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DISSERTATION ABSTRACT 

 

Kaylynn Gunter 

 

Doctor of Philosophy 

 

Department of Linguistics 

 

September 2023 

 

Title: Empirical Foundations of Socio-Indexical Structure: Inquiries in Corpus Sociophonetics 

and Perceptual Learning 

 

 

Speech is highly variable and systematic, governed by the internal linguistic system and 

socio-indexical factors. The systematic relationship of socio-indexical factors and variable 

phonetic forms, referred to here as socio-indexical structure, has been the cornerstone of 

sociophonetic research over the last several decades. Research has provided mounting evidence 

that listeners track and exploit cross-talker variability during speech processing tasks. As one 

such example, recent work has demonstrated listeners’ sensitivity to talker characteristics via 

retuning phonetic categories (i.e., perceptual learning) in response to talker-specific patterns. 

Drawing on Bayesian models, researchers have argued that listeners’ perceptual learning is 

influenced by listeners’ prior experience with socio-indexical factors conditioning segmental 

variation. From experience listeners form beliefs about the underlying cause of variation to 

determine when to adapt to talker-specific forms and generalize to other similar talkers. 

However, theoretical work has over-simplified descriptions of socio-indexical structure, leaving 

open questions about the nature and range of phonetic variation that listeners track and exploit. 

This dissertation seeks to provide both theoretical and empirical foundations of socio-

indexical structure at the intersection of individual talkers and geographic dialects drawing on 

mixed methods. Using large-scale datasets of American English vowel measurements, the corpus 

analyses probe different quantitative descriptions of socio-indexical structure under various 

scopes of socio-indexical granularity and internal organizations across the vowel space. The 

corpus analyses reveal an asymmetry in socio-indexical conditioning of the joint cue 

distributions (i.e., F1xF2) across several simulations whereby some categories (e.g., /eɪ/) are 

conditioned by dialect, while others are conditioned by individual talker identity alone (e.g., /ʊ/; 



 

 5 

Chapter 4). Additionally, analyses show that individual talkers diverge from their dialect areas 

less for dialect conditioned vowels compared to talker conditioned vowels, confirming talkers’ 

distributional patterns generally align with their communities. Additional analyses highlight how 

internal principles provide specificity to socio-indexical conditioning of variability, focusing on 

the acoustic overlap of vowel pairs and individual cue dimensions (Chapter 5). Such descriptions 

suggest acoustic overlap across some vowel pairs may be attenuated by socio-indexical 

information while other vowel pairs generally demonstrate stability across talkers and dialects 

(e.g., /æ/ and /a/). Finally, descriptions of individual cue dimensions demonstrate multimodal 

distributions both across and within talkers for some categories conditioned by dialects (e.g., /ɔ/; 

Chapter 5). 

Following from Bayesian models of speech processing and causal inference, this 

dissertation tests whether a priori links to socio-indexical structure influence perceptual learning 

(Chapter 6). A lexically guided perceptual learning experiment tests whether the asymmetry of 

socio-indexical conditioning (dialect vs. talker) observed in the corpus analyses correlates with 

listeners’ learning and generalization behavior after exposure to novel shifts in one of two 

vowels (/eɪ/ and /ʊ/) in a female speaker’s voice. The results demonstrate learning a novel shift 

in /ʊ/ but not in /eɪ/, with generalization of post-test categorization to a novel male talker but not 

a novel female talker. These results suggest that the asymmetry of social conditioning alone may 

guide listeners’ behavior for these vowels and challenge our current understanding of listeners’ 

adaptation to vocalic variability and the role of socio-indexical structure in perceptual learning. 

Overall, this dissertation advances our understanding of socially conditioned variation across 

speech production and perception. 
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CHAPTER 1:  

INTRODUCTION 

Speech is highly variable and systematic. Research over the past several decades in the 

field of sociophonetics has demonstrated that phonetic variation is systematically governed by 

internal linguistic and social factors (e.g., Weinreich, Labov, & Herzog 1968), which has since 

been referred to as structured variation (e.g., Chodroff, 2017; Sonderegger et al., 2020; Tanner et 

al., 2020), which I will use throughout this dissertation. Structured variation is a label given to 

describe phonetic variation as non-random and systematically organized by internal linguistic 

principles, and characteristics of talkers and their social groups, the latter referred to as socio-

indexical structure. Intersecting with this work, research provides mounting evidence that 

listeners track and exploit talker information to socially evaluate speakers (e.g., Campbell-

Kibler, 2011), in processing lexical items (e.g., Goldstone, 1995; Nygaard & Pisoni, 1998; 

Palmeri et al., 1993), and disambiguating segmental variation (Samuel & Kraljic, 2009; Strand, 

1999).  

Current theories posit that such behavior results from listeners tracking the statistical 

contingencies between variability and talkers and groups. As an evidence of this ability, recent 

work has demonstrated that listeners may perceptually ‘retune’ their phonetic category 

boundaries in response to exposure to atypical productions from a novel talker (e.g., /s/ which is 

more /ʃ/ like perceptually), a phenomenon referred to as perceptual learning (Eisner & 

McQueen, 2005; Norris et al., 2003). Such perceptual learning has illustrated listeners’ ability to 

learn associations of the novel segmental patterns of a talker enabling them to adapt to talker-

specific (i.e., idiosyncratic) variation (Reinisch & Holt, 2014; Samuel & Kraljic, 2009; Xie & 

Meyers, 2017). Additionally, perceptual learning research has demonstrated that these learned 

patterns may be generalized to other talkers who are acoustically or perceptually similar (Kraljic 

& Samuel, 2006). Such work has demonstrated sensitivity to prior experience with typological 

patterns (Babel et al., 2021; Sumner, 2011), contrast type (Eisner et al., 2013; Kraljic & Samuel 

2006, 2007; Tamminga et al., 2020), variability in exposure (Sumner, 2011), and cumulative 

experience with talkers (Lai, 2021; Theodore & Monto, 2019; Tzeng et al., 2020) constraining 
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perceptual retuning. Current research posits these constraints are informed by listeners’ prior 

beliefs about the distributional properties of contrasts and their relationship with socio-indexical 

factors from past experience (Kleinschmidt & Jaeger, 2015; Kleinschmidt, 2019; Jaeger & 

Weatherholtz, 2016). 

The growing evidence for the role of socio-indexical factors, in speech production and 

perception, warrants a comprehensive model of socio-indexical structure of phonetic variation. 

With this evidence in mind, a comprehensive model must provide an account of how social 

factors condition phonetic variation in production alongside how listeners learn and exploit this 

variability in speech processing. Situated in this research context, this dissertation provides initial 

empirical and theoretical foundations for socio-indexical structure by examining how speech is 

organized by socio-indexical factors in production and the implications for such structure in 

perceptual learning. Drawing on theoretical work in sociophonetics and speech processing, I aim 

to bridge these two bodies of work and lay the groundwork for future advances. 

Sociophonetics as a field aims to examine how speech sounds are meaningfully organized 

both linguistically and socially, drawing from methods in phonetics and sociolinguistic theory 

(Kendall & Fridland, 2021). While sociophonetic research has grown to include a range of 

theoretical and methodological interests, the bulk of research in the field has examined regional 

variation, often through the lens of sound change, and within-individual variation stemming from 

contextually situated linguistic styles and individual identity (see e.g., Kendall & Fridland, 2021 

as evidence). Recent work has also examined the relationship between variable phonetic forms 

and perception, primarily focusing on speaker perception, phonetically cued social inferences 

about a talkers’ social attributes (Kendall et al. 2023). The understanding of socially conditioned 

variation in speech perception has increasingly received attention, primarily focusing on how 

social information or expectations biases listeners’ linguistic categorization (e.g., Campbell-

Kibler & miles-hercules, 2021; Drager 2010; McLarty 2019; Niedzielski 1999). However, the 

role of socio-indexical variation in speech processing tasks, such as perceptual learning, still 

remains underexamined in sociophonetics despite parallels with sociophonetic interests. 

Likewise, research in speech processing has underexamined the role of socially conditioned 

variability in theoretical accounts of how listeners cope with and adapt to phonetic variability. 

Thus, this dissertation addresses this gap by integrating these bodies of work. 
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I address the empirical foundations using mixed methods examining vowel variability as 

a paramount example of socially conditioned variation, focusing on regional dialects and 

individual talkers as the social factors. This dissertation draws on large-scale corpus phonetics 

methods as the basis for the measurement and identification of socio-indexical structure in 

phonetic variation (Chapters 4-5). By using large quantities of naturalistic data, ranging in 

speaker diversity and speech styles, we are able to model the input which informs listeners’ 

beliefs about how social factors shape speech variability. In contrast, previous computational 

modeling has drawn on unrealistic distributions from only carefully elicited speech in lab 

settings (e.g., Kleinschmidt 2019; Kleinschmidt & Jaeger 2015). Thus, this dissertation uses 

more ecologically representative data to model socio-indexical structure and generate predictions 

about listener behaviors. Following from this modeling, a lexically guided perceptually learning 

experiment provides an example of how such corpus techniques can inform experimental work 

(Chapter 6). Before turning to the primary theoretical background (Chapter 2), I will provide a 

brief overview of the contents of the dissertation and primary findings.  

This dissertation is organized as follows. Chapter 2 provides the theoretical foundation 

and current gaps in models of socio-indexical structure. Drawing on sociophonetic, 

psycholinguistic, and phonetic research, this chapter aims to highlight the different perspectives 

of socio-indexical structure and their limitations. The following three chapters (3-5) relate to the 

corpus phonetics analyses, the core of the empirical foundations of this dissertation. Chapter 3 

provides a general overview of the data and pre-processing for analyses used in Chapters 4-5.  

Chapter 4 addresses questions about how diverse experiences with variability shift 

listeners’ a priori assumptions about how socio-indexical structure conditions vocalic variability. 

This chapter examines and challenges a more generalized perspective of variability whereby 

socio-indexical factors provide information to listeners about variability across the vowel space, 

generated in a vowel-specific and multivariate cue space (e.g., F1xF2 for /eɪ/). This perspective 

suggests listeners’ ability to adapt to novel vowel variation occurs symmetrically across vowel 

categories. To challenge these assumptions, this chapter asks novel questions about how different 

analytic scopes of social factors (e.g., dialects vs. individual talkers) and variable prior 

experiences predict alternate listener beliefs. A large barrier to understanding the role of previous 

experience is that, as of yet, researchers are limited in their ability to measure previous 



 

 28 

experience with category variability or socio-indexical factors, especially at scale. Thus, this 

dissertation attempts to remedy this issue by modeling previous experience through different 

computational simulations using production data from a large-scale dataset of American English. 

In terms of social factors, this chapter empirically validates the assumption that individual talkers 

more regularly and uniformly pattern within social groups. Additionally, this chapter reveals an 

inverse correlation of the social conditioning of vowel categories, where the acoustic 

distributions for some vowels (like /eɪ/) are strongly conditioned by dialect information while 

others are strongly conditioned by individual talker identity (like /ʊ/) across several simulations. 

In addition, for categories conditioned on dialect information, talkers generally align with their 

dialect areas more than categories that are conditioned on talkers (but not dialects). In light of 

these results, Chapter 6 asks to what extent listeners’ perceptual learning behavior echoes this 

asymmetry (see below). 

Chapter 5 seeks to nuance the perspectives provided in Chapter 4 and, by extension, 

previous models of socio-indexical structure in speech processing. As such, this chapter takes a 

less generalized perspective on how social factors condition variability through analytic 

approaches more commonly employed in sociophonetics. In this chapter, I draw on a long 

theoretical tradition in sociophonetics arguing that vowels function as part of a system of 

interrelated positions. As one aspect of this perspective, I examine how properties of acoustic 

overlap among vowel pairs are attenuated or not by social factors, providing either flexibility or 

stability in the vowel space. Additionally, I examine how variability along specific cue 

dimensions may analogously be structured by social factors, where talkers are more likely to 

vary along specific cues for certain categories. This chapter illustrates a more fine-grained 

approach concerning both the socio-indexical factors and more internally governed facets of 

variability. Given this detail, I hypothesize how such factors may constrain perceptual learning 

and generalization. While I do not test any of the hypotheses directly, the analysis of these 

categories is used as part of the criteria for selecting the vowel categories for the experiment in 

Chapter 6. Additionally, the theoretical and empirical points may elucidate the experimental 

results, and thus provide critical insights to perceptual learning (as discussed in Chapter 6). 

Chapter 6 examines the perceptual learning and generalization of two categories 

implicated in the analyses in Chapter 4. Here, I hypothesize an asymmetry in learning and 
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generalization driven by the categories’ asymmetry in socio-indexical structure depicted in 

Chapter 4. Drawing on one facet from Chapter 4, I hypothesized that listeners infer some 

categories are informative of talkers’ dialect background, while others they may infer are 

idiosyncratic and characteristic of the talker but not a larger dialect area. This stems from the 

asymmetry observed in Chapter 4, where talkers condition distributional variability in /ʊ/ in 

informative ways but there is no dialect conditioning of variability. On the other hand, dialects 

(on average) condition distributional variability in /eɪ/ but not /ʊ/. This asymmetry is 

hypothesized to lead listeners to a more general updating of /eɪ/ when faced with atypical 

productions and a more restricted talker-specific updating of /ʊ/. The results, however, do not 

support this prediction, rather there is learning for the /ʊ/ condition but no learning observed for 

the /eɪ/ condition and instead a reduction in /eɪ/ responses (increase in /ʊ/ responses). In terms of 

generalization, both conditions show a generalization of updated category boundaries aligned 

with post-exposure behavior for a male generalization talker but not a female talker, with both 

conditions showing an increase in /ʊ/ responses at post-test. This chapter acts as an example of 

the kinds of questions that naturalistic speech corpora can inform in experimental paradigms, the 

value of integrating multiple types of data, and the necessity of iteration for refining our theories. 

Overall, this dissertation addresses gaps in theories of speech processing by explicating 

the nature and assumptions of socio-indexical structure. Drawing on methodologies and research 

across sociophonetics and speech processing allows for a bridging of the respective research 

areas and deepening insights into the multidimensional nature of socially conditioned variation. 

As such, it is crucial that we understand the interaction between listeners and talkers through 

multiple angles and diverse sources.
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CHAPTER 2: 

BACKGROUND 

1 Introduction 

Research examining the systematicity of phonetic variation is not new, and indeed there 

has been a long tradition of identifying the factors that provide order to variation. Weinreich et 

al. (1968) argued that variation between talkers was constrained by linguistic and social factors, 

described as ‘orderly heterogeneity’. Recent work in (socio)phonetics, has continued to examine 

the intersection of linguistic form and social factors in the structuring (i.e., organization) of 

linguistic variability. More recently, researchers have begun to refer to this organization of 

phonetic forms as ‘structured variation’ defined as the ways talkers vary from one another in the 

nature and range of phonetic variation in non-random and systematic (i.e., statistically 

determined) ways (Chodroff, 2017; Chodroff et al., 2015, Chodroff & Wilson, 2017, 2022; 

Sonderegger et al., 2020; Tanner et al., 2020). Examining structured variation provides insight 

into a variety of linguistic theories, including the mapping between phonology and phonetics 

(Chodroff, 2017), sound change (Sonderegger et al., 2020), and speech perception (Kleinschmidt 

& Jaeger, 2015). In this dissertation, I am predominately interested in the latter, addressing how 

socio-indexical structure, a subset of structured variation, aids in listeners’ ability to cope with 

ambiguity and learn novel phonetic variation across talkers. 

In terms of speech perception, as most relevant, there is growing evidence that listeners 

track the statistical contingencies of talkers, social groups, and phonetic forms. As evidence, 

recent sociophonetic work has demonstrated that listeners categorize talkers into geographic 

dialect areas (Clopper & Pisoni, 2004c, 2004b, 2004a), illustrating listeners’ ability to learn 

phonetic properties of social groups and infer social identity. Moreover, listeners show fine-

grained knowledge about phonetic categories associated with different communities, such that 

their perception of category boundaries is influenced by the perceived identity of the talker and 

their own dialect backgrounds (Decker, 2010; Fridland & Kendall, 2012, 2015, 2018; Kendall & 

Fridland, 2012). Such socially cued perception is thought to be evidence of listeners representing 

the social contingencies in memory and drawing on them to make social evaluations and guide 
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predictions for speech categorization (Kleinschmidt, 2019; Kleinschmidt & Jaeger, 2015). 

Consequently, much work has theorized that socio-indexical structure is thought to emerge over 

the distributional properties of individual talkers and social groups (Foulkes, 2010; Foulkes & 

Hay, 2015; Pierrehumbert, 2003). Furthermore, listeners track the statistical relationship between 

talker variability and its underlying social causes to leverage during online speech processing 

tasks such as adapting to novel speech patterns (Kleinschmidt, 2019; Kleinschmidt & Jaeger, 

2015; Weatherholtz & Jaeger, 2016).  

This dissertation falls at the intersection of such work, using corpus methodologies to 

further describe the nature and range of phonetic variability across the vowel space and to lay the 

groundwork for how such variability is leveraged by listeners during speech processing. I focus 

specifically on two social factors that condition variability in speech production, geographic 

dialect areas and individual talker identity. A central purpose of this dissertation is to 

additionally evaluate the assumptions of approaches to socio-indexical structure in speech 

processing and to ask what kind of information is necessary to validate listener behavior and 

observed sociophonetic variability in production. This chapter aims to identify how various 

levels of analysis (e.g., social, and linguistic) may interact and constrain one another and to 

further characterize the nature of the problem for speech processing. As such, this background 

provides an overview of the current perspectives of socio-indexical structure across disciplines in 

linguistics, primarily sociolinguistics, phonetics, and psycholinguistics. This chapter will first 

outline what I believe a model of socio-indexical structure must account for, then provide a more 

extensive overview of what is currently known about each component therein.  

2 What is Socio-Indexical Structure? 

Socio-indexical structure is defined as the systematic patterns of variable phonetic forms 

with regard to non-linguistic external social factors. Talkers will vary considerably from each 

other across a single phonetic cue that is, in part, explained by social factors including broad 

social groups, such as macro-social categories (e.g., geographic dialect, age, gender), as well as 

factors including interactional context (Podesva, 2007), emotional state (Kim & Sumner, 2017; 

Nygaard & Queen, 2008), and so on. Such a definition is undeniably broad, and indeed may 

reference several related phenomena, but takes as the primary focus patterns of production. 
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However, as I hope to demonstrate throughout this chapter, a complete representation of socio-

indexical structure must bridge what talkers do alongside what listeners know about talkers and 

groups. 

Phonetic variability is constrained by internal linguistic principles of organization such as 

the correlation between cues in signaling a single contrast (e.g., F1 and F2 among vowels; 

Clayards, 2018), the covariation (i.e., co-occurrence) among two or more contrasts’ phonetic 

cues (e.g., relationship between /æ/ and /a/ Tamminga, 2019; Kendall & Fridland, 2017), or the 

correlation of a single cue across contrasts (e.g., VOT in voiced stops; Chodroff & Wilson, 

2017). Thus, while socio-indexical structure may refer specifically to the social factors that 

pattern variability, any comprehensive theory of socio-indexical structure should also address 

internal principles of phonetic forms, as widely examined by sociolinguists. Internal principles 

encompass a range of phenomena, of which this dissertation will only examine some limited 

subset primarily revolving around phonological principles, motivated by questions in speech 

processing and a large body of work in sociophonetics (described in Section 7 below and 

Chapter 5).  

As noted above, I seek to bridge the relationship between socio-indexical structure as 

evident in speech production, to how listeners take advantage of socio-indexical structure to 

guide perceptual behavior, focusing on the perceptual retuning of phonetic categories, henceforth 

referred to as perceptual learning. Socio-indexical structure, as theorized in some models of 

speech processing, has been largely bifurcated into two social dimensions that predict between-

talker phonetic variability: social groups (e.g., dialect or gender) and individual talkers 

(Kleinschmidt, 2019). Under these social dimensions, socio-indexical structure is theorized to be 

emergent in two key ways: 1) the statistical relationship between phonetic variability and social 

factors in speech production, and 2) listeners’ representations of socially cued phonetic variation 

are learned through experience with talkers. To this end, a talker or group’s ‘accent’ has been 

formalized as a cue distribution of a given contrast (e.g., VOT of stops for Talker A, and of 

Dialect A; Kleinschmidt, 2019; Kleinschmidt & Jaeger, 2015; Weatherholtz & Jaeger, 2016). 

Talkers are predicted to be consistent in how they produce cues to categories and multiple talkers 

cluster into groups such as regional background and gender, as a consequence of such 

consistency (Kleinschmidt, 2019). Thus, language users form bottom-up representations of 



 

 33 

structured variation as a consequence of interactions with similar talkers over the course of 

exposure to tokens across talkers. Consequently, listeners form beliefs about categories informed 

by their prior experience and make probabilistic inferences to guide subsequent behavior in 

perceptual learning.  

In light of this, this dissertation focuses on the distributional properties of phonetic cues 

for vowel categories and their systematic relationship with social factors (regional dialect and 

individual talkers) in American English. While the findings and questions outlined in this 

dissertation are relevant to a range of questions in phonetics, phonology, and sociolinguistics, the 

primary discussion will focus on how socio-indexical structure in production is related to 

processes of what listeners do in perceptual learning. This work provides an underexamined 

description of the vowel space in terms of the variability of contrasts within and across talkers. I 

will argue that by looking at the distributional properties of the vowel space, as most 

exemplifying socio-indexical structure in American English, we are better able to unify related 

phenomena across otherwise disparate literatures. Quantifying variability across the vowel space 

has important implications for sociophonetic theory, thus additionally filling a necessary 

methodological gap for the field. Similarly, turning to sociophonetics can provide valuable 

insights for speech processing, including the description of socially meaningful variation that 

represents the input from which listeners learn.  

With these goals in mind, I will aim to refine the theoretical scope and delineate what I 

believe to be the critical components of linguistic and social behavior a model of socio-indexical 

structure must account for, including: 

• Group conditioned variability of phonetic contrasts (Section 7.2.1); How are social 

groups defined? How does such a delineation predict phonetic variability? 

• Individual variability of phonetic contrasts (Section 7.2.2); What is the statistical 

relationship between individual talkers and their social groups? How similar are 

talkers within a given social group?  

• How do phonetic dependencies of contrasts and individual cue dimensions (i.e., 

internal factors) constrain or interact with socio-indexical structure? (Section 7.2.2 & 

Chapter 5) 
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• How does what talkers do map onto what listeners know and do with the speech 

signal? (Section 4) 

• How do different experiences and conceptualizations of variability shape people’s 

knowledge of socio-indexical structure and their inferences about phonetic 

variability? (Section 5.2, 6) 

I will review each of these factors in-depth and outline what they mean for a model of socio-

indexical structure in the proceeding sections.  

Before moving into the theoretical foundations, it’s important to define terms often used 

to describe variability across linguistics: variation, variability, and variance. First, variation here 

refers to contextual differences in the realization of linguistic variants, whereby contextual 

factors may refer to linguistic (e.g., phonological context) and social (e.g., regional dialect; 

Labov, 1969; Fasold, 1991) elements. Historically, the use of impressionistic coding of 

categorical variants (i.e., presence or absence) and probabilistic conditioning of those discrete 

variants across groups (Labov, 1969, 1972) were the primary means of capturing variation in 

language use by sociolinguistics. Such a distinction has primarily resulted in the examination of 

central tendency (e.g., means) to characterize the speech of groups. In contrast, variability is 

often used more broadly to reference stochastic fluctuations inherent of a continuous distribution 

of phonetic cues, which may arise from both meaningful differences across talkers (e.g., vocal 

tract length) and some degree of randomness in the speech signal or from measurement error. As 

a result, an examination of variability may frequently reference the spread and properties around 

a central tendency. Finally, both notions can be separated from variance, which is a statistical 

measure of variability, capturing the spread and deviation of data from the mean (see also 

Vaughn, Baese-Berk, Idemaru, 2019 for similar definitions). The distinction between variation 

and variability across sub-domains has resulted in disparate bodies of work and incomplete 

integration when overlap does exist. However, for a complete perspective of ‘talker variability,’ 

we must examine both the differences between groups’ averages and also the properties of 

variability around the mean.  
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3 Vowels & Socio-Indexical Structure 

Vowels have been the focus of much work in sociophonetics as a primary locus of 

socially meaningful variation in English (Labov 1994, 2001; Thomas 2011) and much attention 

has been devoted to describing the internal organization of vowels (e.g., Weinreich et al., 1968; 

Labov et al., 1972; Labov, 2001; Thomas, 2001). Much of this work has examined the role of 

variation in processes of language change and the properties of vocalic shifts (Eckert, 1980, 

1988; Labov, 1994, 2001, 2010; Labov, Yaeger, & Steiner, 1972; Labov et al., 2006) 

emphasizing that vocalic variation operates within a system of related changes (i.e., chain shifts) 

rather than as individual category changes (Labov, 1994, 2001; Labov et al., 2006). While the 

focus of this dissertation examines variability across vowels as static synchronic systems, the 

insights from research on vowel shifts provide critical insight into the social and phonological 

organization of language variation. In addition, since the social factor of primary interest in this 

dissertation is regional dialect, it’s important to understand the patterns of vocalic variation 

associated with regions in the U.S., as well as the regularities of behaviors associated with vowel 

shifts more broadly. Thus, vowels provide a paramount example of the social and phonological 

systematicity of phonetic variation, making them a good case study for understanding socio-

indexical structure more broadly. Below I will overview the major patterns of regional dialects 

before moving on to the broader theoretical discussion. Regional variation of vowel shifts 

critically provides expectations for analyses in Chapters 4 and 5, with more specific predictions 

and details within the respective chapters. 

3.1 Contextualizing Regional Vowel Shifts 

3.1.1 Northern Cities Shift (NCS) 

The Northern Cities Shift (NCS) is a chain shift described as involving several related 

shifts in the vowel space, including the raising, fronting, and diphthongization of /æ/, the fronting 

of /a/, the lowering of /ɔ/, the backing of /ʌ/, and the retraction of /ɛ/ and /ɪ/ (Eckert, 1989; 

Nesbitt, 2018; Durian & Cameron, 2018; D’Onofrio & Benheim 2020; Labov et al., 1972). As 

alluded to, the NCS also maintains a distinction between the low back vowels, in contrast to 

some other regions of the U.S. The chain shift is schematized in Figure 2.1, presenting the 
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canonical position alongside the direction of the shift, end points of the arrows represent 

expectations of the static outcomes of the shift, abstractly. Figure 2.4, adapted from Labov et al. 

(2006), shows the geographical area where the NCS occurs (labeled as the North). In terms of 

socio-indexical structure, we can broadly expect that talkers within the Northern U.S. should 

regularly group together in the conditioning of the phonetic distributions of each of the 

individual vowels implicated in this shift. Additionally, we can predict that multiple vowels may 

pattern together, such that if talkers in the North have a raised and fronted /æ/ the likelihood of 

having a fronted /a/ is higher (e.g., Tamminga 2019); I will come back to this point in more 

detail in Chapter 5. 

 

 

Figure 2.1 Northern Cities Shift schematic, illustrating the canonical English vowel positions and 

direction of shifts. Note, diphthongs are not included here for ease of reading. 

3.1.2 Southern Vowel Shift (SVS)  

The Southern Vowel shift is described predominately by the movement of the front tense 

and lax vowels, whereby the lax vowels move towards the periphery of the vowel space and the 

tense vowels move towards the center of the vowel space, reversing in phonetic space (Fridland, 

2000; Fridland & Kendall, 2015; Labov et al., 2006). The SVS is also characterized by /aɪ/ 

monophthongization (Feagin, 1986; Fridland, 2000, 2003, 2012; Fridland & Kendall, 2015), and 

/æ/ raising and diphthongization (Sledd, 1966; Feagin, 1986; Thomas, 2003; Koops, 2014), or in 

more extreme cases triphthongization (Feagin, 1986). In addition to these core components of the 

SVS, Southern speech is also characterized by distinct low-back vowels (Fridland & Kendall, 
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2015; Kendall & Fridland, 2017; Labov et al., 2006; Thomas, 2001) with upgliding of /ɔ/ (Irons, 

2007; Thomas, 2001) and fronting of the tense back vowels /o/ and /u/ (Fridland, 2000; Labov et 

al., 2006). While originally thought to be a hallmark of Southern speech, back vowel fronting has 

become more prevalent across the U.S. but remains most advanced in the South (Fridland & 

Bartlett, 2006). Here again, Figure 2.2 presents a schematic of the vowel shifts characterizing the 

SVS and Figure 2.4 shows the broad geographical region where the SVS occurs (labeled as the 

South). 

While extreme versions of the SVS show a complete reversal of the high and mid front 

vowels, the categories typically become more proximal in phonetic space, with decreased 

distance between category means (Fridland, 2000; Fridland & Kendall, 2015). High front vowel 

shifts, however, are typically restricted to the deep South and other sub-regions generally 

maintain more canonical positions for these categories. Contrastingly, there is considerable 

evidence that the mid-front vowels are critical in the SVS and are reflective of a more 

widespread vowel system across the South (Fridland, 2000; Labov et al., 2006; Kendall & 

Fridland, 2012). In terms of socio-indexical structure, then, we would expect that the Southern 

regional affiliation should condition phonetic variation across many vowels but may be most 

evident for the mid-front vowels (see e.g., Fridland & Kendall 2012) and greater individual 

variability for high front vowels. 

 

 

Figure 2.2 Southern Vowel Shift (SVS) schematic, illustrating the canonical English vowel positions and 

direction of shifts. Note, diphthongs are not included here for ease of reading. 
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3.1.3 Low-Back Merger Shift (LBMS) 

The Low-Back Merger Shift (LBMS) also called the California Vowel Shift (CVS; Hall-

Lew, 2009; Eckert, 2008; Podesva et al., 2015), Canadian Vowel Shift (Clarke et al., 1995; 

Boberg, 2005), and the Elsewhere shift (Fridland, Kendall & Farrington, 2013; Stanley, 2020), is 

a vowel shift that affects much of the U.S. (as indicated by the name “Elsewhere shift”), but is 

largely associated with speech in the Western U.S. and Canada. I will use the Low-Back Merger 

Shift (LBMS; Becker, 2019; Fridland & Kendall, 2019) to refer to it for the entirety of this 

dissertation. This vowel shift is marked by the low-back vowel merger, as the name suggests, 

and the lowering and/or retraction of front lax vowels and fronting of the tense back vowels /u/ 

and /o/. Again, Figure 2.3 provides a schematic of the vowel shift and Figure 2.4 shows the 

broad dialect area where the shift occurs (labeled as the West). 

Several scholars have suggested the low-back vowel merger is the triggering event for 

shifts in the front lax vowels, (Bigham, 2010; Kendall & Fridland, 2017; Grama & Kennedy, 

2019; Labov et al., 2006), hence the nomenclature. Recent work has examined whether there is a 

structural relationship between the merger of the low back vowels and /æ/ position and has 

shown that across major geographic regional shifts, the relative distance between /æ/ and /a/ 

remains similar, despite shifts in the mean positions of each category (e.g., Kendall & Fridland 

2017). Therefore, the Western U.S. dialect area conditions phonetic variation across much of the 

vowel space but /æ/ and /a/ are relationally unique in the LBMS. 

 

 

Figure 2.3 Low-Back Merger Shift (LBMS) schematic, illustrating the canonical English vowel positions 

and direction of shifts. Note, diphthongs are not included here for ease of reading. 
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Overall, vowel shifts have offered important insights into how social structure is essential 

to the function of the linguistic system and demonstrates orderly heterogeneity (Eckert, 2000; 

Weinreich et al., 1968; Labov et al., 1972; Labov et al., 2006, among others). The vowel shifts 

outlined here have been the focus of much sociophonetic work in the last several decades and 

have aided in our understanding of how social factors predict linguistic variation. In addition to 

these larger patterns of sound change, sociophonetics has offered extensive insight into the socio-

indexical factors that promote variability within larger regional shifts and the social meaning of 

individual elements embedded in styles and has provided essential methodological insights into 

advancing the study of the vocalic system. 

 

Figure 2.4 Broad regional isoglosses drawn in blue, adapted from Labov et al., 2006. Regional areas are 

labeled, broadly, with the West representing the LBMS, the North the NCS, and the South the SVS. 

4 Socio-Indexical Structure in Perception 

Regional vowel shifts garnered much attention over the last several decades and have 

prompted a more comprehensive understanding of listeners’ perceptual evaluations and 

inferences concerning such phonetic forms. Overall, research reifies regional dialects as a 

meaningful social group for listeners, as evidenced by shared latent knowledge about regional 
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patterns of phonetic variability, despite variable prior experience with dialects. Much of the work 

on sociolinguistic perception has focused on the attributes that listeners associate with different 

variable forms and perceived talker identity, which I will refer to as speaker perception 

(following Kendall et al. 2023). Additional evidence can be found in speech perception work 

examining how social information influences linguistic comprehension and categorization. 

Taken together, both speaker and speech perception provide evidence of learned patterns of 

variable phenomena that listeners leverage for a variety of tasks (see e.g., Campbell-Kibler, 2010 

and Thomas, 2002 for a review). Below, I limit the scope of review to a subset of literature in 

sociophonetics that illustrates listeners’ ability to categorize talkers by regional dialect and 

calibrate their linguistic perception (i.e., speech perception) in accordance with regional 

variation. Following this review, I will turn to some of the current theoretical perspectives on 

how listeners learn and represent such socially conditioned variation for speech perception.  

Research on speech perception has demonstrated that listeners retain fine-grained 

phonetic knowledge of socially meaningful variation and expectations about talkers can affect 

speech perception (Babel, 2009; Staum Casasanto, 2010; Strand & Johnson, 1996; Szakay, 

Babel, & King, 2016; Vaughn, 2019; Walker & Hay, 2011). Listeners make use of talker identity 

to guide their inferences in speech processing such as for lexical retrieval (Babel, 2009; Hay & 

Drager, 2010; Staum Casasanto, 2010; King & Sumner, 2014; King & Sumner, 2015; Sumner & 

Kataoka, 2013), and for the categorization of speech sounds (Strand, 2000; Johnson, 2006; 

Kendall & Fridland, 2012, 2017). Some work has also demonstrated that the processing of 

speech may be influenced by expectations of the talker, where processing is impaired when 

expectations of social and acoustic cues misalign (Koops et al., 2008; Rubin, 1992; Vaughn, 

2019) or enhanced when expectations align (McGowan, 2011; Szakay et al., 2016).  

Several studies have demonstrated that previous experience with dialects aids speech 

processing (Evans & Iverson, 2007; Floccia et al., 2009; Scott & Cutler, 1984; Impe et al., 2008; 

Adank et al., 2009). Listeners demonstrate an asymmetry in processing speech where exposure to 

standardized varieties facilitates processing but exposure to marked varieties impairs processing 

(Floccia et al., 2009; Scott & Cutler, 1984; Adank et al., 2009). The processing gain of 

standardized varieties has been argued to be the result of standardized talkers, as the perceivers, 

having less exposure to the marked variety, while the reverse is not as likely. Improvements in 
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processing as listeners gain exposure to marked variation outside of their own dialect further 

supports this interpretation (Sumner & Samuel, 2009; Impe et al., 2008). For example, Sumner 

and Samuel (2009) found that listeners in New York were primed by non-rhotic variants before 

semantically related target words (e.g., slend[ə] primes thin), regardless of whether they 

produced non-rhotic forms in their own speech or were raised in the area. Listeners who lacked 

experience with non-rhotic dialects, on the other hand, showed no evidence of priming effects for 

the non-rhotic variants. This study illustrates that listeners’ previous experience with dialect 

areas may facilitate speech processing but that listeners can overcome such effects through 

exposure and, critically, continue to accumulate experience with variability over their lifetime.  

In the realm of speaker perception, a considerable amount of work has examined 

listeners’ ability to identify and categorize regional dialects, often correlating the phonetic cues 

that may aid in listeners’ ability to effectively categorize talkers. Much of this work has 

demonstrated that listeners are sensitive to variants of regional vowel shifts when identifying 

talker dialect, such as elements of the Southern Vowel Shift (Fridland et al., 2004; Plichta & 

Preston, 2005). In particular, Clopper and Pisoni (2004b, 2004c, 2007) found that listeners were 

able to categorize talkers into dialect areas in the U.S. above chance and performed best when 

grouping talkers into 4-6 regions, over more fine-grained divisions among dialect areas. 

Confusions in categorization were almost entirely the result of more similar dialect areas being 

grouped together, and unsurprisingly more dissimilar dialects were less likely to be confused 

(Bradlow et al., 2010; Clopper et al., 2006). In such cases, it’s clear that listeners have some a 

priori knowledge about the links between variable forms and the regional identity of talkers and 

can generalize such patterns across talkers of the same regional background. 

In another study, Clopper and Pisoni (2004c) demonstrate that listeners used some 

phonetic cues previously illustrated in studies of dialect variation; however, even when some of 

the most salient cues were absent, listeners still correctly categorized talkers from other available 

acoustic cues. Clopper and Pisoni (2004b) further showed that early linguistic experience 

facilitated listeners’ ability to correctly categorize talkers into dialect areas, such that those who 

were highly mobile earlier in development (“army brats”) were more accurate in dialect 

categorization than listeners who had a more sheltered and less mobile life. Performance gaps 

can be attenuated when listeners are provided adequate training and feedback during dialect 
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classification, demonstrating learning of the broad perceptual characteristics of dialect areas 

(Clopper & Pisoni, 2004a). The work by Clopper and Pisoni (2004a, 2004b, 2004c) illustrates 

listeners’ sensitivity to fine phonetic detail and highlights low-level knowledge of talker and 

group characteristics for inferences about geographic dialects. Furthermore, while listener 

sensitivity may vary as a function of previous experience and mobility, listeners nonetheless 

develop shared latent knowledge of geographically based dialect variation in the U.S.  

In a similar vein, Gunter et al. (2020) suggest that listeners track details of talker-specific 

phonetic variation to make evaluations of regional accentedness. In this study, listeners 

participated in an accent rating task which exposed them to talkers from the Southern U.S. who 

varied in their participation in the SVS. As indicated in Section 3.1.2, the movement in the mid-

front vowels has been identified as a critical aspect of the SVS, whereby talkers who are shifted 

may demonstrate these vowels becoming more proximal in acoustic space or reversing 

altogether. Gunter et al. (2020) demonstrate that the distance between individuals’ /eɪ/ and /ɛ/ 

categories predicts accent ratings of the talkers, with more proximal /eɪ/-/ɛ/ resulting in higher 

accent ratings across items. Additionally, the results illustrated that listeners rated individual 

vowel categories as higher in Southern accent ratings that comprised more statistically regular 

phonetic cues to the group, such as /u/ position and the low back vowels where all talkers in the 

region tended to share the same acoustic positions, despite individual differences among the 

more salient categories (e.g., /eɪ/ and /ɛ/). Such a finding illustrates that listeners were able to use 

prior experience with the dialect area to make evaluations and learn about the properties of 

individual talkers in the experiment to make evaluations of regional identity. Moreover, they 

argue listeners track the phonetic dependencies between categories (/eɪ/-/ɛ/) in addition to 

individual categories’ cue distributions (e.g., /u/) for such evaluations. Overall, this experiment 

suggests listeners are able to learn structured variation and the relationships between individual 

talkers, their social groups, category cue distributions, and dependencies between categories to 

evaluate regional accents.  

Several studies have also examined how listeners’ perceptual category boundaries may 

shift depending on the vocalic patterns that typify their own dialect. In particular, in a series of 

studies conducted by Kendall and Fridland (Fridland & Kendall, 2012; Kendall & Fridland, 

2012, 2017) listeners’ dialect backgrounds and production patterns were found to predict their 
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categorization boundaries along pairs of vowels related to different ongoing shifts across the 

U.S. In one such example, listeners who participated in the SVS as evidenced by more proximal 

mid-front vowels perceived the boundary between /eɪ/ and /ɛ/ differently than listeners from 

other regions (Fridland & Kendall, 2012). A similar pattern was observed for the low vowels /æ/ 

and /a/ which are considered critical to several regional shifts and related to low back vowel 

merger (Bigham, 2010; Gordon, 2005; Kendall & Fridland, 2017; Thomas, 2001). Kendall and 

Fridland (2017) examined the relationship between talkers’ /æ/ and /a/ categories across regional 

varieties and found that across dialect groups, while the overall positions in the vowel space 

varied by group, the distance between the categories was maintained across dialect areas. In 

addition, they found that talkers’ boundary between /æ/ and /a/ was predicted by their degree of 

low-back vowel merger in production but not their regional affiliation or individuals’ production 

of /æ/ and /a/. Such a finding illustrates that vowel perception may be guided by the more 

systemic relationships among vowels. 

Research has also demonstrated that listeners shift their categorization boundaries of 

vowels based on the perceived characteristics of the talker. A series of studies by Plichta and 

Rakerd (Plichta & Rakerd, 2010; Rakerd & Plichta, 2010) found that Detroit listeners’ 

boundaries of /a/ and /æ/ shifted depending on whether they were listening to another person 

from Detroit or the Upper-Peninsula of Michigan. The tendency to shift phonetic percepts has 

also been demonstrated when only top-down information signifying the talker’s regional identity 

is presented. For example, listeners in Detroit report hearing more Canadian Raising when they 

are told the talker is from Canada than when they are told the talker is from Detroit (Niedzielski, 

1999). This effect has been replicated in New Zealand, where listeners report percepts that are 

associated with either Australia or New Zealand based on the talker’s labeled linguistic 

background (Hay et al., 2006) or by the mere presence of a stuffed Kiwi prompting nationality 

inferences (Hay & Drager, 2010). Taken together, such findings illustrate that listeners have 

expectations about the boundaries between vowel categories and relationships among categories 

based on their own system and experience with dialect areas (their own or others; see Chapter 5 

for additional discussion).  

Such perceptual flexibility has been suggested to prompt changes in individuals’ 

production behavior. Some work has demonstrated this relationship in the case of second dialect 
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acquisition, where talkers not only update perceptual representations but may later shift their 

speech more in line with the new community they belong to (Nycz, 2015). In addition, listeners 

have been shown to reproduce sociophonetic variation in response to their interlocutors’ speech, 

which may further be mediated by social perceptions. Listeners exhibit greater convergence 

towards phonetic variants when they positively evaluate their interlocutor (Babel, 2012; Natale, 

1975) and, on the other hand, greater divergence when social distance is greater (Bourhis & 

Giles, 1977; Abrego-Collier et al., 2011; Yu et al., 2013). Such accommodation has been 

demonstrated to occur based on inferences about the talkers’ regional background and 

expectations of their speech even in the absence of direct evidence. In particular, Wade (2022) 

demonstrates that listeners converge towards unheard vocalic variants of a Southern U.S. talker, 

signifying inferences about the relationship of vowel categories in regional dialects. In this 

experiment, listeners converged towards monophthongal /aɪ/ after exposure to a talker with 

Southern-shifted speech, despite never hearing the model talker produce the vowel category.  

Accommodation has been demonstrated for non-salient regional variation as well. 

Specifically, research has shown that talkers with vowel mergers may unmerge in response to 

their interlocutor’s system (Babel et al., 2013; Hay et al., 2009). This finding has been used to 

suggest that near-mergers, whereby talkers may be merged in production but not in perception, 

may be the result of tracking talker variability in their broader communities (Hay et al., 2009). 

This work in accommodation further provides evidence that listeners track the statistical 

regularities of social and linguistic forms to exploit in online communication, even in cases 

where the variability is not socially salient, as in vowel mergers (Labov, 1994; Eckert & Labov, 

2017). Research on accommodation has illustrated that listeners track the statistical 

contingencies between talkers and phonetic variation and build expectations about these 

contingencies. 

Work examining speaker and speech perception provides evidence that listeners are 

sensitive to subtle acoustic variation in speech and prior experience with such variation 

influences speech processing. Such evidence points to the fact that listeners must learn and 

represent socio-indexical structure for exploitation during a variety of tasks. Listener-oriented 

behaviors must be learned from previous experience with language, and the only clear place is 

from sampling the noisy acoustic distributions in their environment from experience with talkers. 
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Such a fact has prompted the integration of socio-indexical structure into usage-based 

frameworks of learning and representation. 

5 Representation of Socio-Indexical Structure & Phonology 

Usage-based theories have provided a theoretical framework through which socio-

indexical structure can feasibly be incorporated into cognitive representations. Much of the 

current work in this area draws on exemplar theoretic frameworks (Docherty & Foulkes, 2014; 

Foulkes & Docherty, 2006; Pierrehumbert, 2001, 2006; Sumner et al., 2014) due to their robust 

ability to cogently connect the social facts of linguistic variation, observed by sociolinguists over 

the last several decades, into cognition. Socio-indexical knowledge is thought to be an emergent 

property over experienced distributions in phonetic space via social interaction (Docherty & 

Foulkes, 2014; Foulkes & Docherty, 2006; Foulkes & Hay, 2015; Foulkes, 2010; Kleinschmidt, 

2019; Pierrehumbert, 2003, 2006).  

The guiding principle of exemplar theory is that language users encode detailed instances 

of spoken words in episodic memory, and, in processing speech, representations of lexical items 

are activated as a function of the acoustic similarity to the incoming speech signal (Johnson, 

1997; Pierrehumbert, 2001, 2003, 2016; Sumner et al., 2014). Instantiations of exemplar 

frameworks may vary in exactly how much abstraction occurs over experienced exemplars. 

Some scholars argue representations are based on lexical items and experienced exemplars 

(Johnson, 1997) while others call for more hybrid models allowing for abstraction to occur over 

exemplars to sub-lexical linguistic units (e.g., Norris & McQueen, 2008; Pierrehumbert, 2003, 

2006, 2016). Instantiations of exemplar models further describe the encoding of the socio-

indexical information that is linked to the acoustic representation, such as talker identity 

(Goldinger, 1997), gender (Johnson, 2006), and speech context (Local, 2003). Critically, such 

work explains the observations of speaker and speech perception in Section 4, as listeners can 

map the incoming speech signal to representations of acoustically similar events and their shared 

associations of socio-indexical information. 

Much work has demonstrated that listeners learn talker-specific details, enabling the 

ability to distinguish individual talkers from one another. At some stage, listeners may generalize 

experiences with multiple talkers to broader groups of talkers (Foulkes & Docherty, 2006; 
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Foulkes & Hay, 2015; Pierrehumbert, 2003). Evidence of both talker and group knowledge is 

illustrated by known talkers facilitating lexical access (Bradlow et al., 1999; Nygaard & Pisoni, 

1998) and voices with more stereotypical gendered voices demonstrating improved processing 

over atypical individuals within their gender group (Strand & Johnson, 1996; Strand, 1999, 

2000). Thus, exemplar theoretic frameworks allow for talker-specific encoding speech patterns 

alongside more generalized links to social factors. Such encoding is thought to occur over 

acoustic space, as talker identity and social factors may functionally partition the variable 

acoustic space. 

Variability conditioned on individual talker identity and gender is thought to be more 

discretely and robustly partitioned in phonetic space compared to regional dialects, as is 

evidenced by large differences in F0 between genders resulting from physiological and social 

factors (Foulkes & Hay, 2015). Such relationships are thought to be more readily emergent and 

easier to learn, while the more arbitrary associations between social groups and variation may 

take longer to learn and knowledge may emerge later (Foulkes & Hay, 2015; Foulkes & 

Docherty, 2006). Such a theory makes the examples in Section 4 more challenging to resolve, as 

regional identity may be both increasingly arbitrary and encompass a much noisier set of 

exemplars from which associations emerge. Yet, regardless, American English listeners have 

some degree of shared knowledge about regional variation and are able to learn the relationships 

between talkers and regional groups with relatively little exposure1, such as over the course of an 

experiment (Clopper & Pisoni, 2004a; Gunter et al., 2020). Furthermore, such knowledge 

influences how listeners approach phonetic categorization (Fridland & Kendall, 2018; Hay et al., 

2006; Hay & Drager, 2010), illustrating the necessity to examine variability and the associated 

socio-indexical relationships’ impact on phonetic categorization. 

5.1 Distributional Learning 

An underlying mechanism enabling language users to learn rich details of socio-indexical 

information may be distributional learning, where listeners acquire knowledge about how often 

 

1 Sumner et al. (2014) incorporate a dual-route weighting mechanism where low frequency and highly salient items 

may be weighed more heavily. Given the emphasis of this dissertation is around raw frequency distributions and 

resolving phonetic category ambiguity, I leave such an integration for future work. 
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various kinds of stimuli occur in the environment2. Distributional learning refers to learning 

category structure from frequency distributions, most often evidenced by the learning of sound 

categories. As an example, if given two sound categories, /p/ and /b/, the Voice Onset Time 

(VOT) distribution (Figure 2.5) should have a bimodal frequency distribution in the environment 

as the cue critically distinguishes the categories separated by different central tendencies (means 

or modes). The statistical input provides critical information for bootstrapping novel sound 

categories by partitioning the continuous distribution into discrete phonetic categories (Maye et 

al., 2002; Maye et al., 2008; Quam & Creel, 2021).  

Indeed, such learning has been demonstrated in first language acquisition where children 

learn the stochastic properties of ambient speech sounds (Saffran et al., 1996; Maye, et al., 2002; 

Maye et al., 2008; Quam & Creel, 2021) and adults when learning sound contrasts in a second 

language (Baese-Berk, 2010; Wright et al., 2015). Listeners may also learn to shift attention to a 

single cue dimension from multidimensional contrasts even when the cue relationships are 

inverted from expectations of typical productions (Harmon et al., 2019; Kruschke, 1996). The 

growing body of evidence points to the fact that listeners learn acoustic cue distributions utilizing 

the variability as a cue to contrastive speech sounds and maintain malleability of such contrasts 

over their lifetime.  

 

2 Kapatsinski (2018) suggests that distributional learning may not be a unique learning mechanism, but rather the 

outcome of several learning mechanisms working together.  
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Figure 2.5 Example of bimodal distribution of VOT where the /b/ category has an average VOT of 20ms 

and the /p/ category has a VOT of 50ms. Such a distinction might show category differences by mean 

VOT and share the same variance. 

In addition, research has suggested that listeners are sensitive to the parameters of 

individual sound categories after learning has occurred. Cohen et al. (2001), while not examining 

sound categories, demonstrate that if listeners are given a stimulus equidistant from two category 

boundaries, listeners will assign the token to the category that has a wider range of within-

category variability compared to the narrower variability category. This effect is demonstrated 

even when the stimulus item is closer to the mean of the narrower distribution than the wider 

distribution. As a depiction, Figure 2.6 shows hypothetical variability for two categories sharing 

the same cue distribution, such a pattern is evident in the production of Center of Gravity (COG) 

an acoustic measure used to describe sibilants (e.g., /s/ and /ʃ/). Here, the /ʃ/ category shows 

lower category dispersion within a talker while /s/ generally shows higher variability and greater 

category dispersion (Gunter et al., 2021; Newman et al., 2001). 

Evidence for sensitivity to category dispersion is demonstrated in listeners’ ability to 

categorize sibilant tokens. Newman et al. (2001) find that category dispersion within a talker 

predicted the speed at which listeners categorized, such that categories demonstrating wider 

dispersion (i.e., greater within-talker variability, /s/) resulted in slower and less consistent 

categorization compared to narrower categories (i.e., more consistent productions such as /ʃ/; see 
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also Clayards et al., 2008). However, exposure to high variability categories within a talker 

promotes greater generalization to novel tokens facilitating categorization of unheard items 

(Brosseau-Lapré et al., 2013; Zhao, 2010). Theodore and Monto (2019) demonstrated a similar 

pattern where listeners exposed to atypical VOT productions with either wide or narrow 

dispersion demonstrate different categorization functions with shallow functions in the former, 

but steeper functions in the latter. They argue that when listeners receive consistent input (low 

dispersion), the category boundaries are less fuzzy, and identification is more categorical. 

However, the distinctions between listeners exposed to narrow or wide distributions were 

attenuated over the course of the experiment as the cumulative distributional statistics between 

the two conditions converged, demonstrating flexibility in the cue-to-category mapping of a 

given talker over time. 

 

 

Figure 2.6 Example of distributional properties of two categories that vary in degree of dispersion. A 

realistic example might be extended to sibilants, where distributions of /s/ may look more like the wider 

dispersion category, and /ʃ/ may look more similar to the narrow dispersion category. Categories are 

distinguished by their mean and variance. 

 

Such variability of an individual category (i.e., the dispersion or width of the category) 

may be driven by several factors including between-talker differences and within-talker 
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variability caused by phonological context, speech rate, social meaning, and so on. Distributional 

learning is thus pertinent to socio-indexical structure where listeners learn talker-specific and 

group-specific characteristics from distributions over the phonetic space (Foulkes & Hay, 2015; 

Kleinschmidt & Jaeger, 2015; Kleinschmidt, 2019). Indeed, there is evidence that listeners can 

learn the statistical distributions of linguistic features associated with group identities (e.g., 

Docherty, Langstrof, & Foulkes, 2013) and can track multiple talker identities in the input 

(Munson, 2011).  

Additionally, listeners learn atypical productions for individual talkers from cumulative 

cues from the same talker over time (Theodore & Miller, 2010; Lai, 2021; Zhang et al., 2021). 

Lai (2021) further demonstrates a cumulative update mechanism where listeners integrate 

evidence from multiple talkers during exposure to atypical productions. Such a mechanism 

suggests that category dispersion as a function of individual talker identity may not be a stable 

property of a single talker but may be influenced by other similar talkers over the course of an 

experiment. Lai (2021) further illustrated that a cumulative updating mechanism may be 

modulated by socio-indexical cues to identity, where opposing indexical cues may block the 

integration of multiple talkers’ cue distributions (see Section 6 for additional information). 

Overall, there is evidence suggesting that language users are attending to not only the overall 

distributions of a category and similarity of exemplars from experience but also the parameters 

of those distributions which are influenced by individual talker characteristics and the cumulative 

distributions of multiple talkers. 

Thus, there is support for distributional learning of talker-specific characteristics, and 

initial evidence that such a mechanism extends to cross-talker variability and is modulated by 

socio-indexical factors. Distributional learning aligns with observations thus far, providing 

evidence that listeners learn group-specific characteristics through distributional input. Such a 

mechanism provides an account for the types of perceptual behavior in Section 4, including 

listeners’ ability to track talker characteristics for evaluations of accentedness (Gunter et al., 

2020) and dialect categorization (Clopper & Pisoni, 2004a-c; Clopper et al., 2006). Distributional 

learning governs listeners’ ability to make inferences about the characteristics of a talker and 

their production system from the experienced distributions to guide speech processing. 
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5.2 Bayesian Decision-Making & Inferential Speech Perception 

A key issue within distributional learning is that listeners must identify what phonetic 

variability is relevant to the linguistic message (e.g., distinguishes phones), what is relevant to 

the identity of the talker, and what variability may be incidental or noise. Several researchers 

have argued for Bayesian models of speech processing, where prior knowledge of a cue 

distribution’s parameters (e.g., mean and variance) and underlying causes probabilistically guide 

speech perception and adaptation to variability (Clayards et al., 2008; Massaro, 1987; Massaro & 

Cohen, 1991, 1993; McMurray & Jongman, 2011; Jongman & McMurray, 2017; Kleinschmidt, 

2016, 2019; Kleinschmidt & Jaeger, 2015; Liu & Jager, 2018; Norris & McQueen, 2008; 

Weatherholtz & Jaeger, 2016). While the exact implementations of models vary, the 

predominant framework posits that perceivers act as optimal observers (see also ideal adapters, 

recognizers, or perceivers), whereby listeners adopt the most optimal strategy for speech 

recognition and engage in speech perception as a process of inference under uncertainty 

(Clayards et al., 2008; Heald & Nusbaum, 2014; Kleinschmidt, 2019; Kleinschmidt & Jaeger, 

2015; Norris & McQueen, 2008; Nusbaum & Magnuson, 1997; Magnuson & Nusbaum, 2007; 

Pierrehumbert, 2016). Inference under uncertainty refers to a process “whereby listeners 

combine what they know about how speech is generated in order to recover (or infer) the most 

likely explanation for the speech sounds they hear” (Kleinschmidt, 2019:44), allowing listeners 

to resolve ambiguity in the speech signal. Under perceptual uncertainty listeners allocate 

credibility to different hypotheses and infer the most likely candidate based on prior experience 

and the most likely cause for the variability, thus recovering the intended message and the 

likelihood that such variability will be useful in future interactions with the talker (or other 

talkers).  

As described above, some Bayesian models propose that listeners form a generative 

model of variability, which aims to capture the statistical structure of observed input, by tracking 

both the variable cue distributions and the causal links to the observed variability (Clark, 2013; 

Kruschke, 1996; Kleinschmidt, 2019). There are two fundamental problems to solve in a 

generative model: 1) inference of the most likely cause for an individual item (e.g., an 

experienced percept) and 2) the best model to capture the statistical structure of all experiences. 

The two problems cover significant aspects of speech processing—the first problem is related to 
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perception (i.e., identifying categories) and the second is related to adaptation (i.e., updating 

categories/perceptual recalibration). The generative model is informed by the prior probabilities 

of variability, drawn from previous experience with language use, which informs the likelihood 

of probable interpretations of the signal (e.g., the linguistic category) and their underlying causes 

(Kapatsinski, 2018; Kleinschmidt, 2019; Kleinschmidt & Jaeger, 2015; Kruschke, 2006; Liu & 

Jaeger, 2018). Generative models can be hierarchical and bidirectional (Clark, 2013) with 

listeners having higher-order top-down knowledge, including socio-indexical factors, that 

captures lower-order acoustic variability (Norris & McQueen, 2008; Kleinschmidt & Jaeger, 

2015; Kleinschmidt, 2019; Liu & Jaeger, 2018; Weatherholtz & Jaeger, 2016). As such, listeners 

may infer causes relating to talker-specific patterns (Eisner & McQueen, 2005; Kraljic et al., 

2008; Liu & Jaeger, 2018) or social context and group identity (Kleinschmidt, 2019; 

Weatherholtz & Jaeger, 2016). The parameters and nature of socio-indexical structure in 

inferential speech processing have been an underexamined question, however, such causal 

models would provide benefits for speech perception (Kleinschmidt, 2019; Liu & Jaeger, 2018), 

but also, crucially, allow language users to reproduce the sounds they hear for their social goals. 

Kleinschmidt (2016, 2019) began to tackle the problem of the possible parameters of 

socio-indexical structure that are available to listeners in his computational-level theory of the 

ideal adapter model. In his work, he argues that listeners track individual talkers and social 

groups (e.g., dialect, gender, age) when they are informative for speech recognition, as evidenced 

by statistical conditioning of acoustic cues. Social grouping variables are highly informative and 

provide predictive power when the group demonstrates internal regularity (i.e., talkers 

systematically pattern together; Kleinschmidt, 2016). Informativity in his model refers to the 

degree to which a particular grouping factor is relevant to speech perception tasks, as modeled 

computationally (see Chapter 4 for more details). When socio-indexical factors are informative, 

listeners draw on these statistical contingencies to resolve ambiguity in speech, adapt to novel 

variation, and generalize patterns across talkers from a priori inferences about a talker based on 

experiences with similar talkers.  

As an example, gender is informative of the acoustic cue distributions for /s/ and 

partitions the continuous variability into meaningful subsets, such that the mean and variance are 

reduced when we aggregate over each group (rather than the category as a whole). As such, 
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listeners will approach speech perception with a priori expectations about a given talker’s 

production of /s/ based on inferred gender identity—a more fronted /s/ (higher mean COG) for a 

woman and a retracted /s/ (lower mean COG) for men. If a talker deviates substantially from 

their inferred social group, listeners will adapt and learn talker-specific patterns. Thus, for 

Kleinschmidt (2019) socio-indexical structure refers to the statistical conditioning of raw cues by 

social groups which act as the lower bound from which talker-specific learning occurs. The ideal 

adapter model describes listeners’ behavior as optimally driven, and as such listeners should 

draw on the causal relationships of social information and phonetic variability a priori to make 

online speech processing more efficient. To move towards a comprehensive theory of socio-

indexical structure in inferential speech processing models, researchers need a more 

comprehensive descriptive characterization of the informational assumptions about what 

listeners track, the levels of relevant socio-indexical factors and group characterizations, and 

variable prior experiences.  

An initial assumption about socio-indexical structure is the nature of the social 

dimensions listeners track depends on listeners inferring how talkers should be grouped 

(Kleinschmidt, 2019). Currently, Kleinschmidt’s (2019) model bifurcates such inferred social 

dimensions into group-informative and talker-informative components, where the group-

informative variable relies on the group demonstrating internal regularity across talkers. Such a 

model, however, does not specify how differences of between and within-talker variability 

contribute to shaping the distributional parameters and aggregation that inform listeners’ beliefs. 

However, the ideal adapter model predictions of socio-indexical structure hinge on such a 

dichotomy at various stages of speech processing.  

First, listeners draw on the causal links to infer the intended linguistic category, with 

group identity aiding in predicting and parsing the signal. When a contrast’s variability is 

conditioned by group, prior experience with other talkers will be more relevant for resolving 

perceptual ambiguity. If it is not conditioned on group, and individual talker identity is highly 

predictive, prior experience with other talkers is less informative in the initial resolution of 

ambiguity. When a talker has novel production patterns, listeners must infer whether such 

variability is caused by characteristics of the talker. In highly talker-informative categories, 

adaptation occurs. It’s less clear from the model whether listeners make the same inference, 
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absent of other disambiguating information, that the variability is likely characteristic of the 

talker when the category is conditioned on group.  

Ultimately, a critical distinction for cross-talker variation stems from generalization 

behavior, which hinges on group-informative and talker-informative separation. Ideal adapter 

models posit that listeners learn in talker-specific ways when the long-term experience with cue 

distributions demonstrates little statistical relationship with grouping factors, and on the other 

hand update category representations more globally when cue distributions are more strongly 

conditioned on group-level factors (Kleinschmidt, 2019; Kleinschmidt & Jaeger, 2015; 

Weatherholtz & Jaeger, 2016). The social dimensions outlined here are undoubtedly important, 

however, the make-up of social groups and the relationship between individual talkers and 

groups requires further refinement and interaction with sociolinguistics; I will return to this point 

in more detail in Section 7.  

A second assumption warranting further characterization is how prior experience shapes 

listeners’ inferences. Currently, prior experience is treated in a one-size-fits-all manner to gain 

insight into structured variation. However, at the level of individuals we expect complex social 

experiences will be reflected in different experiences with and representations of talker 

variability. For any given theoretical account, the ‘experience’ may be underspecified and vague 

statements or a statistical description based on all of American English for a given category or 

categories. In other words, researchers make a simplifying assumption that all experience with 

variability will inherently encompass a broad perspective of American English, and it is from 

this broad representation, listeners draw inferences, and not a more limited (e.g., single region) 

or imbalanced experience. Kleinschmidt (2019: 62) further acknowledges that “every listener’s 

experience with talker variability will be different, and so a variable that is informative in one 

listener’s experience may be irrelevant in another’s”. In other words, listeners learn different 

generative models of variability in the world based on their communities, their mobility, and 

other individual differences. However, listeners’ responses to dialectally conditioned variability 

suggest a degree of shared knowledge of variability despite different experiences with imperfect 

and noisy distributions (as illustrated in Section 4 above). Ideal adapter models aim to 

characterize the input and output of listener behavior, and thus more description of the nature of 
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variable experience (i.e., the input) is needed to understand listener behaviors (i.e., the output) 

more comprehensively; I will return to this point in more detail in Chapter 4 and 5. 

Finally, a critical component of socio-indexical structure in speech inference is the nature 

of what listeners track in relation to socio-indexical factors. The formalization of socio-indexical 

structure currently holds that a given talker’s accent can be operationalized as an aggregate of the 

raw distribution of cues for a single category (or group of categories). By extension, a social 

group can be characterized as an aggregate of the raw distribution of cues for a given category 

(or group of categories). Kleinschmidt argues that socio-indexical structure in ideal observer 

models is different from other forms of category structure such as correlations of a cue across 

categories (e.g., talker-specific mean VOT for /b/ and /d/), and relationship among cues within a 

single category (VOT and F0 for voicing; Clayards et al., 2008; Idemaru & Holt, 2011, 2014). 

