv,} U {('l'A)N: AG A'/'}), and 

all of these unions~ disjoint, 

( C) For ~ y, C .(l, 

Zs£cr&(l)2. 

(d) Let <f' EJl. Then 

and 

PROOF. Denote by b,. the set of representatives of the 

orbits of TA-under the action of N which are given in (7.6). 
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Slnce T ~ N, the Clifford theory (see [10]) implies that all 

irreducible characters are obtained, each once, in the form 

Se N, where 9 ranges over b., and for each 9 E: ~. ~9 ranges 

over the 1rreducible constituents of eNe. By (7.2), each 

e E: b,. which takes the form 'I' 11 for some 'I' I: .0.. and some 

Ac At, has stabllizer T, so eN is irreducible. Hence (a) 

and (b) are proved. 

Let 't' e J'L, N Then agaln by the Clifford theory,'/' = 

l'., SECr;, a6 &N where for each ~ E. Ct, as is an integer 

satlsfying b/T = a 6'/'. Therefore, /;(1) = alll/-'(1) = a0, This 

proves that '/'N = Zsi:c'/' J(l)bN. It follows that [N1T] = 

[N1T]'/'(1) = y,N(l) = Es1:c'i' S(l)bN(ll = Z:ae.ct S(1)
2

[N1N'/'J = 

[N1N-r]Z~~c'f' ~(1)
2

• Hence [Ni:,1TJ = [;£'=Cr S(1)
2

, and this 

completes the proof of (c), 

Now fix 'r E. fl, let B be a right transversal of T 1n N, 

Ca right transversal of Tin Nt, and n a right transversal 

of N-r 1n N. Then fyh1 y E. c, h £ n} is also a rlght 

transversal of Tin N, therefore Z:),"-1'.y,('l'A)N/x = 

r:),.!:A,/ 1/ITI) I:hEN (Y,;\)hlx = r,\E.Ay.,LhEB ('/').)h)x = 

i "E °" ('~,\)yh/x "' '"' " (u,')Yh\ ),.(:.j,.i, hen L, yEC T = ,:_. hEn L.., >,EA'/' L,.y€.C I I\ X = 

LhEn z::.AER~,{1T} ('l'>,>h/x = LhEn I:AeR~,{1"'} ('r
h
,\h)jx = 

' 4 

~h0 n 'l'h/x L;.eR"',tlT} >..h!x = Zhen thJx L.>i1:R""',{1T} ~Ix· 
Let f denote the regular character of R. A typical 
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element of X has the form xy where 1 + x ~Randy~ Q. Now 

= = -1 

since 1,,, x E R, Hence .C,\•A/'f'A)N/x = -ihED lf-'h/x = 

-(1/\N~I) 'ZhEN th\x = -(1/ntltNlx• which proves the first 

equality of (d). 

If '/' E 11. and & E Cy,, then as shown in the proof of ( c), 

&IT= ~(l)r, whence for each X C x, bN(x) = 

(&(1)/no/)'l'N(x), The second equality of (d) now follows from 

the first. 

In view of the fact that by (6.5), N/T is cyclic, it 

can be shown that for 're fl_ and ~ E. Ct, £( 1) = 1. This fact 

is not necessary however, in the sequel, so we do not wish 

to emphasize it. 

(7.8) PROPOSITION. ~ ~ fe'f,),I '/-c.f2.,A E At}£! 

virtual characters£! N forms~ basis f2! ~ ~-snace of 

class functions£! N vanishing 2f! X. 

PROOF. 

('/' - '/').)N is clearly a virtual character of N and vanishes 

on N '- X since '/' - 'r)., vanishes on T '- X = Q. 

We use the fact that Irr(N) forms a basis for the 
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~-space of all class functions of N to show that the 

functions er,A are linearly independent. Suppose that 

0 

where a'f,),. €: (]: for each 'f E: Jl. and each A f: A'I-' Then 

or equivalently, 

It is clear now that a'/',}I = 0 for all t.f., 6 J2. and all ;.. c J\.t• 

Hence the functions e'i',A are linearly independent. 

o. 

Since the set of functions, each of which arises as the 

characteristic function on some class of N contained in X, 

forms a basis for the ~-space V of class functions of N 

vanishing off X, 

dim(V) = )tr:: 1 [ is a class of N, C £,, x}\. 

Each x €:Xis locally regular, hence the size of the class 

of N containing x is [N1T]. It follows the,t the number of 

N-classes contained in Xis !X\/[N1T]. A similar argument 

shows that the number of N-orbits of TA contained in X~ is 

)X'\ /[N1T]. Now T ~ T~, hence Jx'\ = !XI, and it follows 

that 

dim(V) = ){o I t) is an N-orbit, Ci f. x"J J, 



which, by (7.5), is equal to / {'t'A 1 'ft D., ,.\ '= A,i,} I = 

J { e '/', ~ 1 'f' I!: .fL, ,\ e Ar l) . Hence the functions e 'f, A form a 

basis for V, and the proof is complete, 

§s. Block Theory for Special Primes 

37 

In this section we employ the notation of §J, with the 

agreement that r is replaced by some rj• 

(8,1) LEMMA. ~ rj e S(G,T) ~ ~ B(rj) c Blrj(G) 

