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DISSERTATION ABSTRACT 

Christopher Ives 

Doctor of Philosophy in School Psychology 

Title: Heterogeneity in Early Mathematics Screening: Investigating the Role of Intervention 

Effects on Screening Accuracy 

 

This study explores the heterogeneity in screening accuracy of the Assessing Student 

Proficiency in Early Number Sense (ASPENS) across schools within the context of a 

randomized control trial (RCT) for Fusion, a first-grade early math intervention. Students were 

assigned to one of three conditions: a business-as-usual (BAU) control group, a two-student 

Fusion group (2-Fusion), and a five-student Fusion group (5-Fusion). Two research questions 

were addressed: 1) To what extent does the observed screening accuracy of ASPENS 

meaningfully differ between students randomly assigned to the Fusion intervention conditions 

compared to the BAU condition?; and 2) To what extent is heterogeneity in screening accuracy 

reduced when is ASPENS is administered concurrently with its criterion, rather than at different 

times of the year? Data were analyzed using generalized linear mixed models to jointly model 

sensitivity and specificity at the participant level, using the 20th percentile on the Test of Early 

Mathematics Ability – 3rd Edition as the reference criterion.  

As hypothesized, findings indicated that specificity was significantly affected by 

treatment conditions, with the 2-Fusion condition exhibiting lower specificity than the BAU 

condition. 5-Fusion also demonstrated lower specificity than BAU, but this difference was not 

statistically significant. Furthermore, heterogeneity in screening accuracy across treatment 

groups was no longer evident when assessments were administered concurrently. The findings of 

this study underscore the challenges of prognostic screening frameworks and have implications 
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for the use of publisher-recommended cut-scores, the development and validation of academic 

screening measures, and guiding best practices in utilizing screening assessments within multi-

tiered systems of support. 
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I: INTRODUCTION 

Despite several decades of research and nationwide efforts dedicated to improving 

students’ literacy and math skills, a majority of students in the United States continue to perform 

below national proficiency benchmarks on math and reading assessments (NAEP, 2022). In 

response to these protracted and unresolved concerns, schools have increasingly adopted multi-

tiered systems of support (MTSS), which integrate evidence-based instructional practices within 

a prevention-oriented framework (Balu, 2015; Gersten et al., 2009; Samuels, 2011). MTSS 

utilized a tiered service delivery model to strategically allocate supplementary resources to 

students based on their identified level of need. The theoretical foundations for MTSS have their 

origins in decades of research highlighting the need for early prevention and intervention to 

address academic problems before they become more challenging to remediate (Juel, 1988; 

Kame’enui & Carnine, 1998; McCardle et al., 2001; Scarborough, 1998). However, successful 

implementation of this model is contingent on effective early identification practices, as 

underpinned using accurate measurement tools. 

Universal Screening in MTSS 

Prevention-focused service delivery models like MTSS rely on screening assessments to 

identify students at risk for future academic difficulties. The results of these screening 

assessments are then used to facilitate the provision of appropriate interventions and 

supplemental support for at-risk students (Petscher et al., 2011; Fuchs et al., 2004). As a result, 

screening assessments must be highly accurate in distinguishing students who are not on track 
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towards proficiency, both to support efficient allocation of school resources and to provide 

timely opportunities to intervene before students’ academic difficulties become intractable.  

Typically, universal screening is conducted three times per year with the entirety of a 

school’s student population. Such a frequent assessment schedule is enabled by screening 

assessments’ brevity and ease of administration, which make their use feasible across a school 

building (Glover & Albers, 2007). However, despite being brief and convenient, they must be 

highly accurate in distinguishing students that are not on track towards proficiency before their 

academic difficulties become actualized.  

Misidentification of non-cases (i.e., false positives) can lead to unnecessary intervention 

services, resulting in inefficient resource allocation and undermining the primary rationale for 

implementing tiered supports (Jenkins et al., 2007). Conversely, misidentification of cases (i.e., 

false negatives) can prevent schools from providing timely intervention services to students in 

need, ultimately hindering efforts to improve at-risk students' academic trajectories by the end of 

the school year. 

Validity of CBMs for Screening Purposes 

Curriculum-based measures (CBMs) are the most common form of screening 

assessments and are used for several additional purposes, including progress monitoring, 

program evaluation, and survey-level assessment (Deno, 1985; Fuchs et al., 2004; Kilgus et al., 

2014). Because of their multiple applications, CBMs necessitate a more complex validity 

argument. Under Kane’s (2013) argument-based validity framework, the interpretations or 

intended use of test scores require individual evaluations rather than wholly ascribing validity to 

an assessment. Conventional criterion-related validity can support the basis for interpreting CBM 

scores relative to a particular construct or trait value (e.g., math computation, reading fluency), 
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but further diagnostic accuracy evidence is necessary to justify their use as a screener (Kilgus et 

al., 2014).  

Screening decisions, as implemented in most settings, conclude with a dichotomous 

prediction of high vs. low risk. Thus, validity evidence in support of an assessment’s use for 

screening must indicate that it reliably differentiates students by their risk for academic 

difficulties within a dichotomous interpretive framework. Furthermore, diagnostic accuracy 

evaluations, as with any assessment evaluation or research hypothesis, reflect the testing of 

specific hypotheses or interpretations in particular subpopulations and settings (Gambino, 2018). 

Hence, it is a misnomer that screening accuracy does not require the same investigation into 

generalizability as other aspects of test design – a misnomer currently expressed in the National 

Center for Intensive Intervention’s specific omission of review processes related to sample 

representativeness or bias analyses for classification accuracy in its tool chart rubric for 

academic screening tools (National Center on Intensive Intervention [NCII], 2020). 

 Several meta-analyses have examined the correlational evidence, or criterion-related 

validity, of CBMs relative to a criterion measure (January & Klingbeil, 2020; Reschly et al., 

2009; Yeo, 2010), but these are not evidence for a screening tool’s ability to reliably distinguish 

academic risk or need for intervention supports in a MTSS framework. As previously mentioned, 

an adequate validity investigation into using CBMs for screening purposes must examine its 

discriminative properties within a dichotomous identification framework (e.g., typical 

achievement vs. at-risk students). As of yet, only one meta-analysis has investigated variations in 

CBM screening accuracy (Kilgus et al., 2014). The dearth of meta-analyses or explicit 

investigations into variability in academic screening accuracy is concerning, given that large 
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differences between studies are relatively common in diagnostic accuracy research which often 

cannot be attributed to mere chance (Macaskill et al., 2010). 

Diagnostic Accuracy 

Although screening assessments and the procedures for establishing their decision 

thresholds can be constructed in various ways, the methods for evaluating screening accuracy are 

relatively consistent. Statistically, these methods are parallel to the evaluation of diagnostic or 

classification systems more broadly, in which a dichotomous status outcome is generated 

(Smolkowski & Cummings, 2015). Thus, “screening accuracy,” “diagnostic accuracy,” and 

“classification accuracy” are all methodologically synonymous terms, with screening accuracy 

only differing in the context in which it is used.  

Diagnostic accuracy evaluation, as with any assessment evaluation or research 

hypothesis, reflects testing specific hypotheses or interpretations in particular populations and 

settings (Gambino, 2018). Diagnostic accuracy is typically measured by estimating a test’s 

precision in distinguishing those with the condition (i.e., cases) from those without the condition 

(i.e., non-cases). The process for differentiating cases from non-cases must be appropriate and 

accurate, given that this differentiation forms the basis on which the accuracy of the screening 

assessment is judged. Hence, it is traditional for cases and non-cases to be identified using a 

gold-standard reference assessment. 

When screening for academic difficulties, the condition of interest is typically 

represented by performance below a certain threshold (e.g., 20th percentile) on an EOY norm-

referenced test of broader academic achievement. CBM screening tools yield a dichotomous 

prediction as to whether a student is likely to perform above or below this threshold on the 

criterion assessment (i.e., at-risk, not at-risk). Conventionally, students that fall below the 
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threshold for academic proficiency are referred to as “truly at-risk,” and students who meet or 

exceed that threshold are referred to as “truly not at-risk” (Catts et al., 2015; Klingbeil et al., 

2015; Vanderheyden, 2013). Such language can quickly become opaque, as “risk” implicates a 

future occurrence and alludes to statistical probabilities that are conceptually ill-defined. Thus, to 

the extent possible, I will henceforth refer to truly at-risk students as “cases” of academic 

difficulty and truly not at-risk students as “non-cases” (Gambino, 2006). 

Misclassification 

Two types of error are possible under a dichotomous identification framework: false 

positives and false negatives. False positives (FP) refer to students identified as cases on the 

screening assessment but surpassed the threshold for academic difficulty on the criterion 

assessment. False negatives (FN) refer to students who met the definition of academic difficulty 

on the criterion assessment but were “missed” or designated as non-cases on the screening 

assessment. Conversely, accurate identification occurs when there is classification agreement 

between the screening and criterion assessment. True positives (TPs) and true negatives (TNs) 

represent instances in which a screener accurately identified cases and non-cases of academic 

difficulty, respectively. This resulting array of four possible categorizations is summarized in 

Table 1. 

Table 1. 

Confusion matrix coding method for screening accuracy 

Screening Result Status on Criterion Assessment 

 Cases Non-Cases 

Positive True Positive (TP) False Positive (FP) 

Negative False Negative (FN) True Negative (TN) 
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Regardless of how the condition truly manifests, diagnostic accuracy systems assume that 

those with and without the condition are distinct populations. In academic screening, FNs 

characterize the screening tools' accuracy in correctly identifying students within the academic 

difficulty population, and FPs indicate accuracy among typically achieving students. The 

proportions of FPs and FNs relative to their respective populations are used to calculate the most 

common indices of diagnostic accuracy – sensitivity and specificity.  