Such a holistic perspective of categories ignores the nuances of the type and internal organization 

of variability (within a category, talker, or group) exemplified in sociophonetic studies. As 

illustrated above, for example, vowels are systematically organized, and individual vowel 

categories are not entirely independent from one another. Such organization may be 

demonstrated in several ways, including the dependency between categories (Tamminga et al., 

2016), and the linear relationship between a single cue and a phonetic dimension (Chodroff, 

2017; Chodroff & Wilson, 2020, 2022). Such internal regularity between categories has 

additional ramifications for how listeners recover intended categories and resolve ambiguity 

across talkers. While Kleinschmidt (2019) acknowledges that socio-indexical structure is 

complementary to other specific components of category structure, the model lacks a clear 

explication of how they complement one another or why such category structure is distinct from 

socio-indexical structure and at what stage more specific learning occurs. The assumptions about 

the nature of what listeners track related to socio-indexical factors warrant further interaction 

with (socio-)phonetics and integration into descriptions of how listeners infer group and talker 

structure; I will revisit this point in Section 7 below and in again in Chapter 5. 

From the above, it is clear that several open questions remain about what listeners track, 

under what contexts, and when such information is generalized to other talkers. Together such 

complexities illustrate the tension which Bayesian models seek to address: specificity on the one 

hand (e.g., experience, phonetic dependencies, etc.) and generalization on the other (e.g., across 
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talkers, contexts). Theories based on Bayesian models broadly speaking elucidate much of the 

stability and flexibility of the system by outlining how listeners leverage prior experience to 

make probabilistic inferences from input. However, a major gap in Bayesian models is the thread 

linking specificity to socio-indexical structure—that is, how much specificity is tracked and 

learned at different levels of socio-indexical structure (e.g., talkers, dialects, etc.)? The domain of 

perceptual learning speaks to some of these questions, highlighting variable listener behaviors in 

the face of different types of variable input. In the section below, I will review the current 

literature on perceptual learning focusing on the ways in which linguistic knowledge guides 

talker-specific learning and cross-talker generalization. 

6 Perceptual Learning 

As previously described, perceptual learning can be explained via processes of 

distributional learning and Bayesian inference (Clayards et al., 2008; Kleinschmidt & Jaeger, 

2015; McMurray & Jongman, 2011; Norris & McQueen, 2008). Perceptual learning variably 

refers to the process whereby listeners learn novel phonetic categories (Logan, Lively, & Pisoni, 

1991), recalibrate cues to existing categories (Clayards et al., 2008; Idemaru & Holt, 2011), 

adapt (broadly) to novel talkers and accents (Baese-Berk et al., 2013; Bradlow & Bent, 2008; 

Clarke & Garrett, 2004), and adapt to talker segmental variation (Cutler et al., 2008, Norris et al., 

2003; Samuel & Kraljic, 2009). The primary focus of this dissertation is concerned with how 

listeners adapt to cross-talker segmental variation, and thus this section will emphasize this 

subsection of the literature on perceptual learning and will refer to it simply as perceptual 

learning. 

Perceptual learning studies regularly make use of lexically guided perceptual learning 

paradigms (Norris et al., 2003) to assess learning of talker-specific phonetic distributions. In 

these paradigms, listeners are exposed to a novel production that is (typically) phonetically 

ambiguous, embedded in disambiguating lexical contexts. The lexical context allows listeners to 

scaffold learning by recovering the intended category of the ambiguous production which 

subsequently aids in the remapping of linguistic categories. Learning is demonstrated when 

listeners shift their phonemic boundaries (Cutler et al., 2008; Kraljic & Samuel, 2005; Norris et 

al., 2003) or show increased word endorsement rates after exposure (Maye et al., 2008; 
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Weatherholtz, 2015). Some work has demonstrated that listeners show phonetic retuning without 

such top-down influence using only nonce words or syllables, supporting an underlying 

distributional learning mechanism (Chládková et al., 2017; Munson, 2011), but such work is still 

relatively limited.  

Much of the perceptual learning research has examined constraints on learning and the 

conditions under which listeners generalize novel phonetic patterns to other related phonetic 

categories and talkers. Overall, such work highlights the general debate between specificity on 

the one hand and generalization on the other, observing both a high degree of specificity in 

learning individual talkers (Kraljic & Samuel, 2006, 2007; Norris et al., 2003; Nygaard & Pisoni, 

1998; Samuel & Kraljic, 2009; Theodore & Miller, 2008) and types of variability (Babel et al., 

2021; Dahan et al., 2008; Idemaru & Vaughn, 2020) alongside generalizing such patterns across 

talkers and contrasts sharing phonetic dimensions (Kraljic & Samuel, 2006). In the next section, 

I will review the constraints on learning, focusing on addressing the question of what listeners 

track, followed by a review of the constraints on when cross-talker generalization occurs. 

6.1 Constraints on Learning 

A large body of work in perceptual learning supports Bayesian inference, whereby 

listeners recalibrate phonetic categories to talker(s) when the short-term cue distribution deviates 

from their long-term representations for the category. Such recalibration is sensitive to previous 

experience, which may produce asymmetries in listeners’ perceptual learning behavior across 

and within contrasts. For example, recent work by Babel et al. (2021) demonstrates that listeners 

are sensitive to typological regularities in voicing and devoicing. Here, they train listeners on 

either a typologically common change, devoicing of /z/ to [s], or a typologically uncommon 

change, voicing of /s/ to [z]. In line with this typological pattern, they find that listeners don’t 

learn the typologically irregular pattern from exposure, and instead demonstrate a more global 

relaxation of criteria for /s/ tokens, accepting pronunciations outside of both the exposure pattern 

and typical /s/ productions. On the other hand, listeners show targeted learning for the 

typologically common devoicing pattern of /z/, accepting more devoiced /z/ tokens but not 

pronunciations they didn’t experience during exposure. Babel et al. (2021:50) argues this is the 

result of prior knowledge about the commonality of devoicing in English, and that “subphonemic 
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changes with which listeners have linguistic experience facilitates targeted adjustments, while 

novel changes seem to spur more global criteria adjustment”. Other work suggests that listeners 

are more rigid in targeted adjustments to categories when exposed to novel shifts outside 

category typicality (Babel et al., 2019; Kleinschmidt & Jaeger, 2015; Sumner, 2011) and have 

difficulty learning joint cue distributions that are positively correlated in the environment but 

negatively correlated in the experiment (Idemaru & Holt, 2011). Such evidence points to 

experience with common patterns and ranges of variability along specific cue dimensions from 

which listeners form expectations about the boundaries and likelihood of variable forms. 

In support of Bayesian inference, there is evidence that listeners attend to the underlying 

cause of variation during perceptual learning tasks. Some work demonstrates that listeners are 

unlikely to learn talker-specific details when they are provided evidence that the novel 

production is caused by incidental factors. Such incidental factors may be inferred by the 

presentation order of the stimuli where ‘typical’ clear productions are followed by atypical 

productions (Sumner, 2011; Kraljic et al., 2008; Kraljic & Samuel, 2011) or through explicit 

visual disambiguating information (Kraljic et al., 2008; Liu & Jaeger, 2018). Kraljic et al. (2008) 

demonstrate that listeners do not learn an ambiguous production of /s/ (between /s/ and /ʃ/) when 

the talker is holding a pen in their mouth. They argue that in such cases the listener is likely to 

infer that the percept is incidental and not a characteristic feature of that talker’s speech, and thus 

discard and ignore the information from exposure.  

In a follow-up, Liu and Jaeger (2018) argue that listeners are able to maintain several 

inferences of potential explanations for variability when it is causally ambiguous rather than 

discarding the experience. A percept is considered to be causally ambiguous when there is no 

discernable evidence of the underlying cause of the percept, if it is later disambiguated it 

becomes causally unambiguous. Listeners maintain information if the cause of the percept is 

ambiguous and they are uncertain about whether to attribute it to incidental causes (e.g., pen in 

the mouth) or characteristic causes (e.g., talker-specific characteristics). In the case of the pen in 

the mouth, the initial percept is causally ambiguous because the atypical percept (e.g., dino[s]aur 

→ dino[∫]aur) could be attributed to either the pen in the mouth or talker-specific characteristics 

(i.e., idiosyncratic causes). If the listener is then exposed to typical productions with the pen in 

the speaker’s hand, it is no longer ambiguous, as the change in percept and change in pen 
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position indicates a causal relationship. If the atypical percept continues despite the pen in the 

hand, it disambiguates the pattern and suggests it is characteristic of the talker (Liu & Jaeger, 

2018). Such work suggests that listeners overall retain information for uncertain input and may 

integrate such cues after disambiguation occurs. This is further supported by recent work that the 

order of the stimulus does necessarily block learning, and instead, listeners appear to be sensitive 

to cumulative cues in incremental updating (Cummings & Theodore, 2023; Tzeng et al., 2021; 

Lai, 2021). The role of causal inferences for socio-indexical information, such as dialect, during 

perceptual learning has remained unexplored (though, see Chapter 6). However, some work 

suggests that if listeners are faced with variability attributable to dialectal factors, or categories 

that are broadly variable, listeners may be less likely to show learning (Kraljic et al., 2008; 

Kataoka & Koo, 2017). 

In a similar vein, Kraljic et al. (2008) argue that learning only occurs when the system 

has no viable alternative solution for experienced variation and learning is driven by 

idiosyncratic variable productions that are not contextually dependent (i.e., occur across the 

category). As support for their argument, Kraljic et al. (2008) provide evidence that listeners do 

not learn an ambiguous /s/ percept (i.e., shift from /s/ towards /ʃ/) before [tr] clusters, a common 

pattern across regional dialects. They argue that such contextually dependent variation can be 

explained by listeners by assigning the ambiguous percept to features in the phonetic context 

rather than characteristic of the talker’s /s/ category more broadly, despite the link to socio-

indexical causes. While not embedded in a Bayesian framework, such an account is echoed in 

some models of Bayesian inference of socio-indexical structure, where listeners’ inferences are 

drawn from a raw cue distribution rather than contextually specified variants (Kleinschmidt & 

Jaeger, 2015; Kleinschmidt, 2019; Weatherholtz & Jaeger, 2016) and thus talker-specific and 

dialect patterns are represented as an aggregate over all contextual variation.  

Yet, there is evidence that listeners track separate cue distribution statistics for instances 

of a single category in different contexts for a given talker (Dahan et al., 2008; Idemaru & 

Vaughn, 2020). For example, Dahan et al. (2008) demonstrate that listeners learn about context 

specific raising of /æ/ before /g/ (e.g., bag) to guide speech processing of both raised and non-

raised /æ/ contexts. Integration of contextual variability is described in other theories of 

representation and perception more broadly (Apfelbaum et al., 2014; Cole et al., 2010; Jongman 
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et al., 2000; McMurray & Jongman, 2011; Pierrehumbert, 2016) with an argument for similar 

mechanisms where representations are built from experience3. As an extension of Bayesian 

models, one may hypothesize it aids in listeners’ acquisition, as they may infer from categories 

that have a bimodal distribution from such contextual variation, are likely to be the result of two 

separate targets (i.e., allophones; see Kapatsinski, 2018) aiding in learning the phonological 

system. Such a mechanism may be applied to socio-indexical structure as well, where listeners 

learn such contextually specified variation. Thus, the blocking of perceptual learning observed 

by Kraljic et al. (2008) may be explained by listeners’ existing experience with the variant 

through talkers from regional dialects with the pattern (e.g., Baker et al., 2011) rather than 

provide overwhelming evidence that listeners will resist updating representations in such 

contexts.  

Rather than contextually bound blocking of variants, it’s possible the short-term 

distributional characteristics did not deviate from their long-term experience enough to warrant 

recalibration of the category. There is potential evidence for this fact, as Kraljic et al. (2008) 

demonstrate listeners can replicate the pattern in production when asked to imitate the voice, 

regardless of whether they have the variant in their dialect, suggesting the variability is not 

discarded altogether. Thus, it’s likely that listeners are sensitive to within-talker contextual 

variability and expectations, and retuning may be relative to expectations of category structure 

alongside expectations of cross-talker variability. It’s unclear how such components can be 

incorporated into an account of socio-indexical structure and Bayesian inference, and while such 

fine-grained phonetic conditioning is outside of the scope of this dissertation, such contingencies 

illustrate the complexities of how much specificity listeners track in explaining category variance 

from socio-indexical factors (see Apfelbaum et al., 2014 for a similar discussion).  

Research demonstrates listeners are likely to generalize to other phonetic environments 

sharing the same phonetic dimension (e.g., voicing), providing evidence that listeners learn 

talkers’ cue distributions across categories that are not entirely independent from one another. 

 

3 There is a long research tradition that examines coarticulation in perception that takes a different theoretical 

perspective of gestural (e.g., Fowler, 1994) and feature parsing (e.g., Gow, 2003). Such theoretical perspectives are 

outside of the scope of this dissertation, as such I focus on cases integrating distributional learning or exemplar 

theoretic perspectives into context-specific variation. Covariation accounts may similarly be identified as a form of 

feature parsing accounts, but this is not essential for such information to be integrated into beliefs. 
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Such contingencies are beneficial to talker-specific learning, where such regularity within cue 

distributions aid in making learning tractable for a given talker (Chodroff & Wilson, 2020). For 

example, Kraljic and Samuel (2006) illustrates that when listeners are trained on ambiguous 

percepts of /t/-/d/ that bias listeners to resolve /t/ or /d/, listeners will generalize to a category that 

shares the voicing contrast with the exposure category (e.g., /d/ → /b/, /t/→ /p/). However, such 

generalization may be constrained to categories where the acoustic cues to identity are shared 

within the segment, and not distributed over neighboring sounds (e.g., voicing vs. place of 

articulation; Idemaru & Holt, 2014; Mitterer & Reinisch, 2017).  

Chládková et al. (2017) demonstrate that Greek listeners adjust their boundary between 

/i/ and /eɪ/ in the direction of exposure (/i/ lowering or /eɪ/ raising) and generalized the pattern to 

the talker’s complementary /u/-/o/ boundary. Such findings suggest that listeners may 

dynamically adjust boundaries across contrasts with shared contrasting dimensions (i.e., 

phonological features). Learning talker-specific characteristics is thus likely to generalize to 

unexperienced categories that share contrastive phonetic dimensions. Such knowledge may be 

elucidated by ideal adapter principles whereby listeners generalize to perceptually or acoustically 

similar ranges (Reinisch & Holt, 2014) or may otherwise reflect some tracking of relationships 

across categories for a given talker. Thus, cross-category relationships within and between 

talkers highlight an additional dimension along which listeners track talker-specific (Chodroff & 

Wilson, 2020) or, potentially, group-specific variability (see Chapter 5 for further discussion).  

Work in perceptual learning has predominately examined consonantal variation, whereby 

listeners are given ambiguous productions along a single dimension (e.g., Center of Gravity for 

sibilants, or VOT for stops), thus, it is an open question whether such rapid adaptation occurs for 

vowels to the same degree and under similar constraints. Vowels have significant differences 

from consonants that make them an interesting test case. In particular, vowels carry a high 

degree of talker-specific information given their spectral quality compared to, for example, stops. 

On the other hand, they also carry a large degree of indexical information about talkers’ social 

backgrounds and group-level attributes. As such, vowels are both talker-specific and group-

specific. Primarily, work examining vowel variability in lexically guided perceptual learning has 

examined cross-category remapping (e.g., /æ/ is remapped to /ɛ/) in novel chain shifts, whereby 

multiple vowels are affected in the shift (Babel et al., 2019; Maye et al., 2008; Weatherholtz, 
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2015). This methodology can thus be distinguished from the predominate work in consonantal 

variation that examines the restructuring of phonetic boundaries after exposure to ambiguous 

items and represents a more general learning of a talker’s ‘accent’ across all or part of the vowel 

space which may occur even when the voice is not perceived as socially favorable (Babel et al., 

2019). Results have demonstrated variable findings with arguments that adaptation is context and 

vowel-dependent (Maye et al., 2008) or the result of a general broadening of perceptual space 

accepting a wider range of variability (Weatherholtz, 2015).  

In particular, Weatherholtz (2015) demonstrated that when exposed to a novel back 

vowel lowered shift, listeners generalized to a novel back vowel raising shift they had not 

previously been exposed to. However, this is not true in the other direction, such that when 

listeners were exposed to back vowel raising, they did not generalize to back vowel lowered 

variants (Weatherholtz, 2015). On the other hand, Maye et al. (2008) demonstrated direction-

specific learning when listeners were exposed to front vowel lowered shift. Such findings 

generally demonstrate that listeners attend to the direction of shifts and learning may be 

constrained therein. While the role of prior experience for vowel shifts has been unexplored, it’s 

plausible that constraints may be driven by listeners’ prior experience with typological 

regularities of directions of shifts (e.g., raising/lowering). Analogously to sibilant learning of 

typological voicing patterns (Babel et al., 2021), we might find that the lowering of front vowels 

is within the range of experience for listeners, resulting in targeted adjustments as in Maye et al. 

(2008) but back vowel lowering may result in more global adjustments as in Weatherholtz 

(2015); I will return to this point again in Chapter 5. 

Additionally, there is some evidence that listeners draw on prior experience with 

variability and demonstrate asymmetrical learning across categories distinguished by within-

category variability. Kataoka and Koo (2017) demonstrate that individual vowel categories 

demonstrate different malleability in adaptation, such that high variability vowels (e.g., /u/), 

show less evidence of learning than low variability vowels (e.g., /i/) in contextually bound shifts 

(i.e., before liquids). This finding is generally counter to the predictions that some ideal adapter 

models make (e.g., Kleinschmidt, 2019) since vowel categories are broadly hypothesized to be 

adapted to robustly due to the degree of cross-talker variability. As such, the prediction in such 

models is that listeners are likely to demonstrate more complete adaptation when a contrast is 
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likely to vary across individual talkers. Thus, we would predict that learning should occur 

equally across the two categories, as prior experience with a talker is expected to be less 

informative.  

However, the results could still be explained by prior experience and a more nuanced 

understanding of asymmetries among vowel categories. In particular, American English listeners 

are likely to have extensive experience with /u/-fronting across dialects providing again no 

reason to adapt to the short-term experience. In such a case, the fact that /u/ was fronting in a 

context they had, perhaps, not experienced may have been less relevant to the overall tendency 

of /u/ to front. Alternatively, listeners may see more reason to update narrow categories (as in the 

case of /i/) but may more readily associate tokens with /u/ due to the broader range of variability, 

in line with the observations of Cohen et al. (2001), resulting in a broader acceptance of /u/ but 

overall limited retuning. An additional complication of Kataoka and Koo (2017) is that 

variability is broadly construed, encompassing multiple potential causes, including but not 

limited to, social factors and phonetic context. Overall, it’s unclear whether different causes of 

variability contribute equally to perceptual flexibility, and how socio-indexical factors may 

contribute to such flexibility. Future work should ascertain why such adaption asymmetry 

occurs, disentangling different sources and types of within and between-talker variability (see 

Section 7 and Chapter 6 for additional discussion). 

6.2 Constraints on Generalization 

Scholars have argued that perceptual learning is a low-level process and talker-specific 

(Eisner & McQueen, 2005). More recently, work has begun to address under what conditions 

learned patterns generalize to novel talkers with findings suggesting acoustic similarity (e.g., 

Reinisch & Holt, 2014; Xie & Meyers, 2017), contrast type (Kraljic & Samuel, 2006; 

Kleinschmidt, 2019; Kleinschmidt & Jaeger, 2015), learned socio-indexical causes 

(Kleinschmidt, 2019; Weatherholtz & Jaeger, 2016), and variability in exposure (Sumner, 2011) 

predict generalization patterns. Furthermore, some work posits that talker-specific learning 

occurs in cases where there is a greater degree of spectral information contained in the contrast 

(e.g., sibilants) than for other categories (e.g., stops, Kraljic & Samuel, 2006). However, current 

work thus far demonstrates evidence against this hypothesis showing that exposure to novel 
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vowel shifts generalize across talkers robustly compared to fricatives and stops, which 

demonstrate variable generalization patterns (Eisner et al., 2013; Kleinschmidt & Jaeger 2015; 

Kraljic & Samuel, 2006, 2007; Tamminga et al., 2016; Van der Zande et al., 2014).  

Patterns of generalization that emphasize talker acoustic similarity have often 

operationalized such similarity through the use of same or different gender pairing to the 

exposure talker (Weatherholtz, 2015; Reinisch & Holt, 2014; Witteman et al., 2013) or through 

the acoustic similarity within the segment itself (Lai, 2021; Tamminga et al., 2016). In the 

former case, such operationalizing of acoustic similarity may inadvertently collapse acoustic 

similarity and social identity (Tamminga et al., 2016; Lai, 2021). As such, the results of variable 

generalization patterns may be explained by listeners’ knowledge of socio-indexical structure 

rather than a low-level acoustic similarity. For example, Kraljic and Samuel (2007) demonstrate 

that generalization occurs across gender pairs for voicing shifts among stops but not for sibilants, 

where learning is talker-specific or constrained to same-gender pairs. Weatherholtz (2015) 

likewise demonstrated generalization across different-gendered pairs following exposure to a 

novel vowel shift across different gendered pairs. In terms of socio-indexical structure, listeners’ 

prior experience may promote restrictions to sibilant generalization to members of the same 

gender group since sibilant productions demonstrate robust gendered patterns. Recent work by 

Lai (2021), however, demonstrates robust generalization across genders for both stops and 

sibilants which remains stable across different manipulations of the acoustic properties of the 

target sound. However, manipulating visual and vocal cues to the social identity of the 

generalization speaker results in attenuated within-gender pair generalization suggesting that 

socio-indexical structure may provide gradient constraints on the magnitude of generalization 

rather than overall blocking (Lai, 2021). 

Such socio-indexical modulation in perceptual learning shows that listeners are sensitive 

to the distributional make-up of social groups which inform their perceptual learning behavior 

and may be seen in gradient rather than categorical shifts in listener behavior. Such evidence is 

still limited and contends with several other studies that have demonstrated constraints to such 

generalization and may interact with other facets including perceptual similarity. Understanding 

of how such perceptual behavior aligns with talker variability in the real world is limited, making 

it challenging to distinguish between socio-indexicality or other perceptual mechanisms driving 
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generalization. Additionally, despite vowels being widely recognized as paramount examples of 

socio-indexical variation, there is a dearth of literature examining the generalization of vowels. 

Looking at categories beyond stops and sibilants may further elucidate the role of socio-indexical 

structure in perceptual learning.  

Overall, the perceptual learning literature offers a complex picture in terms of the 

specificity and nature of variability at an individual talker level. Some perceptual learning 

suggests that listeners are only likely to retune when the input is a holistic category shift and 

when there are no alternate causes to explain the variation (Kraljic et al., 2008; Liu & Jaeger, 

2018), resulting in talker-specific learning. However, there is increasing evidence that listeners 

learn contextual (Dahan et al., 2008; Idemaru & Vaughn, 2020) and cue-specific (Harmon et al., 

2019; Idemaru & Holt, 2014; Reinisch et al., 2014) patterns for an individual talker. 

Furthermore, evidence of constraints for the specificity of learning may be attributable to 

listeners’ long-term representations of learned variability (e.g., /str/ and /u/ fronting), which 

warrants examining production patterns to understand the variability with which listeners have 

experience to inform perceptual learning (see also Babel et al., 2021). Additionally, the why and 

how of listener generalization to other talkers is still largely unclear, and at what level of socio-

indexical structure guides this process. Turning to sociolinguistics for a more nuanced 

understanding of socially meaningful variation may further aid in refining models of socio-

indexical structure in Bayesian inference and the predictions therein. 

7 Socio-Indexical Structure in Production 

A necessary first step to building a model of socio-indexical structure of variability is to 

understand the sources of variability in the signal. Currently, socio-indexical structure in 

Bayesian models thus far identifies social groups and individual talker identity as sources of 

variation, however, the nature of such groups is relatively vague and encompasses more than one 

type (e.g., between and within) and source of variation. Not all variation is socially meaningful, 

and some differences across talkers may be the result of physiological differences or shared 

linguistic sources of variation that may be, theoretically, shared by a speech community (e.g., 

coarticulation; see also Ladefoged & Broadbent, 1957 for similar taxonomy). Much of the 

discussion thus far has not disentangled these sources of variation from the social. While not 
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mutually exclusive, the physiological, social, and linguistic sources may result in different 

distributional properties. Given the interest in the social, I will not review the wide range of 

physiological factors contributing to variability and instead will focus on the relationship of 

individuals to their social groups which will also encompass a fair degree of internal linguistic 

sources as well. 

There are two assumptions that require a deeper interaction with sociophonetics to fully 

integrate socio-indexical structure into Bayesian models that stem from the dichotomy of talker-

specific and group-specific patterns. The first assumption is that variability is conditioned on 

social groups only in so much as they are internally homogenous and provide relevant 

information for speech processing, either to parse the signal or to identify social characteristics 

(Kleinschmidt, 2019; Kleinschmidt et al., 2018). Namely, when individuals are meaningfully 

organized into social groups, there is little between-talker variability within social groups which 

provides statistical regularity to the acoustic distributions for listeners to learn and leverage 

during speech processing. The second assumption is perhaps a simplification of computational 

models (e.g., Kleinschmidt, 2019), where ‘talker-specific’ information collapses between-talker 

and within-talker variability. Theoretically, when cross-talker variability is high listeners can 

resolve ambiguity induced by such variation through learning an individual talker or through 

their perceived group identity. However, there is little discussion about where and how within-

talker variability fits into this framework. This simplification may have been requisite for 

building the theoretical description but is of critical importance for furthering our theories about 

how listeners make sense of talker-specific or dialectally conditioned categories in speech 

processing. These two assumptions are inherently linked, as assumptions of group homogeneity 

may be seen as counter to some types of individual talker variability (i.e., style), while other 

forms of individual talker variability may largely be reflected across talkers within the group 

(e.g., phonological variation). If listeners are tracking and exploiting these statistical 

relationships for speech processing, then it’s critical we have a more thorough understanding of 

each component.  

While this dissertation will not address the full scope of these issues, in the following 

sections I provide an overview of the nuances of individuals and their social groups, again 

focusing primarily on dialect groups, and outlining how different patterns of intra-group (i.e., 
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between talkers in a group) and within-talker variability may ultimately shape distributional 

properties which act as the input for learning. Given the various sources and outcomes of 

variability, I provide a taxonomy of variability that outlines what I believe to be the core 

components in need of further characterization. Following this overview, I suggest how our 

current models of socio-indexical structure can be informed by current discussions in 

sociolinguistics as to how listeners learn socio-indexical structure and drive inferential processes 

of speech perception. 

7.1 Nature of the Group: Speech Communities & Heterogeneity 

Within much of the literature reviewed thus far, I have referenced ‘social group’ and 

‘dialect’ in relatively vague ways. Indeed, much work within phonetics and psycholinguistics 

have (rightfully) grouped talkers by practical terms with various macro social categories, 

including broad geographic regions (i.e., dialects), and as such the terms may be minimally 

defined. Of course, geographic region and other macro social categories have been established in 

sociolinguistics to correlate strongly with phonetic variation (e.g., Labov et al., 2006; Labov, 

2001), making such choices valid for many research questions. In practice, the practical 

identification of external social groups as a unit for quantitative sociolinguistic analysis is 

generally linked to a division in geographical space (Horvath & Horvath, 2003; Gumperz, 2009). 

However, typically some action is taken from the outset to ensure that the talkers encompass the 

range of possible variations within the community. Further, a great deal of theoretical work in 

sociolinguistics has sought to define social groups that are meaningful organizational units of 

society and has wrestled with the representativity and limitations of macro social categories and 

speech communities (Bucholtz & Hall, 2005; Eckert 1988, 2000, 2012; Eckert & McConnell-

Ginet, 2012; Milroy & Milroy, 1985, 1992; Rickford, 1986). Overall, this work has pointed to 

the complexities of not only identifying and delimiting meaningful groups according to 

geography but also the complexities of their internal organization, including subgroups and 

individual talkers.  

In the chapters to follow, I will largely be following the same practical categorization of 

talkers into dialect areas as a starting point for the central questions outlined in Chapter 1. 

However, in this section, I aim to detail some of the potential concerns and issues that theories of 
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inferential speech processing must reconcile when discussing geographical dialects in theories of 

socio-indexical structure. Given the interest in dialect areas as a social group, I will primarily 

focus on geographic space and its connection to speech communities in the section to follow. In 

addition, I address one primary issue of internal group organization throughout this dissertation, 

despite the practical identification of dialect areas: the role of individuals and the extent to which 

they reflect the patterns of their dialect areas. As such, following the background on social 

groups, I will describe the role of individuals in more detail.  

Insights into social groups can be gained by examining the theoretical and practical 

identification of communities and dialects in sociolinguistics. Much of this work has emphasized 

the critical role of the speech community and geographical space, which, crucially, can be 

defined and described in several ways. The speech community can refer to an aggregated group 

of people who share communication and norms between members (Labov, 1972) and/or the 

frequency of interaction (Gumperz, 1968). One of the core principles of quantitative approaches 

to variation has been to examine the speech community as the primary social group of interest 

under the guiding belief that the speech community is not merely a correlate of the linguistic 

system, but a core component of language use. Consequently, it has been suggested that the 

community, and not the individuals’ grammar, be the object of linguistic study (Meyerhoff & 

Walker, 2013; Labov, 1972). Labov (1972: 120) further argues that norms may be observed in 

“the uniformity of abstract patterns of variation which are invariant to particular levels of usage”. 

The emphasis on the aggregate group be described as the ‘homogeneity assumption’ (Wolfram & 

Beckett, 2000), which encompassed the belief that individual talkers’ are not meaningful units of 

analysis in describing sociolinguistic variation so long as the social groups are meaningfully 

different. Such a definition may initially align with the identification of structured variation 

within a ‘social group’ or ‘dialect’ in phonetics and psycholinguistics. However, the speech 

community is not without variation in linguistic systems and may vary across several 

dimensions. 

Speech communities are internally diverse in several ways, as talkers are differentiated 

by other social factors including gender, age, status, and social standing (Labov, 1972, 1994, 

2001 among others). The speech community is often operationalized by a division in 

geographical space for practical reasons (Horvath & Horvath, 2003; Gumperz, 2009) and is often 
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a unit for placing the study itself rather than placing the talkers (Eckert, 2000). Thus, it’s widely 

recognized that broader geographic dialect areas will be heterogeneous, but in systematic and 

quantifiable ways. Weinreich, Labov, and Herzog (1968) describe this as ‘orderly heterogeneity’, 

an observation that linguistic variation is systematically conditioned by intra-community social 

stratification and internal linguistic conditions (i.e., ‘structured variation’; see also Labov, 1966, 

1972; Wolfram, 1969). The geographic community can vary by size, from larger regional 

locations common in dialectology (e.g., Southern U.S., as in Labov et al., 2006) or in terms of 

large urban areas (e.g., New York City as in Labov, 1966 and Detroit as in Wolfram,1969). 

Geographic space is also reified as a social category across researchers in dialectology and 

sociophonetics as central to linguistic variation (Britain, 2013; Horvath & Horvath, 2002, 2003; 

Labov, 1980; Labov et al., 2006). It is thus critical that our theories of socio-indexical structure 

in speech processing explicate expectations of heterogeneity, both in how we identify socially 

structured variability in production, and how listeners make sense of it. Currently, this is a large 

gap in the theoretical assumptions of inferential speech processing, where dialect areas are a 

single undifferentiated aggregate with limited hierarchical or sub-group organization and reflect 

limited between-talker variation within a given group. 

We can consider how dialect areas may reflect dependencies between subgroups at 

different scales, including the relationship between the individual and smaller communities. 

Horvath and Horvath (2003:144) argue for research examining the geolinguistic scale of 

variation, which ultimately captures the “nested hierarchical relationships as one move from the 

individual member of a speech locality to the speech locality, to the region, to the nation, and 

finally to the supranational scale”. Through examining the nature of nested hierarchical 

relationships, they argue, linguists can understand the degree of universals in language more 

broadly as well as a more comprehensive understanding of variability. Yet, much of the work in 

sociophonetics has examined only individual layers of this problem, either focusing on the local 

(e.g., a city), the region (e.g., North/South), or the individual, rather than the nested or global 

nature of different varieties and linguistic variation.  

While Horvath and Horvath (2003) were generally referring to geolinguistic scale for 

understanding variability, universality, and language change, the theoretical notion of nested 

geographical models of social and linguistic patterns has implications for how we conceptualize 
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socio-indexical structure, and the knowledge language users have about these nested 

relationships of talkers. Exemplar models adequately account for these nested relationships, by 

allowing for complex associations between social and acoustic information. However, processes 

of Bayesian inference that rely on social groups (Kleinschmidt, 2019; Kleinschmidt & Jaeger, 

2015; Weatherholtz & Jaeger, 2016), generally treat social groups as homogenous and make no 

reference to their nested or complex relationships. Yet, these groups are fundamentally nested 

products of geographic communities, that warrant further investigation. While there is some 

indication that socio-indexical structure is informative in the interaction between gender and 

dialect (Kleinschmidt, 2019), the hypotheses about how listeners draw on this nested structure 

for inferences remain unclear. This dissertation does not directly investigate all layers of nested 

divisions of geographic space, but it will begin to probe the relationship between individuals and 

their broader dialect areas. Thus, this dissertation speaks to the extent to which dialect groups 

diverge from the higher-level of national geographic location (U.S.) and the extent to which 

individuals fit within the regional geographic scale (e.g., North/South/West). In the following 

section, I will outline some of the current outstanding issues about how individuals are thought to 

reflect their dialect areas. 

7.2 Nature of the Individual: Individuals Within Groups 

A central issue in sociolinguistics for some time has been identifying the relationship 

between social groups and individuals (Bayley & Langman, 2004; Benor, 2008; Carpenter & 

Hillard, 2005; Forrest, 2015; Guy, 1980; Gumperz, 2009; Horvath & Horvath, 2003; Mendoza-

Denton et al., 2010; Meyerhoff & Walker, 2007; Milroy & Margrain, 1980; Milroy & Milroy, 

1985; Tamminga & Wade, 2022). And, indeed, this has been an underlying debate in linguistic 

theory more broadly (see e.g., Weinreich et al., 1968 for discussion). Such work has emphasized, 

on the one hand, the uniformity of abstract patterns of variation (e.g., vowel systems, Labov, 

1972), and on the other, the agentive and dynamic use of phonetic variants by individuals in 

constructing identity (e.g., Eckert 2008, 2012). Chodroff and Wilson (2022) suggest such a 

division may comprise two ends of a continuum where on one end individuals are a maximal 

reflection of their speech community’s behavior, and on the other hand, are fully agentive and 

not inherently bound by the patterns of their communities. The literature reviewed here will 
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follow this division, examining either the dependencies of variable (phonetic) forms or tracing 

the range of phonetic variability within talkers across contexts. Building on the ideas of socio-

indexical structure outlined thus far, this section illustrates the tension between social groups and 

individual talkers drawing on concepts in sociolinguistics and phonetics. 

Such debates are relevant to current theories of speech processing and highlight the 

dynamic and complex ways individuals pattern according to their respective groups. These two 

facets highlight two major assumptions that Bayesian models of socio-indexical structure should 

address: between-talker variation within regional dialects and within-talker variation across 

contexts, and their relationship. First, between and within-talker variability are collapsed and the 

dichotomy of group informative and talker-informative does not address how within-talker 

variability is (or is not) captured in the higher-order socio-indexical structure. If the 

formalization of a talker’s accent is the (joint) cue distribution of a given phonetic category, then 

we have to assume that within-talker variability must be relevant in some way yet remains 

unspecified. Second, other forms of category structure are treated as separate in the formalization 

of socio-indexical structure (e.g., dependencies between a cue across two categories). Yet, much 

work in sociophonetics has emphasized the role of such internal within-category systematicity as 

an integral facet of socio-indexical structure. In the sections below I will describe the current 

research on between-talker variation within dialect areas followed by the sources and realizations 

of within-talker variation. Following these discussions, I will focus on how such individual and 

group dynamics present potentially distinct distributional challenges. Overall, this section aims 

to demonstrate the necessity of characterizing the unit (i.e., between or within talkers) and the 

scope (i.e., grouping level) of analysis to fully characterize the problem (see Tamminga & Wade, 

2022 for similar discussion). 

7.2.1 Between-Talker Variation 

Much work has criticized the homogeneity assumption, suggesting that grouping together 

several individuals into social groups and assuming, but not confirming, the patterns of the 

individual, obscures the potential of different linguistic systems between talkers (Bailey, 1973; 

Bickerton, 1975; Horvath & Sankoff, 1987; Wolfram & Beckett, 2000). Dorian (1994) 

challenges the homogeneity assumption suggesting that community homogeneity need not 
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necessarily correlate with linguistic homogeneity. And indeed, several studies that have 

examined individual variability within social groups have found mixed results about the degree 

to which individuals demonstrate patterns in line with their social groups. Some studies illustrate 

talkers are regular and cohesive within their communities (Guy, 1980) while others show 

individuals may diverge in idiosyncratic ways (Dorian, 1994), or remark upon notable “outliers” 

or anomalous talkers more generally (Chambers, 2009; Meyerhoff & Walker, 2004; Wolfram & 

Beckett, 2000; Hall-Lew, 2010).  

As noted above, work examining the relationship of individuals to their groups has 

focused on identifying structured variability across variable forms. Such work has taken multiple 

methodological approaches, aiming to identify dependencies between different units of analysis 

(i.e., between or within talkers) and different scopes of analysis (different types of groups), as 

well as different variable forms under examination. Phonetic dependencies at the individual level 

have been examined in several ways, including co-occurrence with other categories (or other 

morphosyntactic features), the linear relationship of acoustic cues across categories sharing 

phonetic dimensions (e.g., VOT across voiced stops), ranking of systematic patterns (e.g., 

constraints), and distances between categories (e.g., distance between merged vowels).  

Studies that have aimed to examine the relationships among variable forms across 

individuals within communities aim to uncover patterns of (in)coherence, whereby multiple 

variables within a community demonstrate correlation in individual talkers’ usage (Guy & 

Hinskens, 2016; Tamminga & Wade, 2022). As defined by Guy and Hinskens (2016:1), “to the 

extent that linguistic variables systematically covary, they can be characterized as displaying 

coherence”. Several such studies have focused on the relationships among different variables 

across linguistic levels, such as phonological and morphosyntactic (Erker & Otheguy, 2016; 

Tsiplakou et al., 2016; van Meel et al., 2016). However, some constrain the units of analysis to 

the same linguistic level (e.g., phonological variants, Tamminga, 2019). The unit of analysis is 

most frequently an average of summary statistics, where individual talkers are represented by an 

average or other measures of central tendency (Tamminga & Wade, 2022). The co-occurrence of 

variant use is then typically measured linearly (i.e., correlation) across talkers. For example, 

researchers might represent an individual talker’s [æ] and [a] (i.e., the units of analysis) as an 

average of acoustic cues (F1 and F2), and determine the correlation within a group of individuals 
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[æ] and [a] position, to determine if individuals who employ a particular variant of [æ] also 

employ a variant of [a] (see Tamminga & Wade, 2022 and Oushiro, 2016). Such work often 

examines whether between-talker correlations mirror those of community patterns and the degree 

of dependency between variable forms. As described by Tamminga and Wade (2022), defining 

the unit and scope of the analysis for identifying such covariation patterns is essential because 

the wrong scope or unit may lead to erroneously identifying (in)coherence of varieties.  

Work in phonetics has also considered dependencies between phonetic forms and 

abstracted phonological systems, highlighting some degree of uniformity of individuals in terms 

of the phonetic mapping of phonological targets. In such cases, the dependencies are examined 

through the linear relationship between low-level phonetic cues and phonological targets, 

specifically those that share some common dimension (e.g., Chodroff & Wilson, 2022). Chodroff 

and Wilson (2022) argue the phonology-phonetics interface leads to some degree of phonetic 

uniformity as targets are shared across phonological primitives (e.g., features such as +/- voice, 

+/- anterior; see also Fruehwald, 2017; Ménard et al., 2008). Evidence for this comes from the 

observation that phonetic cues across contrasts are not entirely independent (Allen et al., 2003; 

Chodroff & Wilson, 2017, 2022; Sonderegger et al., 2020; Theodore et al., 2009). For example, 

the place of articulation for [s] and [z] are highly correlated within individuals, such that the 

place of articulation of [s] does not vary independently of [z] within an individual, despite 

socially meaningful variation linked to [s] (Chodroff & Wilson, 2017, 2022). Similar structured 

variation can be found in VOT cues to voicing contrasts (Allen et al. 2003; Chodroff & Wilson 

2017, 2022; Chodroff et al., 2019; Sonderegger et al., 2020), even when groups differ in their 

average or central tendency for VOT (Sonderegger et al., 2020). Additional evidence can be 

found in the covariation of F1 in vowel contrasts sharing phonological height dimensions, such 

as /eɪ/ and /o/ (Ahn & Chodroff, 2022; Ménard et al., 2008; Oushiro, 2019; Salesky et al., 2020; 

Schwartz & Lucie, 2019; Watt, 2000).  

Such patterns share a commonality with some investigations of coherence in that 

individual talkers typically represent an average point along cue dimensions across two 

categories sharing a particular phonological feature (e.g., articulatory dimension). The 

covariation patterns therein demonstrate that while a particular acoustic cue can overall show 

high cross-talker variability, they demonstrate a great deal of talker-specificity whereby the 
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acoustic cues of one category (e.g., /s/) can predict the acoustic cues of another category with 

shared phonological information (e.g., /z/ by place of articulation). Such talker-specific structure 

demonstrates high correlations across communities and languages (Chodroff & Wilson, 2022). It 

is indeed this type of cue-based structured variation that may help listeners discern linguistic 

contrasts (Chodroff & Wilson, 2018, 2020, 2022; Kleinschmidt & Jaeger, 2015). Evidence of 

listeners’ expectations of structured variation can be found in perceptual learning, whereby 

listeners extend patterns of VOT from one voiceless stop (e.g., /p/) to another (e.g., /k/) despite 

exposure to only the former before test.  

Such structure has usefully been evidenced to be sensitive to the social group structure, 

such that groups may vary in terms of their average realization of the acoustic cue, but talkers 

within each group will demonstrate the same regularity (Sonderegger et al., 2020). There is some 

dependency between the individual and the group along phonological lines. This type of 

between-talker variation is perhaps arguably different from the patterns of socio-indexical 

covariation that may be seen as a result of style, the combination of multiple variants with shared 

social meaning (see Vaughn & Kendall, 2019). Such factors will be discussed below for 

completeness, though do not make up the central focus of the types of variability I examine in 

this dissertation. 

7.2.2 Within-Talker Variation 

In addition to the degree to which aggregate group patterns are observed between talkers 

of a group, a great deal of sociolinguistic work has emphasized within-talker variability. Another 

central aspect of the departure from the speech community is the emphasis on individual agency 

in linguistic behavior, where linguistic features are not inherited from the community, but rather 

meaning is made “on the ground” (Eckert, 2008, 2012) through a process of linguistic bricolage. 

Rather than individuals mirroring their community patterns, linguistic bricolage posits that 

individuals are agentive in the process of linguistic variation drawing on phonetic variation as a 

symbolic social resource. Support for bricolage is evidenced by speakers’ ability to manipulate 

linguistic form as a function of dynamic social context, producing a range of variation across 

contexts (e.g., Podesva, 2007). This is not to say speakers have unlimited boundaries on 

variation, but rather that language users make use of a repertoire of sociolinguistic resources, and 
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meaning is made during interaction through locally constructed means. Descriptions of within-

talker variation are thus a prime example of more distributional properties of categories than 

other studies that typically examine between-talker variation in terms of averages. This research 

area points towards complex within-talker variation, which is often reflected in categories that 

show greater conditioning by social groups, highlighting the need to characterize the interaction 

more clearly. 

 Research on individual variation points to the fact that macro-social categories, including 

geography, are not in themselves indicative of social meaning (Eckert, 2008, 2012; Eckert & 

Labov, 2017). As noted by Eckert and Labov (2017:470), correlations of gender for example 

point towards a socially constructed distinction in use, which is an abstraction “over a range of 

globally constrained but locally constructed practices”. However, the shared conditioning 

between macro social categories and high within-talker variability usefully demonstrates the 

need to consider the unit of analysis and explication of the nature of input for listeners. For 

example, categories that are the object of much stylistic variation may have distinct distributional 

properties within a given talker, including multi-modal distributions (Van Hofwegen, 2013). 

Multi-modal distributions may also be evident in categories that are undergoing change within a 

community, as a result of speakers gradually adopting phonetic forms (Fruehwald, 2013, 2017).  

Such within-category and within-talker patterns pose some interesting challenges for 

current conceptualizations of socio-indexical structure. If the formalization of a talker’s accent is 

a cue distribution of a given phonetic category, then we have to assume that such multi-modal 

distributions must be integrated in some way by listeners. Yet, it’s currently underspecified how 

such within-talker variability fits into socio-indexical structure and how specific categories are 

identified as informative by listeners. One could presume based on the taxonomy of talker-

specific and group-specific categories that within-talker variability would be minimal for group-

informative categories, or that the individual and group mirror the same range (i.e., same central 

tendency and same variance), however, such a component has been unexplored. While this 

dissertation does not directly address the complexities of the distributional properties associated 

with social meaning, Chapter 5 begins to examine the interaction between individuals’ category 

distributions relative to their dialect areas. 
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7.2.3 Taxonomy of Variation 

Having established the general areas of debate about individual and group variation, I 

now turn to describe a taxonomy of variation posited by Guy (1980). Following this, I will revisit 

the taxonomy in light of distributional properties and current Bayesian models of socio-indexical 

structure. Guy (1980:12) describes a taxonomy of problems associated with group and individual 

linguistic variation, focusing again on between-talker variation, suggesting two relevant 

dimensions: “(a) similarities and differences between individuals (within groups); and (b) 

similarities and differences between groups”. In this taxonomy, variation is hypothesized to 

appear at the group and individual levels in four different ways, as depicted in Table 2.1. 

In the first case, variation is uniformly distributed throughout the community (Table 2.1 

#1). For example, /t/-/d/ deletion may comprise such a case where variable realizations of word-

final /t/-/d/ occur. In such cases, deletion is uniformly distributed across speakers in the 

community, despite variable rates of the deleted variant. In the second case, there is variation 

distinguishing two (or more) different and respectively homogenous groups (e.g., geographic 

dialects or sociolects; Table 2.1 #2). This case may be exemplified by the canonically identified 

differences of vocalic variants across regional dialects, where each regional variety is comprised 

of a distinct variant (i.e., raised /æ/), or differences between social groups such as gender or age. 

The first and second cases are most aligned with the variation psycholinguistic work assumes 

when talking about socio-indexical structure at the group level, where groups are internally 

regular.  

The third case is a situation in which different groups demonstrate similar variants but 

there is a large variety of norms for individuals within the groups. In such cases, group structure 

arises out of relationships among sociolects, or, at the extreme, individual stratification (Table 

2.1 #3). Such cases may occur in cases of idiosyncratic talker variability, or the result of 

unidentified social formation (i.e., a different group structure). The final case is a situation where 

combinations of two and three exist together, with individual stylistic variation mixed with inter-

group differences Table 2.1. #4). The four different outcomes are not necessarily in opposition to 

one another, but rather different variables (or categories) may demonstrate different patterns of 

variation.  
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Table 2.1 Copied from Guy 1980 (Table 1.2; 12): Types of Structures in Linguistic Variation 

Comparing different 

individuals (within groups) 

Comparing Different Groups 

Similar Different 

Similar 
1. Variable rule of uniform 

force 

2. Social or geographic 

dialects 

Different 
3. Individually stratified 

linguistic variation 

4. Combinations of 2 

and 3, or true free 

variation 

 

The evidence provided throughout this discussion highlights several complexities in the 

description and treatment of individuals. Such complexities call for characterization about what 

it means to have a social group that is informative in so much as they are internally regular and 

what talker-specific variation specifically references. Several factors must be considered when 

delineating what it means for an individual to follow the patterns of their social groups including 

(1) defining the dependency between the group and individual—is it a matter of between or 

within-talker variability? (2) defining the category relationships (e.g., co-occurrence? Linear 

relationships? Rates of use?) And (3) how we quantify the unit of analysis and whether it reliably 

informs the dependency we have defined (e.g., average behavior, distributions, divergence). 

Below I will provide an updated taxonomy to evaluate the scope and unit of analysis; the primary 

component of this dissertation addresses between-talker dependencies of regional dialects and 

individuals, but the taxonomy is meant to illustrate the variable talker behaviors. 

7.3 Taxonomy of Variability 

The different types of variation have substantial impacts how socio-indexical structure 

may form over cue distributions across talkers, each having potentially different means by which 

language users evaluate the speech signal, but which have otherwise remained unaddressed. 

These outcomes would suggest, at the very least, that language users may learn different models 

about variation in the world and different patterns based on individual and group dynamics as 

well as the approach to resolving ambiguity. In Bayesian models of socio-indexical structure, 
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each individual talkers’ “accent” can be formalized as a distribution of acoustic cues and a 

dialect group’s “accent” can be formalized as the distribution of acoustic cues over several 

talkers (Kleinschmidt, 2019). However, what remains unaddressed is the relationship between 

individual talkers’ distributions of acoustic cues and their respective dialect groups. Walker & 

Meyerhoff (2004) suggest that variation persists at the level of the individual but that given 

enough data per talker, individuals are shown to mirror the linguistic conditioning of the speech 

community of which they are members. Similarly, some scholars argue that within-talker 

stylistic variation is likely to reflect the range of variation between talkers in a community as 

correlated with social groups (Bell, 1984; Preston, 1991). Preston (1991) additionally suggests 

that variation according to social groups is derived from variation in the linguistic context, such 

that any group level variation is contained within the range of internal constraints on variation. 

 This fact illustrates the need for more large-scale studies of variation, and the need to 

look at distributional properties within and across talkers. In light of distributional properties, I 

revisit Guy’s (1980) taxonomy of variation, illustrating the potential patterns of individuals with 

respect to social groups. A reframing of the types of linguistic variation may be updated to 

consider how variability is distributed across individuals and communities in terms of their 

distributional patterns, as reflected in Table 2.2 and Figures 2.7-2.10. Given the original 

taxonomy concerned sociolinguistic variables more broadly, and not just phonetic categories, the 

adaptation to phonetic categories will not correspond entirely with Guy’s, but extends the core 

concepts, nonetheless. While this is chiefly concerned with the relationship between individuals 

and talkers for a single contrast and cue, there is of course additional nuance to how these 

relationships emerge and are learned. I will not go into detail here about such learning but rather 

illustrate this as an analytic taxonomy rather than learned and cognitively represented (for 

discussion of learning of indexicality and speech categories, see e.g., Quam & Creel, 2021). 
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Table 2.2 Adapted from Guy 1980 (Table 1.2;12): Types of Structures in Linguistic Variation 

Individuals 

Groups 

Similar Different 

Similar 
1. uniform force; same mean 

and same variance 

2a. Different means; same 

variance OR 2b. different 

means and different variance 

(Social or geographic 

dialects) 

Different 

3. Individuals with different 

means and/or low dispersion 

(Individually stratified 

linguistic variation) 

 

4. Combinations of 2 and 3, 

or true free variation 

 

 

First, Type 1 (see Figure 2.7) illustrates that over a cue distribution, groups are not 

differentiated, they show nearly the same central tendency and variance for a cue distribution and 

individuals are similar to one another. Such an example might be best illustrated by shared 

linguistic variation, such as vowel length differences preceding voiced and voiceless stops 

(though, see Tanner et al., 2020 for cross-dialect differences in size of effect). All talkers may 

apply such patterns uniformly or with some degree of fluctuation which may be the result of 

noise. Type 1 may be analogous to Ladefoged and Broadbent’s (1957) taxonomy of variation 

termed ‘linguistic’ variation.  
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Figure 2.7 Idealized Type 1 pattern, where individual talkers (grey lines) and groups (color and 

line type) share similar mean and variance (univariate left, multivariate right) 

Type 2 may further be broken down into subtypes, as illustrated in Figure 2.8. First, Type 

2a (Figure 2.8) illustrates that groups are differentiated by their central tendency but have similar 

variance, and talkers pattern similarly within but not between groups. Groups are only 

distinguished by their means and talkers are not meaningfully distinguished within a group. For 

example, groups of talkers may vary in mean position of /ʃ/, but the variance is similar across 

groups, and talkers largely align with their social group (e.g., Gunter et al., 2021). In Type 2b 

(see Figure 2.8) groups are distinguished by their central tendency and variance, but talkers 

pattern similarly within groups. In such a case, we might see that one group has greater variance 

than the other, and talkers generally mirror the same variance patterns. To be more specific, the 

degree of within-talker variability is shared across talkers. For example, this pattern may reflect 

one social group producing variation by phonological context, but for others, it may not. For 

example, dialect areas may be distinguished by their average /s/ position, and one may further be 

sensitive to allophonic variation, such as retraction (i.e., more /ʃ/) preceding [tr] contexts, while 

the other is not, or to a smaller degree (see again Gunter et al., 2021). 
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Figure 2.8 Type2a and Type2b, where individual talkers (grey lines) and groups (color and line 

type) show differences in means and/or variance, but talkers pattern similarly (univariate top, 

multivariate bottom) 

Type 3 is perhaps a case envisioned by current theories of talker-specific variation, where 

there is no indication of informative social group structure that differentiates individual 

variability yet there is high cross-talker variability, as depicted in Figure 2.9. In such cases, 

structure is likely found at a different scope, examining covariation of categories along a shared 
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phonetic dimension or within category dispersion is low for a given talker showing highly 

regular forms. An example of this type might be VOT for voiced stops where there is high talker 

variability across average VOT for talkers, but individuals show cue dependency between 

contrasts sharing a phonetic dimension, such as voicing (e.g., /b/ and /d/; Chodroff et al., 2015) 

and talkers have relatively low within category dispersion (Hazan & Baker, 2011). Such a pattern 

may also reflect the incorrect scope (i.e., social group) defined to capture the socially structured 

variation or otherwise idiosyncratic variation.  

 

 

Figure 2.9 Type 3 where individual talkers (grey dashed lines) show differences in means and 

groups (color) show no differences in means or variance (univariate left, multivariate right). 

Type 4 proposes challenges in that there can be any combination of the above factors and 

may suggest that analysts have defined the wrong scope, unit, or timescale that structures 

individual variability. On the other hand, it’s possible that within-talker variability (i.e., category 

dispersion) is high, but groups are largely still distinguished and show differences in the 

aggregate. A possible example is in the case of /s/, whereby gender is predictive of /s/ 

productions but when you examine individual differences within gender groups talkers show 

high variability both in terms of between-talker variation (differences in means) and within-

talker variability (high dispersion/large variance). As another example, there may be groups such 

as regional dialects where individuals variably participate in categories affected by regional 
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shifts (i.e., high between-talker variability) or within-talker variability is high. As an illustration 

of the distributional properties, see Figure 2.10. 

 

 

Figure 2.10 Type 4 individuals and groups show variable realizations in mean and variance, with 

no clear grouping structure (univariate left, multivariate right). 

The distinctions between each type in the taxonomy are largely idealized, and researcher 

observations of such patterns may demonstrate differences in the scope of the analysis, or if 

using macro social categories, incorrectly define the group. Given these various distinctions, 

however, and the emphasis on internal linguistic structure in relation to socio-indexical structure, 

theories would benefit from characterizing the nature of socio-indexical patterns and the 

consequences of variability and listeners’ beliefs. To characterize listener-oriented behavior, 

Bayesian models of socio-indexical structure must attempt to characterize the assumptions of the 

prior. As noted above, Type 2 largely reflects modern discussions of how listeners learn socio-

indexical structure in Bayesian models: largely homogenous groups provide cues to socio-

indexical information and language users learn this statistical relationship. In this case, the 

phonetic space is readily partitioned based on the regularity of statistical differences between 

groups, where language users within those groups are consistently aligned. Language users then 

build causal models for perceptual processing to align with these beliefs, such that contrasts that 

show regularly conditioned group variability would likely result in more flexibility in adaptation 
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as well as greater generalization of novel patterns due to the likelihood of such variability 

belonging to many individuals of a social group, rather than an idiosyncratic pattern 

(Kleinschmidt, 2019).  

Type 3 predominately reflects the systematic between-talker variability discussed by 

Kleinschmidt (2016, 2019; see also Kleinschmidt & Jaeger, 2015). With extreme individual 

stratification, there should be little benefit for language users to infer any social grouping—that 

is the “community” is merely an imposed abstract grouping of individuals by the analyst, but by 

which language users would be unlikely to construct from experience with the individual talkers. 

However, individual talkers’ distributional patterns still aid in predicting and parsing the speech 

signal in talker-specific ways. In such cases, prior experience with other talkers provides little 

benefit and listeners are more likely to learn quickly and more robustly when encountering novel 

variation. In addition, low category dispersion may provide greater certainty in a talker’s cue 

distribution resulting in faster and easier categorization while greater dispersion results in less 

stable identification responses (Clayards et al., 2008; Drouin et al., 2016; Newman et al., 2001; 

Theodore & Monto, 2019). Indeed, perceptual learning literature provides evidence of adaptation 

to individual talkers’ VOT and subsequent generalization to shared contrasts within a talker 

(Kraljic & Samuel, 2006; Kraljic et al., 2008; Lai, 2021; Munson, 2011), suggesting such 

regularity may be leveraged by listeners. 

In the case of Type 4, however, there is very little to be said about how language users 

learn the relationships between socio-indexicality and variation of these types. Type 4 could 

potentially be divided into two types of variation with distinct ramifications for listener-oriented 

behaviors. In what I’ll call Type 4A, the community may demonstrate more hierarchical or 

nested organization among sociolects, such that the larger group patterns are only a sum of the 

other sociolects in the community, so individual adherence may be more likely observed in a 

mediated social grouping (i.e., a different analytic scope). If this is the case, then current 

perception models should be able to accommodate this structure in a similar way to Type 1 and 

2, so long as the sub-groups are regular and homogenous. Given the emphasis on bottom-up 

grouping of related talkers in current models, this is of course plausible. However, given that 

much regional variation may demonstrate such patterns, it’s not clear how inferences about 

socio-indexical factors guide speech perception. Namely, at what level of such a hierarchical 



 

 85 

organization do listeners make inferences about the causality of variable input? This is an open 

question, and one I will discuss in more detail in subsequent chapters, though will not fully 

resolve.  

Type 4b is, potentially, the most complicated situation for our models of probabilistic 

learning where there are regular group differences in production but individuals’ adherence to 

these group norms is the object of much stylistic variation and within-category dispersion is 

high. In this case, it’s unclear what language users would build as their beliefs: that the 

individual is in flux and variation will always be, to some level, dependent on context and the 

individual or whether there is some abstraction that occurs over the exemplars of individuals 

across different contexts who all belong to the same group. Do language users form expectations 

based on the probabilistic cues associated with individuals in contexts, and disregard “group” 

information? Or do language users maintain bivalence of both the group norms and the lower-

level stylistic information? The answer to this may depend both on the language users’ 

experience with this type of variability, whether they are a member of the same community, and 

of course the task. If the speech community does function because users have shared evaluations 

of linguistic norms, then it would make sense that these more fine-grained stylistic choices 

would be tracked alongside larger community norms. However, if language users do not come 

from the same local community, then they may build causal models that only account for the 

larger community-level patterns that are more statistically regular in their experience. Both 

explanations are plausible in Bayesian models, and as noted by Kleinschmidt (2019:7), “group-

conditioned cue distributions reflect the starting point for talker- or situation-specific 

distributional learning” [emphasis added]. However, the nuances of how group-conditioned cue 

distributions prove to be informative with such inter- and intra- talker variation remains to be 

seen. Given the nature of the data in this dissertation, I will not be able to fully speak to this type 

of stylistic variation but examining distributional properties in vowels may act as a first step in 

addressing these questions. 

Overall, this may point to the fact that listeners may learn patterns of phonetic variation 

in line with different models. While a process of linguistic bricolage could facilitate maximal 

talker recognition, a process more akin to maximal community structure could ideally provide 

less need for adaptation and learning in processing. The more individually specific patterns of 
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socio-indexical structure may potentially facilitate processes of talker recognition of inter-talker 

differences in phonetic realizations of contrasts in idiosyncratic ways. While variability that is 

systematically structured at the group level may facilitate talker recognition across a wider range 

of talkers within a particular group (Docherty & Foulkes, 2014; Kleinschmidt, 2019). Vowels 

provide an interesting test case for identifying structured phonetic variation. On the one hand, 

vowels demonstrate robust dialectal differences, and listeners have some degree of awareness of 

vocalic variation across groups. On the other hand, they are a rich source of stylistic variation, 

where talkers seem to draw on individual categories for meaning making (Eckert, 2012; Eckert 

& Labov, 2017) and provide extensive talker information from spectral cues (e.g., Kleinschmidt, 

2019). 

8 Conclusion 

In this Chapter I have attempted to lay the groundwork for components of a theory of 

socio-indexical structure, drawing on work from across different domains of linguistic inquiry, 

emphasizing the role of the listener. Drawing from work in sociophonetics it is clear that 

structured variation occurs as a result of both internal linguistic constraints and external social 

factors. Despite the variability within social groups and individuals, listeners demonstrate a great 

deal of shared latent knowledge, especially with respect to regional dialects, that shapes their 

perception of linguistic categories. Current theories in psycholinguistics and sociophonetics 

suggest that listeners learn socially meaningful variation by tracking the statistical regularities of 

the speech signal across talkers and their social groups which is supported through distributional 

learning mechanisms. When listeners engage in linguistic comprehension, they then use prior 

knowledge about cue distributions and the social correlates that condition them to predict the 

incoming speech signal, adapt to novel talkers and novel forms, and generalization to similar 

talkers. While such a system is supported by much work in perceptual learning, the specifics of 

what listeners track and when they generalize are still unclear. Work in sociolinguistics provides 

a general lens through which we can begin to characterize such components allowing us to 

integrate various literatures to build a comprehensive model of socio-indexical variation. To 

move towards a comprehensive model, in this dissertation, I hope to examine different 
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conceptualizations of the prior that make up listeners’ input and test one such prediction in 

perceptual learning. 

The primary themes I hope to address in the chapters to follow include: 1) how we 

characterize individuals and their relationship to regional dialect; 2) how we characterize the 

prior which comprises the input for listeners’ representations and inferences; and 3) how do such 

listener inferences predict perceptual learning behavior. To address these questions, I examine 

vowel categories as a paramount example of structured variation, but which has otherwise been 

underexplored in the domain of perceptual learning. Using corpus data, I attempt to analyze 

different baseline experiences with regional and talker variability in American English assuming 

raw frequency distributions as the input (Chapter 4). Following this, I revisit core concepts in 

sociolinguistics about the internal properties of vowels and cue-specific tendencies to elucidate 

how such specificity can work in tandem with socio-indexical structure (Chapter 5). From there, 

I provide an example of the types of questions that can be drawn from corpus data, testing 

asymmetries between two vowels that share critical differences in group and talker properties in 

a perceptual learning experiment (Chapter 6). Following these analytic chapters, I will return to 

the themes and questions raised in this chapter in the discussion.  
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CHAPTER 3:  

CORPUS DATA & PROCESSING 

1 Introduction 

The first part of this dissertation is comprised of several corpus analyses aimed at 

assessing both the internal and socio-indexical structure of variability across talkers and dialect 

areas in American English. This Chapter describes the data and related pre-processing that feeds 

into the analyses in Chapters 4 and 5 and provides initial breakdowns by corpora. Within each 

chapter, relevant analytic choices and subsets of data will be detailed in line for each analysis, 

which are drawn from the overall dataset outlined in this Chapter. In the following sections, I 

will describe the source of the data and representativity for the goals of this dissertation (Section 

2), specify detailed information about the original source corpora and speaker demographics 

(Section 3), the automated acoustic measurement (Section 4), and the post-processing procedures 

(Section 5). The datasets are drawn from an open-source repository curated by the Speech 

Across Dialects of English (SPADE) project (Stuart-Smith et al., 2019; Mielke et al., 2019). 

Thus, Sections 3 and 4 represent the collaborative efforts of many researchers who contributed to 

the project. While I did not own the data collection or measurement, I was part of the SPADE 

project team, and knowledge about the project in these sections stems from this collaboration. 

Section 5 (along with Chapters 4-5) specifically describes my individual efforts toward data 

validation and processing. 

