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DISSERTATION ABSTRACT

Isam Daniel Moore

Doctor of Philosophy

Department of Physics

June 2023

Title: Easy on the Ions: Photon Scattering Errors from Far-Detuned Raman Beams
in Trapped-Ion Qubits

The viability of quantum computers depends on the development of scalable

platforms with low error rates. Our ”Oregon Ions” group has studied one such

scalable architecture proposal including the limitations placed on logic gate fidelity

by photon scattering. We studied spontaneous Raman scattering-induced errors

in stimulated Raman laser beam-driven logic gates in metastable- and ground-

manifold-encoded qubits. For certain parameter regimes, we found that previous,

simplified models of the process significantly overestimated the gate error rate

due to spontaneous photon scattering. We developed an improved model, which

shows that there is no fundamental lower limit on gate error due to spontaneous

photon scattering for electronic ground state qubits in commonly-used trapped-

ion species when the Raman laser beams are red detuned from the main optical

transition. Additionally, spontaneous photon scattering errors are studied for

qubits encoded in a metastable D5/2 manifold, showing that gate errors below 10−4
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are achievable for all commonly used trapped ions. Furthermore, we extended this

theory from hyperfine to Zeeman qubits and we measured scattering rates from

far-detuned Raman beams in a metastable D5/2 Zeeman qubits in 40Ca+, obtaining

results that matched theoretical expectations. Finally, we present progress towards

implementing a two-qubit Mølmer-Sørensen gate with these Raman beams in

trapped 40Ca+ ions.

This dissertation contains previously published and unpublished material.
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CHAPTER I

INTRODUCTION

1.1. Theory of ion trap quantum computing

1.1.1. Earnshaw’s Theorem and the Ion Trap Potential

If asked how to trap a charged particle, you might initially think an

appropriately chosen static electric field will suffice. However, it is not possible

to trap charged particles using static electric fields only. This result is known as

Earnshaw’s Theorem. It is simple to demonstrate: the charged particle needs to be

confined in free space in the presence of an electric field sink, i.e., a point where

the electric force field’s divergence is negative (for a positively-charged particle).

However, this contradicts Gauss’ law. The divergence of an electric force field F

arising from electric potential U in free space is, by Laplace’s equation,

∇ · F = ∇ · (∇U) = ∇2U = 0 (1.1)

where the last step is due to Gauss’ law. This means that we need an

electrodynamic interaction to trap a charged particle. There are many ways to

generate such an interaction, but in our group, we use a linear Paul trap.

1.1.2. Linear Paul Traps and the Mathieu Equations

A linear Paul trap Paul and Steinwedel, 1953 often consists of a pair of

rf electrodes, a pair of ground electrodes, and a pair of dc endcap electrodes

Figure 3.1. The rf electric field null line defines the “trap axis” (for our trap,

1



this is roughly the vector between the endcap electrodes). The rf electrodes (’rod’

electrodes) run parallel to this axis. While the endcap electrodes have a static

potential, two of the rod electrodes have rf signals applied to them with the

other pair being connected to ground. This generates an oscillating quadrupole

electric field and lets us get around Earnshaw’s theorem. Along with the on-axis

confinement provided by the dc endcaps, this creates a ponderomotive confining

potential in 3D.

1.2. Transitions Between Energy Levels in Trapped Ions

A quantum computer requires quantum logic gates. When working with

trapped ions, our gates physically amount to driving transitions between the qubit

states, which are encoded in some energy levels. There are many such transitions,

such as magnetic dipole (M1), electric dipole (E1), and electric quadrupole (E2)

transitions. Although we use other transitions in the lab (such as M1), this work

focuses primarily on E1 transitions. For that reason, in this section, I will discuss

how we can change an ion’s energy by coupling to such E1 transitions.

1.2.1. Stimulated Raman Transitions

Stimulated Raman transitions are a common method for inducing E1

transitions. Here I will explain the mechanism behind Raman transitions, as well

as give a theoretical description of a single-qubit gate and a two-qubit gate that we

have implemented in the lab.

Consider a three level “Λ” system as in Figure 1.1, with one excited state |e⟩

and two lower lying states |1⟩ and |2⟩. We can couple the low-lying states to the

excited state via the electric dipole coupling by applying laser beams to the ion.
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The strength of this coupling can be characterized by the ‘Rabi frequency’ Ωg. The

Rabi frequency is defined as

Ωg =
E ⟨e| d⃗ · Eϵ̂ |g⟩

ℏ
, (1.2)

where E is the peak electric field amplitude, ϵ̂ is the polarization direction of the

beam, and g = 1, 2 indexes the lower states.

FIGURE 1.1. Schematic of a stimulated Raman transition between states |1⟩ and
|2⟩ via the excited state |e⟩.

To understand stimulated Raman transitions in this system, we need to

study the Hamiltonian governing their dynamics:

H =
1

2
Ω1e

iϕ1eik1·r−iδ1t |e⟩ ⟨1|+ 1

2
Ω2e

iϕ2eik2·r−iδ2t |e⟩ ⟨2|+ h.c. (1.3)

Following the discussion in Ballance, 2014, we note that if Ω1 ≪ δ1 and

Ω2 ≪ δ2, then there will be largely no population transfer out of states |1⟩ and

3



|2⟩. If, however, δ = |δ1 − δ2| ≪ δ1, δ2, then we can apply the James-Jerke

approximation James and Jerke, 2007:

H =
Ω1

4δ1
(|1⟩ ⟨1| − |e⟩ ⟨e|) +

Ω2

4δ2
(|2⟩ ⟨2| − |e⟩ ⟨e|) +

Ω1Ω2

4∆

(
eiϕei∆k−iδt |2⟩ ⟨1|+ h.c.

)
,

(1.4)

where ϕ = ϕ1 − ϕ2 and 1
∆

= 1
2
( 1
δ1
− 1

δ2
). Final term of Eqn. 1.4 generates a

coupling between states |1⟩ and |2⟩ through a two-photon emission process. This is

a stimulated Raman transition.

1.3. Laser Cooling in Ion Traps

1.3.1. Doppler Cooling

Simply creating a potential well to confine the ion does not mean it

will stay there. If the ion has sufficient kinetic energy, it can escape the trap.

Therefore to keep the ion trapped, we need to keep it cool. We do this by Doppler

cooling D. J. Wineland, Drullinger and Walls, 1978 and Neuhauser et al., 1978.

Consider a trapped ion which has an electronic transition of frequency

ω0. We can implement Doppler cooling by applying a laser beam tuned red

of this transition, i.e., we apply a laser with frequency ωL = ω0 − ∆, where

∆ is the detuning of the laser beam. Since the ion will be oscillating about its

equilibrium position, the frequency of the laser light experienced by the ion will be

Doppler-shifted. This implies that the transition will be driven more strongly, and

therefore that the ion will preferentially absorb a photon, when the ion is moving

towards the laser beam. In such a case, the ion will lose momentum since it is

traveling opposite the direction of the beam. On average, then, the atom will lose

4



momentum when it absorbs photons. When it later emits this absorbed photon,

it will do so in some random direction. The average change in momentum from

emission is therefore zero. So on net, the laser will cool the ion.

There are limits to this process, of course. You cannot bring the ion to a

standstill. The average emission event does not reduce the ion’s momentum,

but it does change its kinetic energy by ℏ2k2/2m, where k is the transition

wavenumber and m is the ion mass. This may seem contradictory, but it is a

simple consequence of the fact that the velocity averages to zero, but the square

of the velocity does not. So Doppler cooling clearly cannot reduce the ion’s

kinetic energy below the single photon recoil kinetic energy. However, since the

actual equilibrium will be achieved when the heating and cooling rates of the

competing processes are equal, the true limit is somewhat different (and higher):

it is ℏγ/2kB, where γ is the linewidth of the transition and kB is the Boltzmann

constant Letokhov, Minogin and Pavlik, 1977. For certain applications (such as

two qubit gates), it is desirable to be closer to the motional ground state than the

Doppler limit will allow. Fortunately, we are able to beat the Doppler limit by

implementing resolved sideband cooling.

1.3.2. Resolved Sideband Cooling

Resolved sideband cooling is a standard technique in ion trapping Monroe

et al., 1995, Eschner et al., 2003. To understand the mechanism behind this

method, consider a trapped ion with motional frequency ωm. Suppose a laser

beam of frequency ωL is driving an atomic transition of frequency ω0 in this

ion. As a function of ωL, the atomic emission spectrum will have a transition at

ω0, as well as many transitions separated from the strong transition by integer

5



multiples of ωm. The strong transition is referred to as the ‘carrier’ and the weaker

transitions are referred to as the ‘sidebands’. Physically, these transitions are

allowed by emitting a photon and simultaneously absorbing/emitting some number

of motional phonons.

