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Fractal geometry is awell-knownmodel for capturing themulti-scaled complexity of
many natural objects. By analyzing three-dimensional images of pyramidal neurons
in the rat hippocampus CA1 region, we examine how the individual dendrites within
the neuron arbor relate to the fractal properties of the arbor as a whole. We find that
the dendrites reveal unexpectedly mild fractal characteristics quantified by a low
fractal dimension. This is confirmed by comparing two fractal methods—a traditional
“coastline” method and a novel method that examines the dendrites’ tortuosity
acrossmultiple scales. This comparison also allows the dendrites’ fractal geometry to
be related to more traditional measures of their complexity. In contrast, the arbor’s
fractal characteristics are quantified by a much higher fractal dimension. Employing
distorted neuron models that modify the dendritic patterns, deviations from natural
dendrite behavior are found to induce large systematic changes in the arbor’s
structure and its connectivity within a neural network. We discuss how this
sensitivity to dendrite fractality impacts neuron functionality in terms of balancing
neuron connectivity with its operating costs. We also consider implications for
applications focusing on deviations from natural behavior, including pathological
conditions and investigations of neuron interactions with artificial surfaces in human
implants.

KEYWORDS

neurons, fractal analysis, fractal dimension (D), tortuosity, connectivity, neuromorphology,
confocal microscopy, hippocampal CA1

1 Introduction

The term “fractal” was introduced in 1975 to highlight similarities between a diverse range
of natural objects and the scale invariant properties of mathematical patterns researched over
the previous century (Mandelbrot and Pignoni, 1983). Fractal dimension, D, has since emerged
as a powerful tool for quantifying the fractal repetition of patterns at multiple size scales and
how this scale invariance impacts the visual and functional properties of many natural objects
(Bassingthwaighte et al., 1994; Iannaccone and Khokha, 1996). Fractal branches are particularly
prevalent in nature. In addition to trees populating many natural environments, animals benefit
from these structures in, for example, their bronchial trees (Nelson et al., 1990; Lennon et al.,
2015) and neural networks (Di Ieva, 2016; Smith et al., 2021). As their branches spread out in
space, the structure of the resulting arbor features two embedded fractal patterns– the branches
and the gaps forming between them. Their structural relationship offers the potential to balance
functionality with operational costs whilst also maintaining structural integrity. In this
balancing process, the repeating patterns offer large interfaces to interact with light in the
case of trees (Seidel et al., 2019) and oxygen in the case of bronchial trees (Hou et al., 2010).
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Neurons present an extra level of intricacy because they connect to
fractal neighbors to transmit signals through a network.

Exact fractals, assembled mathematically by repeating patterns
precisely at many scales, serve as a useful model for picturing how
branches influence the distribution of gaps. Branches with lower D
values reduce their branch lengths at much faster rates between
repeating iterations, such that their arbors are spacious when
compared to the dense structures generated by higher D values
(Supplementary Figure S1). The dendritic branches of neurons are
considerably more subtle, however. Randomness disrupts the exact
repetition. Consequently, only their patterns’ statistical qualities repeat.
Furthermore, for the neurons examined in our study the scaling range for
this repetition is limited by the arbor (at the coarse scale) and branch (at
the fine scale) widths.

Given these constraints, we recently investigated the degree to which
neurons are fractal and the origin of this fractality. By analyzing three-
dimensional images of pyramidal neurons in the CA1 region of the rat
hippocampus, we showed that, despite being named after trees, the

dendrites of a neuron are considerably different in their scaling behavior
(Smith et al., 2021). Whereas trees are traditionally modeled using a fractal
distribution of branch lengths (Mandelbrot and Pignoni, 1983;
Oppenheimer, 1986; Frame and Urry, 2016), the ways in which the
dendrites fork and weave through space are important for determining
the scale-invariant character of the arbor’s branches and gaps. Previous
studies of neuron connectivity and dendritic cost considered component
parameters of the neuron geometry such as the dendrites’weave quantified
using tortuosity, branch length, and an analysis of self-similar scaling of
small parts of the arbor (Wen et al., 2009). In contrast, we showed that the
arbor’s fractal dimension, DA, incorporates these parameters in an
integrative approach that directly reflects the fractal-like geometry across
multiple dendrites and multiple size-scales of the neuron’s entire arbor. By
measuring the relative contributions of coarse and fine scale patterns within
the arbor,DA successfully mapped the optimization of neuron functionality
even though the scaling behavior lacked the infinite range associated with
mathematical fractals. The competing constraints examined within this
optimization process were the dendrites’ potential to connect to other

FIGURE 1
(A) Schematic diagram of a coronal slice through the hippocampus at Bregma −4.52 mm showing a selected location (red box) within the hippocampal
CA1 region (darkened area); the pyramidale layer is denoted by the dashed line. (B) An example confocal micrograph taken from within the selected location
highlighted in (A) spanning the oriens (SO), pyramidale (SP), radiatum (SR), and lacunosum-moleculare (SLM) strata. The red box in the micrograph highlights
the approximate region occupied by the basal arbor of a single neuron and the white scale bar corresponds to 100 μm. (C) An example reconstruction of
a neuron’s basal arbor with the neuron’s soma colored in cyan and its dendrites in black. (D) An example of the paths taken by a neuron’s dendrites. S denotes
the point where the dendrites initially extend out of the soma. B1 and B2 denote the points at which the dendrites bifurcate. E1, E2, and E3 denote the endpoints
of the dendrites. (E) The three dendritic branches seen in (D) separated fromone another. The red and cyan colors are used to indicate sections that are shared
between branches.
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neurons (characterized by their physical profiles) along with the costs
associated with building (mass) and operating (metabolic energy) the
dendrites.

Given the geometric complexity originating from the interplay between
the dendrite length distributions and their forking and weave angles, in the
current workwe seek to clarify the origin of the neuron’s fractal behavior by

examining how the individual dendrites relate to the fractal properties of the
whole arbor. The dendritic arbor of our neurons features two component
arbors (apical and basal) and in this study we focus on the basal arbor,
which is composed of 32 dendrites on average. Our comparison of
dendrites across 105 arbors shows that, irrespective of their lengths, the
individual dendrites typically reveal very mild fractal characteristics

TABLE 1 List of geometric parameters used throughout this article.