~ ~-trivial defect, Then Rj ~~defect groun of 

B(rj)• 

PROOF, Since the set of defect groups of B(rj) forms a 

conjugacy class of rj-subgroups of G, there is a defect 

group D of B(rj) such that {1} / D 6 Rj. Dis cyclic 

because Rj is, and CG(D) = T, for if <x) = D, then xis 

locally regular, so by (5,2b) CG(D) = Ca(x) = T, 

By (J,8) there exists an rj-block b(rj) of T satisfying 

G 
b(rj) = B(rj)• Let D' be a defect group of b(rj)' Since 

Tis abelian, (J.7a) implies that D' 6 D. But by the 

definition (J,5) of d,efect group, D' 

t c T, hence D' = Rj since CT(t) = T. 

D = Rj' and the lemma is proved, 

~ Sylr (CT(t)) for 
j 

It follows that 

some 

Our objective now is to apply Dade's results (J,8) to 

G. (8,2c) and (8,4) constitute what is essentially a 

translation of these results to our present setting, 
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For each j, let Qj be the unique subgroup of T 

satisfying T = Qj l< Rj. Set Qj~ = 1e c T"1 Rj f: ker(e)} and 

Rf= {e €: T"1 Qj =: ker(e)}. Since Qj<::l N, N acts on Qj by 

conjugation. Let nj be a complete set of orbit representa­

tives for this action. We may, and henceforth we shall, 

assume that SJ_ ,G, .(l.j, Set X j = {x €: Ts r j / /x I}, Then clearly 

X j ~ X. 

(8.2) LEMI-'.A. (a) .E£!: ~ j, ~ set 

coincides .!!..ll!l ~ ~ .£f. cosets .2!, R /v .1!! T". 

(b) .E£!: ~ j, if b(rj) t. Blr/Tl, ~ b(rj)" 

contains precisely~ element <f which is uniquely deter­

mined E..! ~ prouerty ~ f.2.!: ill e €: b(rj)', <f = e [Qj" 

(c) For each j, there g ~ bijection 

given E..! 

where b(rj) g ~ uniaue rj-block of T satisf;z:inp: f"= 
b(rj)'. Moreover, if b1, b2 t. Blr/Tl, then b G 

"' 
b G if 1 2 

h 
~ only if b2 = bl f.£!: ~he N. 

PROOF. Note that the arguments given here for (a) and 

(b) are valid for any finite abelian group T and any prime 
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rj. Recall from §J the properties of the rlng S, 

(a) Given b(rj) f Blrj(T) and 0 1 € b(rj)', 

02 ~ T~ satlsfles 02 € b(rjl' lf and only lf Wal 

a character 

(3,2)), Vlew T as embedded ln Z(ST), Then since T ls 

abellan, Cv
01

!T = e1 (1 = 1,2), wherefore c T\ e denotes 

the linear character of T over S defined by e(t) -= e(t) for 

all t e T. Let T denote the group of linear characters of T 

over S, Since w61 = we
2 

lf and only if e1 = e2 , lt follows 

that the set {b(rj)'1 b(rj) c Blrj(T)} colncldes wlth the 

set of all cosets 1n TA of the kernel of the group homomor­

phism f1TA-"7 T defined by f(0) = 9 for all 0 c T~. Hence to 

prove (a), lt suffices to show that ker(f) = Rj~• But since 

char(S) = r j, 

{b) The irreducible S-characters of Tare precisely 

those of the form e (0 ~ TA). If <f ls the irreducible 

Brauer character afforded bye, then lt follows easily from 

the deflnltlon of Brauer character (see [5]) that~= e/Qj' 

Let b{rj) be the unique element of Bl (T) such that e c 
rj 

b{rj)', Then by {J,2), ~ t b(rj)", and by (a), b(rj)' = 

{61 c T•1 01/ Qj = Cfj, It is clear now that (f is the unique 

element of b(rj)", and (b) 1s proved, 

(c) The last assertion of (c) 1s a consequence of 

(J,8a) (Here D ls replaced by Rj and cO by T. Recall that 

we may write Rj = (x> where xis locally regular, so that by 
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( 5. 2b) , CG ( R j ) = CG ( x) = T), 

Now let t E J"Lj, and let b( r j) be the unique element of 

Blrj(T) satisfying r ~ b(rj)'. By (J.8a), b(rj)G is defined. 