2 Data & Representativity 

The data for this dissertation come from the SPeech Across Dialects of English (SPADE) 

project (Stuart-Smith et al., 2019; Mielke et al., 2019). The SPADE project developed and 

applied software to pre-existing corpora for large-scale speech analysis. The data are composed 

of existing private corpora collected by various researchers along with publicly available 

corpora. The SPADE project aims to make data accessible to researchers either directly (e.g., 

directly downloading datasets) or indirectly in the form of acoustic data that can be queried (but 

not accessed directly) to maintain participant privacy (Sonderegger & Stuart-Smith, 2022).  
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The datasets used in this dissertation were selected from a larger repository containing 

automatically extracted acoustic measurements using SPADE tooling. Automatic extraction was 

carried out by team researchers using the Integrated Speech Corpus Analysis (ISCAN) software 

developed as part of the SPADE project. The subset of datasets used in this dissertation was 

selected to represent American English broadly and are drawn from nine source corpora, which 

together cover seven geographic dialect regions of the U.S.: North, South, West, Northeast, 

Midatlantic, Midland, NYC (see Figure 3.1 for overview and Section 3.1-3.8 for details about the 

source corpora). Each dataset consists of automatically extracted static formant measures (F1, 

F2, F3) from one-third of the duration of the vowel, as well as vowel duration drawn from the 

phone-aligned transcripts.  

The corpora comprise a range of speech styles (from read speech and word lists to 

sociolinguistic interviews), demographic backgrounds (age, gender, ethnicity), time of recording, 

and recording equipment (more details in Section 3 below). As such, the data represent a diverse 

perspective of American English and regional variation and was not curated to represent the most 

divergent or representative speech from each region. I believe this has several advantages, 

including a more ecologically valid representation of the speech listeners are likely to encounter 

on a regular basis. Such ecological validity provides a robust sample for validation of prior 

studies’ findings and better positions researchers to form predictions and hypotheses around 

listener expectations based on prior experience. Given that listeners’ expectations are drawn 

from a noisy and variable experience, these data provides an opportunity to probe precisely how 

such noisy and variable experiences are systematically organized in production and characterize 

listeners’ expectations in perception.  

Of course, the noisier and less controlled data also pose some drawbacks, including less 

clearly demarcated patterns and potential sensitivity to noise in statistical analysis. Similarly, the 

data does not necessarily represent the most divergent or representative speech for a given dialect 

area. To counter these challenges, I draw on several simulations and statistical methods to 

capture the most well-rounded perspective of the data as possible, including analyzing specific 

subsets and levels of socio-indexical organization (from individuals to larger dialect areas). 

Further, the intra-regional variability is of theoretical import to both how variable speech is 

structured in production and how listeners make sense of such variability. In addition to the 
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theoretical import, such statistical experimentation allows for a better understanding of the 

patterns above and beyond the potential impact of noise. For these theoretical and 

methodological reasons, the range of variation in the dataset is a strength of the analysis. 

3 Corpora & Speakers 

Before turning to the brief overviews of each of the corpora and the demographic 

breakdown of speakers (Sections 3.1-3.8), I will briefly describe the processing and aggregation 

of speaker metadata across the datasets. Speaker metadata was retained from the source corpora, 

with the exception of dialect area and ethnicity, which were aggregated for analytic purposes 

(dialect) and ease of comprehension (ethnicity). Fine-grained metadata about each individual’s 

location of residence (or length of residence) was not available across all corpora. Accordingly, 

using the available geographic information about speakers, dialect regions were standardized 

around dialect areas delineated in the Atlas of North American English (ANAE; Labov et al., 

2006). Figure 3.1 and Table 3.1 provide the overall geographic spread and relevant corpora 

across the datasets. For one of the corpora (Switchboard, see Section 3.1) broad dialect areas 

were the only available metadata regarding speakers’ regional background limiting information 

for the determination of boundaries of dialect area. For this case, speakers’ regional affiliation 

was preserved from the source data, corresponding (roughly) to the dialect areas of the ANAE, 

with the exception of the North and South Midland, which were collapsed into one ‘Midland’ 

region.  

Comparably, ethnicity and race demographics varied in collection and reporting across 

the source corpora. While these demographic details are not part of the social factors examined 

explicitly in this dissertation, they are nonetheless represented in the speech; Table 3.2 reports 

the number of speakers within macro racial and ethnic categories, and individual corpora speaker 

distributions are reported in Sections 3.1-3.8 below. Given the varied reporting, the macro 

categories represent an analytic aggregation of speakers and not necessarily their self-reported 

racial or ethnic identity. For example, the label ‘Asian or Asian-American’ includes a variety of 

identities provided by participants including ‘Asian-American’ and ‘Taiwanese’. Likewise, 

‘multiracial’ aggregates speakers who reported bi- or multi-racial identities, across variable 

combinations. Unfortunately, the Switchboard corpus did not have racial or ethnic identity of the 
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participants published, thus the “unknown” category reflects this pattern. The ‘other’ group 

represents only speakers where ‘other’ was originally specified in the metadata.  

 

 

Figure 3.1 The corpora represented in this dissertation and the respective geographic regions represented 

by talkers in the corpus. 

 

 

Table 3.1 Total speakers grouped by gender and dialect area across all corpora. 

Dialect Female (N) Male (N) Total 

Midatlantic 10 7 17 

Midland 153 156 309 

North 21 37 58 

Northeast 109 109 218 

NYC 8 11 19 

South 107 109 216 

West 62 58 120 

Total 470 487 957 
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Table 3.2 Total speakers by broad racial and ethnic groups. Groups are researcher aggregated based on 

original ethnicity reported across corpora. The unknown category represents Switchboard data, for which 

ethnicity was not reported. 

Ethnicity N 

African American or Black 27 

Asian or Asian-American 11 

Native American 3 

Caribbean American 2 

Jewish 3 

Latinx/Hispanic 12 

Multi-racial 8 

other 5 

unknown 339 

white 546 

Total 957 

 

3.1 Switchboard (Godfrey & Holliman, 1993)  

Originally collected by Texas Instruments, this corpus contains about 2,400 telephone 

conversations recorded 1990-1991. A total of 543 (241F, 302M) participants ranging across 

geographic location in the U.S. A subset of the data are represented here, with a total of 339 

speakers (152F, 1867M). The data was forced aligned by the SPADE team using MFA 

(McAuliffe et al., 2017). Speaker metadata includes gender and dialect area, as coded by the 

original researchers. Speakers were kept in their original dialect areas (see Table 3.3), except in 

the North and South Midland, which were combined into a larger ‘Midland’ category for this 

dissertation. Ethnicity and racial identity were not provided for the Switchboard data and were 

categorized as ‘unknown’. 

Table 3.3 Unique number of speakers by gender and dialect area, as originally coded in Switchboard (i.e., 

South midland and North Midland are kept separate) 

 

Dialect Female (N)  Male (N) Total 

North 21 37 58 

North midland 17 30 47 
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Table 3.3, Continued 

Northeast 10 8 18 

NYC 8 11 19 

South 16 22 38 

South midland 59 50 109 

West 21 29 50 

Total 152 187 339 

 

3.2 Santa Barbara (Du Bois et al., 2000-2005)  

The Santa Barbara corpus was compiled by a group of researchers in the Linguistics 

Department at the University of Santa Barbara, directed by Dr. John W. Du Bois. This corpus 

contains about 200 (~ 99F, 79M, 32 ‘unknown’) speakers of conversational or naturally 

occurring speech recorded in the late 1990s through the early 2000s. A subset of the total 

speakers are represented in this dataset, with a total of 135 speakers (75F, 60M) across five 

regional dialects. The corpus has a dataset of mixed ethnicities, of which the majority are white 

(N = 113), followed by Latinx (N = 11), Native American (N = 3), African American or Black 

(N = 2), multi-racial (N = 1) and other (N = 5). The corpus was aligned as part of the SPADE 

project using MFA (McAuliffe et al., 2017). Speaker metadata include gender, dialect state, age, 

hometown, ethnicity, and information on education and occupation. Speakers were categorized 

into dialect areas based on their dialect state information, as summarized in Table 3.4.  

Table 3.4 Unique number of speakers by gender and dialect area, categorized by dialect state information 

from the original corpus. 

Dialect Female (N) Male (N) Total 

Midatlantic 10 7 17 

Midland 23 21 44 

Northeast 8 7 15 

South 9 7 16 

West 25 18 43 

Total 75 60 135 
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3.3 Sunset Corpus (Hall-Lew, 2013)  

The Sunset Corpus was originally collected by Dr. Lauren Hall-Lew in the Sunset district 

of San Francisco (Hall-Lew, 2013). The corpus contains conversational sociolinguistic 

interviews of 28 participants, of which one speaker is not in the current dataset (16F; 11M). The 

speakers are European-American (N = 11) and Chinese American (N = 16) speakers as reflection 

of the demographics of the Sunset neighborhood (recorded in 2008-2009). The corpus was 

aligned by the SPADE team using MFA (McAuliffe et al., 2017). Speaker metadata include 

pseudonym, gender, year of birth, interview year, ethnicity, and heritage language. All speakers 

in this region were coded into the ‘West’ dialect region for this dissertation.  

3.4 West Virginia (Hazen et al., 2016; Hazen, 2018)  

The West Virginia corpus was collected as part of the West Virginia Dialect Project led 

by Dr. Kirk Hazen to document language variation in the speech of Western Virginians and 

educate the broader public. This corpus contains sociolinguistic interviews of 61 (31F, 30M) 

speakers as part of the West Virginia Dialect Project. The speakers are white (N = 54) or African 

American or Black (N = 7). The data were aligned by the original researcher using FAVE 

(Rosenfelder et al., 2015). Speaker metadata include birth year, sex, ethnicity, hometown, 

education, rural/non-rural, class, region, age group. The speakers were all categorized into the 

‘South’ dialect region for this dissertation. 

3.5 Raleigh (Dodsworth & Benton, 2017)  

The Raleigh corpus was originally collected by Dr. Robin Dodsworth and represents 

sociolinguistic interviews of speakers from Raleigh, North Carolina (recorded 2008-2017). The 

dataset available from SPADE contains only a subset of the sociolinguistic interviews for a total 

of 101 (51F, 50M) white speakers. Recordings were aligned by the original researchers using 

P2FA (Yuan & Liberman, 2008). Speaker metadata includes ethnicity, year of birth, and gender. 

The speakers were all categorized into the ‘South’ dialect region for this dissertation. 
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3.6 Dartmouth New England English Database (DNEED; Stanford, 2019)  

The DNEED was collected as part of the Dartmouth New England English research 

project, led by Dr. Jim Stanford in collaboration with Dartmouth undergraduates over the span of 

8 years (recordings from 2010-2017). The data represent speech from across all six New England 

states. While the original corpus contains both interview and read speech, the SPADE data used 

in this dissertation consists only of the read speech of 185 (91F, 94M) participants, who were 

asked to read 12 sentences each (roughly 16 hours of speech). Phone-level segmentation was 

done during corpus creation using FAVE (Rosenfelder et al., 2015). Speakers are from a variety 

of ethnic backgrounds, with the majority being white (N = 163), followed by African American 

or Black (N = 16), Caribbean American (N = 2), Jewish (N = 2), Latinx (N = 1), or multiracial 

(N = 1). Speaker metadata includes gender, origin, hometown, birth year, education, place, 

ethnicity, occupation, state, child latitude, child longitude. All speakers were categorized into the 

‘Northeast’ dialect region for this dissertation. 

3.7 SLAAP-Ohio (Arnold, 2015; Thomas, 2019; Wade, 2017) 

The Sociolinguistic Archive and Analysis Project (SLAAP; Kendall, 2007) is an 

interactive web-based archive of sociolinguistic recordings which includes a suite of corpus and 

phonetic analysis tools. The Ohio data here represent a subset of data available in SLAAP and 1 

of 6 SLAAP datasets available in SPADE. The Ohio data were originally collected by Dr. Erik 

Thomas beginning in 1993, and with additional collection by Dr. Lacey Wade (spanning to 

2015). A total of 69 speakers (34F, 35M), from various places in Ohio are represented in the 

SLAAP-Ohio data. The majority of the speakers are white (N = 66) followed by African 

American or Black (N = 2) and multiracial (N =1) identities. The data were forced-aligned as 

part of the SPADE project using MFA. Speaker metadata include sex, year of birth, ethnicity, 

and locality. Speakers were categorized as the ‘Midland’ dialect area for this dissertation. 

3.8 The Buckeye Corpus (Pitt et al., 2007) 

The Buckeye Corpus was originally collected by researchers at Ohio State University. 

The corpus contains conversational interview speech data of 40 (20F, 20M) white speakers from 
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Columbus, Ohio recorded in 2000. The phone alignment segmentation was corrected as part of 

the collection process. The original segmentation was phonetically aligned by the original 

researchers and was converted to phonological labels as part of the SPADE project. Gender and 

age are available as speaker metadata. Ethnicity was added for this dissertation based on details 

provided on the original corpus webpage(s) but was not included in the original dataset. The 

speakers in this corpus are categorized into the ‘Midland’ dialect region for this dissertation. 

4 ISCAN & Automatic Extraction 

ISCAN is an open-source software developed by the SPADE project for analysis of 

spoken corpora varying in format and size by enabling automated acoustic phonetic extraction 

(McAuliffe et al., 2019; Mielke et al., 2019). Such software advances the phonetic analysis of 

corpora by enabling replication by replicating acoustic extraction methodology across corpora. 

For formant extraction, ISCAN uses a bootstrapping measurement under different LPC 

coefficients at one-third of the vowel’s duration. Each of the measures is compared against a 

prototype that is parametrized by mean and covariance matrix of relevant formants and 

bandwidth. An additional algorithmic step identified potential errors in formant measures and 

performed reanalysis to drop individual formants and retain the next highest formant measure. 

The selection of the final measurement is based on the smallest distance from the prototype (as 

measured using Mahalanobis distance). Following automatic extraction, Mielke et al. (2019) 

preformed accuracy validation by comparing the datasets to manually computed measurements 

of vowels. For full details regarding the automatic measurements and validation, see Mielke et 

al. (2019). The SPADE team did the automatic extraction of vowel data using ISCAN and the 

data for this dissertation were retrieved from the OSF repository post-extraction and pre-

processing.` 

5 Data Post-Processing 

The cues relevant to vowel quality used in this dissertation are the first and second 

formants (F1, F2 respectively). As noted above, F1 and F2 were automatically measured at 1/3 

the vowels duration, where duration is based on the aligned intervals of the transcribed audio. 

Other cues and dynamic changes in F1 and F2 are undoubtedly used by listeners during linguistic 
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categorization and in social identification of speakers, however, F1 and F2 represent the 

predominant cues associated with vowel quality (Hillenbrand et al., 1995). This selection of 

these cues for this dissertation is not meant to suggest that these are the only cues that matter, 

and structured variation does not occur across other cue dimensions. Rather, F1 and F2 represent 

a worthy starting point by which we can begin to explicate socio-indexical structure across vowel 

categories as it remains the predominant means of describing vowels and vocalic variation across 

the field.  

After collection of the original datasets as provided by the SPADE team, all data were 

subject to the same post-processing to create parity and consistency across the data. SPADE 

originally provides vowel category labels based on MFA extracted arpabet labels, original 

corpora transcription conventions, or Unisyn Lexicon (Fitt, 2000) specific label conventions that 

broadly align with Wells’s (1982) lexical classes. All labeling conventions were broadly grouped 

into single phonemic vowel labels consistent with American English. A stop word list was 

applied to the datasets which removed high frequency function words (e.g., he, they, am, an, 

etc.), taken from the Dartmouth Linguistic Automation suite (Reddy & Stanford, 2015). 

Common lexical items with variation that is non-generalizable to a class (e.g., tomato, basil, 

either, neither) were removed (N = 4898) due to the irregular phonetic forms used to transcribe 

such items. Further, rhotic items transcribed as syllabic or r-colored (e.g., ER) were removed for 

analysis (N = 19767). Finally, only stressed vowels were retained for the analysis, either primary 

or secondary stress, eliminating vowels that were potentially unstressed and reduced.  

F1 and F2 values were normalized using Lobanov normalization (Lobanov, 1971), which 

effectively z-scores the Hz values by participant, scaling and centering the vowel space. Lobanov 

normalization has been demonstrated to preserve dialectal differences while removing gross 

physiological differences, which are often correlated with gender (Kohn & Farrington, 2012; 

Thomas & Kendall, 2007). Contrastingly, gross physiological differences are preserved in un-

normalized (and in Bark transformed) space and may obscure differences across regional 

dialects, of which is the primary factor of interest in this dissertation. Lobanov is not unique in 

this respect and is not meant to represent a model for listener normalization and rather represents 

an analytic choice for data processing. Similarly, it is not to say that gender is not an informative 

component of listeners’ perceptual processing, but rather as a means of reducing the influence of 
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gender on raw formant values to facilitate the identification of regional patterns. Further, it 

allows for better cross-discipline and cross-analytic perspectives, as it is the predominate method 

used in sociophonetic studies of regional dialect variation (Kendall & Fridland, 2021) and used 

in current work in speech processing that this dissertation draws from (e.g., Kleinschmidt, 2019). 

Thus, it provides greater reproducibility and interpretation of the findings of previous work in 

addition to its analytic benefits as a normalization method. 

Post normalization, tokens were removed that had a duration of less than 60msec (N = 

59,255). Tokens greater than 2.5 standard deviations on a by-speaker basis were removed (N = 

9,011). The final dataset totaled 586,945 tokens across 13 vowel categories. For the analyses in 

the following chapters, I chose to only look at 11 monophthongs and /aɪ/, given its prevalence in 

vowel shifts (see Chapter 2), which provided a total of 556,946 tokens. After which, rows were 

removed where the speaker’s vowel category had fewer than 5 tokens (i.e., speaker001 /aɪ/ < 5 

tokens that speaker’s /aɪ/ category was removed); a total of 3,898 items were removed from the 

analysis and 17 unique speakers leaving a total of 583,047 tokens across 940 speakers. 

6 Conclusion 

Overall, the data present a unique opportunity to validate assumptions about talker 

variability in American English. The wide range of styles and talkers simulate the broader range 

of variability that listeners contend with for speech-processing tasks and allow for varied 

simulations to aid in the characterization of listener experiences and resulting behavior. 

Similarly, drawing on large-scale corpus phonetics can provide researchers with insights into 

phonetic variability and questions about internal systematicity. These points will be illustrated in 

more detail in the following chapters. 
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CHAPTER 4:  

PRIOR EXPERIENCE & SOCIO-INDEXICAL GRANULARITY  

1 Introduction 

As described in Chapter 2, recently linguists’ understanding of variability has begun to 

converge on the utility of structured variability in speech perception processes, with 

psycholinguistic theories building variability into theoretical frameworks (Bent & Holt, 2017; 

Clayards et al., 2008; McMurray & Jongman, 2011; Jongman & McMurray, 2017; Kleinschmidt 

& Jaeger, 2015; Kleinschmidt, 2019; Kraljic et al., 2008). Drawing on Bayesian models of 

speech perception, recent iterations of ideal adapter theories have progressed to hypothesize the 

role of socio-indexical structure in online speech processing (Kleinschmidt, 2019; Kleinschmidt 

& Jaeger, 2015; Weatherholtz & Jaeger, 2016). These models posit that listeners track the 

statistical contingencies between social factors and phonetic variability when it is informative to 

speech processing. Informativity is defined by talkers grouping into regular and coherent socio-

indexical groups which can partition the variable phonetic space. A key formalization of ideal 

adapter models suggests that talkers’—and by extension social groups’—accents are a 

probability distribution for a given cue and category mapping from which listeners learn talker- 

and group-specific characteristics (Kleinschmidt, 2019; Kleinschmidt & Jaeger, 2015). The 

learned mapping of phonetic variability to socio-indexical factors consequently informs initial 

speech perception and acts as the starting point for further adaptation to novel talkers. Adaptation 

depends on listeners’ a priori experience with cross-talker variability. As such, research should 

be cognizant of how prior experience may vary across individuals and our treatment of what 

constitutes the baseline experiences (i.e., the prior) listeners have.  

This chapter attempts to elucidate such descriptions of listeners’ priors to inform 

predictions regarding listener behavior in adaptation. The input for learning, according to 

Kleinschmidt (2019), may be described as a generalized property, whereby the (joint) cue 

distribution for a given contrast (e.g., vowels, stops, etc.) provides input for both linguistic and 

social inference. I will label this perspective as the holistic hypothesis, whereby vowels overall 

are informative of cross-talker variability and listeners’ perceptual learning stems from this 
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generalized description. Using different analytic conceptualizations of socio-indexical structure, 

this chapter challenges the holistic hypothesis. By examining different degrees of granularity in 

socio-indexical structure, we can begin to hypothesize how different analytic levels predict 

diverse listener behaviors. The analysis in this chapter extends recent work by Kleinschmidt 

(2019) drawing on and validating information theoretic measures of informativity (see Section 3) 

for evaluating socio-indexical structure in speech. As such, I make some of the same simplifying 

assumptions as Kleinschmidt (2019), including formalizing individual talkers’ and dialect areas’ 

varieties according to the joint cue distributions (F1xF2) of vowel categories. However, this 

chapter seeks to examine three additional research themes to augment and nuance the findings 

from Kleinschmidt (2019):  

• How do different ranges of previous experience change how informative socio-

indexical factors are of individual vowel categories? 

• How does the organization and granularity of socio-indexical structure provide 

alternate predictions? 

• To what extent do the distributions of individuals map to the distributions of their 

groups? How do individuals diverge from their regional groups? 

Over three analyses below (Section 4) I evaluate how socio-indexical factors condition 

variability across simulations of different baseline experiences using a large-scale dataset of 

vowel measurements across American English (see Chapter 3). The simulations aim to validate 

the extent to which different prior experiences provide comparable emergence of socio-

indexically conditioned variation across the vowel space. In addition, I extend the methodology 

to analyze different organizations of socio-indexical structure to determine how different degrees 

of specificity or generalization across vowels and talkers provide further insight into socially 

structured variation across the vowel space. As a subset of this, I evaluate how individual talkers’ 

distributional properties (i.e., within-talker variability) align with their dialect areas’ 

distributions.  

These questions speak to broader themes in this dissertation (as described in Chapters 1-

2), including how individuals align, or not, with their dialect areas, and inquiries about the 
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degree of specificity in socio-indexical structure for listeners. In addition, the analyses in this 

chapter provide insight into socio-indexical structure across regional varieties in production, 

adding an under-described perspective to ongoing work on regional vowel patterns. The findings 

of this chapter highlight several broad takeaways. First, counter to the holistic hypothesis, vowel 

categories generally show asymmetrical conditioning, where some vowel categories are more 

strongly conditioned on dialect, while others are more robustly conditioned on individual talkers 

and lack dialect conditioning. Across the several simulations, two vowel categories emerge most 

frequently that reveal this asymmetry: /eɪ/ as dialectally conditioned and /ʊ/ as talker 

conditioned. Second, within dialectally conditioned vowel categories, I observe some degree of 

low-level phonetic uniformity across talkers. Finally, vowel categories that are most commonly 

described across regional vowel shifts are more likely to demonstrate greater between-talker 

variability both within and across regions. 

In the following section I will review Kleinschmidt (2019) for context and 

methodological points (Section 2.1). Following this, I will outline current literature and 

hypotheses about dialect variation in production, focusing specifically on the tension between 

individuals and community patterns (Section 2.2). Following the background, I will discuss the 

methodology (Section 3) before moving on to the three primary analyses of this chapter (Section 

4). Finally, I will summarize and discuss the implications of the results in more detail and 

conclude (Section 5). 

2 Background 

2.1 Informativity 

Kleinschmidt (2019) specifically tackles the problem of the possible parameters of socio-

indexical structure that are available to listeners in his computational-level theory of the ideal 

adapter model. The computational model aims to distinguish between the mere existence of 

socio-indexical differences and which of these differences are meaningful or worth tracking for 

speech perception. Within Kleinschmidt’s (2019) model of the ideal adapter, socio-indexical 

structure is formalized as the informativity of a socio-indexical factor for speech processing as 

conditioned on a contrast’s cue distributions. Informativity is quantified using Kullback-Leibler 
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(KL) divergence, an information theoretic measure that quantifies how similar (or divergent) two 

probability distributions are (Kullback & Leibler, 1951; see Section 3 below for specific details). 

In Kleinschmidt’s model, he compares the cue distributions of socio-indexical factors to a 

marginal distribution reference group made up of American English more broadly. As such, the 

model assumes that the reference group is representative of American English and the starting 

point from which listeners evaluate the extent to which a socio-indexical group may provide 

information for speech perception. When a socio-indexical factor is highly divergent from the 

American English baseline, it suggests there is more information to be gained about cue 

distributions from knowing the more specific social grouping (e.g., gender) and thus more likely 

to be tracked by listeners. Thus, informativity might uncover reasonable listener expectations 

about socially structured variation from prior experience.  

Crucially for this chapter, informativity provides a framework from which we can 

generate predictions about listener expectations under different simulations of the reference 

group. Namely, by manipulating the reference group from which socio-indexical structure is 

evaluated, we can identify the stability of socio-indexical factors and vowel categories under 

different hypothetical listener experiences. As such, using a large-scale dataset of American 

English, we can both replicate and expand Kleinschmidt (2019). The American English dataset 

used by Kleinschmidt (2019) is a limited representation of ‘American English’ composed of 

laboratory-elicited speech and generally homogenous beyond gender and regional dialect (see 

Clopper et al., 2005). As such, it is both a broad conceptualization of the baseline (i.e., American 

English) and yet a very narrow depiction of the variety overall. Theoretically, the use of a broad 

reference makes logical sense as the broader range of variation would require less frequent 

updating to listener representations and would represent conservative estimates of informativity. 

However, it is also necessary to examine other ‘baseline’ experiences to validate the method and 

generate testable hypotheses of the model. Furthermore, using ‘American English’ as a baseline, 

the range of speech should encompass a more representative and robust sample of the types of 

speech listeners are likely to encounter across talkers in order to fully validate the method and 

lend ecological validity to our hypotheses. I address this gap by examining different simulations 

of reference groups and drawing from a more diverse dataset. I will return to the details of 

quantifying previous experience in more detail in Section 2.3. 
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In addition to the question of previous experience, Kleinschmidt (2019) provides some 

initial predictions about how much socio-indexical structure can be identified across vowels. In 

Kleinschmidt’s work, he describes a holistic dialectal structure which generalizes across vowels 

at two levels, which I refer to as dialect-agnostic and vowel-agnostic. Dialect-agnostic refers to 

the fact that informativity of the social factor, dialect, is a generalized aggregate property over all 

dialects and talkers. Analogously, vowel-agnostic refers to the fact that dialect informativity 

occurs across the vowel space where dialect is equally likely to be informative across all vowels 

at the broader contrast level (i.e., distinguished from, for example, stops). Namely, listeners build 

prior experience that suggests vowels vary across talkers as a function of their dialect 

background. Again, I refer to this as the holistic hypothesis, which describes generality over 

groups, talkers, and individual vowel categories and hypothesizes listener behavior across vowel 

categories as symmetrical.  

Indeed, Kleinschmidt (2019) demonstrates that the degree of informativity of social 

groups, including dialect, is much greater for vowels compared to stops. Given these results, the 

holistic perspective predicts that all vowel categories result in similar adaptation and 

generalization behavior, whereby listeners are likely to treat any individual vowel category that 

deviates from prior experience equally by adapting flexibility to novel variation and generalizing 

to talkers of shared identity. Yet, as described in Chapter 2, there is evidence that vowels are not 

equally malleable in adaptation (e.g., Kataoka & Koo, 2017). 

Conversely, Kleinschmidt (2019) also provides analytic results of how informativity 

emerges across more granular socio-indexical organizations from the combination of specific 

vowels and specific dialects. In the intermediate level, Kleinschmidt demonstrates dialect 

emerges as informative of the cue distributions of specific vowels that occur across regional 

shifts, such as /æ/; a dialect-agnostic but vowel-specific pattern. A further granular level is also 

described, which I refer to as dialect-specific and vowel-specific. In such cases, individual dialect 

areas (e.g., South) are informative of cue distributions of specific vowels (i.e., /eɪ/). However, 

such a division from a dialect-agnostic perspective is not developed theoretically within the ideal 

adapter framework, making the distinction, and ensuing predictions, of dialect-agnostic and 

dialect-specific organization unclear.  
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Furthermore, work describes the fact that vowels are highly talker-specific (e.g., 

Kleinschmidt, 2019; Samuel & Kraljic, 2009; Weatherholtz, 2015) as they contain a high degree 

of spectral information alongside factors of individual identity formation. In support, 

Kleinschmidt (2019) finds that talkers are more informative of cue distributions than dialect 

areas (and of gender). The distinction is suggested to indicate that when group is informative, 

perhaps regardless of magnitude, listeners will be more likely to generalize patterns to talkers of 

the same group. However, when group is not informative, then listeners are more likely to learn 

in talker-specific ways. There are many open questions about how these dichotomous 

classifications of socio-indexical structure (i.e., talkers vs. groups) affect listeners’ 

representations and expectations. 

Moreover, the informativity of socio-indexical structure requires that talkers within social 

groups are consistent and aligned with the broader group pattern. However, as detailed in 

Chapter 2, such alignment has been an open question in sociophonetics. Thus, even within a 

dialect-agnostic or dialect-specific organization, the degree to which talkers adhere to patterns of 

their dialect areas requires additional validation. I will largely structure the analysis in Section 4 

around these different potential organizations of socio-indexical structure. In the next section, I 

will outline some expectations for patterns for each of the organizations based on current work in 

sociophonetics and more specific expectations about when talkers may diverge from their 

regional backgrounds. 

2.2 Contextualizing Expectations in Production 

Vowels represent an interesting nexus of socio-indexical structure where on the one hand 

dialect areas condition variation across vowel categories, demonstrate dialect-specific patterns, 

and illustrate a great deal of talker-specificity. This tension poses the necessity to validate the 

assumptions of ideal adapter models that groups are informative when they show high talker 

conformity to group norms. To guide the discussion, I will draw on traditional statistical 

terminology to facilitate interpretation. Specifically, I will use the term factor to refer to the 

higher order grouping variable (i.e., ‘dialect’) and the term level to refer to the components of a 

factor (i.e., ‘South’, ‘West’, etc.). Such terminology will extend to the other social variable of 

interest (individuals), with term factor referring to the aggregate group of talkers, and the term 
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level to refer to an individual talker. In the analyses in Section 4, the terminology reflects an 

analytic assumption of the separation between the factors of interest (i.e., dialect OR talkers). 

Each factor is regarded as explaining the variance of the joint cue distributions (F1xF2) as a 

composite of their respective individual levels, but there is not a hierarchical organization of 

talkers within dialects.   

Subsequently, I will also refer to individual talkers within dialect areas, referring to a 

more nested structure to ask questions about the nature of individuals within their regional 

dialects. In such cases, I will use the term nested merely to distinguish from the flat structure 

associated with the dialect and talker factors; a visual illustration of the terms and the 

relationships is presented in Figure 4.2. I will refer to vowels broadly when referring to the 

aggregate of vowel categories (i.e., F1 and F2 across the vowel space), and individual vowel 

categories where relevant. The given predictions of socio-indexical structure in production will 

be the main focus in this section, I will return to the implications for Bayesian models of socio-

indexical structure and perceptual learning in more detail in the overall discussion following the 

results (Section 5). 

 

Figure 4.1 Socio-indexical organization based on more traditional terminology for clarity. The 

organization is meant as a description rather than a theoretical mental model. 

In alignment with the dialect and vowel agnostic perspective outlined in Section 2.2, I 

hypothesize replicating Kleinschmidt’s (2019) findings. Specifically, variability across vowel 

categories will be conditioned by the factor of Dialect, making the dialect factor informative of 
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the joint cue distributions of vowels broadly. Similarly, there is good reason to believe that the 

Talker factor is likely to condition variability to a greater degree than Dialect. These two 

components will ideally remain consistent across all vowel categories in comparison to the 

overall distribution of American English vowels. However, beyond that there are several other 

hypotheses we can make in terms of the granularity of expected contributions of individual 

dialect levels (e.g., ‘South’) and individual vowel categories (e.g., /æ/). Furthermore, assuming a 

more nested structure we should expect that individual talkers will diverge from their dialect 

areas in meaningful ways.  

Pivoting from the dialect-agnostic and vowel-agnostic perspective, we now assess a more 

nuanced perspective of structure under a dialect-specific and/or vowel-specific framing. First, 

given the documented patterns of vowel shifts (see Chapter 2) I predict a dialect-agnostic and 

vowel-specific structure to emerge from the analyses in this chapter (Section 4), such that the 

Dialect factor conditions variability on an individual vowel basis. Given the fact that some vowel 

categories are more likely to be implicated across several shifts, we may likely see the 

generalization of dialects providing information to cue distributions for specific vowel 

categories. For example, /æ/ and /ɛ/ are categories that are more likely to vary across regional 

locales (Labov et al., 2006) making them robust examples of dialectally conditioned variability. 

Vowel categories that are likely to fit such a description are /æ/, /a/, /ɔ/, /ɛ/, and /ɪ/, where each 

vowel has been shown to vary by central tendency across regional dialects and is not limited to 

variation within a single regional variety. In such cases, we might predict listener behavior to be 

asymmetrical, such that categories like /æ/ will demonstrate more malleability in adaptation and 

greater generalization than categories like /i/ (see Section 5 and Chapter 6). 

Next, we can hypothesize a more granular structure of dialect-specific and vowel-specific 

patterns that arise as informative. In such cases, there is limited generalization occurring over 

dialect areas or vowels and listeners generate more specific expectations about the cue 

distributions for individual vowel categories and dialect areas. For example, listeners may 

generate expectations that, in the West, the cue distributions of /æ/ are divergent from American 

English more broadly. As such, we could expect categories to emerge that are implicated only in 

a particular regional variety, or alternatively, when they are most divergent from the reference 

group (see Section 5 for more specific listener behavior predictions). 
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Both the dialect-agnostic and the dialect-specific hypotheses outlined thus far assume 

that dialects are not equally likely to condition cue distributions for all vowel categories in an 

informative way. When dialects are informative of cue distributions, either for the factor or at 

individual levels, I will refer to this overarchingly as dialect-informative. Consequently, the 

expectation would be that in the absence of dialectal conditioning, individual talkers’ cue 

distributions are highly regular, and thus talker information is high. In cases where cue 

distributions are conditioned on talkers but not on dialect, I will refer to this pattern as talker-

informative. While we expect talkers to always be generally more informative than the group, 

talker-informative specifically refers to cases where there is limited (or minimal) evidence of 

dialect conditioning for the same category. 

The former predictions assume that when dialect (factor or levels) is informative of a 

vowel category’s cue distribution it reflects greater homogeneity among talkers’ cue distributions 

within their respective dialects. In other words, individuals will meaningfully group into regional 

dialects and demonstrate uniformity in cue distributions mirroring their community patterns. 

However, such an assumption is never directly evaluated and remains as an open question. The 

methods used by Kleinschmidt (2019) for aggregation of individuals to dialect areas occur as a 

flat structure (i.e., raw distribution of all tokens and talkers) making it difficult to validate such 

an assumption. Given the reality that individuals will diverge more or less from their group’s 

norms (see e.g., Horvath & Sankoff, 1987), we can make some predictions about talkers as 

nested within regional groups.  

As a vowel category undergoes change or gains social salience, there may be greater 

spread of talker norms within the community as individuals may have more awareness of 

variation and draw on phonetic resources in variable ways to index identity (Eckert, 2008, 2012; 

Erker, 2017; Guy & Hinskens, 2016; Trudgill, 1986). Given this, we might expect that vowel 

categories more saliently associated with regional vowel shifts are less likely to show robust 

dialect conditioning in the aggregate as a function of higher within-region variation. Thus, we 

might observe asymmetry across vowels such that some are dialectally conditioned (i.e., high 

regularity of talkers within regions) and categories that are talker-specific (i.e., higher 

idiosyncratic tendencies, more variability within regions). Such patterns may be evident when we 
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examine a more nested structure, examining individuals in relation to their dialect areas, rather 

than the flat structure provided by the Dialect and Talker factors and the respective levels. 

Ongoing work of regional vowel shifts illustrates the variability that may arise across 

analyses. Recent work has demonstrated some regional vowel shifts are reversing, resulting in 

more heterogeneity between talkers. In the South, for example, talkers are not participating in the 

Southern Vowel Shift (SVS) to the same extent as evident by individuals within the region 

demonstrating variable participation and alignment with Standardized American English forms 

(Dodsworth & Kohn, 2012; Dodsworth, 2018; Kendall & Fridland, 2012). As a result, the 

within-region variation across talkers is greater for vowel categories predominately marked for 

the SVS, such as /eɪ/, /ɛ/, and /aɪ/. As such, we might hypothesize that /eɪ/, /ɛ/, and /aɪ/, are less 

likely to emerge as dialect-informative and demonstrate greater divergence of individuals from 

the reference group of the South. If /eɪ/, /ɛ/, and /aɪ/ are predominately associated with the SVS 

then we might expect that there is greater heterogeneity among individual talkers within that 

dialect area. And indeed, this could at least in part explain why Kleinschmidt (2019; see also 

Clopper et al., 2005) didn’t observe a high degree of informativity of the dialect area for SVS 

vowels. The South is not the only region where such reversal has been observed. Recent work 

has demonstrated the North undergoing reversal of the NCS for /æ/ and /a/. Consequently, we 

might expect greater diversity among talkers within the Northern dialect region as well for these 

vowel categories. A prediction stemming from these patterns is that in regions where vowel 

shifts are undergoing reversal, there may be a decreased likelihood of seeing dialect-specific and 

vowel specific patterns that align with regional shifts. Instead, we may see evidence of greater 

talker-specificity for each of the vowel categories as indicated by the high informativity of 

talkers with respect to their dialect areas.  

In addition, some vowel categories within a regional dialect are more likely to vary in 

their social meaning, and as such we might expect broadly more variability across talkers as they 

draw on different social resources during speech production. For example, /æ/ has been 

associated with variable social meanings in both production (Eckert, 2008; Podesva et al., 2015; 

Podesva, 2011) and listeners’ perception of talker characteristics (D’Onofrio, 2015; Villarreal, 

2018) across dialect areas. Consequently, there may be minimal dialect-specific informativity of 

/æ/ but high talker-specificity as talkers draw on the social meaning in variable ways. While the 
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dataset used in this chapter doesn’t necessarily capture stylized speech, there may nonetheless be 

a broader range of variability from talkers with respect to their regional groups in their average 

behavior. Alternatively, categories that carry less social meaning or salience may be more likely 

to show higher within-dialect uniformity as a result of their unmarked status. For example, back 

vowel merger is not considered salient (Labov, 1994, Eckert & Labov, 2017) and thus may be 

more likely to show regularity across talkers within a given region. In such cases we might 

expect higher dialect-specific informativity and talkers within the region demonstrating minimal 

divergence from their groups in a nested model. 

In the expectations outlined in this section, it is clear that there are any number of ways 

that social factors can be informative to vocalic cue distributions. Beyond the dialect-agnostic 

and vowel-agnostic framing of Kleinschmidt (2019), any degree of dialect or vowel specificity 

suggests asymmetries across vowel categories about which socio-indexical factors are 

informative of cue distributions. Given the fact that vowels will always be highly informative of 

talker identity, it’s fruitful to consider the relational constituents of individuals and dialect areas. 

A fallout from this relational perspective is a division between group-informative and talker-

informative patterns, where group-informative patterns demonstrate consistent regularity within 

dialect areas and talkers show minimal divergence from their regions. Similarly, talker-

informative patterns would show regular null effects of dialect informativity and greater 

between-talker variability within regions. The source of group-informative and talker-

informative vowels may be correlated with social salience of the category where more salient 

categories show less regularity across talkers than others. Such a distinction is important because 

this potential asymmetry across vowels makes them a unique test case for understanding how 

listeners’ a priori knowledge of socio-indexical structure may produce different adaptation and 

generalization behavior. I will focus primarily on the cases of dialect and vowel-specific 

descriptions of socio-indexical structure in the analyses in Section 4 and return to discuss 

implications for listener behaviors in the discussion.  

2.3 Quantifying Previous Experience 

In this chapter, previous experience is simulated in three ways to assess the degree to 

which vocalic variability shifts in dialect and talker informativity under different ‘baseline’ 
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experiences. The analyses are not meant to represent an exhaustive account of different listener 

experiences and do not account for experience with second language English speakers, ethnic 

varieties, or other varieties of English outside of the U.S. However, conducting simulations with 

a corpus of natural speech allows us to generate testable hypotheses and begin validating the 

assumptions of ideal adapter models under more ecologically valid representations than lab 

speech (see Chapter 6 as one example). In the first analysis, I simulate a robust experience with 

American English, to validate informativity of socio-indexical factors (Analysis 1, Section 4.1). 

In the second analysis, I will examine a smaller subset of data comprised of regions that 

represent the regional vowel shifts more specifically (Analysis 2; Section 4.2). In the third 

analysis, I shift perspectives and assume that listeners’ baseline means of evaluating talker 

structure is in reference to their variety and simulate this by examining divergence from a single 

region as a reference group (Analysis 3, Section 4.3). In the following paragraphs, I will describe 

the motivation for each of these choices in more detail and provide some general expectations. 

In the first analysis, a robust experience with American English is simulated using the 

entirety of the datasets outlined in Chapter 3. This larger dataset represents an exposure to 

American English that is representative of speech listeners are more likely to encounter where it 

may be imbalanced across regions, across speakers, and a diversity of speech styles. This 

analysis provides insight into a more dynamic representation of speech than what is typically 

experienced in a laboratory setting and provides a more accurate reflection of the diversity 

listeners contend with. Such a test case is essential to validating both the methodological utility 

of KL divergence and for validating the computational model’s predictions more broadly. From 

this perspective, the baseline experience of ‘American English’ provides the most conservative 

estimate of socio-indexical informativity across different analytic organizations of social 

structure and under the more representative noisy sampling distributions. 

In analysis two, I analyze a subset of the data that represents a more constrained model of 

American English that is represented by regions that participate in the most studied and 

described vowel shifts (North, South, West). This functions in part to validate KL divergence 

with a more controlled (i.e., less noisy) sample of conversational speech where there are clearer 

expectations based on extensive work into these regions. This baseline experience represents a 

sort of middle ground, where the reference encoding represents the margins of the different 
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regional vowel systems. Primarily, this treatment serves to understand whether the patterns 

observed in Analysis 1 can be attributed to the overall diversity of the corpora. We also might 

expect that informativity is likely to be emergent when examining regional patterns that are 

expected to be most divergent, and indeed the availability of structure to listeners may mirror 

similar expectations. 

Finally, I take a narrower view of experience where listeners’ primary exposure is of a 

single dialect area (e.g., West) and ask how informativity of vowel categories may hinge on 

listeners’ prior experience with their own dialect area. Some work has suggested that listeners 

make perceptual evaluations in relation to their own dialect areas (e.g., Fridland 2008) and have 

demonstrated dialect categorization is influenced by mobility in early linguistic experience 

(Clopper & Pisoni, 2004b). Thus, it’s not unreasonable to assume that listeners may be 

identifying socio-indexical structure in relation to their own dialect areas, rather than more 

broadly construed ‘American English’ or a wide-ranging set of experiences with regional vowel 

systems. This expands on the tests in the prior section by probing a different model of the 

‘baseline’ data and diverges from the Kleinschmidt (2016, 2019) by hypothesizing that potential 

structure is evaluated in relation to a baseline community model. This simulation also provides 

an initial depiction of how dialect areas diverge from one another in meaningful ways, which has 

methodological implications for a range of sociophonetic questions beyond those outlined here. 

Overall, these three simulations of priors usefully inform predictions about what listeners may 

reasonably identify to form a priori assumptions about dialect and talker variation.  

3 Methods 

3.1 KL Divergence: Theoretical Details 

Throughout this chapter I will use KL divergence as a measure of socio-indexical 

structure, following work by Kleinschmidt (2019). At a more general level, KL divergence is an 

asymmetrical measure of divergence (or distance) between two probability distributions, as 

denoted by the D in D(Q||P). KL divergence is a well-attested metric used across disciplines 

interpreted variably as measure of relative information, of uncertainty, or of surprisal and 

salience (Commenges, 2015). In information theory, relative entropy describes the relative 

information loss associated with encoding a true probability distribution (P) with an estimated 
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prior distribution (Q; Kullback & Leibler, 1951). Or, in other words, how much uncertainty 

about the cue distributions is reduced by knowing P compared to Q. In this chapter, I follow 

Kleinschmidt (2019) in interpreting KL divergence values as denoting information gained by 

socio-indexical factors (P) in relation to an estimated reference distribution Q, which varies 

across analyses. Though, I will also use ‘divergence’ as a simplified atheoretical term to describe 

the patterns in the data when relevant. To summarize, high divergence denotes a loss of 

information when using a distribution Q (e.g., American English) to estimate a true distribution 

P (e.g., a talker’s true distribution) demonstrating there is more information gained by knowing 

the true distribution P (e.g., talker).  

KL divergence is not meant to represent a cognitively real measure of what listeners track 

or represent, but rather acts as a means to quantify potential socio-indexical structure across cue 

distributions and identify candidate vowels listeners have prior experience with as being socially 

conditioned. In this chapter, Dialect and Talker are the primary socio-indexical factors of 

interest, however, I also replicate Kleinschmidt (2016, 2019) by calculating Gender and 

Dialect+Gender in Analysis 1 and 2 (Section 4.1- 4.2). I expand the use of KL divergence in two 

ways: 1) evaluating how much information is gained by talkers’ cue distributions relative to their 

dialect area cue distributions, and 2) evaluating how much information is gained by socio-

indexical factors when comparing a single dialect area (Q = West) to other dialects (e.g., P = 

South; see Richter et al., 2016 for similar methods) and Talkers (e.g., P = talker01). The first 

addition tests the internal consistency of individuals within groups—a critical piece of ideal 

adapter models and the potential of informativity for a particular factor. In addition, it provides 

an assessment of how much information would be lost if listeners were to a priori use a dialect 

area to estimate individual talkers within those groups. The second addition allows us to identify 

how much structure is evident when listeners use their own community as an estimate for talkers 

and dialects (Section 4.3, Analysis 3). 

3.2 KL Divergence: Technical Details 

As described above, KL divergence is a non-symmetric measure of the difference 

between two probability distributions P(x) and Q(x), where x represents a random variable, here 

as the multivariate distributions of F1 and F2 conditioned on individual vowel categories. 
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Following Kleinschmidt (2019), P(x) and Q(x) are assumed to be normal multivariate cue 

distributions conditioned on vowel category parameterized by the mean and covariance; P(x) is 

also conditioned on socio-indexical factor (e.g., dialect area, talker, etc.). The KL divergence 

values will be reported in bits for ease of interpretation; a value of 0 indicates identical 

distributions and greater values indicate more information gained by the socio-indexical factor. 

The analyses here are not a direct borrowing of the computational model itself and may be best 

understood as a method of describing different socio-indexical scopes and baseline conditions. 

KL-Divergence was computed by adapting the phondisttools package (Kleinschmidt, 2019) for 

the use cases below. For a full overview of the technical and mathematical details of KL 

divergence, see Kleinschmidt (2019).  

In the analyses throughout Section 4, Q(x) will vary in terms of underlying data (see 

Section 2.3) but will similarly be represented by a normal multivariate cue distribution 

conditioned on vowel category and parameterized by the mean and covariance. For illustrative 

purposes, Figure 4.2 provides a demonstration of the distinction between the marginal 

distribution Q and the true distribution P. The highlighted red ellipses represent the dialect area 

‘South’ as P(F1xF2 | vowel, South) and the grey ellipses represent the marginal distribution Q(F1xF2 | 

vowel, all). KL Divergence will estimate how much the marginal (Q, grey) distribution diverges 

from the ‘true’ distribution, South (P, red) for each vowel category.  

In each of the analyses below, I use different reference distributions (Q), comprised of 

subsets of the dataset in Chapter 3, simulating different listener priors under which socio-

indexical structure is evaluated. In Analysis 1, Q(x) will be a marginal distribution of all data 

from Chapter 3, conditioned on vowel category, but not socio-indexical group: Q(F1xF2 | vowel, all) 

this distribution will be denoted as QM. In Analysis 2, Q(x) will be the marginal distribution of a 

single dataset, the Switchboard corpus, and three dialect areas (North, South, West) conditioned 

on vowel but not socio-indexical group: Q(F1xF2 | vowel, Switchboard[N,S,W]) this distribution will be 

denoted as QS. Analysis 1 and 2 will also have sub-analyses (1b: Section 4.1.5 and 2b: Section 

4.2.5) where Q(x) will be represented by individual dialect areas, Q(F1xF2 | vowel, dialect-i), and P(x) 

will represent individual talkers (Sections 4.1.5 and 4.2.5); for Analysis 1b these groups will be 

denoted as QMd and Analysis 2b will be denoted as QSd. In Analysis 3, Q(x) will be a single 
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dialect region, the West, conditioned on vowel: Q(F1xF2 | vowel, West) this distribution will be 

denoted as QW.  

The distributions of P(x) will be conditioned on vowel category and socio-indexical 

factor levels, with the following conventions PDi as dialect levels, and PTi as individual talkers. In 

the analyses to follow, KL divergence is calculated for each level of the socio-indexical factor of 

interest conditioned on each vowel category (e.g., D(QM||Pdi), D(QM||Pti)). Reported KL 

divergence for a factor (e.g., Dialect or Talker) represents an average of KL divergence values 

over the respective levels. This method follows Kleinschmidt (2019) and is used for convenience 

and parity with the methods therein. To evaluate KL divergence for a given socio-indexical 

factor or level, I compare the true values to a comparable group composed of random shuffling 

of talkers to social group labels and tokens (grouped by vowel category) to talker labels. For 

example, individual talkers were randomly assigned to two groups to mirror the conditioning of 

gender. Similarly, talkers were randomly assigned to groups with the labels of dialect areas 

mirroring the total talker counts in the true group labels. This is merely meant to provide a 

baseline random sample for comparison, which should provide relative strength for the 

informativity of the true groups. While a more conservative estimation using bootstrapping 

confidence intervals would be preferred, the overall size of the dataset made bootstrapping 

computationally costly and is left for future work. As such, KL-Divergence is treated as 

descriptive statistics for various analytic groups and is not evaluated for statistical significance.  
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Figure 4.2: Example of socio-indexical group distributions (red) over the marginal distributions (grey) for 

American English broadly. 

4 Analyses 

Given the descriptions above, the analyses will be organized around the three ‘baseline’ 

experiences: American English (all data; Analysis 1), Shift Specific Regions (subset data; 

Analysis 2), and Single Community Baseline (Analysis 3). For each of these different ‘baseline’ 

analyses, I will present the results in the following structure: first an overview of the high-level 

patterns, then dialect-agnostic and vowel-specific patterns (e.g., dialect is informative of /eɪ/), 

followed by dialect-specific and vowel-specific patterns (e.g., the West is informative of /æ/). In 

Analyses 1 and 2 I also present findings from what I am describing as a nested model and ask 

how much information would be gained by attending to individual talkers if listeners treated each 

talker according to their dialect area. If listeners approached the task knowing the talkers’ 

regional dialect, how much additional information would be gained from talker identity. This 

sub-analysis primarily serves to evaluate how much homogeneity can be assumed for a given 

regional background and vowel category, a core axiom of the model. Following these results, I 

will turn to a broader discussion describing implications for perceptual learning. 
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4.1 Analysis 1: American English Baseline (All Data) 

Turning to the first analysis, this section assumes maximal exposure to American 

English, encompassing seven different dialect areas as well as a range of types of speech and 

individuals within each region. The results of this baseline model are hypothesized to align with 

the results of Kleinschmidt (2019) due to the similarities in the assumed exposure to a broad 

range of American English. Following Kleinschmidt (2019), I expect to see that socio-indexical 

groups are informative of vowel categories, with more specific groups showing higher socio-

indexical informativity, with a relative ranking from least to most informative as follows: gender 

< dialect < combination of dialect + gender < individuals. Based on the discussion in Section 2, I 

further hypothesize that dialect-agnostic and vowel-specific patterns are likely to emerge 

whereby the dialect factor is more informative of vowel categories associated with several 

regional vowel shifts, as for example /æ/.  

4.1.1 Data & Method 

In this analysis, the data are drawn from all corpora represented in Chapter 3: Data & 

Methods. In the following analyses of KL Divergence, the following factors and levels are 

assumed: marginal distribution, QM(F1xF2 | vowel, all), as described in Section 3.2; Dialect factor with 

7 levels, D(QM||Pdi), gender with 2 levels, D(QM||Pgi), and Dialect+Gender with 14 levels (7 

dialect levels x 2 gender levels) D(QM||Pdgi), and Talker with 957 levels (i.e., individuals), 

D(QM||PTi). Each social grouping along with token counts and number of speakers are provided 

in Table 4.1. The marginal distribution in the analyses to follow encompasses all data available, 

conditioned on vowel category; Table 4.2 provides the total number of tokens for each 

categories’ marginal distribution. Values of KL Divergence for the socio-indexical factors are 

calculated for each level of the factor and then averaged over levels to provide an overall 

informativity for each socio-indexical factor. For example, when calculating KL Divergence for 

‘Dialect’ each dialect level (e.g., South, West, etc.) will have a value of informativity for each 

category (e.g., /æ/) which is then averaged to give an overall informativity of the dialectal factor 

for each vowel category (following Kleinschmidt 2019). In Section 4.1.2, I will report the factor 

averages for each vowel category (e.g., dialect informativity for /æ/); in Section 4.1.4 I report the 
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values for each level of the dialect factor for each vowel category. For each socio-indexical 

group a random assignment of talkers to groups, or tokens to talkers, is represented for an 

evaluation of the ‘null’. Specifically, talkers are randomly assigned to 7 groups (equal to the 

number of dialects), and again to 2 groups (gender), and 14 groups (dialect X gender).  

Table 4.1 Total unique speaker counts for each dialect area and gender across all data presented in 

Chapter 3. 

Dialect Area Men (N) Women (N) Dialect (N) 

Midatlantic 5 9 14 

Midland 153 151 304 

North 37 21 58 

Northeast 108 108 216 

NYC 11 8 19 

South 109 103 212 

West 58 59 117 

Total N 481 459 940 

 

Table 4.2 Total token counts per vowel category for the marginal distribution (QM).  

Vowel N 

a 36891 

æ 41228 

ʌ 46536 

ɔ 52057 

aɪ 62260 

ɛ 65666 

eɪ 51755 

i 58304 

ɪ 40186 

o 58422 

u 32904 

ʊ 7154 

Total 556946 
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4.1.2 Higher-Order Factors 

Figure 4.3 illustrates the mean KL divergence of different socio-indexical factors from 

the marginal data (all tokens across all datasets). Higher values of KL divergence indicate greater 

informativity of cue distributions, and a lower KL divergence value indicates greater similarity 

between the two distributions and thus less information gained by knowing the ‘true’ distribution 

(dialect, talker) compared to the marginal (American English). Again, each socio-indexical factor 

(indicated by color on the figure) represents the factor average of KL divergence over the 

respective levels. Empty circles represent a random assignment of talkers to dialects and tokens 

to talkers, and then similarly averaged by the randomized factor label.  

Based on the findings of Kleinschmidt (2016, 2019) we expect that more granular factors 

will be more informative of cue distributions, and indeed such findings are replicated here, such 

that KL divergence is highest when the factor is most granular (talkers) and lowest when the 

factor is broadest (gender). On average informativity varies as a function of socio-indexical 

group, where individual talkers provide the most information (mean KL = 0.99 bits), followed by 

a combination of dialect and gender (mean KL = 0.14 bits), then dialect (mean KL = 0.10 bits), 

followed by gender as the least informative (mean KL = 0.01). Comparing these results to a 

random assignment of talkers to groups (Random-Dialect, Random-Talker, etc.) generally 

demonstrates that the real groups provide more information gain over the random groupings, 

though for gender the true value is already so minimal it likely is not a true effect4 (Random-

Gender mean KL = 0.001). Additionally, the ranking of least to most informative socio-indexical 

groups remain the same for random groupings of talkers (and tokens to talkers), suggesting that 

more informativity of more specific groupings may be a product of the measure. Finally, talker 

identity is still more informative than a random shuffling of tokens within phoneme to ‘talker 

identity’ grouping levels, confirming that talker identity is a reliable effect.  

 

4 It is worth noting that since the data are Lobanov normalized, the gross difference between men and women has been 

normalized out—we would expect to see that gender is more informative of vocalic patterns in raw Hz (see 

Kleinschmidt 2016, 2019 for evidence). 
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In the following sections I will turn to examine vowel-specific patterns. Given the high-

level results largely replicate Kleinschmidt (2019), and the primary focus of this dissertation is 

on dialect groups and individual talkers, for the remainder of the chapter I will focus only on 

these two social factors. In addition, given the overall ranking of Talker as higher in 

informativity compared to Dialect, I will focus on the relative ranking of vowel categories within 

each socio-indexical factor in the following vowel-specific analyses. This merely aims to aid in 

interpretation of the findings and is not meant to indicate that the highest KL divergence value 

for dialect will somehow ‘win’ in perceptual processes but identifies any asymmetries between 

the categories.  

 

 

Figure 4.3 Mean KL divergence for each socio-indexical factor (filled circles), including randomly 

assigned talkers (& tokens) to comparable sized groupings (unfilled circles). Averaged over respective 

levels and vowel categories. 
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Table 4.3 Mean KL divergence for each socio-indexical factor and randomized groups. 

Factor Mean KL 

Talker 0.99 

Random-Talker 0.49 

Dialect+Gender 0.14 

Dialect 0.10 

Random-Dialect 0.02 

Gender 0.01 

Random-Gender 0.00 

 

4.1.3 Vowel-specific: Dialect-Agnostic & Talkers 

Figure 4.4 depicts the average KL divergence value for Talker (grey filled) and Dialect 

(orange filled) factors, alongside the random factors (unfilled circles) by vowel category. Again, 

higher values indicate greater conditioning of variability for the individual vowel categories’ cue 

distributions and more information gained. First, as expected, Talker remains an order of 

magnitude higher in informativity than Dialect for each of the vowel categories. Given the 

discussion above (Section 2; see also Chapter 2) we might expect that Dialect and Talker will be 

asymmetric in informativity across vowel categories, such that vowel categories implicated 

across regional shifts (e.g., /æ/) are more likely to emerge as ranked high in Dialect information 

than those that are not associated with regional shifts (e.g., /ʊ/). Similarly, categories that are not 

implicated across regional shifts may be more likely to emerge as ranked high in Talker 

information, as Dialect, broadly, is not expected to condition variability. 

Table 4.4 provides mean KL divergence values for Dialect and Talker factors, 

respectively, rank ordered. In Figure 4.4 we can see there are a few vowel categories which are 

near equal in KL divergence for Dialect and a random assignment of talkers to equal groups, 

including /ʌ/, /ɪ/, and /u/, similarly they are ranked lowest in Dialect information in Table 4.4. 

This pattern suggests that dialect groups do not provide more information than the marginal in 

estimating cue distributions for all vowel categories. On the other hand, KL divergence of talker 
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information is always greater than a random assignment of items to talkers. Table 4.4 and Figure 

4.4 illustrate evidence of the high-level prediction that Dialect and Talker informativity will be 

inversely related, such that categories ranking highest in Dialect information do not emerge as 

highly ranked in Talker information, and vice versa. Specifically, the vowels /ɔ/, /aɪ/, and /eɪ/ are 

ranked as highest for Dialect, with /aɪ/ and /ɔ/ falling near the bottom of the rank ordering and 

/eɪ/ somewhere in the middle for Talker. Similarly, /ʊ/, /ʌ/, and /ɪ/ are ranked highest for Talker 

and are ranked lowest in Dialect informativity.  

However, the categories highest ranked in Dialect do not appear to be strongly correlated 

with expectations of regional vowel shifts, with the exception of /ɔ/ which may be largely 

indicative of low back vowel merger patterns across regions. Nonetheless, the relationship 

between Dialect information and Talker information suggests that for some categories there is 

stronger conditioning on Dialect and Talker may not provide a gain over and above Dialect. Of 

course, this is only weakly evident from the results here, but I will return to this point again in 

Section 4.1.5 to further investigate the claim quantitatively. The fact that Dialect did not emerge 

as informative for categories associated with vowel shifts may, in part, be driven by the fact that 

the factor is too broad and informativity of such socially meaningful vowels is more likely to 

occur in a dialect-specific manner rather than the dialect-agnostic perspective provided here. 

 

 

Figure 4.4: Mean KL divergence for the socio-indexical factors of Talker and Dialect (filled circles), 

including randomly assigned talkers (& tokens to talkers) to comparable sized groupings (unfilled circles) 



 

 122 

over marginal distribution. Averaged over respective levels and separated by vowel category. 

 

 

Table 4.4: Mean KL divergence for the socio-indexical factors of Talker and Dialect over marginal (all) 

distributions, rank ordered respectively.  

Dialect Talker 

Vowel Mean KL Vowel Mean KL 

ɔ 0.14 ʊ 1.97 

aɪ 0.12 ʌ 1.35 

eɪ 0.12 ɪ 1.13 

a 0.11 u 0.98 

o 0.11 eɪ 0.97 

ʊ 0.11 o 0.96 

æ 0.10 a 0.94 

i 0.08 i 0.91 

ʌ 0.07 ɔ 0.80 

ɛ 0.07 æ 0.77 

u 0.07 aɪ 0.76 

ɪ 0.05 ɛ 0.55 

Mean 0.10 Mean 1.01 

 

4.1.4 Vowel-Specific: Dialect-Specific 

We expect to see greater informativity of vowel categories associated with shifts within 

regions, regardless of whether they were informative of ‘dialect’ in the previous analyses.  

Figure 4.5 present the results of KL divergence across vowel categories and the seven 

dialect areas. Before moving to the specific vowel categories of interest, it’s first worth noting 

that on average each dialect area ranges in informativity across vowel categories. For example, 

the Midland (mean = 0.02 bits) and West (mean = 0.05 bits) dialect areas demonstrate relatively 

low informativity in relation to the marginal distributions across all vowel categories. In contrast, 

the Northeast (mean = 0.21 bits) and the Midatlantic (mean = 0.15 bits) demonstrate greater 

informativity across many of the vowel categories, while the North (mean = 0.09 bits) and South 

(mean = 0.08 bits) fall somewhere in between. Within the regions demonstrating greater 

informativity on average, the lowest individual category values are often higher than even the 

most informative categories in the Midland and the West areas. For example, the highest ranked 
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category for the Midwest is less than 0.10, while almost all categories in the South are greater 

than 0.10. Overall, this confirms that some dialect areas’ cue distributions are more divergent 

from the marginal ‘American English’ values. This provides quantitative support of a more 

standardized or ‘general’ American English variety that aligns more closely with speech in the 

Midland and West and aligns with listener evaluations of where the most standardized variety is 

spoken (Preston, 2011).  

If we further examine within dialect rankings for specific vowel categories, we see some 

trends in line with expectations of regional vowel shifts, illustrated in  

Figure 4.5 and Table 4.5. In particular, in the West we see higher informativity of /a/ and 

/æ/ (0.07 bits), in-line with shifts in the low back vowels associated with the LMBS. In the South 

the vowel categories with highest informativity are /aɪ/ (0.24 bits) and /ɔ/ (0.10 bits), in 

alignment with the SVS and a more conservative /ɔ/ position (Fridland & Kendall, 2015; 

Thomas, 2001; Labov et al., 2006). Further, such an observation aligns with social perceptions of 

Southern /aɪ/ (Albritten, 2011; Plichta & Preston, 2005) and evaluation of Southern talkers’ /ɔ/ as 

accented (Gunter et al., 2020). In the North the categories higher in informativity are /aɪ/ (0.25 

bits), and /o/ (0.18 bits). While these categories are not related to the NCS patterns, they still 

demonstrate regional patterns in the North. Northern /aɪ/ demonstrates more robust raising in the 

North compared to some other regions (Labov et al., 2006). Likewise, /o/ in the North may be 

driven by the fact that /o/ fronting is prevalent across some varieties of American English (Labov 

et al., 2006) while the North maintains a more backed variant of /o/ (Labov 1994; Labov et al., 

2006). NYC also retains a more conservative backed /o/ (Labov et al., 2006) and similarly is 

higher in informativity of /o/ distributions (0.23 bits) compared to other vowel categories. 