Parameter Definition

θ Branch weave angle

ϕ Branch forking angle

α Angle multiplier

RA Arbor radius

LR Ruler length

LF Ruler length set to the finest resolution

LE Ruler length between the two ends of a branch

LD Ruler length between the two ends of a chosen branch section

LT Sum of the ruler lengths spanning a chosen branch section

LP Path length (curvilinear length of a path along a chosen branch section)

LB Maximum LP (the path length along an entire branch)

Lbox Box length used in the box-counting analysis

Lgrid Largest of the three side lengths for the smallest grid enclosing a neuron’s arbor

T Tortuosity (LP/LD measured between the two ends of a chosen branch section)

DA Arbor fractal dimension measured using the box-counting analysis

DBC Branch fractal dimension measured using the coastline analysis

DBCN Branch fractal dimension measured using the normalized coastline analysis

DBT Branch fractal dimension measured using the tortuosity analysis

FIGURE 2
(A) Schematic demonstrating the placement of rulers along the branch of a neuron. The black curve shows an example neuron branch, the connected
red dots show the segmented version of a branch at a given ruler length, LR, the transparent red circles represent the spherical shells used to determine where
to place each segment, and each red X indicates where the branch intersects the spherical shell. We note that the radius of each spherical shell is equal to LR.
(B) The same branch shown in (A)with a chosen branch section of path length, LP, highlighted in red and the Euclidean distance, LD, separating the ends
of this section shown by the dashed cyan line.
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quantified by low fractal dimensions,DB, close to those expected for straight
lines. This behavior is so mild that we sought confirmation by comparing
two fractal methods—a traditional method employed in the first
demonstration of nature’s fractality (Richardson, 1961), and a novel
method that uses tortuosity, T (Wen and Chklovskii, 2008; Ledderose
et al., 2014), to quantify the meandering nature of the dendrites across
multiple scales. The high degree of agreement between the two methods in
their measurement of DB emphasizes the appropriateness of characterizing
the scaling properties of dendrites using fractal geometry. In addition to

providing confirmation of DB, this second method also allows an
examination of the relationship between DB and the scaling behavior of
T. By doing so, we unite traditional and novel approaches to understanding
neuron geometry. In particular, our results facilitate connections between
the fractal community (familiar with D) and the neuroscience community
(familiar with T).

By usingmodels that distort the way that the dendrites weave and fork,
we show that deviations from their natural shapes induce distinct changes
in the arbor’s fractal dimension, DA, through the interplay of the branches

FIGURE 3
(A) The coastline scaling plot (base-10) of the number of rulers spanning the branch, N, versus the normalized ruler length, LR/LE, measured for a single
branch within a natural neuron’s arbor. The red insets show examples of segmented versions of the branch corresponding to ruler lengths of 6.4 µm (left) and
34.7 µm (right). The slope of the line yields a coastline fractal dimension,DBC, of 1.036 ± 0.002. (B) The equivalent coastline scaling plot (base-10) including all
the branches within the selected neuron’s arbor. The black data correspond to the scaling range of LR/LE shared by all branches within the arbor, whereas
the red data correspond to the range inwhich some branches do not contribute and are accordingly removedwhen fitting the data. The slope of the line yields
a normalized coastline fractal dimension, DBCN, of 1.032 ± 0.003. The inset at the right shows a histogram of the number of branches, n, of a given DBCwithin
the neuron’s arbor. The vertical red and cyan lines correspond to DBCN and the mean coastline fractal dimension across all the branches within the neuron’s
arbor, 〈DBC〉, respectively.

FIGURE 4
Coastline fractal dimension, DBC, plotted against branch length, LB, (measured in µm) for all of the branches across all neurons. The larger, outlined
squares indicate binned averages of the underlying data in the range of 50–250 µm. The upper-right inset shows a zoom-in of a bifurcation in a neuron’s
dendrites and demonstrates how the forking angle, ϕ, and theweave angle, θ, aremeasured. The other insets show the path of a single neuron branch for three
values of the angle multiplier, α, where the location of the neuron’s soma is indicated by the black dot. The colors of the data shown in this plot
correspond to the α values shown in the insets.
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and their gaps. Furthermore, the size of these changes in the arbor depends
on the character of the dendrite distortions. For example, for the deviations
of the rat hippocampal neurons used in the current study, the sensitivity of
DA to changes in DB depends on whether the dendrites are straightened to
reduceDB ormademoremeandering to increaseDB. Given the dependence
of neuron connectivity toDA established previously (Smith et al., 2021), our
current study highlights the degree to which neuron functionality relies
critically on the fractal arrangement of the dendrites even for neuron types
that are only mildly meandering. Significantly, this functionality exhibits a
well-defined dependence onDB even though the fractal scaling behavior of
the dendrites occurs over a highly limited range of size scales. Although
lacking the scaling range associated with mathematical fractal exponents,
DB therefore serves as an “effective” fractal dimension for quantifying the
neurons’ physical form. Given this contrast between our physical neurons
and infinitely repeating mathematic fractals, we will discuss our results
within the context of previous debates over “limited-range” fractals. Our

results are also of interest to fundamental neuroscience research relating
form to function of healthy neural networks and builds on Ramón y Cajal’s
wiring economy principle from a century ago (RamónCajal, 1999). In
addition, the results are important to applications which quantify changes
from natural behavior, for example in pathological changes and in neuron
interactions with artificial surfaces.

2 Materials and methods

2.1 Rodents

The study was conducted in accordance with ARRIVE
guidelines. Rat pups were bred and housed with their mother in
cages with wood chips and ad libitum food and water in an
environmentally controlled room. All procedures pertaining to

FIGURE 5
Scaling plot (base-10) of tortuosity, T, against path length, LP, (measured in µm) for seven values of α as indicated by the upper-right color bar. The data
shown represent binned averages of T across all possible paths within all of the branches across all neurons. The upper-left inset shows how the average value
of tortuosity across the LP range examined in the main plot, TAve, increases with α.

FIGURE 6
Coastline fractal dimension, DBC, plotted against tortuosity fractal dimension, DBT, for all of the branches across all neurons for seven values of α. The
lower-right color bar indicates the α value of the corresponding data. The larger, outlined squares show the mean of the DBC data points plotted against the
DBT value extracted from Figure 5 for each α value. The black line indicates DBC = DBT.
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the use of live rats were conducted in compliance with all relevant
ethical regulations for animal testing and research and were
approved by the University of Canterbury Animal Ethics
Committee, 2008-05R.

2.2 Image acquisition, model reconstruction,
and model distortion

Thirty-three adult PVGc male hooded rats (13–16 months old)
were given an overdose of sodium pentobarbital. The brains were
removed fresh without perfusion, rinsed with Milli-Q water, and a
4 mm block containing the hippocampus was cut in the coronal
plane using a brain matrix (Ted Pella, Kitchener, Canada). These
tissue blocks were processed with a metallic Golgi-Cox stain, which
stains 1%–5% of neurons so that their cell bodies and dendritic
arbors can be visualized. 200 µm thick coronal brain sections

spanning the bilateral dorsal hippocampus were taken using a
microtome. A standard microscope was used to locate isolated
neurons in the dorsal CA1 subfield (Figure 1A). A Leica laser
scanning confocal microscope was used to collect high-resolution
image stacks for these arbors. An example of one of the images
comprising a stack is shown in Figure 1B. The image stacks were
captured using a ×20 glycerol objective lens with a 0.7 numerical
aperture, providing an x and y resolution of 0.4 µm. The step size (z
distance between image stacks) was 2 µm.