These sideband transitions can be exploited to cool the ion. By setting the

laser frequency to ωL = ω0 − ωm, the ion will become electronically excited most

often when it simultaneously loses a phonon. When coupled with a mechanism for

repumping back to the initial state, this cools the ion down. However, the photons

emitted from this repumping will kick the ion, which causes heating. This issue

can be avoided by operating in the Lamb-Dicke regime.

1.3.3. Lamb-Dicke Regime

The Lamb-Dicke regime is characterized by a weak coupling between the

ion’s atomic and motional states D. Wineland et al., 1998. Mathematically, the

condition to be in the Lamb-Dicke regime is given by

√
⟨Ψm| k2zz2 |Ψm⟩ ≪ 1 (1.5)

where |Ψm⟩ is the motional wavefunction, z is the distance away from the ion’s

equilibrium position operator along the axis of interest, and kz is the z-component

of the laser’s wavevector. To better understand the inequality 1.5, we begin by

expressing the operator ẑ as

ẑ =

√
ℏ

2miωm

(a+ a†) (1.6)

6



where mi is the ion’s mass, and a and a† are the ladder operators which,

respectively, lower or raise the photon number of photon number eigenstates |n⟩

(Fock states). If we assume we are in a Fock state |n⟩, then the inequality 1.5 may

be written

√
⟨Ψm| k2zz2 |Ψm⟩ =

√
ℏk2z

2miωm

⟨Ψm| (a+ a†)2 |Ψm⟩ =

√
ℏk2z

2miωm

(2n+ 1) (1.7)

=
√
η2(2n+ 1)≪ 1 (1.8)

where we have defined the ‘Lamb-Dicke parameter’ η as
√

ℏk2z/2miωm.

Fundamentally, this requirement just says that a small Lamb-Dicke parameter is

needed to be in the Lamb-Dicke regime. The physical meaning of this is that the

kinetic energy change due to a laser photon recoil energy ℏ2k2z/2mi must be much

smaller than the harmonic oscillator energy level separation ℏωm, i.e., the atomic

energy states must be largely decoupled from this motion. This is necessary in

sideband cooling, since after driving a sideband transition, we want spontaneous

emission events (which serve as the repumping process mentioned above) to take

place primarily at the carrier frequency so as to not significantly alter the motional

states and disrupt the cooling process. Satisfying the Lamb-Dicke criterion ensures

this is the case.

1.4. Gates in an Ion Trap

Information processing in a classical computer takes place on bits, which can

take the values 0 or 1. To make a classical computer most useful, it is desirable to

ensure that it is capable of performing any logical operation, i.e., it is able to map

7



any string of bits to any other string of bits. Such a device is called a universal

computer, and the set of logical operations is said to be functionally complete. The

simplest functionally complete set of operators is comprised only of the operator

NAND. The NAND operator is the negation of the logical conjunction of two bits,

and it can be proven that this operator alone can map any string of bits to any

other string of bits. Similarly, in a quantum computer, it is desirable to construct

a set of universal quantum logic gates.

1.4.1. Universal Quantum Logic Gate Sets

Since quantum logic gates can be represented as vectors in an the space of

unitary operators, we need a set of gates that can generate any desired unitary

operation. For a single qubit, you can generate a universal gate set with the the

Pauli matrices,

σX =

0 1

1 0

 , σY =

0 −i

i 0

 , σZ =

1 0

0 −1

 , (1.9)

written in the {|0⟩ , |1⟩} basis. You can use these to create operators that rotate

vectors along the “Bloch sphere”. The Bloch sphere is a representation of all

possible single qubit states, with |0⟩ and |1⟩ corresponding to opposite ‘poles’ of

the sphere along the Z-axis, with X and Y corresponding to axes in the equatorial

plane of the sphere. A visualization of the Bloch sphere is given in Fig. 1.2. It is

trivial to see that operators which can map an arbitrary vector to any other vector

on the Bloch sphere would constitute a universal set. The rotation operators do

just that, and are written as
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RX(θ) = e
−iθ
2

σX , RY (θ) = e
−iθ
2

σY RZ(θ) = e
−iθ
2

σZ . (1.10)

Here, θ is the angle of the rotation, and X, Y , and Z correspond to the axis of

rotation on the Bloch sphere.

FIGURE 1.2. The Bloch sphere (figure taken from Saad et al., 2021). Poles of the
Z-axis correspond to the states |0⟩ and |1⟩. The angle θ adjusts the population of
|0⟩ and |1⟩ and the angle ϕ adjusts the relative phase.

For the n-qubit case, however, these operators would not constitute a

universal set. The set must be augmented by an entangling, two-qubit gate, such

as the controlled-not (CNOT) gate. The CNOT gate is a two-qubit gate that
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simply flips the second qubit if the first qubit is |1⟩ but does nothing if the first

qubit is |0⟩. In matrix form, the CNOT gate is

CNOT =



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


, (1.11)

written in the {|00⟩ , |01⟩ , |10⟩ , |11⟩} basis. The purpose of the CNOT gate is to

generate entanglement between qubits. You can see that the CNOT gate generates

entanglement by applying it to the state 1√
2
(|0⟩) ⊗ (|0⟩ + |1⟩), which results in the

maximally-entangled Bell state 1√
2
(|00⟩+ |11⟩).

The rotation operators, plus a phase shift operator, plus CNOT constitute

a universal gate set. This is provable Nielsen and Chuang, 2000, but the proof

is complicated. Intuitively, you can discern that these operators are universal

because they are capable of creating any unitary single-qubit operator and can

also entangle any two qubits together.

In practice, phase shifts, rotation operators, and the CNOT gate are

straightforward enough to implement in ion traps that they are commonly used

to implement general quantum circuits. In our lab, we usually physically perform

these gates using stimulated Raman transitions. We discuss the physics behind

such transitions and their use in implementing our quantum logic gates in the

sections below.

10



1.4.2. Single-Qubit Gate

Perhaps the most commonly-used single-qubit gate is σX gate, i.e., a π

rotation about the X-axis of the Bloch sphere. This is the same as a σY gate,

but with a different phase. For qubits encoded in sublevels of some manifold in

a trapped ion, such gates are usually physically implemented in one of two ways:

stimulated Raman transitions or rf pulses. Stimulated Raman transitions were

discussed in some detail above, but the physics underlying rf-pulse-induced σX

gates is very similar; the only difference is that rf pulses utilize an M1 coupling as

opposed to the E1 coupling used by Raman transitions.

1.4.3. Two-Qubit Gate

Investigation into two-qubit gates in trapped ions began with the Cirac-

Zoller (CZ) gate Cirac and Zoller, 1995). The CZ gate is a means of generating

entanglement between two ions, but it is challenging to implement. Two difficulties

with implementing the CZ gate are the need for individually addressing each

qubit with the laser beams and the first-order dependence of the gate fidelity on

temperature.

In the intervening years since the CZ paper, work has been done to construct

more practical two-qubit gates in trapped ions. Today, the two most common

implementations of a two-qubit gate in trapped-ion quantum computers are the

Mølmer-Sørensen gate (a controlled σx gate) and the light shift gate (a controlled

σz gate). I will discuss each of these gates in turn.
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1.4.4. The Mølmer-Sørensen Gate

The original discussion of this gate may be found in Mølmer and Sørensen,

1999. The first experimental demonstration was in Sackett et al., 2000. This gate

flips each qubit and applies a phase conditional on their parity.

Physically, an MS gate generates entanglement by coupling the ions internal,

electronic state to the collective motion of the ion crystal. The gate may be driven

by microwaves, quadrupole lasers, or by pairs of Raman beams. Since the latter

case is what we have implemented in the lab, I will discuss it further. We can

implement the MS gate using Raman beams with each detuned by some amount

δ from the resonance of the sideband transitions. This detuning ensures that the

only transitions which flip both ions’ qubit states are driven resonantly. The action

of the gate can be visualized in phase space, where the position and momentum

of the ions form the x and y axes. The joint state of the ion may be represented

as a point in this space. The MS gate acts by steering the ion state around this

space, forming a closed loop at the end of the gate. The area enclosed by this loop

corresponds to the phase that state accumulates, and, for appropriately chosen

parameters, the MS gate will impart phase only to certain joint states of the ion.

We discuss our lab’s progress towards physically implementing this gate in a novel

qubit encoding in Chapter VII

1.4.5. The Light Shift Gate

The light shift (LS) gate Leibfried et al., 2003 Home et al., 2009, like the

MS gate, is a common entanglement-generation mechanism for trapped ions.