Since Tis abelian and Rj E. Sylrj(T), Rj is a defect group 

of b(rj). Therefore, since Rj f: Sylrj(G), (J.7a) implies 

that Rj is also a defect group of b(rj)G. In particular, 

b(rj)G has non-trivial defect, hence we may define a func­

tion 

,81.D.j ~ {B(rj) E BlrJ'G) 1 B(rj) has non-trivial defect} 

by /3('/-') = b(rj)G, where b(rj) €: Blr/Tl, l/' E. b(rj) '. By 

(J.8a) and the definition offl.j, pis one-to-one. One of 

the opening assertions of (J,8), together with (J.8a), 

implies that pis onto. This completes the proof of (8.2), 

( 8. 3) DEFINITION, For each j, and each 'ft fLj, denote 

by bt(rj) the unique rj-block of T satisfying bt(rj)' = 
tRj~• and denote by Br(rj) the rj-block of G given by 

B'i'(rj) = b'r(rj)G, 

(8,4) PROPOSITION, Fix 'l-€:Jlj• ~ B'i'(rj)' contains 

oertain distinct irreducible characters 

.Qf G whose higher decomposition numbers are given~ 

follows1 
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there exist signs ~,1., 1 , ... , r.w such that for each x E. R * j ' To r,n'j' - -- -

each 1, and each Cf'E IBr(T), 

{

£'1',11£ lf E. (b'f'(rj)h)" 

0 otherwise. 

for some h ~ N --= 

PROOF. By (8,2c), (8.1), and (5.4), B = Br(rj) has 

non-trivial cyclic defect group Rj, so we may apply (J.8) 

with r = rj and D = Rj, We begin by translating some of the 

notation of (J,8), 

For O f: k .t.. a, Ck= T and Nk = NG(T) (= N). We prove 

this assertion 1n steps (1)-(111) below, making implicit use 

of(5.2b), 

( 1) NG(T) f: Nk1 

that Dh = D because T 

If h E NG(T), then nh t 

1s abel1an. Thus Dk ~ D 

Sylr-J(T), so 

implies that 

D h ,_ D 
k - • But Dk is the unique subgroup of D of order IDkj, 

hence Dkh = Dk, Therefore hf NG(Dk) = Nk' 

(11) Ck= T1 ll} #Dk= (x) for some x E. D, hence 

Ck= CG(Dk) = CG(x). But x is locally regular since rj \\xi, 

so CG(x) = T,. 

( 111) Nk ~ NG(T) 1 ck = CG(Dk) <l NG(Dk) = Nk. But by 

( 11), Ck= T, so T <l Nk implies that Nk f: NG(T). 

This proves our assertion, so we replace •~ach Ck by T 

and each 

may take 

G Nk by N = NG(T) in (J,8), Now bt(rj) = B, so we 

b O = br(rj) 1n (J,8), From (a) and (b) of (8,2), 
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in (J.8), Hence e = [N'i'1T] = n,y in (J,8), 

Now by (b) and (c) of (J.8), there exist characters 

'Xt, 1 , •• ,, 'X 'l',n'i' E B' and signs E:.i,, 1 , ••• , 'c:4',n'i'' ¥0 , a1 , ••• , l a-l 

such that for all k ~ a, 1f {x) = Dk and if~ f IBr(T) = 
IBr(CG(x)), then 

Therefore it suffices to show that we may choose the signs 

£4-, i and ~k in such a way that to = ¥1 = • • • = ;( a-1 = 1, 

Invoking (J,8d), we choose the f.'r', i and the ik so that 

to= 1, and we apply (J.8) to Ca-land ba-l' But since 

Ca-1 = T = c0 and ba-l = bt(rj), we are 1n effect applying 

(J,8) to c0 and br(rj)• Therefore by (J,9) we obtain new 

signs Coo) ' = ( ( 1) ' = • ., = ((i.-1) ' = 1, which, by ( J. 8d) , 

forces t 0 = .i'1 =••·= fa-1 = 1, as desired, This concludes 

the proof of the proposition, 

The characters x~,i of (8,4) are called by Dade the 

"non-exceptional charactersH in B'r(rj) (see [6]). 

(8,5) COROLLARY. With notation~ in (8,4), 
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PROOF. A typical element of Xj has the form AY, where 

x E R j * and y ~ Q j. Let <p be the unique element of b'/' ( r j) 11 

(see (8.2b)). Then~= fJQj and for all h EN, the unique 

element of (b'/'(rj)h)" is ~h. Since StabN(bt(rj)) = N'/', the 

conjugates of bt(rj) under the action of N are obtained, 

each once, in the form br(rj)h, ash ranges over a left 

transversal :l of N'/' 1n N. Therefore we may calculate as 

follows, 

X'I', i Cxy l = Bh~;(, dxx cph 'fh(y) (by (J.7b), (8.IJ.)) 
'/', i. 

= € r h-1 
LhE:t. 'Y,i (y ) (by (8.4)) 

= (E'/',i/lN'l'I) Lh~N f(yh) (by ( 8. 2b) ) 

= cc:'!',i/lNrl l Lh!:N 'f{(:r:r)hl (since 'fE.Qj~) 

= ( c'f', i/n'l') ( 1/(TI) L'.heN '/'( (xy)h) 

= (c'f',i/n'/') tN(xy), 

as desired. 

Recall that for all j E f 1, .•. ,n}, .(L!:..(Lj and Xj !:. X, 

so. that a class function of T which vanishes on T, X must 

also vanish on T '- X j. 