Arbors were manually traced through the image stacks using
Neurolucida (MBF Bioscience, Williston, VT, United States)
(Neurolucida, 2019) to create three-dimensional models
(Figure 1C). The models were then exported to the Wavefront
(.obj) format and their soma removed, leaving only the arbor’s
dendrites. In this format, the arbor reconstructions were defined
by sets of connected, cylindrical segments. The median length and
width of the segments were 2.4 μm and 1.4 µm, respectively. The

FIGURE 7
(A) Scaling plot (base-10) of the number of occupied boxes, Nbox, versus the normalized box size, Lbox/Lgrid, for an example neuron’s dendritic arbor. The
left inset shows a neuron at a small box size (4.5 µm) whereas the right inset shows a neuron at a large box size (17.1 µm). (B) RPV (red) and RPA (blue) plotted
against themean coastline fractal dimension, 〈DBC〉. (C) Arbor fractal dimension,DA, plotted against 〈DBC〉 for seven values of α as indicated by the lower-right
color bar. The shown data represent themean ofDA and 〈DBC〉 across all arbors at each α value, with the error bars indicating the standard error from the
mean. The three upper insets show an example neuron’s dendritic arbor for three values of α as indicated by the color of the arbor. (B) and (C) share the same
x-axis.
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weave angles, θ, were defined as the angles between connecting
segments along a branch and the forking angles, ϕ, as the first
weave angle following a bifurcation point on a branch. We then
created distorted versions of the neuron models by
mathematically manipulating the branch weave and forking
angles through a process that multiplied every θ and ϕ value
by a common factor, α. The range of α values used (0.5–2 in steps
of 0.25) was chosen to ensure that separate branches rarely
intersected, so ensuring a physically reasonable condition.
Further details of this distortion technique have been reported
elsewhere (Smith et al., 2021). The analysis of all models was
performed by authors who were blinded to rat ID numbers.

2.3 Calculating the coastline fractal
dimension of a branch

We define a dendritic branch as any path that starts from the soma
and ends at the tip of a dendrite (Figure 1D). Within this definition, we
emphasize that different branches commonly have shared sections
(Figure 1E). We can then specify the various parameters summarized
in Table 1 that are related to the branch’s geometry.

We employ a three-dimensional extension of the traditional
method pioneered by Richardson (Richardson, 1961) and then
Mandelbrot (Mandelbrot, 1967) in their discovery of the fractal
character of meandering coastlines. The “coastline method”
examines the branch at different resolutions through its
employment of a ruler of length LR. Shown in Figure 2A, the
branch is segmented into a series of rulers. The branch’s fractal
scale invariance can then be revealed through the power law
dependence of the number of rulers needed to span the branch’s
entire length, N, on LR. The exponent of N∝ LR−DBC is labelled as the
branch’s coastline fractal dimension, DBC, and can be extracted from a
log-log plot of N versus LR. In our analysis, we normalize LR using LE
(the largest possible ruler length connecting the soma to the branch
endpoint).

This fractal scaling is limited at fine scales by the finite sizes of the
branches which set a fine scale “cut-off”. We do not consider rulers
smaller than 4 µm (which approaches the median value of the branch
segment length) because smaller rulers would start to detect the linear
character of the cylindrical segments rather than the fractal character
of the meandering branches. At the course scale, we allow for rulers
that span up to 40 μm, which provides an order of magnitude scaling
on the log-log plots used to extract DBC. We apply this “one-order”
rule to all branch sizes to standardize the fitting procedure that
generates their DBC values. One order of magnitude is chosen to
maximize the number of branches used in the comparison of our two
methods for measuring branch fractal dimension: this range excludes
only 35 of the 3,354 total undistorted branches, compared to, for
example, 1930 branches if 1.5 orders is used as the scaling range.

Figure 2A provides a graphical representation of how the
segmented versions of a branch are generated. We start by
centering a spherical shell of radius LR on the branch end
connected to the soma. The start point of the first segment is set at
this location and the end point is set where the branch intersects the
spherical shell. If the spherical shell intersects the branch at multiple
locations, then the location which has the shortest path length along
the branch from the intersection to the center of the spherical shell is
chosen. The next segment is defined using the same process but the

spherical shell is instead centered at the end point of the previous
segment. However, once the first segment is placed, parts of the branch
that have already been segmented but which intersect the shell are not
considered when placing a new segment. This ensures that in general
each new segment is placed closer to the branch terminal point than
the previous segment. This process is repeated until the spherical shell
no longer intersects the branch. If part of the branch remains
unaccounted for then a truncated segment is inserted to connect
the endpoint of the previous segment to the terminal point. For cases
when a truncated segment exists at the terminal point, the truncated
segment is counted as a fraction of a segment. For example, for a ruler
length of 10 μm, if the segmented version of the branch is comprised of
12 full segments and a truncated segment of length 2 µm then N is
counted as 12.2.

The above analysis is performed on both the undistorted and
distorted neurons. For the undistorted neurons, we also employ a
method for calculating the normalized coastline fractal dimension,
DBCN, of all the branches within a given neuron. Normalizing LR to LE
allows for a direct comparison of N across branches with different
lengths. We calculate DBCN by plotting all of the branches on a single
log-log graph of N against LR/LE and extracting the magnitude of the
slope of the combined data. In order to avoid having some branches
dominate the fine and coarse scales of the fit, only the range of LR/LE
over which all of the neuron’s branches contribute is used in the fitting
procedure (which spans 0.75 orders of magnitude). We stress that this
normalization procedure is used only to demonstrate the similar
fractal character of different-sized branches. Subsequent analysis
focuses on DBC rather than DBCN values.

2.4 Calculating the tortuosity and tortuosity
fractal dimension of a branch

The definition of tortuosity, T, that we adopt in this paper is the
ratio of a path’s curvilinear length, LP, to the Euclidean distance
between the two endpoints of that path, LD. We define a path as any
section of a neuron’s branch connecting two points on that branch. An
example path and its associated LP and LD lengths are shown in
Figure 2B. LP is calculated by summing the lengths of all of the
cylindrical segments spanning the chosen section of the branch. In
terms of ruler measurement, LP approximates to the total length of all
rulers spanning the chosen path with the ruler set to the smallest
resolution. LP can in principle be used to measure the length of any
branch section - from the smallest sections approaching the segment
length through to the largest possible section when LP = LB, where LB is
the path length of an entire branch. In each case, LP captures the fractal
tortuosity (i.e. meandering) of the branch. In contrast, LD represents
the length of the straight, Euclidean line connecting the two ends of the
chosen section along the branch. We measure T across all possible
paths along a branch and plot these versus LP on a log-log graph. We
then extract the tortuosity fractal dimension, DBT, of that branch using
the relationships T∝ LPS; DBT � 1/(1 − S) (see Section 1 of the
Supplementary Material).