However, there are some results that are inconsistent with expectations of regional patterns. For 

example, the West is more informative of /eɪ/ (0.14 bits), despite /eɪ/ being relatively stable in the 

region (e.g., D’Onofrio et al. 2016), and the Midatlantic shows greater informativity of /ʊ/ (0.39 

bits) and /ʌ/ (0.21 bits). The informativity of the Midatlantic vowels may be indicative of smaller 

sample sizes, both in terms of unique talkers and overall number of tokens from talkers on 

average compared to other regional varieties.  

However, the explanation for informativity of the West for /eɪ/ is less clear but aligns 

with the more generalized dialect factor (averaged over dialect levels) showing informativity of 
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/eɪ/ distributions (see Section 4.1.3). The dialect-informative (i.e., both dialect-agnostic and 

dialect-specific) and vowel-specific patterns observed in these two sections overall demonstrates 

less than perfect mapping of dialect informativity of cue distributions for vowel categories 

associated with regional vowel shifts. The fact that /eɪ/ distributions seem to be conditioned on 

regional identity suggests that informativity may capture categories where talkers within regions 

are more regular in their cue distributions which may or may not align with the canonical 

expectations of regional vowel shifts. One explanation for the absence of the expected regional 

patterns in this analysis may be the fact that regions are internally variable, thus any degree of 

vowel-specific patterns we expect for regions may not emerge due to the higher degree of cross-

talker heterogeneity across more socially variable vowel categories. In the next section I 

specifically aim to tackle this question, asking how much individuals’ distributional patterns are 

divergent from their regions, thus making talkers emerge as more informative than regional 

identity for categories with regional affiliations. 

 

 

Figure 4.5 KL divergence values each level of the Dialect factor (i.e., individual dialect areas) by 

vowel category. 
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Table 4.5 KL divergence values each level of the Dialect factor (i.e., individual dialect areas) by vowel 

category, rank ordered within regions. 

Midatlantic Midland North Northeast 

Vowel KL Vowel KL Vowel KL Vowel KL 

ʊ 0.39 ɪ 0.03 aɪ 0.25 ɔ 0.50 

ʌ 0.21 a 0.02 o 0.18 a 0.36 

ɛ 0.20 ʌ 0.02 eɪ 0.14 i 0.32 

ɔ 0.19 ɔ 0.02 æ 0.13 eɪ 0.30 

u 0.18 ɛ 0.02 a 0.12 æ 0.21 

eɪ 0.13 eɪ 0.02 ɔ 0.08 ʊ 0.21 

æ 0.12 i 0.02 i 0.05 o 0.16 

a 0.10 u 0.02 ɪ 0.05 aɪ 0.15 

i 0.09 æ 0.01 ʌ 0.03 u 0.12 

aɪ 0.06 o 0.01 ɛ 0.03 ɛ 0.08 

ɪ 0.06 ʊ 0.01 u 0.03 ɪ 0.06 

o 0.04 aɪ 0.00 ʊ 0.03 ʌ 0.05 

Mean 0.15 Mean 0.02 Mean 0.09 Mean 0.21 

NYC South West   

Vowel KL Vowel KL Vowel KL   

o 0.23 aɪ 0.24 eɪ 0.14   

ɪ 0.09 ɔ 0.10 aɪ 0.10   

ʊ 0.09 a 0.08 a 0.07   

æ 0.08 ɛ 0.08 æ 0.07   

ʌ 0.08 eɪ 0.08 ɛ 0.06   

ɔ 0.07 ɪ 0.07 ɔ 0.05   

a 0.06 o 0.07 o 0.04   

u 0.06 ʊ 0.06 u 0.03   

aɪ 0.05 æ 0.05 ʌ 0.01   

eɪ 0.05 ʌ 0.05 i 0.01   

ɛ 0.04 i 0.05 ɪ 0.01   

i 0.02 u 0.04 ʊ 0.00   

Mean 0.08 Mean 0.08 Mean 0.05   
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4.1.5 Analysis 1b: Talkers Within Dialects (Nested) 

At this point, I turn to consider whether individuals’ distributions align (or not) with the 

distributions of their groups. In this section the true distribution is an individual talker (Pti), and 

the marginal distribution is the dialect area to which they belong, QSDi(F1xF2 | vowel,di). For example, 

KL divergence is calculated for a single talker, Talker001, from a single dialect area, South, for 

each vowel category. As such, this section represents a new analysis using the same data, 

described in Section 4.1.1, as the ‘baseline’ is now relative to the individual talker’s regional 

affiliation. The rationale for this analysis lies in the fact that current theoretical models assume 

some degree of homogeneity among talkers within dialect areas, thus this is a direct test of the 

extent of between-talker variation in dialect areas and represents an approximation to a nested 

structure.  

If the homogeneity assumption outlined by Kleinschmidt (2019) is accurate, we should 

expect to see that for vowel categories ranked higher in dialect informativity in Section 4.1.3 

(e.g., /eɪ/), the factor of talker should rank low, showing greater similarity to their dialect areas 

and little information gained. Similarly, if categories ranked high in talker informativity in 

Section 4.1.3 (e.g., /ʊ/) are indicative of high between-talker variability and absence of dialect 

conditioning then talkers should have higher KL divergence in those categories in relation to 

their dialect areas as well. Results displayed in Table 4.6 and Figure 4.6 below, provide some 

evidence for the assumptions outlined in Kleinschmidt (2019). Table 4.6 shows that on average, 

talkers diverge from their dialect areas for the same vowel categories in Section 4.1.3 where 

Talker information was high. In particular, /ʊ/ ranks second highest in talker divergence (mean 

KL = 0.64 bits), whereas /eɪ/ shows lower talker divergence (mean KL = 0.55 bits). In other 

words, in categories where dialect informativity is higher (demonstrated in Section 4.1.3-4.1.4), 

talker divergence from their dialect areas is ranked lower for those categories. Further, when 

using dialect area to estimate talkers’ cue distributions, we see that the average KL divergence 

values are lower across the board, ranging from 0.40 to 0.67, compared to the use of the marginal 

for estimation (0.55-1.97). These patterns broadly contribute validity to the assumption that 

talkers are more aligned with their dialect areas than the marginal distribution, and for some 

vowel categories there appears to be higher dialect informativity and greater regularity among 

talkers within their dialect areas. 
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Table 4.6 Mean KL divergence for the Talker factor from their dialect areas’ distributions, rank ordered. 

Averaged over individual talkers across regional backgrounds. 

Vowel Mean KL 

i 0.67 

ʊ 0.64 

a 0.62 

u 0.56 

aɪ 0.55 

eɪ 0.55 

o 0.51 

æ 0.51 

ɔ 0.51 

ʌ 0.43 

ɛ 0.40 

ɪ 0.40 

Mean 0.53 

 

4.1.6 Talker-Specific Patterns by Dialect 

However, there may be dialect- and vowel-specific combinations where we might expect 

that talkers are more likely to diverge from their dialect areas. Such a distinction may further 

elucidate the patterns observed in Section 4.1.2-4.1.4 where vowel categories expected to be 

highly informative of dialect-specific patterns (e.g., Southern /ɛ/) may not demonstrate high 

informativity because talkers within a given region are highly variable. Such variability is 

hypothesized to affect predominately categories associated with high salience and/or regional 

shifts. For the South, the front tense-lax vowels are likely to demonstrate wider range of 

variability due to different degrees of participation in the SVS. For the North, /æ/ and /a/ may 

show higher variability as a function of salience and reversal of the NCS (D’Onofrio & Benheim, 

2020; Driscoll & Lape, 2015; King, 2021; Nesbitt, 2021; Wagner et al., 2016). In the West, we 

may see greater variability in /æ/ given the variable and complex social meanings associated with 

the category (e.g., Podesva, 2011; D’Onofrio, 2016) and ongoing change in the region (e.g., 

Becker 2019). The average talker factor may not capture this in the overall ranking of vowel 

categories due to the dialect-specific and vowel-specific expectations. It may not be the case that 
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/æ/ demonstrates overall information loss across talkers from several regional backgrounds, but it 

may show that talkers diverge in specific regions where /æ/ has gained more prominent social 

salience or is used more for sociolinguistic style (e.g., the LBMS).  

Turning to individual dialect regions, as illustrated in Figure 4.6  and Table 4.7, we see 

some patterns but not overwhelming evidence for this prediction. Aside from the categories that 

demonstrate highest Talker informativity in Section 4.1.3 (e.g., /ʊ/), some vowel categories show 

greater divergence for certain regions that may potentially be driven by variable participation in 

regional shifts.  First, the South demonstrates expected patterns such that vowels related to the 

Southern Vowel Shift show greater divergence, including /aɪ/ (KL = 0.60 bits), /eɪ/ (KL = 0.57 

bits), and /i/ (KL = 0.58 bits). As described above, this pattern could be due to the Southern 

Vowel Shift reversing among some talkers in the South (Dodsworth & Kohn 2012) and the fact 

that shifts in /i/ are restricted in geographical dispersion compared to other vowels implicated in 

the SVS (Labov et al., 2006; Fridland, 2012). While the South was informative of /aɪ/ variability 

in Section 4.1.4 above, it appears that there is still a high degree of inter-talker variability. 

Additionally, /a/ appears as more informative of Talkers in the North (KL = 0.63 bits), 

which may be driven by variable participation in the NCS, stylistic variation (Eckert, 2000; Van 

Hofwegen, 2013), or gendered variation (Eckert, 2000). However, other dialect areas also show 

greater Talker informativity in /a/, including the Midland (KL = 0.71 bits) and West (KL = 0.59 

bits), which may be explained in part by back vowel merger gaining prevalence (Labov et al., 

2006). Comparably to /a/, /u/ also shows greater Talker informativity in the Midwest (KL = 0.62 

bits) and West (KL = 0.55 bits), potentially related to advancement of /u/ fronting in those 

regions leading to greater between-talker diversity (Labov et al., 2006). However, overall, the 

categories most indicative of talker divergence are the ones in which talkers diverge from the 

marginal (e.g., /ʊ/) and predominately other categories that were not ranked highly in Dialect 

levels informativity in Section 4.1.3. Such a pattern suggests that when Dialect is informative, 

talkers within their dialect areas also demonstrate greater alignment with the dialect patterns 

confirming some of the assumptions outlined by Kleinschmidt (2016, 2019). 
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Figure 4.6 Mean KL divergence for the Talker factor from their dialect areas’ distributions. Averaged 

over individual talkers faceted by vowel and regional group. 

 

Table 4.7 Mean KL divergence for the Talker factor from their dialect areas’ distributions. Averaged over 

individual talker levels faceted by vowel and regional dialect, rank ordered by vowel within dialect areas. 

Northeast South West 

Vowel Mean KLD Vowel Mean KLD Vowel Mean KLD 

i 1.03 ʊ 0.70 ʊ 0.66 

o 0.93 aɪ 0.60 a 0.59 

ʊ 0.75 i 0.58 u 0.55 

a 0.61 eɪ 0.57 æ 0.48 

u 0.60 a 0.53 i 0.46 

ɔ 0.59 u 0.52 o 0.44 

ɛ 0.57 ɔ 0.50 ɔ 0.44 

aɪ 0.56 æ 0.47 aɪ 0.42 

eɪ 0.51 ʌ 0.47 eɪ 0.41 

æ 0.43 o 0.45 ʌ 0.40 

ʌ 0.39 ɪ 0.43 ɪ 0.36 

ɪ 0.33 ɛ 0.37 ɛ 0.31 

Mean 0.61 Mean 0.52 Mean 0.46 
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Midland Midatlantic North 

Vowel Mean KLD Vowel Mean KLD Vowel Mean KLD 

a 0.71 ʊ 0.86 a 0.63 

u 0.62 ɔ 0.77 o 0.58 

ʊ 0.62 i 0.74 i 0.56 

æ 0.61 eɪ 0.63 æ 0.55 

eɪ 0.61 o 0.51 ʌ 0.48 

i 0.6 u 0.48 aɪ 0.46 

aɪ 0.59 a 0.43 eɪ 0.45 

o 0.54 ɪ 0.43 u 0.44 

ɔ 0.5 ɛ 0.39 ɔ 0.39 

ʌ 0.42 ʌ 0.37 ʊ 0.36 

ɪ 0.41 aɪ 0.35 ɛ 0.31 

ɛ 0.38 æ 0.21 ɪ 0.27 

Mean 0.55 Mean 0.51 Mean 0.61 

NYC     

Vowel Mean KLD     

ʊ 0.72     

i 0.45     

eɪ 0.42     

aɪ 0.41     

ɔ 0.40     

a 0.40     

\ 0.38     

u 0.37     

æ 0.36     

ɪ 0.29     

o 0.27     

ɛ 0.22     

Mean 0.61     

 

4.1.7 Interim Summary 

Overall, this analysis provides evidence of dialectal informativity of vowel categories 

both within and across regions. The results of this analysis are in line with the higher-order levels 

of informativity indicated in Kleinschmidt (2019) whereby more granular socio-indexical factors 

(e.g., Talker) provide more information than broader factors (e.g., Gender). Within a Dialect-

Table 4.7, Continued 
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agnostic perspective (Section 4.1.3.), individual vowel categories demonstrating higher Dialect 

informativity across regions are /ɔ/, /aɪ/, and /eɪ/. For the factor of Talker, individual vowel 

categories demonstrate Talkers are most informative of the cue distributions for /ʊ/, /ʌ/, and /ɪ/. 

The asymmetry in this ranking suggests some vowel categories are broadly Dialect-informative 

while others are Talker-informative. Such a pattern is further supported by the fact that Talker 

informativity remains highest for the same categories when estimating talkers by their own 

regional distributions (i.e., nested structure), rather than the broader marginal distribution. 

Similarly, the Dialect-informative vowels are ranked lower in Talker informativity when using 

the nested structure.  

The expectation that Dialect-agnostic patterns would align with categories implicated 

across regional vowel shifts was only weakly evident, as /aɪ/ and /eɪ/ were not generally expected 

to be conditioned strongly on Dialect. Consequently, a Dialect-specific perspective (Section 

4.1.4) demonstrated that vocalic informativity within regions may be weakly linked to regional 

vocalic variability. When examining the patterns in terms of the more nested structure (Section 

4.1.5) we see individual variability in vowel categories related to regional shifts. However, we 

still see the categories most highly ranked in terms of talker informativity are those associated 

with high talker informativity in general and are not strongly associated with regional patterns 

(e.g., /ʊ/).  

4.2 Analysis 2: Shift Based Regions as Baseline 

For this analysis, I go on to ask the same set of questions but with a smaller subset of the 

data presented in the previous section, focusing only on three dialect areas which are most 

representative of widescale vowel shifts (South, North, West) and drawing on only data from the 

Switchboard Corpus. This section aims to validate the observations made in the previous analysis 

on a more controlled subsample of the data. Given the observations in the previous section did 

not align with expectations around regional vowel shifts, examining a dataset focused on the 

more relevant regional areas provides an opportunity to examine regional dialects with fewer 

dimensions of variability to assess the validity of the results. While this method is less 

ecologically valid in terms of variability listeners are exposed to, it may have the benefit of 

aligning with the observations made in speaker perception whereby listeners predominately 
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categorize speakers into these three regional dialect areas (e.g., Clopper & Pisoni, 2007; Clopper 

et al., 2006).  

4.2.1 Data & Method 

To address this question, I analyze a subset of the data from a single dataset, the 

Switchboard corpus (see Chapter 3), and a subset of the data composed of three dialect areas: 

North, South, and West, associated with prominent regional vowel shifts NCS, SVS, and LBMS 

respectively. The data are thus comprised of the following factors: the marginal distribution 

QS(F1xF2 | vowel, Switchboard[N,S,W]), Dialect factor with 3 levels, D(QS||Pdi), gender with 2 levels, 

D(QS||Pgi), and Dialect+Gender with 6 levels (3 dialect levels x 2 gender levels) D(QS||Pdgi), and 

Talker with 146 levels (i.e., individuals), D(QS||PTi). Following the structure of the previous 

analysis in Section 4.1, the first subsections (Section 4.2.2-4.2.4) will evaluate KL divergence for 

each socio-indexical factor in relation to the ‘baseline’ marginal distribution. The marginal 

distribution in these subsections is made-up of all tokens from all talkers from the three dialect 

areas of the switchboard dataset (QS). I will then turn to look at a ‘nested’ version where talkers 

(PTi) are estimated in reference to their own dialect areas (QDi, Section 4.2.5), where the marginal 

distribution is the talkers own regional background limited to the Switchboard corpus. The 

number of unique speakers for each factor and their respective levels are provided in Table 4.8 

and total token counts for the marginal distribution of each vowel category is presented in Table 

4.9.  

Table 4.8 Total talker counts by socio-indexical factor for the subset data: Switchboard data for North, 

South, West 

Dialect Men (N) Women (N) Dialect (N) 

North 37 21 58 

South 22 16 38 

West 29 21 50 

Total 88 58 146 

 



 

 133 

Table 4.9 Total token counts for the marginal distribution by vowel categories for the subset data: 

Switchboard data for North, South, West. 

Vowel N 

a 4043 

æ 4172 

ʌ 6501 

ɔ 5084 

aɪ 8148 

ɛ 7764 

eɪ 6565 

i 6058 

ɪ 4118 

o 7934 

u 3996 

ʊ 1105 

Total 68216 

 

4.2.2 Higher-Order Factors 

Figure 4.7 and Table 4.10 illustrate KL divergence across vowel categories and socio-

indexical factors over the marginal distribution, as well as effects from a random assignment of 

individuals into groups, here with 2 groups (equal to Gender in the study) of randomly shuffled 

speakers (‘Random-Gender’) and 3 groups equal to the number of dialect groups (‘Random-

Dialect’). Again, following Kleinschmidt (2019) and the results in the section above, we observe 

that the more specific the grouping factor becomes (e.g., gender → talker) the more informative 

the factor is. Gender (mean KL = 0.02 bits) overall is the least informative factor across vowel 

categories, followed by Dialect (mean KL = 0.05 bits), and then by Talker (mean KL = 0.81 bits) 

as the most informative across vowel categories. Gender appears as informative as a random 

assignment of talkers into two groups across vowel categories, meaning there is not much 

conditioning on the normalized vowels by Gender alone. Dialect is slightly more informative 

than a random assignment of talkers into three groups, but across several categories remains on 

par with the Random-Gender factor. Talker is more informative than a random assignment of 

tokens within phonemes to talkers across vowel categories. Overall, this confirms the results 
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above that more specific groups provide more information over the broader grouping factors. 

Following the previous analysis, I will again refer to the respective rank ordering between 

Dialects and Talkers in the following sections.  

 

 

Figure 4.7 Mean KL divergence for each socio-indexical factor (filled circles), including randomly 

assigned talkers (& tokens) to comparable sized groupings (unfilled circles). Averaged over respective 

levels and vowel categories. 

 

Table 4.10 Mean KL divergence for each socio-indexical factor and randomized groups. 

Factor Mean KL 

Talker 0.81 

Random-Talker 0.62 

Dialect+Gender 0.08 

Dialect 0.05 

Random-Dialect+Gender 0.04 

Gender 0.02 

Random-Dialect 0.02 

Random-Gender 0.01 
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4.2.3 Vowel-Specific: Dialect-Agnostic & Talkers 

Figure 4.8 and Table 4.11 provides mean KL divergence values across dialect areas and 

talkers, respectively, rank ordered. In line with Section 4.1, the rank orderings for Dialect and 

Talker are inversely related, confirming the asymmetry above that Dialect is informative of some 

vowel categories’ cue distributions and Talker is highly informative of other vowel categories. A 

familiar pattern emerges where Talker is highly informative of /ʊ/ cue distributions (1.66 bits), in 

addition to /u/ (1.16 bits) and /æ/ (1.12 bits) cue distributions. A random assignment of /ʊ/ tokens 

to talkers (Random-Talker) are higher in informativity than the true Talker factor, which 

suggests it may not be a stable effect in this dataset and may be linked to smaller variance 

distributions. Dialect demonstrates higher informativity of /aɪ/ (0.09 bits), and /eɪ/ (0.09 bits) 

distributions which is in-line with the observations from Section 4.1 but once again are not 

reflective of the categories we would predict based on regional shifts. Additionally, it should be 

noted that the KL divergence values are generally lower for the Dialect factor across vowel 

categories in this subset of data compared to Section 4.1 and does not differ from a random 

grouping across most vowel categories, except for /aɪ/ and /eɪ/. The lower informativity by 

Dialect could be caused by several factors. The first is simply the result of a mathematical 

leveling, whereby each group represents approximately one-third of the marginal distribution and 

is thus well estimated by the marginal and does not comprise many low probability examples. 

This is potentially likely given the random assignment groups, at least in the aggregate. Another 

potential explanation, which I explore next, is that higher informativity can be found in dialect-

specific and vowel-specific combinations, which is not reflected in the aggregate patterns here.  
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Figure 4.8 Mean KL divergence for the socio-indexical factors of Talker and Dialect (filled circles), 

including randomly assigned talkers (& tokens to talkers) to comparable sized groupings (unfilled 

circles), over marginal distribution (shifted regions). Averaged over respective levels and separated by 

vowel category. 

 

Table 4.11: Mean KL divergence for the socio-indexical factors of Talker and Dialect over marginal 

(shifted regions) distributions, rank ordered respectively. 

 Dialect  Talker 

Vowel Mean KLD  Vowel Mean KLD 

a 0.09  ʊ 1.66 

aɪ 0.09  u 1.16 

eɪ 0.09  æ 1.12 

u 0.05  a 1.02 

ɛ 0.04  i 0.96 

ʊ 0.04  o 0.68 

ʌ 0.03  aɪ 0.65 

o 0.03  ɪ 0.63 

æ 0.02  eɪ 0.58 

ɔ 0.02  ɔ 0.55 

i 0.02  ʌ 0.51 

ɪ 0.02  ɛ 0.47 

Mean 0.05  Mean 0.83 
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4.2.4 Vowel-Specific: Dialect-Specific 

In this section, I turn to examine how structure emerges in dialect-specific and vowel-

specific ways. Figure 4.9 illustrates KL divergence for each vowel category by each dialect area. 

First, there is a general observation that the North and South are more informative of vowel 

distributions on average than the West, as was indicated in Analysis 1 as well. Specific dialect 

levels vary in how informative they are about individual vowel categories. Such patterns further 

align with some expectations of regional vocalic shifts. In particular, we see the South is 

informative of cue distributions for /aɪ/ (KL = 0.17 bits), /eɪ/ (KL = 0.20 bits), and /a/ (KL = 0.12 

bits), aligning with Analysis 1 and expectations for the SVS more broadly. The North 

demonstrates higher informativity of /a/ (KL = 0.10 bits) and /aɪ/ (KL = 0.08 bits), again aligning 

with the observations in Analysis 1, albeit with generally lower values. Finally, the West 

generally has the lowest information gained from the marginal distribution, but the ranking of 

vowel categories aligns with the patterns above (Section 4.1), with the highest category as /eɪ/ 

(KL = 0.05 bits), followed by /u/ (KL = 0.05 bits). Overall, the dialect-specific and vowel-

specific patterns in this section generally align with some expectations of regional vowel shifts, 

though not overwhelmingly for the North or West, and aligning with the results of Analysis 1. 

Further, the recurrence of the ranking of the West as lower in informativity to cue distributions in 

Analysis 1 and Analysis 2 aligns with listeners’ subjective evaluations of more unmarked speech 

patterns. The average informativity of the North and South aligns with listener evaluations of 

marked speech patterns, despite the fact that expected vowel categories do not necessarily 

emerge as the most informative. Of course, once again, the reason certain vowel categories do 

not emerge in the North and South may be driven by talker variability within the region for 

particular categories, a point I will turn to in the next section. 
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Figure 4.9 KL divergence values each level of the Dialect factor (i.e., individual dialect areas) by vowel 

category. 

 

Table 4.12 KL divergence values each level of the Dialect factor (i.e., individual dialect areas) by vowel 

category, rank ordered within regions. 

North South  West  

Vowel Mean KLD Vowel Mean KLD Vowel Mean KLD 

a 0.10 eɪ 0.20 eɪ 0.05 

aɪ 0.08 aɪ 0.17 u 0.05 

u 0.05 a 0.12 a 0.04 

ʊ 0.04 ɛ 0.08 æ 0.04 

ʌ 0.03 o 0.05 o 0.04 

ɛ 0.03 u 0.05 ʊ 0.04 

eɪ 0.03 ʊ 0.04 ʌ 0.03 

æ 0.02 ʌ 0.03 aɪ 0.02 

ɔ 0.02 ɔ 0.03 ɪ 0.02 

i 0.02 ɪ 0.03 ɔ 0.01 

ɪ 0.02 i 0.02 ɛ 0.01 

o 0.00 æ 0.00 i 0.01 

Mean 0.04 Mean 0.07 Mean 0.03 
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4.2.5 Analysis 2b: Talkers Within Dialects (Nested) 

To proceed, I again turn to the question of how well individual distributions align with 

their dialect areas by examining a more nested structure to evaluate talker divergence from their 

dialect areas. In this section, the marginal distribution is now individual talkers’ own dialect 

regions, QMDi(F1xF2 | vowel,di), where KL divergence is measured by evaluating how much 

information is to be gained from talker-specific distributions (PTi) over and above their dialect 

area estimates. As such, the data in this section report new values from those of Sections 4.2.2-

4.2.4 and shed light on the extent to which talkers within dialect areas adhere to their group 

patterns. First, we see that on average Talker informativity is lower (mean = 0.48 bits) when 

using their own dialect areas to estimate their cue distributions compared to the broader marginal 

in Section 4.2.2-4.2.4. This is in-line with Analysis 1 and validates that estimating talkers by 

their regional dialects results in less information loss providing support for the hypothesis that 

talkers tend to align with their group’s distributional properties. Turning to vowel-specific 

patterns in Table 4.13 we see confirmation of the patterns observed in Section 4.2.4, where 

Talker is most informative of the vowel categories that ranked higher in Talker informativity 

using the broad marginal distribution. Talker is more informative of categories like /ʊ/ and /a/ 

even when talkers’ dialect areas are used to estimate individual talker distributions. This finding 

is further confirmation of an asymmetry, at least for the dialect-agnostic perspective that some 

categories are Dialect-informative while others are Talker-informative, showing limited dialect 

conditioning. Further, the Dialect-informative categories generally show less information loss 

when estimating individual talkers’ categories with their dialect area distributions.  

Table 4.13 Mean KL divergence for the Talker factor from their dialect areas’ distributions (subset 

group), rank ordered. Averaged over individual talkers across regional backgrounds. 

Vowel Mean KL 

a 0.61 

aɪ 0.50 

eɪ 0.47 

i 0.60 

o 0.52 

u 0.48 
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æ 0.55 

ɔ 0.38 

ɛ 0.32 

ɪ 0.34 

ʊ 0.54 

ʌ 0.43 

Mean 0.48 

 

4.2.6 Talker-Specific Patterns by Dialect 

Before turning to vowel specific patterns, we can see that across vowel categories in 

Table 4.14, Talker information is highest for the South (mean KL = 0.54 bits), followed by the 

North (mean KL = 0.47 bits) and the West (mean KL = 0.44 bits) which aligns with Analysis 1 

for the same regions. Looking at dialect-specific patterns, Table 4.14 and Figure 4.10 shows the 

average KL Divergence across talkers for each vowel category by dialect area. Overall, there is 

weak alignment with the hypothesis that categories more canonically associated with the region 

may demonstrate greater Talker informativity (i.e., higher KL divergence). In particular, for the 

South, Talker is informative of /i/ (mean KL = 0.83 bits), and to some extent /aɪ/ (mean KL = 

0.64 bits) and /eɪ/ (mean KL = 0.61 bits), in line with Analysis 1 and more general expectations 

of reversal of the SVS and more geographic restriction of shifted /i/ across the region. However, 

this departs from the previous analysis in that the South was also high in informativity for these 

categories but is simultaneously showing greater within-region between-talker variability. This 

may illustrate that the South on average shows greater divergence from the marginal for these 

categories and a wide range of inter-talker variability. Such a pattern challenges the perspective 

outlined in Kleinschmidt (2019) where talkers generally mirror their dialect areas. In the North 

we see a parallel pattern where Talker is more informative of /a/ (mean KL = 0.60 bits) 

distributions, showing greater talker divergence on average despite greater dialect-specific 

informativity for /a/ in Section 4.2.4. Finally, the West demonstrates Talker information is 

highest for /a/ (mean KL = 0.60 bits) and /æ/ (mean KL = 0.53 bits), which aligns generally with 

both categories being integral to the LBMS, with /æ/ showing retraction and /a/ being involved in 

the low-back vowel merger. 

Table 4.13 Continued 
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Figure 4.10 Mean KL divergence for the Talker factor from their dialect areas’ distributions. Averaged 

over individual talker levels faceted by vowel and regional group. 

 

Table 4.14 Mean KL divergence for the Talker factor from their dialect areas’ distributions. Averaged 

over individual talker levels faceted by vowel and regional dialect, rank ordered by vowel within dialect 

areas. 

South West North 

Vowel Mean KLD Vowel Mean KLD Vowel Mean KLD 

i 0.83 a 0.60 a 0.63 

ʊ 0.72 ʊ 0.55 o 0.58 

aɪ 0.64 æ 0.53 i 0.56 

eɪ 0.61 o 0.48 æ 0.55 

a 0.60 u 0.47 ʌ 0.48 

u 0.57 i 0.45 aɪ 0.46 

æ 0.56 aɪ 0.43 eɪ 0.45 

o 0.49 ɪ 0.41 u 0.44 

ʌ 0.41 ʌ 0.39 ɔ 0.39 

ɔ 0.40 eɪ 0.37 ʊ 0.36 

ɛ 0.35 ɔ 0.36 ɛ 0.31 

ɪ 0.34 ɛ 0.30 ɪ 0.27 

Mean 0.54 Mean 0.45 Mean 0.46 
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4.2.7 Interim Summary 

Analysis 2 largely confirms the results in Analysis 1, albeit with lower overall values for 

Dialect informativity. In particular, Analysis 2 demonstrated that from a dialect-agnostic 

perspective, Dialects on average are most informative of /a/, /aɪ/ and /eɪ/ cue distributions and 

Talker is most informative of /ʊ/ and /u/ cue distributions. Talkers diverge least from their dialect 

areas for categories that emerge as, broadly, dialect-informative in this dataset (e.g., /eɪ/). The 

asymmetry between the Dialect ranking and Talker ranking of categories again supports the fact 

that some vowel categories may be broadly Dialect-informative while others are Talker-

informative. When we examine dialect-specific patterns, we see that individual dialect areas vary 

in terms of how informative they are of the vowel space on average (i.e., across vowel 

categories) and of specific vowel categories. In particular, in Analysis 2 we see that the North 

and South demonstrate higher informativity across vowel categories compared to the West, 

which shows lower values of informativity in relation to the marginal. Overall, however, we 

generally see that the North and South do not emerge as particularly informative of cue 

distributions for categories most robustly associated with vowel shifts associated with the 

respective regions. These results may be explained by the fact that Talkers within the region are 

more variable across vowel categories highly salient within the region, though this is only 

weakly supported by the data (Section 4.2.5). 

An alternative explanation is that categories that are more likely to show low-level 

phonetic uniformity across talkers within regions may not necessarily be those most canonically 

associated with regional varieties. Given the results in these two analyses, we do see dialect-

informative categories emerge from the dialect-agnostic perspective that suggests talkers within 

regions may be more uniform in their cue distributions, including /eɪ/ and /a/. Such low-level 

variation may not be hypothesized to be socially salient but may prove informative to listeners 

for both social and linguistic perception. Some evidence for this perspective can be drawn from 

Gunter et al. (2020) where the vowel categories demonstrating the most regularity across talkers 

of Southern identity were evaluated as most accented, despite the fact that the categories were 

not hypothesized to be saliently associated with the South. From the data here, we might predict 

that dialect-informativity for specific vowel categories across talkers may be worth for 

adaptation. However, it remains unclear whether such tracking occurs in a dialect-agnostic way, 
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aggregating over experiences with dialects, dialect-specific ways, or some combination of the 

two. Furthermore, given the high degree of talker-specific information of vowels (and the 

magnitude more information gained by Talker), whether such adaptation is sensitive to group-

specific patterns at all remains to be seen. I will revisit some of these questions in more depth in 

the Discussion (Section 5) and outline more specific hypotheses. 

Table 4.15: Summary of top ranked informativity of socio-indexical component by vowel categories 

across Analysis 1 and 2. Grey check marks indicate highly informative of socio-indexical component in 

only one analysis, black indicates both analyses. 

Vowel Dialect-agnostic Talker Talker (Nested) 

a ✓   
ʊ  ✓ ✓ 

æ    
o    
u  ✓  
i   ✓ 

aɪ ✓   
ɪ  ✓  
ʌ  ✓  
eɪ ✓   
ɔ ✓   
ɛ    

 

4.3 Analysis 3: Single Region Baseline 

In this section, I move on to consider a different type of ‘baseline’ experience than the 

previous sections have employed. In Sections 4.1 and 4.2, the marginal distribution was an 

overall depiction of American English, acting as a simulation for which we consider listeners’ 

priors. However, such a sample assumes that the prior from which listeners infer socio-indexical 

structure is a broad and diverse sample of American English. Yet, it’s reasonable to assume that 

listeners may be gleaning information relative to their own dialect areas rather than the entirety 

of American English. Listeners may be likely to approach speech processing tasks with 

representative speech from their community and the information gained by knowing dialect or 
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talker information may be a function of how dissimilar the speech is from their own regional 

background. Additionally, it’s reasonable to expect that individual vowel categories more likely 

to be described by differences between dialect areas or an idealized average (i.e., benchmarking 

as in Labov et al., 2006) rather than differences from an aggregate of American English more 

broadly. To simulate this perspective, in this section I use only one region, the West, as the 

‘baseline’ experience and evaluate KL divergence of Talkers and Dialects from the West. The 

West was chosen because it comprises a statistically sound amount of data in the datasets and is 

a convenient starting point for comparisons. 

4.3.1 Data & Method 

The data from this section include the entire dataset across all regions and groups 

presented in Chapter 3. The marginal distribution in this section assumes all of the data 

comprising the ‘West’ to represent a single community baseline experience. Following the 

methods in Sections 4.1- 4.2, the Talker factor represents an average of all individual talkers, and 

the Dialect factor represents an average of all dialect levels. When relevant, individual levels of 

the factors will be explicitly indicated in the figures and prose. The data are thus comprised of 

the following factors: the reference distribution QW(F1xF2 | vowel, West), Dialect factor with 3 levels, 

D(QW||Pdi), gender with 2 levels, D(QW||Pgi), and Dialect+Gender with 6 levels (3 dialect levels x 

2 gender levels) D(QW||Pdgi), and Talker with 146 levels (i.e., individuals), D(QW||PTi). The 

counts for the reference distribution for each vowel category are provided in Table 4.16. The 

respective breakdown of unique talkers in each dialect area is the same as Analysis 1, but for 

convenience has been replicated in Table 4.17 below. Diverging from the previous analyses, I 

am not representing a random assignment of talkers to dialect areas, as we would largely expect 

that any arrangement of talkers from variable different backgrounds is still likely to diverge from 

a single dialect area and is, therefore, less useful in capturing a null result. Additionally, for this 

analysis, it is worth noting that for the Dialect factor analysis, the reference distribution (QW) is 

comprised of a smaller sample than some of the other dialect areas (i.e., PDi: Northeast, Midland, 

and South). Given KL divergence is asymmetrical, we should expect that a smaller distribution 

will be less optimal for encoding distributions that may be more variable simply as a function of 

the larger number of unique speakers in the sampled true distribution (i.e., Dialect areas). 
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However, as the results will show, the effects remain similar at the Talker level where such an 

asymmetry is not apparent, suggesting the dialect pattern may be representative of overall 

differences between talkers across regional dialects rather than the asymmetrical sample sizes 

alone. 

Table 4.16 Total token counts for the reference distribution by vowel category for a single dialect region, 

the West. 

Vowel N 

a 5477 

æ 6443 

ʌ 7083 

ɔ 6134 

aɪ 12965 

ɛ 10376 

eɪ 9097 

i 9263 

ɪ 6194 

o 11231 

u 4908 

ʊ 855 

Total N 90428 

Table 4.17 Total talker counts for each socio-indexical factor, replicated from Analysis 1. Note, the total 

talkers in the reference distribution equals 120, which is lower than several of the compared distributions 

(e.g., South, Midland, etc.) 

Dialect Area Men (N) Women (N) Dialect (N) 

Midatlantic 5 9 14 

Midland 153 151 304 

North 37 21 58 

Northeast 108 108 216 

NYC 11 8 19 

South 109 103 212 

West 58 59 117 

Total N 481 459 940 
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4.3.2 Higher-Order Factors 

Figure 4.11 illustrates the higher-order factor averages which have been averaged again 

across vowel categories. Once again, the figure confirms that socio-indexical factors provide 

information about cue distributions but differ in magnitude, and more specific groupings are 

more informative of cue distributions. In line with previous analyses and Kleinschmidt (2019), 

Gender provides little information gained for the normalized distributions on average (0.06 bits), 

followed by an increase in information gained by Dialect (0.14 bits), and finally Talker (1.22 

bits). The magnitude and rank ordering of each socio-indexical factor generally aligns with 

Analysis 1 despite rather distinct reference distributions, where Analysis 1 contained all data, but 

only a single dialect area is used here. Together, the findings of Analysis 1-3 establish stable 

information gained across different socio-indexical factors. 

 

 

Figure 4.11 Mean KL divergence for each socio-indexical factor, averaged over respective levels and 

vowel categories. 
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Table 4.18 Higher order factors KL Divergence 

Factor KL 

Talker 1.22 

Random-Talker 0.71 

Dialect+Gender 0.17 

Dialect 0.14 

Random-Dialect+Gender 0.10 

Random-Dialect 0.08 

Gender 0.06 

Random-Gender 0.05 

 

4.3.3 Vowel-Specific: Dialect-Agnostic and Talkers 

Figure 4.12 shows both the Dialect and Talker factors for each vowel category, with 

Dialect and Talker factors represented as averages over the individual levels conditioned on each 

vowel category. Figure 4.12 illustrates vowel-specific trends of each factor that align, to some 

extent, with the previous analyses. Again, we see Dialect emerges as most informative of /a/ 

(0.24 bits) distributions followed by /aɪ/ (0.21 bits). Dialect emerges as nearly equal in 

informativity for /æ/ (0.21 bits), /ɔ/ (0.20 bits), and /eɪ/ (0.19 bits). Unsurprisingly, the values for 

Dialect are in general higher across these categories than the previous analyses, which is to be 

expected given the smaller and less representative sample acting as the reference group. Overall, 

some categories appear to be reliably informative in dialect-agnostic ways, as evidenced by the 

stability of several of these categories emerging as dialect-informative across analyses. This 

corroborates that dialects provide informativity to vowel categories that are not necessarily 

associated with more salient patterns among dialect areas, like /a/ and /ɔ/. Departing from 

previous analyses, however, we see that /æ/ seems to rank higher in informativity, aligning with 

expectations based on previous work across vowel shifts. Though, as in the previous analyses 

here, categories like /ɪ/ and /ɛ/ generally do not emerge as Dialectally informative.  
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Turning our attention to the Talker factor, Figure 4.12 and 4.18 alignment with results 

from Analysis 1 and 2. For example, Talkers emerge as most informative of /ʊ/ (and Dialect is 

least informative of /ʊ/). Otherwise, there is some deviation from previous analyses, as we see /ʌ/ 

and /ɪ/ are Talker informative here. We also see that /eɪ/ and /a/ generally emerge as somewhat 

highly ranked for Talker information, despite the fact that they emerge as more highly ranked by 

Dialect. Of course, this not surprising given the fact that all talkers in this analysis are from other 

regions outside of the West. Thus, it makes sense that Talker emerges as highly informative of 

the same vowel categories as dialect areas since all talkers are from different dialect areas from 

the reference distribution.  

 

 

Figure 4.12 Mean KL divergence for the socio-indexical factors of Talker and Dialect (filled circles). 

Averaged over respective levels and separated by vowel category. 
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Table 4.19 Mean KL divergence for the socio-indexical factors of Talker and Dialect over single region 

baseline distributions, rank ordered respectively. 

Dialect Talker 

Vowel KL Vowel KL 

a 0.24 ʊ 2.99 

æ 0.21 ʌ 1.91 

aɪ 0.21 ɪ 1.34 

ɔ 0.20 a 1.25 

eɪ 0.19 eɪ 1.12 

ʊ 0.13 o 1.09 

ɛ 0.11 u 0.97 

o 0.11 i 0.93 

ʌ 0.09 ɔ 0.88 

i 0.09 æ 0.85 

u 0.08 aɪ 0.81 

ɪ 0.06 ɛ 0.81 

Mean 0.14 Mean 1.22 

 

4.3.4 Vowel-Specific: Dialect-Specific 

Figure 4.13 and Table 4.20 present the KL divergence values for individual dialect levels 

and vowel categories, rank ordered within regions. First, generally speaking, each dialect area on 

average diverges from the West, with the Northeast (mean = 0.24 bits) and South (mean = 0.19 

bits) demonstrating the highest divergence. On the other hand, the Midland area demonstrates 

very little divergence from the West (mean = 0.07 bits). This result reaffirms the previous 

analyses and aligns with listeners’ perception of speech in the West and Midland area as 

predominately unmarked (Preston, 2011), and the speech of the South and Northern areas as 

marked (Preston, 1996).  

Looking more granularly, the results in this section depict patterns aligning more closely 

with expectations from sociophonetic literature than seen in the previous two analyses (Section 
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4.1 – 4.2). In particular, we see that the North and Northeast are most informative of the cue 

distributions for /a/ (0.32 and 0.74 bits respectively) and /æ/ (0.37 and 0.46 bits) and with the 

Northeast showing clear distinction in /ɔ/ (0.52 bits). This is unsurprising given the preservation 

of the low-back vowels in both areas compared to the West, and that /a/ and /æ/ occupy different 

positions than the West. The South provides information about /ɔ/ distributions (0.23 bits), 

though does not provide the same degree of detail about /a/ (0.03 bits) as the North and 

Northeast. The South, however, does appear to be the most informative of categories canonically 

associated with the SVS, including /eɪ/ (0.48 bits), /aɪ/ (0.60 bits), and /ɛ/ (0.23 bits). This pattern 

aligns rather well with listeners’ social perception of Southern speech (Albritten, 2011; Plichta, 

& Preston 2005) and descriptions of prominent vowel categories by researchers (e.g., Fridland, 

2000 Thomas, 2001). Overall, the patterns in this section confirm expectations of informativity 

of individual dialect areas in comparison to the West as a baseline and generally align with 

existing descriptions of listener-oriented behavior. Whether the same categories or granularity 

operate for listeners’ inferences and linguistic categorization behavior is less clear, as I will 

discuss in more detail in Section 5. 

 

 

Figure 4.13 KL divergence values each level of the Dialect factor (i.e., individual dialect areas) by vowel 
category. 
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Table 4.20 KL divergence values each level of the Dialect factor (i.e., individual dialect areas) by vowel 

category, rank ordered within regions. 

Midatlantic Midland North Northeast 

Vowel KL Vowel KL Vowel KL Vowel KL 

ʊ 0.38 eɪ 0.27 æ 0.37 a 0.74 

eɪ 0.29 aɪ 0.15 a 0.32 ɔ 0.52 

ɔ 0.26 a 0.08 aɪ 0.21 æ 0.46 

ʌ 0.23 æ 0.08 o 0.12 i 0.28 

a 0.14 ɪ 0.05 ɔ 0.07 ɛ 0.24 

u 0.13 o 0.05 i 0.07 ʊ 0.22 

aɪ 0.10 ɛ 0.04 ʌ 0.05 o 0.14 

ɛ 0.09 i 0.04 ɛ 0.05 u 0.09 

æ 0.08 u 0.04 ɪ 0.05 eɪ 0.07 

i 0.06 ʌ 0.03 u 0.05 ʌ 0.05 

ɪ 0.05 ɔ 0.02 ʊ 0.04 ɪ 0.05 

o 0.00 ʊ 0.01 eɪ 0.01 aɪ 0.02 

Mean 0.15 Mean 0.07 Mean 0.12 Mean 0.24 

NYC South     

Vowel KL Vowel KL     

aɪ 0.16 aɪ 0.60     
æ 0.15 eɪ 0.48     
o 0.15 ɔ 0.23     
a 0.1 ɛ 0.23     
ʌ 0.09 o 0.23     
ɔ 0.08 æ 0.11     
ɪ 0.08 u 0.11     
ʊ 0.08 ɪ 0.08     
u 0.07 ʊ 0.08     
eɪ 0.03 i 0.06     
i 0.02 ʌ 0.05     
ɛ 0.01 a 0.03     

Mean 0.09 Mean 0.19     
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4.3.5 Interim Summary 

The results of this section provide further confirmation of the results from Analysis 1 and 

2, particularly with regard to the dialect-agnostic and talker-specific patterns therein. However, 

when using a single dialect area as a baseline, dialect-specific patterns align more robustly with 

expectations from previous work in sociophonetics. This fact suggests that evaluating structure 

in production may be most representative when examining differences between regions or a 

single baseline as in the case of benchmarking. That is, unsurprisingly, the large aggregate of 

American English as a reference may mask dialect-specific tendencies. 

Table 4.20 summarizes the results from across the three analyses for the dialect-agnostic, 

talker, and talker (nested) socio-indexical levels. Across these three analyses, two categories, /a/ 

and /aɪ/, have consistently emerged as the most informative at the dialect-agnostic level. 

Similarly, /eɪ/ and /ɔ/ have emerged as the most informative across two analyses and ranked only 

slightly lower in the third analysis. Overall, this demonstrates a high degree of talker regularity 

for /a/, /aɪ/, /eɪ/, and /ɔ/ within dialect areas. Across analyses, talker identity emerges as 

informative consistently for several vowel categories which are complemented by low-ranked 

dialect informativity for the same categories. Additionally, for one of these categories, /ʊ/, 

individual talkers are most divergent from their dialect area distributions. This demonstrates that 

/ʊ/ distributions are largely talker specific and not reliably conditioned by dialect areas. Overall, 

these results challenge the assumption that all vowels may provide equal degrees of socio-

indexical structure and rather different vowel categories demonstrate different behaviors across 

socio-indexical factors. In the following section, I will discuss these results and their 

implications in greater detail. 

Table 4.21: Summary of top-ranked informativity of socio-indexical component by vowel categories 

across all analyses. Grey check marks indicate highly informative of socio-indexical components in only 

one or two analyses, black indicates all three analyses. 

 

Vowel Dialect-agnostic Talker Talker (Nested) 

a ✓   

ʊ  ✓ ✓ 

æ    
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o    

u  ✓  

i   ✓ 

aɪ ✓   

ɪ    ✓   

ʌ  ✓  

eɪ ✓   

ɔ ✓   

ɛ    

 

5 Discussion 

I will now turn to a broad discussion of the results from the three analyses combined. I 

will first provide an overall summary of the patterns that emerged across the analyses and how 

they compare to the findings of Kleinschmidt (2019) and listeners’ social perceptions of 

variation. Following this summary, I will turn to consider how the results align with expectations 

of production, and what these results tell us about socio-indexical structure and regional variation 

in production. Then, I will turn to consider how the different perspectives outlined in this chapter 

provide implications for listeners’ perceptual learning behavior across vowel categories. I will 

organize these discussions around the posited socio-indexical levels described throughout this 

chapter. The first level distinguishes vowel categories by the asymmetry of Dialect-informative 

and Talker-informative, focusing specifically on the dialect-agnostic perspective. The second 

level differentiates dialect-specific patterns from the dialect-agnostic perspective, detailing when 

and how they may contrast.  

The results from Analysis 1-3 validate Kleinschmidt (2019) in terms of the overall 

ranking of socio-indexical factors in informativity. Overall, we see the same rank ordering from 

broader to more specific socio-indexical groups demonstrating lower to higher levels of 

informativity (gender < dialect < dialect + gender < talker). However, the vowel-specific patterns 

of the Talker factor and Dialect factor were not an exact replication of the results presented by 

Kleinschmidt (2019). Yet, the dialect-informativity and talker-informativity of vowel categories 

are largely replicated across the analyses of this Chapter, despite not replicating the exact 

patterns in Kleinschmidt (2019). Specifically, the Dialect factor shows greater informativity 

Table 4.21, Continued 
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about /eɪ/ and /a/ distributions and the Talker factor greater informativity about /ʊ/ distributions. 

Information gained for Talker identity is also highest for /ʊ/ when the marginal distribution is the 

talkers’ own dialect regions. Demonstrating that talkers are most divergent from their own 

dialects for /ʊ/ cue distributions. On the other hand, information gained by Talker identity is 

ranked lower for /eɪ/, suggesting that Talkers are on average similar to their dialect areas’ 

distributions. These findings together provide some validation of the uniformity of talkers within 

social groups suggested by Kleinschmidt (2019), despite the fact that the vowel-specific trends 

do not necessarily align. 

Examining several simulations of prior experience to evaluate informativity has yielded 

interesting insights, including that some vowels continually emerge as more strongly conditioned 

on dialect. This suggests that the model provides some relatively stable predictions from which 

we can test listener behaviors (as I’ll discuss in detail below). Further, it highlighted some 

interesting patterns that supports more qualitative descriptions of listeners’ evaluative 

perceptions of American English. In particular, when using the West as a ‘baseline’ region, the 

more salient categories emerge across regional dialects more robustly compared to using a 

broader conceptualization of American English. In addition, regions that were seen as more 

divergent from the broader ‘American English’ baseline also align with listener perceptions of 

salience. These findings overall provide some acoustic evidence of what listeners evaluate as 

relatively unmarked, or “general American” as largely aligning with the speech of the West and 

Midwestern region. Similarly, the greater divergence of specific regions is supported by listeners 

categorizing talkers into similar groups during regional categorization tasks (Clopper et al., 

2006) and an overall shared understanding of how speech varies despite varied experiences with 

regional variation. 

5.1 (Re)contextualizing Socio-Indexical Structure: Production 

The results of this chapter provide initial insight into dialectal conditioning of 

distributions and how individuals’ distributions align with their dialect areas and provide critical 

insight into structured variation. Over the course of the analyses above, the results highlight 

specific categories that may demonstrate the greatest regularity across talkers in a region, as 

demonstrated by lower divergence of talkers from their groups, and higher informativity of 
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Dialect as a factor. In previous work on vowel shifts we would expect categories that like /ɛ/ and 

/æ/ to demonstrate greater dialect-informativity due to their involvement across regional shifts 

(Labov et al., 2006, see Section 2.2 above). However, we don’t see such a pattern across the 

aggregate factor of Dialect (i.e., dialect-agnostic) or robustly at the individual dialect levels (i.e., 

dialect-specific) consistently across the analyses. Rather, the categories most likely to be 

conditioned by dialects are /eɪ/ and the low back vowels /a/ and /ɔ/. Such findings provide insight 

into structured variation demonstrating that some categories may generally show an increased 

regularity among talkers, and they may not necessarily align with the most salient categories 

defining the dialect. 

First, it is worth noting that some of the expected patterns from vowel shifts may not 

have emerged as dialect-informative because the formalization of socio-indexical structure in 

this chapter assumes a flat structure across a raw frequency distribution and does not consider 

more fine-grained linguistic conditioning. While this choice is motivated by previous work in 

ideal-adapter models and perceptual learning, it may have ramifications for the compatibility of 

sociophonetic work on vowel shifts. The internal conditioning of variation is at the core of much 

sociophonetic work, as variation is conditioned by a combination of socio-indexical factors and 

internal linguistic factors. As such, we might expect that taking internal linguistic factors into 

account may yield more alignment with expectations of regional patterns. This is one potential 

pitfall of the computational model as it is currently defined and warrants additional interrogation 

to fully integrate sociophonetic insights. While I will not address the full scope of internal 

linguistic conditioning, in Chapter 5 I will return to this point and examine relationships among 

vowels as one aspect of the internal constraints of variability. Nonetheless, the results provide 

additional insight into structured variation that are valuable to consider. 

The information gained about cue distributions for the low-back vowels by Dialect is 

perhaps not surprising given that regions generally differ in terms of whether the two vowels are 

merged or not. Consequently, the distributional properties of the low back vowels are potentially 

greater than other categories because of apparent bimodality across American English. As such, 

we might expect that any one region will more likely have a reduced variance for these 

categories when compared to American English more broadly, where we would potentially see a 

unimodal distribution at the level of a dialect or individual talker. Due to the potential 
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multimodality of the low back vowels when conditioning on dialect areas it may result in more 

robust partitioning of acoustic space by social factors. By having two distinct central tendencies, 

listeners may be more likely to learn the patterns as belonging to separate generative models of 

talkers and being indicative of two production targets within the language. This perspective 

supports theoretical arguments that listeners track the distributions of the low back vowels within 

the community and may account for cases of near merger (Hay et al., 2009). Furthermore, the 

emergence of the low back vowels as two of the key indicators of dialect variation in this chapter 

supports current work that posits a structural relationship between the low vowels and regional 

shifts (Bigham, 2010; Kendall & Fridland, 2017). While this chapter doesn’t evaluate the 

relationship between vowels, the findings here begin to elucidate the importance of the 

individual categories across regional vowel systems. 

Conversely, the finding that Dialect is most informative of the cue distributions of /eɪ/ is 

surprising given the current literature on regional variation. Nevertheless, this finding suggests 

that regularity among talkers within dialect areas may occur in low-level variation that is not 

necessarily associated with salient shifts in the region. The noisy distributions from such a 

diverse dataset may of course provide a key context where such structure is likely to emerge 

across talkers despite such variable talkers. In addition, it’s plausible that /eɪ/ may represent a 

category that is ultimately influential in the structural make-up of regional vowel spaces, but 

exactly how is unclear from these results alone. For example, the information gained for /eɪ/ may 

be indicative of the importance of peripherality in vowel shifts (Labov et al. 1972; Labov et al., 

1991; Thomas 2001). The results in this chapter cannot directly speak to the exact cause or 

underlying source of the informativity and there is undoubtedly main potential explanations for 

/eɪ/. The implications of different types of structure across regional shifts warrants additional 

research to fully understand how variability (i.e., distributional properties) vary as a function of 

social and linguistic variables.  

Critically, the results in this chapter illustrate regularity among talkers within 

geographical regions in their realizations of cue distributions across the vowel space. Such a 

finding is supported by two observations; 1) individual talkers’ cue distributions are better 

estimated by the distributions of their region than the marginal distributions of American English 

or a single region (e.g., the West) and 2) talker divergence is lowest for categories that were most 
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conditioned by regional dialects. While individual vowel categories vary in terms of the 

magnitude of Talker divergence from dialect areas (Section 4.1.5 and 4.2.5), there is nevertheless 

an overall improvement across vowel categories. This result augments our current understanding 

of vowel shifts and lends support, at least broadly, to talkers’ distributions mirroring their dialect 

areas despite some degree of heterogeneity among talkers within dialect areas. Given the 

continued debates around the role of individuals within communities in sociophonetics (see 

Chapter 2), these results suggest that while talkers may vary from one another in their central 

tendency, cohesion may be uncovered by examining the entirety of the distribution. However, 

analyses in this chapter still illustrated increased divergence of Talkers within specific dialect 

areas for vowel categories most saliently associated with the region. As such, research would 

benefit from continuing to identify mechanisms for uncovering these patterns of variability and 

the social sources of such divergences.  

5.2 Contextualizing Socio-Indexical Structure: Perception 

Using these simulations from production data, we can extrapolate hypotheses about 

listener behavior in speech categorization for further refinement and experimental testing (see 

Chapter 6 as an example). Informativity is conceptualized to estimate a lower bound of the 

degree of information to be gained from social factors in estimating cue distributions. In other 

words, we can use the analyses here as a proxy for listeners’ prior experience to hypothesize a 

priori beliefs listeners may have about variability and the consequences they have on perceptual 

learning and generalization. As such, this section outlines how the various analytic scopes in this 

chapter depicts different a priori beliefs about socially constrained variation and predict variable 

listener behaviors. 

The results presented in this chapter present a complicated picture for how listeners may 

approach the task of tracking talker variation. The results of this chapter align with some work in 

speaker perception, as indicated above. For example, there is alignment with listener perceptions 

of regional variation, such that the North and South appear as more divergent on average 

(Analysis 2, Section 4.2) which supports listeners’ categorization of talkers into dialect areas 

(Clopper & Pisoni, 2004a-c, 2007) and subjective evaluations of regional variation (Preston, 
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1989, 1993). It remains unclear to, what extent listeners draw on such information for regulating 

adaptation and generalization behavior.  

In the holistic contrast-based explanation, as described by Kleinschmidt (2019), listeners 

are predicted to draw on prior knowledge that vowels (broadly) vary substantially across talkers. 

Given that talkers vary substantially, previous experience with talkers may be less helpful to 

draw on, and all else being equal, listeners should adapt flexibility to the vocalic patterns of 

individual talkers across all vowel categories. Namely, all vowel categories should demonstrate 

the same degree of flexibility in learning with no asymmetrical patterns. In terms of cross-talker 

generalization, listeners should be more likely to generalize the patterns of an individual talker to 

other novel talkers provided that the talkers are perceived to be linguistically similar. As such, 

generalization is likely to be limited to same gender talkers due to the nature of gross cross-

gender distinctions (Kleinschmidt, 2019) and acoustic similarity (Kraljic & Samuel, 2006; Liu & 

Holt, 2015; Reinisch et al., 2014; Xie & Myers, 2017). Overall, listeners should treat cross-talker 

variability of vowel patterns as one-size fits all: greater talker variability leading to more flexible 

adaptation and generalization behavior. 

 Alternatively, in all other cases, listeners may show asymmetrical learning or 

generalization of vowel categories based on whether the vowel category is conditioned on 

dialects (dialect-informative) or talkers (talker-informative). The dialect-informative categories 

can be further divided into dialect-agnostic and dialect-specific predictions. The dialect-agnostic 

perspective would suggest that listeners track variability across talkers and have generalized over 

experiences with talkers from various regions to form a causal link between variability and 

dialect background. This generalized causal model would assert that after continued exposure 

with a vowel category, for example /eɪ/, varying by talkers across different regional dialects, 

listeners would then learn that /eɪ/ variability is caused by speakers’ regional background. 

Consequently, when exposed to a novel talker with an atypical /eɪ/ production, listeners would be 

likely to infer a priori that the variation is caused by the talker’s regional background and learn 

the pattern as characteristic of the talker. Further, because variability is inferred to be driven by a 

social group, listeners should generalize the pattern to other talkers, assuming they infer they are 

sufficiently similar to the exposure talker.  
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On the other hand, the dialect-specific organization may provide more fine-grained causal 

links for listeners based on vowel-specific and dialect-specific combinations. This organization 

would suppose that as a listener encounters talkers from various backgrounds, they learn, for 

example, that /aɪ/ divergence is most likely caused by regional variation in the South. Similarly, 

they might learn that /a/ divergence is most likely caused by regional variation in the North. One 

prediction then is that listeners encountering talkers with atypical productions will show variable 

behavior for adaptation and generalization depending on how the talker is perceived relative to 

the regional pattern. For example, listeners may adapt quickly to atypical productions of /aɪ/ 

when the talker is inferred to be from the South, assuming all variation in /aɪ/ from Southern 

speakers is the same. Similarly, they will generalize the pattern but only to novel talkers 

perceived to be Southern. Alternatively, if listeners perceive the talker to be from the South and 

are faced with an atypical percept, they may be less likely to generalize due to their prior 

knowledge that talkers in the South are generally similar in their productions of /aɪ/. As such, 

they may infer the atypical production is idiosyncratic or otherwise incidentally caused and resist 

generalizing. This type of prediction is more aligned with expectations of sociophonetics, 

whereby listeners have some retention of the fine-grained variation of specific social groups.  

Finally, the asymmetry between dialect-informative and talker-informative suggests that 

listeners may show asymmetrical behavior across vowel categories along these two dimensions. 

The Talker-informative hypothesis of variability would presume that the vowel category varies 

widely across talkers, but it is not conditioned by some larger socio-indexical group. (e.g., 

Dialect). Namely, listeners would have prior knowledge, for example, that /ʊ/ is variable across 

talkers and such variability is not caused by regional background. Consequently, when 

encountering a talker with an atypical /ʊ/, listeners would be likely to infer the pattern is 

characteristic of the talker and adapt quickly and robustly. Conversely, because /ʊ/ would not be 

inferred to be characteristic of a regional identity, listeners should learn in a talker-specific 

manner showing no generalization to novel talkers. In Chapter 6 I specifically test this 

hypothesis by examining perceptual learning across a dialect-informative category (/eɪ/) and a 

talker-informative category (/ʊ/); more specific predictions and further discussion are provided 

therein and in the final discussion chapter (Chapter 7). 
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Overall, different organizations of socio-indexical structure outline several possible 

listener behaviors depending on what listeners are tracking. The perceptual learning predictions 

outlined in this section are not exhaustive and there are potentially numerous additional listener 

behaviors that we might predict. However, they encompass a first instantiation of different 

listener behavior based on the causal inferences they may draw from tracking cross-talker 

variability informed specifically by the model outlined by Kleinschmidt (2019) and the analyses 

in this Chapter.  

6 Conclusion 

Overall, this chapter highlighted socio-indexical structure as an emergent property over 

the distributional properties of vowel categories holistically as it relates to different baseline 

experience. Over three analytic simulations, I identified an asymmetry between categories that 

can broadly be grouped into Dialect-informative and Talker-informative. Importantly, the 

dialect- informative categories are not necessarily those that are most saliently associated with 

the regional vowel shifts, but rather those that demonstrate consistent joint distributional cue 

properties across talkers within dialect areas. Categories like /eɪ/, for example, appear to be 

ranked highly in dialect informativity and demonstrate lower degrees of individual divergence 

from their regional groups. These patterns at the highest level suggest that there may be different 

types of socio-indexical variability and low-level variation is more likely to demonstrate 

coherence across talkers with a region. The results provide evidence that talkers generally align 

with their dialect areas in terms of the overall distributions of variability, as indicated by 

decreased divergence across categories when using talkers’ dialect distributions as the reference 

distribution. Furthermore, the results of this chapter can be linked to some observed patterns of 

listeners’ social perception, such as highly salient regional varieties. It remains to be seen 

whether such descriptions align with listener. 
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CHAPTER 5:  

INTERNAL LINGUISTIC SPECIFICITY & SOCIO-INDEXICAL STRUCTURE 

1 Introduction 

In the previous chapter, I draw on an instantiation of the ideal adapter model, which 

posits that listeners accommodate acoustic overlap among vowel categories by tracking an 

individual vowel category’s joint cue distributions (i.e., phonetic distributions of F1xF2) and the 

social factors that condition variability (Kleinschmidt 2019). Of course, an individual vowel 

category’s phonetic cue distributions are part and parcel to how listeners identify a particular 

contrast and disambiguate it from other categories. However, such a model may assume that if an 

individual vowel category’s distributions are not conditioned on social factors, then listeners are 

unlikely to leverage group level variation of the category for online processing.  

As discussed previously (Chapter 2), sociophonetics has long since emphasized the 

internal principles of linguistic variation theorizing that vowels operate as a system of 

interrelated dependencies. Similarly, recent work examining structured variation has also 

described the considerable regularity of talkers as a function of phonetic dependencies (e.g., 

Chodroff & Wilson, 2022), such as individuals’ mean F1 position correlating across vowels 

sharing the height articulatory dimension (e.g., Ahn & Chodroff, 2022; Ménard et al., 2008; 

Oushiro, 2019; Salesky et al., 2020; Schwartz & Lucie, 2019; Watt, 2000). Similarly, individual 

cue dimensions (as opposed to joint cue distributions) may show typological tendencies whereby 

cross-talker variation is more likely to occur along a specific cue dimension for specific 

categories. Thus, signaling the importance of socio-indexical conditioning along single cue 

dimensions for listeners’ beliefs. 

Thus, phonetic dependencies (i.e., relationships among vowels and cues) and individual 

cue dimensions may covary with social factors thereby facilitating online speech processing. 