Both gates are closely related; they are simply geometric phase gates in different

bases. To physically implement an LS gate, we need to choose a Raman beam
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polarization such that |0⟩ and |1⟩ couple to it differently. We can then apply a

pair of such beams to generate a standing interference pattern. In this case, the

light shift varies spatially which generates a force. If we adjust the relative phase

of the Raman beams, we can generate a beat note. By tuning this beat frequency

to the motional mode frequency, we can induce a spin-dependent force. Finally, we

can detune the Raman beams from the motional sideband of interest by a small

amount δ, which may be used to control the phase accumulated depending on the

ion pair’s joint state. If we neglect off-resonant terms, the phase accumulated by

each state is approximately Ballance, 2014

|11⟩ : (1 + eiϕm)Ω1

|10⟩ : Ω1 − eiϕmΩ0

|01⟩ : eiϕmΩ1 − Ω0

|00⟩ : −(1 + eiϕm)Ω0,

(1.12)

where ϕm is a the Raman phase difference between the two ions and Ωj is the

single-beam Rabi frequency for the qubit state |j⟩.

For well-chosen experimental parameters, we can set ϕm = π to maximize

the efficiency of this scheme. In this case, ion pairs with the same parity will

experience no force, but opposite-parity ion pairs will experience a force of

±(Ω0 + Ω1). This can be used to implement the logical gate
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Û =



1 0 0 0

0 i 0 0

0 0 i 0

0 0 0 1


(1.13)

in the basis {|00⟩ , |01⟩ , |10⟩ , |11⟩}. If given |ψ⟩ = 1/
√

2(|0⟩+|1⟩)⊗1/
√

2(|0⟩+|1⟩) as

the input state, this gate will yield the maximally entangled state |Ψ⟩ = 1/2(|00⟩+

i |01⟩+ i |10⟩+ |11⟩).

1.5. Photon Scattering Errors in Trapped-Ion Quantum Computers

As discussed above, stimulated Raman transitions are often used to

implement trapped-ion quantum logic gates. In such setups, a pair of laser

beams drives a two-photon stimulated transition between qubit states |0⟩ and |1⟩

through one or more intermediate states. Photon scattering during this process is

unavoidable and reduces the gate fidelity, i.e., how well the actual output state

overlaps with the desired output state. Understanding the fundamental limit

photon scattering places on achievable gate fidelity is potentially crucial for the

viability of trapped-ion quantum computing.

Although photon scattering errors have been previously studied Ozeri, 2007;

Uys et al., 2010; Sawyer and Brown, 2021, our group chose to revisit the topic for

two reasons. First, past work produced a model of scattering that, while suitable

for explaining moderate-detuning gate errors, is inaccurate at larger detunings.

Second, we are interested in characterizing qubits in metastable manifolds (‘m’

qubits), and the previous studies did not examine such qubits. They instead
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focused solely on qubits with either one or both states encoded in the S1/2 ground

manifold of trapped ions (‘o’ qubits and ‘g’ qubits, respectively).

1.5.1. Past models of Raman Scattering Error

Since 2007, the seminal study of photon scattering errors in trapped-ion

qubits has been Ozeri, 2007. In that work, Raman and Rayleigh scattering errors

were calculated for g qubits in most commonly-used trapped-ion species. While

there was much other useful information in this study, perhaps the most important

message was that there is a fundamental limit on photon scattering suppression

in Raman-beam-driven logic gates in trapped ion species that have low-lying D

manifolds. Put another way, it was said that photon scattering ensures that you

can never reduce the gate error below a certain value. For some species, such as

43Ca+ and 137Ba+, this limit is large enough that it would make error correction

difficult due to the high overhead demands. The limits for two-qubit gates each

species are given in the Table 1.1.

43Ca+ 1.06 ·10−4

87Sr+ 5.0 ·10−5

137Ba+ 1.46 ·10−4

171Yb+ 7 ·10−7

199Hg+ 1 ·10−7

TABLE 1.1. Minimum scattering error during a two-qubit gate in some commonly-
used trapped-ion species. Sourced from Ozeri, 2007.

However, we discovered that these limits do not exist. Ozeri et al. found

such limits because their model assumes that certain effects are negligible,

but these assumptions are valid only at small detunings. The neglected effects

include the detuning dependence of the scattered photon frequency and Lamb-

Dicke parameter, contributions of a second scattering term, interference effects
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in scattering to the metastable manifolds, and the contribution of the counter-

rotating component of the laser electric field to the Raman transition rate. As

shown below, including such effects changes the limiting behavior of the model,

resulting in no lower bound on gate error, in contrast to the predictions of Ozeri,

et al..

1.5.2. Photon Scattering Errors in Metastable Qubits

The past studies of Raman scattering errors have primarily considered o and

g qubits. However, in a recent proposal Allcock et al., 2021 I co-authored (this

thesis presents a lot of this work, particularly in Chapter II), we showed that

encoding qubits in metastable states of trapped ions (‘m’ qubits) has several

important advantages over g and o type encodings. Since we are interested in

implementing m qubits, it is important for us to characterize the photon scattering

errors for such qubits. Below, we will show that the m qubit scattering error has

largely the same form as in g qubits, though m qubits require longer wavelength

lasers and higher power to reach the same error as g qubits at the same detuning.
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CHAPTER II

OMG ARCHITECTURE

Typically, ion trap qubits have at least one of their states encoded in the

ground manifold. When both states are so encoded, we call it a g qubit (‘g ’ for

‘ground’); when one state is in the ground manifold, and the other is in some

higher manifold, we call is an o qubit (‘o’ for ‘optical’). In these schemes, you

generally need to load the trap with two ion species: one for your qubit operations,

the other for sympathetic cooling. This is because if you loaded the trap with just

one species and attempted to drive cooling transitions in one of the ions in the

chain, you will also cause scattering in the qubit ions and destroy their coherence.

Loading two species solves this since you can cool on a transition of one species

with a wavelength at which the other species is unlikely to scatter light.

While the multi-species approach has many benefits, it also has several

drawbacks. For example, it requires more lasers, complicated interspecies

operations, and more atomic sources Tan et al., 2015; Bruzewicz et al., 2019;

A. C. Hughes et al., 2020. Additionally, it has multiple downsides due the mass

inequality of the different ion species. First, you have to concern yourself with the

order of the ions in the chain. This is because different ion species ordering can

alter the mode structure. Also, practically speaking, mixed species approaches

require a specific ordering of the ion species in the chain. This is to ensure that

the ion is at the position of maximum intensity for its respective driving lasers.

This is a drawback because enforcing the desired ion order requires relaxing

the ion chain until it assumes the sought-after form. This procedure works well

in a small-scale experiment, but may be be difficult to automate at scale in a
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proper quantum computer. Second, cooling is less efficient in multi-species chains,

due to their different masses. Third, different ion species will generally have

different sensitivities to stray static fields, which will shift the ions away from

their equilibrium position by different amounts, resulting in a relative position

vector that is no longer aligned with the trap axis. Fourth, gradients in the time-

averaged rf potential and trap anharmonicities can change the inter-ion spacing

since different species will experience a different strength from the ponderomotive

potential. Finally, it is somewhat challenging to transport multi-species ion chains

without substantial motional excitation, though this is not completely infeasible

(see, e.g., Burton et al., 2023).

It would therefore be desirable to implement a scheme that allows ion

trap quantum computing in a single ion species. In collaboration with MIT,

MIT Lincoln Labs, and UCLA, we proposed and implemented such a qubit

scheme: the omg qubit scheme Allcock et al., 2021 (some experimental work

towards implementing these qubits has been conducted by a group at Tsinghua

University Yang et al., 2022).

2.1. Metastable qubits

To begin to understand the usefulness of the omg scheme, we must first

study the m qubit. The m qubit is simply a qubit with both states encoded in

the Zeeman or hyperfine sublevels of a metastable manifold in the trapped ion.

A diagram of the m qubit position in energy space, along with parallel depictions

of o and g qubits, is given in 2.1. For singly-ionized alkaline earth metals, such as

Ca+, we are interested in the metastable D5/2 manifold. In other ion species, other

metastable manifolds are also viable, such as the F7/2 manifold of Yb+ Ransford
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et al., 2021. In this work, I will be focusing on D5/2 metastable qubits since they

are what we have studied in our lab.

While they are necessary to implement single-species ion trap quantum

computing, there are a few drawbacks to using metastable qubits. First, they have

a finite lifetime. For example, the D5/2 manifold of Ca+ lives for about 1.2 seconds.

This does not seriously limit that manifold’s potential for encoding qubits however.

Since most quantum logic gates take on the order of microseconds, potentially

millions of operations can be performed within the lifetime of the D5/2 manifold.

Secondly, preparation and readout are slightly more complicated than in

g qubits. Optical pumping schemes can be used for preparation and readout m

qubits, but more lasers are required to shelve and deshelve population in the D5/2

manifold. However, I performed Python simulations of preparation and readout

for m in the D5/2 manifold on 43Ca+ before we began trapping ions in our lab, and

confirmed that they did not limit the viability of such qubits. I concluded that

greater than 99% preparation and readout fidelity could be achieved, with optical

pumping taking around only 100µs.