Due to the large noise inherent in plots of T against LP (as
highlighted in Supplementary Figure S2), before fitting the data to
extract DBT we first divide it into bins over the desired scaling range
(4 μm–40 µm is chosen to match the range examined in the coastline
fractal analysis). We then calculate the average T value for each bin
and fit the binned data. The slope of the resulting fit yields DBT (using
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the above relationship to S) and for the chosen branch section.We also
calculate a singleDBT value for all the branches across all neurons. This
procedure is the same as that for calculating DBT for an individual
branch except that we combine the data from all the paths within all
the branches across all neurons onto a single plot of T against LP. We
note that duplicate paths exist due to different branches having
overlapping sections (Figure 1E) and therefore remove any
duplicated data before performing the fit.

2.5 Calculating the profile area, surface area,
bounding area, and bounding volume of a
neuron’s arbor

In order to quantify the potential for a neuron’s dendrites to
connect to other neurons as well as the costs associated with building
and operating those dendrites, we utilize the following metrics: profile
area (P), surface area (As), bounding area (Ab), and bounding volume
(Vb). Each of these metrics are calculated for a given neuron’s arbor
using MATLAB code developed in our previous study (Smith et al.,
2021). Briefly, to measure P we orthogonally project a neuron’s arbor
onto a 2-dimensional plane from a given viewing angle, uniformly
expand the profile of this projection by 2 µm (to account for the
potential growth of spines in the space around each dendrite),
calculate the area of this expanded profile, and then average this
expanded profile area over all possible viewing angles of the arbor. To
measure As, we calculate the surface area of an arbor by summing the
area of all the triangular faces defining the cylindrical segments of the
arbor’s dendrites. However, due to some faces being partially
positioned inside the branches of an arbor, we employ a technique
that measures As more precisely by increasing the resolution of the
triangular faces and then removing those faces with all three corners
inside a branch. Lastly, to measure Ab and Vb, we calculate the surface
area and volume, respectively, of the arbor’s convex hull.

3 Results

Figure 1B shows a representative image obtained using confocal
microscopy of CA1 pyramidal neurons in the coronal plane of the
dorsal rat hippocampus. Axonal and dendritic arbors extend from
neuron somas located in the stratum pyramidale (SP) of the
CA1 region. The basal arbor’s complex branching patterns
extend into the neighboring stratum oriens (SO) where they
collect signals from the axons of other neurons. Arbor sizes can
be quantified using their radii (Caserta et al., 1995; Wen et al.,
2009), and for our basal arbors the median arbor radius, RA, is
~100 µm. Figure 1C shows an example three-dimensional
reconstruction of an arbor. In principle, each dendrite could
extend into the SO layer following a perfectly straight line with
dimension D = 1 or meander along a very winding trajectory that
completely fills space with a dimension of D = 3. If the arbor
features fractal dendrites instead of these integer dimensions
characterizing Euclidean shapes, then each of these will be
quantified by an intermediate D value lying between 1 and 3.
Fractals with larger contributions of fine patterns will have
higher DB values than fractals with lower contributions of fine
patterns (see, for example, Supplementary Figure S1 where the fine
scale branches are longer for the higher dimension patterns). Below

we present the results of two methods used to determine the DB

values of each dendrite.

3.1 Coastline fractal analysis

The log-log (base-10) scaling plot for the “coastline” fractal
analysis is shown in Figure 3A. Normalizing LR using LE allows
scaling plots for branches with different lengths to be plotted on a
common x-axis; Figure 3B demonstrates that all of the branches within
a given arbor condense onto a single line, indicating that they are
quantified by a common fractal dimension, DBCN. To extract DBCN, we
focus the fit on the black data corresponding to the scaling range of LR/
LE shared by all branches within the arbor (i.e. the region over which
all of the individual plots overlap). The red dots in Figure 3B indicate
the data that are excluded from the fit. The inset employs a histogram
to compare the mean DBC across all branches within the arbor, 〈DBC〉,
(1.031 as indicated by the cyan line) with DBCN (1.032 as indicated by
the red line). The scaling range of the fit in Figure 3A is restricted to
1 order of magnitude to provide a standardized fitting procedure for
extracting DBC (see Materials and methods Section 2.3).
Supplementary Figure S3 shows the fit used in Figure 3A when it
is extended to larger scales so that it spans 1.5 orders. The inset
provides a histogram showing a comparison of DBC values for fits over
1 and 1.5 orders of all branches across all neurons long enough to have
a scaling range up to 1.5 orders. We will return to the limits of the
scaling range in the Discussion.

Figure 4 further demonstratesDBC’s lack of dependence on branch
length by plotting the values of all the individual branches across all of
the neurons examined. LB is the branch’s “path length” (symbolized by
the black line in Figure 2A) and is given by the total length of all the
cylindrical segments spanning the branch from soma to tip (in terms
of ruler measurement, LB approximates to the total length of all rulers
spanning the branch when the ruler is set to equal the smallest
resolution possible). Although DBC can vary considerably between
individual branches, we note that their collective behavior reveals an
independence of DBC with respect to LB. We also mathematically
manipulate the branch weave and forking angles, labelled as θ and ϕ,
respectively, by multiplying every θ and ϕ value by a common factor α
(Figure 4-right inset shows a schematic of θ and ϕ). This changes the
DBC values as follows. Values of α higher than 1 increase the angles
above their natural values and cause the neuron branches to curl up,
causing DBC to rise because the amount of fine structure in the
branch’s shape increases. Similarly, reducing α causes the branches
to gradually straighten out, decreasing the amount of fine structure,
and causing DBC to drop. The insets at the top of Figure 4 provide a
visual demonstration of this curling process.

3.2 Comparison of coastline and tortuosity
fractal analysis

Whereas the coastline method considers the entire length of the
branch and examines how the branch properties change with
measurement resolution, our second method considers the finest
resolution and examines how the branch properties vary when
investigating increasingly small sections of the branch. We will
show that this second approach aligns with one of the traditional
measures of tortuosity, T, that quantifies the extent to which the
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meandering branch deviates from a straight trajectory. Several
different tortuosity metrics have been used in previous studies of a
variety of biological structures (Hart et al., 1999; Bullitt et al., 2003;
Wen et al., 2009; Ledderose et al., 2014; Lorthois et al., 2014; Barbará-
Morales et al., 2020). Due to its mathematical connection to fractal
measurement, here we present the results of the tortuosity analysis
based on T � LP/LD (shown in Figure 2B).

By measuring various path lengths, LP, and their corresponding
displacement lengths, LD, along the branches of all the neurons and
averaging the resulting tortuosity across all of these branches, we are
able to chart the relationship between T and LP in Figure 5 (plotted
over the same scaling range used to measure DBC). Section 1 of the
Supplementary Material derives the mathematical relationship
between T and the coastline method and shows that for fractal
behavior, T is expected to follow the power law relationship with
LP revealed in Figure 5, with the slope, S, of the log-log (base-10) plot
related to branch fractal dimension using DBT � 1/(1 − S).
Accordingly, increasing α results in a steeper slope of the data line.
The inset of Figure 5 confirms intuition that the T value averaged
across the data line will increase with α.