Sensitivity represents the proportion of individuals in the academic difficulty population 

correctly identified by the screener (i.e., 1 – false-positive rate), while specificity represents the 

proportion of individuals in the typically-achieving population that were accurately identified 

(i.e., 1 – false-negative rate). A tool’s overall accuracy is measured using its receiver operating 

characteristic (ROC) curve, which plots a measure’s sensitivity versus its false-positive rate 

(FPR; 1 – specificity) across all possible cut-scores. The area under the curve (AUC), or c 

statistic, provides an overall summary of the screening tool’s discriminatory power, with values 

ranging from 0 to 1.0. Interpretively, the AUC also indicates the probability that a randomly 

selected case would obtain a lower score on the screening assessment than a randomly selected 

control (Cook, 2007; Hanley & McNeil, 1982). An AUC value of 0.50 indicates that a tool lacks 

any discriminatory power and that the probability of distinguishing a case from a control 

approximates random chance. Conversely, an AUC of 1.0 indicates that a case will always obtain 

a lower score than a control, thus demonstrating perfect discrimination. When evaluating 

screening tools, AUC values exceeding .90 suggest excellent accuracy, values between .70 and 

.90 are useful for some purposes, and values below .70 are indicative of poor accuracy (Swets, 

1988).  
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As previously mentioned, sensitivity and specificity represent a screening accuracy’s 

ability to distinguish cases and non-cases at a particular cut-score. In an applied context, these 

accuracy indices are some of the most consequential, as they more closely represent expected 

accuracy in an operational screening framework where cut scores are utilized to support 

decision-making. Within the context of academic screening, there are sensitivity and specificity 

threshold minimums for what is considered an acceptable screening tool, though there is some 

variation in these criteria. For example, the National Center on Intensive Intervention (NCII) 

recommends a minimum sensitivity and specificity of .80 (National Center on Intensive 

Intervention [NCII], 2020); however, some advocate for more stringent criteria, with a minimum 

sensitivity of .90 (Clemens et al., 2001, Compton et al., 2006; Jenkins, 2003; Klingbeil et al., 

2021).  

It is important to note that, even with equivalent sensitivity and specificity values, 

misclassification errors are not equally distributed. That is, a screening tool with perfectly 

balanced sensitivity and specificity will not produce a 1:1 ratio of FPs to FNs because these 

metrics are proportionally referencing different populations. For example, with a sample base 

rate of .20 and sensitivity and specificity values of .80, a screening tool would produce 

approximately four FPs for each FN. These calculations are illustrated in Table 2, assuming a 

population size of 100. 

Depending on the cut-score selected on the screening tool, sensitivity can be increased, 

but at the cost of decreasing specificity. Appropriately balancing these metrics is an important 

component of cut score selection and implicates a value judgement as to whether sensitivity or 

specificity should be privileged. It is commonly affirmed that sensitivity should be privileged 

over specificity, since there are more dire consequences associated with failing to provide an at-
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risk student with supports, rather than providing unnecessary support to a student that is on track 

(Clemens et al., 2011; Jenkins, 2003). However, decisions to favor sensitivity or specificity are 

arguably more complex when considering screening systems at the school level, especially when 

considering the prevalence of academic difficulties in a particular context. This is because, as 

previously mentioned, sensitivity and specificity alone will not indicate the proportion of FP to 

FNs. Rather, because they represent proportions of statistically distinguished populations (i.e., 

cases vs. non-cases), the system-level burdens of privileging sensitivity are exaggerated in a low 

base rate school, since the accompanying sacrifice to specificity results in significantly more 

misclassifications as a proportion of the large population of typically achieving students. 

Table 2. 

Illustrative example of sensitivity and specificity calculations 

Screening Result Status on Criterion Assessment  

 Cases Non-Cases Row Totals 

Positive TP = 64 FP = 16 TP + FP = 80 

Negative FN = 4 TN = 16 FN + TN = 20 

Column Totals TP + FN = 68 FP + TN = 32 N = 100 

Note. TP = True positive; FP = False positive; FN = False negative; TN = True negative. 

Sensitivity = 64/(64 + 16) = 0.8; Specificity = 16/(4 + 16) = 0.8; Base Rate = 20/(80 + 20) = 

.20. 

Issues in Screening Accuracy 

Whereas some indices (i.e., positive predictive power, negative predictive power) are 

discouraged because they are sample-dependent, sensitivity and specificity are widely relied on 

because they are thought to be population-level statistics and can be treated as properties of the 
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test itself (Johnson et al., 2009; Kleingbeil et al., 2018; Petscher et al., 2011; VanDerHeyden, 

2011). In purely their calculations, this is true. Because sensitivity and specificity separately 

describe a cut scores accuracy in regard to cases and non-cases, respectively, they do not 

inherently depend on the proportions of cases to non-cases reflected in a particular sample or 

subpopulation.  

However, the commonly held assumption that sensitivity and specificity are sample-

independent is contradicted by diagnostic accuracy research that has found they covary with the 

prevalence of the condition, or base rate, in particular subpopulations (Brenner & Gefeller, 1997; 

Cook, 2007; Leeflang et al., 2009, 2013). In some scenarios, sensitivity and specificity can 

express similar levels of variation due to base rate as other indices previously discouraged in the 

educational literature for this very reason (Brenner & Gefeller, 1997). If certain diagnostic 

accuracy indices are indeed deemed inappropriate for summarizing a tool’s diagnostic accuracy 

due to their reliance on base rate (Smolkowski & Cummings, 2015; Swets, 1988), it would 

follow that the field’s concern should persist if there are similar vulnerabilities to the accuracy 

indices presently in common use. 

Notwithstanding the issues of diagnostic accuracy indices, several meta-analyses have 

examined the correlational evidence, or criterion-related validity, of CBMs relative to an 

criterion measure (January & Klingbeil, 2020; Reschly et al., 2008; Yeo, 2010). However, these 

are not evidence for a screening tool’s ability to reliably distinguish academic risk or need for 

intervention supports in a MTSS framework. Kilgus et al. (2014) offer the only meta-analysis of 

CBM screening accuracy, focusing on CBM Oral Reading (R-CBM) in Grades 3-8. Although 

they found that R-CBM cut scores performed adequately across studies, the specific cut-scores 

used were inconsistent. For example, Kilgus et al. (2014) report that Grade 3 BOY cut-scores 
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predicting a criterion with six-months lag ranged from 45 to 83 words per minute (WPM; M = 

61.80, SD = 12.56). Though some variation in optimum cut scores is to be expected due to 

different forms and assessment systems, this wide range of cut scores depicts significant 

heterogeneity in the level of R-CBM performance constituting risk. Although one of the central 

goals of their meta-analysis was to explore heterogeneity in screening accuracy, they implicitly 

analyzed the best performing cut-score within each study sample (i.e., mixed threshold analysis), 

meaning the optimum cut-scores were selected post-hoc and were allowed to freely vary across 

studies. As a result, they were unable to describe how the performance of a particular benchmark 

varies across settings, such as if a school or district were to utilize publisher-recommended cut-

scores. Instead, the results of their meta-analysis summarize the performance of R-CBM in 

identifying students at-risk for reading difficulties when using cut-scores optimized after the 

criterion assessment has already been conducted. A more naturalistic study of diagnostic 

accuracy would evaluate a screening tool’s ability in predicting performance on the criterion 

using cut-scores identified a priori. 

If generalized sensitivity and specificity estimates meet the minimum criterion for 

acceptable screening accuracy when permitting significant variation in cut scores, as was found 

by Kilgus et al. (2014), it raises questions as to how consistent screening accuracy remains when 

applying a singular nationwide cut-score across settings, as is commonly done in current 

practice. In other words, if studies were required to select meaningfully different cut scores to 

achieve an acceptable balance of sensitivity and specificity, it would follow that enforcing a 

consistent cut score would likely lead to an imbalance across most of the samples.   

Among studies that have cross-validated vendor- or publisher-recommended cut scores 

with a new sample, many found inadequate screening accuracy for the identified cut scores in 
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both math (e.g., Klingbeil et al., 2018, 2021) and reading (e.g., Hintze et al., 2003; Johnson et al., 

2009; Klingbeil et al., 2015). In summary, the heterogeneity of screening accuracy when using 

publisher-recommended cut-scores remains unknown for any CBM across the domains of math 

or reading, though many authors advocate for the use of local cut-scores due to the inadequacy of 

publisher-recommended cut-scores for their samples (Keller-Margulis et al., 2008; Klingbeil et 

al., 2012; Nelson et al., 2017; Patton et al., 2014; Thomas & January, 2019). 

Screening accuracy is commonly evaluated with a tool’s sensitivity and specificity – 

statistical indices which summarize an assessment’s ability to discriminate between two 

populations (e.g., typically-achieving students vs. at-risk students) at a specific cut score. 

Sensitivity and specificity are used to validate screening assessments and identify optimum cut 

scores in applied settings. Critically, some research has found that these indices can fail to 

generalize to local contexts or subpopulations (Brenner & Gefeller, 1997; Cook, 2007; Leeflang 

et al. 2009, 2013). Such variance in screening accuracy is further underscored by the many 

studies advocating for the use of local cut-scores due to the inadequacy of publisher-

recommended cut-scores for their samples (Keller-Margulis et al., 2008; Klingbeil et al., 2012; 

Nelson et al., 2017; Patton et al., 2014; Thomas & January, 2019). Considering universal cut-

scores are still widely used, and sensitivity and specificity indices are used as broad-brush 

descriptors of a screener’s performance, there continues to be a need for investigation into why 

these variations in screening accuracy are observed.  

Potential Vulnerabilities in Academic Screening Accuracy 

 A critical issue in the generalizability of screening accuracy is the lag time introduced 

between the screening and criterion assessment, such as when researchers and publishers validate 

a beginning of year (BOY) screener against and end of year (EOY) criterion. Such a lag 
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introduces the “treatment paradox.” The treatment paradox refers to instances in which patients’ 

screening results are used to initiate treatment prior to the administration of the diagnostic 

criterion. As a result, the prediction generated from the screening instrument is effectively 

disrupted due to intervention. Rutjes et al. (2006), in their meta-analysis of biases within 

diagnostic accuracy studies, found no significant effects of treatment on diagnostic accuracy; 

however, their analysis was not regarding school-based academic screening, where the relevance 

of this phenomenon is arguably more compelling. 

 Consider that screening validation studies do not withhold interventions from students 

that are at-risk for EOY academic difficulties. Instead, screening evaluations are typically 

conducted in a naturalistic setting, meaning educators are often responding to screening data and 

providing interventions to students in need of them. This has become particularly true as MTSS 

systems and universal screening procedures have become more widespread, as indicated by 

majority of states with active screening requirements related to dyslexia (Youman & Mather, 

2018). When cut scores for risk are identified in naturalistic contexts, the meaning of risk 

becomes intwined with the school support systems in the validation sample. That is, when 

academic supports are exercised between the administration of the screening and reference 

assessment, the resulting “optimized” cut scores do not indicate the likelihood of a performing 

below proficiency expectations in the absence of intervention. Rather, the predictive cut-scores 

represent the likelihood of sub-proficient performance in spite of the existing academic supports. 

Such information arguably has more limited actionable value to educators and risks undermining 

their morale and the face validity of MTSS systems. For example, an important premise of 

MTSS systems is that, on average, academic interventions should be sufficient to accelerate 

progress among lower-performing students to achieve proficiency by EOY. If screening tools’ 
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true definition of academic risk refers to the likelihood of reaching proficiency despite 

intervention, then the intensity of support must exceed that in the validation sample to effectively 

mitigate risk. Furthermore, instructing educators to respond to screening results with a relatively 

similar intervention protocol to that in the validation sample, where efforts failed to mitigate risk 

among other students with the same scores, creates a situation where teachers and 

paraprofessionals are set up to administer inadequate levels of support.  