(8.6) COROLLARY. ~notation~!.!:! (8.4), .ll ~ E _(l 

~A€. Ay,, ~ (X'/',i' tG - (1/'A)G)G = f'l',.l: ~ ill 
1 E f 1 , ••. , n-y f . 
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PROOF, For the following calculation, we recall that 

Cf denotes the set of irreducible constituents of fNf, and 

we observe that 4' - r>. vanishes on Q j = T , X j 1 

= 

= 

= 

= 

= 

a:'/',i/n'/') ('/'NlT• tf' - 'fA)T 

(Frobenius 

reciprocity) 

( by ( 8, 5) ) 

(('t',i/nrl ('f'N, 1/'N - (l/-'j)N)N (Frobenius 

reciprocity) 

( c'/', i/n'f) ('/'N • 'f' N) N (by (7,7)) 

<E'/',i/nrl Ls.c.,,s< 1)
2 (by ( 7,7)) 

f..'/', i (by (7,7)). 

In ~8, we have dealt with an individual prime rj e 

S(G,T). It is desirsble however, to treat all primes in 

S(G,T) simultaneously. For example, it is natural to ask 

whether the formula of (8,5) holds on all of X, and whether 

the set fXt,l•"••X'!',n} of non-exceptional characters in 

B~(rj)' is independent of rj e S(G,T), In the next section 

we shall answer these questions affirmatively and introduce 

some additional characters in Irr(G) for which the formula 

holds. 



9 9. Character Values 

In this section we make liberal use of the notation 

introduced in ~ 7 and in ~ 8. Denote by E the set 

Then E = u y 
yfG X ' 

the other hand, if 

Indeed, it is obvious that X ~ E. On 

rj/ /gl, then we may write g = ab where 

la! = rjs for some positive integers, (lbl, rj) = 1, and 

ab= ba. Since the rj-Sylow subgroup Rj of G is contained 

in T, Sylow's theorem implies that there exists an element 
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y E: G such that aY t: T. Now b E:: CG(a) implies that bY ~ 

CG(aY). But aY is locally regular in T since rj I lsY/, so by 

(5.2b), by €:T. Hence gY=aYbY1,T, and it follows that gYeX, 

whence g e xY-
1

• This proves the assertion, which implies 

that if the values of a class function of Gare known on X, 

then they are known on E as well. 

(9.l) THEOREM. ~ 4' E:: Jl, ~ there exists.!! sign 

for each i E:: {1, ... ,nw} there exists a sign£ and an 
-- r - 'f',1----

irreducible character X r, i of G, and f.£! ~ A e: A'f' there 

exists an irreducible character Xt,A of G, ~ that the 

following assertions hold: 

(a) .E£! ~ Y,€: Jl ~ each A E:: A-r, 

= 
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Moreover, the map 

given £I: 

= 

is injective. 

(b) .E£! ~ rj c S(G,T), the set {Xt,i' 1 bib ntl 
.. 

coincides~~~ of .!:l2.!);-exceptional characters in 

Br(rj) given £I: (8,4). 

(c) .E£! ~ if' e:. {L ~ ~ i E: {1, . ., ,nr}, 

1:4', i Xr, i Ix = < l/n'I' l tN Ix = -E'/' Z >- €At Xr,>- Ix· 
Inparticular, €r,i1'Xr,11IE = f.r,12Xr.12IE f2!all'f'i:fl. 

and !!1111, 12 t {1,.,,,nr}• 

(d) .E£! ~ t 1: _D.. and~,\" At• 

and 

~ particular, 'Xr,A1 IG,E = Xr,A2 IG,E for ill '/' e il and 

all >.1, t.2 €. A,i,, 

(e) ~ XE Irr(G) ~ distinct f!.£!!! ill x'I', 1 ~ !!li 
Then X vanishes on E. - -



PROOF, ( a) Let 4' E. J1. and /I 6 A'f'• Since .fl.~ ..Q. 1 , 

(8.4), (8,5), and (8,6) imply that there exist signs 

£~,i•••••C'f',n'/' and distinct irreducible characters 

X.t,1• .. ,, X'/',n'/' in B'i'(r1)' such that for all 1, 

( 'c.'I', 1/n'l')'/'N /x1. and 

e '/',>. G)G = Et, 1' 

where e'f',>s = '/'N - ('/'A)N, For each f 6 Irr(N) and each X <= 

Irr(G), let a 1 = (1, er,>slN and bx.-= (X, e'/',AG)G, so that 

6 'I',>. = [?fi.Irr(N) e.!f and e'/',A G = z::'.'X.Eirr(G) b,c,X, Then, 

since by (7,6) Xis a union of special classes of Nin G, 

and since by (7,8) all such er,:>- form a basis of virtual 

characters of N for the ~-space of class functions of N 

vanishing off X, we may apply (2,2c) to obtain 

L b 2 
XE Irr( G) 1- = z: a2 

1errr(N) ~ ' 