Figure 6 plots DBC against DBT measured for all of the individual
branches across all neurons and allows for a direct comparison of the
two techniques used for determining branch dimension. The black line
indicates the expected relationship,DBC =DBT. To compare the data to
this line, for each α value we also plot theDBC value averaged across all
branches across all neurons. Recognizing that the tortuosity scaling
plots for the individual branches are inherently more noisy than the
equivalent coastline scaling plots (compare Figure 3A; Supplementary
Figure S2 which show the scaling behaviors for the same branch), we
also plot the DBT values obtained from the procedure shown in
Figure 5, which benefits from fitting the combined data of all
neurons. Given the scatter observed in the individual branch data
points, the close match of the two techniques to the line is impressive.
In addition to demonstrating the power of confirming branch
dimension using two techniques, Figure 6 also emphasizes that
neuron fractal behavior varies considerably from branch to branch,
but nevertheless systematic behavior emerges when looking across the
collective behavior of many neurons.

3.3 Dependence of arbor fractal dimension on
branch dimension

Having gained certainty in our fractal branch measurements,
Figure 7 shows the relationship between the fractal dimension of
the neuron’s branches and the fractal dimension of its whole
arbor. Details of the arbor fractal analysis are presented elsewhere
(Smith et al., 2021) and so here we present a summary. Whereas
the coastline method counts the number of rulers as ruler size is
reduced, the analogous arbor analysis replaces the rulers with
boxes to accommodate the fact that the arbors feature multiple
branches. The box counting technique then determines the
amount of space occupied by the arbor by inserting it into a
three-dimensional grid of the boxes and counting the number of
boxes, Nbox, occupied by the branches. This count is then repeated
across a range of box sizes, Lbox. Fractal scaling follows the power
law Nbox ∝ Lbox−DA (In Figure 7A, Lbox is normalized to Lgrid,
which is the largest of the three side lengths for the smallest grid
capable of enclosing the neuron being analyzed). The insets to

Figure 7A show schematics of examples of small and large box
sizes.

The bottom panel to Figure 7C then compares the DA measurements
across all the neurons to their mean branch fractal dimension, 〈DBC〉.
Examining how these measurements vary with α, we find that both
increasing and decreasing α results in a rise in DA. This can be
understood in terms of the interplay of fractal branches and gaps. The
branches self-avoid at the natural condition of α = 1 and so move closer
together when α is either increased or decreased. This is demonstrated by
the insets of Figure 7C which show an example arbor for the natural case
(middle) and for lower (left) and higher (right) α values. This generates an
increase in the ratio of fine to coarse structure and a corresponding rise
in DA.

Our previous analysis showed that DA maps the balance between the
neuron’s potential to connect to its neighbors and the associated operational
and material costs (Smith et al., 2021). In this analysis, connectivity was
assessed using an arbor’s physical profile, P, since large profiles result in the
increased exposure of synapses (which are responsible for receiving signals
from other neurons). “Operating” costs were assessed using the surface area
of the dendrites comprising an arbor,As, based on research of neuron ATP
energy expenditures (Attwell and Laughlin, 2001; Wen et al., 2009). The
volume occupied by an arbor’s branches, Vm, was used to quantify the
“building” costs of the arbor. Both P and As were normalized to the
bounding area, Ab, of an arbor, while Vm was normalized to the bounding
volume, Vb, of an arbor to ensure that our measures of connectivity,
operating cost, and building cost do not depend on the overall size of the
arbor.

The ratios of the rates of change of connectivity with operating
cost

RPA �
d

dDA

P
Ab

( )
d

dDA

As
Ab

( )
and with building cost

RPV �
d

dDA

P
Ab

( )
d

dDA

Vm
Vb

( )

Then quantified how the arbors balance these factors as a function
of DA.

Specifically, it was suggested that peaks in RPA and RPV indicated
the optimal balance. Supplementary Figure S4 plots the DA

dependences of P/Ab, As/Ab, and Vm/Vb corresponding to the data
in Figure 7C and shows that, as expected from the previous
investigation, RPA and RPV both peak at around the natural
neurons’ prevalent DA value. Figure 7B is generated by first using
Figure 7C to convert the 〈DBC〉 values for each α value to their
associated DA values and then using Supplementary Figures S4D, E to
convert these DA values to their RPA and RPV values. As shown by the
falling RPA and RPV values, the balance between connectivity and cost
deteriorates as the DA value moves to the higher, unnatural values.

Figure 7 emphasizes that even for neurons composed of dendrites
with very mild fractality (characterized by low dimensions close to
those of Euclidean straight lines and charted over just one order of
magnitude), 〈DBC〉 nevertheless serves as a key parameter for charting
the interplay between the arbor branches and their gaps, resulting in a
systematic shift from natural to non-optimalDA values. In terms of the
sensitivity of neuron behavior to changes in their 〈DBC〉 values, we
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draw attention to the asymmetry of the curves in Figures 7B, C.
Distortions that increase the dendrites’ weaving and forking angles
lead to small increases in DA compared to the sharper rises observed
for distortions that reduce these angles. In particular, arbors featuring
dendrites close to the Euclidean condition are highly sensitive to
distortions. For example, the small reduction in 〈DBC〉 from 1.02 (α =
0.75) to 1.01 (α = 0.5) is accompanied by an increase in DA from 1.42
(α = 0.75) to 1.46 (α = 0.5)—relative to the dendrites, the arbor’s
dimension increases approximately fourfold. The associated
reductions in RPA and RPV values exhibit similar sensitivities to DBC.

4 Discussion

Fractal geometry is a useful model for capturing the multi-scaled
complexity of many natural objects and distinguishes their resulting
pattern characteristics from single-scaled “Euclidean” objects. In this
paper, we have refined our fractal investigations of neurons by further
clarifying the origin and extent of their fractal properties. The arbor’s
underlying scaling properties arise from variations in the weave,
forking, and length distributions of its branches and this structural
interplay results in a more intricate scaling behavior than that
exhibited by simple fractal models (for example, the H-Tree shown
in Supplementary Figure 1). Because fractal dimension, D, is sensitive
to how all three branch parameters shape the neuron’s underlying
geometry, it can be related to more traditional parameters used to
study specific consequences of the neuron complexity.

This was highlighted by our comparisons betweenD and tortuosity, T.
DefiningT as the ratio of path length to the Euclidean distance between the
path’s start and end points, T can be used to quantify the weave of an
individual branchmeasured at a specific size scale. In contrast,D captures a
more comprehensive picture by accounting for the weave’s power law
growth in tortuosity across increasingly large scales. This was
demonstrated here by deriving the mathematical relationship between
branch tortuosity and a traditional measure of fractal scaling, and then
using our neuron models to confirm the agreement between the two
associated dimensions,DBT andDBC.We note that one consequence of our
definition of a branch (any path that starts from the soma and ends at the
tip of a dendrite) is that different branches commonly have shared sections
(Figure 1E). As such, each of these shared sections influences the
calculation of DBC for multiple branches. This is appropriate because
an entire neuron’s geometry will inherently bemore dependent upon these
shared sections (for example, a section close to the soma might influence
the location of many branch tips).