And indeed, recent work has recognized that distributional properties of similar contrasts 

(Newark, 2001) and individual cue distributions (Idemaru & Holt, 2014; Reinisch et al., 2014) 

may constrain perceptual processes. While the ideal adapter model posed by some scholars 

(Kleinschmidt, 2019; Kleinschmidt & Jaeger, 2015, Weatherholtz & Jaeger, 2016) largely 
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separates socio-indexical structure from other internal structure, there is of course many reasons 

to believe that these two facets interact and may be integral to listener beliefs. Indeed, much 

work has shown that listeners demonstrate both generalizability (i.e., across talkers and 

contrasts) while also showing a great deal of specificity in learning (i.e., cue distributions, talker-

specific learning, etc.). The specificity of internally conditioned variation prompts more granular 

descriptions of socio-indexical structure and the generation of predictions for listeners’ 

perceptual categorization and adaptation behavior.  

To address this gap, in this chapter I will focus on describing specificity in two ways: (1) 

phonetic dependencies among vowels operationalized as acoustic overlap between vowel pairs 

and (2) cue distributions’ shapes and parameters. Following the previous chapter, I examine 

different analytic methods for operationalizing socio-indexical groups over the frequency 

distributions of F1 and F2. In Part 1 (Section 2), I specifically examine how acoustic overlap 

between categories may decrease as a function of socio-indexical structure (e.g., dialects and 

talkers) and articulatory dimensions (e.g., front/back). In Part 2 (Section 3), I examine the 

distributional make-up of individual vowel categories to begin identifying specific dimensions of 

variability. I will review literature that grounds the analyses in-turn for each part (Section 2.1 and 

3.1 respectively) followed by a discussion (Section 2.4 and 3.5 respectively) and conclusion. 

2 Part 1: Acoustic Overlap Across Vowel Pairs & Socio-Indexical Factors  

2.1 Introduction 

Necessarily, listeners are disambiguating the speech signal to uncover a talker’s intended 

linguistic message. The acoustic overlap among vowel categories (i.e., distributions in F1xF2 

space) has long been established as a puzzle in speech perception since Peterson and Barney’s 

(1952) foundational work describing American English vowels (and subsequent replications, 

e.g., Clopper et al., 2005; Hillenbrand et al., 1995; Hagiwara, 1997). The high degree of overlap 

among different vowel categories highlights the invariance problem among acoustic cues, that is: 

how do listeners accurately perceive speech with such variable realizations? The issue is further 

supported by perceptual categorization errors demonstrating that vowel categories are subject to 

a high degree of misidentification among listeners of English. The largest error rates in 

misidentification have been shown to occur in areas of the vowel space with higher 
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concentrations of neighboring vowels where acoustic overlap is greatest (e.g., mid-lax vowels; 

Peterson & Barney, 1952; Hillenbrand et al., 1995). On the other hand, categories with less 

overlap demonstrate decreased misidentification, such as /i/ and /a/ (Peterson & Barney, 1952). 

Discrimination of vowel categories may be improved when additional dimensions, such as vowel 

length, are considered (Ainsworth, 1972; Bennett, 1968; Labov & Baranowski, 2006; Fridland et 

al., 2014; Hillenbrand et al., 1995), which may aid in contrast maintenance over time (Labov & 

Baranowski, 2006; Pierrehumbert, 2001). Recent arguments about socio-indexical structure in 

perception suggest that socio-indexical information similarly aids in category discrimination and 

reduction in acoustic overlap.   

Indeed, much of the acoustic overlap among category pairs is correlated with socio-

indexical factors such as gender and dialect (Clopper et al., 2005; Hagiwara, 1997; Hillenbrand 

et al., 1995; Peterson & Barney, 1952). One criticism of Peterson and Barney’s (1952) work was 

that regional variation was not well accounted for as a source of increased acoustic overlap, 

which subsequently sparked replications considering dialect variation more explicitly (Clopper et 

al., 2005; Hillenbrand et al., 1995; Hagiwara 1997). This work found that in fact some of the 

acoustic overlap among talkers was significantly reduced by accounting for dialect in addition to 

the effect of gender. Work in sociophonetics has continued to underscore this observation with 

proposed (and validated) methods for quantifying vocalic overlap (e.g., Hall-Lew, 2010). Thus, 

it’s not unreasonable to assume that talker identity and socio-indexical groups may serve as an 

additional dimension by which listeners are able to disambiguate vowel categories, akin to 

duration.  

Additionally, listeners may exploit the dependencies between vowel category 

distributions to resolve ambiguity of atypical productions of a given category (e.g., atypical /æ/ 

backing) by knowing the relative boundaries and the likelihood of encroaching on another 

category in phonetic space (e.g., /a/). Category pairs that tend to maintain higher degrees of 

separation across talkers may suggest that listeners show attenuated learning of a pattern that 

effectively increases the distributional overlap between otherwise separated categories due to its 

atypicality. Further, listeners may demonstrate a priori more robust categorization, showing 

greater certainty about category boundaries where the acoustic overlap is more minimal. Some 

work has suggested that listeners are more consistent in categorization for categories with 
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minimal overlap (Newman et al., 2001; Clayards et al., 2008), categorization boundaries further 

away from the vowels center of mass for more variable vowels (Chao et al., 2019), and 

adaptation is attenuated for distributions with more considerable overlap of the acoustic cue(s) 

(Drouin et al., 2016). Using experience with socio-indexical groups, listeners may further 

maintain category resolution by tracking the relative boundaries of vowel category pairs across 

different socio-indexical factors as overlap decreases as a function of, for example, regional 

background. Such an explanation may be elucidated by prior work in sociophonetics that has 

pursued how the relationships between vowels is socially structured and internally governed. 

In particular, sociophonetic literature suggests that the maintenance of acoustic separation 

among certain vowel pairs is a functional outcome, if not mechanism, of vowel shifts. Principles 

of maximal dispersion, characterized as an effort to preserve contrasts and maintain and restore 

symmetry, have been described as a mechanism and/or outcome of vowel change. Maximal 

dispersion is reflected in the hierarchical (re)organization of phones within chain shifts along 

articulatory dimensions (e.g., frontness or height; Labov, 1994, 2001; Labov & Baranowski, 

2006; Martinet, 1955). Labov (1994: 580–588) argues maximal dispersion is an automatic 

process of probabilistic matching between categories’ distributional properties. Labov and 

Baranowski (2006: 223) illustrate this mechanism as follows: 

“Outliers from the normal distribution of realizations of a phoneme that overlap 

the normal distribution of a neighboring phoneme are less likely to be understood 

as being tokens of the intended phoneme, and are thus less likely to participate in 

the calculation of the mean target of that phoneme by the language learner. But 

when the neighboring phoneme has shifted away, increasing the margin of 

security, the same outlier is more likely to be recognized as a member of its 

intended phoneme, and thereby shift the calculation of the mean in its direction.” 

 

Accordingly, the boundaries of category distributions may contribute to how likely individuals 

are to assign individual experiences to a single category and in-turn update their representations. 

In cases where one phoneme has shifted and the overlap between the category distributions 

decreases, individuals may in turn demonstrate a greater likelihood of adapting to outliers and 
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updating categories. Namely, effects of maximal dispersion may effectively constrain 

distributional learning and phonetic retuning of an individual category. 

Certain vocalic relationships in American English have specifically been posited to 

provide stability in the vowel space thereby maintaining principles of maximal dispersion. 

Specifically, Labov (2001) posits /æ/ is a critical category that may act as an anchoring category 

for other vowels in the system. One critical area where this process has been explored in 

production is the relationship between /æ/ and the low-back vowels. Several scholars have 

posited a structural relationship such that /æ/ retraction initiated realignment of the low back 

vowels (Bigham, 2010; D’Onofrio et al., 2016; Hall-Lew, 2013; Kendall & Fridland, 2017; 

Labov et al., 2006). As evidence, Bigham (2010) demonstrates that talkers who retracted /æ/ also 

merged low-back vowels, while the less retracted /æ/ talkers maintained unmerged, or only 

occasionally merged, low-back vowels.  

The correlation of /æ/ and the low-back vowels has been hypothesized to emerge from a 

structural relationship of /æ/ and /a/, whereby movement in /æ/ triggered realignment of /a/ 

across several vowel shifts. In the case of the NCS, scholars have suggested that the fronting and 

raising of /æ/ triggered realignment and fronting of /a/ as the vowels move to fill empty gaps in 

the system, to fulfill principles of maximal dispersion of these two categories (Bigham, 2010; 

Thomas, 2011). Scholars have suggested the retraction of /æ/ in the LBMS triggered backing and 

raising of /a/, resulting in merger of /a/ and /ɔ/ (Bigham, 2010; Kendall & Fridland, 2017). 

Kendall and Fridland (2017) find evidence of this structural relationship such that the distance 

between /æ/ and /a/ categories is regular across dialect areas, despite the average positions of 

each vowel category differentiating regional systems. Further, listeners’ degree of low-back 

merger in their own speech predicted their categorization boundaries along an /æ/-/a/ continuum. 

While this dissertation does not speak to the mechanistic accounts of maximal dispersion and 

vowel shifts, the static outcomes and distributional properties of the vowel systems may indeed 

provide listeners with stability from which to predict other vowel category distributions. As such, 

I examine the relationship of /æ/-/a/ in the analyses below as a specific example of such stability. 

Of course, the reality is that vowel mergers still occur despite principles of maximal 

dispersion, and as such have received considerable attention in production and perception (Babel 

et al., 2013; DeCamp 1953; Hay et al., 2006; Hay et al., 2009; Labov et al., 1991; Trudgill, 1986; 
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Warren et al., 2007). Vowel mergers demonstrate unique patterns, with individuals’ 

demonstrating different talker-listener behaviors whereby some people exhibit: 1) distinction in 

production and perception; 2) no distinction in production and perception; 3) distinction in 

production but lack of perceptual distinction; and 4) perceptual distinction but lack of distinction 

in production (DeCamp, 1953; Labov et al., 1991). 

The asymmetry in perception and production (3 and 4) suggests that language users may 

be tracking the distributions of the categories in their communities, with differential experience 

with the merged and unmerged systems (Warren et al., 2007). Indeed, there is evidence that 

productions of merged /a/ and /ɔ/ vary depending on the talker, the community, and the overall 

degree or completeness of the merger (Herold, 1990). This suggests that the relationship between 

/a/ and /ɔ/ similarly demonstrates a high degree of socio-indexical conditioning which listeners 

attend to despite merged vowels being less socially salient (Labov, 2001). In addition, people 

who are merged in their dialect may become unmerged while accommodating to speech of 

unmerged talkers, with mediation from social cues providing expectations about the talker’s 

merged status (Babel et al., 2013; Hay et al., 2006). Importantly for this dissertation, it suggests 

that people track the distributional properties of both categories to some extent, despite the 

potential for merged categories to not directly aid in disambiguation of contrasts, including for 

talkers who do not maintain the contrast themselves. Tracking this relationship thus may provide 

listeners the ability to make predictions about another category’s distributions, provide the 

boundaries between the contrasts, and potentially aid social categorization of the talker. 

Overall, socio-indexical structure among vocalic relationships may emerge in various 

ways including: 1) reduction in acoustic overlap of categories as a result of talker-specific or 

group conditioned distributional properties; 2) increase in overlap, particularly in cases of 

merger; 3) systematic separation of vocalic distributions among vowel pairs applied uniformly 

across talkers and groups. To rephrase, socio-indexical factors condition distributional properties 

of vowel pairs, and by tracking socio-indexical factors acoustic overlap may be systematically 

reduced or augmented (e.g., merged vowels). In addition, there may be internal principles that 

restrict the degree of overlap among certain vowel pairs, regardless of socio-indexical 

background (e.g., /æ/-/a/). Consequently, listeners may learn the boundaries of category 

membership. In cases where overlap is high, the boundaries between categories may become 
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fuzzier and increase misidentification and listeners may tolerate more ambiguity from categories 

that have higher degrees of overlap. On the other hand, when overlap is lowest, categories are 

less fuzzy and listeners may remain more rigid in category boundaries. In the latter case, listeners 

may extract stability from the vowel system which may effectively constrain adaptation and/or 

generalization of atypical forms that encroach on such a boundary. On the other hand, in the 

former, listeners may benefit from tracking socio-indexical patterns to better predict the category 

boundaries and disambiguate vowels across talkers effectively reducing the fuzzy boundaries.  

The theoretical background outlined above motivates the need to examine relationships 

among vocalic contrasts as a source of socio-indexical structure, which may elucidate listener 

behaviors and allow for a more comprehensive integration of socio-indexical structure in 

inferential models of speech processing. In the following sections I specifically focus on how 

socio-indexical structure emerges through acoustic overlap across vowel pairs. The analyses 

follow a parallel logic of the previous chapter, in which I examine outcomes of statistical models 

across several socio-indexical grouping factors, examining both dialectal and talker-specific 

variation. Following the previous chapter, the different analyses are meant to provide descriptive 

accounts of variation across the vowel space, and as such I will not focus on significance testing 

between different socio-indexical granularities and leave this to future work. The discussion will 

focus on specific categories that have been shown to have higher rates of misidentification, the 

mid-vowels, to examine the extent to which socio-indexical structure reduces overlap among 

competing categories. I additionally discuss the relationship between /æ/ and /a/, as previous 

work has already highlighted and important relationship among these two categories. Within 

these analyses, I highlight the role of articulatory dimensions in the separation of vowel 

relationships, specifically focusing on the front/back dimension. Following the results, I will 

discuss implications for inferential speech processing providing some testable hypotheses that 

arise from these analyses. 

2.2 Methods 

2.2.1 Pillai 

To quantify overlap across vowel pairs, I use the Pillai-Bartlett statistic (henceforth Pillai 

score), an output of the Multivariate Analysis of Variance (MANOVA) which indicates the 
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proportion of variance that can be predicted by a given factor, in this case vowel category (with 

two levels). A higher Pillai score indicates greater separation between the two categories (i.e., 

less overlap) and a lower Pillai score indicates more overlap between the categories. There are 

several other measures used to evaluate acoustic overlap across categories, but Pillai has been 

shown to perform best (Hall-Lew, 2010; Kelley & Tucker, 2020) and is used frequently in 

sociophonetics studies. Pillai scores are highly correlated with the more traditional R2 to indicate 

variance explained by the independent variable. In this case, the dependent variable is the 

multivariate cues, F1xF2, and the independent variable is the contrast between two vowel 

category pairs (e.g., /æ/ and /a/).  

2.2.2 Defining Groups 

As noted throughout this dissertation, a central interest in describing socio-indexical 

structure is considering how individuals fit within their broader group patterns, and how we 

conceptualize the group structure more generally. In Chapter 4, using KL divergence, socio-

indexical organization was flat, whereby tokens across talkers all add to cumulative 

distributional properties without parametric characterizations of individual talkers’ distributions 

within their dialect group. I will follow the same conceptualization here, where the organization 

is flat across the overall dataset and dialect areas. Contrasts are often treated as properties of 

individual talkers, not necessarily properties of larger group structures, and as such Pillai is 

typically calculated over individual talkers. By applying Pillai scores to broader socio-indexical 

factors, this adds both a methodological and theoretical component in describing how socio-

indexical factors contribute to acoustic overlap. 

I extend the logic of KL divergence in the previous chapter here, testing whether group 

level distributions of vowel cues across pairs is increased/reduced with a flat dialectal level 

grouping structure, compared to the broader dataset. I consider all tokens across all talkers as the 

overall distribution, similar to the marginal distribution in the previous chapter, but will refer to 

it as ‘All data’ in figures. Thus, the datasets distributional overlap across vowel pairs serves as a 

‘floor’ from which higher-order indexical factors may contribute to changes in the degree of 

acoustic overlap. The higher-order indexical factors are organized accordingly with Chapter 4, 

with the Dialect factor representing an aggregate measure of the individual dialect levels (i.e., the 
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average) and ‘Talker’ as an aggregate measure of individual talkers. The Dialect factor assumes 

the same flat structure to KL divergence, where individual overlap properties across vowel pairs 

are calculated over all tokens across all talkers for a given dialect level. The Talker factor is 

calculated over vowel pairs on an individual talker basis. Replicating the same pattern in Chapter 

4, I provide both the dialect-agnostic perspective (i.e., Dialect) alongside the dialect-specific 

perspective (i.e., individual dialect areas). As such, some figures below will depict overall 

averages (e.g., average Dialect Pillai score for /æ/-/a/), while others will represent factor levels 

(e.g., Pillai score for /æ/-/a/ in the South), as indicated by section headings and figure captions. 

2.3 Analyses 

2.3.1 American English (All Data) 

To begin this section, a brief overview of the type of variability within categories we see 

across the dataset (tokens and talkers) is shown below in Figure 5.1. Figure 5.1 shows the vowel 

space across all of the data (from Chapter 3) with ellipses representing the 95% CI under a 

multivariate normal distribution for each vowel category. In line with previous work (e.g., 

Peterson & Barney, 1952; Hillenbrand et al., 1995), this figure illustrates the high degree of 

variability across vowel categories at a larger scale and demonstrates a key problem for 

perception with acoustic cues to vowel identity overlapping. The large areas of overlap are, at 

least visually, not limited to neighboring vowels or those that share the same articulatory 

dimensions. Rather, categories across back and front as well as high and low demonstrate 

considerable overlap when examined across the aggregate data. Additionally, and unsurprisingly, 

due to the variety of speech styles, number of talkers, and variable lexical items, the degree of 

overlap is more extensive than previous work examining lab speech has depicted (e.g., Clopper 

et al., 2005; Hillenbrand et al., 1995; Peterson & Barney, 1952).  

The size and respective degrees of overlap depicted by the ellipses in Figure 5.1 

correspond with the Pillai scores quantifying the degree of overlap among different vowel pairs 

across the vowel space, reported in Table 5.1. As evident from Table 5.1, Pillai scores range 

from 0.14, indicating near complete overlapping distributions (e.g., /ʌ/ and /o/), to 0.88, indicating 

little overlap in the distributions (/ɔ/ + /i/). Category pairs that demonstrate the greatest degree of 

overlap are neighboring vowel categories (e.g., /i/ +/ɪ/ Pillai = 0.34) and category pairs that are 
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concentrated at the middle of the vowel space (e.g., /ɔ/ + /ʌ/). The acoustic overlap among vowel 

category pairs is greatest along distinct articulatory dimensions, such that vowel pairs spanning 

either high-low (e.g., /u/ + /a/ Pillai = 0.80) or front-back (e.g., /ɔ/ + /eɪ/ Pillai = 0.85) dimensions 

have greater acoustic difference compared to pairs that share an articulatory dimension (e.g., 

front vowel pairs /i/ + /eɪ/ = 0.34). Unsurprisingly, Pillai scores are lowest when pairs are 

differentiated by more distinctive articulatory features, demonstrating less acoustic overlap and 

greater separation. 

Given the extensive overlap of vowel pairs, I turn to assess whether socio-indexical factors 

structure distributional properties by altering the amount of overlap between pairs of categories 

with a high degree of acoustic overlap. To do so, I turn to examine how conditioning on socio-

indexical factors influences Pillai scores. From this point forward, I will focus only on specific 

vowel pairs that may provide higher degrees of challenge for listeners, encompassing pairs along 

the middle portion of the vowel space (e.g., /eɪ/, /ɛ/, /ʊ/, /o/), and highlight the degree to which 

attending to socio-indexical factors would decrease the degree of overlap. In addition, I will also 

examine the relationship between /æ/ and /a/, due to the suggested special relational status. 

Following a similar logical progression as Chapter 4, I will examine the dialect-agnostic 

perspective (i.e., the aggregate across dialect levels) in Section 2.3.2, followed by an 

examination of dialect-specific trends in 2.3.3. Finally, in Section 2.3.4 I examine how the factor 

of Talker structures the distributional properties of vowel pairs. 
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Figure 5.1 Vowel space across all American English vowels, talkers, and tokens from the dataset in 

Chapter 3. Ellipses represent the 95% CI around the mean assuming a multivariate normal distribution. 

 

 

Table 5.1 Pillai scores across vowel pairs and all data (not sub-set or conditioned on social factors). 

 
a æ aɪ eɪ ɛ i o ɔ u ʊ ɪ 

ʌ 
0.29 0.53 0.23 0.72 0.39 0.80 0.14 0.43 0.69 0.30 0.64 

a 
 0.65 0.38 0.82 0.61 0.86 0.36 0.18 0.80 0.56 0.8 

æ 
0.65  0.30 0.41 0.26 0.70 0.59 0.72 0.80 0.61 0.54 

aɪ 
0.38 0.30  0.64 0.35 0.78 0.45 0.57 0.72 0.43 0.62 

eɪ 
0.82 0.41 0.64  0.25 0.39 0.72 0.85 0.59 0.56 0.22 

ɛ 
0.61 0.26 0.35 0.25  0.59 0.48 0.85 0.59 0.56 0.25 

i 
0.86 0.70 0.78 0.39 0.59  0.80 0.88 0.41 0.48 0.34 

o 
0.36 0.59 0.45 0.72 0.48 0.80  0.27 0.62 0.18 0.64 

ɔ 
0.18 0.72 0.57 0.85 0.70 0.88 0.27  0.73 0.45 0.81 

u 
0.80 0.74 0.72 0.59 0.56 0.41 0.62 0.73  0.24 0.35 

ʊ 
0.56 0.61 0.43 0.56 0.32 0.48 0.18 0.45 0.24  0.33 

ɪ 
0.80 0.54 0.62 0.22 0.25 0.34 0.65 0.81 0.35 0.33  
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2.3.2 Dialect-Agnostic 

Figure 5.2 below shows the Pillai scores of vowel pairs, with the blue circles representing 

the Pillai scores for each vowel pair given the entire dataset (the values in Table 5.1 above). The 

orange squares represent the Dialect factor, as an average Pillai score for each vowel pair across 

dialect levels, which are further indicated in Table 5.2 below. Pillai scores were calculated for 

each vowel pair (e.g., /a/ and /ɔ/) conditioned on each dialect area (e.g., South) and then averaged 

for each vowel pair across dialects (e.g., South + Midland + etc. for /a/ and /ɔ/, divided by the 

total number of dialect areas, 7). The entire dataset distribution (blue circles) represents a single 

value calculated for each vowel pair, as they were calculated across all data, replicated from 

Table 5.1 above.  

Figure 5.2 shows that for many of the vowel pairs, the Dialect factor shows minor shifts 

across some vowel pairs while others remain stable. In line with the overall section above, the 

Dialect factor demonstrates a similar pattern of lower acoustic overlap among vowel pairs that 

differ along articulatory dimensions (e.g., high-low or front-back pairs). More specifically, 

category pairs that show the least acoustic overlap (e.g., /i/ + /ɔ/ Pillai = 0.90) in the overall data 

distributions maintain similar degrees of separation across dialects and align with the separation 

of articulatory dimensions. This is unsurprising given that Pillai scores have an upper-bound of 1 

and any increase to already maximally distinct categories would likely be minimal. Further, we 

might expect that categories that are more articulatory distinct would be less likely to overlap.  

Turning to the relationship of /æ/-/a/, we see that the acoustic overlap across the overall 

distributions and conditioned on Dialect is minimally different (Pillai = 0.65 and 0.69 

respectively). Thus, the acoustic separation between /æ/-/a/ is relatively similar when 

conditioning on Dialect compared to the overall distribution. Similarly, /a/-/ɔ/ shows highly 

overlapping distributions across the overall dataset (Pillai = 0.18) and is minimally improved by 

conditioning on Dialect (Pillai = 0.23). The high overlap of /a/-/ɔ/ not being decreased by the 

Dialect factor is not surprising, given that many of the Dialects represented in the dataset merge 

these two categories. As such, it’s possible that any differences in overlap among /a/-/ɔ/ and /æ/-

/a/ across Dialects is not apparent in the aggregate and will only be apparent when examining 

dialect-specific patterns (see Section 2.3.3). Overall, the pattern of /æ/-/a/ may reflect the overall 
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separation of categories along distinct articulatory dimensions (i.e., front vs. back), in-line with 

other similar vowel pairings already observed.  

Table 5.2 Mean Pillai scores across vowel pairs calculated over dialect levels, representing the dialect-

agnostic perspective and the Dialect factor. 

 
A æ aɪ eɪ ɛ i o ɔ u ʊ ɪ 

ʌ 0.30 0.55 0.25 0.77 0.42 0.84 0.20 0.44 0.72 0.32 0.69 

a 
 

0.69 0.42 0.86 0.65 0.90 0.39 0.23 0.74 0.59 0.83 

æ 0.69 
 

0.31 0.48 0.26 0.74 0.64 0.75 0.76 0.61 0.56 

aɪ 0.42 0.31 
 

0.69 0.34 0.81 0.51 0.6 0.74 0.45 0.62 

eɪ 0.86 0.48 0.69 
 

0.36 0.43 0.79 0.88 0.62 0.59 0.25 

ɛ 0.65 0.26 0.34 0.36 
 

0.66 0.54 0.71 0.61 0.36 0.3 

i 0.90 0.74 0.81 0.43 0.66 
 

0.85 0.90 0.49 0.57 0.41 

o 0.39 0.64 0.51 0.79 0.54 0.85 
 

0.24 0.65 0.19 0.7 

ɔ 0.23 0.75 0.60 0.88 0.71 0.90 0.24 
 

0.75 0.44 0.83 

u 0.83 0.76 0.74 0.62 0.61 0.49 0.65 0.75 
 

0.31 0.4 

ʊ 0.59 0.61 0.45 0.59 0.36 0.57 0.19 0.44 0.31 
 

0.39 

ɪ 0.83 0.56 0.62 0.25 0.30 0.41 0.70 0.83 0.4 0.39 
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Figure 5.2 Pillai score across vowel pairs when calculated across all data (blue circles) and the average 

Pillai scores calculated across dialect levels (orange square) 

2.3.2.1 Middle of the Vowel Space 

For category pairs where there is greater acoustic overlap, we may hypothesize that there 

should be a change in Pillai scores, whereby Dialect factor shows higher Pillai scores, if Dialect 

aids in separating the acoustic overlap among pairs. At this point, I will examine the middle of 

the vowel space to examine an area for which there is a high degree of overlap among vowels, 

for which I’ve included mid front and back vowels, and /ʌ/ (as a central vowel) and /ʊ/. Figure 

5.3 shows a decrease in acoustic overlap among pairs with front mid-vowels when conditioned 

on Dialect, varying in magnitude. Further, the front vowels /ɛ/ and /eɪ/ predominately follow the 

observation above, whereby acoustic overlap is least among category pairs that differ in an 

articulatory dimension, such as with back vowel pairs (in-line with the ‘All Data’ case). One 

exception is that /ɛ/ shows high overlap with /ɔ/ across All Data (Pillai = 0.34), which is not 

attenuated by conditioning on Dialect (Pillai = 0.43). Further, Dialect conditioned back vowel 

pairs show comparable degrees of acoustic overlap with the overall dataset distributions, 

showing no reduction in acoustic overlap. 

In terms of front vowel pairs, we see greater separation when conditioned on Dialect. For 

example, /ɛ/-/ɪ/ overlap slightly decreases when conditioned on Dialect (Pillai = 0.30) compared 
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to All data (Pillai = 0.25), but only minimally. The greatest change in Pillai can be observed 

between /eɪ/ and /ɛ/, where overlap is high (‘All Data’ Pillai = 0.25) and shows a moderate 

decrease when conditioned on Dialect (Pillai = 0.36). The back vowel pairs, /ɔ/, /ʊ/, and /o/ on 

average show higher overlap with one another than front vowel pairings and overlap is not 

decreased when conditioned on Dialect. Overall, these results validate observations from Chapter 

4, where /eɪ/ distributions are conditioned by Dialect and functionally decrease overlap (albeit 

only slightly) among neighboring vowel pairs. In contrast to Chapter 4, these data illustrate that 

/ɛ/ distributions may also be conditioned on Dialect, given attenuation of overlap with 

neighboring vowels across Dialects. Overall acoustic overlap is slightly reduced when 

conditioning on Dialect compared to the overall data set for the mid front vowels. This supports 

the hypothesis that socio-indexical factors may act as an added dimension to reduce category 

overlap across vowel pairs. However, the same is not true for mid-back vowel pairs, where 

acoustic overlap is maintained. As such, listeners may benefit from tracking /eɪ/ and /ɛ/ across 

dialect areas to improve disambiguation of other vowel categories, I will return to this in the 

interim discussion (Section 2.4). 

 

 

Figure 5.3 Pillai score across vowel pairs when calculated across all data (blue circles) and the average 

Pillai scores calculated across dialect levels (orange square), subsection of vowel pairs in the middle of 

the vowel space. 
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To summarize, there is some indication that the mid-front vowels show some decrease in 

acoustic overlap across neighboring vowel pairs when conditioned on Dialect while the back-

vowels don’t show the same attenuation of acoustic overlap. This suggests that listeners may be 

more likely to attend to talker-specific distributions for the back vowels, as Dialect groups alone 

is not enough for adequate disambiguation. While, on the other hand, attending to Dialect 

distributions may aid in disambiguating pairs of front vowels. Finally, there is evidence that 

acoustic separability of some vowel pairings is a function of differences in articulatory 

dimensions—that is the acoustic cues align with a general separation of front/back and high/low 

and such distinction is generally maintained across the overall distributions and when 

conditioned on Dialect. This pattern suggests that listeners may have expectations about the 

boundaries of variability, such that vowel pairings are less likely to overlap when they are cross 

articulatory dimensions (see Section 2.4 for additional discussion).  

2.3.3 Dialect-Specific 

In this section, I consider how a more hierarchical relationship among dialects and talkers 

provides more substantive structure among vocalic relationships. The first area of this 

hierarchical relationship I will explore is how dialect-specific patterns provide information over 

an aggregate dialect-agnostic perspective (as described in Chapter 4). I hypothesize that an 

average overlap statistic across dialects may capture the structure necessary for attenuating 

acoustic overlap due to the variable patterns across dialect areas. In particular, acoustic overlap 

may be attenuated or augmented for different dialect areas for the same vowel category pairs, 

such as the low-back vowels. Thus, the overall dialect average (dialect-agnostic) may effectively 

mask dialect-specific patterns. 

Figure 5.4 below shows Pillai scores for each dialect level, across all seven dialect areas. 

Figure 5.4 largely aligns with the patterns observed in the previous section, with more overlap 

among vowel pairs sharing the same articulatory dimension than those separated by articulatory 

dimension for individual dialect areas. We also see that overall /æ/-/a/ overlap remains relatively 

constant across the dialect areas, despite variable positions for the two vowel categories. That is, 

regardless of where /æ/ and /a/ are positioned in the vowel space across dialect areas, the degree 

of acoustic overlap between the two vowels remains constant. In contrast, the low-back vowels 
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demonstrate variable degrees of overlap by dialect area, in-line with variable participation of the 

low-back merger across dialect areas. This finding generally supports the argument that the 

relationship between /æ/-/a/ is relatively stable across dialect areas, regardless of the relative 

shifts of the two vowels. In other words, even as /æ/ becomes more /a/ like acoustically (e.g., the 

LBMS), the distributions of /a/ and /æ/ maintain separation. Such a pattern suggests some 

stability in the vowel space which listeners may exploit to predict boundaries of variation across 

the two categories (see Section 2.4). 

 

Figure 5.4 Individual Pillai score across vowel pairs when calculated across dialect levels, with individual 

points representing the dialect area. 

2.3.3.1 Middle of the Vowel Space 

In addition, there are a few interesting observations from the dialect-specific patterns 

when looking at the middle of the vowel space. In Figure 5.5, we see that there is variability 

among Pillai scores across dialects in terms of the degree of overlap among different vowel pairs. 

In some cases, dialect levels reduce the amount of overlap between pairs, as in /o/-/ɔ/ in the 

South (Pillai = 0.46) and in other cases there is an increase in the amount of overlap between 

categories, as is the case for /eɪ/-/ɛ/ in the South (Pillai = 0.15). Such a pattern largely aligns with 

expectations of the SVS, where spectral overlap is greater among the mid-front vowels compared 
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to other dialects as a critical facet of the SVS, and where /o/ fronting may decrease overlap with 

/ɔ/. The variable degrees of overlap among different pairs further illustrates that the acoustic 

overlap among back vowel pairs may be reduced or increased at the individual dialect level. 

Despite shifts in Pillai not being apparent at the dialect-agnostic level, individual regions provide 

varying degrees of attenuation or augmentation of overlap. The high degree of dialect-specific 

variability may suggest that listeners are more likely to attend to dialect-specific patterns or 

talker-specific patterns rather than relying on dialect-agnostic boundaries which may not provide 

enough input to effectively disambiguate category pairs. 

 

 

Figure 5.5 Individual Pillai score across vowel pairs when calculated across dialect levels, with individual 

points representing the dialect area, subsection of vowel pairs in the middle of the vowel space. 

2.3.4 Talkers 

Turning our attention to talker-specific patterns, this section examines Pillai scores 

calculated for each talker for each vowel pair. Figure 5.6 illustrates average Pillai scores 

conditioned on individual talkers (illustrated in grey squares), alongside the All data and Dialect 

factor analyses from the previous sections (again, blue circle and orange triangle respectively). 

Figure 5.6 illustrates that conditioning on talker (‘Talker’) decreases the distributional overlap of 

vowel category pairs overall. In-line with the previous section, there continues to be lower 
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degrees of overlap (i.e., greater separation) in pairs differing along articulatory dimensions, and 

these values generally remain the same regardless of conditioning factors. As depicted in Figure 

5.7 and supported by Table 5.3, the spread of individual talkers’ Pillai scores conforms to this 

pattern more broadly. Figure 5.7 illustrates the overall probability density distribution, a point 

representing the mean (along the bottom of each density plot), and the credible intervals. The 

credible intervals are analogous to frequentist confidence intervals but denote where points 

within a given interval (e.g., 95% CI) have a higher probability density than points outside of the 

interval (e.g., remaining 5%), estimating the relative bounds of the distribution.  

For category pairs that span front/back dimensions there is generally decreased variability 

of Pillai scores across talkers, suggesting across talkers, regularity can be seen dividing the 

vowel space into subsystems defined by articulatory dimensions (i.e., front/back and high/low). 

Finally, examining the relationship between /æ/ and /a/, we find a similar degree of separability 

between these categories across individual dialect levels (Figure 5.5) as across talkers (Figure 

5.7). While the /æ/-/a/ Pillai scores are not the highest degree of separability of all vowel pairs 

(here, /i/-/a/), they are greater than several other vowel pairs that share height dimension and 

only differ in the front/back dimension. Additionally, while there is some degree of individual 

variability in Pillai scores, they remain relatively low (Pillai = 0.12) and the values remain 

similar across all other grouping factors both on average, and across different levels of the 

‘Dialect’ factor (i.e., individual dialect areas). This supports the suggested important status of 

/æ/-/a/ as providing some internal regularity to the vowel system and maintenance across vowel 

shifts, which is maintained from the overall distributions to individual talkers’ distributions. Such 

a result suggests that listeners may have some expectations about the likelihood of /æ/ and the 

relative boundaries of /a/ across talkers. 
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Figure 5.6 Pillai score across vowel pairs when calculated across all data (blue circles) and the average 

Pillai scores calculated across dialect levels (orange square), and Talkers (grey triangle) 

 

 

Table 5.3 Mean Pillai scores across vowel pairs calculated over individual talkers, representing the Talker 

factor. 

 
a æ aɪ eɪ ɛ i o ɔ u ʊ ɪ 

ʌ 0.39 0.58 0.34 0.78 0.46 0.84 0.31 0.49 0.74 0.42 0.7 

a 
 

0.73 0.46 0.87 0.69 0.9 0.48 0.23 0.84 0.63 0.83 

æ 0.73 
 

0.41 0.48 0.31 0.73 0.67 0.67 0.77 0.68 0.57 

aɪ 0.46 0.41 
 

0.74 0.45 0.83 0.58 0.59 0.77 0.57 0.67 

eɪ 0.87 0.48 0.74 
 

0.37 0.49 0.79 0.89 0.66 0.66 0.34 

ɛ 0.69 0.31 0.45 0.37 
 

0.66 0.58 0.74 0.63 0.45 0.31 

i 0.9 0.73 0.83 0.49 0.66 
 

0.85 0.91 0.51 0.63 0.46 

o 0.48 0.67 0.58 0.79 0.58 0.85 
 

0.38 0.7 0.29 0.71 

ɔ 0.23 0.76 0.59 0.89 0.74 0.91 0.38 
 

0.79 0.53 0.85 

u 0.84 0.77 0.77 0.66 0.63 0.51 0.7 0.79 
 

0.41 0.44 

ʊ 0.63 0.68 0.77 0.66 0.45 0.63 0.29 0.53 0.41 
 

0.44 

ɪ 0.83 0.57 0.67 0.34 0.31 0.46 0.71 0.85 0.44 0.44 
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Figure 5.7  Half stat-eye density distributions of individual talkers’ Pillai scores across vowel pairs. Color 

indicates confidence level, bright blue representing 80%, dark blue indicating the remainder to 95%, and 

grey 100%. Points along the x-axis represent the mean and whiskers represent the interquartile range. 

 

2.3.4.1 Middle of the Vowel Space 

In the middle of the vowel space, there appears to be minimal changes to Pillai scores 

across vowel pairings compared to the Dialect factor (as illustrated in Figure 5.6 above). For 

example, the vowel pair /eɪ/-/ɛ/ does not demonstrate a decrease in acoustic overlap when 

conditioned on Talker (0.37) compared to conditioning on Dialect (0.32) but is still decreased in 

comparison to the overall data distribution (i.e., All data). Similarly, vowel pairings such as /eɪ/-

/o/ and /ɛ/-/o/ demonstrate some decrease in overlap properties when conditioned on ‘Talker’ 

(0.79 and 0.58 respectively) but remain on par with that of Dialect. On the other hand, Talker 

provides the greatest reduction in overlap among back vowel pairings, where conditioning on 

Dialect provided no change in relation to the overall distribution. For example, /ɔ/+/o/ overlap is 

slightly decreased when conditioned on ‘Talker’ (0.34) compared to the ‘Dialect’ (0.24) or ‘All 
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data’ (0.27) conditions. Figure 5.7 further illustrates that talkers are highly variable in terms of 

the degree of acoustic overlap across vowel pairings near the middle of the vowel space.  

Overall, emergent structure among vowel pairs is illustrated through a reduction in 

acoustic overlap among the highly variable and overlapping distributions of the mid-vowel 

system, albeit not robustly. Conditioning on Talkers or Dialect groups provides similar reduction 

in acoustic overlap across vowel pairs containing front vowels. On the other hand, the acoustic 

overlap among pairs containing a back vowel demonstrates that Talker identity results in the 

greatest reduction of acoustic overlap. Similarly, there continues to be a high degree of 

phonological regularity in the system where separation of the mid vowels is greater for category 

pairs that span the front/back dimension which remains stable across socio-indexical factors. 

Finally, the results generally align with the suggestions that the relationship between /æ/ and /a/ 

tends to be highly structured across talkers and dialect areas, such that regardless of shifted 

positions, the degree of overlap among different vowel categories is generally preserved across 

various socio-indexical factors and levels. Below, I will discuss the implications of these 

findings for inferential speech processing, especially as it pertains to perceptual learning. 

2.4 Interim Discussion 

Overall, there is some support here for socio-indexical structure reducing acoustic 

overlap among mid vowels across socio-indexical factors, though only to a small degree. A 

reduction is observed among mid-vowel pairs that include a front vowel across both Talkers and 

Dialect factors. However, the back vowel pairs only show a reduction in acoustic overlap when 

conditioned on Talker and not Dialect. These results suggest that different vocalic relationships 

may be more sensitive to talker-specific and dialect-agnostic learning than others. Listeners may 

be more likely to draw on cross-talker expectations when resolving ambiguity for front vowel 

pairs and less likely to use expectations from other talkers when resolving ambiguity across back 

vowel pairs. Though, the degree of inter-dialect and inter-talker variability among Pillai scores 

suggests that listeners may generally not rely on cross-talker expectations to resolve ambiguity. 

That is, the high degree of instability of dialect information for vowels in the middle of the vowel 

space may lead listeners to rely less on cross-talker expectations of vowel category variability 

therein. 
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The fact that the mid-vowels demonstrate moderate acoustic overlap with one another 

that is variable in degree of socio-indexical factors reduction may lead to some hypotheses about 

perceptual learning. In particular, we might hypothesize that the boundaries between categories 

are fuzzy as a result of more extensive acoustic overlap compared to other vowel pairs in the 

system. As such, we might predict that listeners will be more tolerant of variants that encroach 

on the space of the neighboring vowel category a priori because these categories are highly 

variable across talkers. Subsequently, listeners rely less on their prior experience with social 

factors and cross-talker variation in disambiguating categories. As such, ambiguity is more likely 

to persist across talkers among certain vowel pairs, and/or disambiguation is resolved using other 

cue dimensions (e.g., duration, Wade, 2017), and/or higher-order levels such as syntactic (Clark, 

2013) or semantic predictability (Borsky et al., 1998; Kalikow et al., 1977; McAuliffe 2015; 

Samuel, 1981).  

Take for example the relationship between /eɪ/-/ɛ/, where there is considerable acoustic 

overlap that is only partially reduced by socio-indexical factors on average, and the degree is 

variable across talkers and dialects. Due to the large degree of overlap among pairs, it’s possible 

that the boundaries of variation for /eɪ/ and /ɛ/ are much fuzzier, and listeners would have a 

higher degree of uncertainty around category membership and higher credibility may be given to 

both hypotheses about the category belonging to /eɪ/ or /ɛ/. This prediction aligns with prior work 

in distributional learning, where tokens are more readily assigned to distributions with greater 

variability where the likelihood of outliers in the category is higher, even when the item is more 

similar to the lower variance set (see Kapatsinski, 2018). Similarly, categorization functions for 

learned contrasts are steeper (i.e., greater certainty and more stability) for low variance compared 

to high variance exposure and greater overlap of categories (Clayards et al., 2008; Newman et 

al., 2001). Furthermore, since the variance and overlap of the categories is high, the reliability of 

the cues in distinguishing one contrast from the other is more likely minimal (Allen & Miller, 

2004; Clayards et al., 2008; Newman et al., 2001; Kleinschmidt & Jaeger, 2015). As a result, 

listeners may be generally less likely to update their beliefs about the category and show 

minimal-no learning (Kleinschmidt & Jaeger, 2015).  

On the other hand, and unsurprisingly, the phonological system provides a great deal of 

regularity in the system where overlap among vowel pairs is reduced when they vary along an 



 

 184 

articulatory dimension (e.g., high/low, front/back). In addition, the results here support previous 

work that suggests the relationship between /æ/ and /a/ is structured across talkers and dialect 

areas, as is evident in an overall greater separability between the multivariate distributions. 

Regardless of the spectral position of /æ/ and /a/, the degree to which the acoustic distributions 

overlap is maintained across dialect areas and, for the most part, talkers. The internal category 

structure and covariation of vowel categories may further provide stability and input about the 

relative boundaries of variability across vowel pairs. As a result, such systematicity may further 

constrain perceptual learning.  

The greater separation of acoustic cues across vowel pairs that differ in articulatory 

dimension may provide listeners with regularity across talkers, where the boundaries of 

variability between pairs is more distinct. We may predict that due to more limited cross-talker 

variation across these boundaries, listeners may have a harder time adapting to shifts towards 

categories that are otherwise stable across talkers. To illustrate this idea, take for instance the 

vowel pair /eɪ/ and /o/, which differ along front/back dimensions but share height dimensions. 

This pairing generally demonstrates greater separability in cue distributions (according to the 

analyses presented here). As such, listeners may show more difficulty in adapting to a pattern 

whereby /eɪ/ becomes more like /o/, or vice versa (particularly under complete remapping), 

because that would be both uncommon in experience and violates properties of the phonological 

system. If listeners learn this pattern, it may be limited to a talker-specific pattern and listeners 

may be unlikely to generalize the pattern to other talkers. This may be driven by several factors, 

including the possibilities outlined by principles of maximal dispersion, but also a result of 

listeners not inferring variability is caused by dialectal variation. Similarly, this may be true for 

categories like /æ/ and /a/ where the structural relationship is highly regular and structured across 

talkers and shifts. However, this pattern may be limited to cases where both distributional 

patterns are present, such that listeners receive input about the distributions of both categories, 

which may more strongly indicate a merger of the categories. 

Ambiguity is thus maximized for category pairs where acoustic overlap is greatest and 

where conditioning on socio-indexical factors only minimally reduces the overlap. Whereas 

ambiguity is inherently lower when acoustic overlap between pairs is low, which may restrict the 

range of acceptable variation for a given category. This analysis of course assumes as a 
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convenience that the degree of overlap among vowel pairs is a bidirectional relationship, where 

the overlap is a product of the contribution of the variance from both categories. However, there 

is good reason to assume this may not be the case, and certain categories are more likely to vary 

and encroach on the boundaries of another vowel category than the other direction. For example, 

/u/ has greater variance than /i/ and is more likely to encroach upon the boundaries of /i/ as it 

shifts forward, but the reverse is not necessarily true. Pillai scores otherwise miss this 

directionality, by indicating overall degree of overlap between /i/ and /u/. The next section seeks 

to better understand the directions and variance of individual categories along specific cue 

dimensions in greater detail. 

3 Part 2: Cue Specific Tendencies & Socio-Indexical Factors 

Beyond the general principles of overlap, sociophonetic work offers numerous additional 

insights into how variation is socio-indexically structured. This section focuses specifically on 

insights regarding patterns of variation in F1 and F2, and the different ways socially structured 

variation shapes distributional properties. While there are many good reasons to treat vowels in 

multivariate space, with cues comprising a set, it is also analytically valid to examine cue 

specific tendencies within a set, and indeed this is where most sociophonetic analyses begin their 

descriptions. As will be illustrated in this section, the examination of F1 and F2 independently is 

motivated by evidence that vowel categories demonstrate unique distributional properties along 

specific dimensions (Van Hofwegen, 2013; Fruehwald, 2013, 2017) and follow regular patterns 

of variation along specific axes in accordance with social factors (Labov, 1994, 2001; Thomas, 

2011).  

Additionally, evidence from distributional learning literature demonstrates that people 

can attend to and learn patterns of individual cue dimensions even when they share covariance 

and utility as a set (Kruschke, 1996). These two facts combined suggest that examining F1 and 

F2 in multivariate space (as in previous analyses) may be obscuring structured variation along 

specific cues that language users learn. This section serves to uncover how variability along F1 

and F2 may demonstrate socio-indexical structure across American English. To set the stage for 

the analyses, I will provide an overview of current work that motivates examining specific cue 

distributions. Much of this work is drawn from sociophonetic research on language change, 
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however the overall goal is not to address issues in language change itself but rather to highlight 

the specificity of socio-indexical structure and provide some initial expectations for cue specific 

variability among American English vowels. In addition, I will review work across other 

domains of linguistics that speaks more directly to the distributional properties of acoustic cues. 

 

3.1 Background 

Typological regularity of sound change patterns in American English has been an 

emphasis of work in sociophonetics and motivates the need to examine socio-indexical structure 

along specific cues for further refinement of hypotheses in perceptual learning. The typological 

patterns of sound change are drawn from dynamic synchronic and historical processes. While 

this dissertation does not seek to speak to the mechanisms or processes of sound change, the 

work discussed here illustrates patterns that may be replicated synchronically as cross-talker 

variability in American English, or in the phonetic fluctuations that may give rise to the patterns 

over time.   

Labov (1994, 2001) has argued for several Principles of Vowel Shifts that constrain the 

patterns of variation seen across time and space. Specifically, three principles offer insights into 

vocalic variability for this study: Principle I, III, and Principle IV. Principle I states that back 

vowels typically front, which has the implication that back vowels are more likely to vary along 

F2 than F1. However, Thomas (2011) notes that this mostly affects /u/ and other back vowels 

may raise to fill in the gap, thus we may see vowel specific tendencies rather than overarching 

subsystems. Principle III indicates long vowels front and raise, and low vowels fall and back. In 

such cases talkers may show more multivariate changes in tense vowels but follow a systematic, 

albeit more complex, trajectory of change. Nonetheless, we might see that talkers are more likely 

to vary along one dimension more than the other in these cases. Finally, Principle IV: peripheral 

and non-peripheral vowels may swap positions, as demonstrated in cases such as /eɪ/-/ɛ/ reversal 

in the SVS. Principle IV is constrained by the ‘Lower exit principle’ which notes that as a vowel 

falls, it will eventually hit bottom and enter peripheral space when it reaches an /a/ value, further 

evidence of /a/ providing some degree of anchoring and stability in the vowel system. We might 

hypothesize that talker variability is likely to occur along specific cue distributions, with 
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variation along a single cue dimension being more (or less) likely for a particular category or 

sub-system.  

Recent work has also suggested that variability along F1 and F2 may demonstrate distinct 

distributional properties for categories undergoing change or used for stylistic variation 

(Fruehwald, 2017; Van Hofwegen, 2013, 2017). Intra-talker variability may be much wider for 

certain cue dimension in categories undergoing change (e.g., /æ/ retraction in the CVS) than 

those that are relatively stable (e.g., /u/ fronting in the CVS; Van Hofwegen, 2013, 2017). 

Additionally, Van Hofwegen (2013) shows that variability in vowel categories may be non-

normally distributed for those undergoing change arguing the edges of the multimodal 

distributions are the loci for sociolinguistic style. Contrastingly, vowel categories that are not 

involved in sound change appear normally distributed and are not subject to the same stylistic 

use or range of inter-talker variability. Similarly, Fruehwald (2017) demonstrates that despite 

having similar intra-talker ranges, there is a narrower range of inter-talker variation for men than 

for women in Philadelphia and the shifts in range are not necessarily tied to shifts in the average 

across groups. Thus, beyond just the overall degree to which variation occurs in a single cue 

dimension (e.g., F2 for both /u/ and /æ/), there may also be differences both in terms of the shape 

and parameters of individual cue dimensions that may demonstrate socio-indexical structure. In 

addition, we might expect that within-talker variation and between-talker variation may have 

different impacts on distributional properties, but generally these two analytical lenses have not 

been examined in parallel.  

In addition to these broader phonological patterns, examining the shape and make-up of 

distributions is important for understanding learning and speech perception and provide insight 

into community patterns. The make-up of cue distributions and their influence on learning has 

been discussed more extensively in literature on distributional learning. While there is good 

evidence that listeners attend to sets of cues (e.g., F1 + F2 as we have discussed so far), there is 

also evidence that individuals can attend to specific dimensions among sets of cues (Kruschke, 

1996). Additionally, as evidenced by the category variability effect (see e.g., Cohen et al., 2001), 

distributional properties among cues may influence listeners’ categorization behavior. 

Individuals categorize ambiguous stimuli according to the distributional properties of the 

contrasts, such that ambiguous stimuli are more likely to be associated with the higher variance 
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contrast than the narrower category, despite the stimulus being closer to the central tendency of 

the narrow distribution (Cohen et al., 2001). Kapatsinski (2018: 133) suggests listeners may infer 

that sampling from a higher variability category is more likely to produce an outlier value, 

therefore listeners are more likely to extend the category past the experienced exemplars. This 

warrants examining specific cue distributions to better understand how talker variability is 

structured along specific axes, and how this further constrains perceptual learning. 

In accordance with Bayesian models of speech processing, listeners may build generative 

models about within and across talker variation in response to the shape of distributions. 

Distributional learning can improve category discrimination when items belong to different 

statistical modes of the same category—suggesting that listeners attend to the distributional 

properties of a single dimension even when they are not necessarily indicative of separate 

categories. In particular, a unimodal production from the talker in exposure would lead listeners 

to build a generative model that the talker has one production target along that dimension. 

Listeners are sensitive to the fact that not all productions are going to exactly replicate the target, 

but this is largely inferred as a degree of random noise that is not relevant to meaning (see also 

Kapatsinski, 2018). In contrast exposure to a talker who has a bimodal distribution may appear to 

have two production targets, which is enough for listeners to generate a model of the cause of 

these two distinct targets. In such cases, tracking the multi-modality and conditioning factors 

allows listeners to learn, for example, a phonological pattern needed for producing allophonic 

variation, or other contextual causes. 

Such a mechanism may be useful in the contexts outlined by Van Hofwegen (2017), 

where multi-modality is associated with different styles and sound change. When encountering 

speech sounds such as /æ/, individuals might build generative models about talkers with more 

multimodal productions to have multiple meaningful production targets, which provide socio-

indexical information, and information about variants used in specific situations. Such a 

generative model would aid in an individuals’ ability to replicate variation for their social goals, 

as well as aid in speech processing in future contexts. Further, the shape of the distribution may 

influence how listeners infer ambiguous stimuli that may fall along the edges of multi-modal cue 

distributions. In cases where the cue distribution is characterized by wider variability, listeners 

may have less confidence in the cue and down weight the importance of the cue for 
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categorization (Kleinschmidt & Jaeger, 2015). However, if the wide range of variability is 

structured by social factors, such as situation or group identity, listeners may orient toward the 

more variable cue to replicate the pattern for social goals. In addition, categories that have 

greater or a more multi-modal distribution in a single cue dimension and narrow or normal 

distribution in the other may demonstrate differential adaptation along specific dimensions as a 

result. 

In light of these discussions, we can predict that variability is conditioned along specific 

cue dimensions for individual contrasts in production. For example, overall patterns of /u/ may 

demonstrate greater propensity for variability along the F2 axis as expected from the typological 

tendency for vowels to front (and not lower/raise). Of course, this may be demonstrated through 

between-talker variation where talkers’ or dialects’ central tendency may be distinguished along 

this axis. Alternatively, there may be greater within-talker variability, where there may be greater 

token variability along F2 as talkers adopt ongoing sound changes or contextually governed 

variation. Similarly, for categories like /æ/, within-talker variation may be greater and 

demonstrate multimodal distributions within-talkers as it is used for more stylistic variation. 

Finally, there is of course the possibility that the flat raw cue distribution captures token level 

variability that results from shared phonological conditioning (as discussed in Chapter 2). For 

example, /u/ variability along F2 may be likely to occur both within and across talkers as a 

function of pre-coronal conditioning of /u/ to front. These variable realizations may result in 

intra-talker variability (i.e., talkers’ distributions) largely aligning with the tendencies of the 

overall dataset or their dialect areas and show less reduction and increased normality. In the 

following sections I will examine each of these levels in more detail, focusing on a subset of 

vowels. 

3.2 Methods 

3.2.1 Quantifying Distributions 

In this section to better understand overall distributional properties of F1 and F2, I rely on 

descriptive statistics about the distributions. I examine the central tendency (here, the mean), 

standard deviation, skew (γ1) , and kurtosis (κ) of F1 and F2 separately. Each of these measures 

provide details about dispersion of the data, which has strong implications for how listeners may 
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deal with variability along each cue dimension. Kurtosis describes how broad the distribution is 

relative to its center (i.e., mean) and the propensity of the distribution to have outliers and greater 

density in the tails. Lower kurtosis (κ < 3) can be an indication of bimodality with higher 

proportions of data within the tails of the distribution or greater propensity to outliers; higher 

kurtosis (κ > 3) is an indication of a more data concentrated near the center and lighter tails. 

Skewness captures the asymmetry in the distribution, with negative skewness indicating longer 

left tail (e.g., more extreme negative values) and positive skew indication longer right tail (e.g., 

more extreme positive values). Rules of thumb for kurtosis vary but following George and 

Mallery (2010) values of +/-2 of the normal distribution (κ = 3) are considered within the range 

of a normal univariate distribution. Rules of thumb for skewness follow that values between -0.5 

and 0.5 are fairly symmetrical, and between 0.5 and 1 and -0.5 and -1 are considered moderately 

skewed and values greater than 1 or less than -1 are considered highly skewed. Normally 

distributed data has a kurtosis of 3 and a skew of 0. 

While there are statistical models that may detect goodness of fit by comparing models 

with different types of unimodal distributions, these are likely to lack power on an individual 

talker basis due to lower sample size and may not capture distributional tendencies where 

bimodality may result in close modes and broad variance. Additionally, other distributional 

tendencies may be apparent outside of unimodality and bimodality. The more homogenous the 

distribution is the more likely it is to demonstrate low standard deviations and high kurtosis. On 

the other hand, the more heterogenous the distribution is the more it is likely to have higher 

standard deviation and lower kurtosis. As such, I use a combination of these descriptive statistics 

and visual inspection of distributions to evaluate cue distributions below. All measures were 

calculated in R (R Core Team, 2018), with skewness and kurtosis5 measured using the moments 

package (Komsta & Novomestky, 2015) and other measures (i.e., mean and standard deviation) 

calculated using the base functions in R. 

 

5 Kurtosis is calculated using Pearson’s measure of Kurtosis and is not reflective of excess kurtosis. Skewness is 

based on Fisher/Pearson moment coefficient of skewness. 
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3.2.2 Defining Groups 

Following previous analyses, I measure each of these descriptive statistics over different 

socio-indexical groups conditioned on vowel category. Descriptive statistics were calculated 

over the entire dataset, again all tokens across talkers and dialect areas. Additional factors follow 

previous analyses, where the Dialect factor represents statistics calculated over all tokens and 

talkers of individual dialect areas, averaged over dialect levels. Dialect-specific patterns 

represent the individual dialect levels, as calculated over all tokens and talkers. The Talker factor 

represents descriptive statistics calculated over all tokens for an individual talker, and then 

averaged. Finally, Dialect+ Talker represents distributional properties over individuals’ central 

tendency (i.e., mean) for a particular cue distribution. As such, the unit of analysis shifts from the 

distributional properties of a talker to their average behavior. Rather than considering token level 

variability which may vary within and across talkers, it provides a summary measure of their 

mean behavior on F1 or F2. Therefore, each descriptive statistic here is describing the 

distribution of talker means (e.g., skew of talker means of F1 for /a/). As such, this also captures 

some degree of hierarchical structure where parameterization of talkers occurs within the larger 

group structures and provides an estimate after accounting for intra-talker variability. 

3.3 Analyses 

3.3.1 American English (All Data) 

Following the logic of the previous analyses, I will focus on describing the distributional 

properties more broadly across the entire dataset, and then move towards descriptions of the 

average properties across different socio-indexical factors (Dialect, Talker, Dialect + Talker) to 

illustrate the ways in which socio-indexical structure shapes distributional properties. I will 

primarily focus the descriptions on categories that are implicated in having non-normally 

distributed properties as a result of typological patterns (/u/ and /a/), sound change and style 

(here focusing on /æ/ and /ɔ/) and implicated in previous analyses in this dissertation (/eɪ/ and 

/ʊ/). I will then discuss the implications for inferential speech perception processes in the broader 

discussion (Section 3.4). 
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Figure 5.8 illustrates the probability distributions of Lobanov normalized F1 and F2 

across vowel categories (all tokens, all talkers) with a point for the mean and credible intervals. 

Table 5.4 describes these distributions in terms of traditional descriptive statistics giving the 

mean, standard deviation, skew, and kurtosis. As depicted in Figure 5.8, across vowel categories 

there is greater variability in F2 than in F1, which is supported in the descriptive statistics in 

Table 5.4. Overall, most vowel categories fit within the normal distribution range for skewness (-

0.5 – 0.5) and kurtosis (3 +/- 2). The exception to this pattern is /i/ F2 (κ = 5.14) and /ʌ/ F1 (κ = 

5.02), which generally show lighter tails and greater density of data near the center. However, 

visual depictions of the density distributions in Figure 5.8 shows some indication that for certain 

vowel categories the distributions appear to be near bimodal and show greater variability. In 

particular, the back vowels /u/ (F2: σ = 0.87, κ = 3.13, γ1 = - 0.68) and /ʊ/ (F2: σ = 0.77, κ = 

2.94, γ1 = -0.20) show greater variability in F2 compared to F1, with a moderate negative skew 

for /u/, suggesting a propensity for more extreme backed tokens. This aligns generally with the 

pattern of the tendency for back vowels to front and shows that there is greater variability across 

talkers and/or tokens with more conservative backed variants. 

Additionally, /ɔ/ (F1: σ = 0.90, κ = 2.25, γ1 = -0.25) and /a/ (F1: σ = 0.64, κ = 3.92, γ1 = -

0.30) tend to show greater variability across talkers and tokens with wider or near bimodal 

distributions in F1 compared to F2. While still in the range for normality, the lower kurtosis 

values of /ɔ/ align with the visual inspection of the probability distribution for F1. This broadly 

aligns with the tendency for talkers to be variable in terms of their low back vowel merger. 

Additionally, /æ/ shows greater variability along F1 (σ = 0.80, κ = 3.22, γ1 = -0.24) than F2 (σ = 
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0.58, κ = 0.36, γ1 = 0.14), which generally aligns with the fact that talkers may raise /æ/ across 

some dialects (e.g., NCS, SVS).  

 
Figure 5.8 Probability distributions across Lobanov normalized F1 and F2 for individual vowel 

categories. Distributions are across all tokens and talkers in the dataset, fill values represent high density 

confidence intervals. 

 

 

Table 5.4 Descriptive statistics for Lobanov normalized F1 and F2 across vowel categories, for the overall 

dataset distribution. 

 Mean Standard Deviation Skew (γ1) Kurtosis (κ) 

Vowel F1 F2 F1 F2 F1 F2 F1 F2 

a 0.89 -1.02 0.64 0.45 -0.30 0.07 3.92 3.33 

æ 0.76 0.45 0.80 0.57 -0.24 0.14 3.22 3.57 

ʌ 0.44 -0.53 0.62 0.46 -0.59 -0.15 5.02 3.42 

ɔ 0.19 -1.44 0.90 0.55 -0.25 0.00 2.25 2.97 

aɪ 0.98 -0.25 0.73 0.48 -0.19 0.10 3.39 3.12 

ɛ 0.03 0.36 0.62 0.58 -0.03 -0.45 3.10 4.10 
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 Mean Standard Deviation Skew (γ1) Kurtosis (κ) 

Vowel F1 F2 F1 F2 F1 F2 F1 F2 

eɪ -0.41 1.00 0.55 0.49 0.22 -0.45 3.20 4.84 

i -1.32 1.38 0.48 0.59 0.34 -0.8 3.61 5.14 

ɪ -0.70 0.63 0.5 0.55 0.38 -0.48 3.67 4.34 

o -0.01 -0.84 0.6 0.62 0.09 -0.05 3.27 2.59 

u -1.31 0.11 0.44 0.87 0.26 -0.68 4.19 3.13 

ʊ -0.70 -0.50 0.45 0.77 0.30 -0.20 3.75 2.94 

 

These distributional patterns may arise from two possible sources. First, that talkers 

and/or dialects vary in terms of their average positions for these vowels, such that some talkers 

across groups are uniformly more fronted/backed or raised/lowered. Such a case may explain the 

bimodality of /ɔ/ (F1), which varies across varieties of English as a result of merger of the low 

back vowels. The second possibility is that bimodality or wider variability is indicative of talkers 

themselves being bimodal or widely variable indicating greater within-talker variation. The 

within-talker variation may be shared by talkers across American English, in the case of 

phonological conditioning, or may be idiosyncratic or stylistic. The latter might explain /u/, for 

example, as many talkers front in post-coronal environments and retain backed /u/ tokens in 

other phonological contexts (e.g., Labov et al., 2006). To better understand these different 

potential axes of between and within-talker variation, I will examine both the distributional 

properties of Talkers (Section 3.3.4) and the distributional properties of talkers’ central tendency 

(Section 3.3.5), to better understand if the average position across talkers is driving the 

bimodality over and above token level variability. Put differently, do each of the modes represent 

different groups of talkers, or do individuals broadly demonstrate a similar bimodal (or wide) 

distribution of tokens? In the proceeding sections, I will compare the overall distribution 

parameters to the socio-indexical factors of Talker, Dialect, and Dialect + Talker to better 

Table 5.4, Continued 
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understand how distributional properties are conditioned on these factors. I will examine each 

category in terms of Lobanov normalized F1 and F2.  

 

3.3.2 Dialect-Agnostic 

Having established the baseline distributional properties, we now consider how dialects, 

on average (Dialect) distributional tendencies compare to the overall distributions. Figure 5.9 

shows the descriptive statistics values for F1 across the entire dataset (blue circles, values from 

Table 5.4 above) and the average descriptive statistics for the Dialect factor (orange squares); 

Figure 5.10 shows the descriptive statistics for F2 across the same factors. These figures validate 

the overall patterns in Section 3.3.1 above that vowel categories are largely normally distributed, 

with skew and kurtosis values falling within a normal distribution range. Additionally, the 

Dialect factor approaches the more ideal skew and kurtosis of a normal distribution for both F1 

and F2 across vowel categories. 