Regardless of whether students’ abilities change due to intervention efforts or for other 

reasons, when there is a delay in time between the screening assessment and reference 

assessment, individuals can “migrate” from the typically achieving population to the academic 

difficulty population, and vice versa. For example, a student that indeed was a member of the 

math difficulty population could have sufficiently benefited from instruction and intervention 

supports that they no longer met the criterion for math difficulty when assessed months later on 

the criterion assessment. Henceforth, this phenomenon is termed positive risk migration, which 

is a distinct phenomenon from measurement error. Positive risk migration refers to a student 

whose position on the normative, latent continuum of math ability sufficiently increases between 

the screening and reference assessment, such that they cross the threshold distinguishing 

typically achieving students from those with academic difficulties. Conversely, negative risk 

migration would refer to students that are truly in the typically achieving population at the time 

of screening, but whose normative ability has fallen between the screening and reference 

assessments and are now classified to be a member of the math difficulty population. 

The potential causes for positive and negative risk migration are numerous. They may 

include the quality of core instruction, curricular alignment, provision of supplemental supports, 

individual fluctuations in development or academic growth, and any other contextual variables 
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that can influence change in the latent condition of interest. With prognostic screening 

validation, where the screener is used to predict the students’ future status, it is not possible to 

distinguish students that were misidentified due to screening error from those that demonstrated 

risk migration. Considering differential growth in math skills has been observed based on 

disability status, English-language proficiency status, socioeconomic background, and other 

demographic characteristics (Scammacca et al., 2020; Wei et al., 2012), the adoption of a 

prognostic screening framework can introduce bias that is misinterpreted as screening tool error 

given that they assume a certain degree of growth that is implicitly presumed to be unbiased in 

their validation sample.  

Present Study 

The goal of this study is to examine whether the screening accuracy of an early 

mathematics screener varies across schools within the context of a randomized control trial 

(RCT) for an early math intervention. That is, I will investigate whether screening accuracy is 

moderated by student- and school-level characteristics, including the provision of an evidence-

based. Specifically, I will be evaluating the screening accuracy of the Assessing Student 

Proficiency in Early Number Sense (ASPENS; Clarke et al., 2011) assessment in predicting later 

performance on the Test of Early Mathematics Ability – 3rd Edition (TEMA-3; Ginsburg & 

Baroody, 2003) among schools participating in a randomized control trial (RCT) of the Fusion 

Math Intervention.  

Research Questions 

This study intends to answer the following research questions: 



 

 25 

Research Question 1: To what extent does the observed screening accuracy of ASPENS 

meaningfully differ between students randomly assigned to the Fusion Math Intervention 

compared to a business-as-usual (BAU) condition? 

Research Question 2: To what extent is heterogeneity in screening accuracy reduced 

when the ASPENS and TEMA-3 have been administered concurrently, rather than at different 

times of year (i.e., BOY vs. EOY)? 

The present study will borrow from meta-analytic methods of diagnostic accuracy 

research but will treat schools as the unit of analysis. That is, each school will conceptually 

represent a study of the diagnostic accuracy of ASPENS within its unique context and 

subpopulation. This novel approach will provide a practically relevant summary of ASPENS 

screening accuracy, given that it reflects a meaningful division (i.e., schools) of the educational 

landscape in which screening assessments are used. Naturally, this investigation has the potential 

to expose contexts in which screening accuracy is poorer than others. For example, it is expected 

that variation in screening accuracy will be particularly exacerbated when there is a delay 

between the screening and criterion assessment, which introduces an opportunity for school-

specific environmental variables (e.g., use of evidence-based interventions) to influence student 

trajectories and thus the accuracy of risk predictions. Thus, a secondary goal of the present study 

is to examine potential practices that may remedy issues related to variations in screening 

performance. Specifically, heterogeneity in screening accuracy across both concurrent and 

predictive screening frameworks will be contrasted, wherein ASPENS either predicts 

performance on a concurrently administered criterion or after a several month delay. 
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II: METHOD 

Design 

This study represents a secondary analysis of data from a four-year, large-scale 

randomized control trial (RCT) conducted to evaluate the efficacy of the Fusion Math 

Intervention. The research design utilized a partially nested randomized controlled trial (RCT), 

with students randomly assigned to one of three treatment conditions using classroom-level 

randomization blocks. Students were assigned to receive Fusion Math in two of the conditions, 

which were distinguished by a student-teacher ratio of either 2:1 (2-Fusion) or 5:1 (5-Fusion). 

The third condition represented a business-as-usual (BAU) or no-treatment control condition. 

During their participation, all students continued to receive their district’s core mathematics 

instruction. 

Participants 

Schools were recruited from Oregon and Massachusetts for two-years of participation 

(i.e., two cohorts) during the 2016-2017 and 2017-2018 school years. The sample was comprised 

of 26 schools across six districts. Across sites, 2,304 students were screened using the ASPENS, 

with 1,455 found eligible for participation in the randomized control trial. Eligibility was 

determined based on ASPENS composite scores. Specifically, students were considered eligible 

if their score fell in the Strategic or Intensive ranges based on ASPENS winter benchmarks. 

Among the 980 students that participated in the RCT, 291 were assigned to the BAU group, 192 

to the 2-Fusion group, and 485 to the 5-Fusion group.  

Student-level demographic data indicated that 55.78% of the students were female, 

15.78% had special education status, and 15.02% had English learner status. The racial and 

ethnic distribution of the analytic sample included 0.43% American Indian or Alaska Native, 
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2.92% Asian, 3.46% Black or African American, 27.24% Hispanic or Latino, 0.65% Native 

Hawaiian or Other Pacific Islander, 8.00% reporting two or more races, and 57.30% White. 

Instructional Conditions 

Fusion Math 

Fusion Math is a Tier 2 intervention intended to target whole number concepts and skills 

in Grade 1. It is comprised of 60 scripted lessons designed for a small group setting. Fusion Math 

was designed using principles of explicit and systematic instruction, incorporating such features 

as carefully scaffolded examples and practice items, frequent opportunities for student response, 

immediate teacher feedback, as well as strategic and structured review (Clarke et al., 2022). 

Empirical evidence supports the effectiveness of Fusion Math in improving proximal measures 

of math achievement such as fluency, problem-solving skills, and conceptual understanding 

(Cary et al., 2017; Clarke et al., 2014). 

Importantly, as a Tier 2 intervention, Fusion Math is intended to be used in concert with 

high-quality whole-class instruction, not as a substitute. During the efficacy trial, the Fusion 

intervention was delivered outside of core instruction for five days per week across 

approximately 12 weeks. Thus, all condition groups received the same Tier 1 instruction; albeit 

instruction was inherently nested by classroom. 

Measures 

 While the original study employed many additional measures, for the current study only 

two were utilized. Assessing Student Proficiency in Early Number Sense (ASPENS) was used as 

the screening measure, while Test of Early Mathematics Ability – 3rd Edition (TEMA-3) was 

used as the criterion measure. 
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ASPENS 

ASPENS (Clarke et al., 2011) is a CBM screening assessment used to assess 

mathematical proficiency in kindergarten and first grade. It is composed of five measures: 1) 

Numerical Identification, 2) Magnitude Comparison, 3) Missing Number, and 4) Basic 

Arithmetic Facts and Base 10; with only three measures administered in a particular grade. In 

Grade 1, the focus of this study, only the Magnitude Comparison, Missing Number, and Basic 

Arithmetic Facts and Base 10 are administered. All ASPENS subtests are timed, with 

administration times ranging from one to two minutes depending on the subtest. Students’ final 

scores represent the number of correct items within the elapsed time.  

Delayed test-retest reliabilities for the ASPENS range from .76 to .85 in kindergarten and 

0.77 to .87 in Grade 1. Concurrent validity coefficients relative to the mathematics subtest of the 

TerraNova 3rd Edition were .58 in kindergarten and .63 in Grade 1. Predictive validity 

coefficients of BOY ASPENS scores relative to EOY TerraNova scores were .53 in kindergarten 

and .57 in Grade 1.  

As reported on the NCII Academic Screening Tool Chart (NCII, n.d.), the ASPENS cut-

scores were identified to predict performance below the 15th percentile on mathematics subtest of 

the TerraNova – 3rd Edition. The authors indicate that thresholds were selected that were closest 

to achieving a sensitivity of .90. Sensitivity and specificity values for ASPENS cut scores are not 

reported on the NCII website as of June 2022, though AUC values exceed .80 at all times of year 

in Grade 1. 

ASPENS includes three cut-scores, corresponding to the beginning-of-year (BOY), 

middle-of-year (MOY), and end-of-year (EOY). Because administration dates for cohorts varied 

such that they occurred in closer proximity to either the BOY or MOY screening periods, cut-
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scores for risk for differentially applied by cohort, based on the closest screening period to their 

median assessment date in their respective administration window. 

TEMA-3 

The TEMA-3 (Ginsburg & Baroody, 2003) is a standardized, individually administered, 

norm-referenced assessment designed to evaluate early mathematical skills in children between 

the ages of 3 and 8. This assessment is structured to evaluate a child's mathematical abilities 

across six essential domains: (1) numbering skills, encompassing counting and numeral 

recognition; (2) number-comparison facility, assessing the ability to compare and order numbers; 

(3) numeral literacy, focusing on reading and writing numerals; (4) mastery of number facts, 

including fluency in basic arithmetic; (5) calculation skills, such as adding, subtracting, 

multiplying, and dividing whole numbers; and (6) understanding of concepts, such as 

measurement, time, and geometric shapes. Test-restest reliability for the TEMA-3 ranges from 

.82 to .93 and alternate-form reliability is .97. 

Student percentile ranks from the TEMA-3 were dichotomized for the purpose of 

defining math difficulty as a reference criterion. Specifically, student scores falling below the 

20th percentile rank were considered cases for math difficulty and scores exceeding the 20th 

percentile will be considered non-cases. The 20th percentile was selected to approximate the 

definition of risk used to identify cut scores for the ASPENS (i.e., 15th percentile).  

Importantly, the TEMA-3 relies on age-based norms rather than grade-based norms for 

its percentile ranking. Since participant age was only captured at the time of initial screening, 

rather than at the follow-up TEMA-3 assessment that is used in this study, student age was 

approximated by adding the number of elapsed days between each participants starting age and 

the median date of their respective cohort’s assessment window.  