2.2. omg architecture

The utility of the omg qubit scheme comes mainly from the separation of

g and m qubits in Hilbert space. This separation lets us divide the various tasks

of quantum computing among the different qubit encodings. Here we will discuss

three modes for omg qubits. We will characterize each mode by an ordered triple,

{q1, q2, q3} with qi = o,m or g) and where q1 corresponds to which encoding is used

for state preparation, q2 which encoding is used for gates, and q3 which encoding

is used for storage. The three modes we will discuss are the {m,m,m} mode, the
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FIGURE 2.1. The typical structure of alkaline earth ions, including relevant
transitions. The S1/2 ←→ P1/2 transition is used for dissipative operations
(laser cooling, state preparation, and readout). The o qubit transition is electric
dipole (E1) forbidden and typically requires a narrow linewidth laser. Figure taken
from Allcock et al., 2021.

{g,m, g} mode, and the {m, g,m} mode. A diagrammatic explanation of these

modes is given in Figure 2.2.

2.2.1. The {m,m,m} Mode

The main motivation for the {m,m,m} mode is that g qubits are a

natural choice for dissipative operations like laser cooling, state preparation, and

readout. It is therefore natural to consider using m qubits for most of the unitary
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FIGURE 2.2. Various omg schemes. Figure taken from Allcock et al., 2021.

operations. As shown in Figure 2.2, gates in this mode would be performed by

individually addressing the m qubit ions with Raman laser beams.

Conveniently, because all coherent operations take place in m qubits in this

mode, no coherent transfer between m and o or g qubits is necessary. This, in

turn, means that all requisite operations may be accomplished using only electric-

dipole transitions, and, therefore, the technologically challenging implementation

of narrow linewidth lasers for, e.g., electric-quadrupole transitions is not strictly

necessary. It is also worth noting that this mode has the advantage of allowing for

dissipitative operations such as laser cooling to be performed on g qubits during

single-qubit gates on m qubits in the same ion crystal.

The primary drawback of using this mode is the limited lifetime the

metastable states. However, for many species, including Ca+, the lifetime is long

enough that it will not be a limiting error for gate performance. Since the D5/2

manifold of 40Ca+ has a lifetime of ∼1.2 s, for a gate time of 1-10µs, this would

give an error between 1.2× 10−6 and 1.2× 10−5.
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2.2.2. The {g,m, g} Mode

The second mode we will consider is characterized in the middle row of

Figure 2.2. Here, coherent transfer between o, m, and g encodings can be achieved

with individually addressable, narrow linewidth laser beams that drive electric-

quadrupole or electric-octopole transitions in the ions. Global beams may then be

used to implement logic gates.

The main upside of this mode is that it exploits the stability of g qubits to

protect stored information during logic gates. One disadvantage, of course, is that

this scheme requires high-fidelity coherent population transfer on quadrupole or

octopole transitions.

2.2.3. The {m, g,m} Mode

The last mode we will consider is described in the final row of Figure 2.2.

This is the first of the three modes we have considered in which gates are

performed on g qubits. Just as in the {g,m, g} mode, this mode requires that we

be able to coherently transfer individual ions from a g to an m qubit, and vice

versa. This capability would be required for gates and helpful for cooling and

readout, although the latter may be accomplished with incoherent methods.

This mode shares a common advantage with the {g,m, g} mode: the storage

qubits are protected from the laser light, so we may apply the laser beams globally

for gates. The difference is that only the qubits need to be converted between m

and g, which is a less stringent requirement than in the {g,m, g} mode. However,

keeping the ions in the metastable manifold by default means that this mode is

more susceptible to the finite lifetime of the m qubit.
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2.3. Two-Qubit Gates in m Qubits

Two-qubit gates have recently been performed in m qubits for the first time.

One such gate was performed by University of Oxford in m qubits encoded in the

metastable D5/2 manifold of 88Sr+ Bazavan et al., 2023. They implemented it with

the S1/2 ←→ D5/2 quadrupole transition and achieved a gate fidelity of 0.859(5).

Another gate was performed at Innsbruck Roos et al., 2004. Technically, the

gate was not performed in m qubits, but it did generate entangled m qubit states.

The group performed an entangling gate on S1/2, D5/2 o qubits. These qubits were

then converted to m qubits with single qubit operations.

Our group has also made progress towards implementing m qubit two-qubit

gates. Unlike previous implementations, we are applying a two-qubit gate directly

in m qubits using stimulated-Raman transitions. In Chapter VII, I report on our

progress towards implementing such a gate.
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CHAPTER III

EXPERIMENTAL METHODS

Below, I describe the various components of our experimental apparatus.

3.1. Ion Trap

We use a linear Paul trap in our lab. The schematic of our trap is shown in

Figure 3.1. A view of the physical trap is given in Figure 3.2. The ion-electrode

separation ‘r0’ is 0.75 mm, the needle-to-needle spacing ‘a’ is ∼3 mm, and the rods

have a diameter ‘2re’ of 0.5 mm. In order to minimize the rate of background gas

collisions, we keep the trap under ultra-high vacuums, reaching pressures of order

10−11 Torr.
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FIGURE 3.1. (a) Schematic view of our linear rod trap along the trap axis. The
gold circles are cross-sections of the different rods in the trap. In the figure, re is
the electrode radius and r0 is the trap axis to electrode surface distance or trap
radius. Two opposing inner rods are connected to the oscillating voltage Vrf at
frequency ΩT with offset Ur and the other two inner rods are held at ground.
(b) Schematic side view of the linear rod trap where a is the tip-to-tip distance
between the needles and the yellow dot is an oversized ion giving its approximate
location in the trap. Following the axes in figure (a), the upward direction in (b) is
the (x+ y) axis and the out-of-the-page direction is the (x− y) axis.
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FIGURE 3.2. (a) The assembled rod trap. (b) The rod trap mounted in the
vacuum chamber, as seen through a viewport.
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3.2. Magnetic Field

When working with trapped ions, it is necessary to apply an external

magnetic field to lift the degeneracy of the atomic sublevels. We accomplish this

by supplying a current to four rectangularly coiled wires, each of different sides

of the spherical octagon chamber in which the trap sits. Additionally, there is

one circularly coiled wire oriented perpendicular to the rectangular coils. One

of the rectangular coil pairs, acting in concert with the Earth’s magnetic field,

primarily determines the magnetic field magnitude and direction, and, therefore,

the ion’s quantization axis. The remaining coils allow us to finely adjust (”shim”)

the magnetic field to align it relative to the incoming laser beams. We supply a

0.5 A current with a low-noise source. This setup allows us to generate a 0.498 G

magnetic field, which creates a Zeeman splitting in the D5/2 manifold of 2.63 MHz.
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FIGURE 3.3. Coils of copper wire used to generate our trap’s magnetic field

3.3. Ion Detection

We use an imaging system to detect ions and the state of the qubit. The

imaging system is optimized to collect 397 nm photons, which we generate when

we drive the S1/2 ←→ P1/2 transition. The imaging system has a numerical

aperture (NA) of 0.4 and a photomultiplier tube (PMT) efficiency of ∼0.3. The

total measured click efficiency of the system is 1.2%.
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FIGURE 3.4. Schematic of the ion detection system. Component indicated by ‘a’
is the ion in vacuum, ‘b’ is the aspheric objective, ‘c’ is the adjustable aperture,
‘d’ is the filter holder, ‘e’ is the second stage (re-imaging Lenses and items f-
l), ‘f’ is the slit imaging lens, ‘g’ is the flipper mirror, ‘h’ is the photomultiplier
tube (PMT) imaging lens, ‘i’ is the photomultiplier tube, ‘j’ is the convex camera
imaging lens, ‘k’ is the concave camera imaging lens, and ‘l’ is a CMOS camera
with 3.45 micron resolution.

FIGURE 3.5. The actual ion camera system.

3.4. Trap rf Drive

The rf chain provides the signal needed to provide stable confinement for

the ions as well as reducing noise that contributes to motional decoherence.

The rf chain is comprised of multiple components. One key component is the
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Squareatron, developed by Jeremy Metzner in collaboration with University

of Oxford Metzner, Allcock and Ballance, 2020. The Squareatron behaves like

a saturated amplifier, taking its input clock signal (which it receives from an

arbitrary wave generator, or AWG) and stripping the harmonics off with a

bandpass filter (BPF) to return stable rf signals. It has an output power of about

10 dBm and can be tuned roughly 1 dBm with a digital to analog converter (DAC)

board. The purpose of the Squareatron is to reduce amplitude modulation noise

to keep the ion’s secular frequency stable. Additionally, the rf chain has a helical

resonator (coupled to a 1 W amplifier to get necessary power) with a step-up of

∼100× and a Q of ∼150. This resonator impedance-matches the amplifier to the

ion trap and provides modest filtering. The Squareatron and amplifier are kept in

an insulating box with a thermostat Thermostat 2022 which helps to stabilize the

ion’s motional frequency.