To clarify the origin of the neuron’s fractal behavior, we examined
how the individual branches relate to the fractal properties of the
whole arbor. To do so, we considered two distinct fractal dimensions -
DB and DA which quantify the scaling properties of a branch and of an
arbor, respectively. Our results show that the branches in an arbor
typically exhibit the same fractal behavior irrespective of their length
within the measurable fractal range. Furthermore, within scatter,
branches from different neurons exhibit this common behavior.
Surprisingly, they all reveal very mild fractal characteristics
quantified by low DB values close to those expected for straight
lines. As these branches spread out in space, the resulting arbor
properties depend on two embedded fractal patterns—the branches
and the gaps forming between them (as highlighted by the insets in
Figure 7C). This spatial relationship generates a much larger
complexity than that of the individual branches. We anticipate that

the resulting U-shaped relationship betweenDB andDAwill be generic
to neuron types with arbors composed of fractal branches that self-
avoid. For such neurons, this fractal structure optimizes the balance
between connectivity and operating costs, as indicated by the
deterioration in the RPA and RPV values shown in Figure 7B. For
neurons with a spread of DA values, we expect an analogous behavior
to that shown in Supplementary Figure 3 whereby RPA and RPV peak at
DA values closely matching the histogram peak, indicating that the
majority of neurons exist near the optimizing condition.

In terms of distortions away from the natural fractal condition, it is
informative to examine the symmetry of the U-shape. For the
hippocampal neurons of the current study, the natural condition (α =
1) centered around DB = 1.04 and distortions that reduced the fractal
weave of the branches resulted in relatively large changes to the arbor
fractal characteristics as the branches neared the Euclidean condition of
straight lines. Based on this observation, we anticipate that neuron types
with naturally occurring lowDB values that are distorted in a manner that
reduces their weave or forking angles will experience large changes in their
arbor fractal characteristics and associated functionality. This however
assumes a similar arbor density to the neurons examined in the current
study - this behavior may not be seen for sparsely branching neurons. It is
also intriguing to consider neurons with large naturally occurring DB

values and examine whether distortions through increases in their weave
and forking angles would experience a similar sensitivity to DB.We hope
that the current study will encourage analogous future studies across
different neuron types that investigate these behaviors.

In addition to facilitating connections between research fromdifferent
fields (in particular, biology and mathematics), a powerful motivating
factor for using twomeasurement techniques (the coastline and tortuosity
techniques) is to provide confirmation that the branches are indeed
described by a fractal dimension. This is an important capability in light of
the importance of distinguishing the branches fractal behavior from the
Euclidean behavior characterized by integer dimensionality. Because the
observed DB values are so close to one-dimensional behavior and are
observed over a highly limited scaling range, it is valuable to consider our
results within the context of a larger debate within fractal studies—when is
it appropriate to label behavior as fractal? In declaring “The Fractal
Geometry of Nature” (Mandelbrot and Pignoni, 1983), Mandelbrot
introduced fractality as an umbrella terminology to unite studies of
scale-invariant behavior in physical and mathematical systems. He did
not introduce scaling range into the definition of fractality in part because
of the contrast between the infinite repetition of mathematical patterns
and the limited repetition of physical patterns, but crucially because the
scaling range necessary for fractality to impact functionality varies
considerably between physical objects.

A subsequent survey revealed that published experimental studies
of fractality in physical systems typically displayed scale-invariance
over only 1.3 orders of magnitude (Avnir et al., 1998). Guidelines from
the survey authors for whether scaling plots with limited range are
useful included: 1) “[it] condenses the description of a complex
geometry”, 2) “It allows one to correlate in a simple way properties
and performances of a system to its structure.” Returning to our
current studies, neuron branches are inevitably limited in their scaling
capacity due to the finite branch segment sizes at the fine scale and the
finite arbor sizes at the course scale: based on the 4 µm fine scale cut-
off and the mean branch length of 141 μm, the capacity for fractality is
limited to approximately 1.5 orders of magnitude. Nevertheless,
Figure 7 satisfies the above two criteria for usefulness by displaying
a clear link between 〈DBC〉 and neuron functionality. Furthermore,
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despite being close to the one dimensionality of straight lines, the
fractional dimension values measured for the mildly weaving branches
translate to different RPV and RPA values than for the Euclidean
condition and therefore signal different functionality. Whilst
acknowledging the potential for controversy, the limited range and
low dimensions of the neurons could be viewed as a demonstration
that even mild fractality can have an important impact on
functionality. That said, future studies should compare our fractal
approach to other biomarkers to further explore its usefulness.

It is interesting to view the arbor’s fractal complexity in terms of an
emergent property of the system (Coveney andHighfield, 1995)when small
changes in the components (charted by DB) have the potential to generate
large changes in the interactions of the system (charted byDA). In addition
to being of interest to fundamental neuroscience research, this sensitivity
should be taken into account when developing applications. Here, we
briefly consider two applications that focus on deviations from natural
neuron behavior. Based on the DA vs. 〈DBC〉 dependence of Figure 7C,
pathological conditions that modify the branch weave have the potential to
induce radical changes in arbor structure and its connectivity within a
neural network; Figure 7 suggests that the impact of the changeswill depend
on the neurons’naturally occurring 〈DBC〉 value and the specificmanner in
which the branch fractal character changes. Many neurological conditions
are associated with neuron pathology, and a fractal method capable of
identifying specific changes in the dendritic arbor may be a useful tool in
early detection of the prodromal stages of these diseases. For example, the
neurodegenerative process in Alzheimer’s disease includes atrophy of the
dendritic arbor of neurons in many parts of the limbic system and cortex
(Serrano-Pozo et al., 2011). However, studies often focus on changes in
dendritic spines only, whereas changes in neuron morphology are reported
only as a general reduction of branching complexity (Cochran et al., 2014).
Analysis of the fractal characteristics of these pathological neurons may
provide biomarkers for their early detection, similar to how fractal
dimension can differentiate the stages of cancer (Elkington et al., 2022).
It is important to note that high resolution imagingwould likely be required
to accurately detect prodromal changes affecting a neuron’s fractal
characteristics, as well as automation to characterize large numbers of
samples (Rowland et al., 2022). As such, a goal of future studies is to apply
our technique to publicly accessible repositories of images from
experiments, for example online libraries such as NeuroMorpho.Org
(Ascoli et al., 2007) with a much larger number of neurons featuring a
range of pathological conditions. Given that our mathematical models
benefit from generating distortions in the fractal weave whilst holding other
variables constant, the current investigation can be seen as the initial
controlled demonstration ahead of these experimental challenges.