But by (7,7), er,>.= (['.5tc'/' S(l)&N) - Cf),)N is a 

decomposition of e'I',>- as a linear combination of its 
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distinct irreducible constituents, hence by (7,7c), n'/' + 1 = 

r 1 a! 2 = Lx b,/, Now by ( 9, 2) , for 1 E [ 1, .. , , n'/'} , b ;l'. '/', 1 = 

"" nr 2 ft,i = ¼1, so that L..,,i=l bX'i',i = nt• It follows that 

there exists a sign t'l',>i and an irreducible character ')(_'/', 11 

of G, distinct from each of the Xt,i' such that e'/',/, G = 

( r.t::1 E. 'I', ;x.'I', 1 l - £ '/',A Xr,1i • 

Now we apply ( 2, 2c) again to show that for each '/' E fl.., 

the signs f.'f,). are independent of}. E At• Indeed, since for 
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each If c SL and Ak E. A'/' (k = 1,2), e'Y,,\k = (L-s1:c'i' S(1)~N) -

(fAklN and e'+',AkG = ( zi:\ Er,1x'.r,il - fr,>.k1'.\l',Ak' (2,2c) 

asserts that ( r.t.;1 E'f', i 2 ) + f'l',>-l tr,>- 2 = ( 'EsEC'I' ~( 1 )
2

) + 1. 

By (7,?c), this becomes Er,,>.1 fr,>-2 = 1, Which forces Et,A1 = 
t'l',,\

2
. Thus we are justified in replacing Ey,,).. by Er, and 

the proof of the first part of (a) is complete, 

Although its proof is relatively long, the second part 

of (a) will play a crucial role in our arguments for (c) and 

(d). We have remarked already that for each If E. .D. and each 

\ E': A't'. the characters x't', 1' •• ,, x'l',nt' x ... ,A are distinct. 

Moreover, if t E:.fl and A1, A2 EJ\.<y, then 'X'f',Al = X'/',,\ 2 im­

plies by the :first part of (a) that e'Y,A 
1
G = ey,,>,

2
G. Now by 

(2,Jb), induction is an isometry from the ~-space of class 

functions of N vanishing off X into the ~-space of class 

functions of G, Therefore it is a monomorphism, and we 

conclude that e 'I', /I l = e 'Y, /I 2 • It follows that ('/"A 1) N = 

,r>i2)N, and by (?,?a), this forces A1 = A2, 

Thus to finish the proof of the second part of (a), we 

must show that if lJ'1 , 't'2 E:.Jl are distinct with ,\ 1 E': 1\..'1'
1 

and 

112 E': /I. '/'
2

, then any irreducible constituent of e 'f'l, ii 1 cannot 

be an irreducible constituent of er2,>-2• But due to the way 

ln which the characters x'l'1,i and Xr2,k arose, 

tXr1 ,i1 1 !::. i b n.,,1} f Br1 C:r1)', and fXr2 ,k: 1 bk f nr2l f 

Br
2

<r1)'. Since the unions (J,J) are disjoint, 

Br1 Cr1)' n Br
2
(r1)' =¢'because by (8.2c), B'/'1 (r1) f 

Br2 (r1), Therefore the problem reduces to showing that we 
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cannot have X4'1 , i = Xt2 ,A for some i E: t 1, ••• , n,y;~ and some 

A E. Ar2 • 
In order to do this, we shall invoke (2,2d), The set 

£ e'i',A: 'I' f ..(l., A e. A,;,} may be indexed by the set 

t('r,/1)1 Y,E.fL, ,\ E:.L\.'/'}• Let C be a set of representatives 

of the classes of N contained in X, By (2,2d), there exist 

uniquely determined complex numbers ex, ( 'l', A) ( x €:. C, '/-' E: .fl., 

A E: A'f') satisfying 

(9,3) I <xl = [: L, 
C a 5 

4' ea Jl >J= At x,(4',,\) ('i',,\), 

for all 5 I: Irr(N) and all x E C, where a('/',,\) ,f ""0, e'/',>. )N. 

Moreover, the ex, ( 't', ,\) also satisfy 

X<xl = 

for all XE Irr(G) and all x EC, where b(f,A),X = 

( X , 0 '/', >- G) G, Now by ( 7, 7) , for 't' E: fl and A E A. 'I' , 

(9,5) = -1 

0 

if j = 5N (S <:: Cy,) 

if 1 = ('r ,\) N 

if 1 E Irr(N) is otherwise, 

And by the first part of (a), for all 4' E Jl and all A E: Ao/, 

E ,i,, 1 1f X = x'I', i (1 €: {1,. .. ,n.,,}) 

(9.6) b ('l',A),X. = -E'I' 1f X = X 4',A 

0 if X Ee Irr(G) is otherwise, 

We are now prepared to finish the proof of (a), Fix 
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We must show that B = ¢. By our previous discussion, we 

know that t 0 ~ B, and that if r EB, then there is a unique 

Ay, EA't' such that Xr0 ,i = Xv,,;..v,• Let 1 ,; x e x 1 n R, Then 

by (9,2), (9,4), (9,6), (9,5), (9,3), and (7,7d) respec­

tively, (€'1'
0

,i/n'/'0 )'/'0N(x) = Xto,i(x) 

= L c u, , Er i + G ex ("' , )(-£.,,) 
,1e.L'l.to x,(10,11) o, '/'f:B • T•"r r 

It follows that I:'/'EB Er( '1'>-r)N(x) = o. 