3.5. Laser Systems

Our lab’s laser systems are stored in one room with three racks: a rack

containing drawers which house our Toptica Littrow ECDL lasers (Model ’DL

Pro’), a rack containing Toptica laser controllers (Model ’DLC Pro’), and a rack

housing the wavemeter. The setup of the room can be seen in Figure 3.6. The

setup of a laser rack drawer is shown in Figure 3.7. In each drawer, a Toptica laser

in mounted to an optical breadboard. The Toptica laser parameters are set by

the controllers mounted in the adjacent rack. Upon emission from the laser, the

beam is redirected by a periscope to be level with half-inch optics mounts. In order

to prevent amplified stimulated emission a few nanometers away from the lasing

mode from reaching the optical fiber, the beam is then reflected off of a diffraction
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grating before being sent down a path of polarizing beam splitters, where half-

waveplates allow us to adjust how much power goes down each arm. These

separated beams are then coupled into fibers to be delivered to the AOM boards in

the trap rooms. One of the beams on each board is sent to the wavemeter, which

serves to stabilize the laser frequencies.
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FIGURE 3.6. The laser racks. Contains our breadboard laser systems used for
ionization, cooling, preparation, and readout.
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FIGURE 3.7. The inside of a laser rack drawer. The beam from a Toptica laser is
picked off by multiple polarizing beam-splitters and is coupled into multiple fibers
to be sent to different AOM racks in a separate room.
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3.6. AOM Boards

Because our experiments take place on the scale of microseconds, we need a

way to rapidly turn our lasers on and off. Our solution is to use acousto-optical

modulators (AOMs).

AOMs are composed of a piezoelectric material attached to a crystal. When

an rf signal is applied to the piezoelectric material, it causes it to vibrate and

generate a sound wave in the crystal. When laser light passes through the AOM,

the interaction of the light with the vibrating crystal creates discrete, diffracted

beams with frequencies shifted by some integer multiple of the rf frequency. A

picture of the inside of one of our lab’s AOMs is given in Figure 3.8.

FIGURE 3.8. The inside of an AOM. The circuit produces an ac current that
creates a sound wave using a sheet of piezoelectric material attached to the crystal.
The circuit is controlled via the SMA connector on the right side.
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The optical switch functionality of the AOM comes from the separation

between the diffracted beams. To create our switch, we simply position a slit in

the beam path that allows through the 1st or -1st diffracted beam, but blocks the

0th order. This means that the laser light reaches the ion only when the AOM is

on. Since the rise time of our AOMs is tens of nanoseconds, they provide optical

switches which are more than fast enough for our experiment’s requirements.

Some of our AOM paths are double-pass. This means that the laser beam is sent

through the AOM, the 1st or -1st order beam is picked off, reflected, and sent back

through the AOM once more. This setup has three benefits: in it, the angle of

the beam is constant with changes in AOM frequency, it effectively doubles the

electrical bandwidth, and there is a higher extinction ratio for the beam. This

latter effect is important for some beams, as we want to ensure that we do not

have leakage when the AOMs are off. For example, 854 nm light leakage could lead

to D5/2 deshelving during an m qubit experiment.

Another benefit of using AOMs is that, in conjunction with the SU servo

(see Section 3.7), they allow us to control the optical power of the laser beams at

the ion. This is done by feeding the SU servo the signal from the photodiodes (see

Section 3.8) and having the servo adjust the attenuation of the rf signal to the

AOM to maintain the desired power.

Using AOMs comes at the cost of optical power, however. We choose to

use the first-order diffracted beam out of the AOM, but there is always some

power in the other orders. The first-order diffraction efficiency is controllable by

adjusting the rf power into the AOM. The optimal operating power is different for

Isomet model 1250C-829A ”blue” AOMs is shown in Figures 3.9. The blue AOM

contains a TeO2 crystal and has a center frequency of 260 MHz with a 50 MHz
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bandwidth. The optimal operating power for the Isomet model 1205C-1 ”red”

AOMs is shown in Figure 3.10. The red AOM contains a PbMoO4 crystal and has

a center frequency of 200 MHz with a 50 MHz bandwidth.

It is worth noting that people commonly place AOMs directly on their

optical tables and work with them there. We, however, choose to build our AOM

paths on modular boards housed in rack drawers. This design idea came from the

University of Oxford ion-trapping group. This design has the advantages that

the AOM racks take up less space in the lab (as the drawers may be vertically

stacked in a 19” rack) and are more stable (due to the low beam height), but has

the drawback that the optics’ positions are less reconfigurable. One AOM rack

board (the 393 nm/397 nm board) is shown in Figure 3.11.

FIGURE 3.9. Model 1205C-829A ”blue” AOM first-order diffraction efficiency as a
function of Urukul attenuation.
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FIGURE 3.10. Model 1205C-1 ”red” AOM first-order diffraction efficiency as a
function of Urukul attenuation.
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FIGURE 3.11. Example of an AOM rack board in our lab.

We have three AOM boards, and their design is shown in Fig 3.12. More

detailed beam path diagrams are given in Figures 3.13. The top-most board

generates our 850 nm and 854 nm pump beams. We use these beams to pump

population out of the D3/2 and D5/2 manifolds. The board just below that is

designed to control the 854 nm input to the top board as well as the 866 nm

beam. The latter beam is used in Doppler cooling (by driving D3/2 ←→ P1/2

transitions) and for depumping the D3/2 population. The bottom board of the

diagram controls our 397 nm and 393 nm laser beams. The 397 nm beams are for

optical pumping, cooling, and detection on the S1/2 ←→ P1/2 transition, and the

393 nm beam is for optical pumping on the S1/2 ←→ P3/2 transition.
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FIGURE 3.12. The three AOM boards. The boards are for dissipative operations,
such as cooling, preparation, and readout. The boxes labeled ”1×” and ”2×”
correspond to single- and double-pass AOM filters, respectively.

3.7. ARTIQ

For real-time implementation and remote control of our experiments,

both hardware control and data collection, we utilize the software system

ARTIQ Bourdeauducq et al., 2016 (Advanced Real-Time Infrastructure for

Quantum physics) and the associated hardware from Sinara Kasprowicz, Kulik

et al., 2020; Bourdeauducq et al., 2016. A schematic of the ARTIQ setup is show

in Figure 3.14.
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FIGURE 3.14. Schematic of the ARTIQ setup. (a) Schematic of the connections
between the physical components between the subcomponents of the ARTIQ
system in our lab. (b) Schematic of the SU servo system, and depiction of its
feedback on the optical power measured by the photodiode. Figures made by Alex
Quinn.

In terms of hardware, firstly, the host PC interfaces with an FPGA board

called the ”Kasli,” which, along with the host, also runs the ARTIQ code. The

trap electrodes are controlled by the ”Zotino” board, a digital to analog converter

(DAC). We use the Zotino to apply dc voltages to shim the trap electrodes

and finely adjust the ion’s position. We use ”Urukul” direct digital synthesizer

(DDS) boards Kasprowicz, Harty et al., 2022 as sources of timed rf signals, with

applications to controlling AOMs, driving M1 transitions between Zeeman levels,

and driving ion motion (achieved by applying an rf tone to one of the trap rods).

For reading and generating digital signals, we use DIO boards. This has utility

for reading photon clicks from the photomultiplier tubes and for controlling our

mechanical shutters. Finally, we have the ”Sampler”, which is an analog to digital

40



converter (ADC) board. This is a component of the ”Sampler-Urukul” (SU) servo

system for precise control of laser beam powers on short timescales. The SU servo

uses a pickoff from the laser beams (discussed in the section below) to monitor the

laser power. The SU servo acts as a feedback system, adjusting the rf amplitude on

the Urukul to control adjust the laser power in response to the Sampler reading.

3.8. Beam Delivery System

After the beams are sent from the laser rack room to the trap room, and

there through the AOM boards, they finally reach the beam delivery system.

The primary function of the beam delivery system is to get the laser beams from

the output fibers (usually from the AOM boards) to the ions while ensuring we

maintain the correct beam power, polarizations, and alignment on the ion. After

being passing through the AOM board, the laser beam leaves the fiber via a

collimator and then passes through a PBS to fix the polarization. After this, it

is sent through the photodiode assembly, which picks a fraction of the beam off

to monitor the beam power with the SU servo. After this, the beam is sent to

the optics mounted to the ”tombstone”, a custom-machined component made to

attach to the vacuum hardware. On the tombstone are a pair of 1” fixed mirrors

and a 1” f = 150 mm achromatic lens. The beam pointing is controlled by a

piezoelectric-motor-controlled mirror mount, which is controllable by ARTIQ.