 

 30 

Analyses 

Research Question 1 

To answer Research Question 1, a generalized linear mixed model (GLMM) was 

specified investigate the effects of the 2:1 Fusion (2-Fusion) and 5:1 Fusion (5-Fusion) 

interventions on the ability of ASPENS to accurately identify cases and non-cases of math 

difficulty on the TEMA-3. Here, the outcome was represented as an accurate screening 

identification, or true negatives for non-cases or true positives for cases. The model is an 

extension of the models proposed by Riley et al. (2008), by focusing on the impact of group 

interventions on screening accuracy while accounting for within-school and across-school 

effects. Model 1 and Model 2 were first compared to determine the most suitable random effects 

structure. Following this comparison, Models 3 and 4 were compared to identify the most 

appropriate model for addressing the research question. The models were specified as follows: 

Model 1 

𝑦𝑖𝑗 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝑖𝑗) (1) 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖𝑗) =  𝛼𝑗  (2) 

𝛼𝑗 ~ 𝑁(0,  𝜎𝛼
2) (3) 

Model 2 

𝑦𝑖𝑗 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝑖𝑗) (4) 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖𝑗) =  𝛼𝑗  +  𝛽1𝑗 (𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦𝑖𝑗) (5) 

(
𝛼𝑗

𝛽1𝑗
) ~ 𝑁 [(

0

0
) , Σ  ]  Σ =  (

𝜎𝛼
2 𝜌𝜎𝛼𝜎𝛽1

𝜌𝜎𝛼𝜎𝛽1
𝜎𝛽1

2 ) (6) 
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Model 3 

𝑦𝑖𝑗 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝑖𝑗) (7) 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖𝑗) =  𝛼𝑗  +  𝛽1𝑗 (𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦𝑖𝑗) + 𝛽2 (2-𝐹𝑢𝑠𝑖𝑜𝑛𝑖𝑗) + 𝛽3 (5-𝐹𝑢𝑠𝑖𝑜𝑛𝑖𝑗) +

 𝛽4 (𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦𝑖𝑗 × 2-𝐹𝑢𝑠𝑖𝑜𝑛𝑖𝑗) + 𝛽5 (𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦𝑖𝑗 × 5-𝐹𝑢𝑠𝑖𝑜𝑛𝑖𝑗) (8)
 

(
𝛼𝑗

𝛽1𝑗
) ~ 𝑁 [(

0

0
) , Σ  ]  Σ =  (

𝜎𝛼
2 𝜌𝜎𝛼𝜎𝛽1

𝜌𝜎𝛼𝜎𝛽1
𝜎𝛽1

2 ) (9) 

Model 4 

𝑦𝑖𝑗 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝑖𝑗) (10) 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖𝑗) =  𝛼𝑗  +  𝛽1𝑗 (𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦𝑖𝑗) + 𝛽2 (2-𝐹𝑢𝑠𝑖𝑜𝑛𝑖𝑗) + 𝛽3 (5-𝐹𝑢𝑠𝑖𝑜𝑛𝑖𝑗) +

 𝛽4 (𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦𝑖𝑗 × 2-𝐹𝑢𝑠𝑖𝑜𝑛𝑖𝑗) + 𝛽5 (𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦𝑖𝑗 × 5-𝐹𝑢𝑠𝑖𝑜𝑛𝑖𝑗) +

  𝛽6 (𝑀𝑒𝑎𝑛_2-𝐹𝑢𝑠𝑖𝑜𝑛𝑖𝑗) + 𝛽7 (𝑀𝑒𝑎𝑛_5-𝐹𝑢𝑠𝑖𝑜𝑛𝑖𝑗) (11)

 

(
𝛼𝑗

𝛽1𝑗
) ~ 𝑁 [(

0

0
) , Σ  ]  Σ =  (

𝜎𝛼
2 𝜌𝜎𝛼𝜎𝛽1

𝜌𝜎𝛼𝜎𝛽1
𝜎𝛽1

2 ) (12) 

Model 1 is described in Equations 1-3. The response variable 𝑦𝑖𝑗 represents the binary 

status of being accurately identified for student i in school j, using a Bernoulli distribution. The 

Bernoulli distribution is used to model binary data, with the probability of an accurate 

identification denoted by 𝑝𝑖𝑗. In Model 1, 𝛼𝑗  represents the random intercept for school j, 

accounting for the between-school variability in accurate identification. The random intercept for 

Model 1 is unique from the other models in that it represents the log-odds of accurate 

identification for both cases and non-cases, with no distinction for log-sensitivity and log-

specificity. 

Model 2, described in Equations 4-6, includes a fixed effect for the sensitivity group (i.e., 

cases; 𝛽1𝑗 ) to distinguish the probability of an accurate identification among cases and non-

cases. By including this as a fixed effect with a random slope, the random intercept (𝛼𝑗) 
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represents log-odds of accurate identification for non-cases, and the intercept for cases becomes 

represented by (𝛼𝑗 + 𝛽1𝑗). In other words, the compounded effect of the random intercept and the 

fixed effect for the sensitivity group captures the log-odds of accurate identification among 

cases, allowing for separate analyses of screening accuracy for cases and non-cases while 

considering school-level effects. Equation 7 describes the variance-covariance specification 

associated with the model. The random effects of 𝜇1𝑖 and 𝜇0𝑖 are specified such that that 

logit(𝑝1𝑖) and logit(𝑝0𝑖) are normally distributed around a mean logit-sensitivity and logit-

specificity of 𝛽1 and 𝛽0 with a between-school variance of 𝜏1
2 and 𝜏0

2, respectively (Riley et al., 

2008). Between-school correlation is represented using 𝜌, which accounts for the expected 

negative correlation between sensitivity and specificity. 

Model 3 (Equations 7-9) and Model 4 (Equations 10-12) introduce additional fixed 

effects for treatment condition and are intended to answer the research question by modeling the 

effects of 2-Fusion and 5-Fusion on accurate identification for cases and non-cases. The model 

includes centered variables for 2-Fusion (𝛽2 ) and 5-Fusion (𝛽3 ) interventions, calculated as the 

difference between each student's individual group status and the average group status within 

their school. Prior to centering, students’ group status was represented using dummy-coded 

indicator variables for each intervention group, which take the value of 1 if the student is in a 

particular intervention (either 2-Fusion or 5-Fusion) and 0 otherwise, indicating that they are in 

the BAU group. Students’ group status was centered within schools to represent the difference 

between each student's individual group status and the average intervention participation within 

their school. This approach enables the model to account for within-school variations in 

intervention participation rates. Additionally, interaction terms for sensitivity are included for 



 

 33 

both 2-Fusion (𝛽4 ) and 5-Fusion (𝛽5 ) to distinguish the moderating effects of the treatment 

conditions for cases and non-cases. 

Lastly, Model 4 includes fixed effects for the school-level means for 2-Fusion (𝛽6) and 5-

Fusion (𝛽7)  to control for average participation levels in the small and large group Fusion 

interventions. These variables help account for between-school variations in participation rates 

and enable a more precise estimate of intervention effects. 

To convert model results to more interpretable values, marginal effects of Fusion 

intervention conditions for cases and non-cases were translated to sensitivity and specificity 

values on their traditional scale. Exponentiated effect estimates (i.e., odds ratios) were used to 

calculate the predicted probabilities of accurately identifying cases and non-cases for all possible 

combinations of sensitivity, 2-Fusion, and 5-Fusion, within the context of the research design 

These values were adjusted for school-level variations, or random effects of school in the 

GLMM model. 

Research Question 1 Hypotheses. It was hypothesized that the accuracy of ASPENS in 

identifying non-cases would be systematically lower among students assigned to Fusion Math 

compared to a BAU condition. That is, it was expected that many students identified as cases 

using ASPENS at BOY would indeed have demonstrated math difficulties at that time, but that 

Fusion Math will effectively disrupt these predictions such that these students will present as FPs 

at EOY. Furthermore, these differences are expected to be greatest in the 2-Fusion condition, 

given that it represents more intense instructional support and would be expected to be more 

disruptive to forecasted trajectories. However, because Fusion Math does not have as significant 

implications for students that are already above the defined threshold for math difficulty, it is not 

expected to produce significant differences in sensitivity. Variations in screening accuracy 
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among cases would only occur if students that do not present math difficulties earlier in the year 

fail to make sufficient progress such that they constitute cases and are rendered as false negatives 

at the end of year. If Fusion is an efficacious intervention, its effects on sensitivity are contingent 

on the extent that students above the ASPENS cut score do not make adequate progress in the 

BAU conditions. While variations in sensitivity are feasible between the treatment conditions, 

this was hypothesized to not reach statistical significance.  

Research Question 2  

To determine if treatment effects and variability in screening accuracy are diminished 

when ASPENS is administered concurrently with the TEMA-3, Models 3 and 4 will be 

replicated using EOY administrations of the ASPENS to predict TEMA-3 performance. That is, 

identical specifications of these models will be used with EOY TEMA-3 performance as the 

criterion, with EOY ASPENS scores used in substitute of BOY ASPENS. Notably, this will 

implicate a different cut score, given that the ASPENS cut scores vary depending on time of 

year. However, this is not a threat to the aim of the study, as the primary subject of interest will 

be the magnitude of observed effects on each cut score’s sensitivity and specificity, rather than 

the sensitivity and specificity values themselves. 

Research Question 2 Hypotheses. When comparing variability in the screening 

accuracy of ASPENS administrations conducted predictively or concurrently with the TEMA-3, 

it is hypothesized that the effects of 2-Fusion and 5-Fusion will be rendered non-significant in 

the concurrent analysis. Because Fusion Math will have preceded the administration of ASPENS 

in the concurrent analysis, students screening results are not expected to be vulnerable to the 

same instructional influences as the BOY ASPENS administration. Furthermore, variance is 

broadly expected to decrease in the random effects of all concurrent administration models due 
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to other unmeasured school-level variables that will not have an opportunity to produce positive 

or negative risk migrations. 

  



 

 36 

III: RESULTS 

Descriptive statistics are presented in Table 4, summarizing the ASPENS pre-test and 

post-test scores, as well as the TEMA-3 scores for the three treatment groups (i.e., BAU, 2-

Fusion, and 5-Fusion). The table displays the means, standard deviation, and sample sizes for the 

predictive and concurrent samples at both the individual and school levels. Additionally, 

classification counts and accompanying disaggregated means for ASPENS scores are included in 

Table 5. 

Based on both school-level and participant-level descriptive statistics, ASPENS pre-test 

scores were generally comparable across the three conditions. Students assigned to the BAU 

condition demonstrated the highest mean score of 21.58 (SD = 11.52), followed by 5-Fusion at 

20.62, and 2-Fusion with a mean score of 20.09. At post-test, 2-Fusion students had the highest 

ASPENS mean score of 47.23 (SD = 17.64), followed by 5-Fusion with a mean score of 43.77 

(SD = 16.89), and the BAU condition with a mean score of 41.98. TEMA-3 scores demonstrated 

a similar pattern at posttest, with the BAU group demonstrating a mean score of 40.93, the 5-

Fusion group with a mean of 41.62, and the 2-Fusion group showing the highest mean score of 

42.45. 
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Table 3 

Descriptive statistics for TEMA-3 and ASPENS scores in predictive and concurrent samples.  