Next we observe that for each t ~ B, Er(fAr)N(x) = 

Xt,.>,'/' (x). Indeed, by the first part of (a), (9,2), and 

(2.Ja), we have ErX4',~t(x) = cz:::i:,;1 E:'/',kx'l,k(x)) -

('f- Y,,.\t)G(x) = L~,\ (1/nrltN(x) - crN(.lC) - ('f';\y,)N(x)) = 



(~A~)N(x), and the observation follows, Therefore, 0 = 

L'f'=B xlf',A'/'(x) = L'f'eB Xro,i(x) = IBIX:'l'o,i(x) = 

!Bl (Sfo,i/nroltoN(x) by (9,2). Finally, since rot: Q"' and 

x E: R, roN(x) = (1/ITl)Lh•N ro(xh) = INI/ITI, so we have 
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O = IB1€r0 ,i[N1Nr0J, which forces !Bl= o. Hence B = p, and 

the proof of (a) is complete. 

(b) In the proof of (a), the characters X'f",i (1 bi~ 

nf) arose as the characters in Bt(r1) given by (8.4). So if 

S(G,T) = {r1}, there is nothing left to prove. Assume 

otherwise, and let rj e S(G,T) be distinct from r1, Let 

xi (1 f: i ~ nrl be the characters in Br(rj)' given by (8,4). 

Then arguing as in the proof of (a), for all i and all 

),, '=At, 'Xi is an irreducible constituent of tG - ('f',>,)G. 

Suppose that Xi ¢ { Xr, k1 1 ~ k f: n,r} for some 1. It follows 

from the first part of (a) that X1 = x'/',>,. for all )... E: J\.'/'. 

By the second part o'f (a), this forces f At! = 1. 

Now R 4 N, and since R is cyclic, each subgroup of R is 

also normal in N. Thus in view of the definition of.A'!'• 

IJ\.rl = 1 implies that RN = R{'. Since R ;;; R~, it follows 

that S(G,T) = {r1}, contradicting the existence of rj' This 

concludes the proof of (b). 

(c), (d) Let '1"0 E il, i e £1, .•. ,nt
0
}, and x E c. Then 

by (9,4), the first part of (a) together with (9,6), (9,5), 

(9,3), and (7,7d) respectively, 'Xro,i (x) = 

= 



= 

= = 

and this establishes the first equality of (c), 

Now let t"o E. Jl.., ,.\ 0 E. A,r
0

, and x c C, We proceed 

similarly to obtain X't'o,Ao(x) = 

= 

thus establishing the first equality of (d), 

We use this equality, together with (7,?d), to estab­

lish the second equality of ( c). If 't' e. Jl, then 

The proof of (c) is now complete, 

Since by (7,8), o/N - (rA)N vanishes on N ~ X for each 

tr' e. .fL and each A E. Ai'• '/'G - ('i',\)G = ('l'N - ( 'l'A)N)G vanishes 

on G ...._ U Xg = G 'E, By (a) , this establishes the second 
gEG 

equality of (d), and the proof of (d) is complete, 

(e) If X c. Irr(G) is distinct from all X'/',i and all 

X't',A, then (a) implies that :for all '/" E. J1... and all A E. A'-/', 
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b(~,A),X = O, Thus (9,4) implies that x'. vanishes on X, and 

it follows that X vanishes on E. This concludes the proof 

of the theoram. 

(9,7) COROLLARY. ~ virtual characters .Q.( Gin 

together~ fil X € Irr(G) which fil:.!! distinct f.!m!!. ill 

X't, i and ill X-r, ,_, f2!:!!l ~ basis !.£!: the «:-space .Qf. class 

functions .Qf. G which vanish 2!! E. 

PROOF. Irr(G) forms a basis for the space of all class 

functions of G, hence by (9.la), the set tB of class func­

tions given in (9,7) is linearly independent. The elements 

of lf3 vanish on Eby (9,lc) and (9,le). 

Now E = U Xg is a union of conjugacy classes of G, 
gcG 

hence the same is true of G, E, and since by (7,J) Xis the 

union of a set of special classes of Nin G, the number of 

classes of G contained in Eis equal to the number of 

classes of· N contained in X. Since the set of functions, 

each of which arises as the characteristic function on some 

class of G contained in G, E, forms a basis for the «:-space 

V of class functions of G vanishing on E, we have d1m(V) = 

j{C::: C:. is a class of G, t::: b. G ..., E]\ = 

jfr::1 C:. 1s a class of Gj/ - l{C1 C is a class of N, [ ~ x}/. 