After passing through the tombstone optics, the beam is sent to the ion. A

schematic of the relevant beams passing through the trap is shown in Figure 3.15.

The polarization of the beams is controlled by half- and quarter-waveplates

(labeled λ/2 and λ/4 in 3.15).
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CHAPTER IV

SCATTERING THEORY

Below, after describing our qubit choices and defining our model, we

calculate the photon-scattering-induced errors in single-qubit and two-qubit gates

in m qubits and compare them to g qubits. There are many physical differences

between m and g qubits, such as the dipole coupling between the qubit states and

P1/2 that exists for g qubits but is absent in m qubits, or certain scattering terms

present in m qubits that are not present in g qubits. These physical differences

exert influences of varying magnitudes on the quantitative scattering error, but on

net, they tend to increase the detuning from resonance required for a certain error

in m qubits relative to g qubits. As for the qualitative scattering behavior, we find

that the main difference between the two schemes is the existence of a lower bound

on two-qubit gate errors in m qubits which is absent in g qubits. However, for all

trapped ions considered in this work, this lower bound is sufficiently small (less

than 10−4) that low-overhead error correction is possible for Raman gates in the m

qubit scheme.

After describing the overall behavior of the two different qubit schemes in

the large-detuning model, we discuss the contributions of higher-lying levels to the

scattering rates of the m qubit model. Additionally, for both m and g qubits, we

estimate the contribution to gate error from Rayleigh scattering.

4.1. Choice of Qubit

In what follows, we consider a number of common trapped-ion qubit species:

9Be+, 25Mg+, 43Ca+, 87Sr+, 133Ba+, 135Ba+, 137Ba+, 171Yb+, and 173Yb+. We
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∆∆

g qubit m qubit
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|1 |
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〉|D5/2

FIGURE 4.1. The g qubits are encoded in hyperfine sublevels of the S1/2 manifold
with gates often performed via Raman transitions; m qubits are encoded in
the hyperfine sublevels of the D5/2 level with gates performed in the same way.
Manifolds that do not participate in qubit operations in the respective schemes are
shown in gray. Figure from Moore, Campbell et al., 2023.

present results for g qubits in all species. For m qubits, we perform calculations

only for the species with a sufficiently long-lived (≳ 1 second lifetime) D5/2

manifold: 43Ca+, 87Sr+, 133Ba+, 135Ba+, and 137Ba+ (see 1 for further discussion).

The attributes of all these ion species are given in Table 4.1.

For our qubit choices, we use hyperfine ‘clock’ qubits for both m and

g qubits, due to their insensitivity to magnetic field noise and corresponding

suppression of Rayleigh dephasing Tan, 2016 (see 2 for the definition of ‘clock

1Yb+ has an F7/2 manifold with a years-long lifetime Allcock et al., 2021, making it a suitable
candidate for m qubits. However, this system is more complex and would require a separate
analysis, so we only present g qubit results for Yb+.

2A clock qubit is defined as having a qubit frequency that does not change with changes in the
B-field (to first order); the B-field magnitude at which this occurs can be called the clock point,
and the B-field direction defines the quantization axis.
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qubit’.). We give our qubit choices (along with other qubit details) explicitly in

Table 4.1 in terms of F (hyperfine angular momentum quantum number) and mF

(corresponding angular momentum projection quantum number). Since g qubits

are already well-established, we simply follow Ozeri, 2007 in their encoding scheme.

As for m qubits, we choose states that should be relatively easy to prepare and

readout, as well as give consistent behavior across all m qubit species for studying

the scattering errors the states

|0⟩ = |D5/2, F = I +
5

2
,mF = ±|I +

5

2
− 1|⟩

and

|1⟩ = |D5/2, F = I +
5

2
− 1,mF = ±(I +

5

2
− 1)⟩

(depending on the sign of relevant hyperfine splittings), where F is the hyperfine

angular momentum quantum number, mF is the corresponding angular momentum

projection quantum number, and I is the nuclear spin (for further discussion of

this choice, see 3). Details about the qubits in the various species are given in

Table 4.1.

4.2. Scattering Probability

We assume that gates are performed on m and g qubits using stimulated

Raman transitions (Fig. 4.1). These are coherent two-photon processes where

population is transferred between |0⟩ and |1⟩ virtually through higher energy

intermediate states |k⟩. During this process, there is a chance of spontaneous

3These are not necessarily “optimal” qubits. We choose them simply to have consistent
behavior across m qubits for studying the scattering errors.
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9Be+ 25Mg+ 43Ca+ 87Sr+ 133Ba+ 135Ba+ 137Ba+ 171Yb+ 173Yb+

I 3/2 5/2 7/2 9/2 1/2 3/2 3/2 1/2 5/2

τD
5/2

τD5/2
(s) τD

5/2
- - 1.110 0.357 29.856 0.0072

|0⟩ (m) - - |6,+5⟩ |6,−6⟩ |2,+2⟩ |4,−3⟩ |4,−3⟩ - -
|1⟩ (m) - - |5,+5⟩ |7,−6⟩ |3,+2⟩ |3,−3⟩ |3,−3⟩ - -
|0⟩ (g) |2, 0⟩ |3, 0⟩ |4, 0⟩ |5, 0⟩ |1, 0⟩ |2, 0⟩ |2, 0⟩ |0, 0⟩ |2, 0⟩
|1⟩ (g) |1, 0⟩ |2, 0⟩ |3, 0⟩ |4, 0⟩ |0, 0⟩ |1, 0⟩ |1, 0⟩ |1, 0⟩ |3, 0⟩

Clock point (m, G) - - 2.54 6.49 33.0 1.79 0.0720 - -
ω0/2π (m, GHz) - - 0.025 0.036 0.062 0.012 0.00047 - -
ω0/2π (g, GHz) 1.3 1.8 3.2 5.0 9.9 7.2 8.0 12.6 10.5

d2(ω0/2π)/dB2 (m, kHz/G2) - - 55.9 36.7 10.6 119 1.72 - -

d2(ω0/2π)/dB2 (g, kHz/G2) 3.13 2.19 1.21 0.783 0.395 0.545 0.487 0.309 0.373
γP3/2

/2π (MHz) 19.4 41.8 23.2 24.0 25.2 25.9

αD5/2
αS1/2

αD5/2
1 1 0.9350 0.9406 0.7417 0.9875

αD5/2
αD3/2

αD5/2
- - 0.0063 0.0063 0.02803 0.0017

αD5/2
αD5/2

αD5/2
- - 0.0587 0.0531 0.2303 0.0108

ωf/2π (THz) 0.198 2.75 6.68 24.0 57.2 99.8

TABLE 4.1. Characteristics of the qubits and ion species we consider. Throughout
the table, m and g denote values for m or g qubits. I is the nuclear spin; τD5/2

is the D5/2 lifetime; |0⟩ and |1⟩ are the qubit states in the notation |F,mF ⟩; ω0

is the qubit frequency; d2ω0/dB
2 is the second-order B-field-dependence of the

qubit frequency; γP3/2
is the decay rate of the P3/2 manifold; αM is the branching

ratio of P3/2 to manifold M ; and ωf/2π is the fine-structure separation of the P
manifolds. Lifetimes taken from Sahoo et al., 2006; Taylor et al., 1997; γP3/2

values
were taken/calculated from Poulsen, Andersen and Skouboe, 1975; Ansbacher, Li
and Pinnington, 1989; Gosselin, Pinnington and Ansbacher, 1988; Safronova, 2010;
Pinnington, Berends and Lumsden, 1995; Pinnington, Rieger and Kernahan, 1997;
αM values taken from Song et al., 2019; H. Zhang et al., 2016; Z. Zhang et al.,
2020; Feldker et al., 2018; ωf values taken from Ozeri, 2007; other values calculated
from atomic parameters.

photon scattering, changing the ion’s state or qubit phase and causing an error.

The scattering probability is therefore important for characterizing the fidelity

achievable by logic gates, as it sets an upper bound.