Turning to the vowel categories of interest, we might expect that the broad range of 

variability in F2 for /u/ and /ʊ/ may be reduced when looking at tokens and talkers within a 

dialect area (‘Dialect’) if the distributional patterns are the result of cross-talker variability as a 

result of dialect differences. Such a change, however, is minimal as there is only slightly lower 

standard deviations in Figure 5.10 when we look at ‘Dialect’ averages for /u/ (σ = 0.85) and /ʊ/ 

(σ = 0.74). Additionally, there is still evidence of some negative skew across average Dialect 

factor for /u/ (γ1 = -0.43), validating that there are generally extreme backed talkers and/or 

tokens within dialects as well. In other words, the propensity for outliers in the overall 

distribution cannot be accounted for by conditioning on dialect alone. This suggests either 

continued between-talker variation within dialect areas or some degree of within-talker variation 

that is maintained across group distributions.  

Next, there is an increase in kurtosis for /eɪ/ F2 (κ = 5.47), showing a greater 

concentration of values near the center in F2 within dialect distributions compared to the overall 

dataset. However, there is a moderately negative skew in F2, indicating some more extreme 

centralized talkers and/or tokens. For the other vowel categories of interest, /a/, /æ/, and /ɔ/, we 

generally see that the Dialect factor shows a tendency towards more normality and lower 

standard deviations, while maintaining greater variability along F1 than F2. Similarly, /ɔ/ 
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continues to demonstrate more heavy tailed distributions even when conditioning on dialects (κ = 

2.60) suggesting that the bimodality observed across the overall data distributions is not 

accounted for when conditioning on dialect alone. Of course, these observations could be driven 

by some dialect areas where there is greater talker/token variation within the region. In the next 

section I will look at the dialect-specific tendencies before moving on to the other social factors 

(Talker and Dialect+Talker tendencies). 

 

 

Figure 5.9 Comparison of descriptive statistics for Lobanov normalized F1 values for each vowel 

category distribution. Blue circles represent the overall distribution (all data, tokens, talkers). Orange 

squares represent the Dialect factor as the average of each descriptive statistic calculated over individual 

dialect levels. 
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Figure 5.10 Comparison of descriptive statistics for Lobanov normalized F2 values for each vowel 

category distribution. Blue circles represent the overall distribution (all data, tokens, talkers). Orange 

squares represent the Dialect factor as the average of each descriptive statistic calculated over individual 

dialect levels. 

 

3.3.3 Dialect-Specific Patterns 

Turning to look at the dialect-specific tendencies, Figure 5.13 and Figure 5.14 show the 

probability density functions for each dialect area and vowel category to complement the 

descriptive statistics plotted in Figure 5.11 and Figure 5.12. Looking at the dialect-specific 

descriptive statistics in Figure 5.11 and Figure 5.12 we can see that generally all dialects and 

vowel categories approximate normal distributions according to accepted ranges of skew and 

kurtosis. Each dialect area demonstrates relatively similar trends for each of the critical vowels 

examined in this section, despite varying in central tendency for F1 and F2 across categories.  

First, /u/ and /ʊ/ demonstrate more variability in F2 compared to F1 as demonstrated by 

higher standard deviation across dialects. Across dialect areas, the range of standard deviations 
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for F1 in /u/ (0.39-0.48) and /ʊ/ (0.41-0.59) are narrow, but the ranges in F2 are larger (0.73-0.96 

for /u/ and 0.57-0.78 for /ʊ/) in addition to the overall tendency for F2 to be more variable. 

Kurtosis values indicate a normal distribution with lower values for some dialects indicating 

greater spread of probability into the tails and greater propensity towards outliers in F2. Visual 

inspections of the dialect distributions similarly show some indication of bimodality in /u/ and 

/ʊ/ for each dialect category, demonstrating token and/or talker variability within dialect areas 

for F2. In contrast, there is minimal variability in F1 for these same vowel categories, with 

dialect areas being relatively similar to one another with lower standard deviations and slightly 

higher kurtosis.  

For /æ/ and /a/ we can see that there is generally a greater range of standard deviations 

across dialect areas and density near the center of the distribution for F1. In comparison, F2 

shows less indication of variability for /æ/ and /a/ with lower standard deviation (σ = range /a/: 

0.37-0.47; σ = range /æ/: 0.49-0.67) compared to F1 (σ = range /a/: 0.55-0.68; σ = range /æ/: 

0.65-0.93) and normal kurtosis (approximately κ = 3) across dialects. This largely aligns with the 

trends observed thus far for both the overall data distributions (Section 3.3.1) and average 

Dialect factor (Section 3.3.4). Additionally, /ɔ/ shows greater standard deviation in F1 and lower 

kurtosis compared to F2 across dialects. In fact, the kurtosis for /ɔ/ is among the lowest (i.e., 

most outliers in the tails) of all the categories and is greatest for the South, demonstrating more 

heavy tailed distributions. Figure 5.13 visually supports this observation, which shows near 

bimodal distributions across several of the dialect areas, with the Midatlantic distinguished by a 

normal univariate distribution.  

Finally, /eɪ/ shows normality across dialects in F1. However, F2 shows higher kurtosis 

with all dialects greater than 3, showing largely more mass in the center of the distribution and 

lighter tails. Additionally, the Midatlantic appears to be the most extreme and shows high 

kurtosis (κ = 11.1) and negative skew (γ1 = -1.76) in F2, which may be the result of fewer talkers 

in the sample. These findings align with the overall dataset (Section 3.3.1) and the dialect-

agnostic description (Section 3.3.2). Broadly speaking, cross talker variation is normally 

distributed for /eɪ/ but may show lower variability and more concentration near the central 

tendency within dialect areas along F2. 
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Overall, this shows that the high back vowels have greater variability in F2 than F1, 

aligning with Labov’s (1994) principles, and overall, more likely as a function of constraints 

imposed by articulatory limits. On the other hand, the low back vowels tend to show greater 

variability in F1 than F2 across dialect areas, as might be expected from the merger of the two 

vowels, where both categories may vary along the same axis, and from articulatory constraints of 

low vowels. Visual inspection also demonstrates /ɔ/ F1 has some degree of bimodality within 

dialect areas, in contrast to /a/ which conforms to a univariate distribution, suggesting greater 

token and/or talker variability for /ɔ/ than /a/. The front vowels of interest are quite different 

from one another. In particular, /eɪ/ appears to be distinguished by central tendency across 

dialects and is coupled with somewhat more peaked distributions along F2 compared to F1, 

demonstrating greater regularity and concentration near the center for dialects. In other words, 

/eɪ/ is distinguished by both changes in central tendency and more regularity across tokens and 

talkers in F2, and normally distributed F1.  

Additionally, /æ/ shows greater variability along F1 across dialects and lower variation in 

F2, which is somewhat in-line with the tendency for some regional varieties to raise /æ/ (e.g., 

NCS and SVS). However, given that dialect areas are also prone to retraction (e.g., LBMS) it’s 

surprising to see lower variability along F2 across the overall dataset and for individual dialect 

areas. The greater variability in F1 may be driven, in part, by phonological environment, where 

/æ/ shows variable patterns of raising pre-nasally (Labov et al., 2006). As noted previously, of 

course the raw distributional patterns may largely be driven by token variability, which may be 

shared across talkers in a region in the case of phonological variation. Alternatively, it could be 

because talkers vary in their central tendency, creating two modes that encompass different 

groups of talkers. The next two sections will begin to disambiguate whether such variability is a 

function of between-talker or within-talker variation. 
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Figure 5.11 Comparison of descriptive statistics for Lobanov normalized F1 values for each dialect level, 

calculated over all tokens and talkers within each dialect area (e.g., all talkers and tokens from the South) 

conditioned on vowel category. 
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Figure 5.12 Comparison of descriptive statistics for Lobanov normalized F2 values for each dialect level, 

calculated over all tokens and talkers within each dialect area (e.g., all talkers and tokens from the South) 

conditioned on vowel category. 
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Figure 5.13 Probability density plots for Lobanov normalized F1 for each vowel conditioned on dialect 

area (indicated by color). Dashed lines indicate dialect area mean F1. 
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Figure 5.14 Probability density plots for Lobanov normalized F2 for each vowel conditioned on dialect 

area (indicated by color). Dashed lines indicate dialect area mean F2. 

 

3.3.4 Talkers 

Shifting from the dialect patterns, I now turn to look at how talker-specific distributions 

align with the overall dataset (Section 3.3.1) and the dialect-agnostic (Section 3.3.2) 

distributional properties. Figure 5.15 and Figure 5.16 provide the descriptive statistics of the 

overall dataset, the Dialect factor, and the Talker factor. The Talker factor represents an average 

of each descriptive statistic for each vowel category calculated for each individual talker’s 

distribution. Across vowel categories we see that talkers’ cue distributions are on average more 

normally distributed with lower standard deviations, less skew, and normal kurtosis, compared to 

the overall distributions and Dialect distributions. Such a finding confirms the expectations that 

talker-specific tendencies of cue dimensions are highly regular and normally distributed and 
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within-talker variability is less than cross-talker variability across this dataset. There are a couple 

of exceptions, which I will cover below.  

Turning to the vowels of interest, we again observe that Talkers are on average more 

normally distributed for /æ/, /a/, /eɪ/, and /u/ compared to the overall and Dialect average. While 

/ɔ/ and /ʊ/ both show a somewhat lower kurtosis (κ = 2.51 and 2.43 respectively) and negative 

skew in /ʊ/ (γ1 = -0.20), though still falling within the normal range. In addition, /ɔ/ F1 shows 

that talkers have lower kurtosis (κ = 2.3) and negative skew (γ1 = -0.30) compared to the Dialect 

average which aligns more closely to the overall data distribution. These findings suggest that 

within-talker variability is similar to the distributional patterns of the overall dataset, where more 

data fall in the tails for /ɔ/ F1 and /ʊ/ F2 with a propensity for more backed tokens for /ʊ/ and 

higher tokens for /ɔ/. That is, talkers on average show similar token variability as the overall data 

distribution encompassing both between and within-talker variation, suggesting that within-talker 

variability is on par with between-talker variability for /ɔ/ F1 and /ʊ/ F2. Patterns in /ɔ/ may be 

due to the low back vowel merger in various parts of the U.S. and ongoing sound change may 

result in bimodal distributions within-talkers (Fruehwald 2017) in addition to the between-talker 

differences. In the next section I will examine how talkers’ mean behavior varies along each cue 

dimension for the vowels of interest. 
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Figure 5.15 Comparison of descriptive statistics for Lobanov normalized F1 values for each vowel 

category distribution. Blue circles represent the overall distribution (all data, tokens, talkers). Orange 

squares represent the Dialect factor as the average of each descriptive statistic calculated over individual 

dialect levels. Grey triangles represent the Talker factor as the average of each descriptive statistic 

calculated over individual talkers (all tokens, raw distribution). 
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Figure 5.16 Comparison of descriptive statistics for Lobanov normalized F2 values for each vowel 

category distribution. Blue circles represent the overall distribution (all data, tokens, talkers). Orange 

squares represent the Dialect factor as the average of each descriptive statistic calculated over individual 

dialect levels. Grey triangles represent the Talker factor as the average of each descriptive statistic 

calculated over individual talkers (all tokens, raw distribution). 

3.3.5 Talker Means 

Figure 5.17 show the distribution of talkers’ mean F1 and F2 for each vowel category 

across the entire dataset with the mean and high-density point intervals for each dialect area 

overlaid (made in R using the ggdist package, Kay, 2020). Figure 5.18 and Figure 5.19show the 

descriptive statistics for each vowel category and cue dimension’s distribution of talker means. 

The green plus sign reflects the descriptive statistics of the distribution of means in Figure 5.17 

and the orange triangle reflective of the descriptive statistics of talker means grouped by their 

dialect area. A caveat should be noted for this section. That is, mathematically, we expect 

distributions of means to be normally distributed and as the sample size increases (i.e., number of 

unique talkers) the standard deviation of the distribution of sample means will decrease. In other 

words, the distribution of means across the entire dataset is expected to have lower standard 
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deviation compared to individual dialect areas’ distributions of talker means (as illustrated in 

Figure 5.17 and supported by statistics in Figure 5.18 and Figure 5.19). Similarly, dialect areas 

with smaller sample sizes will have larger standard deviations of talker means, which is 

supported by Figure 5.17. 

Despite this, Figure 5.17 depicts some interesting trends which are further supported in 

the descriptive statistics in Figure 5.18-Figure 5.19. Broadly speaking, the trends align with 

expectations demonstrating that the means of talkers’ F1 and F2 are largely more normally 

distributed with lower standard deviations. However, for /æ/ talker means vary in F1 with a 

greater density of data distributed in the tails (κ = 2.50, σ = 0.32, γ1 = -0.07). On the other hand, 

the variability in /æ/ F2 has greater density in the center of the distribution (κ = 4.58) and but 

moderate negative skew (γ1 = -0.50), illustrating a tendency towards talkers who have a 

propensity towards retraction. That is, for /æ/ talkers on average vary more along F1 than F2, but 

F2 is more prone to more extreme retraction among talkers. Contrastingly, /eɪ/, /a/, /ɔ/, /u/, and 

/ʊ/ show normal distribution of talker means, as expected, but reaffirm that the more bimodal 

distributions depicted in the above sections may be evidence of greater token variability within 

and across talkers, rather than different modes resulting from individual talkers and dialects 

uniformly patterning together near the peaks.  
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Figure 5.17 Light blue probability density curve shows the Lobanov normalized F1 and F2 distribution 

for each vowel category. The green probability density curve shows the distribution of talker means 

across the dataset for each vowel category. Point intervals show the mean (point) high-density interval 

(HDI). Thicker lines represent 66% HDI and thinner lines represent the 95% HDI. 
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Figure 5.18 Comparison of descriptive statistics for Lobanov normalized F2 values for each vowel 

category distribution. Blue circles represent the overall distribution (all data, tokens, talkers). Orange 

squares represent the Dialect factor as the average of each descriptive statistic calculated over individual 

dialect levels. Grey triangles represent the Talker factor as the average of each descriptive statistic 

calculated over individual talkers (all tokens, raw distribution). Green plus values represent the 

descriptive statistic over the distributions of talker means. The orange triangles are grouped by dialect 

areas (e.g., the skew of talkers means in the South) and then averaged (e.g., the mean skew of talker 

means across dialects). 
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Figure 5.19 Comparison of descriptive statistics for Lobanov normalized F1 values for each vowel 

category distribution. Blue circles represent the overall distribution (all data, tokens, talkers). Orange 

squares represent the Dialect factor as the average of each descriptive statistic calculated over individual 

dialect levels. Grey triangles represent the Talker factor as the average of each descriptive statistic 

calculated over individual talkers (all tokens, raw distribution). Green plus values represent the 

descriptive statistic over the distributions of talker means. The orange triangles are grouped by dialect 

areas (e.g., the skew of talkers means in the South) and then averaged (e.g., the mean skew of talker 

means across dialects). 

 

3.3.6 Interim Summary 

Generally speaking, the results throughout this section validate expectations that talkers 

are regular in their cue distributions for both F1 and F2 across vowel categories, demonstrating 

lower standard deviations and normal skew and kurtosis on average. Examining the patterns of 

individual vowel categories, we can summarize several tendencies about between and within-

talker variability. First, the analyses generally show that /u/ and /ʊ/ exhibit greater variability in 

F2 than in F1 with near bimodality occurring across American English. Dialect areas tend to 

adhere to the typological patterns observed in the overall data, with wider standard deviations in 
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F2 than in F1. However, in some cases there may be some dialect areas with skewed 

distributions in F1, suggesting some outliers in the observations. Additionally, talkers 

demonstrate wider intra-talker ranges in F2 for these categories, and greater skew towards 

backed tokens, suggesting other contextual factors may be driving the variability. Talker means 

overall appear normally distributed with similar ranges of variability in F1 and F2, suggesting 

the distributional patterns are not reflective of talkers who uniformly make up different modes 

(though are distinguished by central tendency). Overall, these patterns align with regional vowel 

shift expectations and typological regularities indicated by Labov (1994), whereby back vowels 

front, at least for the high back vowels. 

On the other hand, the low back vowels demonstrate normally distributed cue dimensions 

for /a/ but greater variability in /ɔ/ F1 than F2, indicating greater cross-talker and within-talker 

variation in /ɔ/. Of note, we see that socio-indexical factors largely replicate the same patterns 

with greater variability in F1 than F2, and individual talkers mirror the patterns of the overall and 

dialect area distributions (i.e., near bimodality). The patterns in /ɔ/ may be partially resulting 

from the low back vowel merger changes in various parts of the U.S. In these cases, ongoing 

sound change may result in bimodal distributions within talkers (Fruehwald, 2017), as well as 

differences in central tendencies across regions. Similarly, examining /æ/, we saw that both 

talkers (Talker factor) and the overall data distribution demonstrate higher standard deviations in 

F1 (second only to /ɔ/) with low kurtosis, representing greater heterogeneity within and across 

talkers broadly. Finally, /eɪ/ shows greater regularity along F2 dimensions for the Dialect factor 

and the overall data distribution, with more density in the center of the distribution. 

3.4 Interim Discussion 

Overall, the patterns above illustrate the specificity of socio-indexical structure across 

specific cue dimensions that are otherwise missed when examining cross-talker variability in 

multivariate space (Chapter 4 and Section 2 above). First, categories that are not necessarily 

informative in multivariate space still demonstrate socio-indexical structure when examined 

along specific cue dimensions, and may reflect general typological tendencies (e.g., back vowels 

fronting). Second, categories that were informative of group-level information in Chapter 4 do 

not all show the same distributional properties of F1 and F2. That is, categories like /ɔ/ and /eɪ/, 
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which were informative in previous analyses, show different patterns such that variability is 

more like to occur in F1 for /ɔ/, leading to bimodality, but for /eɪ/ groups are distinguished by 

their means but have normally distributed data with similar properties across F1 and F2. Third, 

across all results dialect area distributions demonstrate greater homogeneity than both individual 

talkers’ distributions and the overall dataset distributions. This pattern demonstrates that talkers’ 

distributional properties align with the aggregate patterns of the group. That is, for certain vowel 

categories talkers demonstrate similar distributional properties even when the dialect is more 

non-normally distributed (e.g., /ɔ/). That is, different modes in the dialect areas’ distributions are 

not necessarily indicative of groups of talkers who uniformly pattern together or of individual 

talker outliers, but of talkers themselves. 

This prompts several hypotheses regarding how these patterns constrain perceptual 

learning and generalization. A hypothesis that comes from these data are that listeners may build 

expectations about a category in cue-specific ways. For categories like /u/ and /ʊ/, the greater 

variability along F2 within and across talkers may make listeners more flexible in adapting to 

novel variation in F2. The fact that talkers share this property across groups should allow 

listeners to infer group-driven variation and high probability of generalization to another talker. 

However, given the low range of variability in F1 for these categories, listeners may be more 

rigid in adapting to variation in F1, and if they learn the pattern they might do so in talker-

specific ways by inferring this pattern was idiosyncratic. Listeners may also show different 

behavior in how specific or relaxed the pattern they learn is. F1 variability might lead listeners to 

learn a broader category relaxation and demonstrate greater flexibility to directions not 

experienced (e.g., generalizing from back vowel lowering to the same back vowel raising), while 

F2 variability may exhibit more targeted learning (e.g., this category only fronts). This is in-line 

with the observation of typological regularities in learning observed in Babel et al. (2021) where 

listeners who are exposed to typologically uncommon patterns of sibilant variation show general 

relaxation of categories compared to targeted learning in the direction of typologically common 

tendencies and may explain some of the different behaviors in learning novel chain shifts (e.g., 

Weatherholtz, 2015).  

On the other hand, categories where variability in F1 and F2 are similar (e.g., /eɪ/ and /a/), 

listeners may demonstrate similar behavior regardless of the dimension of the novel shift. 
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However, this may be constrained further by cross-talker patterns and broadness of the 

variability. For categories that demonstrate relatively narrow variability, listeners may be more 

rigid in their expectations for category membership (e.g., /i/). Whereas categories with greater 

variability, listeners may be more flexible in adaptation, by accepting more outliers outside of 

their previous experience (e.g., /eɪ/). While this has not been specifically explored, this is counter 

to the arguments presented in Kataoka and Koo (2017) where they argue lower variability 

categories may demonstrate learning, and higher variability categories may demonstrate less 

learning. In their study they shifted a low variability category, /i/, towards a high variability 

category, /u/, and vice versa (i.e., /i/ backs, and /u/ fronts). Their results demonstrate 

asymmetrical learning where listeners learn novel patterns in the lower-variability target (/i/) but 

not in the greater variability target (/u/). However, the exposed shifts were conditioned on 

phonological context (pre-liquid), where coarticulatory pressures could plausibly result in 

backing of /i/ but would not result in fronting of /u/ (and indeed, is the opposite pattern that /u/ 

demonstrates in American English). Additionally, /u/ generally fronts in other contexts, which 

could also mean that if listeners did not have pre-existing knowledge of /u/ in pre-liquid contexts, 

they might expect that /u/ generally fronts across talkers and approaches /i/, which may put the 

exposure items generally within the boundaries of /u/ more broadly. This is all to say that it’s not 

clear that range of variability alone is the driving force for retuning, a point I will return to in 

Chapter 6. 

Finally, distributional shape poses an interesting set of questions for inferential processes, 

especially in cases where there is bimodality. As has been suggested by Kapatsinski (2018), it’s 

possible that listeners build a generative model from bimodality that would indicate two 

production targets. For categories like /u/, /ʊ/, and /ɔ/ then, the bimodality (or near-bimodality) 

within and across talkers may result in listeners building a generative model around two 

production targets for the talker and the causes linked to these targets. This analysis doesn’t 

uncover the causes of the bimodality of different categories, but different causal links to the 

bimodality may result in different listener behaviors. In some cases, these targets may be the 

result of phonological context (e.g., pre-coronal /u/ fronting) which may exist across all talkers in 

the same community, showing similar intra-talker variability. Listeners may extrapolate this 

pattern and recognize the conditioning contexts, which would allow them to replicate the pattern 
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in their own speech and adapt only when variation in those contexts is novel. Alternatively, if the 

pattern is the result of ongoing sound change, listeners may build a model around other socio-

indexical factors that condition the change (e.g., gender or age), which will further guide 

predictions and inferences. Of course, an alternative is that listeners may not uncover the “true” 

distribution from which the data were generated and may infer normality with a wider standard 

deviation6. 

4 Conclusion 

To conclude, this chapter has provided insights into the degree of specificity of internal 

category structure that occurs alongside between-talker variability. In Section 2 we saw that 

acoustic overlap across vowel pairs largely reflects separation along articulatory dimensions, 

such that talkers generally show less acoustic overlap across category pairs that differ in 

dimension (e.g., front/back, high/low). In addition, we see that the separation of /æ/ and /a/ 

remains stable across talkers and dialect areas, validating hypotheses about the special status of 

these two vowel categories more generally. Similarly, acoustic overlap is greatest among vowel 

pairs in the middle of the vowel space where misidentification is more frequent. Accounting for 

talker-specific and dialect area tendencies reduces the acoustic overlap for vowels near the center 

of the vowel space, suggesting that listeners may benefit from tracking cross talker variation for 

these categories, despite not appearing as informative in Chapter 4. Finally, the degree of 

acoustic overlap among categories may broadly provide listeners with expectations about the 

relative boundaries of variability for a given category. At the simplest form, this may provide 

listeners with the relative probability that a given item belongs to one category or another when 

the item is perceptually ambiguous. In other cases, listeners may be less likely to learn or 

generalize talker-specific tendencies where ambiguous tokens encroach on a category boundary 

that shows greater acoustic separation (e.g., /æ/-/a/). Future work should continue to examine 

how the relationship between contrasts constrains perceptual learning and generalization. 

 

6 /ɔ/ overall poses a secondary issue as it is merged with /a/. However, evidence shows listeners are sensitive to the 

distribution of /ɔ/ even when they are themselves merged talkers, as evidenced by cases of near merger and 

accommodation to unmerged talkers (see Chapter 2). 
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In Section 3, the distributional properties of specific cue dimensions highlighted the 

interplay of between and within-talker variation. Overall, this section showed that within 

category variability demonstrates typological tendencies which are indicative of both between-

talker variation and within-talker variation, including the tendency for (high) back vowels to 

front, with variability largely occurring in F2. Similarly, the distributional tendencies of /ɔ/ and 

/æ/ demonstrate greater variability along F1, which is maintained across dialects and within 

talkers. On the other hand, /eɪ/ and /a/ demonstrated more normally distributed data regardless of 

socio-indexical factor with a tendency for greater regularity along F2 for dialect areas. These 

results validate, to some extent, the fact that talker variability is more likely to show greater 

variability when categories are associated with sound change or style (e.g., /ɔ/ and /æ/). Though, 

the distributional shapes and tendencies vary substantially between categories, which may 

suggest that different mechanisms may underly these tendencies, at least synchronically for these 

data. Regardless, the synchronic variability observed in this section highlights that listeners may 

form expectations about between-talker variation along specific cue dimensions (e.g., F2 for 

back vowels) and also may expect greater variation within a talker for a specific dimension (e.g., 

F1 for /ɔ/).  

Overall, this chapter has highlighted that the more holistic treatment of variability of 

vowel categories may miss more fine-grained predictions about how listeners respond to novel 

talker variation. While this dissertation doesn’t test the observations or predictions in this 

chapter, I will return to some of these points in explaining perceptual behavior of participants in 

the experiment of this dissertation (Chapter 6) and in broader discussions in Chapter 7. 
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CHAPTER 6: 

SOCIO-INDEXICAL INFERENCE IN PERCEPTUAL LEARNING 

1 Introduction 

In the previous two chapters, socio-indexical structure across vowels in production was 

examined under various analytic scopes. Several questions were raised about the how these 

different analytic scopes correspond to different predictions about listeners’ behavior in 

perceptual learning. Chapter 4 in particular highlighted one primary question regarding whether 

listeners exhibit different perceptual learning or generalization as a function of asymmetrical 

properties of socio-indexical conditioning in production. Driven by the analyses in Chapter 4, I 

investigate whether vowels that are distinguished by the types of socio-indexical conditioning 

demonstrate different listener behaviors in perceptual learning.  

The focus of this chapter is individual talker identity and dialect background as the 

central social factors of interest. Grounded in listeners’ a priori knowledge of the categories as 

inferred from the corpus analysis in Chapter 4, these different levels of social factors are 

hypothesized to prompt listeners to draw on different social causes underlying variation (as 

discussed in Chapter 4 and in detail below). In the context of perceptual learning, I hypothesize 

that vowel categories that show distributional patterns conditioned on dialect groups (i.e., 

heterogeneity between groups) and illustrate homogeneity among talkers within groups, will 

demonstrate more robust learning and cross-talker generalization. In this chapter I will examine 

/eɪ/ as a category representing this pattern and refer to it as dialect-informative throughout. On 

the other hand, categories whose distributions are not conditioned on dialect and show higher 

talker heterogeneity within dialect areas, but remain informative at an individual talker level, 

may demonstrate talker-specific learning. Here, I will examine /ʊ/ as the category representing 

these patterns and refer to it as talker-informative. 

The experiment presented in this chapter uses a lexically guided perceptual learning 

paradigm to test how listeners’ perceptual learning and generalization behavior may differ across 

these two vowel categories. After an initial pre-test categorization task, the experiment exposes 

listeners across two conditions to a novel vowel shift with an ambiguous phone between /eɪ/ and 
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/ʊ/ with the same talker from pre-test. In the /eɪ/-Biased condition, listeners hear ambiguous /eɪ/-

/ʊ/ phones embedded in a lexically disambiguating context that biases them towards /eɪ/ 

interpretations (e.g., p[?]stry → p/eɪ/stry). In the /ʊ/-Biased condition, listeners hear the 

ambiguous phones embedded in a lexically disambiguating context that biases them towards /ʊ/ 

interpretations (e.g., h[?]king → h/ʊ/king).  

Learning is evaluated based on whether listeners’ categorization boundaries between /eɪ/ 

and /ʊ/ continua shift from pre-test to post-test for the same talker in the direction of exposure 

(i.e., learning). Generalization is evaluated based on listeners’ categorization boundaries of the 

other talkers (either male or female) between the two conditions. Contrary to learning, 

generalization is evaluated more broadly as the extension of listeners’ behavior from the 

exposure talker to another talker, regardless of whether the change in behavior is in the direction 

of the exposure. 

In both the conditions I predict that from pre-test to post-test, listeners will learn the 

talkers’ atypical productions thereby demonstrating a shift in the boundary between /eɪ/-/ʊ/ from 

pre-test to post-test. In the /ʊ/-Biased condition, an effect of learning is observed if at post-test, 

listeners provide more /ʊ/ responses than they did at pre-test, effectively shifting their 

categorization boundary towards the /eɪ/ end of the continuum. In the /eɪ/-Biased condition, an 

effect of learning is observed if at post-test listeners report more /eɪ/ responses than at pre-test, 

effectively shifting their category boundary towards the /eɪ/ end of the continuum. These two 

conditions, however, may demonstrate different degrees of learning, with more robust learning 

(i.e., greater magnitude) for the /ʊ/-Biased condition compared to the /eɪ/-Biased condition as a 

function of the category being more strongly conditioned on individual talkers (see 

Kleinschmidt, 2019). Finally, I predict that listeners will generalize the pattern in the /eɪ/-Biased 

condition to both the female talker and the male talker. However, in the /ʊ/-Biased condition, I 

predict that listeners will not generalize the pattern to either talker, or it will be limited to the 

same gender pair (i.e., the female talker). Thus, the two conditions are predicted to differ 

primarily by listeners’ generalization behavior, where the dialectally informative category (/eɪ/) 

is likely to promote cross-talker generalization and the /ʊ/ condition is not. However, the socio-

indexical asymmetry may also promote different magnitudes of learning of the exposure talker’s 

pattern as well. Below I will outline the motivation and theoretical grounding for my hypotheses 
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in more detail focusing on ideal adapter models (Section 1.1), followed by a more in-depth 

description of the two vowel categories (Section 1.2). Then, I will give an overview of the 

experimental methods and results, and close with a discussion and conclusion.  

1.1 Motivation 

The hypotheses above are motivated by theoretical and computational work in ideal 

adapter models accounting for asymmetries across contrasts in perceptual learning and 

generalization (Clayards et al., 2008; Kleinschmidt & Jaeger, 2015; Norris & McQueen, 2008). 

Perceptual learning across contrasts has been demonstrated to be influenced by several factors 

including whether the exposure shift has an attributable cause (e.g., a pen in the mouth; Kraljic et 

al., 2008), stimulus attention (McAuliffe, 2015; McAuliffe & Babel, 2016), opposes the typical 

phonetic range of the contrast (Sumner, 2011), is phonologically driven (e.g., /s/ → /∫/ in /street/; 

Kraljic et al., 2008), or typologically uncommon (Babel et al., 2021), and the degree of 

variability in exposure (Sumner, 2011; Theodore & Monto, 2019; Wade et al., 2007). 

Correspondingly, cross-talker generalization has been shown to be influenced by the acoustic 

(Reinisch et al., 2014; Xie & Myers, 2017) or perceptual (Reinisch & Holt, 2014) similarity of 

the talkers, contrast type (Kraljic & Samuel, 2006), and variability in exposure (Babel et al., 

2020; Sumner, 2011). Ideal adapter models attempt to account for the variable outcomes of 

learning and generalization through a process of inference under uncertainty, whereby listeners 

draw on previous knowledge to infer the underlying cause of variability and guide their 

perceptual learning behavior. This experiment attempts to account for asymmetries in cross-

talker generalization under this theoretical model with a guiding hypothesis that different higher-

order socio-indexical links to vowel category variability may result in asymmetrical perceptual 

learning and generalization. 

In such accounts, listeners’ previous experience aids in a priori inference about the 

underlying cause of the variability they experience which in turn motivates listeners’ adaptation 

behavior (Clayards et al., 2008; Jongman & McMurray, 2017; Kleinschmidt & Jaeger, 2015; 

Weatherholtz & Jaeger, 2016). During perceptual learning tasks, listeners integrate the current 

perceptual input with their prior experience at multiple timepoints. In such tasks the underlying 

cause is not typically directly observable, so listeners can only infer the cause from multiple 
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potential sources. Liu and Jaeger (2018) describe these contexts as causally ambiguous, due to 

the competition between potential causes and the absence of disambiguating contextual 

information. If listeners are provided disambiguating evidence for the cause of the pattern (e.g., a 

pencil in the speaker’s mouth), the context is causally unambiguous.  

During inference in causally ambiguous contexts, listeners allocate credibility across 

alternative explanations for the cause of the perceptual event. Initial allocation of credibility (i.e., 

before exposure to a novel shift) elicits listeners’ a priori beliefs about which contrast is more 

likely to have caused the experienced input (i.e., the phone belongs to /eɪ/ or /ʊ/). When listeners 

are subsequently exposed to a novel shift, they must then allocate credibility to inferences about 

the underlying cause of the novel variation: Is it characteristic of the speaker, their social group, 

or some other incidental cause (e.g., a pen in the mouth)? The more likely a cause of the 

observed input will be present with future encounters from the same talker, the more fruitful it is 

to store and represent this pattern as a talker-specific pattern. At post-test, listeners then integrate 

their prior beliefs about the acoustic quality of the category with the knowledge of the acoustic 

quality of the categories from exposure, resulting in a posterior belief. Listeners then reallocate 

credibility during post-test categorization of the perceptual input based on whether the inferred 

causal model indicates the pattern is characteristic of the speaker. If the pattern is inferred to be 

caused by speaker specific characteristics, then listeners learn the pattern of exposure. On the 

other hand, if the pattern is inferred to be incidental and not characteristic of the speaker, 

listeners will not demonstrate learning. 

Recent work incorporating socio-indexical structure into ideal adapter models suggest 

socio-indexical conditioning of a contrast influences listeners’ inferences and behavior. In such 

cases, listeners may infer that socio-indexical factors are a potential cause for atypical 

pronunciation patterns (Kleinschmidt, 2019; Kleinschmidt & Jaeger, 2015; Weatherholtz & 

Jaeger, 2016). If listeners have prior beliefs from experience that a contrast doesn’t vary across 

individuals, then socio-indexical causes are unlikely to be inferred, and listeners are unlikely to 

interpret the underlying pattern as representative of the speaker’s identity. As a result, they may 

remain rigid in their category representations, showing less remapping for the talker and no 

evidence of cross-talker generalization (Kleinschmidt, 2015). On the other hand, if a contrast is 

conditioned on grouping factors (e.g., dialect, gender, etc.) then there is a greater likelihood that 
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listeners infer the underlying cause of any novel variation to be conditioned by socio-indexical 

and representative of a speaker’s identity. Because variability is conditioned not only on 

individual talkers, but also their groups, it’s likely the variation could be leveraged for future 

speech processing tasks with other talkers, ultimately resulting in greater flexibility and 

generalization across talkers.  

As discussed elsewhere (see Chapter 2), vowel categories that exemplify a circumstance 

of high socio-indexical causes of variability are hypothesized to have increased likelihood for 

learning and generalization. Discussions about the role of vowels and socio-indexical structure in 

ideal adapter models often assume a holistic perspective of vowels, whereby listeners draw on 

prior experience with the raw distribution of joint acoustic cue variability (i.e., F1 and F2) to 

infer the most likely interpretation (e.g., the speaker said bat and not bet) and the cause of any 

novel variation (e.g., social background). Yet, it’s unclear whether listeners draw inferences 

about socio-indexical causes uniformly across the vowel space. One possible prediction is that 

each vowel category has equal potential for the same degree of socio-indexical inference. As 

such, listeners may have broad expectations that vowels are highly variable across talkers as a 

result of their dialect backgrounds. In turn, listeners’ prior belief is that novel variation has a 

higher likelihood of being caused by dialect background and is therefore characteristic of the 

speaker and likely to be encountered again with other speakers. In turn, listeners learn novel 

variation regardless of vowel category, and generalize to similar talkers.  

In terms of generalization, we may predict asymmetric generalization patterns across 

novel talkers based on the perceived talker characteristics and their social groups. Generalization 

is defined in this dissertation as an extension of the listeners’ updated beliefs and shifts in 

categorization, regardless of whether it is in the direction of the exposure shift. That is, the 

change in listener behavior from pre-test to post-test of the exposure talker is extended to other 

novel talkers whose production patterns they have not experienced. When listeners infer that two 

talkers are from the same social group, listeners should be more inclined a priori to generalize 

from one talker to the other. However, if two talkers are inferred to be from groups that differ, 

listeners should be less likely to generalize. In the case of vocalic variation, listeners may infer 

that talkers are from different groups when they differ by gender, due to the overall gross 

differences in acoustics between the two groups (Kleinschmidt, 2019). For the experiment at 
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hand, that would indicate generalizing from the exposure talker to the second female talker, but 

not the male talker. On the other hand, there is a possibility that generalization of vowels may 

occur across gender pairs as listeners infer the talkers are the same broader dialect area and be 

inclined a priori to extend the pattern across gender pairs. In this case, the pattern is extended 

from the exposure female talker to both the novel talkers.  

An alternative prediction, however, is that listeners make more fine-grained inferences 

depending on whether the individual vowel category tends to be more variable by social group 

(e.g., dialect) or individual talkers (i.e., idiosyncratic), rather than holistically at the ‘contrast’ 

level (i.e., all vowels behave in X ways). In such cases, listeners may demonstrate asymmetrical 

generalization, such that vowel categories that tend to vary more by dialect are more likely to 

show flexibility in adaption and generalization than categories whose variability is not typically 

caused by group membership. On the other hand, when a contrast is likely to vary across talkers 

but not conditioned on group membership, prior experience with past talkers is predicted to be 

less informative. As such, listeners are predicted to adapt more quickly and robustly (i.e., sharper 

shifts in boundaries) for contrasts that vary across talkers but do not show evidence of social 

conditioning. Subsequently, listeners are predicted to show talker-specific learning and no 

generalization to other talkers, or generalization is restricted to same gender talkers who are 

similar acoustically. This is the primary prediction tested in this experiment. As such, it is 

predicted that for /ʊ/ listeners will adapt quickly but restrict generalization. On the other hand, 

for /eɪ/ listeners are predicted to adapt and generalize to other talkers. However, given the 

difference in socio-indexical condition, the magnitude of the shift in learning may be greater for 

/ʊ/ than for /eɪ/. Listeners are expected to adapt more quickly and completely when talker 

identity is highly informative (talker-informative) because prior experience with other talkers 

will be less relevant a priori. On the other hand, listeners may initially approach the task with 

more a priori expectations based on prior experience with talkers in the case of /eɪ/ which may 

heighten uncertainty and slow adaptation. 

There is limited work in perceptual learning of vowels, leaving many open questions 

about the accuracy and nuances of predictions made by ideal adapter models. Much of this work 

has not measured changes in phoneme categorization as is common in perceptual learning of 

consonants (e.g., Norris et al., 2003, Kraljic & Samuel, 2005, and others), and instead has 
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evaluated the adaptation to accents more broadly assessed through lexical decision endorsement 

rates after exposure to a story in a novel accent (Babel et al., 2019; Maye et al., 2008; 

Weatherholtz, 2015). Such work has illustrated that listeners learn cross-category remapping of 

vowels (e.g., /ɪ/ → /ɛ/) and may generalize to other phonologically related shifts (e.g., back 

vowels lowering) but generalization depends on the direction of the shift in exposure. For 

example, listeners appear to generalize from a novel front vowel lowered system (e.g., /ɪ/ → /ɛ/) 

to a phonologically similar shift of back vowel lowering (Maye et al., 2008; Weatherholtz, 

2015). However, listeners don’t generalize from a front vowel raising pattern to a back vowel 

raising system (Weatherholtz, 2015). These finding suggest some limitations to how listeners 

adapt to vowel shifts, such that some shift directions result in targeted learning (i.e., only 

learning the exposure shift) while others result in more global learning (i.e., generalization to 

phonologically related shifts). As discussed in Chapter 5, one reason for this may be that 

listeners have expectations from more common typological patterns thereby making some 

directions more marked and more difficult to learn (see also Babel et al., 2021). However, 

whether learning in individual vowel categories as opposed to larger ‘accents’ show constraints 

on learning depending on the directions of shifts is still an open question. While this experiment 

does not address this question directly, the results of the experiment may be elucidated by such 

an asymmetry. 

Most relevant to the experiment in this chapter, other work examining perceptual learning 

through phoneme categorization tasks demonstrates listeners learn ambiguous patterns of 

individual vowel shifts (Chládková et al., 2017; Franken et al., 2017; Kataoka & Koo, 2017; 

McQueen & Mitterer, 2005). The broader accent learning described above alongside learning of 

ambiguous vowel shifts generally supports the claim within some ideal adapter models that 

vowels in general have a high degree of flexibility possibly driven by listeners’ knowledge of 

socio-indexical structure. However, Kataoka and Koo (2017) demonstrate an asymmetry in 

learning across vowel categories in a group of American English listeners. In their work, after 

training, listeners learned a novel shift of /i/ → /u/ but did not learn a complementary shift of /u/ 

→ /i/. The authors argue the asymmetry is driven by the properties of the individual vowel 

categories, such that the variability of each category is inversely correlated with category 

flexibility. Specifically, more variable categories (e.g., /u/) are less malleable and exhibit limited 
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perceptual learning while, on the other hand, lower variability categories (e.g., /i/) are more 

malleable. However, the authors do not differentiate between socially conditioned variation 

across talkers and other potential causes of variability. Furthermore, the shift of /u/ may have not 

been particularly novel to listeners since /u/ fronting is common in American English, which 

makes it difficult to evaluate whether “overall variability” of the category is truly the pattern 

driving the null effect of the /u/ shift verses whether the listeners already have experience with a 

shifted /u/. Consequently, it’s unclear whether the results are evidence against the more holistic 

position identified in ideal adapter models whereby vowels should demonstrate greater learning, 

or whether listeners already had expectations for the pattern a priori and just received no new 

information that required them to update their beliefs.   

Similarly, there is a paucity of literature examining cross-talker generalization of vowel 

shifts and this limited work has only examined large-scale shifts across the entire vowel space. 

Cross-talker generalization in perceptual learning in general is argued to rely on the acoustic 

(Reinisch et al., 2014; Xie et al., 2018; Xie & Myers, 2017) or perceptual (Reinisch & Holt, 

2014) similarity of the talkers. However, Weatherholtz (2015) demonstrated that listeners 

generalize across talkers when exposed to novel cross-category remapping of vowel shifts, 

regardless of the acoustic similarity between the talkers. The acoustic similarity of the talkers 

was operationalized by the gender of the talker. Due to the gross differences of acoustic 

properties between male and female talkers, the same gender pair reflected acoustically similar 

talkers and the different gender pair reflected dissimilar talkers, an approach used in defining 

acoustic similarity (e.g., Kraljic & Samuel, 2006). The exposure talker was a woman, and the 

generalization talkers were either a same gender pair (i.e., woman) or a different gender (i.e., 

male). The generalization findings in Weatherholtz (2015) are in line with ideal adapter 

predictions that listeners generalize vowel patterns across talkers theoretically resulting from 

inferences about higher-order socio-indexical structure. Listeners indeed may have inferred the 

pattern (i.e., ‘accent’) was socially caused based on prior experience with complex vowel 

patterns across dialects, and thus more likely to extend the pattern to new talkers. While the 

overall indexical pattern is one potential explanation, a secondary explanation is that low level 

perceptual factors drive the generalization behavior. In particular, it’s plausible the acoustic 

similarity of the talkers did not map to the perceptual similarity of the ‘accent’ such that the male 
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and female generalization talkers both had similar perceptual ranges for the effected segments, 

largely driving generalization behavior (see Reinisch & Holt, 2014). As of yet there is not a 

definitive and clear distinction between acoustic and perceptual similarity of talkers and how 

strongly they are linked to socio-indexical inferences. Furthermore, given the asymmetry 

observed by Kataoka and Koo (2017), it’s unclear whether individual vowel categories shifting 

(as opposed to the entire system) demonstrate the same degree of cross-talker generalization. 

Overall, theoretical accounts of perceptual learning in ideal adapter models posit that 

listeners draw on socio-indexical structure as a potential cause for experienced variability to 

guide perceptual learning behavior (e.g., Kleinschmidt, 2019; Kleinschmidt & Jaeger, 2015; 

Weatherholtz & Jaeger, 2016). However, there is little work examining perceptual learning and 

generalization of vowels overall, and it’s unclear whether individual vowel categories produce 

asymmetric listener behaviors that align with different forms of socio-indexical relationships. 

This chapter presents an experiment that specifically asks whether two vowel categories 

signifying different socio-indexical associations (as derived from Chapter 4) result in 

asymmetrical perceptual learning and generalization behavior. I hypothesize that shifts in /eɪ/, a 

dialect-informative category, will demonstrate learning and generalization from listeners. On the 

other hand, shifts in /ʊ/, a talker-informative category, will be more likely to elicit reduced 

learning and no generalization.  

1.2 The Vowel Categories 

I examine the relationship between vowel categories and social structure by comparing 

perceptual learning behavior across two vowel categories, /eɪ/ and /ʊ/. These two categories were 

selected because they exemplified differing social structure across two dimensions of interest in 

the earlier corpus-based studies (Chapters 4-5): dialect-informative (/eɪ/) and talker-informative 

(/ʊ/). In this section I will briefly overview the properties of these two vowel categories from the 

analyses presented in Chapters 4-5, before moving on to the experimental methods. The chosen 

categories represent distinct dimensions of socio-indexical structure while maintaining similarity 

across other vocalic properties I explored in this dissertation as a control. While there are no two 

vowel categories that will be perfectly balanced, these two categories approximate the best data 

driven solution from the findings of the corpus analyses. 
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As already noted, the /ʊ/ category demonstrates greater talker-specific behavior. This is 

based on two key findings from the corpus analysis in Chapter 4: 1) it ranks high in talker 

informativity but not dialectal informativity; and 2) talkers demonstrate higher divergence from 

their dialect area for this vowel category compared to other vowel categories. This fact suggests 

that talkers are not generally homogenous within their dialect areas in their productions of /ʊ/. 

Contrastingly, the category /eɪ/ demonstrates greater group conditioned behavior, based on two 

key findings from the corpus analysis: 1) it ranks high in dialect level informativity; and 2) 

talkers demonstrate low divergence from their dialect area for this vowel category compared to 

other vowel categories. This pattern suggests that talkers are generally similar to one another 

within their dialect areas in how they produce their /eɪ/ category. Overall, these results suggest 

that /eɪ/ has a greater likelihood of being informative of dialect-level variation to listeners, while 

/ʊ/ generally has a low likelihood of being informative of dialect-level variation. As such, I 

anticipate listeners will draw on experience with this relationship when processing novel 

variation and infer either dialectal (/eɪ/) or talker-specific (/ʊ/) causes to the variation, resulting 

in an asymmetry in adaptation and generalization behavior (as discussed above). 

Aside from the critical distinction in socio-indexical structure, both categories 

demonstrate similarity in terms of their F1 and F2 overlap with other vowel categories and their 

cue specific variability (see Chapter 5). First, the overlap characteristics of the two vowels 

demonstrate generally a low degree of overlap with one another (Pillai = 0.66 on average for 

individual talkers). In addition, both categories share similar overlap properties with other 

vowels, such that they share a similar range of overlap with their tense/lax counterparts. For 

example, /eɪ/ overlaps with /ɛ/ and /ʊ/ overlaps with /u/ to a large degree. However, there is a 

slight asymmetry in their overlap properties (conditioned on individual talkers) such that /ʊ/ has 

a stronger degree of overlap with /eɪ/ neighbors, /ɛ/ (Pillai = 0.45) and /ɪ/ (Pillai = 0.63), than /eɪ/ 

does with the /ʊ/ neighbors, /u/ (Pillai = 0.66) and /o/ (Pillai = 0.79). In other words, /ʊ/ tends to 

show more overlap within the front of the vowel space than /eɪ/ shows within the back of the 

vowel space. Additionally, both categories demonstrate a similar degree of variability along F2, 

the primary axis for manipulation in this experiment, with /ʊ/ showing slightly greater variability 

in F2 than /eɪ/. Overall, the two categories are broadly matched in terms of different aspects of 

variability as outlined in Chapter 5. Thus, we shouldn’t expect that asymmetries in perceptual 
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learning are the direct result of listeners expecting a priori greater overlap for one category more 

than the other, since on average there is reasonable separation between the categories. In 

addition, there’s less likelihood that smaller phonetic changes will fall within a familiar range 

and not warrant an update (see Cutler, 2012, Babel et al., 2019). Furthermore, we shouldn’t 

expect that sensitivity to the phonological front/back feature specification should drive any 

asymmetry, since both categories would be encroaching on the opposite phonological subsystem 

(that is, if it’s purely the separation of these dimensions that matter). Additionally, an asymmetry 

shouldn’t be driven by the general expectation of F2 variability more in one category than 

another. To summarize, these two vowel categories were primarily chosen for their asymmetry in 

socio-indexical conditioning in production and because they are relatively similar in terms of 

their distributional properties. Thus, all of the aforementioned confounds can predominately be 

ruled out as mechanisms for any perceptual learning and generalization results. 

2 Predictions 

2.1 Learning 

Given the background provided above and the vowel categories of interest, I present the 

following predictions. For both conditions I expect to see learning due to listeners’ a priori 

beliefs that vowel variability is largely thought to reflect characteristics of the talker’s identity, 

regardless of whether it is caused by their dialect background (/eɪ/), or idiosyncratic causes (/ʊ/). 

Learning in this context specifically refers to an observed change in listener behavior from pre-

test to post-test in the direction of exposure. Learning is predicted to occur as a targeted shift 

near the category boundary rather than an overall increase or decrease in categorization across 

steps of the continua. That is, there should be a significant interaction between the test (pre vs. 

post) and step of the continua. In the /eɪ/-Biased condition, listeners should categorize more 

items as /eɪ/ from pre-test to post-test near the categorization boundary. Whereas in the /ʊ/-

Biased condition, listeners should categorize more items as /ʊ/ from pre-test to post-test near the 

categorization boundary. As noted in Section 1, I also predict that there may be a difference in 

magnitude of learning between the two conditions, such that there will be a larger magnitude of 

shift for the /ʊ/-Biased condition compared to the /eɪ/-Biased condition. 
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2.2 Generalization 

The two exposure conditions should vary in terms of generalization behavior, such that 

we expect that because /eɪ/ is a group-informative category, listeners may likely generalize any 

learned pattern more flexibly because they expect it to be a pattern of multiple speakers. 

Because/eɪ/ varies as a function of heterogenous groups of talkers (e.g., multiple genders), we 

might further expect that generalization will not be constrained to same gender pairs but will 

extend to the other gender speaker as well. On the other hand, since /ʊ/ tends to show little to no 

group-informative behavior, listeners may be more likely to infer that a single talker’s pattern is 

idiosyncratic and be unlikely to extend it to other talkers, demonstrating speaker-specific 

learning. Learning and generalization predictions are summarized in Table 6.1 

Table 6.1 Summary of predictions for learning and generalization for each condition 

Vowel Prediction Learning Generalization  

(Same Gender) 

Generalization 

(Different Gender) 

/eɪ/ 

 

Learning & 

generalizati

on 

Yes: increase in 

/eɪ/ responses  

Yes Yes 

/ʊ/ 

 

Talker-

specific 

learning 

Yes: increase in 

/ʊ/ responses 

No No 

 

 

3 Design 

The experiment consisted of three phases: a categorization pre-test, an exposure block 

consisting of a lexical decision task, and a categorization post-test. Participants were assigned to 

one of four groups: one of two exposure conditions, with one of two post-test talkers (2x2 

between subjects, see Figure 6.1). The pre-test was the same across all conditions, the exposure 

block varied by condition, and the post-test varied within condition. The categorization pre-test 

consisted of two 7-step continua from /eɪ/-/ʊ/ (shake → shook; bake → book) blocked by 

continuum, with each step repeated 6 times and randomized within continuum block. In the 
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exposure task listeners were exposed to productions of words where the stressed vowel of the 

critical items was modified to be ambiguous between /eɪ/ and /ʊ/. The exposure conditions varied 

by whether the target vowel of interest was dialect-informative (/eɪ/-Biased condition) or talker-

informative (/ʊ/-Biased condition). In the /eɪ/-Biased condition, the critical words contain an /eɪ/ 

that has been modified to shift towards /ʊ/ in word medial position, with no /ʊ/ minimal pair 

neighbor (e.g., rainbow). In the /ʊ/-Biased condition, the critical words contain an /ʊ/ that has 

been modified to shift towards /eɪ/ in word medial position, with no /eɪ/ minimal pair neighbor 

(e.g., rookie).  

In the categorization post-test, participants were given the same categorization task from 

the pre-test (same talker, same items), followed by a categorization task from a novel talker 

using the same lexical items as continua. Within each condition, listeners were assigned to one of 

two novel talkers for the post-test categorization task: a novel female talker (T2_F), or a novel 

male talker (T3_M). The same gender and different gender pairings aimed at assessing whether 

cross-talker generalization was restricted to same gender speakers or would extend to different 

gender pairs. Additional details of the main experimental procedure will follow the description of 

the materials, norming, and stimuli synthesis methodology (see Section 4-6 for stimuli and 

norming details and Section 7 for more details about the main experiment). 
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Figure 6.1 Illustration of the experimental design. The top panel represents Condition 1a and 1b; the 

bottom panel represents Condition 2a and 2b. 

4 Materials 

Items for the lexical decision task included 160 multisyllabic items per condition, 

composed of 40 critical items (20 unique critical items for each condition), 60 filler items, and 80 

phototactically licit non-words (see Appendix A for full set of critical items, N = 180). Of the 40 

critical items, 20 contained the target vowel /eɪ/, and 20 contained the target vowel /ʊ/. The 

critical items (N = 40) were chosen based on criteria including the position of the critical vowel, 

the presence of tense/lax counterparts to the critical vowel, and frequency of the word. All 

critical items contained the critical vowel in the primary stress position of multisyllabic 

utterances and did not contain a minimal pair with the /eɪ/ or /ʊ/ counterpart. Additionally, 

critical items were selected for the absence of their tense/lax counterparts in other positions of 

the word. The critical items were further inspected and removed if there was a risk of critical 

items being perceived as other near minimal pairs along the continuum from /eɪ/ to /ʊ/ (e.g., 

skater → sk/ʊ/ter was not used due to perceptual similarity to scooter). In order to prevent 

Pre-test T1_F: 
Categorization

Exposure Block:

/eɪ/-Biased

Post-test T1_F: 
Categorization

1a: Post-Test 
T2_F (Same 

Gender)

1b: Post-Test 
T3_M (Different 

Gender)

Pre-test T1_F: 
Categorization

Exposure Block:

/ʊ/-Biased

Post-Test T1_F:

Categorization

2a: Post-Test 
T2_F (Same 

Gender)

2b: Post-Test 
T3_M (Different 

Gender)
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participants receiving information about the entire vowel space, filler words (N = 60) and non-

words (N = 80) were selected based on the following criteria: /æ/ or /a/ in initial stressed position 

and did not include the critical target vowels or their tense/lax counterparts anywhere else in the 

word. Non-words were created by using real word items and swapping phones to create 

phototactically licit non-words sharing similar properties to other words. The vowel categories 

/æ/ and /a/ were selected as vowel categories present in filler words because they generally have 

decreased overlap with /eɪ/ and /ʊ/, and to limit participants’ exposure to low vowels, a distinct 

subsystem from the critical vowels. Two monosyllabic minimal pairs were selected as items for 

test categorization: shake-shook, bake-book. A full list of the stimuli used in the experiment is 

provided in Appendix A. 

4.1 Recording 

All words and non-words were recorded by three American English talkers in a sound 

attenuated booth using Logitech tabletop microphone with each participant given instructions to 

ensure similar distance from the microphone. Each speaker was given training to elicit 

productions as similar as possible. All critical items for the exposure task were recorded as real-

word and non-word pairs, once normally and once with the target vowel swapped (e.g., maple → 

m/ʊ/ple). The stimuli list was randomized, with the critical real-word and non-word pairs 

occurring non-consecutively, and every word was repeated three times by the talker. Appendix B 

provides the complete word list from recording sessions. In addition to the word list elicitation, 

talkers were asked to read a short reading passage (from Fridland & Kendall, 2022, see 

Appendix B) to assess their vowel space at baseline (see talker analysis below Section 4.2).  

4.2 Talker Analysis 

A total of 10 candidate speakers were recorded from which three talkers were selected for 

the experiment: two cis-gendered female speakers (T1_F age 22; and T2_F age 19) and one cis-

gendered male speaker (T3_M; age 21). All talkers were selected based on quality of recordings 

and similarity in demographic background, vowel space (as illustrated below), and experimenter 

assessment of acoustic similarity of the female talkers. All talkers currently reside in the Pacific 

Northwest (Oregon); speakers T2_F and T3_M were both born and raised in the Pacific 
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Northwest, and speaker T1_F was raised outside of the Pacific Northwest, living in several U.S. 

regions, but demonstrates speech patterns of the West. T3_M self-identified as non-

Hispanic/Latinx and white, T2_F as Latinx and white, and T1_F as non-Hispanic/Latinx and 

Biracial. All talkers are native English speakers and self-report variable proficiencies in another 

language (Advanced – Beginning). 

To get a better sense of the three talkers’ vocalic behavior at baseline, both the wordlist 

and reading passage were forced aligned using the Montreal Forced Aligner (MFA; McAuliffe et 

al., 2017) and formant measures were extracted using the Forced Alignment and Vowel 

Extraction (FAVE; Rosenfelder et al., 2015) suite. Each talker’s vowel space is presented in 

Figure 6.2 and Figure 6.3 below. As can be observed from these figures, all three talkers exhibit 

patterns associated with the Western U.S. including low-back vowel merger, /æ/ retraction, and 

/u/ fronting (e.g., Labov et al., 2006). To evaluate each talker’s /eɪ/ and /ʊ/ categories for the 

experiment and whether their natural productions approximate a similar range of acoustic space, 

I measured the distance between the mean Lobanov (1979) normalized first and second formants 

of /eɪ/ and /ʊ/ using Euclidean distance (ED). Normalizing the formant values converts formants 

to equivalent scales, making them appropriate for use in ED which is sensitive to differences in 

scale between dimensions. For each talker the ED between their /eɪ/ and /ʊ/ vowels are near 

equivalent (T1_F = 1.83; T2_F = 1.86; T3_M = 1.63) suggesting the vowel categories occupy 

similar acoustic positions on average for each talker. While the reading passage data demonstrate 

some degree of lowering in /ʊ/ for talker T1_F, all of her back vowels appear to be somewhat 

lower than the other talkers in general, rather than /ʊ/ specifically lowering. However, the 

stimulus items depicted in Figure 6.3 demonstrate similar patterns to those of speaker T2_F, 

suggesting similar acoustic quality for the categories used for the experiment. Additionally, the 

word list items demonstrate similar pronunciation patterns across both real word and non-word 

productions, such that the natural end points of the non-word critical item pair are in line with the 

real-word productions of the same vowel category. 
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Figure 6.2 Each talker’s vowel space plotted by F1 and F2 colored by vowel category. Means indicated 

with text, and individual tokens represented by matching color. 
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Figure 6.3 Individual means for vowel categories across real word and non-word stimulus items across all 

three talkers. 

5 Stimuli 

All categorization and lexical decision items (N = 160) were manipulated using a source-

filter manipulation in Praat (Boersma & Weenink, 2018) via a custom formant continuum script 

(Winn, 2014). The script is designed to alter the formant structure of a single word (the ‘base 

sound’) to make it more like another word (the ‘comparison sound’) using LPC decomposition. 

For each critical item, the precursor and postcursor segments were selected from the base sound. 

Precursor segments were manually segmented as the preceding segment of the target vowel; the 

post-cursor segment(s) was/were manually segments as anything between the offset of the vowel 

and the end of the word (multiple phonetic segments for the multisyllabic words). Additionally, 

if any items had the presence of creaky voice while transitioning into the stop closure, the 

duration of the creaky segment was not selected as part of the target sound, the precursor, or the 

postcursor to avoid errors in resynthesis.  
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The boundaries of the target vowels were manually selected, and formant contours were 

visually inspected for each lexical item to ensure accurate estimates by LPC (formant settings 

were typically 5500hz, 5 formants for the female speakers, and 5000hz, 5 formants for the male 

speaker). Formant tracks were again manually corrected during script processing for each target 

vowel in the base and comparison sounds if needed. Each target vowel’s spectral quality (F1, F2, 

F3) was shifted along an 11 step Bark interpolated scale between the speakers’ natural end point 

productions. The natural end points were real word and non-word pairs produced by the speaker 

for the exposure task (e.g., maple → muple) and the base-sound was always the /eɪ/ word, 

regardless of lexical status (e.g., beshes → bushes), with the comparison-sound always the /ʊ/ 

word. The categorization task end points were the minimal pairs, again with the /eɪ/ word acting 

as the base sound and the /ʊ/ word serving as the comparison sound (e.g., shake → shook). The 

manipulation was set to override bandwidths and restore the original 4000Hz and a filter width 

of 500Hz, keeping the original upper spectrum unmanipulated for maximal naturalness. Overall, 

for the /eɪ/ critical items, the manipulation resulted in F1 being raised and F2 and F3 lowered, 

while for /ʊ/ F1 was lowered, and F2 and F3 were raised. Figure 6.5 illustrates the final 

categorization items for the experiment after norming (see below) layered over the talkers’ vowel 

category means from the reading passage described in Section 4.1 above. Figure 6.5 illustrates 

the selected step for each item in the exposure task, layered over T1_F’s vowel space from 

Section 4.2. 

6 Norming 

6.1 Participants 

Participants were recruited from were recruited from Prolific (www.prolific.co)[2022] to 

participate in the norming tasks online. The norming experiment was programmed using 

PsychoPy (Peirce et al., 2022) and was integrated to the online platform using PsychoJS and 

Pavlovia (Peirce et al., 2022). The norming experiments included two separate experiments: the 

categorization task norming and the lexical decision norming. Across both experiments, each 

participant was subject to a headphone screening before being allowed to participate in the study 

(described below). All participants filled out a survey with demographic questionnaires 
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following the experimental norming. All participants were all first language speakers of English 

and reported no issues with hearing loss.  

For the categorization norming, a total of 28 participants were recruited on Prolific. The 

participants ranged in demographic background, with 16 men and 12 women, and ranging in age 

from 18 – 60+, with the majority of participants ranging from 18-35, from a range of geographic 

regions in the U.S. (with N = 2 saying ‘Other’). For the lexical decision task norming, a total of 

103 participants were recruited. These participants were made up of similar demographic 

backgrounds, with 67 men, 35 women, and 1 non-binary participant. Participants ranged in age 

from 18 – 60+, with the majority between the ages of 18 – 35 (N = 63) and similarly reported a 

range of geographic regions in the U.S., with N = 8 reporting ‘Other’ as their geographic region. 

6.2 Participant Headphone Screening 

Participants were required to pass a binaural beats headphone screening before 

participation in the study. The task is drawn from Milne et al. (2020), drawing on perceptual 

artifacts of binaural processing. As a brief overview, when two tones of slightly different 

frequencies are played simultaneously in separate ears (i.e., dichotically, as through headphones) 

listeners perceive a third ‘beat’ tone of the difference between the two frequencies. For example, 

if a tone of 1000Hz is played in the left year and a tone of 1030 Hz is played in the right ear, 

listeners will perceive a third tone equal to the difference of 30 Hz as amplitude modulation. 

Binaural beats are only perceived for frequencies lower than 1000-1500 Hz. However, a similar 

phenomenon occurs in higher frequency tones when presented simultaneously (i.e., diotically, to 

both ears or through speakers) known as monaural beats. When listeners are simultaneously 

presented with beats at a high frequency range that differ by 30 Hz (e.g., 1800 Hz and 1830 Hz), 

they will perceive monaural beats when both tones are played non-independently to both ears. 