Now since /fC, C is a class of G1/ = jirr(G)j, since by 

( 7. 9) I { ( 1 C is a class of N, [ f. X JI = / { ( 'f, A) 1 <./1 en, ), e .ll'i'J!. 

and by (9,1a), we obtain dim(V) = 

/Irr(G)/ - /{('/' ,,\) 1 'f' 1::.fL, A <c A-r}I = 

/Irr(G)) - /{Xr,A. if En.. >. E .1\.o.J,11 

But again by ( 9, la) , this number is equal to I IE I. It 

follolts that tf3 spans V, and this concludes the proof, 

In chapter r:v, we shall see that the sign St appearing 

in ( 9, 1) is independent of IJ-' E. 11, and that it is in fact 

equal to£= (-1)<T"('!)(-1)a-(g_) (see (1~,Jb)), We shall see 

also that we may extend to all of Y the formulas 

(9,8) X'f'", i IX = ( ( '/', ilnt)'i'N fx • 

X'l',A Ix = E'/'(t,.\)Nlx, 

Xix = 0 

( for all r E. 1l., all i E. t 1, ... , n.,,}, all A e: At, and all 

XE Irr(G) which are distinct from all X-r,i and all Xr,,1.l 

which are given in (9,1), 

Assuming that the structure of T, the structure of N/T, 

and the manner in wh1ch N/T acts on Tare known, (9,8) 

provides (up to sign) cartsin values foJ: all irreducible 

characters o:il' G. This assumption is often quite reasonable, 

That the structure of Tis known in many cases can be seen 
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by reference to Springer and Steinberg [1J] and to Gager 

[9], By (6.5), N/T is cyclic, so we need only its order to 

determine its structure entirely. Finally, (1,5c) gives the 

action of N/T on T under commonly occurring conditions. 

By way of contrast with (9.8), which treats character 

values on E, we now discuss character values on the elements 

of G, E which are conjugate to some element of T. We 

retain the notation of (9,1). Let a be the subring of~ 
th 

obtained by adjoining to Zl all IQ\ roots of 1. Then O:IRI 

is an ideal in Q, 

(9,9) THEOREM. (a) Let l/' E. S)_ ~ i E. t1, • •• ,n'f'1• 

~ lu a.. 

( mod 0.·!R I ) 

f2! !,ll t E. Q*, ~ in Zl, 

(mod a:IRI) 

for ill t <i. Q*, ~ .u; Zl, 

(c) Let XE. Irr(G) be distinct£!:£!!! all x~.1 ~ ill 

X 'f',A. Then in()._, 



x, tl 0 (mod O.:IRI) 

0 (mod /RI), 

PROOF, (a) Fix \fo E..Jl.and i £ f1,,.,,nrO}, Setil' = 
.0., ['f'ol, By Frobenius reciprocity and (9, la), for all 

'/' E .0. and all ~ €:. A'f', 

if r = '/'0 

if 'f"F 'fo· 

Therefore, setting at= (f, X.,,
O
,i)T for each 'f' 6 Il., we have 

('/',\, Xro,i)T = a'/' for all),. c: J\.'/' if 'f' 6 Jl', and 

(lf'oA, Xro,i>T = a'l'o - f.,,O,i for all A E:. A'/'o• 

For each 'r' 1: Jl, let Dt be a right transversal of Nr in 

N, Recall that each element of T" can be expressed uniquely 

in the form 'i'A ('/' E Q"', ,\ER~), and that if t €:. Q, then 

f),.(t) = f(t), If e c TA and h E:. N, then by Frobenius reci­

procity, (eh, X'l'o,i)T = ( (eh)N, X-ro,i)N = (eN, x'l'o,i)N = 

(e, Xr
O

,i)T, By virtue of these considerations we compute 

that for each t 6 Q, x'l'o,i(t) = LeE.T" (9, X'r'o,i)Te(t) 



= D 
'I' £:.0.. 

= 

Er0 , 1 
h C 't'o ct>. 

hii:D'!'o 
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All su=ands of the last expresslon 11e 1n a, so X'l'o,1(t) E 

0.. S1nce 8hE D'-f'o t0 h( t) = ( 1/nr0 ) 'i' 0 N ( t), the flrst part of 

(a) follows. Sett1ng t = 1 gives the second part. 

(b) F1x 'f'o t:i.Jl and ~0 EA'/'o• Then by Froben1us 

reclproclty and (9,1a), for all 4'e-Jl and all )..E.A'f'' 

{
-f'I' if 'f' = r0 and ii = >,. 0 

O otherwise. 

Now an argument very much 1n the spirlt of the proof of (a) 

proves (b). 

(c) Let XE Irr(G) be distinct from all x~,i and all 

X '/',,1 • Then for all 't' 6. .(1. and all A 6. .L\..,y, ( 9, le) and the 

fact that 'Y - '/.').. vanlshes on T -.... X imply that 

( 'i'- 'I'>., X )T = O. Again we conclude the proof by arguing as 

for (a), 

(9,10) COROLLARY. Let Xe Irr(G), ~ !RI I X(l) if X. is 

distinct!!£!!! ill x'.'/",l. and all 'Xt,A' and X(l) is r~lat1vely 
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prime to IRI otherwise, 

PROOF, Since R ~ N and each element of R* is locally 

regular, R* is a union of conjugacy classes of N, each of 

which has order [N,T], Therefore [N,T]j( IR\ - 1), and it 

follows that ([N,T], IRI) = 1, In view of this remark, the 

corollary is an immediate consequence of the theorem, 



CHAPTER IV. THE CONNECTION WITH THE 

DELIGNE-LUSZTIG THEORY 

The notation and assumptions with which we opened 

chapter III remain in force throughout this chapter. In 

addition, we shall use the notation introduced in sections 

4, 7, and 9, 

G 
Decomposing RT(e) 
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In ~9 we utilized the fact that if O is a class 

function of N vanishing off X, then lG/x = fix (see (2,Ja)). 