The rate of ‘Λ and V scattering’ (the processes with upward pointing laser

beam arrows in Fig. 4.2) from qubit states |i⟩ to final state |f⟩ can be calculated

from (see Appendix A for derivation)
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Γf,ΛV =
∑
i,j,q

e2E2
jµ

2
Pi

4ℏ2
ξiγPf

∣∣∣∣∑
k

(⟨f | r⃗ · êq |k⟩ ⟨k| r⃗ · ϵ̂j |i⟩
µPfµPi (ωkP −∆)

+

⟨f | r⃗ · ϵ̂j |k⟩ ⟨k| r⃗ · êq |i⟩
µPfµPi (ωki + ωkf + ∆)

)∣∣∣∣2(1 +
∆

ωPf

)3

,

(4.1)

where ξi is the occupation probability of qubit state |i⟩ (on average 1
2

for

each qubit state in the gates we consider), r⃗ is the position operator of the electron

relative to the atomic core (note that the matrix elements of the electric dipole

operator can be tricky to calculate; see King, 2008 for a simple introduction to

computing them while avoiding pitfalls), γPf is the decay rate from P3/2 to the

manifold containing f , the various ωnm are transition frequencies with n and m

corresponding to states or levels (see 4 for more thorough definition of ωnm), ∆

is the detuning measured from the P3/2 manifold (positive for detuning above

this manifold, and neglecting the energy spread of the manifold’s sublevels), Ej

and ϵ̂j are the electric field and polarization direction of beam j respectively, and

êq is the scattered photon polarization. The parameters µPi (corresponding to

transitions between the P3/2 manifold and the manifold containing state i) and µPf

(corresponding to transitions between the manifolds containing k and f) are the

transition dipole matrix elements of the spin-orbital coupling. Their general form

can be derived by invoking the Wigner-Eckart theorem Brink and Satchler, 1968,

giving

4To be explicit: ωkP is (Ek − EP )/ℏ, where Ek is the mean energy of the manifold containing
|k⟩ and EP is the mean energy of the P3/2 manifold (note this is zero if k corresponds to P3/2);
ωki corresponds to transitions between the manifold containing k and the qubit manifold; ωkf

corresponds to transitions between the manifold containing k and the manifold containing f ; ωPf

corresponds to transitions between the P3/2 manifold and the manifold containing f .
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µul =
∣∣∣⟨Ll| |r⃗| |Lu⟩

√
(2Jl + 1)(2Ll + 1)LlLu1JuJlS

∣∣∣, (4.2)

where ⟨Lu| |r⃗| |Ll⟩ is the reduced dipole matrix element for transitions between

upper level u and lower level l, S is the spin, L is the orbital angular momentum,

J is the total angular momentum (L + S), and the bracketed term is the Wigner

6j-symbol. The matrix element µul can also be related to the decay rate γul from

the Ju, Lu level to the Jl, Ll level by Steck, 2001

γul =
e2ω3

ul

3πϵ0ℏc3
µ2
ul, (4.3)

where ωul is the transition frequency, and e is the charge of the electron. In

m qubits (but not g qubits), ‘ladder scattering’ (the processes with downward

pointing laser beam arrows in Fig. 4.2) can also contribute to the error. The ladder

scattering rate is given by

Γf,lad =
e2E2

jµ
2
Pi

4ℏ2
∑
i,j,q

ξiγPf

∣∣∣∣∑
k

( ⟨f | r⃗ · êq |k⟩ ⟨k| r⃗ · ϵ̂∗j |i⟩
µPfµPi (ωkP + ∆ + 2ωPD)

+
⟨f | r⃗ · ϵ̂∗j |k⟩ ⟨k| r⃗ · êq |i⟩
µPfµPi (ωkP −∆ + ωDf )

)∣∣∣∣2(1− 2ωPD + ∆

ωPf

)3

.

(4.4)

Note that in Eqn. 4.1, the Λ scattering term (first term in the sum within the

modulus) dominates over V scattering; similarly, in Eqn. 4.4, the first term in

the modulus dominates. In both equations, these terms correspond to a two-

photon scattering process where the laser photon is first absorbed or emitted, while

the other weaker terms (what we call the counter-rotating contributions to the
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〉|f〉

〉||i〉|f〉

〉||i

{∆k{∆

Λ scattering

V scattering

Ladder
scattering

k

g qubit m qubit

FIGURE 4.2. All two-photon scattering pathways from state |i⟩ to |f⟩ via excited
state |k⟩ in g qubits and m qubits. Raman laser beam shown in pink, scattered
light shown in red and blue. Processes in which the Raman beam points up in the
diagram are Λ or V scattering events. Processes in which the Raman beam points
down are ladder scattering events (note that ladder scattering events are allowed
only in m qubits). Figure from Moore, Campbell et al., 2023.

scattering rate) correspond to processes where the scattered photon is emitted first

(Fig. 4.2).

We can rewrite Eqns. 4.1 and 4.4 in terms of gul given in Ozeri, 2007 as

gul =
eEµul

2ℏ
. (4.5)

Note that in the following calculations, for m qubits, gPi and µPi will correspond

to transitions between the D5/2 and P3/2 manifolds, i.e., u and l in Eqns. 5.2 and

4.5 will correspond to P3/2 and D5/2, respectively. For g qubits, gPi and µPi will

correspond to transitions between S1/2 and P3/2. Assuming that gPi is the same for

both Raman beams, we can now write Eqns. 4.1 and 4.4 as
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Γf,ΛV = g2Pi

∑
i,j,q

ξiγPf

∣∣∣∣∑
k

(⟨f | r⃗ · êq |k⟩ ⟨k| r⃗ · ϵ̂j |i⟩
µPfµPi (ωkP −∆)

+

⟨f | r⃗ · ϵ̂j |k⟩ ⟨k| r⃗ · êq |i⟩
µPfµPi (ωki + ωkf + ∆)

)2(
1 +

∆

ωPf

)3
(4.6)

and

Γf,lad = g2Pi

∑
i,j,q

ξiγPf

∣∣∣∣∑
k

( ⟨f | r⃗ · êq |k⟩ ⟨k| r⃗ · ϵ̂∗j |i⟩
µPfµPi (ωkP + ∆ + 2ωPD)

+
⟨f | r⃗ · ϵ̂∗j |k⟩ ⟨k| r⃗ · êq |i⟩
µPfµPi (ωkP −∆ + ωDf )

)∣∣∣∣2(1− 2ωPD + ∆

ωPf

)3

,

(4.7)

where ωDf is the frequency of the transition between D5/2 and the manifold

containing the state f . Eqn. 4.6 gives what we will call the “full model” for g

qubits, and the sum of Eqns. 4.6 and 4.7 gives the corresponding full model for

m qubits. In m qubits, we include contributions to the gate error from some of the

closest higher energy intermediate states, but we neglect such contributions in g

qubits for reasons given in section 4.2.3 below.

We will also define what we call our “simplified model”, in which we neglect

the detuning dependence of the scattered photon frequency (i.e., we assume

(1 + ∆/ωPf )3 ≈ 1), neglect the contributions of the higher energy intermediate

manifolds, and assume that only the first term in the squared modulus of Eqn. 4.6

appreciably contributes to the scattering rate in both m qubits and g qubits. This

model results in a simpler version of Eqn. 4.6 D. J. Wineland, 2003,

Γf ≈ g2Pi

∑
i,j,q

ξiγPf

∣∣∣∣∣∑
k

⟨f | r⃗ · êq |k⟩ ⟨k| r⃗ · ϵ̂j |i⟩
µPfµPi (ωkP −∆)

∣∣∣∣∣
2

. (4.8)
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These assumptions have also been made in studies of g qubits (e.g., Ozeri, 2007)

where the 10−4 gate error threshold required detunings on the order of 10 THz.

However, as we will show, even at these modest detunings, our model can give

large corrections to this simplified model. Despite this, the simplified model in m

qubits provides an intuitive illustration of the scattering behavior for a large range

of detunings, so we therefore elect to present both models of m qubits throughout

this paper.

4.2.1. Single-qubit gates

We follow Ozeri, 2007 in their choice of a representative single-qubit gate:

a π-rotation around the x-axis of the equivalent Bloch sphere, a σ̂x gate. We will

assume the gates are driven by two laser beams that induce two-photon stimulated

Raman transitions. In the case of m qubits, we assume both beams are purely

π-polarized because we found that they minimize the scattering probability and

power requirements. In g qubits, we assume each beam has equal parts σ+ and σ−

polarization. For this gate, the required time is given by Ozeri, 2007

τ1q =
π

2|ΩR|
, (4.9)

where the Rabi frequency ΩR is calculated according to

ΩR = g2Pi

∑
k

(⟨1|r⃗ · ϵ̂∗r|k⟩⟨k|r⃗ · ϵ̂b|0⟩
µ2
ki(ωkP −∆)

+
⟨1|r⃗ · ϵ̂r|k⟩⟨k|r⃗ · ϵ̂∗b |0⟩
µ2
ki(ωki + ωPi + ∆)

)
, (4.10)

where r and b (for red and blue) label the two Raman beams, |0⟩ and |1⟩

are the two qubit states and k indexes the available intermediate states. Since
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Raman scattering (scattering events for which |i⟩ ≠ |f⟩) is the dominant source of

errors for most species, we will, for the moment, neglect errors caused by Rayleigh

scattering (scattering events for which |i⟩ = |f⟩); Section 4.2.4 below gives a

discussion of these errors. We can now calculate the general Raman scattering

error as

PRam = τ1qΓRam =
πΓRam

2|ΩR|
, (4.11)

where ΓRam is given by the sum of the scattering rates to all possible final states

|f⟩ for which |f⟩ ≠ |i⟩. For g qubits, this will be the sum of Eqn. 4.6 over all

relevant final states; for m qubits, it will be the sum of both Eqns. 4.6 and 4.7

over all relevant final states. This scattering error is plotted for g and m qubits in

Fig. 4.3.