There is also growing interest in quantifying neuron interactions
with artificial surfaces, for example for incorporation into implants in
the human body. In particular, advances in device fabrication
capabilities allow surfaces to be physically patterned to direct the
growth of the neurons as they connect to form a network on the
surfaces (Jang et al., 2010; Piret et al., 2013; Diaz Lantada et al., 2015;
Yiannakou et al., 2017; Moslehi et al., 2020; Moslehi et al., 2022). This
includes changing the direction of the neuron branches, such as
directing them along straight lines. These directional changes can
be viewed as the physical analogy of our distortions of the weave and
forking angles. As such, even small changes in the branch weave might
shift the network away from an optimal balance of connectivity versus
cost. The results of Figure 7 suggest that implants should match their
surface patterning to that of the neurons’ fractal geometry to maintain
the natural performance of the network. This “resonance” between the

artificial and natural fractals can be seen as a novel form of
biocompatibility and adds geometry to the traditional research of
materials and chemical environments.

Data availability statement

The data presented in the study are deposited in a GitHub repository
at https://github.com/conor-rowland/hippCA1neuronreconstructions.

Ethics statement

The animal study was reviewed and approved by University of
Canterbury Animal Ethics Committee, 2008-05R.

Author contributions

All authors participated in the study design. BH and JD-A.
managed animal husbandry. BH performed histology and created
the neuron model reconstructions. CR developed the algorithms for
calculating the branch coastline and tortuosity fractal dimensions and
performing the connectivity-cost optimization analyses. JS developed
the algorithms for distorting the neuron models and calculating the
arbor fractal dimension. CR and JS developed the algorithms for
calculating the profile area, surface area, bounding area, and bounding
volume. CR created figures. CR and RT drafted the manuscript. All
authors edited the manuscript.

Funding

This research is supported by the WM Keck Foundation, the
Living Legacy Foundation, the Ciminelli Foundation, and the Linde
Martin Institute.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fnetp.2023.1072815/
full#supplementary-material

Frontiers in Network Physiology frontiersin.org11

Rowland et al. 10.3389/fnetp.2023.1072815

http://NeuroMorpho.Org
https://github.com/conor-rowland/hippCA1neuronreconstructions
https://www.frontiersin.org/articles/10.3389/fnetp.2023.1072815/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnetp.2023.1072815/full#supplementary-material
https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2023.1072815


References

Ascoli, G. A., Donohue, D. E., and Halavi, M. (2007). NeuroMorpho.Org: A central
resource for neuronal morphologies. J. Neurosci. 27 (35), 9247–9251. doi:10.1523/
JNEUROSCI.2055-07.2007

Attwell, D., and Laughlin, S. B. (2001). An energy budget for signaling in the grey matter
of the brain. J. Cereb. Blood Flow. Metab. 21 (10), 1133–1145. doi:10.1097/00004647-
200110000-00001

Avnir, D., Biham, O., Lidar, D., and Malcai, O. (1998). Is the geometry of nature fractal?
Science 279 (5347), 39–40. doi:10.1126/science.279.5347.39

Barbará-Morales, E., Pérez-González, J., Rojas-Saavedra, K. C., and Medina-Bañuelos,
V. (2020). Evaluation of brain tortuosity measurement for the automatic multimodal
classification of subjects with Alzheimer’s disease. Comput. Intell. Neurosci. 2020,
e4041832. doi:10.1155/2020/4041832

Bassingthwaighte, J. B., Liebovitch, L. S., and West, B. J. (1994). Fractal Physiology. New
York, NY: American Physiological Society.

Bullitt, E., Gerig, G., Pizer, S. M., Lin, W., and Aylward, S. R. (2003). Measuring
tortuosity of the intracerebral vasculature from MRA images. IEEE Trans. Med. Imaging
22 (9), 1163–1171. doi:10.1109/TMI.2003.816964

Caserta, F., Eldred, W. D., Fernandez, E., Hausman, R. E., Stanford, L. R., Bulderev, S. V.,
et al. (1995). Determination of fractal dimension of physiologically characterized neurons
in two and three dimensions. J. Neurosci. Methods 56 (2), 133–144. doi:10.1016/0165-
0270(94)00115-w

Cochran, J. N., Hall, A. M., and Roberson, E. D. (2014). The dendritic hypothesis for
Alzheimer’s disease pathophysiology. Brain Res. Bull. 103, 18–28. doi:10.1016/j.
brainresbull.2013.12.004

Coveney, P., and Highfield, R. (1995). Frontiers of complexity: The search for order in a
chaotic world. New York, NY: Ballantine Books.

Di Ieva, A. (2016). The fractal geometry of the brain. New York: Springer.

Diaz Lantada, A., Alarcón Iniesta, H., and García-Ruíz, J. P. (2015). Multi-channeled
polymeric microsystem for studying the impact of surface topography on cell adhesion and
motility. Polymers 7 (11), 2371–2388. doi:10.3390/polym7111519

Elkington, L., Adhikari, P., and Pradhan, P. (2022). Fractal dimension analysis to detect
the progress of cancer using transmission optical microscopy. Biophysica 2 (1), 59–69.
doi:10.3390/biophysica2010005

Frame, M., and Urry, A. (2016). Fractal worlds: Grown, built, and imagined. London:
Yale University Press.

Hart, W. E., Goldbaum, M., Côté, B., Kube, P., and Nelson, M. R. (1999). Measurement
and classification of retinal vascular tortuosity. Int. J. Med. Inf. 53 (2), 239–252. doi:10.
1016/s1386-5056(98)00163-4

Hou, C., Gheorghiu, S., Huxley, V. H., and Pfeifer, P. (2010). Reverse engineering of
oxygen transport in the lung: Adaptation to changing demands and resources through
space-filling networks. PLoS Comput. Biol. 6 (8), e1000902. doi:10.1371/journal.pcbi.
1000902

Iannaccone, P. M., and Khokha, M. (1996). Fractal geometry in biological systems: An
analytical approach. 1 edition. Boca Raton, FL: CRC Press.

Jang, M. J., Namgung, S., Hong, S., and Nam, Y. (2010). Directional neurite growth using
carbon nanotube patterned substrates as a biomimetic cue. Nanotechnology 21 (23),
235102. doi:10.1088/0957-4484/21/23/235102

Ledderose, J., Sención, L., Salgado, H., Arias-Carrión, O., and Treviño, M. (2014). A
software tool for the analysis of neuronal morphology data. Int. Arch. Med. 7, 6. doi:10.
1186/1755-7682-7-6

Lennon, F. E., Cianci, G. C., Cipriani, N. A., Hensing, T. A., Zhang, H. J., Chen, C. T.,
et al. (2015). Lung cancer-a fractal viewpoint. Nat. Rev. Clin. Oncol. 12 (11), 664–675.
doi:10.1038/nrclinonc.2015.108

Lorthois, S., Lauwers, F., and Cassot, F. (2014). Tortuosity and other vessel attributes for
arterioles and venules of the human cerebral cortex. Microvasc. Res. 91, 99–109. doi:10.
1016/j.mvr.2013.11.003

Mandelbrot, B. (1967). How long is the coast of britain? Statistical self-similarity and
fractional dimension. Science 156 (3775), 636–638. doi:10.1126/science.156.3775.636

Mandelbrot, B., and Pignoni, R. (1983). The fractal geometry of nature. New York: W. H.
Freeman.