However, if the tones are split across the headphone channels (1800 Hz to the Left and 1830 Hz 

to the Right) listeners will perceive the two tones as one smooth tone, with no interfering beat 

due because of the frequency limits of binaural processing and the perceptual integration of the 

tones. If those same signals are heard ambiently through speakers, listeners will perceive the 

monaural beat. This is the essence of the headphone screen test (for a full overview see Milne et 

al. 2020). 
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Participants are presented with three pairs of tones in one trial and asked to identify the 

trial with the ‘smoothest’ tone. Two of the three pairs are designed to elicit monaural beat 

percepts, as the ‘foils’, where two tones are played differing by 30Hz within a frequency range of 

1800 – 2500 Hz. The first tone of the pair will be randomly drawn from the range of 1800 – 2500 

Hz and the second tone will be 30 Hz higher. The third pair is the target pair, where the tones 

also fall within the higher frequency range but are presented to each headphone independently. If 

listeners are wearing headphones, they will perceive the two foil tones as having a beat or 

fluctuation of the tones and the third target tone as being a smooth single tone. If they are not 

wearing headphones, the percepts will all be indistinguishable, and they will fail to identify the 

‘smoothest’ tone. This process repeats for 6 trials, with stimulus items within each trial 

randomized. Listeners must get all 6 trials correct before being able to proceed to the main 

experiment and can only reattempt the screening once. All participant information above reflects 

participants who passed the headphone screening and completed the norming task. 

6.3 Categorization Task Stimuli Norming 

Each of the continua were subject to a norming task to select the final steps, a reduction 

from the initial 11 to the final 7 steps of the minimal pair continua for the main experiment. The 

norming task was implemented in PsychoPy using PsychoJS tools, and participants completed 

the task online with the use of headphones. Participants were presented with each step of 2 

continua 6 times (11 steps x 6 repetitions x 2 continua x 3 talkers  = 396 trials) and asked to 

identify the word they heard from the two minimal pairs presented on the screen (e.g., Press F for 

shake; Press J for shook). The experiment was blocked by continuum and talker, with talker 

order and button order counterbalanced across participants. Trials were pseudorandomized 

within talkers and minimal pairs such that no adjacent steps occurred consecutively, with 500ms 

ISI between trials and a 3000ms response time limit, at which point listeners would be alerted 

that no response was detected.  

The proportion of real word responses across all 11 steps is presented in Figure 6.4, from 

which the final continuum steps were chosen. The final 7 steps were selected by choosing the 

cross-over point (50% /eɪ/ word responses) plus the 3 points on either side of the cross-over 

point. The results are displayed in Figure 6.4. For the shake-shook continuum, steps 1-7 were 
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selected for T1_F and T3_M and steps 2-7 and step 9 were selected for T2_F. For the bake-book 

continuum steps 1-7 were selected across all talkers. Figure 6.5 depicts the three talkers’ original 

vowel plots alongside the continua used for the categorization task. In addition, it shows each 

talkers’ categorization continua in one plot viewpoint and illustrates the similarity between 

distributional properties along F1 and F2 for each talker, in addition to the overall relative 

positions of each step in the continua. From this figure, we can see that talkers largely vary in F2 

to the same degree for the continua, while for F1 the female talkers align more closely to one 

another and the male speaker is much more consistent in F1 cues. That is, both distributional 

properties and acoustic positions of the vowel stimuli for the categorization task are more similar 

for the two female talkers than the male is to either of the female talkers.  
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Figure 6.4 Proportion of /eɪ/ responses for categorization items in the norming task. Horizontal dashed 

line represents the cross-over boundary (50% /eɪ/-word response rate). Dots are averaged /eɪ/ word 

response across subjects, and the blue line is a binomial model of the responses. Step 1 represents the /eɪ/ 

end point and step 11 represents the /ʊ/ end point. 
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Figure 6.5 The three talkers’ final continua overlaid on their average raw unsynthesized vowel space 

(grey). Final figure represents all three speakers’ continua and raw vowel spaces on one plot with the 

distributional properties of their continua appearing as ridges along the X and Y axes. 

 

6.4 Lexical Decision Task Exposure Stimuli Norming 

To determine which step of the continuum to use for each lexical item in the exposure 

task (i.e., the step that was maximally ambiguous), participants (N = 103) recruited were from 

Prolific (www.prolific.co)[June 2022] and completed a lexical decision task online on the 
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exposure continua. Participants were randomly placed into one of 4 conditions consisting of 10 

word/non-word continua (1a = 27; 1b = 22; 2a = 24; 2b = 30). Listeners were exposed to only 

one vowel category throughout the task (e.g., only /eɪ/ words in condition 1-2) blocked by lexical 

item (e.g., pastry → pustry). Participants were presented with each step of the 11-step exposure 

continuum, responding with either ‘word’ or ‘non-word’, with each step repeated 6 times, 

totaling 660 trials. Trials were pseudorandomized within lexical blocks with no adjacent steps 

occurring consecutively and a 500ms ISI between trials and 3000ms response time limit. 

Following this initial norming, some lexical items were subjected to resynthesis and a new round 

of norming with participants recruited from Prolific with a similar demographic make-up as the 

previous participant pools (3a = 19). In Figure 6.6 below, there are duplicated lexical items as a 

result. Figure 6.6 illustrates the acoustic range of the 11 steps for each of the lexical items in the 

norming experiment. As illustrated, the items vary widely in acoustic realizations of their start 

and end points, highlighting the necessity for norming to identify the most ambiguous point. 

The proportion of word endorsements at each step of the continuum was calculated and 

the most ambiguous step was chosen by selecting the step that approached 50% word 

endorsement rates. Figure 6.7 shows the average proportion of real word responses for each step 

and word in the experiment, with a binomial response curve overlaid. As noted above, some 

items in initial norming did not receive real word response curves as expected, with some items’ 

steps never dropping below the 50% point, or steps consistently hovering near the 50% response 

rate. Those items were subject to resynthesis and renorming, followed by a selection of the best 

choice from the two options. Table 6.2 shows which steps (and item if subject to renorming) 

were chosen along with the proportion of word endorsement rates during norming. The average 

step chosen was 5 for the /eɪ/-Biased condition and 4 for the /ʊ/-Biased condition.  

To illustrate the acoustic properties of the exposure items, all tokens were force aligned 

using MFA (McAuliffe et al., 2017) and formant values were extracted using FAVE 

(Rosenfelder et al., 2015). Figure 6.8 illustrates the vowel space properties of the three phases of 

the experiment in a composite image for the exposure talker. In the first graph of the image, the 

talker’s final categorization continua for pre and post-test are overlaid on the exposure talker’s 

original raw vowel space for comparison. The middle figure illustrates the final critical items in 

exposure, colored by the condition, and the final figure overlays both the categorization stimuli 
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and the exposure stimuli. Taken together these illustrate the distributional properties of the 

stimuli, whereby the critical items for both conditions demonstrate similar distributional 

properties with the mean and standard deviation similar across F1 and F2. Similarly, the 

categorization continua span a wider range of F1 and F2, and with F1 demonstrating an overall 

higher mean F1 (i.e., lower F1) compared to the exposure stimuli.  

 

 

 

Figure 6.6 Real word – Non-word continua 11 steps connected by a line, overlaid on top of T1_F’s vowel 

space for both /eɪ/ items and /ʊ/ items from the reading passage data for comparison. 
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Figure 6.7 Proportion of word-responses for exposure words. Horizontal dashed line represents the 

selection criteria (50% word response rate). Dots are averaged real word response across subjects, and the 

blue line is a binomial model of the responses. Step 1 represents the /eɪ/ end point and step 11 represents 

the /ʊ/ end point. 
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Table 6.2 Step chosen for each lexical decision exposure task, with proportion of ‘real word’ responses 

from norming. Average step and proportion for each condition listed at the bottom of the table. 

/eɪ/-Bias Condition /ʊ/-Bias Condition 

Stimuli Step 
Proportion Word 

Response 
Stimuli Step 

Proportion 

Word 

Response 

blazers 5 0.56 bushes 3 0.46 

blazing 5 0.35 butcher 4 0.47 

canine 5 0.40 cookies 3 0.54 

haystack 4 0.49 cooking (3A) 5 0.46 

hazing 4 0.52 crooked 4 0.44 

majors 4 0.61 footage 3 0.45 

maker 4 0.39 football 3 0.46 

maple 4 0.48 footpath 4 0.52 

nations 5 0.40 goodies (1B) 1 0.45 

native 5 0.44 hooking (3A) 8 0.47 

neighbor 5 0.50 lookout 3 0.38 

pastry 6 0.47 pudding 4 0.47 

playground 6 0.43 pusher 4 0.40 

rainbow 7 0.37 rookie 5 0.46 

raven 5 0.52 sugar 5 0.53 

razor 5 0.55 woman 4 0.45 

reindeer 6 0.37 wooden 4 0.45 

tasted 7 0.48 woodwork 7 0.55 

trading 6 0.56 woody (3A) 10 0.54 

waking 5 0.48 goodness 2 0.50 

Average 0.15 0.47  4.3 0.47 
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Figure 6.8 Position of the stimuli in the vowel space overlapped with the talkers’ original point vowels for 

reference. Final plot shows exposure and categorization items over T1_F’s original vowel space with 

distributions of F1 and F2 for each category. 
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7 Main Experiment 

7.1 Procedure 

Following the norming task, the main experiment was implemented in PsychoPy using 

PsychoJS tools and integration with Pavlovia. All participants (see Section 7.2 below) took the 

same pre-test categorization task, identifying minimal pairs along a seven step continuum from 

/eɪ/→/ʊ/ from talker T1_F (see Section 5 for details about stimuli creation and step selection). In 

each trial participants heard an auditory stimulus and were asked to categorize it as one of two 

words, differing only in the vowel (e.g., shake and shook). Listeners were presented with the key 

to press and item indicated on the screen (e.g., “F” + “shake” on one side of the screen and “J” + 

“shook” on the other), with button and item matches counterbalanced across participants. 

Participants were given two unique minimal pair continua for the categorization task, each with 7 

steps, repeated 6 times each, for a total of 84 trials. The task was blocked by minimal pair, and 

steps were pseudo-randomized such that no adjacent steps occurred consecutively, and the same 

step would not be repeated sequentially across trials. After each trial a blank screen was 

displayed for 500ms followed again by the response screen indicating which options to select. 

Participants were given 3000ms to respond, at which point they would be told no response was 

detected. After 50 trials participants were given the opportunity to take a break. 

Following the pre-test categorization phase, participants were randomly assigned to one 

of two exposure blocks with same talker (T1_F): the /eɪ/-Biased condition or the /ʊ/-Biased 

condition. The exposure block was a lexical decision task, where participants were presented 

with an auditory stimulus and then indicated whether what they heard was a word or a non-word. 

Similar to the categorization task participants were given 3000ms to respond on each trial, at 

which point a message would appear that indicated no response was detected, and the experiment 

proceeded to the next lexical item. In the /eɪ/-Biased condition participants were exposed to 

lexical items where the /eɪ/ target vowel is shifted to an ambiguous point between /eɪ/ and /ʊ/. In 

the /ʊ/-Biased condition participants were exposed to lexical items where the /ʊ/ target vowel is 

shifted to an ambiguous point between /eɪ/ and /ʊ/. Ambiguous items were selected through a 

pre-test lexical decision task, using the item that participants responded to as a word 50% of the 

time (see Section 6 above for further details).  



 

 246 

Following the exposure block, participants completed a post-test, which was the same 

categorization task as the pre-test, using the same talker as in the pre-test and exposure (T1_F). 

Then, participants were asked to complete another categorization post-test block on a speaker 

they had not previously heard. Participants were randomly assigned to either a novel talker of the 

same gender (T2_F), or a novel talker of a different gender (T3_M). For both post-test blocks, 

the categorization task mirrored the properties of the pre-test categorization task: stimuli were 

two minimal pair continua (shake → shook; bake → book) each with 7 steps repeated 6 times, 

with the steps selected from an initial categorization norming task. 

7.2 Participants 

Participants were recruited from Prolific (www.prolific.co)[2022] and participated in the 

experiment online. Participants were required to be located in the U.S. and speak English as a 

first language to enroll in the study. All participants were paid for their participation at an hourly 

rate of $10/hour allocated across the estimated time to complete the experiment. Participants 

were required to pass the same headphone screening as described for the norming task before 

being able to complete the experimental study. A total of 210 participants completed the 

experiment. While Prolific enrollment required participants to be L1 speakers of English and be 

from the U.S., occasionally participants made it through initial screening into the experiment and 

nonetheless reported non-native speaker status in the screening questionnaire at the end of the 

experiment. Thus, prior to analysis, the data were processed to remove participants who reported 

being non-native speakers of English (N = 2) or participants who reported having hearing 

difficulties (N = 6). Additionally, participants who performed with less than 85% accuracy on 

filler items in the lexical decision task were removed from the pool (N = 1), though still paid for 

their time. After removing participants, a total of 201 participants are considered for analysis. 

The participants were placed randomly into one of four conditions (see Section 3), /eɪ/-

Biased with the same-gender generalization talker (1a, N = 56)), /eɪ/-Biased other-gender 

generalization talker (1b, N = 45), /uh/-Biased same-gender (2a, N = 54), and /ʊ/-Biased other-

gender (2b, N = 48). The participants were distributed across genders according to participants 

self-report: female (N = 72), male (N = 124), non-binary (N = 5), and two who declined to 

report. Participants were distributed across age ranges, with the majority ranging from 18 – 35 
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years old (N = 138), followed by 36 – 60 years old (N = 59), 60+ years old (N = 7), and 6 

participants who declined to answer. The majority of participants’ self-reported racial identity 

was white (N = 105), followed by electing not to respond (N = 70). The remaining participants 

reported being multi-racial (N = 9), Asian/Asian-American (N=10), Black/African American (N 

= 9), American Indian (N = 1), Jewish (N = 1), and Hispanic/Latinx (N = 5).  

Participants’ regional backgrounds across the U.S. were mixed: South (N = 59), West (N 

= 44), Midwest (N = 37), Northeast (N = 35), Southwest (N = 10), North (N = 5), and some who 

preferred not to answer (N = 20). I do not expect regional background to be predictive of 

perceptual learning or generalization behavior, as the vowel categories under exploration are 

examined due to the fact that they are either regularly conditioned on dialect factors (/eɪ/) or 

regularly conditioned on talkers (/ʊ/) and the directions of shift do not occur within any regional 

dialects (that I’m aware of). While participants’ boundaries may be relative to their dialect areas, 

the overall effect of learning and generalization should not be impacted by dialect-specific 

expectations of variability based on the corpus analyses in Chapters 4-5. Thus, I do not look at 

regional background in any of the analyses reported in this chapter. 

8 Analysis & Results 

Any trials where the reaction time was greater than 2.5s (including no-response time-

outs) were removed from evaluation (N = 70 trials < 1% of data). Because the data were 

collected online, participants’ experimental setups were variably sensitive in the way reaction 

time was recorded, so 2.5s was chosen as a practical cutoff for further data analysis based on the 

distribution of the data. Given these data, in the sections below I will analyze the effects of each 

phase of the experiment independently, first looking at the lexical decision exposure (Section 

8.1), followed by the learning results (Section 8.2), and ending with the generalization results 

(Section 8.3). 

8.1 Exposure: Lexical Decision Task 

Figure 6.9 illustrates the lexical decision task endorsement rates across participants by 

condition. Here we see that, as expected, the filler real word items receive real word 

endorsements 91% of the time across both conditions, and filler non-words receive real word 
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endorsements 17% (/eɪ/-Biased) and 19% (/ʊ/-Biased). Overall listeners show high accuracy for 

identifying real words among the filler items. On the other hand, the critical items across the two 

conditions show lower rates of endorsement, with critical items in the /ʊ/-Biased receiving real 

word endorsements only 50% of the time and the /eɪ/-Biased condition 63%. Looking at  

Figure 6.10, we see that both conditions show an increase in word endorsement rates throughout 

the experiment, as trial number increases. However, the /ʊ/-Biased condition only moderately 

increased, reaching a max of 54% real word responses in the last 27 trials. On the other hand, the 

/eɪ/-Biased condition reaches a max of 70% real word responses in the same span. Overall, this 

suggests listeners had difficulty identifying critical items as real words in both conditions, but 

more so in the /ʊ/-biased condition. In the next section I will turn to examine whether the low 

rates of real word responses influence the patterns listeners learned. 

 

Figure 6.9 Lexical decision exposure responses. Y axis represents the average proportion of real word 

endorsements across participants, colored by condition, and faceted by stimulus type. Error bars represent 

standard error. 
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Figure 6.10 Rates of real word responses across binned trials faceted by stimulus type and colored by 

condition. Error bars represent standard error. 

8.2 Learning 

Turning to examine the learning effects, Figure 6.11 below illustrates the raw 

categorization data from pre- to post-test across the two conditions. The Figure illustrates 

proportions of /eɪ/ responses and the standard error across each step of the continuum for each 

condition at pre- and post-test. Here listeners exhibit similar response patterns at pre-test, albeit 

with an identifiable bias towards /ʊ/. Additionally, these data illustrates a trend towards learning 

in the /ʊ/-Biased condition, where listeners show increased /ʊ/ responses after exposure (post-

test). This suggests that despite the low rates of word endorsement during exposure, listeners did 

learn the /ʊ/→/eɪ/ shift. However, listeners in the /eɪ/-Biased condition show a decrease in /eɪ/ 

responses after exposure (i.e., the opposite of the exposure pattern), despite having higher rates 

of word endorsements to critical items during exposure. The pattern of the /eɪ/-Biased condition 

shows that listeners did change behavior from pre- to post-test but did not learn the /eɪ/-shifted 

pattern from exposure. Rather, unexpectedly, the results illustrate a change in their behavior 

similar to that of the /ʊ/-Biased condition. To evaluate the credibility of these effects, I first 
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analyze all of the data together using Bayesian logistic regression. Then I turn to examine each 

condition independently to gain more insights into the observed patterns. 

 

Figure 6.11 Raw learning results plotted with step as a categorical factor for ease of viewing. Error bars 

represent standard error. 

The analyses below use Bayesian logistic regression using the brms package (Bürkner, 

2017) in R (R Core Team, 2021) to draw inferences about the credibility of the effects across the 

two conditions. Based on the hypothesized learning effects in relation to the observed effects 

between conditions (as illustrated in Figure 6.11), Bayesian modeling is an appropriate choice to 

further understand the effect of learning across the two categories. Bayesian models are 

increasingly being used over more traditional null hypothesis significance testing due to their 

flexibility in fitting complex random effects structures and interpretability of effects (see 

Vasishth et al., 2018 for a tutorial in phonetic sciences). One key advantage of using Bayesian 

statistics for the study in this chapter is that we can focus our attention on quantifying the 

uncertainty around the magnitude and direction of the effects by identifying a credible interval of 

plausible values without reference to an unobserved hypothetical distribution used in traditional 

null hypothesis frameworks. For the data presented here, these benefits offer insights into 

whether the same underlying model generated the data; that is do the two conditions represent 

the same underlying effect of different magnitudes or do they represent different underlying 
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effects. Integrating prior domain knowledge alongside Bayesian inference will overall provide a 

more nuanced perspective of listener behavior. 

8.2.1 Analysis: Overall Model 

To begin, I briefly consider whether there is a statistical difference between the two 

conditions’ effects observed in Figure 6.11. The change in listener behavior from pre to post-test 

in the /eɪ/-Biased condition is surprising and did not follow the shift in exposure. In this section I 

use Bayesian modeling to ascertain to what extent the patterns in the /eɪ/-Biased condition are the 

same as the patterns in the /ʊ/-Biased condition. That is, is the decrease in /eɪ/ responses credibly 

different between the two conditions, or do they represent an overall similar change in listener 

behavior from pre-test to post-test. In this section I aim to specifically evaluate whether there is a 

distinction between the two conditions, using Bayesian model comparisons, rather than 

evaluating the size and credibility of the effect. As such, this section primarily aims to evaluate 

whether there is a difference between them, after which I go on to evaluate more critically each 

individual condition including the magnitude of changes.  

To evaluate the effect of exposure condition on the two categories above, I compared two 

models. The first model is an initial model with a subset of fixed effects and their interactions 

(Step, Test) and random slopes for the interaction of step and test by participant, and minimal 

pair by participant. The second model is a reduced form of model 1, where the effect of 

condition has been removed. Both models are fit using the brms package (Bürkner, 2017) in R, 

with 4 chains and 8000 iterations per chain, of which half are warmup iterations (4000). All fixed 

effect and random effect parameters were fit with weakly informative and regularizing priors 

(Normal, μ = 0, σ =1) and the correlation terms were specified with the default LKJ prior. 

Models were inspected visually and through model diagnostics to evaluate convergence; chains 

have converged (�̂� = 1.0 for both models) and there is no evidence of high collinearity between 

predictors in either model. The reduced model and the full model are then compared to derive a 

Bayes Factor, using the bayestestR package (Makowski et al., 2019). Bayes factors are indicative 

of the relative evidence of one model over another and, similarly, at the predictor level evaluates 

the parameter in relation to a specified null value. Bayes factors are generally related to the 

classical interpretation of a p-value, testing how unlikely the data are if the null is true. For 
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model comparison, a Bayes Factor is interpreted as evidence for or against the null hypothesis 

(specified by the model) whereas for parameters in can be seen as evidence for or against a null 

effect. As a general rule of thumb, if the Bayes factor is greater than 1, it can be interpreted as 

evidence against the null, and a Bayes factor greater than 3 can be considered substantial 

evidence against the null (Raftery, 1995; Wetzels et al., 2011). Similarly, a value of smaller than 

1/3 can be interpreted as evidence in favor of the null hypothesis. Here, the two models show a 

Bayes factor of 2.39, providing weak evidence for the alternate hypothesis and lending 

credibility to an overall difference between exposure conditions. That is, despite an increase in 

/ʊ/ responses at post-test for both conditions, the two conditions appear to be qualitatively 

different from one another and are not showing the exact same patterns of listener behavior. To 

understand the differences between conditions, I will first examine the individual effects within 

the full model, and then go on to examine each condition individually in Section 8.2.2. 

Bayes Factors for each effect are calculated in relation to a range of parameter values that 

equate to a null effect set by the researcher. The range used to evaluate effects is -0.18 – 0.18, as 

an indication of a small effect size (Makowski et al., 2019). Thus, the Bayes Factor indicates 

whether the observed posterior distribution of parameter values is credibly different from these 

values. Table 6.3 below provides the model parameters, coefficients, and Bayes Factors for each 

parameter and the interpretation of the credibility of the effect (e.g., weak, strong) following 

rules of thumb outlined in Raftery (1995). Overall, there is very strong evidence for the effect of 

the intercept, where listeners show a general preference for /ʊ/ across the board (β = -0.91, BF > 

150). In other words, listeners generally demonstrate more /ʊ/ responses along the continua, 

which may indicate a bias towards /ʊ/ percepts for the continua stimuli. There is positive 

evidence for the main effect of Step and Test, such that listeners show a decrease in the log-odds 

of /eɪ/ responses as step increases, and a decrease in the log-odds of /eɪ/ responses at post-test. 

There is also weak evidence for the interaction of Step and condition, such that there is a greater 

decrease in the effect of step in the /ʊ/-Biased condition (β = -0.44, BF = 1.17). Meaning, from 

pre-test to post-test listeners show a shift towards the /ʊ/ end of the continuum and the effect is 

of greater magnitude for the /ʊ/-Biased condition. All other interactions and the main effect of 

condition show weak or positive evidence against the alternate hypothesis (i.e., favoring the null 

hypothesis).  
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Altogether, these results demonstrate evidence against the learning hypotheses that 

listeners would learn the exposure pattern across both conditions and that /ʊ/ would demonstrate 

greater magnitude of learning. Rather, it appears that listeners have learned the exposure shift of 

the /ʊ/-Bias condition but have not learned the shift of the /eɪ/-Biased condition. There appear to 

be qualitative differences between the listeners’ behavior between the two conditions, despite 

generally trending in the same direction from pre-test to post-test. To better understand the 

difference between the two conditions, I turn to examine models for each condition individually. 

For the remainder of the analyses, I will examine the posterior distributions to assess the 

confidence, magnitude, and direction of the effects in greater detail. 

Table 6.3 Bayes factor summary for the model parameters, with interpretation of the magnitude of 

evidence schema following Raftery’s (1995) scale. Bayes factor values ranging from 3:20 indicate 

positive evidence, 20:150 = Strong, > 150 = Very Strong. 

Parameter 
Model 

Coefficient 

Bayes 

Factor 

Log Bayes 

Factor 

Evidence of 

Effect 

Intercept -0.91 > 150 11.33 Very Strong  

Step[scaled] -1.83 4.98 1.55 Positive 

Condition[/ʊ/-Bias] 
-0.11 0.13 

-1.76 
Positive 

(against) 

Test[post-test] -0.37 6.60 3.23 Positive 

Step[scaled]*Condition[/ʊ/-Bias] -0.44 1.17 0.35 Weak  

Step[scaled]* Test[post-test] 
0.15 0.14 

-1.66 
Positive 

(against) 

Condition[/ʊ/-Bias]*Test[post-test] -0.32 0.95 0.57 Weak (against) 

Step[scaled]* Condition[/ʊ/-Bias]*Test[post-test] 0.27 0.34 -0.89 Weak (against) 

 

8.2.2 Analysis: Individual Conditions 

For describing the direction of effects of each condition more clearly, each condition’s 

dependent variable was recoded to reflect the hypothesized learning bias in each condition. 

Specifically, for the /eɪ/-Biased condition, the response variable is /eɪ/ responses. For the /ʊ/-

Biased condition, the response variable is /ʊ/ responses, and the steps have been reversed to 

indicate the greatest /ʊ/ responses on the left (step 1) and lowest /ʊ/ responses on the right (step 

7), illustrated in Figure 6.12 for clarity. Based on the results above, but counter to initial 
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expectations, we can expect a decrease in /eɪ/ responses from pre-test to post-test in the /eɪ/-

biased condition. On the other hand, we should expect an increase in /ʊ/ responses in the /ʊ/-

Biased condition from pre-test to post-test. 

Each condition was modeled using Bayesian logistic regression in R (R Core Team, 

2021) using the brms package (Bürkner, 2017) with 4 chains and 8000 iterations per chain, with 

4000 warm-up iterations (half of the total iterations). Each model followed the same 

specifications, with a binary dependent variable of preference (0 ‘dispreferred’ and 1 ‘preferred’) 

using the Bernoulli distribution and a logit link function. An interaction between Test and Step 

and their main effects were specified as predictors in the model with a weakly informative prior 

(Normal μ = 0, σ =1) applied across all main effect predictors, including the intercept. Test was 

treatment coded with ‘Pre-Test’ as the reference level; Step was treated as a numeric predictor 

centered on 0. The random effects structure included by item and by participant random slopes 

for Test, Step, and their interaction. All random effect terms were fit using regularizing priors 

(Normal μ = 0, σ =1), and correlation terms were given default LKJ priors. Both models were 

visually inspected, and model diagnostics were evaluated; accordingly, chains have converged 

(�̂� = 1.0) and there is no evidence of high collinearity between predictors in either model. 
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Figure 6.12 Response curves for each condition by pre- and post- test. For the /ʊ/-Biased conditions steps 

are reversed and /ʊ/ responses are given a value of 1, and /eɪ/ responses are given a value of 0. In the /eɪ/ 

biased condition, Step is in the original order, and /eɪ/ responses are given a value of 1 and /ʊ/ responses 

are given a value of 0. Error bars represent standard error. 

8.2.2.1 /eɪ/-Biased Condition: 

With the initial insights in mind, this section examines the /eɪ/-Biased condition results, 

with a focus on describing the model estimates posterior distributions to get a better 

understanding of the stability and certainty of effects in the model. First, to summarize the main 

effects, the /eɪ/ model validates the larger overall model above, demonstrating an overall bias 

towards /ʊ/ responses at Pre-Test and Post-Test, with a further decrease in /eɪ/ responses at Post-

Test (β = -0.33, SE= 0.10, 95% CI = -0.52 – -0.14), and a weak positive effect between Test and 

Step (β = 0.09, SE= 0.10, 95% CI = -0.11 – 0.28). Figure 6.13 depicts the model’s posterior 

estimated density functions (red fill) alongside the estimated density function of the prior (blue 

fill). Of note before getting into specific decisions, one can observe that the posterior estimates 

for the interaction term (Step*Test) and the main effect of Test have narrow distributions (e.g., 

low standard deviation), which suggest higher certainty around the estimated model coefficients. 
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On the other hand, the Step predictor has a much wider distribution and skew demonstrating 

lower certainty in the estimates of the model coefficients and some more extreme plausible 

coefficients (towards 0). The variability in Step may be driven by the variance explained by other 

terms in the model, including by participant slopes, which make conditional estimates of Step as 

a main effect more variable. Additionally, it’s possible that the model estimates are somewhat 

unstable for the main effect of Step due to the fact that some of the participants show quasi or 

complete separation such that Step perfectly separates their binary response (e.g., all /eɪ/ or all 

/ʊ/). Overall, there is no evidence of learning of the exposure pattern, and listeners appear to be 

reducing their /eɪ/ responses at post-test, counter to the initial predictions and unexpected given 

prior literature. 

 

Figure 6.13 Estimated density function of posterior estimates (red) overlaid the estimated density function 

of the prior distribution (blue). The circle under the posterior represents the mean and the extending lines 

represent the spread of the posterior distribution. 
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To examine the extent to which the observed effects are credible, I examine the posterior 

distributions of the estimates following best practices for hypothesis testing in the Bayesian 

framework: the Region of Practical Equivalence (ROPE) + Highest Density Interval (HDI) 

decision rule and Probability of Direction (PD; Kruschke 2014, 2018), described in detail below. 

These two measures are standard measures to evaluate the existence (Probability of Direction), 

and “significance” of an effect (ROPE + HDI). Significance here is a statement of the magnitude 

and certainty of the effect as reflected in the observed data and posterior estimates, and aids in 

the decision to accept or reject the effect but is not meant to be stand in for the frequentist 

evaluation of ‘significance’ testing. Given the effects observed above, both measures should 

provide additional clarity on the extent to which the effects in a given condition are credible and 

will allow us to compare the effects across the two conditions to determine the degree to which 

they appear to be the same underlying effects and pattern. In the next section, I will explain the 

HDI + ROPE in more detail, and then describe the findings of the model in reference to the 

decision rule. Following that, I will describe the Probability of Direction in more detail, and 

similarly describe the findings of the model in reference to the metric. I will then examine the 

marginal means of the interaction term to shed additional light on the effect, and then 

summarize.  

The HDI + ROPE provides a criterion for deciding whether to accept, reject, or remain 

uncertain, for a particular effect as a function of the magnitude and credibility of the parameter 

values in relation to a null effect (Kruschke, 2014). The ROPE is an analyst specified range of 

values under which a parameter value would be equivalent to a null effect. The HDI summarizes 

the points of a distribution where the parameter coefficients have a higher probability density 

than points outside of the interval (i.e., a range of credible values), and is analogous to 

confidence intervals in null hypothesis significance testing. Rejecting a parameter value would 

equate to a null effect, whereas acceptance would equate to support for the effect of interest (i.e., 

the parameter coefficient). The HDI + ROPE evaluates what proportion of the HDI (i.e., the most 

likely coefficient values) falls within the ROPE (i.e., a null effect). For example, if the HDI is set 

to 89% (i.e., 89% of the area under the probability density curve) and 100% of that HDI falls 

within the ROPE, the parameter effect would be rejected (i.e., “non-significant”). The lower the 

percentage of the HDI that falls within the ROPE, the more credible the effect. In the following 
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evaluations, the HDI is set to 89% and the ROPE is set to a range of 0.18 to -0.18, in line with a 

small effect size for logistic regression coefficients (Makowski et al., 2019). The HDI is set to 

89%, following standard conventions, as opposed to 95% because large samples are required to 

achieve stability of posterior estimates near the edges of the distribution (Kruschke, 2014; 

McElreath, 2014, 2018).  

Figure 6.14 depicts the ROPE (as indicated with the blue highlight) and the posterior 

estimates, with the 89% HDI filled in grey (specific values are reported in Table 6.4). Several 

observations can be made from Figure 6.14 to evaluate the credibility of the effects. First, we see 

a slight positive interaction between Step and Test, whereby the odds of listeners /eɪ/ responses 

from pre-test to post-test increases as the continuum becomes more /ʊ/-like (β = 0.09). However, 

87% of the HDI falls inside the ROPE (89% HDI = -0.07 – 0.24 ), indicating a null effect for this 

interaction (i.e., non-significance). This finding demonstrates that listeners are not making a 

targeted shift near the category boundary from pre-test to post-test. On the other hand, the 

negative effect of Test (β = -0.33) shows the odds of listeners /eɪ/ responses decrease from pre-

test to post-test. Only 1% of the posterior estimates falling within the ROPE (89% HDI = -0.49 – 

-0.17), showing a credible effect of listeners’ overall biasing responses away from /eɪ/ at post-

test. Finally, we see a credible negative effect of Step (β = -1.75), whereby listeners /eɪ/ 

responses decrease as the continua become more /ʊ/-like, with 0% of the HDI falling within the 

ROPE (-2.48 – -0.46). Together these results provide evidence that listeners did not learn the 

exposure pattern, counter to the initial hypothesis. Rather, listeners appear to demonstrate a 

global decrease in the categorization of /eɪ/ tokens from pre-test to post-test and no evidence of a 

shift in their categorization boundary.  
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Figure 6.14 Estimated density distributions of the posterior shaded by High Density Interval (HDI). The 

blue shaded region represents the Region of practical equivalence (ROPE) with a range of -0.18 – 0.18. 

 

Table 6.4 Parameter estimates and the proportion of the 89% HDI that falls within the ROPE (-0.18 – 

0.18) 

Parameter 89% HDI HDI + Rope % 

Intercept [-1.13, -0.71] 0% 

Step [-2.48, -0.46] 0% 

Test[Post-Test] [-0.49,  -0.17] 1% 

Step*Test[Post-Test] [-0.07, 0.24] 87% 
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As further clarification of the effects, Figure 6.15 depicts the Probability of Direction 

(PD), with the values reported in Table 6.5. Probability of direction, or the Maximum Probability 

of Effect, represents the certainty that an effect is observed in a particular direction—that is how 

much of the posterior distribution of the parameter coefficients are positive or negative 

(Makowski et al., 2019)7. In general, this can be interpreted as an index of effect existence but 

does not quantify evidence for or against the null hypothesis. As such, the probability of 

direction complements the HDI + ROPE decision rule which quantifies the magnitude and 

credibility of the effect in relation to the null (i.e., ‘significance’ of the effect). Figure 6.15 below 

shows the same distributions as above with the probability of positive and negative effects 

indicated by color or the proportion of the posterior distribution that shares the same sign as the 

median coefficient value. If more of the distribution is a single color, there is a higher probability 

that the observed effect is in a given direction and there are fewer observations of plausible 

effects in the opposite direction. For example, if we expect Step to have a negative effect on /eɪ/ 

responses (i.e., as step increases, /eɪ/ responses decrease), then the probability of direction will 

tell us what proportion of the sampled estimates conform to that expectation. If the probability is 

100%, then all plausible coefficient values showed a negative effect. If the probability is 50%, 

then positive and negative effects are equally plausible, and we can’t be certain that the observed 

effect (i.e., the reported median of the posterior) is the true effect. 

Looking at Figure 6.15, overall, the effects align with the observations made above. Specifically, 

for the Step*Test term the majority of the posterior distribution is positive (PD = 80%) but the 

distribution crosses 0 and negative values are also likely. This suggests uncertainty in the effect 

estimate and provides further evidence that the interaction term is not credible given there is a 

20% probability of a negative effect. To put it differently, the model estimates 80% of the time 

that listeners shift their category boundary towards the /ʊ/ end of the continuum, and the other 

20% of the time estimates that listeners shift their boundary towards the /eɪ/ end of the continua. 

The probability for the Test term, however, is 99%, meaning almost all of the posterior estimates 

 

7 While the Probability of Direction may be interpreted in relation to the frequentist p-value, here I only use the 

metric as a means of capturing the uncertainty in estimating the effects as further evidence of the null or alternative 

hypothesis.  
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are negative, demonstrating greater confidence for the effect that the odds of listeners /eɪ/ 

responses decrease at Post-test. Finally, for the Step term, the probability of direction is 98%, 

with the majority of estimates being negative, indicating listeners decrease /eɪ/ responses as the 

continua become more /ʊ/-like. Overall, the probability of direction aligns with the HDI + ROPE 

in the previous section, showing that there is a credible effect of test, however not in the 

direction that constitutes learning. That is, the effect is the opposite behavior expected from the 

shift listeners were exposed to. However, based on the null effect of the interaction term 

(Step*Test), listeners are not showing a targeted shift of their categorization boundary towards 

the /eɪ/ end or the /ʊ/ end of the continua.  

Figure 6.15 Estimated density function of the posterior estimates and color indicating the effect direction 

as indicated by the probability of effect. 
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Table 6.5 Probability of direction values for the posterior estimates, reflected in Figure 6.15 above. 

Parameter Probability of Direction  Direction 

Intercept 100%  Negative 

Step 98%  Negative 

Test[Post-Test] 99%  Negative 

Step*Test[Post-Test] 80%  Positive 

 

Given the uncertainty in the interaction between Step and Test, and the predicted learning 

effect, I turn to briefly examine the marginal means for further clarity with the emmeans package 

(Lenth et al., 2023) in R (R Core Team, 2021). Figure 6.16 below presents the marginal posterior 

estimates of the interaction between Step and Test, with Step taken at the midpoint of the 

continuum (Step 0, from the scaled predictor). The marginal means below reinforce the patterns 

in Figure 6.14 and Figure 6.15, where at Step 0 the posterior estimates are slightly lower from 

pre-test to post-test. Indicating a boundary shift, at least near the center of the continua, from pre-

test to post-test for the /eɪ/ condition, but with greater overlap between the posterior distributions. 

Altogether, the results in this section suggest that there is greater uncertainty for the estimates of 

step as a function of test, but a small credible effect for the effect of test. Meaning, the odds of 

listeners responding with more /eɪ/ tokens as the continuum becomes more /ʊ/-like (or vice 

versa) does not change from pre-test to post-test, but rather listeners show an overall decrease in 

/eɪ/ responses after exposure. 
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Figure 6.16 Marginal means 89% HDI based on Step 0 and level of Test. The mean of the distribution for 

Step 0: Pre-Test = -0.91, and Step 0: Post-Test = -1.24. 

To summarize, the main effect of Step is a credible effect whereby the odds of listeners 

reporting /eɪ/ decreases as the continuum becomes more /ʊ/-like. The main effect of Test is 

credible and there is a decrease in /eɪ/ responses at post-test, meaning there is credible evidence 

that listeners did not learn the pattern of exposure but did demonstrate a change in categorization 

behavior at post-test. The slightly positive interaction between Step and Test does not appear to 

be a credible result with model estimates demonstrating greater uncertainty. Overall, these results 

suggest that listeners generally biased their responses away from /eɪ/ (i.e., towards /ʊ/) during 

post-test categorization and did not demonstrate a targeted shift in their category boundaries. 

Such a finding may point towards greater uncertainty for listeners at post-test; I will return to this 

point in the broader discussion and consider some possible explanations for this effect.  
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8.2.2.2 /ʊ/-Biased Condition: 

Moving on to next analysis, I examine the main effects of the /ʊ/-Biased condition. The 

modeling choices outlined in the previous section (/eɪ/-Biased Condition) were repeated here, but 

on the subset of data for the /ʊ/-Biased condition and with the positive response variable 

representing /ʊ/ responses and Step reversed (as described above). In this section I will again 

first describe the overall effects and then follow the same analytic choices for hypothesis testing 

as the previous sections (i.e., HDI + ROPE and PD). First, as depicted in Figure 6.17, the /ʊ/ 

model here validates the full model in Section 8.2.1 above, demonstrating an overall increase in 

/ʊ/ responses from Pre-Test to Post-Test (β = 0.76, SE= 0.11, 95% CI = 0.54 – 0.99). In addition, 

there is a small effect for the interaction of Step and Test (β = 0.16, SE= 0.09, 95% CI = 0.0 – 

0.35), indicating an increase in /ʊ/ responses at post-test as step increases, or in other words a 

positive shift in the boundary at post-test where listeners report more /ʊ/ responses as the 

continuum becomes more /eɪ/-like. Finally, the main effect of step illustrates a negative effect, 

demonstrating that as step increases odds of /ʊ/ responses decrease (β = -1.89, SE= 0.70, 95% CI 

= -2.77 – -0.15).  
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Figure 6.17 Estimated density function of posterior estimates (red) overlaid the estimated density function 

of the prior distribution (blue). 

Figure 6.18 depicts the posterior distributions of the fixed effects in the model, using the 

HDI + ROPE decision rule. As above, the criteria are an 89% HDI and a ROPE indicating a 

small effect, from -0.18 – 0.18. Figure 6.18 and Table 6.6 illustrates a credible effect of Test, 

with 100% of the HDI falling outside of the ROPE (0.54 – 0.99). These results demonstrate a 

reliable effect, providing evidence of learning in the direction of exposure. In contrast, the 

interaction of Test and Step demonstrates an effect with less credibility, with 60% of the HDI 

falling within the ROPE (-0.01 –0.34). This effect demonstrates that there is not a credible effect 

of listeners shifting their boundary at post-test, or the effect is minimally different from a null 

effect. Additionally, the /ʊ/ model illustrates similar properties as the /eɪ/ model in terms of the 

effect of Step, with a high degree of variability in model estimates despite 0% of the HDI falling 

within the ROPE (-2.83 – -0.29). There is a credible effect of Step, with greater magnitude than 



 

 266 

other effects in the model, showing that listeners decrease their /ʊ/ responses as the continuum 

becomes more /eɪ/ like (i.e., Step increases). Thus far, these results are in line with the results of 

the /eɪ/-Biased condition, showing that each condition patterns similarly, with credible effects of 

Test and Step, but only weak evidence of an interaction between the two. In the case of the /ʊ/-

Biased condition, however, listener behavior follows from the pattern of exposure, and is of 

greater magnitude, suggesting learning occurs for the /ʊ/-Biased condition. 

 

 

Figure 6.18 Estimated density distributions of the posterior shaded by High Density Interval (HDI). Blue 

shaded region represents the Region of practical equivalence (ROPE) with a range of -0.18 – 0.18. 
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Table 6.6 Parameter estimates and the proportion of the HDI that falls within the ROPE. 

Parameter 89% HDI HDI + Rope % 

Intercept [0.66,  1.27] 0% 

Step [-2.83, -0.29] 0% 

Test[Post-Test] [0.54,  0.99] 0% 

Step*Test[Post-Test] [-0.01,  0.34] 60% 

 

To further clarify the effects, we again look at the Probability of Direction. As illustrated 

in Figure 6.19 and Table 6.7, the posterior distributions illustrate 100% probability of a positive 

effect for the main effect of Test, and a 97% probability of a positive effect for the interaction 

between Test and Step, representing a moderate positive effect. Such a finding suggests that 

despite the effect appearing small and falling within a null range, there is high confidence in the 

direction of the effect. The effect here contrasts with the finding for /eɪ/ where the same 

interaction shows higher uncertainty in the effect of the term. Overall, this may suggest that 

listeners are more likely shifting their boundary towards the /eɪ/ end of the continuum in the /ʊ/-

Biased condition, as expected with learning the exposure shift. Finally, the model demonstrates a 

high degree of certainty around the main effect of step with 98% probability of a negative effect. 

Based on the posterior estimate distributions and the relative strengths outlined here, I argue that 

the effect of an increase at post-test in /ʊ/ responses is credible. Similarly, the effect of Step 

demonstrates credible effect given the magnitude of the effect and the absence of overlap with 

the ROPE and the high probability of direction. To further elucidate the effect of the Step and 

Test interaction, I once again look at the marginal means using the emmeans package (Lenth et 

al., 2023) in R (R Core Team, 2021). 
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Figure 6.19 Estimated density function of the posterior estimates and color indicating the effect direction 

as indicated by the probability of effect. 

 

Table 6.7 Probability of direction of the effects, as illustrated in Figure 6.19. 

Parameter 
Probability of 

Direction 

 Direction 

Intercept 100%  Positive 

Step 98%  Negative 

Test[Post-Test] 100%  Positive 

Step*Test[Post-Test] 97%  Positive 
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Looking at the marginal means in Figure 6.20 we can see that there is indeed an increase 

in the log-odds of /eɪ/ responses from pre-test to post-test in the middle of the continua (Step 0, 

again the middle of the centered step predictor). The 89% HDI shows no overlap in the pre-test 

posterior estimates compared to the post-test posterior estimates, and there is little variability. 

While Step 0 shows an increased likelihood of /ʊ/ responses during pre-test, we see the effect 

strengthen when we get to the post-test. While the overall effect appears to be small, and indeed 

requires further research, the probability of direction coupled with the marginal means here 

suggest the effect is qualitatively different for the /ʊ/-Biased condition compared to the /eɪ/-

Biased condition. The marginal means more clearly supports the fact that listeners have shifted 

their boundaries in response to the exposure shift in the /ʊ/-Biased condition, as the magnitude of 

the posterior estimates and their lower degree of overlap contrast the /eɪ/-Biased condition.  

 

 

Figure 6.20 Marginal means 89% HDI based on Step 0 and level of Test. The mean of the distribution for 

Step 0: Pre-Test = 1.01, and Step 0: Post-Test = 1.78. 
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8.2.3 Interim Discussion 

The learning results of the experiment do not align with the original hypotheses. For 

review, the two vowel categories were chosen for this experiment based on the fact that they 

were critically different concerning what level of socio-indexical information was informative of 

their cue distributions. I hypothesized that both conditions would demonstrate learning, whereby 

/eɪ/ responses would increase at post-test for the /eɪ/-Biased condition, and /ʊ/ responses would 

increase at post-test for the /ʊ/-Biased condition. While the /ʊ/ condition conformed to these 

expectations, the /eɪ/-Biased condition showed a decrease in /eɪ/ responses at post-test. While 

these results show an /ʊ/ preference across both conditions, the results above suggest the effects 

are qualitatively different. In particular, the /ʊ/-Biased condition demonstrates higher confidence 

in the estimates of Test and the interaction of Test and Step in contrast to the same predictors 

observed in the /eɪ/-Biased condition. Higher confidence in the predictors suggests that listeners 

more robustly shifted their boundaries in the /ʊ/-Biased condition compared to the /eɪ/-Biased 

condition. Similarly, the marginal effects of the /eɪ/-Biased condition show no qualitative 

difference between the posterior distribution, showing no evident shift, at least in the middle of 

the continua. On the other hand, the marginal means of /ʊ/ show a very clear increase in the log 

odds from pre-test to post-test at the same point in the continua. Overall, the effects in the /eɪ/-

condition I interpret as listeners increasing in uncertainty from pre-test to post-test. On the other 

hand, the effects of the /ʊ/ condition provide evidence of perceptual learning of the exposure 

shift. I will return to this interpretation for further refinement in the larger discussion section 

(Section 9) following the generalization results. 

8.3 Generalization 

I now turn to the second question of this experiment: is there an asymmetry in 

generalization across the two vowel categories? The two novel generalization talkers represent a 

same gender pair with the exposure talker (a female talker T2_F) and a different gender pair (a 

male talker T3_M). I hypothesized that the dialect-informative vowel category (/eɪ/-Biased 

condition) would exhibit robust cross talker generalization, with the pattern extending to both the 

novel male and female talkers. On the other hand, I hypothesized there would be no 
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generalization for the talker-informative condition (/ʊ/-Biased condition) or it would be limited 

to the same gender pairing as a function of acoustic similarity.  

Given the unexpected learning results in Section 8.2 above, it is unclear whether we 

would see the robust generalization predicted for the /eɪ/ condition. The original hypothesis 

hinges on listeners learning the exposure pattern and generalizing the learned pattern. However, 

since listener behavior changed, but was not evidence of learning the pattern from exposure, it 

would seem reasonable that generalization of the shift in their behavior from pre- to post-test 

would be limited or non-existent. On the other hand, it’s possible that listeners may generalize 

their updated beliefs about the category regardless of whether they demonstrated learning of the 

novel pattern. More precisely, if listeners in the /eɪ/-biased condition became more uncertain 

about the category, and not just the talker-specific percepts, users may extend their uncertainty to 

similar talkers. Given that they were as expected, the learning results for /ʊ/ do not provide any 

explicit need to revisit the hypotheses. However, given the results of /eɪ/, we might posit that the 

link to socio-indexical factors may not correlate with listener behavior as predicted, and as such 

this could extend to different generalization behaviors than hypothesized in the /ʊ/-Bias 

condition by, for example, generalizing to other talkers. I will return to some of these issues 

more in the discussion following the results. I will examine the raw results first and move 

forward to a statistical analysis for support and further refinement of the observed trends. 

As a reminder, generalization talkers were counterbalanced across participants within 

each condition, so that individual participants were only tested on either the female talker (T2_F) 

or the male talker (T3_M) following post-test of the exposure talker. Additionally, learning was 

evaluated by evidence of change in listener behavior in the direction of exposure. However, 

generalization may be demonstrated by extending the behavior from the exposure talker at post-

test, as in a lower response of /eɪ/, across both conditions. In the analyses below, the Step 

predictor is coded so that each condition follows the same response variable, /eɪ/ responses, with 

Step 1 indicating the most /eɪ/-like end of the continua and Step 7 indicating the most /ʊ/-like 

end. Any positive slope for Step suggests an increase in /eɪ/ responses as the continua become 

more /ʊ/-like, and a negative slope of Step suggests a decrease in /eɪ/ responses as the continua 

become more /ʊ/-like. 
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Figure 6.21 shows the raw results of generalization across the two novel talkers along 

with the exposure talker for reference. In Figure 6.21, we see that there is an overall difference 

between the two conditions for the male talker, such that we see overall fewer /eɪ/ responses in 

the /ʊ/-Biased condition compared to the /eɪ/-Biased condition. However, there is no difference 

between the conditions for the female talker. These results suggest generalization to the male 

talker for the /ʊ/-Biased condition, but no generalization to the female talker in either condition. 

Below I will assess the credibility of the experimental effects through statistical analysis 

followed by a brief discussion of the relationship between the talkers and their baseline 

categorization function from the norming phase of the study for further elucidation of these 

effects. 

 

 

Figure 6.21 Proportion of /eɪ/ responses for each Step of the continua. Step is depicted as factor for 

interpretation purposes. Line colors represent talker (Generalization talkers = T2_F and T3_M; Exposure 

talker = T1_F) and line type represents condition. Error bars indicate standard error. 

To test whether generalization differed as a function of condition (/eɪ/-Bias or /ʊ/-Biased) 

and generalization talker (male T3_M or female T2_F), this section examines only the post-test 

categorization data across the two generalization speakers. In line with the learning section above 
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(Section 8.2), I ran Bayesian logistic regression in the brms package (Bürkner, 2017) in R using 

the Bernoulli distribution and a logit link function, with 4 chains and 8000 iterations per chain, 

with 4000 warm-up iterations (half of the total iterations per chain). The dependent variable is a 

binary coded response with 1 indicating an /eɪ/ response from participants, and 0 indicating an 

/ʊ/ response. The independent variables were talker, condition, and step, and their interactions. 

Speaker and Exposure were treatment coded; talker T2_F was the reference level for the talker 

effect and the /eɪ/-Bias condition as the reference level for condition. Step was entered as a 

scaled and centered numeric variable. All main effects and their interactions were specified with 

weakly informative prior (Normal, μ = 0, σ =1). The random effect structure included random 

slopes for all main effect interactions over participants and a random slope for step by item. All 

random effect priors were specified with a regularizing prior (Normal, μ = 0, σ =1), and 

correlations terms were fit with an LKJ prior. Models were inspected visually and through model 

diagnostics to evaluate convergence; chains have converged (�̂� = 1.0) and there is no evidence of 

high collinearity between predictors. 

Following the previous sections, I examine the posterior distributions of the estimates in 

reference to the HDI + ROPE decision rule and the probability of direction (Kruschke, 2014, 

2018), provided in   
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Table 6.8 and Table 6.9. Figure 6.22 depicts the model’s posterior estimates and the 89% 

High Density Interval (HDI) and the ROPE, and Figure 6.23 depicts the Probability of Direction 

(PD) of the posterior estimates. As in the overall model in Section 8.2, there is a credible bias 

towards /ʊ/ responses (β = -0.64, SE= 0.16, 95% CI = -0.95 – -0.35), with 0% HDI + Rope and 

100% negative PD. Similarly, there is a large effect of Step, where the odds of /eɪ/ responses 

decrease as step increases becoming more /ʊ/-like (β = -2.45, SE= 1.20, 95% CI = -4.59 – 0.46), 

with 0% HDI + Rope and 96% . There is a small effect of condition, whereby the odds of /eɪ/ 

responses are lower in the /ʊ/-Biased condition compared to the /eɪ/-Biased condition (β = -0.05, 

SE= .22, 95% CI = -0.48 – 0.39), indicating fewer /eɪ/ responses overall in the /ʊ/-Biased 

condition (0% HDI + ROPE and 100% negative PD). Finally, there is a slightly positive effect of 

talker, where there is an increase in the odds of /eɪ/ response for the male talker (T3_M) 

compared to the female talker (T2_F; β = 0.12, SE= 0.23, 95% CI = -0.33 – 0.59). In other 

words, listeners were more biased to respond with /ʊ/ for the novel female talkers’ continua and 

for increasingly /eɪ/-like steps along the continua compared to the male talker. 

However, the three-way interaction of Step, Condition, and Talker demonstrate a higher 

degree of uncertainty in the effect with 36% of the posterior HDI falling within the ROPE and 

only 74% negative PD (β = -0.24, SE= 0.37, 95% CI = -0.98 – 0.46), suggesting a non-credible 

effect and interpretation of the null. In other words, there is minimal difference between the 

listeners’ generalization behavior of either talker across the two conditions. This finding 

illustrates that listeners in both conditions demonstrated the same pattern of generalization to 

both the same-gender and different-gender paired talkers and did not show shifts in their 

categorization boundary. There is no support for the original hypothesis that the two conditions 

generalization patterns would differ. However, given the multiple levels for the interaction term, 

there may be a difference between certain comparison levels (e.g., only one talker, one condition, 

compared to the others). To better understand the three-way interaction, I turn to examine the 

marginal means below to better determine whether each talker and condition are comparable at 

different points along the continua. Namely, this seeks to identify whether the effect of the three-

way interaction is obscuring the effect for a single talker and condition or whether the talkers are 

comparable across conditions along the continua. 
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Figure 6.22 The HDI + ROPE decision rule. Shaded region representing the 89% HDI and the blue 

shaded region representing the ROPE at -0.18 – 0.18. 
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Figure 6.23 Probability of direction, with color indicating direction of effect.  
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Table 6.8 Parameter and percentage of ROPE within the HDI for effects illustrated in Figure 6.23 

Parameter 89% HDI 
ROPE  

Percentage 

Intercept [-0.88, -0.39] 0% 

Step [-4.22, -0.53] 0% 

Condition[uh-Bias] [-0.38,  0.31] 67% 

Talker[T3_M] [-0.24,  0.51] 57% 

Step*Condition[uh-bias] [-0.33,  0.44] 63% 

Step*Talker[T3_M] [-1.51, -0.65] 0% 

Condition[uh-Bias]*Talker[T3_M] [-0.93,  0.11] 20% 

Step*Condition*[uh-Bias]*Talker[T3_M] [-0.80,  0.37] 36% 

 

Table 6.9 The probability of direction for effects illustrated in Figure 6.23 

Parameter Probability of 

Direction 

Direction 

Intercept 100% Negative 

Step 96% Negative 

Condition[uh-Bias] 60% Negative 

Talker[T3_M] 69% Positive 

Step*Condition[uh-bias] 57% Positive 

Step*Talker[T3_M] 100% Negative 

Condition[uh-Bias]*Talker[T3_M] 91% Negative 

Step*Condition*[uh-Bias]*Talker[T3_M] 74% Negative 

 

Given the interest in the individual talkers across each condition, I move forward to look 

at the marginal effects using the emmeans package (Lenth et al., 2023) in R (R Core Team, 

2021). Figure 6.23 plots the conditional marginal posterior estimates for the three-way 

interaction of Step, Condition, and Talker, taking the center of the Step predictor for estimates. 
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This figure elucidates the patterns above by demonstrating that T3_M and T2_F appear to have 

similar posterior estimates for the /eɪ/ condition, and the estimates for T2_F show no difference 

between the two conditions. The only estimate that suggests a credible difference is the center of 

the continuum (Step 0) for the /ʊ/ Bias condition and T3_M. In other words, there is a decrease 

in the log-odds of /eɪ/ responses for the male talker only in the /ʊ/-Biased condition, illustrating 

that listeners appear to have generalized the exposure pattern in the /ʊ/-Biased condition to the 

male talker, but not the female talker. Similarly, listeners do not appear to have generalized the 

change in behavior from the /eɪ/-Biased exposure to either the male or female talkers.  

The generalization results are surprising and contrary to the hypotheses described in 

Section 2 (Predictions). However, given the direction of the effect for learning in the /eɪ/-Biased 

condition (i.e., reduced /eɪ/ responses), it is unclear whether the behavioral pattern of the 

exposure talker at post-test was extended to the novel talkers. From the results thus far we cannot 

confirm whether listeners generalized the same reduction in /eɪ/ responses from the exposure 

talker in the /eɪ/-Biased condition or reset their categorization behavior for the new talkers. If 

listeners generalized their beliefs, demonstrating greater uncertainty of the category more 

globally, it may explain what appears to be an absence of generalization to the female talker, as 

listeners may have fewer /eɪ/ responses for the novel female talker in both conditions. 

Correspondingly, the categorization of the male talker may be reflective of generalization for the 

/ʊ/-Biased condition but talker-specific learning for the /eɪ/-Biased condition, or greater 

magnitude of shift for the /ʊ/-Biased condition compared to the /eɪ/-Biased condition.  

In other words, it’s unclear whether listeners demonstrate generalization of updated 

beliefs about the category or talker-specific changes to categorization behavior (i.e., only the 

exposure talker). In order to elucidate this concern, I return to the norming data below to 

compare responses across the experiment and norming data. As the current experiment did not 

elicit baseline responses to the generalization talkers, the norming study can facilitate 

interpretation by acting as a proxy ‘baseline’ representation of listeners’ categorization functions. 

Listeners in the norming study were not provided any exposure shifts before participating in 

categorization and should thus shed light on the degree to which listeners behave differently 

across the exposure conditions. There is, however, the caveat that listeners in the norming 
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experiment were exposed to more steps along the continua, which may have influenced their 

categorization function, but the results should nonetheless help in disambiguation of the pattern.  

 

 

Figure 6.24 Posterior estimate distributions of the marginal coefficients. Shaded region represents 89% 

HDI. 

Figure 6.25 below shows the raw categorization functions across both talkers across three 

conditions: Norming, /eɪ/-Biased, and /ʊ/-Biased. Here we can see that the two talkers 

demonstrate different patterns across the three experimental contexts. Based on visual inspection 

of the curves in Figure 6.25, the responses for the three conditions are similar for talker T2_F, 

showing that no generalization occurred with the novel female talker. Additionally, the response 

curve suggests there is more uncertainty in categorization for talker T2_F, as evidenced by the 

shallower categorization slope whereby even the most extreme ends of the continua lack 

categorical /eɪ/ or /ʊ/ responses. However, when examining the male talker, T3_M, 

generalization appears to have occurred in both conditions. In the /eɪ/-Biased condition, there are 
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fewer /eɪ/ responses compared to the Norming data, and the fewest /eɪ/ responses in the /ʊ/-

Biased condition which parallels the patterns observed for the exposure talker (T1_F) across the 

conditions. The male talker also demonstrates a steeper slope in categorization compared to 

talker T2_F with more categorical responses at the end points. In other words, listeners appear to 

have generalized from the exposure talker to the novel male talker but not the female talker 

across both conditions. 

These results are surprising and counter to the initial hypothesis that cross-talker 

generalization should occur for the /eɪ/-Biased condition but not the /ʊ/-Biased condition or 

restricted to same-gender pairs. The results provide counter evidence to previous work 

suggesting listeners should be more likely to generalize to talkers of the same gender for vocalic 

shifts (e.g., Kleinschmidt, 2019) as a result of gross acoustic differences across genders. A 

potential explanation for this trend is the perceptual similarity of the stimuli despite the acoustic 

patterns. Namely, it possible the exposure talker and the male talker’s test continua are 

perceptually similar while the other female talkers’ continua are dissimilar, despite the acoustic 

similarity of the two female talkers. The categorization results of the three talkers from norming 

appear to reflect this perceptual disparity, with the exposure talker (T1_F) exhibiting a similar 

slope and boundary point to the male talker (T3_M) but dissimilar to the other female talker 

(T2_F). The observations presented here may lend support to the proposal that cross-talker 

generalization is restricted to perceptually similar segmental ranges, even when the acoustic 

similarity of the talkers is similar (Reinisch & Holt, 2014). I will return to this point in the 

discussion in more detail and its relationship with the learning results above. 
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Figure 6.25 Proportion of /eɪ/ responses for each Step of the continua faceted by talker. Step is depicted as 

factor for interpretation purposes. Line colors represent condition. Error bars indicate standard error. 

9 Discussion 

Overall, the results of this experiment pose interesting challenges for ideal adapter 

models and perceptual learning and generalization more broadly. The above results illustrate 

asymmetrical learning, such that the /ʊ/ → /eɪ/ shift was learned, but the /eɪ/ → /ʊ/ shift was not, 

with listeners exhibiting an opposite pattern with decreased /eɪ/ responses at post-test. Listeners 

also generalized the learned /ʊ/ → /eɪ/ shift to the novel male talker, but not the novel female 

talker. Correspondingly, listeners generalized the reduction in /eɪ/ responses in the /eɪ/ → /ʊ/ 

shift for the male talker, but again not the female talker. The generalization results of the /ʊ/-

Biased condition (/ʊ/ → /eɪ/) refute the original hypothesis that listeners would show less 
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generalization as a consequence of the category being linked to individual variation but not 

group variation (i.e., talker-informative). Relatedly, the dialectally informative category (/eɪ/) 

does not support the hypothesis that listeners would show greater remapping and generalization 

as a result of the category being linked to dialect variation (i.e., dialect-informative).  

The results of the /ʊ/-Biased condition highlight that listeners learn the novel shift of /ʊ/ 

towards /eɪ/ and generalize the novel vocalic pattern to perceptually similar talkers. The fact that 

listeners learned the exposure shift aligned with the original predictions about learning for this 

category. However, the generalization results do not conform to the original predictions, as 

listeners appear to generalize to other talkers, and it is not restricted to the same-gender talker. 

This suggests that the talker-informative hypothesis does not adequately describe listener 

behavior for this vowel category. Rather, it appears that listeners update their beliefs about the 

category boundary following exposure and generalize it to other novel talkers with perceptually 

similar segmental ranges. Such a finding refutes claims that learning is talker-specific when the 

segment contains a high degree of talker-specific detail, such as spectral information (Kraljic et 

al., 2008; Kraljic & Samuel, 2006) or is idiosyncratically conditioned (Kleinschmidt, 2019; 

Kraljic et al., 2008). The results of the /eɪ/-Biased condition further suggest that the asymmetry 

in perceptual learning and generalization of vowels is unlikely to directly follow from the initial 

hypothesized talker-informative and dialectally informative dichotomy predicted. In the 

following section, I will discuss possible explanations for the results of the /eɪ/ condition in more 

detail focusing primarily on the learning results, then turn to the generalization results, and return 

to the intersection therein to conclude. 

9.1 Learning 

In this section I aim to specifically address the surprising result of the absence of learning 

and decrease in /eɪ/ responses in the /eɪ/-Bias condition. Overall, I will argue that listeners are 

demonstrating an increase in uncertainty following exposure to the novel shift in /eɪ/. Given the 

results, the original dichotomy between talker-informative and dialect-informative does not 

adequately explain listeners’ perceptual learning behavior. While there are any number of 

potential explanations for this effect, I focus primarily on two plausible aspects of distributional 

properties that may drive the findings. First, I discuss the possibility that short-term distributional 
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characteristics of the stimuli caused the reduction in /eɪ/ responses during post-test. I argue that 

short-term characteristics are unlikely to be the cause of listener behavior. In the subsequent 

section, I consider how listeners’ knowledge of long-term distributional characteristics of the 

vowel category and causal ambiguity provide a better account for the observed behavior. Given 

this discussion, the socio-indexical structure linked to each category and its role in perceptual 

learning needs to be revised, which I will return to at the end of the section. 