 

 

 Predictive Sample Concurrent Sample 

  ASPENS TEMA-3  ASPENS TEMA-3 

Condition N Age (M) M SD M SD N Age (M) M SD M SD 

Students 

Control 255 6.67 21.58 11.52 40.95 8.17 259 6.67 41.98 18.35 40.93 8.19 

2-Fusion 173 6.69 20.09 11.97 42.45 8.08 174 6.69 47.23 17.64 42.45 8.08 

5-Fusion 430 6.67 20.62 11.16 41.64 8.17 431 6.67 43.77 16.89 41.62 8.17 

Schools 

Control 26 6.65 20.88 5.47 40.55 3.69 26 6.65 42.12 7.57 40.55 3.69 

2-Fusion 26 6.68 20.22 6.21 43.00 4.24 26 6.68 47.26 9.57 43.00 4.24 

5-Fusion 26 6.65 20.53 4.52 41.95 3.49 26 6.65 44.68 6.18 41.93 3.50 

Note. SD = Standard Deviation; ASPENS = Assessing Student Proficiency in Early Number Sense. TEMA-3 = Test of Early 

Mathematics Ability – 3rd Edition. Age (M) = Age at beginning-of-year screening. 



 

 38 

Table 4. 

Classification Counts and ASPENS Means by Condition in Predictive and Concurrent Analyses 

 Predictive Sample Concurrent Sample 

Screening Result Non-Cases n (M) Cases n (M) Non-Cases n (M) Cases n (M) 

Control     

Negative TN = 133 (28.53) FN = 31 (26.00) TN = 126 (55.71) FN = 17 (49.76) 

Positive FP = 43 (14.16) TP = 53 (7.09) FP = 49 (31.84) TP = 67 (21.60) 

5-Fusion     

Negative TN = 208 (27.71) FN = 52 (24.79) TN = 210 (55.14) FN = 47 (52.91) 

Positive FP = 90 (13.44) TP = 82 (7.56) FP = 87 (31.70) TP = 87 (23.48) 

2-Fusion     

Negative TN = 84 (28.85) FN = 13 (22.46) TN = 96 (58.67) FN = 8 (48.38) 

Positive FP = 47 (11.77) TP = 30 (7.80) FP = 35 (32.46) TP = 35 (25.40) 

Note. TN = True negative; FN = False negative; FP = False positive; TP = True Positive. 
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Research Question 1 

Model Selection 

Initially, Model 1 and Model 2 were compared to determine the suitable random effects 

structure. Model goodness of fit was evaluated by examining AIC, BIC, and R2 values. Fit 

statistics indicated Model 2 was a better fit to the data, as evidenced by lower AIC and BIC, as 

well as higher marginal and conditional R2 values compared to Model 1. Next, Models 3 and 4 

were compared to determine the most appropriate model for addressing the research question. 

Specifically, Model 4 tested whether controlling for school-level intervention participation rates 

translated to improvements in overall model fit. However, Model 3 exhibited superior 

performance, with a lower AIC value and higher R2 values compared to Model 4. Consequently, 

Model 3 was selected for further analysis and interpretation. Results for all models are 

summarized in Table 5. 

Research Question 1 Results 

For Model 3, the between-school variance for the random intercept corresponding to log-

specificity (non-cases) was estimated at 0.54, with a standard deviation (SD) of 0.73. Between-

school variance for the random slope of sensitivity was estimated at 2.10, with a standard 

deviation of 1.45. Random effect estimates suggest substantial variability in ASPENS screening 

accuracy across schools, with an intraclass correlation coefficient (ICC) of .14. The correlation 

between the random intercept and slope was -1.0.
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Table 5. 

Generalized linear mixed model results for predictive sample 

 Model 1 Model 2 Model 3 Model 4 

 Coef. SE p Coef. SE p Coef. SE p Coef. SE p 

Fixed Effects             

Intercept, 𝛼 0.87 0.10 <.001 1.07 0.18 <.001 1.08 0.18 <.001 0.98 0.84 .24 

Sensitivity, 

𝛽1  
-0.32 0.16 .04 -0.68 0.34 .04 -0.69 0.34 .04 -0.62 0.35 .08 

2-Fusion, 𝛽2  
      -0.62 0.27 .02 -0.62 0.27 .02 

5-Fusion, 𝛽3  
      -0.29 0.23 .19 -0.29 0.23 .19 

Sensitivity x 

2-Fusion, 𝛽4  
      0.89 0.52 .09 0.89 0.52 .09 

Sensitivity x 

5-Fusion, 𝛽5  
      0.14 0.39 .73 0.13 0.39 .73 

Mean 2-

Fusion, 𝛽6  
         0.91 1.63 .57 

Mean 5-

Fusion, 𝛽7 
         -0.21 1.29 .87 

Random Effects Var. SD  Var. SD  Var. SD  Var. SD  

Intercept, 𝛼𝑗 0.02 0.14  0.54 0.73  0.55 0.74  0.53 0.73  

Sensitivity, 

𝛽1𝑗  
   2.10 1.45  2.14 1.46  2.06 1.44  

Model Fit AIC BIC 𝑅𝑐
2/𝑅𝑚

2  AIC BIC 𝑅𝑐
2/𝑅𝑚

2  AIC BIC 𝑅𝑐
2/𝑅𝑚

2  AIC BIC 𝑅𝑐
2/𝑅𝑚

2  

 1085.72 1100.01 .01/.01 1045.43 1069.25 .16/.02 1047.02 1089.69 .17/.04 1050.70 1102.80 .17/.04 

Note. Coef. = Coefficient; SE = Standard Error; Var. = Variance; SD = Standard Deviation, AIC = Akaike Information Criteria; BIC = Bayesian Information 

Criteria; 𝑅𝑐
2 = Conditional R-Squared; 𝑅𝑚

2 = Marginal R-Squared 
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As predicted, the findings demonstrated that 2-Fusion had a significant negative effect on 

screening accuracy among non-cases (Estimate = -0.62, SE = 0.27, p = 0.02), suggesting that 

non-cases in this treatment condition were significantly less likely to be accurately differentiated 

from cases. The standardized effect size for 2-Fusion was -0.14 (95% CI [-0.32, 0.04]). 

Similarly, 5-Fusion demonstrated a negative effect on screening accuracy among non-cases; 

however, this was not statistically significant (Estimate = -0.29, SE = 0.23, p = 0.19), with a 

standardized effect size of -0.12 (95% CI [-0.30, 0.05]). 

For log-sensitivity, the model revealed significantly lower screening accuracy compared 

to log-specificity (Estimate = -0.69, SE = 0.34, p = 0.04). The standardized effect size for 

sensitivity indicator variable was -0.32 (95% CI [-0.62, -0.01]). Consistent with the research 

hypotheses, the interaction term between 2-Fusion and log-sensitivity displayed a positive effect 

on screening accuracy (Estimate = 0.89, SE = 0.52, p = 0.09); however, this did not reach 

statistical significance at an alpha threshold of .05. The standardized effect size for this 

interaction term was 0.16, with a 95% confidence interval of [-0.02, 0.35]. Similar to 2-Fusion, 

the interaction term between 5-Fusion and the sensitivity indicator variable was positive but non-

significant (Estimate = 0.14, SE = 0.39, p = 0.73). The standardized effect size for 5-Fusion’s 

interaction term was 0.03 (95% CI [-0.14, 0.20]). 

Model-predicted sensitivity and specificity values across the different conditions were 

generated using marginal effects to provide more interpretable values in describing ASPENS 

screening accuracy. For students in the BAU conditions, the predicted ASPENS sensitivity value 

was 0.59 (95% CI [0.42, 0.74]) and the predicted specificity was 0.81 (95% CI [0.72, 0.88]). For 

students assigned to 2-Fusion, the predicted sensitivity showed a moderate increase over BAU at 

0.64 (95% CI [0.51, 0.75]), with predicted specificity significantly lower at 0.73 (95% CI [0.64, 
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0.80]). Lastly, for students assigned to the 5-Fusion condition, the predicted sensitivity of 

ASPENS was similar to the BAU condition at 0.55 (95% CI [0.42, 0.67]), with predicted 

specificity between that of 2-Fusion and BAU conditions at 0.77 (95% CI [0.68, 0.83]). 

Predicted sensitivity and specificity values, including standardized coefficients for fixed effects, 

are summarized in Table 6. 

Research Question 2 

Model Selection 

Results from the concurrent models in this study indicated that no single model 

outperformed others across goodness of fit statistics. For instance, Model 1 excelled based on 

BIC, Model 2 exhibited the lowest AIC value, and Model 3 demonstrated the greatest R2 values 

(conditional and marginal). Though some interaction parameters suggested potential 

relationships between treatment conditions and sensitivity, all predictors were found to be non-

significant. Nonetheless, to properly contrast results with the predictive model results, Model 3 

was selected for further elaboration. Results for all concurrent models are summarized in Table 

6. 

Research Question 2 Results 

As illustrated in Table 6, the between-school variance for Model 3’s random intercept 

corresponding to log-specificity (non-cases) was estimated at 0.19, with a standard deviation of 

0.44. Between-school variance for the random slope associated with sensitivity (cases) was 

estimated at 0.55, with a standard deviation of 0.74. Random effects were much smaller 

compared to the predictive model, as evidenced by an ICC of .04 compared to .14. Similar to the 

predictive model, the correlation between the random intercept and random slope was -1.0.  
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The fixed effects for the concurrent model results indicate that 2-Fusion, yielded a non-

significant effect on ASPENS ability to accurately detect non-cases (Estimate = 0.08, p = .76). 

Similarly, the 5-Fusion demonstrated no significant impact on screening accuracy of non-cases. 

(Estimate = -0.02, p = .91). 

Among cases, the results suggest no significant difference in log-sensitivity compared to 

log-specificity (Estimate = 0.00, p = .99). When examining interaction terms, the interaction 

between 2-Fusion and the sensitivity indicator variable indicated that 2-Fusion effects were not 

significantly different among cases and non-cases (Estimate = 0.03, p = .96). The interaction 

between 5-Fusion and the sensitivity indicator variable was negative and most divergent from the 

magnitude of other parameter estimate but did meet the alpha threshold of .05 (Estimate = -0.71, 

p = .08). In summary, no fixed effects in the concurrent model were found to be significant at an 

alpha threshold of .05.  