Moslehi, S., Rowland, C., Smith, J. H., Watterson, W. J., Miller, D., Niell, C. M., et al.
(2022). Controlled assembly of retinal cells on fractal and Euclidean electrodes. PLOS ONE
17 (4), e0265685. doi:10.1371/journal.pone.0265685

Moslehi, S., Watterson, W. J., Rowland, C., Smith, J. H., Taylor, R. P., and Perez, M. T.
(2020). Physical guidance of cultured retinal neurons using zig-zag surface patterns. Am.
J. Biomed. Sci. Res. 11 (3), 3. doi:10.34297/AJBSR.2020.11.001629

Nelson, T. R., West, B. J., and Goldberger, A. L. (1990). The fractal lung: Universal and
species-related scaling patterns. Experientia 46 (3), 251–254. doi:10.1007/BF01951755

Neurolucida (2019). Neuron tracing software/MBF bioscience. Available from: https://
www.mbfbioscience.com/neurolucida.

Oppenheimer, P. E. (1986). Real time design and animation of fractal plants and trees.
SIGGRAPH Comput. Graph 20 (4), 55–64. doi:10.1145/15886.15892

Piret, G., Perez, M. T., and Prinz, C. N. (2013). Neurite outgrowth and synaptophysin
expression of postnatal CNS neurons on GaP nanowire arrays in long-term retinal cell
culture. Biomaterials 34 (4), 875–887. doi:10.1016/j.biomaterials.2012.10.042

RamónCajal, y. S. (1999). Texture of the nervous system of man and the vertebrates.
Vienna: Springer.

Richardson, L. F. (1961). The problem of contiguity: An appendix to statistics of deadly
quarrels. General Syst. Yearb. 6, 139.

Rowland, C., Harland, B., Smith, J. H., Moslehi, S., Dalrymple-Alford, J., and Taylor, R.
P. (2022). Investigating fractal analysis as a diagnostic tool that probes the connectivity of
hippocampal neurons. Front. Physiol. 13, 932598. doi:10.3389/fphys.2022.932598

Seidel, D., Annighöfer, P., Stiers, M., Zemp, C. D., Burkardt, K., Ehbrecht, M., et al. (2019).
How a measure of tree structural complexity relates to architectural benefit-to-cost ratio, light
availability, and growth of trees. Ecol. Evol. 9 (12), 7134–7142. doi:10.1002/ece3.5281

Serrano-Pozo, A., Frosch, M. P., Masliah, E., and Hyman, B. T. (2011).
Neuropathological alterations in alzheimer disease. Cold Spring Harb. Perspect. Med. 1
(1), a006189. doi:10.1101/cshperspect.a006189

Smith, J. H., Rowland, C., Harland, B., Moslehi, S., Montgomery, R. D., Schobert, K.,
et al. (2021). How neurons exploit fractal geometry to optimize their network connectivity.
Sci. Rep. 11 (1), 2332. doi:10.1038/s41598-021-81421-2

Wen, Q., and Chklovskii, D. B. (2008). A cost-benefit analysis of neuronal morphology.
J. Neurophysiology 99 (5), 2320–2328. doi:10.1152/jn.00280.2007

Wen, Q., Stepanyants, A., Elston, G. N., Grosberg, A. Y., and Chklovskii, D. B. (2009).
Maximization of the connectivity repertoire as a statistical principle governing the shapes of
dendritic arbors. Proc. Natl. Acad. Sci. 106 (30), 12536–12541. doi:10.1073/pnas.0901530106

Yiannakou, C., Simitzi, C., Manousaki, A., Fotakis, C., Ranella, A., Stratakis, E., et al.
(2017). Cell patterning via laser micro/nano structured silicon surfaces. Biofabrication 9
(2), 025024. doi:10.1088/1758-5090/aa71c6

Frontiers in Network Physiology frontiersin.org12

Rowland et al. 10.3389/fnetp.2023.1072815

https://doi.org/10.1523/JNEUROSCI.2055-07.2007
https://doi.org/10.1523/JNEUROSCI.2055-07.2007
https://doi.org/10.1097/00004647-200110000-00001
https://doi.org/10.1097/00004647-200110000-00001
https://doi.org/10.1126/science.279.5347.39
https://doi.org/10.1155/2020/4041832
https://doi.org/10.1109/TMI.2003.816964
https://doi.org/10.1016/0165-0270(94)00115-w
https://doi.org/10.1016/0165-0270(94)00115-w
https://doi.org/10.1016/j.brainresbull.2013.12.004
https://doi.org/10.1016/j.brainresbull.2013.12.004
https://doi.org/10.3390/polym7111519
https://doi.org/10.3390/biophysica2010005
https://doi.org/10.1016/s1386-5056(98)00163-4
https://doi.org/10.1016/s1386-5056(98)00163-4
https://doi.org/10.1371/journal.pcbi.1000902
https://doi.org/10.1371/journal.pcbi.1000902
https://doi.org/10.1088/0957-4484/21/23/235102
https://doi.org/10.1186/1755-7682-7-6
https://doi.org/10.1186/1755-7682-7-6
https://doi.org/10.1038/nrclinonc.2015.108
https://doi.org/10.1016/j.mvr.2013.11.003
https://doi.org/10.1016/j.mvr.2013.11.003
https://doi.org/10.1126/science.156.3775.636
https://doi.org/10.1371/journal.pone.0265685
https://doi.org/10.34297/AJBSR.2020.11.001629
https://doi.org/10.1007/BF01951755
https://www.mbfbioscience.com/neurolucida
https://www.mbfbioscience.com/neurolucida
https://doi.org/10.1145/15886.15892
https://doi.org/10.1016/j.biomaterials.2012.10.042
https://doi.org/10.3389/fphys.2022.932598
https://doi.org/10.1002/ece3.5281
https://doi.org/10.1101/cshperspect.a006189
https://doi.org/10.1038/s41598-021-81421-2
https://doi.org/10.1152/jn.00280.2007
https://doi.org/10.1073/pnas.0901530106
https://doi.org/10.1088/1758-5090/aa71c6
https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2023.1072815

	Neuron arbor geometry is sensitive to the limited-range fractal properties of their dendrites
	1 Introduction
	2 Materials and methods
	2.1 Rodents
	2.2 Image acquisition, model reconstruction, and model distortion
	2.3 Calculating the coastline fractal dimension of a branch
	2.4 Calculating the tortuosity and tortuosity fractal dimension of a branch
	2.5 Calculating the profile area, surface area, bounding area, and bounding volume of a neuron’s arbor

	3 Results
	3.1 Coastline fractal analysis
	3.2 Comparison of coastline and tortuosity fractal analysis
	3.3 Dependence of arbor fractal dimension on branch dimension

	4 Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