In this section however, we shall need the following 

stronger result, 

(10,1) LEMMA, If ( is any class function of N, then 

rGlx = r/x· 
PROOF, Let x I:: X, . 

where r is the function on G which agrees with¥ on N and 

takes the value O elsewhere, Hence it suffices to show that 

if g- 1xg I:: N, then g I:: N, 

Let y = g-1xg ~ N, x ~ X implies that rj /!YI for soce 

j, Therefore there exist elements a, b 6 N such that y = ab 

= ba and ial = rj 8 for some positive integers, Now Rj 6 

Sylr/Gl, so Rj I:: Sylr/Nl as well. Moreover, Rj <i T <1 N, 



60 

and Rj is characteristic in T, hence Rj ~ N. It follows 

* that a e R ~ X, therefore a is locally regular in T, Now 
j 1 

by (5,2b), b ~ CG(a) = T, so g- xg =ab~ X, Since by (7,J) 

and (2,2a) Xis a T,I, set in G with normalizer N, it 

follows that g c N, as desired, 

(10,2) THEOREM. ,E2! ~ 'f'"'-Jl, each i € {1, ••• ,nrJ• 

~ ~). €..L\.r• ~ X'f',i' ft,i' Xr,A and Er~~ 1.!! (9,1). 

~Er= E, Moreover, (after~ possible relabeling £f ~ 
characters 

PROOF. For any e 

viated form R(e). Fix 

G 
~ TA, we write a;<e) in the abbre-

r "'- fl and Ao ~ A.,, Since by ( 5, 2a) 

each element of Xis regular, (4,Jd) implies that for all 

),. t A'/', R('/') - R('l').) and tG - ('f';l)G agree on E = UG Xg. 
ge 

From the fact that for all ,.\ i: .ll '/', If' - '/';. vanishes on 
G G 

T-..... X, it follows immediately that~ - (~A) vanishes on 

G-..... E, and it follows from the character formula (4,Jc) that 

R('i') - R('l',l) vanishes on G--. E as well, Thus by (9, la), 

(10,J) 

for all ). ~A'/', 

Now it suffices to show that R('t') = z:t=\ E'i',i:t''r.i' 

Indeed, since tA is regular for all A tJl.'i'' it is in general 
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pos1t1on, hence by {4.Jb) £R{tA) € Irr{G). Since by (4.Ja) 

(R(~). R(rJio>> = o, 1t Will follow at once that R(~Ao) = 
ex Moreover, using (10.1) and (9.ld), fr=£ w111 then 
c. '!',.Ao" 
be a consequence of the fact that 

So suppose that R('/') f= f: 1~~ 
tR('r ,\) I:. Irr( G) and (R('f), R('f',\)) = O. Thus 

For all) E A'/', 

(10,J) 1mpl1es 

that [R('f',\o) = Xr,k for some k. It follows that Xr,k ls 

But then by (10,J) an 1rreduc1ble constituent of R(t). 

not 

again, Xr,k= £R('f',,\) for all ,\1:A...,,, By (9,la), this forces 

!Atl = 1, 

Now R ls a cyclic normal subgroup of N, so the same 

holds for all subgroups of R, Therefore from/Atl = 1, which 

implies that the number of conjugacy classes of N contained 

in R* ls also 1, we may conclude that R is simple, 1,e,, 

that R = Zx), where x e R has order rand r is the unique 

member of S(G,T). 

It follows that the irreducible characters in Br(r)' 

consist precisely of X'I". 1,.,,, X'f'. n ( the non-exceptional 
' • t 

characters in By,( r) '), and X 'f,Ao ( the unique exceptional 

character in Bt(r)'), Since S(G,T) = fr}, all of our 

previous results follow as a direct consequence of Dade's 

work in [6] without the intercession of a result such as 

(9,1) to reconcile the information provided by the block 

theories relative to several distinct special primes, But 
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A't' = [ i\a}, hence Dade's results are independent of which 

character among A'!-: 1', •• , Xw , x"' , is called the 
' r,n'/' ''"0 

exceptional character in Bt(r)' (seep. J8 of [6]). There-

fore all of our previous results hold if we relabel these 

characters (and the corresponding signs) in such a way that 

X<r,,),.o = fR(\J',.\ 0 ). After such a relabeling, it follows that 

R('r) = 

as desired. This concludes the proof of the theorem. 

It should be remarked that the information contained in 

( 10,2) is complete in the sense that 

This follows by (7,6) and the character formula (4.Jc), 

Thanks to (10,2), the multiplicity of each t e Irr(G) 

G 
in each ~(0) is known (up to sign), Therefore for X 6 

Irr(G), we may apply the formula 7,6.2 of Deligne-Lusztig 

[7], which states that for all regular elements yin T, 

= 

A computation 'lfhieh is by now familiar then shows that the 

formulas (9,8) are valid with X replaced by Y. 
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