To capture the functional variations in sensitivity and specificity, marginal effects were 

also calculated using exponentiated effect estimates and are included in Table 7. In the BAU 

condition, the predicted sensitivity from the concurrent model was .79 (95% CI: [.65, .88]), while 

the predicted specificity was .72 (95% CI: [.63, .80]). Among students assigned to 2-Fusion, the 

predicted sensitivity increased to .80 (95% CI: [.51, .75]) and the predicted specificity increased 

to .74 (95% CI: [.67, .79]). For students in the 5-Fusion condition, the predicted sensitivity was 

.64 (95% CI: [.53, .74]), with the predicted specificity at .72 (95% CI: [.65, .78]). 
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Table 6. 

Generalized linear mixed model results for concurrent sample 

 Model 1 Model 2 Model 3 Model 4 

 Coef. SE p Coef. SE p Coef. SE p Coef. SE p 

Fixed Effects             

Intercept, 𝛼 0.93 0.09 <0.001 0.98 0.44 <0.001 0.98 0.13 <0.001 1.59 0.73 .03 

Sensitivity, 𝛽1  .04 0.16 .89 -0.02 0.22 .91 0.00 0.23 .98 0.05 0.23 .83 

2-Fusion, 𝛽2  
      0.08 0.27 .76 0.08 0.27 .76 

5-Fusion, 𝛽3  
      -0.02 0.22 .91 -0.02 0.22 .91 

Sensitivity x 2-

Fusion, 𝛽4  
      0.03 0.56 .96 0.04 0.57 .83 

Sensitivity x 5-

Fusion, 𝛽5  
      -0.71 0.41 .08 -0.71 0.41 .94 

Mean 2-Fusion, 

𝛽6  
         0.17 1.35 .90 

Mean 5-Fusion, 𝛽7          -1.32 1.12 .24 

Random Effects Var. SD  Var. SD  Var. SD  Var. SD  

Intercept, 𝛼𝑗 0.01 0.12  0.19 0.44  0.19 0.44  0.17 0.41  

Sensitivity, 𝛽1𝑗     0.53 0.72  0.55 0.74  0.45 0.67  

Model Fit AIC BIC 𝑅𝑐
2/𝑅𝑚

2  AIC BIC 𝑅𝑐
2/𝑅𝑚

2  AIC BIC 𝑅𝑐
2/𝑅𝑚

2  AIC BIC 𝑅𝑐
2/𝑅𝑚

2  

 1032.43 1046.71 .00/.00 1029.75 1053.49 .05/.00 1030.79 1073.43 .06/.01 1033.14 1085.20 .06/.01 

Note. Coef. = Coefficient; SE = Standard Error; Var. = Variance; SD = Standard Deviation, AIC = Akaike Information Criteria; BIC = Bayesian Information 

Criteria; 𝑅𝑐
2 = Conditional R-Squared; 𝑅𝑚

2 = Marginal R-Squared 
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Table 7. 

Summary of effect sizes and predicted sensitivity and specificity values 

 Predictive Model Concurrent Model 

Parameter Std. Coef. 95% CI Std. Coef. 95% CI 

Sensitivity -0.32 [-0.62, -0.01] 0.00 [-0.20, 0.21] 

2-Fusion -0.14 [-0.32, 0.04] 0.04 [-0.15, 0.22] 

5-Fusion -0.12 [-0.30, 0.05] -0.12 [-0.29, 0.06] 

Sensitivity x 2-Fusion 0.16 [-0.02, 0.35] 0.01 [-0.19, 0.20] 

Sensitivity x 5-Fusion 0.03 [-0.14, 0.20] -0.16 [-0.34, 0.02] 

Condition Sensitivity Specificity Sensitivity Specificity 

BAU .59 [.42, .74] .81 [.72, .88] .79 [.65, .88] .72 [.63, .80] 

2-Fusion .64 [.51, .75] .73 [.64, .80] .80 [.71, .87] .74 [.67, .79] 

5-Fusion .55 [.42, .67] .77 [.68, .83] .64 [.53, .74] .72 [.65, .78] 

Note. Std. Coef. = Standardized coefficient. 
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IV: DISCUSSION 

Schools are inherently diverse contexts due to various school-level factors, such as 

instructional methods, resources, teacher-student ratios, among other characteristics. Moreover, 

educational environments reflect a rich ecological system of influences (Bronfenbrenner, 1977), 

all of which may exhibit impacts on students’ academic performance and growth during the 

school year. Despite these differences, universal cut-scores are often applied across schools 

based on presumed generalizability of their performance, potentially leading to an inaccurate 

assessment of students' needs and the inefficient allocation of resources should this notion of 

generalizability be erroneous. 

Conventionally, academic screening tools are designed to predict student outcomes over 

time, such as in the case of a BOY screening tool predicting EOY performance. However, this 

approach introduces an opportunity for influence from the treatment paradox – a phenomenon 

that arises when lag time occurs between the administration of the screener and criterion 

measure. During this lag time, interventions are commonly conducted on the basis of screening 

results that presumably alter students’ outcomes. In such cases, reflective evaluations of the 

diagnostic accuracy of screening measures can result in an over- or underestimation of a 

screener's effectiveness, because the intervention is intended to alter students' performance 

trajectories and can thereby skew the observed results of the screening assessment. 

The purpose of this study was to conduct a more thorough investigation of this 

phenomenon in the context of early numeracy CBM screening accuracy across various 

instructional contexts within a RCT study for the Fusion Math intervention. This RCT study 

represented a context in which instruction was manipulated through random assignment, and 
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different lag times between the screener and criterion measure could be compared. The present 

study’s secondary analysis of the RCT results aimed to identify vulnerabilities and and 

investigate potential areas for improvement in universal screening measures and their 

accompanying cut-scores for MTSS decision-making. 

Research Question 1: Heterogeneity in Predictive Screening Accuracy 

The results of this study revealed that ASPENS screening accuracy differed between the 

three treatment groups (i.e., BAU, 2-Fusion, and 5-Fusion), as evidenced by patterns in 

descriptive statistics, results from the GLMM, and model-estimated sensitivity and specificity 

values. Despite comparable pre-test scores across the three conditions, 2-Fusion students had the 

highest mean scores on both ASPENS and TEMA-3, indicating greater gains compared to the 5-

Fusion and BAU groups. These patterns are consistent with Clarke et al. (2022), who found that 

the greatest academic gains were found among students receiving 2-Fusion. Considering 

intervention-dependent changes in ASPENS screening accuracy are moderated by the 

intervention’s efficacy, these results must be considered when reflecting on the findings of this 

study.   

Specificity 

Based on the results from the GLMM model, ASPENS screening accuracy for non-cases 

systematically varied across the Fusion Math Intervention conditions when compared to the 

BAU condition. However, based on Satterthwaite p-approximations, only 2-Fusion exhibited a 

significant effect (p = .04). Findings were consistent with the hypothesis that differences in 

screening accuracy would be more dramatic for non-cases (i.e., specificity), and that differences 

would be most evident within the 2-Fusion condition. In short, non-cases (i.e., scoring above the 

20th percentile on the EOY TEMA-3) in the 2-Fusion condition were more likely to be falsely 
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categorized as “at-risk” based on their BOY ASPENS screening assessment. Whether these 

students indeed constitute false positive errors or represent instances of positive risk migration 

will be explored in the subsequent section. Nonetheless, an agnostic review of ASPENS 

misclassification errors found that they translated to an estimated specificity value of .73 (95% 

CI [.64, .80]) for the 2-Fusion group compared to .81 (95% CI [.72, .88]) in the BAU condition. 

Estimated specificity for the 5-Fusion condition fell in between the 2-Fusion and BAU condition 

at .77 (95% CI [.64, .80]), suggesting that it exhibited a similar influence on the latent math 

abilities of students as 2-Fusion, but was not as disruptive to students’ performance trajectories 

to be meaningfully divergent from the BAU condition. However, were these values to be 

interpreted as part of an evaluation of ASPENS screening accuracy, such as for the National 

Center for Intensive Intervention’s Academic Screening Tools Chart (NCII, 2020), ASPENS cut-

scores would be found to perform below NCII’s acceptable specificity standards of .80 in both 

Fusion groups yet would meet acceptable performance within the BAU condition. 

 Sensitivity 

It was hypothesized that the Fusion intervention conditions would also demonstrate some 

influence on sensitivity, but differences would not be as prominent compared to specificity. 

Because risk migration errors in sensitivity result from students experiencing a decline in their 

skills relative to the normal distribution, the Fusion intervention was expected to serve as a 

protective factor against negative risk migration by maintaining or bolstering students’ skills and 

preventing normative declines. However, the scope to which this protective influence 

meaningfully moderates sensitivity values would be more dependent on the prevalence of 

negative risk migration among the BAU condition. For example, if negative risk migration is not 

prevalent in the BAU condition, this protective influence would be unable to translate to 
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significant differences between the BAU and intervention groups in this sample, as there would 

not be enough instances for Fusion to “avert.” Nonetheless, the Fusion conditions were expected 

to produce slightly higher sensitivity values due to fewer instances of negative risk migration, 

but that these would not be in sufficient frequency among the BAU condition to translate to 

meaningful variations in sensitivity.  

As hypothesized, results from the concurrent GLMM found that 2-Fusion and 5-Fusion 

showed a positive effect on ASPENS screening accuracy among cases. However, these values 

were not statistically significant based on Satterthwaite p-value approximations. Similar to the 

findings for specificity, 2-Fusion exhibited the greatest difference in screening accuracy 

compared to the BAU condition (Estimate = 0.89, SE = 0.52, p = 0.09).  

In general, model-predicted sensitivity values demonstrated similar variability across 

conditions to specificity, but not necessarily as anticipated. The 5-Fusion condition demonstrated 

the lowest sensitivity at .55 (95% CI [.42, .67]) and 2-Fusion had the highest sensitivity value at 

.64 (95% CI [.51, .75]). Predicted sensitivity for the BAU condition was .59 (95% CI [.42, .74]). 

Interestingly, it was unexpected for both the variance in sensitivity values across conditions to be 

similar to specificity and for 5-Fusion to demonstrate the lowest predicted sensitivity value. 