9.1.1 Short-Term Distributional Properties 

Short-term distributional properties provide a possible avenue for explaining the 

reduction in /eɪ/ responses at post-test. One may hypothesize that the decrease in /eɪ/ responses at 

post-test is driven by asymmetrical variance of the exposure items across the two conditions. 

This hypothesis is derived from previous work demonstrating that listeners’ perceptual learning 

behavior is influenced by the degree of variability they are exposed to (Babel et al., 2019; 

Sumner, 2011). In addition, some work predicts that listeners exposed to wider distributions of a 

category will have greater uncertainty in categorization (Clayards et al., 2008; Theodore & 

Monto, 2019). If listeners in the /eɪ/-Biased condition were exposed to more variable stimuli than 

those in the /ʊ/-Biased condition, their post-test behavior may be indicative of this same 

mechanism. However, the estimated variance across F1 and F2 for both categories during 

exposure (depicted in Figure 6.8 in Section 6), shows approximately equal variance across the 

conditions for these cues, suggesting this explanation is unlikely the cause of listener behavior.  

An alternative explanation is that the distributional properties led listeners to reweight 

cue expectations, shifting their reliance to other cues for categorization at post-test. Such an 

explanation is supported by previous research demonstrating listeners are able to learn 

distributional characteristics of individual cue dimensions and reweight cues according to novel 

talker patterns (Idemaru & Holt, 2011, 2014; Liu & Holt, 2015). For example, Liu and Holt 

(2015) demonstrate that in a categorization task listeners adjusted the relative weighting of 

acoustic cues to a vowel contrast based on the distributional properties of the stimulus set. A 

similar effect may account for listeners’ behavior in the /eɪ/-Biased condition here, whereby 

listeners reweight attention to F1 as a cue over F2. Cue reweighting in this case may be driven by 

the fact that on average F1 is lower in the exposure stimuli than the categorization stimuli, and 
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variability is slightly larger in F2 than F1 in exposure. The categorization items mostly approach 

the F1 values of the stimulus set at the most extreme steps (1 & 2). As a result, it’s possible that 

as listeners are exposed to items that predominantly vary in F2 (i.e., items are backing) they 

reweight expectations towards F1 because F2 has become an unreliable cue to /eɪ/. During 

categorization, the categorization stimuli do not represent extreme enough points of F1 for 

listeners to be confident that the speaker produced /eɪ/. It’s also possible that rather than listeners 

reweighting cues, the distributional properties perhaps only magnified the reliance on F1, since 

the categorization items at pre-test have a strong bias towards /ʊ/ before exposure to the novel 

shift.  

I argue that either explanation is unlikely given that the reduction in /eɪ/ responses was 

generalized to the male talker, whose categorization items maintain relatively stable (and lower) 

F1 values across the continua and primarily vary in the F2 dimension. The acoustic cue 

variability of the stimuli cannot fully account for the listeners’ behavior for the exposure and 

generalization talker as the distributional characteristics are misaligned for such an explanation. 

There are potentially other cues that may have been missed or altered during resynthesis that 

listeners are attending to, but it’s not readily apparent that is the case. Overall, it seems unlikely 

that either of the proposed short-term distributional characteristics of the stimuli account for the 

reduction in /eɪ/ responses at post-test and do not reconcile the generalization results. 

9.1.2 Long-Term Distributional Properties 

Overall, causal ambiguity may best explain the results of perceptual learning in the /eɪ/ 

condition. As described above (see also Chapter 2), inference takes place under uncertainty about 

the true cause of the observed (i.e., perceived) events. Listeners can only infer causality of 

variation without direct observable evidence of the cause. Listeners therefore engage in inference 

from a priori knowledge of the distributional properties and underlying causes of variation 

(causally ambiguous), unless provided with direct disambiguating evidence (causally 

unambiguous; Liu & Jaeger, 2018). The experiment presented in this chapter assumes that 

listeners’ inference of a single cause will be strong enough to drive behavior. The conjectured 

single inferred causes are: idiosyncratic tendencies of the talker (the /ʊ/-Biased condition) or the 

dialect background of the talker (the /eɪ/-Biased condition).  
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Although those assumptions drove the design of the experiment, it’s plausible that 

listeners have more than one (and possibly competing) hypotheses to draw on during inference, 

particularly for /eɪ/, which may have more causes of variability compared to a more limited set in 

/ʊ/. The asymmetry of plausible causes of the two categories may have led /ʊ/ variation to be less 

causally ambiguous than /eɪ/ where previous experiences may point towards numerous probable 

causes, including dialect variation, making it maximally ambiguous. As a result, listeners may 

maintain uncertainty about the true talker-specific characteristics for /eɪ/ because the input they 

encountered for the talker remains causally ambiguous. While for /ʊ/, the high degree of talker-

specificity for this category may have made talker characteristics more prominent as a cause, 

leading to greater certainty about the talker’s pattern. 

 There are several factors that potentially contribute to the listeners being unlikely to infer 

the cause of the underlying shift as dialectally driven, or at least rule out other causes. Below, I 

focus on three potential sources derived from long-term experience that could have maximized 

listener uncertainty in post-test categorization for /eɪ/ and reduced the plausibility of a dialectal 

cause for listeners. The explanations all center on listeners’ predictions about the speaker and the 

vowel category based on their long-term experience with American English. Drawing on the 

discussions across the corpus analyses in Chapters 4-5, these explanations can be linked to 

listener expectations with regard to the specificity of cross-talker vocalic variation, including 

typological expectations and relationships among vowel categories. These explanations don’t 

negate dialect as a driving mechanism for perceptual learning, but rather provide a more nuanced 

perspective of the specificity and additional constraints that may be entailed in listener 

expectations about dialect variation. However, they do challenge the more holistic model of 

‘dialect-informative’ categories and their status in perceptual learning. The proposed alternative 

factors below are not necessarily mutually exclusive, and cannot be disentangled under the 

current results, but provide potential explanations to be pursued in future work. In the sections to 

follow, I will discuss each of these hypotheses in more detail before turning to the generalization 

results and a broader conclusion.  

First, listeners’ experience with /eɪ/ globally may have led them to have a wider range of 

causal explanations for /eɪ/ variability beyond dialectal variation, resulting in hypotheses of equal 

or greater strength about the underlying source of the variation. Previous work has argued that 
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categories that are more widely variable are less perceptually malleable, and therefore 

demonstrate less category retuning in perceptual learning (Kataoka & Koo, 2017, Stevens et al., 

2007). However, such an explanation doesn’t explain why more variable categories are less 

prone to retuning; causal ambiguity may be one reason. In relation to the results, listeners’ prior 

experience with /eɪ/ variability may have several known causes, in contrast to /ʊ/ where 

variability, and its likely causes, are more constrained. That is, /eɪ/ is maximally causally 

ambiguous in the experiment, with listeners’ unsure of whether the variation is characteristic of 

the talker or incidental. Without direct evidence that the novel pattern was caused by dialect 

variation, listeners remained uncertain about this potential source and all other non-talker-

specific causes. In other words, it was not a matter of whether they drew on previous experience, 

but a matter of which previous experiences they drew on as plausible explanations for the 

experienced perceptual events and how strong the evidence was for any singular inference. As a 

result, listeners reallocate credibility to the /ʊ/ hypothesis during categorization, reducing /eɪ/ 

responses at post-test.  

Having /eɪ/ be maximally ambiguous points to a potential increase in individual variation 

across the listeners and whether they perceived the shift as characteristic of the talker. As a brief 

illustration of this point, take for example the raw categorization data from two listeners in the 

/eɪ/-Biased condition illustrated in Figure 6.26. The listener on the left demonstrates alignment 

with the aggregate results of learning, with a reduction in /eɪ/ responses from pre-test to post-test. 

On the other hand, the listener on the right shows the predicted pattern from exposure, 

demonstrating more /eɪ/ responses from pre-test to post-test, and the ambiguous step (step 3) 

shows a greater magnitude of change. A hypothesis is that the listener on the left did not infer the 

percepts to be characteristic of the talker, demonstrating increased uncertainty at post-test. 

Contrastingly, the listener on the right appears to have inferred the pattern was characteristic of 

the talker, as indicated by the shift in responses near the category boundary in the direction of 

exposure. While these are just two examples, they illustrate the potential range of listener 

behavior with causally ambiguous percepts. There are additionally listeners who demonstrate 

minimal change in behavior or increased variability in responses from pre-test to post-test. In 

contrast, in the /ʊ/-Biased condition listeners generally demonstrate greater magnitude of shifts 

in learning and more consistently in the direction of exposure. That is, for participants in the /ʊ/-
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Biased condition, listeners appear to have more often inferred the pattern is characteristic of the 

talker.  

 

 

Figure 6.26 Example of participant categorization data from pre-test to post-test in the /eɪ/-Biased 

condition. The error bars represent the standard error for each participant. 

A plausible reason for the individual level variation is that listeners from different 

regional backgrounds may have variable long-term experiences with /eɪ/ varying across talkers 

(or varying in different ways). While the corpus data suggest that /eɪ/ varies across all dialects 

and is predicted by dialect area, there may be more specific expectations about variability within 

dialects. For example, because /eɪ/ tends to vary more across talkers in the South, generally 

varying in terms of centralization, we might hypothesize that listeners from the South learn the 

exposure pattern more readily in contrast to listeners from other regions. However, examining 

the raw data in Figure 6.27 illustrates that listeners in the South (N = 55) are similar to listeners 

across other regions (N = 146), demonstrating the same direction of effect with a reduction in /eɪ/ 

responses at post-test. That is, Southern and non-Southern participants demonstrate the same 

overall trend and absence of learning the exposure shift (albeit, with the South showing greater 

reduction of /eɪ/ responses). While listeners’ region is not balanced across the dataset, visual data 

exploration shows similar results across all regions. Thus, the reported regional background of 
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listeners alone does not appear to account for the individual variation or the aggregate results. 

Therefore, it’s unlikely the causal ambiguity is a function of listeners’ experience with dialect-

specific variability. At least for /eɪ/ in this experiment, the dialect-specific perspective (see 

Chapter 4) does not provide strong enough evidence to negate the more dialect-ambiguous 

hypothesis explored in this chapter.  

 

 

Figure 6.27 Southern listeners compared to non-Southern listeners categorization from pre-test to post-

test. Error bars represent standard error. 

A second possibility is that listeners made predictions about the vowel inventory of the 

talker based on her inferred dialect background but after exposure discarded dialect as a plausible 

cause because there was a mismatch of certain vowel pairs’ positions based on prior experience. 

Previous work offers some support for this hypothesis. For example, Brunellière and Soto-Faraco 
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(2013) demonstrate that listeners integrate a speaker’s accent during word recognition, showing 

neurological responses indicative of surprisal when processing a word that does not match the 

surrounding phonological information from the dialect. In the experiment of this chapter, it’s 

plausible that, despite careful consideration to limit the amount and type of other speech heard by 

the exposure talker, other vowels present during exposure (e.g., /æ/ and /a/) signaled expectations 

about both the identity of the talker and the production of the critical vowel (i.e., what an /eɪ/ 

from this talker should sound like). The novel shift of /eɪ/ may exhibit a mismatch with listener 

expectations of the talker’s dialect area. If listeners are maintaining multiple potential causes as 

hypotheses, and talker dialect is a highly probable cause a priori, the mismatch may have caused 

listeners to reallocate credibility to other potential causes after exposure to other vowels in the 

system. Thereafter, listeners were more uncertain about whether the pattern was characteristic of 

the talker and/or a group. Likewise, listeners may have reallocated credibility to /ʊ/ at post-test 

because prior knowledge about /ʊ/ provided stronger expectations regardless of other details of 

the vocalic system and/or because there was a greater expectation of /ʊ/ being less variable than 

/eɪ/, especially after exposure.  

While I attempted to control listeners’ exposure to other aspects of the speaker’s vocalic 

system, it was unavoidable that listeners received some exposure to additional vowels. The filler 

vowels /a/ and /æ/ may have incidentally provided listeners with information about the speaker’s 

dialect background and/or triggered expectations about /eɪ/ productions. As observed in the 

analyses presented in Chapters 4 and 5, as well as much prior sociolinguistic work, both /æ/ and 

/a/ are critical components of dialect variation across the U.S. While the distributions of /æ/ 

didn’t appear to be informative of dialects broadly in Chapter 4, it likely contributed to 

evaluation of the speaker’s social characteristics regardless. Moreover, /a/ did demonstrate 

dialect informativity, which likely provided some degree of indication of the talker’s dialect 

background. If listeners were to attribute the cause of variation to the speaker’s dialect a priori, 

the mismatch between expected and observed events may have prompted listeners to become 

uncertain about attributing the variation to the speaker’s identity. Felker et al. (2019) observed a 

similar pattern whereby Dutch listeners exposed to a novel shift of /ɛ/ towards /ɪ/ resulted in an 

increase in /ɪ/ responses at post-test, the opposite pattern expected from the exposure. They argue 

that the increase in /ɪ/ responses may have been a function of an initial perceptual bias towards /ɪ/ 
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and additional exposure to the talker’s voice during the exposure, consisting of an interactive 

game, which influenced how listeners mapped the talker’s vowel space. Listeners in the 

experiment here demonstrate a similar perceptual bias towards /ʊ/ at pre-test, aligning with the 

explanation given by Felker et al. (2019). Future work would benefit from understanding 

whether listeners have underlying knowledge about vocalic relationships and whether the 

presence of other categories in exposure may cause different listener behaviors. 

Finally, an alternative is that listeners made predictions about the directionality of 

variation for certain categories and the shift in exposure did not match their predictions resulting 

in ‘incomplete’ information to effectively infer causality. Namely, causal ambiguity may be 

heightened for listeners because the exposure shift (/eɪ/ to /ʊ/) occurs in a typologically 

unexpected direction. Babel et al. (2021) found an asymmetry in learning, where listeners are 

more likely to demonstrate a global relaxation of criteria for phone categorization when exposed 

to a typologically uncommon shift (voicing of /s/ → /z/) and a targeted adjustment when exposed 

to a typologically common shift (devoicing of /z/ → /s/). As discussed in Chapter 5, it is 

typologically uncommon for front vowels to back, but the complementary tendency of back 

vowels to front occurs systematically across vowel shifts in the U.S. Relatedly, there is a 

typological tendency for long vowels to raise rather than lower. While these typological patterns 

speak to historical processes of vowel shifts rather than purely acoustic variability, and it’s not 

uncommon for front vowels to centralize (e.g., /ɛ/ retraction), it’s plausible that listeners were 

unlikely to accept the degree of the shift in /eɪ/ as purely phonetic. Felker et al. (2019) argue that 

there’s an asymmetry in perception of vowels such that peripheral vowels serve as a perceptual 

anchor, leading listeners to bias towards the more centralized category during phoneme 

categorization, which was strengthened by the listener’s exposure to other vowels from the same 

speaker. As such, it’s further possible that in the present study, the combination of both the 

typological unexpectedness and exposure to parts of the speaker’s vowel system worked in 

parallel to cause listeners uncertainty and reduction in /eɪ/ responses. Overall, listeners may 

demonstrate a sensitivity to specific directions of shifts, either through expectations of 

typological regularities or through perceptual uncertainty driven by peripheral vowels becoming 

unreliable anchor points. In either case, listeners likely have no prior experience for the pattern 
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and ‘incomplete’ knowledge to infer a cause. In return, they reallocate credibility to /ʊ/ about 

which they now have more confidence.  

To summarize, the learning results challenge the initial hypothesis that dialect-

informative vowels would show evidence of learning in the exposure pattern. I have covered a 

range, albeit a non-exhaustive list, of potential explanations for the reduction in responses at 

post-test in the /eɪ/-Biased condition. These explanations challenge the dialect-informative 

hypothesis that assumes a relatively holistic view of vocalic variability. While we cannot fully 

disentangle potential explanations, it would suggest that there are other factors that influence 

how listeners adapt to atypical productions in dialectally conditioned contexts. These range from 

knowledge about the specificity of dialectally conditioned vocalic variability to a broader 

understanding of how within-category variability may lead to uncertainty during inference. 

Additionally, the results for the /ʊ/-Biased condition lend initial support for robust learning to 

occur for categories that generally show high talker-specific variability but minimal dialect 

variation. 

9.2 Generalization 

The hypothesis that cross-talker generalization is more robust (or less constrained) for 

vowels compared to consonants was not entirely supported by the experiment results. Typically, 

generalization has been demonstrated through an extension of the learned pattern from exposure. 

However, in this experiment, there is evidence of listeners generalizing their beliefs about the 

category following exposure, both in the form of a reduction in /eɪ/ the /eɪ/-Biased condition, and 

an increase in /ʊ/ in the /ʊ/-Biased condition. Additionally, the results are counter to hypotheses 

and previous research that show generalization to same-gender pairs but not different-gender 

pairs. There was no evidence that generalization was constrained to the dialect-informative 

category (/eɪ/) and talker-specific learning for the talker-informative category (/ʊ/). Additionally, 

these differences between vowel categories did not correlate with asymmetries in whether 

generalization occurred in a same or different-gender pair.  

These results are surprising given previous work suggests a link between talkers’ acoustic 

similarity and the degree of generalization (Kleinschmidt, 2019; Kraljic & Samuel, 2006). 

Similarly, the results are unexpected given past work on cross-talker generalization is 
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demonstrated via extension of the learned pattern of exposure. I will argue, the generalization 

results in this experiment may be attributed to the perceptual similarity of the talkers’ vocalic 

range of the stimuli, rather than the acoustic similarity. Such an argument is in-line with Reinisch 

and Holt (2014) who observe a similar pattern in perceptual learning and generalization of /s/. In 

their study, they altered the degree of match between the perceptual range of the continua from 

exposure to generalization talkers and observed that generalization occurred when the stimuli 

were sampled from similar perceptual ranges, but listeners did not generalize if the perceptual 

range was dissimilar. They also note that the perceptual range may not be the same as the 

acoustic similarity of the segments.  

A similar explanation may elucidate the generalization results of this experiment. As 

illustrated in Figure 6.5, the acoustic similarity of the segments is greater for the two female 

talkers’ continua (the exposure talker T1_F and generalization talker T2_F), which are similar in 

overall position in acoustic space and range (from step 1 to step 7). Contrastingly, the male 

talker’s (T3_M) continua occupy a different acoustic position (overall much lower in F1 

compared to T1_F and T2_F) and range (greater variability in F2 and minimal variability in F1 

compared to T1_F). These patterns would suggest that if listeners relied on acoustic similarity 

alone, generalization should have been blocked for the male talker but not the female talker. Yet, 

the opposite pattern occurs. Looking at listeners’ categorization behavior across the three talkers 

in the norming task (Figure 6.4) suggests that, despite acoustic similarity, the categorization 

functions for T1_F and T2_F are different, where T2_F demonstrates a shallower slope of 

categorization compared to T1_F. Similarly, T3_M shows similar categorization slope to the 

female talker despite different acoustic make-up. The difference in the slopes of categorization 

suggest that while acoustically the two female talkers are more similar, the perceptual range of 

their continua are different, with T2_F showing less categorical behavior from listeners 

compared to T1_F and T3_M. Thus, the generalization results suggest that perceptual similarity 

is a stronger factor in predicting cross-talker generalization for these stimuli than acoustic 

similarity alone. 

In terms of the hypothesized socio-indexical features, it appears that the dichotomy 

between talker-informative and dialect-informative does not predict listeners generalization 

behavior. Taking a broader perspective on generalization as listeners extending their beliefs 
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about a category following exposure, both categories show generalization according to the 

perceptual similarity of the generalization talkers’ continua. While the generalization results 

contest the original hypotheses, they do not conflict with an ideal adapter account. In fact, this 

may lend support to the fact that vowels may generally be conducive to greater cross-talker 

generalization. Similarly, the fact that perceptual similarity drives the generalization behavior is 

in line with accounts of the model, whereby listeners generalize to the similar (i.e., perceptually 

and/or acoustically similar), despite not aligning with the socio-indexical hypothesis. Lai (2021) 

suggests a general constraint where adaptation of the exposure talker involves the raw acoustic 

distributions, whereas cross-talker generalization involves resolving the acoustic values relative 

to the novel talker’s phonological space, involving a degree of abstraction. Future work is 

required to understand the relationship between perceptual and acoustic similarity.     

Finally, we can’t rule out the possibility that listeners are inferring an underlying dialectal 

cause, and indeed such a finding may support this hypothesis as speakers within a dialect area 

may have perceptual spaces that are more similar. The fact that T2_F is sufficiently dissimilar 

from T1_F may trigger blocking of generalization as listeners are unlikely to associate the 

pattern with the same underlying cause. Contrastingly, the increase in uncertainty in the /eɪ/ 

condition and the learned pattern in /ʊ/ is generalized to the male talker. However, there’s no 

strong disambiguating evidence that listeners extended the vowel patterns based on the link to 

talker identity or long-term knowledge about different levels of socio-indexical structure. As 

such, it’s also possible that generalization may be a low-level perceptual process that does not 

entirely rely on top-down higher-order abstractions about links to social structure. Lai (2021) 

argues that socio-indexical factors may provide gradient constraints on learning and 

generalization rather than categorical influence on behavior (e.g., blocking). Future work may 

benefit from integrating explicit talker information as an additional mechanism in understanding 

the role of socio-indexical factors in perceptual learning and generalization (see e.g., Lai 2021). 

10 Conclusion 

The learning and generalization results taken together highlight some potential challenges 

for perceptual learning and generalization and socio-indexical structure in ideal adapter models. 

Overall, the results do not demonstrate the hypothesized patterns of learning and generalization 
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predicted by the asymmetrical links to socio-indexical factors. Listeners demonstrated learning 

and generalization of the talker-informative category, suggesting the underlying cause of the 

variability was more likely to be inferred as characteristic of the talker. On the other hand, 

listeners show an increase in bias towards the opposing category in the dialect-informative 

condition (absence of learning) but show a generalization of this bias to a perceptually similar 

talker. This finding is puzzling but may speak to the fact that generalization is a low-level 

process that may not entirely rely on top-down inferences (e.g., Lai 2021), or that vowels overall 

may generally be conducive cross-talker generalization. The resultant behavior at post-test across 

the two conditions may largely suggest that these two vowels result in asymmetrical perceptual 

learning behavior, but it is currently unclear what is driving the asymmetry. It does not appear 

that a priori beliefs about /eɪ/ being dialectally conditioned are operating here, and if they are it 

may be that listeners continue to maintain incidental causes of variation equally. Alternatively, 

other a priori beliefs about the speaker’s dialect background or the direction of variation may 

reduce listeners beliefs about whether the pattern is dialectal or even characteristic of the 

speaker. Future work should aim to disentangle competing causal models about variability 

among different vowel contrasts, the directions of shifts, and how relationships among vowels 

influence perceptual learning. 
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CHAPTER 7: DISCUSSION & CONCLUSION 

1 Introduction 

This dissertation examined how vocalic variation is structured within and across talkers 

and how the systematicity of socially conditioned variation influences listeners’ perceptual 

learning behavior. The background in Chapter 2 provided the foundation of this work and 

described the complexity of socio-indexical structure, calling for work in speech processing to 

integrate sociophonetic and sociolinguistic insights into theoretical and computational models of 

perceptual learning. Therein I outlined several open questions about the theoretical assumptions 

of socio-indexical structure, stressing the importance of describing dialect areas in more nuanced 

ways. I highlighted Bayesian models of speech processing which have recently attempted to 

integrate socio-indexical structure and its function in perceptual processes. Such models make 

several simplifying assumptions about the nature of socio-indexical structure, including a 

supposition of a relatively homogenous group depiction, a theoretical question that has been of 

debate in sociolinguistics. In light of this foundation, I outlined a taxonomy for variability 

influenced by Guy (1980) that challenges this notion and describes different ways variability 

may be conditioned by individual and group behavior and their correlation. Given these larger 

theoretical goals, I will review some of the major findings of this dissertation (Section 2) and 

then revisit some of the major theoretical implications in light of them (Section 3). 

2 Major Findings 

Building from this foundation, the first part of this dissertation (Chapters 4-5) examined 

different analytic scopes of the relationship between dialect areas and individual talkers and prior 

experience using corpus phonetic approaches. These corpus analytic chapters are meant to probe 

the complexity of socio-indexical structure and demonstrate how such approaches can inform 

theoretical and computational models by providing diverse naturalistic data from which to 

generate testable hypotheses. Chapter 4 extended the ideal adapter model outlined by 

Kleinschmidt (2019) by simulating different baseline exposures to validate whether the model 

holds up to more linguistically and socially diverse data. Additionally, this chapter demonstrated 
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that vowel categories may be asymmetrical in social conditioning, where some categories’ 

distributions are conditioned by dialect areas (categorized as dialect-informative vowels) while 

others are conditioned by individual talkers and not dialects (talker-informative). Likewise, the 

chapter directly evaluated whether talkers’ distributional patterns align with their dialect areas 

and demonstrated that for dialect-informative categories, individual talkers within those areas are 

more regularly patterned in contrast to talker-informative categories where dialect areas do not 

account for individual distributional patterns. These results provide initial evidence that 

dialectally conditioned variation results in greater regularity among talkers within a region 

compared to categories that are not robustly conditioned on dialect areas. It further highlights 

some of the challenges of defining the analytic levels of socio-indexical factors in theorizing how 

listeners attend to and evaluate socially conditioned variation. As discussed within the chapter, 

various analytic levels of socio-indexical factors provide mixed predictions with regard to how 

specific or generalized listeners a priori beliefs are about socially structured variation and their 

role in perceptual learning.  

Chapter 4 began to challenge the relatively holistic and generalized assumptions in ideal 

adapter models that all vowel categories have equal likelihood of being socially meaningful and 

provide listeners with the requisite a priori knowledge to aid in disambiguating sound categories. 

However, it still assumes that socio-indexical structure operates on an individual category basis 

in multivariate space, presupposing within category variability of specific cues or relationships 

among categories is less relevant. Following from this more generalized perspective, Chapter 5 

moves towards more specificity in models of socio-indexical structure by drawing on more 

typical analytic methods of sociophonetics that account for internal structure in the conditioning 

of social variation. I focused specifically on two components of internal structure, the 

relationships among vowel categories, represented by acoustic overlap, and variability along 

specific cue dimensions.  

In terms of vocalic relationships, I posited the acoustic overlap of vowel pairs provides 

listeners with information about the relative boundaries of the category productions which may 

influence when and how listeners adapt to variation. As one example, I suggest that the acoustic 

overlap of vowel category pairs in the middle of the vowel space is (slightly) attenuated by 

considering talker or group identity as an additional dimension in a multivariate space. 
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Additionally, drawing from previous sociophonetic work, I suggest that some relationships 

provide stability in the vowel space across talkers. These two facets may provide greater 

flexibility or constrain listeners’ adaptation to variation and influence perceptual categorization. 

For example, categories where overlap is greatest may result in fuzzy boundaries for listeners 

making them more malleable for adaption to novel variation. On the other hand, categories with 

less overlap may demonstrate less flexibility in adaptation and may have sharper category 

boundaries.  

In addition, Chapter 5 demonstrated common patterns of within and across talker 

variation of specific cue dimensions, such as back vowels demonstrating greater variability along 

F2 than F1. Relatedly the results also demonstrate that for some categories (like /ɔ/) broad 

variability is both the result of systematic differences across talkers, within and across regions, 

and token variability within talkers. While, on the other hand, some categories demonstrate 

systematic differences between dialects but high regularity of talkers within regions and 

regularity within talkers. Overall, the results and discussion in Chapters 4 and 5 provide initial 

empirical foundations for analytic approaches to socio-indexical structure and the a priori beliefs 

listeners may have about cross-talker variation, internal structure, and its limits. 

In the second part of this dissertation (Chapter 6), I provided an example of how large-

scale corpus analyses can inform hypothesis generation and testing in perceptual learning 

experiments. Drawing from the dialect-informative and talker-informative dichotomy outlined in 

Chapter 4, I selected two vowel categories to test in a lexically guided perceptual learning 

experiment (/eɪ/ and /ʊ/). I hypothesized that the dialect-specific category (/eɪ/) would promote 

learning and generalization to novel talkers in a novel shift from /eɪ/ → /ʊ/ (e.g., p[eɪ]stry → 

p[ʊ]stry). On the other hand, the talker-informative category (/ʊ/) would promote more talker-

specific learning and restricted (i.e., same gender pairs) or no generalization to novel talkers in a 

shift from /ʊ/ → /eɪ/ (e.g., b[ʊ]shes → b[eɪ]shes). These hypotheses were not supported by 

listener behaviors. Rather, listeners demonstrated a reduction in /eɪ/ responses at post-test for the 

exposure talker for the dialect-informative category, which I interpreted as an increase in 

uncertainty in the category. Correspondingly, listeners generalized this uncertainty to the novel 

male talker but not the female talker. In the /ʊ/ condition, listeners demonstrated learning of the 

exposure talker’s shift and, likewise, generalization to the male talker but not the female talker. 
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These results suggest that listeners’ inferences may not necessarily drawn from a 

dichotomy between dialect-informative and talker-informative as originally hypothesized. 

Rather, listeners appear to demonstrate rather complex behavior with generalization that is 

potentially constrained by perceptual similarity of the talkers and/or stimuli (i.e., perceptual 

range). The findings of /ʊ/ bring to light that even if a particular category demonstrates greater 

conditioning on talkers, it does not prevent listeners from generalizing the behavior to other 

talkers. In other words, while /ʊ/ demonstrates a high degree of talker-specificity in the corpus 

data, it did not prevent listeners from generalizing the pattern. This finding adds to the growing 

body of literature that suggests generalization is greater for vowels in general (Kleinschmidt, 

2019; Maye et al., 2008; Weatherholtz, 2016), but the asymmetry of effects for these vowels 

warrants additional research to fully understand the accuracy of such a claim. Additionally, 

learning may be constrained by other factors including category structure, typological 

expectations of directionality for vowel shifting (/eɪ/ unlikely to shift towards /ʊ/), or inferences 

about dialect expectations from surrounding vowel sounds—or some combination of these 

factors. Descriptions such as ones in Chapter 5 may speak to the experimental results, but future 

work is necessary to understand the interplay between socio-indexical levels, internal structure, 

and perceptual learning. 

In the following section I will revisit these findings and more specific details as necessary 

to discuss the theoretical implications of this work. I will begin with a discussion around the 

nature of socio-indexical structure, focusing on the intersection of within and between-talker 

variability across dialect areas, and implications for (socio-)phonetics and studies of structured 

variation. Following this I will consider the implications for listener knowledge and inferential 

models of perceptual learning. Next, I will revisit some of the major open questions that remain, 

or arise from, the work in this dissertation and consider the methodological insights and 

challenges of cross-discipline research, and finally conclude. 
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3 Theoretical Implications  

3.1 Characterization of Socio-Indexical Structure: Individuals and Groups 

By examining the distributional properties of vowels, this dissertation advances our 

understanding of vocalic variation across regional dialects and makes contributions to 

sociophonetic theories with regard to the nature of individuals within their broader dialect areas. 

Importantly, I have illustrated that individuals’ distributional properties largely mirror their 

dialect areas, particularly when dialects are predictive of cue distributions across American 

English (Chapter 4-5). Such a finding provides additional support for theories in sociophonetics 

that suggest talkers reproduce their dialect areas’ patterns despite a wide range of talker variation 

within dialects (see e.g., Guy, 1980; Oushiro, 2016). The data further validate recent 

observations of structured variation in phonetics, whereby dialect areas may be differentiated by 

their central tendency for a given cue to contrast mapping, but individuals within those areas are 

regularly patterned along the same lines (Sonderegger et al., 2020). However, it has also 

highlighted that socio-indexically structured variation may promote different distributional 

shapes and structure to variability. In light of these patterns, I will revisit the Taxonomy of 

Variability detailed in Chapter 2 (and again in Table 7.1 below) with these findings in mind, 

followed by a discussion of implications for sociophonetics. 

Across analyses in Chapters 4-5, several patterns emerged that fall within each of the 

types of variability listed in the taxonomy (Table 7.1 below). Type 1 may best characterize /u/ 

for these data, where there is a broad range of variability at the broader population level (i.e., 

American English), and it seems to, by and large, remain at the dialect and talker levels. While 

there is evidence that /u/ varies by dialect area, it largely shows the same pattern of token level 

variability from talkers to dialect areas which may be indicative of segmental context-induced 

variation (i.e., fronting before coronals). Type 2a appears to largely describe /eɪ/, where means 

distinguish dialect areas and talkers within dialect areas are highly regular, and the spread of the 

distributions is relatively similar across all socio-indexical levels. Type 3 may be best captured 

by /ʊ/, where variability is not conditioned by dialect areas and individuals appear to be more 

idiosyncratic in their productions (talker-specific). Finally, Type 4 may best describe /ɔ/ 
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variation, where dialect groups condition variability but there appears to be systematic 

differences across talkers within regions and pervasive token variability within talkers.  

Table 7.1 Taxonomy of variability, adapted from Guy’s (1980) taxonomy of variation. 

Individuals 

Groups 

Similar Different 

Similar 
1. uniform force; same 

mean and same variance 

2a. Different means; same 

variance OR 2b. different 

means and different 

variance (Social or 

geographic dialects) 

Different 

3. Individuals with 

different means and/or 

low dispersion 

(Individually stratified 

linguistic variation) 

 

 

4. Combinations of 2 and 

3, or true free variation 

 

These fine-grained phonetic patterns provide general insights into expectations for what 

types of variation may be mirrored from the community to the individual. While it’s unclear 

what the different sources are that lead to this variability, the starting point may be important for 

understanding the range of variability that exists within a community, and determining how they 

relate to descriptions of community patterns. Additionally, understanding these different types 

may inform whether individual variation aligns with community variation along the same axes; 

that is, the extent to which within-talker variation mirrors patterns of social stratification. For 

example, Bell (1984: 151) posits a style (i.e., formality) axiom that “variation on the style 

dimension within the speech of a single speaker derives from and echoes the variation which 

exists between speakers on the ‘social’ dimension”. By looking at distributional properties across 

and within talkers, researchers may elucidate whether such an axiom holds, and the related role 

of linguistic factors in relation to social dimensions (see e.g., Preston, 1991). However, much of 

the data in this dissertation do not encompass the type of individual variation that would provide 

the most insight, thus leaving open questions in this regard. Other more typical sociophonetic 

studies of individual variation are apt to shed light on the more socially sensitive and fine-
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grained indexical variation across the distributional space (see e.g., Podesva, 2011; Van 

Hofwegen, 2017).  

Beyond sociolinguistics, work examining variability in speech has attempted to 

categorize different sources and types of variation for some time. Recent work examining 

structured variation in phonetics has described a continuum of individual and community norms, 

where on one end talkers may be maximally agentive and on the other end maximally reflective 

of their communities (Chodroff & Wilson, 2017). The work in this dissertation demonstrates that 

there are a range of potential points along that continuum and, where a given contrast, talker, and 

community falls along the continuum, may be a function of the unit (e.g., means, distributions, 

etc.) and scope (e.g., grouping structure), and time course examined (see also Tamminga & 

Wade, 2022).  

In addition to these points, the data in this dissertation suggest that it may vary depending 

on the source and type of variability. Elman and McClelland (1984, 1986), for example, describe 

“lawful” sources of variation, those that arise from regularly governed phonological or segmental 

context, in contrast to variability that is less discrete or more “random” including that of cross-

talker and token-level variability. Comparably, Cohn and Renwick (2021) argue that the 

phonology-phonetics relationship can be summarized under contrasting dimensions of variability 

divided into ‘systematic’ and ‘sporadic’ and dimensions of gradience from ‘gradient’ to 

‘categorical’, of which the socio-indexical level of analysis (i.e., social group or talker) intersect 

through this space. Early work in sociolinguistics can be summarized as describing systematic 

categorical variation, in that impressionistic coding was predominate methodological measure of 

variation, and social factors were seen as an analogous extension of context in phonology. By 

examining the gradient and continuous acoustic distributions, we may be capturing systematic 

‘lawful’ variation (e.g., phonological context) or sporadic ‘unlawful’ variability which may be 

defined by other more microsocial organizations, idiosyncrasies, physiological differences, or 

statistical noise. Note, of course, these are not actually unlawful, but require different analytic 

lenses to uncover the full regularity, aside from true statistical noise. For example, the 

distributional make-up of /ɔ/ illustrates the broader population variability reflects both systematic 

differences between talkers (e.g., differences in means across regions) as well as variability 

within talkers. Whether such patterns may be the result of the “lawful” variation or sporadic 
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token variability still remains an open question (see Quam & Creel, 2021 for similar discussion 

in child language acquisition). Additionally, in the case of /ɔ/, it’s unclear from these data 

whether ongoing merger influences the token variability within speakers as a function of, for 

example, lexical variation (see e.g., Warren & Hay, 2006). Nonetheless, this dissertation 

illustrates the benefits of drawing on large corpora as it allows for the identification of phonetic 

patterns without assumptions about the mapping of such variability a priori to further refine 

theories of socio-indexical variation. 

3.2 Listener Knowledge & Previous Experience 

There is mounting evidence across linguistics that listeners represent variability in speech 

and use it to guide speech processing. The work in this dissertation speaks to how variable 

experiences with American English may converge to reveal patterns of socially conditioned 

variability for a given category. In each of the simulations in Chapter 4, the findings revealed 

notable patterns that speak to potential listener representations of variability. In particular, 

looking across vowel categories, it demonstrated that informativity was highest for some 

regional varieties, like the South and North. This finding validates listener perceptions of the 

same regions as being highly salient across vowel categories. In addition, it highlighted several 

categories that distinguish dialect areas with respect to a broad description of American English, 

and from one another, as in the case of using the West as the reference distribution.  

The finding that informativity was not evident at the most salient categories associated 

with vowel shifts or socio-indexical style poses interesting questions into how talker regularity 

may provide bottom-up information about social groups. This finding speaks to previous work in 

sociophonetic perception studies, where listeners are able to categorize and evaluate talkers even 

when salient cues are absent (Clopper & Pisoni, 2004a-c, 2007; Gunter et al., 2020). The 

distributional patterns outlined in Chapter 4 and Chapter 5 illustrate that some categories’ cue 

distributions may be more readily partitioned in acoustic space when conditioned on dialect areas 

by being marked with a high degree of regularity of talkers within groups (e.g., /eɪ/). However, 

the data illustrated this may not necessarily be reflective of categories that have been 

demonstrated in previous research to be highly identifiable across regional dialects (e.g., /æ/). 

While there may be several reasons for this, one potential explanation is that some categories 
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distinguish dialects from one another (i.e., /æ/ in the NCS vs. /æ/ in LMBS) but may be unlikely 

to be highly distinctive when examined in the aggregate of American English more broadly 

across a flat distribution of tokens. 

Indeed, Chapter 4 demonstrated that when using the West as the reference group, 

categories like /æ/ and /a/ emerge as more strongly conditioned by dialect compared to the 

aggregate American English simulation. Some categories are best represented in terms of 

differences between individual dialects rather than being divergent from an aggregate form of 

American English. This is both a methodological and theoretical interest, as computational 

models evaluating listener perspectives may wish to consider theoretical underpinnings to these 

different reference points. Such findings may be integrated with existing theories of cognition to 

interrogate how much or what kind of exposure may be necessary for encoding and representing 

such variability (see Docherty & Foulkes, 2014 for additional discussion). This finding warrants 

continuing work examining the relative weight that listener’s give to their own dialect 

backgrounds versus the generalized knowledge they have about (American) English more 

broadly and under what constraints and perceptual tasks listeners draw on these different 

experiences. 

3.3 Listener Inferences & Perceptual Learning 

A key contribution of this dissertation is examining the relationship between what talkers 

do in production to what listeners potentially infer and do in perception, focusing specifically on 

perceptually learning. Previous work has posited that listeners act as ideal observers by learning 

the parameters of cue distributions across talkers to infer the likely cause of perceptual 

experiences. This dissertation tested one facet of ideal adapter models by asking whether 

listeners’ perceptual learning behavior can be predicted by the regularity of a contrast being 

conditioned on group and individual identity. The experiment in Chapter 6 provides some initial 

evidence of belief updating models, albeit in less straightforward ways than initially 

hypothesized.  
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3.3.1 Learning  

The learning behavior exhibited by participants across the two categories may have 

demonstrated different belief updating, where the /ʊ/-Biased condition demonstrates the learned 

pattern and /eɪ/-Biased condition demonstrates a narrowing of the category. There are several 

hypothesized reasons why this occurred, as outlined in Chapter 6. Listener behavior may 

nonetheless point to the integration of the short-term distributions with long-term previous 

experience and updated beliefs about category structure. I hypothesized in Chapter 6 that 

listeners’ updated beliefs were reflected in greater uncertainty during post-test categorization and 

reallocating credibility to the /ʊ/ category. Correspondingly, post-test results show greater 

magnitude of a shift in the /ʊ/ condition, providing credibility to the fact that listeners adapted to 

the exposure shift for this category. I suggest that /ʊ/ may have been more readily inferred as 

characteristic of the talker given its narrower range of variability and regularity within a given 

talker compared to /eɪ/.  

In terms of broader theoretical implications, the results of this experiment challenge 

current descriptions of Bayesian inference relative to socio-indexical structure. While the 

indicated levels of socio-indexical structure did not appear to be the primary determinants of 

listener behavior, it does not rule out that they were still involved. As discussed in Chapter 6, 

there may be other factors of prior experience that listeners track and make use of in socio-

indexical inferences for perceptual learning. In addition, a challenge I have not addressed thus far 

arises from that task itself and the multi-dimensional nature of vocalic variability. Previous work 

has primarily examined consonants in perceptual learning, whereby the manipulations of 

individual cues may prove to be a simpler task for listeners to accomplish. On the other hand, 

vowels are fluid and dynamic and may demonstrate a wider range of variability in everyday 

speech. 

As a result, listeners may respond to such variability in perceptual learning tasks 

differently than consonant variability. For example, listeners may respond to increasing 

variability and uncertainty with biased heuristics that are more likely to minimize prediction 

error in future contexts. For the case of /eɪ/, this may appear as a narrowing of the category 

structure. Given that listeners may experience variability more often for vowels across talkers 

and contexts, listeners may employ heuristics to avoid increasing an already variable category 
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without sufficient evidence. In other terms, listeners may avoid over-fitting to the new 

experience and opt to bias towards underfitting to the experienced short-term distributions that 

are outside of the range of previous experience to avoid errors in the future. Such a mechanism 

may also explain, in part, the generalization of such uncertainty to the perceptually similar talker, 

as listeners may opt for the same bias without additional evidence. Overall, future work should 

aim to understand how listeners may employ different strategies especially when faced with 

complex inferential tasks and multi-dimensional contrasts like vowels (see e.g., Tahra et al., 

2022 for a recent discussion in visual perception). 

3.3.2 Generalization 

The generalization behavior of listeners across the two categories further supports the fact 

that listeners more globally updated their beliefs in response to the exposure. Listeners in the /eɪ/ 

conditioned did not restrict their beliefs to the exposure talker, but rather extended it to a 

perceptually similar novel talker. Similarly, listeners extended the learned shift of /ʊ/ to the same 

perceptually similar talker. This pattern broadly refutes the claim that spectral information alone 

is enough to block generalization (Kraljic & Samuel, 2006) and that vowels should demonstrate 

same-gender generalization patterns as a function of acoustic similarity or higher order socio-

indexical structure alone (Kleinschmidt, 2019). Rather, this finding provides evidence that 

generalization may be a function of perceptual similarity and may encompass a generalization of 

beliefs more broadly rather than the direction of exposure. 

This finding complicates our understanding of generalization in perceptual learning and 

warrants additional research to understand the interplay between acoustic similarity and 

perceptual similarity. This aligns with Reinisch and Holt (2014) who demonstrated that 

manipulating the perceptual similarity of the generalization talkers’ test continua to span a 

similar perceptual range is predictive of generalization behavior regardless of the gender of the 

talker. Making it less about the perceptual similarity of the voices and more about the similarity 

of generalization stimuli to exposure items. Recent work by Lai (2021) calls attention to this 

issue and describes an acoustics-phonology mismatch constraint. Lai (2021) suggests that the 

adaptation to a talker involves learning the raw acoustic distributions of the category, while the 

generalization of perceptual learning involves evaluating the relative differences between the 
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targets of different talkers in phonological space. Rather than the acoustic values overlapping 

between the target segments of the exposure and generalization talkers, listeners are likely to 

generalize when the perceptual targets of the phonological space are similar. Such a mechanism 

may be at work in the experiment in Chapter 6 where the acoustics are more aligned for the 

novel female talker, but the perceptual phonological space is not. Future work should aim to 

understand how perceptual similarity and acoustic similarity differ, and whether such a 

distinction does in fact constrain generalization.  

These findings however do not directly refute the possibility that listeners use higher-

order socio-indexical structure during inferential processing. It is possible that the perceptual 

similarity of the test items was enough to induce perceptual learning or there are some low-level 

constraints of acoustic or perceptual similarity for generalization to occur. In such cases, higher-

order socio-indexical structure might operate at a different time course for generalization or be 

mediated by other cognitive factors such as attention or visual information. Some work has 

argued that socio-indexical effects may emerge later in processing (McLennan & Luce, 2005). 

Relatedly, Theodore et al. (2015b) have demonstrated that effects of talker identity in speech 

processing are mediated by attention allocated to talker identity rather than the time course of 

processing or difficulty of the task. In a perceptual learning study, Lai (2021) suggests that talker 

identity provides gradient constraints on listeners’ generalization behavior as opposed to 

categorical blocking (or promotion) of generalization. Lai (2021) demonstrated some evidence 

that providing visual cues to talker identity attenuates the degree of generalization of a shift in 

atypical stop productions from a novel talker but only weakly for sibilants. Future work should 

aim to disentangle how and when higher order socio-indexical knowledge comes to bear on 

listeners’ perceptual learning and generalization behavior adding to the broader debates of the 

role of socio-indexical factors in speech processing. 

3.4 What are Listeners Tracking? 

A comprehensive description of the nature of phonetically cued variation that is tracked 

by listeners still remains an open question. Socio-indexical structure is undoubtedly a 

multidimensional problem that various disciplines and scholars have wrestled with, ranging from 

a more social focused understanding (e.g., speech communities, social networks, etc.) to the 
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more fine-grained phonetic understanding (e.g., structured variation). The findings of this 

dissertation have highlighted how current conceptualizations of socio-indexical structure may 

lack perspectives of both the group structure (i.e., individuals vs. social groups) and the internal 

regularity of socially conditioned variation. The results of the experimental chapter are not easily 

explained given a model where talker and group specific input is operationalized as the raw cue 

distributions over a given cue to category mapping.  

As one example of the relationship between internal principles and external social 

factors, Chapter 5 probed how certain vowel pairs may provide stability or instability across 

talkers. In particular, some vowel pairs maintain the same degree of acoustic separation across 

talkers and dialect areas (i.e., /a/-/æ/), while other category pairs demonstrate attenuation of 

acoustic overlap when considering socio-indexical factors. As such, it’s apparent that the 

relationships between vowel categories are shaped both by social factors and internal principles 

of variation within the vowel space. I emphasize the quantitative analysis of socio-indexical 

variability therein is not meant to stand as a proxy for a cognitive representation, but rather 

provides descriptive statistics for distributional patterns across socio-indexical levels and vowel 

pairs. As such, the patterns observed prompt interesting questions about the degree of specificity 

that may constrain listeners’ perceptual learning and generalization behavior. Future work should 

aim to validate the descriptions therein and further elucidate to what extent perceptual beliefs are 

updated by tracking the cue distribution of the single category or the relative locations and 

boundaries to other category instances.  

Relatedly, it’s unclear to what extent listeners rely on the internal category structure when 

tracking cross-talker variation. As an example, the wider range of variability in /ɔ/ was 

demonstrated across and within talkers. When learning talker-specific systems, do listeners 

behave differently for categories where the within-talker variability is on par with cross-talker 

variability? Current work examining category dispersion would suggest not and that listeners 

may be more likely to demonstrate uncertainty in learning (Clayards et al., 2008). These different 

axes of internal category structure alongside socio-indexical factors should be the aim of future 

work to continue to refine. 

This dissertation suggests that current inferential models may not adequately capture the 

relevant level of socio-indexical structure that is used for speech adaptation and generalization 
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behavior. The results of the experiment (Chapter 6) for example suggest that listeners may not be 

sensitive to the broad distinction of dialect-informative and talker-informative, at least with 

regard to the vowel categories in the experiment. The results provide weak evidence that 

listeners are likely to generalize updated beliefs about categories to perceptually similar talkers. 

However, it’s unclear whether prior experience or inferential processes inform listeners’ 

behavior or whether socio-indexical structure can adequately account for the generalization 

patterns. As outlined in Chapter 6, it’s plausible that listeners’ behavior was driven by more fine-

grained knowledge of socio-indexical structure among vocalic relationships or typological 

tendencies of variation. Though, it’s possible that the hypothesized socio-indexical level is 

incorrect or incomplete and is not the dominate influence in perceptual learning and 

generalization behavior. Given the experimental results and the corpus analyses in Chapters 4-5, 

it remains an open question what the relative weighting is of individual norms against the 

community or group norms. Additionally, the dichotomy between individuals and dialects may 

not be representative of competing socio-indexical sources at all times, as individual talkers’ 

variable tendencies may be reflective of socially meaningful variation within the community at 

large. Future work should aim to explicate when listeners are likely to draw on various levels of 

socio-indexical structure and whether the researcher-imposed analytic levels align with listeners’ 

beliefs about socially conditioned variation. 

At the intersection of these discussions is a question about whether socio-indexical 

structure may inform different types of adaptation behavior. One potential factor may be the 

nature of (atypical) productions listeners are exposed to. Theodore et al. (2015) suggests that the 

ways in which listeners adjust speech representations to individual talkers may depend on the 

nature of the target productions. Specifically, Theodore et al. (2015) demonstrate that listeners 

reorganize the perceptual space of the category itself while keeping the boundaries between 

categories intact when exposed to unambiguous productions. Alternatively, ambiguous 

productions may be more likely to induce category boundary shifts as a function of necessity in 

resolving the ambiguity. It remains unclear whether such ambiguous productions equally 

promote reorganization of the internal category structure or whether it is in fact restricted to the 

boundary. Theodore et al. (2015) suggest that unambiguous productions are more aligned with 

variation induced by talker identity such as dialect or accent, while ambiguous items may be 
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indicative of idiosyncratic productions. Such a pattern speaks to the results in Chapter 6, as 

ambiguous categories may be more challenging among vowel categories where productions are 

more fluid and dynamic compared to consonants, yielding fuzzier boundaries. One potential 

avenue to examine this question is to examine listeners’ shift in internal category structure which 

may aid in evaluating whether listeners identify tokens as better/worse exemplars after exposure 

to talkers with atypical productions. 

A final point to consider is whether the operationalization of socio-indexical structure 

over the raw cue distributions is most reflective of listeners’ knowledge. It remains an open 

question whether listeners generalize cross-talker expectations on the basis of raw cue 

distributions or whether their experiences and knowledge are more fine-grained and contextually 

bound. This dissertation did not address the intricacies of contextually driven variation, either in 

terms of socially contextualized or internal phonological context. Recent work has discussed 

these intersections, with some arguing that talker-specific learning is reflective of individual 

speech patterns that are not (phonologically) contextually bound (Kraljic et al., 2008; 

Kleinschmidt, 2019), while others demonstrating within-talker variation is also learned (Idemaru 

& Vaughn, 2020). On the other hand, learning the social context-induced variation has been 

suggested to operate under Bayesian mechanisms provided the contexts are sufficiently 

informative of cue distributions (Kleinschmidt, 2019). Thus, it’s unclear when and if listeners 

track more fine-grained internal linguistic context alongside social factors in conditioning 

variation. This brings me to my next broader input, the challenges of crossing disciplines and the 

assumptions therein. 

3.5 Crossing Disciplines: Methodological & Practical Implications 

The above discussion broadly speaks to some of the theoretical challenges of bridging 

sociophonetics and psycholinguistic frameworks. The core assumptions of the fields may lead to 

challenges in integrating insights to and from either domain. By applying generalizations of 

dialect variation into speech processing frameworks we may miss valuable facets of socially 

conditioned variation (e.g., internal conditioning). These challenges may largely stem from the 

differences in the interests between more phonetic approaches which tend to focus on the 

cognitive and physiological factors of speech, and sociolinguistic approaches which focus on the 
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social and phonological factors in speech. Of course, as sociophonetics continues to grow, so do 

the theoretical goals, making these points necessary to address.  

Crossing disciplines still poses challenges despite the sharing of theoretical goals and 

methodological advancements. As described in Chapter 2, much sociolinguistic work defines the 

unit of analysis as the central tendency (e.g., mean) of a particular category or categories and 

given the internal conditioning factors. The focus on variation may largely identify abstract 

patterns of variation across a speech community or social group (see e.g., Eckert & Labov, 2017) 

and relatively categorical forms induced by social and linguistic context. While on the other 

hand, recent work in speech processing has examined variability as broadly stochastic 

fluctuations of the acoustic signal, which may encompass a broader range of sources and less 

discrete partitioning of the problem space. To some extent such differences functionally separate 

pursuits in the respective fields to examine different analytic scopes, with speech processing 

approaches at the individual level and sociophonetic approaches at the group level, although, this 

is increasingly changing (see e.g., Sonderegger et al., 2020, Tanner et al., 2020). Divergence in 

the unit of analysis between the fields prompts questions about how researchers apply 

understanding of dialect variation from sociophonetic studies largely focusing on group-means to 

theoretical and computational models that encompass the entire distributional space.  

This dissertation speaks to this gap by intersecting methodological aspects of 

sociophonetics and speech processing given the same unit of analysis (distributional properties of 

vowels) and under different analytic scopes (individuals and groups). This work has highlighted 

some broader questions about how dialect areas are distinguished from one another (e.g., is it in 

central tendency alone?) and whether individual talkers can be seen to mirror community 

patterns if given enough data (see also Cohn & Renwick, 2021; Tamminga & Wade, 2022). 

While the emphasis here was speech processing, such perspectives afford insight into a wide 

range of interests in sociophonetics. For example, examining distributions across individuals and 

groups would offer insights into theorizing whether sound change is gradient or categorical (see 

e.g., Fruehwald, 2013, 2017 for such discussion). Given the continuing development of large-

scale speech datasets, such an examination is becoming more feasible. As such, future work in 

sociophonetics may benefit from looking at distributional properties more closely and integrating 

these insights into current theoretical frameworks. 
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Theories of speech processing may equally benefit from probing the assumptions and 

deviations in methods that draw on insights from sociophonetic work. As I have highlighted 

above, one particular area that sociophonetics often highlights may be to consider how and when 

internal constraints intersect with socio-indexical factors to guide perceptual learning. And, as I 

have demonstrated in Chapters 4-5, methods calling on more hierarchical organizations of social 

groups may further develop theoretic perspectives of socio-indexicality in speech processing. 

Finally, examining more naturalistic speech and (socio-)linguistically diverse datasets may 

provide additional insight into the range of variability from which listeners learn. Overall, both 

fields benefit from the integration of both methodological and theoretical perspectives to 

generate and test hypotheses about the nature of socio-indexical structure in both production and 

perception. 

As I have attempted to bridge some of these gaps, it has become clear there are several 

methodological challenges to integrating vowels in perceptual learning frameworks. As may 

have become apparent in the different components of this dissertation, examining vowels at the 

intersection of production and perceptual learning posed several obstacles that highlight both 

their value and their complications. These obstacles are most evident in the lexically guided 

perceptual learning experiment. Vowel categories provide a great deal of complexity to 

experimental design in these paradigms due to the multivariate cues, the fluidity of category 

boundaries, and the prevalence of vowels in the phonological inventory and composition of 

lexical items. While previous studies that have examined stops or fricatives are able to control 

the presence and absence of additional input from similar contrasts (e.g., /s/ and /∫/), it’s 

impossible to avoid the presence of additional vowel categories during exposure. Relatedly, the 

multivariate nature of vocalic cues makes it increasingly challenging to identify a single 

dimension upon which listeners base their perceptual retuning and for the creation of stimuli. As 

a result, these facets add additional confounds to the experiment that prove difficult to overcome. 

While I attempted to mitigate these methodological issues, there is no perfect solution. These 

points alone have elucidated why vowel categories may be under studied in lexically guided 

perceptual learning. However, these same complexities demonstrate why vowels add a great deal 

of value and insight into the limitations of current models and methods in perceptual learning 

and are necessary to study. 
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Relatedly, using corpora to investigate the multidimensional space of socio-indexical 

structure provides several challenges. With large corpora, researchers are afforded the ability to 

look across speakers and gain insights into a variety of phenomena simultaneously and validate 

phonetic patterns across a diverse range of speakers. However, corpora still have limitations, in 

part stemming from collection methods, such as limited and variable metadata about the 

speakers. Most critically, corpora are typically curated on the basis of eliciting natural speech, 

which is unbalanced in the representation of the phenomena researchers may wish to examine. 

This poses an issue as researchers attempt to narrow data to specific contexts or balance tokens 

by talkers, from which large datasets become increasingly small. These challenges continue to 

call for a multi-method and iterative process to generate and test hypotheses, drawing on corpora, 

laboratory speech, and perception experiments to gain a more holistic understanding of speech 

production and speech processing. Thus, while there are inherent hurdles to overcome in 

interdisciplinary research, it adds great value to linguistic theory to do so. 

4 Conclusion 

This dissertation advances empirical foundations to socio-indexical structure as it pertains to 

speech processing by exploring the relationship between variability in speech production and 

perceptual learning. By examining a large-scale, diverse dataset of American English, this 

dissertation simulates a broader range of experiences with talkers affording critical data for the 

generation of testable hypotheses for listener behavior. The analyses therein speak to 

longstanding debates within sociolinguistics about the systematic aspects of group and individual 

behavior and the status of individuals with regard to community norms. Informed by these 

analyses, the inclusion of a perceptual learning experiment of vowels provided valuable 

theoretical insights for the interplay between socio-indexical structure in production and 

perception. The results of this dissertation highlight the complexity and challenges associated 

with the perceptual learning of vowels. Overall, this dissertation bridges the gap between current 

theories of speech processing and sociophonetic theories of socio-indexical structure to identify 

analytic and theoretic assumptions about the nature of socially conditioned phonetic variation. 
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APPENDIX A: EXPERIMENT STIMULI 

Non-Words: 

galast 

tanger 

lankwatt 

fanker 

kashful 

dathram 

faadas 

famel 

bandle 

catob 

fapten 

chalter 

caaptal 

saallege 

paancert 

laanscious 

faaper 

prackers 

dasser 

rances 

baacter 

fabtest 

gatten 

prasile 

lasket 

paadess 

paasip 

narder 

pavoc 

robble 

gaastage 

zottest 

pactic 

laarfer 

raaffer 

daagic 

dagnum 

zartyr 

karvel 

maspers 

maller 

magress 

maafel 

bodern 

naadel 

gackage 

farcel 

daardon 

passak 

pasern 

plafna 

gaacket 

ronder 

praakise 

sather 

dattle 

dobin 

motten 

kabbath 

maddle 

pamon 

safurd 

skobar 

shapas 

plashes 

sloked 

slarter 

saaler 

doften 

folace 

ronic 

staagger  

zalon 

tanka 

paarget 

parnish 

tragel 

valap 

vaalka 

saffle 

laarget 

salot 

drolick 

zatterns 

paller 

grazzle

Filler Words: 

 

blackness 

blackout 

bladder 

blanket 

blossom 

bonfire 

bother 

bottled 

cancel 

captain 

carrots 

cashews 

casket 

catcher 

chapter 

cobbler 

columns 

combat 

comet 

contract 

convoy 

copper 

cottage 

dashboard 
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doctors 

dolphin 

fashion 

flannel 

fondness 

fossil 

gallon 

garlic 

gather 

goggles 

grammar 

gravel 

hammer 

hammock 

happen 

harvest 

honest 

hostile 

jackpot 

karma 

llama 

lobster 

locket 

magnet 

market 

matter 

monster 

packet 

padded 

paddle 

passes 

pocket 

pollen 

posture 

raptor 

saddest 

scholar 

scratches 

soccer 

socket 

soften 

spotlight 

tractor 

ratchet 

sandal

 

Critical Items: 

 

/eɪ/-Biased Condition 

blazers 

blazing 

canine 

haystack 

hazing 

majors 

maker 

maple 

nations 

native 

neighbor 

pastry 

playground 

rainbow 

raven 

razor 

reindeer 

tasted 

trading 

waking 

 

/ʊ/-Biased Condition 

bushes 

butcher 

cookies 

cooking (3A) 

crooked 

footage 

football 

footpath 

goodies (1B) 

hooking (3A) 

lookout 

pudding 

pusher 

rookie 

sugar 

woman 

wooden 

woodwork 

woody (3A) 

goodness   
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APPENDIX B: STIMULI ELICITATION MATERIALS 

The original recording of participants also included items for a different experiment not 

presented in this dissertation, thus the stimuli list below encompasses more items than 

used in the experiment. 

 

Reading Passage (Fridland & Kendall, 2022) 

Some mornings in the summertime, when the sky is fair and the lawn covered in dew, the 

good Duke Post and his wife Peg walk down to the brook by their house. There, beside 

the trees, is their favorite place to sit, talk and sip coffee. 

  

Her father, Don, and his dog, Bookie, often stop by to chat while their children, Betty and 

Kate, toss off their shoes and leap headfirst into the deep brook. It makes Peg feel like a 

kid again to watch them dive, shout and slosh around in the water and swing off the old 

black tire tied to the oak tree. 

 

One hot hazy, dull afternoon, she gave a call to their friends Pam and Ben Powder, 

inviting them over for supper. On the way, their truck got stuck in the mud and they 

showed up an hour late, for which they caught a good deal of teasing.  

 

But soon the crowd was having fun and the good hosts put out tuna fish sandwiches, hot 

dogs, a big pot of bean soup and beer bread. When they were done eating, it was a sin 

that no one had saved room for Peg’s tasty spice cake that was yet to come. 

 

After supper, Duke, Ben and his pal Bill went out on Dukes inflatable boat. 

Unfortunately, the sky got grey and started to pour rain. Bill lost his footing on the slick 

bank and fell in the water. After ten minutes he finally got into the boat. Once back on 

shore, the sudden weather shift sent everyone home, and the party was over. 

 

Word List 

bake 

beyklet 

beykworm 

beyshes 

beytcher 

bicklet 

bickworm 

bikcase 

bikstore 

bishels 

bishes 

bisim 

blazers 

blazing 

bloozers 

bloozing 

book 

bookcase 

booklet 

bookstore 

bookworm 

booshels 

booshes 

bootcher 

bosom 

breakage 

breaking 

brookage 

brooking 

bukcase 

booklet 

bookstore 

bookworm 
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bushels 

bushes 

busom 

butcher 

cabled 

cake 

canine 

ceykies 

ceyking 

cishion 

coobled 

cook 

cookies 

cooking 

coonine 

cooshion 

could 

creyked 

cricked 

crooked 

cruked 

feytage 

feytball 

feytpath 

fit 

fitage 

fitball 

fitpath 

fitsteps 

foot 

footage 

football 

footpath 

footsteps 

futage 

futball 

futpath 

futsteps 

geydies 

geydness 

gidness 

goodies 

goodness 

gudness 

haystack 

haywire 

hazing 

hazy 

heyking 

hooking 

hoostack 

hoowire 

hoozing 

hoozy 

kick 

kid 

leykout 

lickout 

lookout 

lukout 

majors 

maker 

maple 

moojors 

mooker 

moople 

nations 

native 

neighbor 

noober 

nootions 

nootive 

pasting 

pastry 

peydding 

peysher 

pisher 

pit 

playground 

plooground 

poosher 

poosting 

poostry 

pudding 

pusher 

put 

rainbow 

raincoat 

raven 

razor 

reykie 

rookie 

roonbow 

rooncoat 

roondeer 

rooven 

roozer 

shake 

sheygar 

shigar 

shigared 

shooed 

shoogar 

shook 

should 

shugared 

sit 

skater 

skooter 

soot 

stewed 

stood 

sugar 

sugared 

suit 

tasted 

toosted 

trading 

trooding 

waking 

weyden 

weydwork 

weydy 

weyman 

weyman  

widden 

widwork 

woman 

wooden 

woodwork 

woody 

wooking 

wuden 

wudwork 

wuman
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