Notably, the classifications within a 2x2 confusion matrix that contribute to strongly 

dictate differences in sensitivity (i.e., false negatives) represent the smallest cell counts for each 

condition. Furthermore, standard errors of the model coefficients related to sensitivity for 

noticeably higher than for specificity. Thus, the absence of significant coefficient estimates at an 

alpha threshold of .05, larger standard errors of the estimates, and smaller cell counts suggest that 

these patterns should be interpreted with caution.  
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Evidence for Positive and Negative Risk Migration 

The concepts of positive and negative risk migration may play a critical role in 

understanding variability in screening accuracy across instruction and intervention conditions, as 

the lag time in predictive models permits true changes in students' academic performance 

between the administrations of the screening and criterion assessment. The RCT design of the 

Fusion efficacy study, and the fact that intervention assignment occurred at the student level 

nested within schools, enabled the examination of the influence of quality and format of 

instruction for their role in this phenomenon. Indeed, both forms of risk migration can be 

influenced by factors such as the quality of core instruction, supplemental supports, curricular 

alignment, individual fluctuations in development or academic growth, and various other 

contextual variables. However, this study hypothesized that randomized assignment to the 

Fusion intervention or the BAU condition would most likely moderate occurrences of positive 

risk migration such that Fusion conditions would result in higher incidence of false positives, 

translating to observed variations in specificity. Variations in sensitivity were less expected due 

to the RCT study design in which students were exposed to the same core instruction and thus 

systematic variations in negative risk migration were less likely to be evident across the 

independent variables included in the model (i.e., Fusion Math vs. BAU). 

To review the concepts put forth in this study, risk migration refers to transitions between 

categories (e.g., typical-achievement population, academic-difficulty population) that are not 

attributable to measurement error but instead result from environmental efforts to alter the 

category an individual belongs to. Naturally, these categories may be contrived, such as in the 

case of this study, wherein academic difficulty was defined as performance below the 20th 

percentile. It is important to recognize that some risk migration can be expected as an inherent 
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consequence of dichotomizing continuums that are not stable over time, such distributions of 

academic performance. By adopting fixed cut-points for an unstable continuum, some 

individuals will naturally drift across cut-points over time with little true change in their ability. 

However, the underlying assumption made in the current interpretation is that students’ position 

within the normative distribution has differentially shifted across conditions between the 

ASPENS and TEMA-3 administrations. 

To further inform the tenability of this assumption, Table 4 helps to illuminate 

differences in performance among students who were misclassified by ASPENS. Among 

positive non-cases (FP) in the predictive sample, the 2-Fusion condition had a meaningfully 

lower mean ASPENS score (M = 11.77) compared to the BAU condition (M = 14.16) and the 5-

Fusion condition (M = 13.44), as illustrated in Table 4. This lower mean value for the 2-Fusion 

group suggests that students within the 2-Fusion intervention experienced greater improvement 

in their math performance. In other words, lower mean scores on the ASPENS among non-cases 

indicates that students met the threshold for typical achievement (i.e., scoring above the 20th 

percentile on TEMA-3) despite lower pretest performance on the ASPENS. This pattern suggests 

further indication of positive risk migration. That is, students with lower ASPENS scores 

migrated from the at-risk population to the typical-achievement population ostensibly due to the 

intervention's influence, effectually broadening the feasibility of attaining typical achievement by 

EOY into lower distributional regions of the screening tool at BOY. Consequently, greater 

propensities for positive risk migration would theoretically possess an inverse association with 

the average scores of FPs on the screening assessment within the most intensive instructional 

group, as was observed in the data. 
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Additionally, when analyzing the negative cases (FN) in the predictive sample, the lower 

mean values observed in the 2-Fusion (M = 22.46) and 5-Fusion (M = 24.79) conditions, as 

compared to the BAU condition (M = 26.00), hint at the potential success of the 2-Fusion and 5-

Fusion interventions in mitigating negative risk migration. Recall that negative risk migration 

refers to the phenomenon where students transition from the typical achievement population to 

the at-risk population. The observed lower mean values for FNs in the intervention conditions 

suggest that they may have helped students to maintain their academic performance by averting a 

decline in their performance relative to the BAU condition. Similar to the Will Rogers 

phenomenon, or stage migration bias (Howard, 2019), reclassification of individuals between 

groups can produce increases in mean values of both groups. In the context of this study, when 

students from the typical achievement population undergo negative risk migration into the at-risk 

population, the mean performance in the at-risk group can increase as it gains students who, 

although struggling, are likely performing better than its existing members. It remains unclear 

why sensitivity was lowest in the 5-Fusion condition despite adhering to this expected pattern in 

the descriptive data. However, the most likely explanation is that the suppressive effect of 5-

Fusion on negative risk migration, while possibly suggested in the descriptive results, was not 

sufficient to manifest in sensitivity and overcome random sampling variability, as substantiated 

in the model results.  

Lastly, it is important to note that while these descriptive results highlight patterns 

suggestive of the potential presence of risk migration, they only serve as symptoms or trends 

related to these phenomena, rather than direct evidence. 
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Research Question 2: Reductions in Heterogeneity in Concurrent Administrations 

Research Question 2 investigated the extent to which heterogeneity in screening accuracy 

could be mitigated when ASPENS and TEMA-3 were administered concurrently, rather than at 

different times of the year (i.e., BOY vs. EOY). This analysis attempted to provide insights into 

the role of temporal factors in mediating the influence of measured and unmeasured variables on 

ASPENS screening accuracy. Premised on the notion that the temporal relationship between the 

screening and criterion assessment is an important contributor to variability in screening 

accuracy, it was hypothesized that any notable variations across treatment conditions observed in 

the predictive ASPENS administration would be nullified with concurrent administrations.  

Indeed, the concurrent model demonstrated a noteworthy reduction in heterogeneity 

across schools and treatment conditions compared to the predictive model. The amount of 

variance in sensitivity and specificity fell from .14 for the predictive model to .05 for the 

concurrent model, suggesting less variability in screening accuracy was attributable to 

unobserved school-level effects. Differences in sensitivity and specificity were also less 

pronounced between treatment conditions in the concurrent assessment models. Results from the 

concurrent GLMM found the effects of 2-Fusion and 5-Fusion on screening accuracy were non-

significant for both cases and non-cases, as assessed using Satterthwaite p-value approximations. 

With concurrent administrations of the ASPENS and TEMA-3, specificity values 

exhibited only minor fluctuations between treatment conditions. Both the BAU condition and 5-

Fusion produced specificity values of .72, with 2-Fusion demonstrating a modest improvement at 

.74 (95% CI [.67, .79]). Predicted sensitivity values were similarly consistent between 2-Fusion 

and BAU conditions, as indicated by sensitivities of .80 (95% CI [.51, .75]) and .79 (95% CI 

[.65, .88]), respectively. Notably, the predicted sensitivity of the 5-Fusion condition was lower at 
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.64 (95% CI [.53, .74]), though not significantly so. Nonetheless, in the absence of statistically 

significant model coefficients, these differences in sensitivity must be interpreted with caution.  

Relevance to Field 

Building on research that has reported poor generalizability of screening tool cut-scores 

across educational settings (Klingbeil et al., 2015, 2018, 2021, 2022; Hintze et al., 2003; Johnson 

et al., 2009), this study is one of the first to directly model the repercussions of poor 

generalizability and offer a more detailed explanation for one source of poor generalizability: 

heightened positive risk migration following the provision of more effective instruction. 

Contrary to historical assertions about the applicability of certain diagnostic accuracy indices in 

universal screening practices (Johnson et al., 2009; Petscher et al., 2011a; Van Norman et al., 

2016; Vanderheyden, 2011), the current findings revealed that the specificity of an early 

numeracy screening tool covaried with instructional conditions after accounting for other school-

level factors. Importantly, these findings likely extend to other assessments and highlight a 

vulnerability that is not theoretically unique to the screening tool studied here. Taken together, 

the outcomes of this study show that the concepts of positive and negative risk migration indeed 

hold explanatory power and relevance within real-world educational settings, where changes in 

students' abilities are subjected to influence by factors including the quality of core instruction, 

curricular alignment, provision of supplemental supports, individual fluctuations in development 

or academic growth, and a host of other contextual variables. 

The predominance of prognostic screening frameworks, which often rely on EOY 

measures as criteria for all screening periods, permits such educational factors the opportunity to 

influence students’ trajectories, thereby introducing sample-specific biases which can be 

misinterpreted as screening tool error. Thus, it is critical to recognize the potential influences of 
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positive and negative risk migration when interpreting screening assessment results and 

evaluating the accuracy of screening instruments from both psychometric and practical 

perspectives. 

Observed inconsistencies in the accuracy of screening assessments when using publisher-

recommended cut-scores across different school settings have prompted some calls for local 

validation in ensuring the efficacy of such tools (Keller-Margulis et al., 2008; Klingbeil et al., 

2012, 2022; Nelson et al., 2017; Patton et al., 2014; Thomas & January, 2019). Indeed studies 

have shown that adhering to a single nationwide cut-score may lead to imbalances and 

inadequate screening accuracy in both mathematics and reading (Klingbeil et al., 2015, 2018, 

2021; Hintze et al., 2003; Johnson et al., 2009). Thus, researchers and educators should 

thoroughly consider the use of local cut-scores tailored to the specific characteristics and needs 

of their student population. However, this study highlights one shortcoming that would remain 

unresolved. That is, the process of determining cut-scores within a prognostic screening 

framework still misattributes positive and negative risk migration to screening tool inaccuracies, 

even if the validation sample is better aligned with the local context for its intended use. For 

example, were the 2-Fusion sample to be utilized to identify a cut-score that minimizes screening 

error, conventional methods would retrospectively attempt to avert using scores that had 

previously identified students in the FP category as “at-risk” on the screening tool. 

Consequently, in the future, students that underwent positive risk migration after receiving 2-

Fusion would likely not have been candidates for the intervention under a newly “calibrated” 

cut-score. Furthermore, students with similar scores in the future may indeed present as FNs, 

since the new selection process failed to previously account for the influence of positive risk 

migration, disallowing students of the supports necessary for them to exceed the threshold for 
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academic difficulty by EOY. Theoretically, were these dynamics to be illustrated through 

simulated cut-score calibrations based on sensitivity and specificity values, with randomly 

varying intervention effects applied to students falling below the new cut-score, researchers 

would likely see patterns of reactive increases and decreases due to these misjudgments about the 

nature of screening errors. 

Considerations to Improve Generalizability 

 As expected, use of a concurrent screening model resulted in less heterogeneity in 

screening accuracy and mitigated the treatment effects of the intervention observed in a 

predictive model, given that concurrent administrations precluded the theoretical ability for risk 

migration to occur. While the use of EOY screening tools is commonplace (Glover & Albers, 

2007; Vanderheyden et al., 2018), most screening assessments remain anchored to an EOY 

criterion at all timepoints (Smolkowski & Cummings, 2015), and significant emphasis is placed 

on the use of screening tools for forecasting student outcomes (Ball & O’Connor, 2016; Chard et 

al., 2008; Petscher et al., 2011; Roehrig et al., 2008; Yeo, 2010). Until relatively recently, NCII 

required screening tools to implement a lag time of at least three months with their criterion 

measure as a prerequisite to their evaluation process (NCII, 2018), thus entrenching prognostic 

models into the validation history of existing tools. Going forward, a potential remedy to the 

issues raised by Research Question 1 is to reconsider the use of prognostic screening approaches 

and expand the use of concurrent models, which are often already implicitly in use for EOY 

screening assessments. By reducing lag time between the administration of the screener and 

criterion measure, decision-making may be less biased by sample characteristics that moderate 

growth over time, such as instructional quality.  
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The adoption of a concurrent screening model entails focusing more on evaluating 

students’ status at a single moment in time, rather than predicting future status based on 

undefined assumptions about the instructional supports provided during that time. Thus, brief 

screening assessments’ psychometric evidence could be anchored to more comprehensive 

criterion measures appropriate for students’ developmental stage in math and reading. 

Interpretively, screening results would then describe students expected performance status were a 

more extensive assessment administered.  

Admittedly, fully adopting a concurrent screening model presents challenges, as 

identifying appropriate definitions of proficiency at each screening period implicates more 

judgements and would need to be done thoughtfully. This process should aim to identify 

benchmarks that would be less reliant on predictive assumptions that do not generalize across 

educational settings. Alternatively, it may be feasible to explore methods within a prognostic 

framework that appropriately compensate for contextual factors, such as the use of correction 

factors or other analytic approaches that help ensure that cut-score selection is not unduly 

influenced by biases attributable to risk migration. 

Importantly, advocating for a concurrent screening framework does not invalidate or 

discount the utility of predictive analyses, nor the process of forecasting student trajectories. 

However, these activities may be better relegated to other contexts such as research or systems-

level evaluations, where precision may not be as consequential to the decision-making for 

individual students. 

Limitations 

This study has several limitations that should be considered when interpreting its 

findings. First, due to differences in BOY screening dates, the BOY and MOY ASPENS cut 
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scores were applied to cohorts depending on assessment date. That is, as noted in the Methods 

section, some cohorts were assessed sufficiently late in the Fall that administration dates 

occurred much closer to the MOY assessment period than BOY period. As a result, cut scores for 

the most proximal screening period were applied to each cohort. Consequently, the predictive 

model does not characterize the screening accuracy of a single ASPENS cut-score, but rather 

represents a blend of the BOY and MOY cut-score.  

In addition, the current study did not control for intervention fidelity, which could have 

led to variations in the delivery and quality of the Fusion implementation. Clarke et al., (2022) 

reported in their analyses of a subset of participating schools that 2-Fusion groups demonstrated 

greater total fidelity (g = 0.25) than 5-Fusion groups. Additionally, 2-Fusion groups were rated 

higher by trained observers on meeting instructional objectives, use of prescribed models, 

frequency of teaching activities, and adherence to scripting. Differences in implementation 

fidelity may have contributed to the greater differences in screening accuracy found among the 

2-Fusion than the 5-Fusion group. If intervention fidelity data or other measures of instructional 

characteristics were available for all participating groups, it could offer clearer insight into 

differences between 2-Fusion and 5-Fusion effects and whether they are attributable to intensity 

as defined by group size, by fidelity, or both. Intervention fidelity was not explored as a 

moderator in the current study to leverage the maximum sample size because fidelity was not 

measured in all schools.   

Lastly, the current study focused only on positive and negative risk migration only as 

related to early numeracy skills in a single study. Furthermore, this study investigated one 

definitional threshold for academic difficulty on a single criterion measure (i.e., TEMA-3). It is 

unclear how the use of different screening and criterion measures may have altered current 
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findings. Thus, there is need for more extensive research in this area, both within the context of 

early mathematics screening and intervention, with other academic domains (e.g., reading, 

writing), and with multiple criterion measures. 

Future Directions 

Further investigation into heterogeneity in screening accuracy, including the influence of 

both student- and school-level factors, can help build a deeper understanding of how early 

screening assessments function across various settings. Such information is necessary not only 

for measure development and refinement, but to accurately communicate their practical utility to 

consumers (i.e., educators), and support informed decision-making as it relates to individual 

students, resource allocation, and systems-level evaluations. 

 In pursuit of these goals, the present study represents the first application of a generalized 

linear mixed model (GLMM) in educational research to jointly model sensitivity and specificity 

using participant-level data. This methodology was adapted from individual participant data 

meta-analytic (IPD-MA) techniques, which have become central in the synthesis of modern 

healthcare research and have been bolstered by the open-science movement (Macaskill et al., 

2010; Riley et al., 2021). The use of IPD-MA has historically been challenging across research 

contexts, as it requires individual-level data from each unit in the meta-analysis. However, as 

demonstrated, the analytic methods can be leveraged effectively to account for the nesting 

structures encountered in educational research. The use of the analytic methods adopted in this 

study, as well as others from IPD-MA research such as hierarchal summary receiver operating 

characteristic (HSROC; (Harbord et al., 2008; Rutter & Gatsonis, 2001) models, offers the 

opportunity for educational researchers to explore many more research questions related to 

screening accuracy. 
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 In particular, accounts of variability cut-score performance remain prevalent in the 

literature (e.g., Klingbeil et al., 2012, 2022; Hintze et al., 2003), but research exploring and 

accounting for this variability remains is limited. Opportunities for further investigation include 

applying HSROC models to examine heterogeneity in screening performance across all cut-

scores, exploring the influence of other measurable school-level factors on cut-score 

performance such as the base rate of academic difficulties (i.e., spectrum effects), and 

investigating how patterns in heterogeneity manifest across different measurement tools. This 

information would be useful not only for refining the development of universal screening tools, 

but also establishing a better understanding of their appropriate uses and misuses in student and 

systems-level decision-making. 

Implications for practice 

The findings of this study suggests that evaluations of screening accuracy, such as what is 

currently depicted in the NCII screening tools chart (NCII, 2018) should be interpreted as 

estimates across a particular aggregated sample rather than a true summary of screening accuracy 

that is directly generalizable to consumers. That is, current validation procedures summarize 

classification accuracy within the context of a study sample, not at the student- or school-level 

where decisions are applied. These shortcomings primarily become a concern if accuracy indices 

express variability across student and school contexts, which was identified in this study when 

lag time occurs between the screening and criterion assessment.  

Additionally, consumers may consider more carefully applying scrutiny to the normative 

representation of screening validation samples, as is done to establish other psychometrics such 

as percentile ranks. Notably, to generalize the accuracy of predictions, requests for more 

information about sample characteristics particularly regarding the school contexts, in addition to 
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demographic characteristics of the student themselves. Nonetheless, there is some evidence for 

inconsistencies in predictive validity for early literacy tools across student-level demographic 

features (Hosp et al., 2011). 

Lastly, educators are discouraged from establishing local cut scores without an 

accompanying process to review misclassifications and rule out positive and negative risk 

migration. For example, if schools want to pursue predictive cut scores, progress monitoring data 

could be reviewed to determine whether FPs were in fact instances of response to intervention. 

Characteristic features of positive risk migration would likely include: a) low performance at 

initial screening, b) responsive provision of supplemental instructional supports, c) and above 

average growth in progress monitoring data that coincided with the intervention’s onset. 

Conversely, occurrences of negative risk migration would likely be more difficult to identify 

since progress monitoring would be unavailable due to being “missed” by the screener. 

However, educators could suspect negative risk migration to manifest where divergences in the 

quality of core instruction occur, such as across classrooms within a school or schools within a 

district. If there is a higher density of FNs in a particular classroom or school, it would be likely 

that lower rates of academic growth in that setting prompted occurrences of negative risk 

migration rather than suggesting a miscalibrated cut-score across the entire system. 

If patterns in FPs or FNs do show evidence of risk migration, they should be considered 

as accurate predictive identifications when determining appropriate cut scores for a particular 

school or district because students migrated presumably due to response to intervention.  

Nonetheless, educators should still be aware of the close relationship that exists between 

screening predictions and instructional contexts, which may drift as practices change over time. 

Factors such as staffing, student demographics, curricula, and other school features will 
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inevitably shift, altering the assumptions underlying any forecasts made about student 

trajectories and risk of academic difficulties in a particular setting. 

Conclusion 

The current study posited that commonly used indices of predictive accuracy for early 

academic screening instruments and their accompanying cut scores is more context-dependent 

than commonly thought. Two phenomena were defined as mechanisms for this variability – 

positive risk migration and negative risk migration. These terms were used to describe the 

concepts of students moving across an established threshold for academic difficulty due to 

instructional influences, whereupon students either move from the typical achievement 

population to the academic difficulty population due to inadequate growth (i.e., negative risk 

migration), or start the year in the academic difficulty population but demonstrate sufficient 

academic growth to enter the typical achievement population by the end of the year. 

To highlight the practical implications of migration and its effects on predictive accuracy, 

this study conducted a secondary analysis of a math intervention RCT study with the hypothesis 

that its randomized assignment to intervention conditions would accentuate instances of positive 

risk migration, such that meaningful differences in specificity would manifest in predictive 

accuracy for the screening measure used. Indeed, systematic variation in specificity was 

observed as hypothesized among students assigned to the most intensive intervention condition 

compared to a BAU condition. Furthermore, these differences in specificity no longer manifested 

when the screening measure was administered concurrently with its criterion measure post-

intervention, meaning that instruction was not manipulated during a time lag in between the 

administration of the screening and criterion assessments. 
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Consequently, researchers and educators are encouraged to exercise more caution when 

interpreting cut score performance relative to specific settings. Arguably, within the context of 

MTSS with evidence of response to intervention, whether experimental or not, it would be 

inappropriate to consider students who underwent positive or negative risk migration as 

misclassifications on the screening assessment because these students underwent a genuine 

change in status due to intervention.  

Before the widespread adoption of MTSS systems, the phenomena of positive and 

negative risk migration may not have been as pronounced. However, educators’ now ubiquitous 

and concerted efforts to intervene and alter predicted trajectories, through the use of screening 

data and evidence-based interventions, makes it increasingly untenable to ignore these as 

contextual factors when validating screening tools. Nonetheless, current practice in screening 

validation still considers such students as misclassifications and must continue to do so until 

procedures are established account for them. Thus, measure developers and consumers are urged 

to advocate for better specification of the instructional conditions under which screening 

accuracy is determined. Regardless, setting intervention effects aside, screening accuracy 

showed much greater variability across schools for predictive screening accuracy than for 

concurrent screening accuracy, suggesting the field may benefit from less confusion regarding 

false positives were a concurrent approach to cut-score selection to be adopted. More research is 

necessary to determine the measurable impact of positive and negative risk migration on 

screening accuracy variability for other assessment tools and academic domains, as well as how 

to appropriately account for these phenomena when setting predictive cut scores and evaluating 

them. 
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