In the simplified model of m qubits, we neglect intermediate manifolds aside

from the lowest energy P3/2 manifold, the detuning dependence of the scattered

photon frequency, ladder decay, and the counter-rotating field contribution to

the scattering rate and Rabi frequency (the second terms in the sum of Eqn. 4.6

and Eqn. 4.10). In this case, the sum over k has the same form for all ion species

considered, giving an expression for the m qubit simplified model’s Rabi frequency

for each ion species the form

ΩR = − 2

15

g2Pi

∆
. (4.12)

and a Raman scattering rate of the form

ΓRam = ρ
4

15

g2Piγ

∆2
= 2ρ

∣∣∣ΩR
γ

∆

∣∣∣ , (4.13)
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where ρ is the Raman-only fraction of the total scattering rate (the value of ρ can

be inferred from the nearly constant ratio in the low-detuning regime of Fig. 4.5)

and γ is the decay rate of the P3/2 manifold. For the m qubit’s simplified model,

this results in a gate error of

PRam = ρ
πγ

|∆| . (4.14)

This simplified model of m qubit scattering gives an especially simple form for

PRam, since only one manifold (P3/2) appreciably contributes to the scattering. The

m qubit’s simplified model behavior is also shown in Fig. 4.3 as the dashed lines.

From Fig. 4.3, we can see that the m qubits and g qubits each, as groups,

have markedly similar behavior because their P3/2 decay rates are all within

∼5 MHz (Table 4.1) of each other. As expected, the full model results deviate from

the initial linear regime as the detuning becomes large. In m qubits, the full model

yields a lower scattering probability than the simplified model for red-detuning,

and a higher scattering probability for blue-detuning. The deviations from the m

simplified model can be observed in the lower plot of Fig. 4.3

4.2.2. Two-qubit gates

Consider now a two-qubit Mølmer-Sørensen gate, driven by three Raman

beams Mølmer and Sørensen, 1999; Tan, 2016. We will suppose that the three

beams are comprised of one pair of co-propagating beams of power P and one

beam counter-propagating with this pair with intensity 2P, since this distribution

of power minimizes the scattering error for this beam geometry. For this gate, the

duration is
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FIGURE 4.3. Raman scattering probability for m qubits and g qubits during
single-qubit σ̂x gate for large detuning. The m qubit ions are labeled by diamonds
and the g qubit ions are labeled by squares. Detuning is measured relative to
P3/2 in m qubits; for g qubits, red detuning is measured relative to P1/2, and blue
detuning is measured relative to P3/2. The lower plot shows zoomed-in regions of
the upper plot with the simplified model behavior shown for m qubits as dashed
lines. Figure from Moore, Campbell et al., 2023.
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τ2q =
π

2
√

2|ΩR|

√
K

η
. (4.15)

This is the gate time for the two-qubit gate in Ozeri, 2007 but reduced by a factor

of 1/
√

2 because of the unequal distribution of intensities in this setup. In this

equation, K is the number of loops the |01⟩ and |10⟩ states trace out in phase

space (we set K = 1 for our calculations) and η is the Lamb-Dicke parameter,

which for counter-propagating Raman beams is given Ozeri, 2007 by

η = ∆kz0b
(i)
p = 2kLz0

1√
2

=
√

2
ωL

c
z0, (4.16)

where ∆k is the magnitude of the difference between the two Raman beams’

wavevectors (this difference wavevector being aligned to the mode of interest), kL

and ωL are respectively the wavenumber and frequency of the Raman beams, and

b
(i)
p is the mode participation factor (equal to 1/

√
2 here). Note that the simplified

model of Ozeri, 2007 considers perpendicular beams which would increase the

Lamb-Dicke parameter by a factor of
√

2. The root-mean-square spatial spread

of the ground state wavefunction z0 is given by

z0 =
√

ℏ/2Mωtrap, (4.17)

where M is the mass of each ion and ωtrap is the frequency of the driven motional

mode.

The scattering probability for this gate is the single-qubit gate scattering

probability scaled by a factor of 4, as well as the extra gate time factor Ozeri,

2007. The factor of 4 comes from two considerations: first, that the two-qubit gate

uses three beams with a total power twice as great as in the total beam power
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used in the single-qubit gate, and second that there are two ions. Both of these

differences scales the gate error by a factor of 2 to generate an overall increase of 4.

This gives a general form for the two-qubit gate Raman scattering error,

PR2q =
πΓRam

2
√

2|ΩR|
4
√
K

η
. (4.18)

For the simplified model in m qubits, this results in

PR2q,simp = ρ
πγ

|∆|
4
√
K√

2η
. (4.19)

Because η is proportional to the laser frequency, it will in general depend on

detuning. For the simplified model, we neglect this detuning dependence, so the

error probability again exhibits linear behavior. We do, however, include this

dependence in the full model, as the size of the effect is too large to reasonably

ignore. In the full model for both g and m qubits, we can see that the Lamb-Dicke

parameter leads to a further detuning dependence of the form

PR2q ∝
ωPi

|∆(ωPi + ∆)| , (4.20)

where ωPi denotes the frequency of the transition between the P3/2 manifold and

the manifold containing the qubit states. The Raman scattering error of a 1-loop

two-qubit Mølmer-Sørensen gate is plotted in Fig. 4.4; the full models of g and m

qubits are shown by the solid curves, and the simplified m qubit model is shown

by the dashed curves.

The qualitative behavior of the sharply-increasing red-detuned m qubit

scattering probability in Fig. 4.4 can be understood by observing that as the

laser frequency approaches zero, the gate time goes to infinity (because the
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FIGURE 4.4. Raman scattering probability from a 1-loop two-qubit Mølmer-
Sørensen gate on m and g qubits. The m qubit ions are labeled by diamonds and
the g qubit ions are labeled by squares. The simple model for m qubits is shown
in the plot as dashed lines. Detuning is measured relative to P3/2 in m qubits; for
g qubits, red detuning is measured relative to P1/2, and blue detuning is measured
relative to P3/2. Figure from Moore, Campbell et al., 2023.

Lamb-Dicke parameter is approaching zero); however, the frequency of photons

scattered to, e.g., S1/2 approaches a non-zero value (the S1/2 ↔ D5/2 transition

frequency). The gate error, being the product of the scattering rate and gate time,

therefore approaches infinity as the laser frequency goes to zero. This does not

occur in g qubits, because the scattered photon frequency also goes to zero as the

laser frequency approaches zero. Additionally, the scattering rate in g qubits is

generally lower than in m qubits across the detuning range considered. However,

scattering errors in m qubits are largely due to scattering to S1/2, i.e., outside the

qubit manifold. Such errors are easier to detect and correct; indeed, one of our

collaborators recently applied some of the results presented here in an investigation
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of erasure conversion in quantum error correction with metastable states Kang,

Campbell and Brown, 2022.

The form of the g scattering probability plotted in Figs. 4.3 and 4.4 differs

in several ways from that given in Ozeri, 2007. First, we compute D-manifold

scattering rates directly, whereas Ozeri, 2007 calculates them by multiplying the

total scattering rate by the branching ratio to the D-manifolds. This overestimates

the D-scattering rate, as it neglects interference between the P1/2 and P3/2

manifolds. Second, we include the V scattering process and the counter-rotating

electric field component contribution to the Rabi frequency (i.e., the contribution

to Rabi flopping that is neglected in the rotating-wave approximation). Third,

we include the detuning dependence of the Lamb-Dicke parameter and scattered

photon frequency (while Ozeri, 2007 used a single value of η and ωsc for the entire

detuning range). This latter effect makes the scattering rate proportional to ω3
sc,

the cube of the scattered photon frequency (Appendix A). Note that if a detuning

is chosen such that ∆ < −ωPf the contribution to the scattering probability due

to scattering to level f becomes precisely zero. This is because the proportionality

to ω3
sc in such a condition renders the f scattering rate negative, which is non-

physical. Another way to see that such scattering is not permitted is to note that

it violates energy conservation.

Finally, it is notable that by neglecting the above effects, the simplified

model of Ozeri, 2007 implied a lower bound on Raman scattering-induced gate

error in g qubits (1.06 × 10−4, 0.50 × 10−4, 1.46 × 10−4, and 0.007 × 10−4

for Ca+, Sr+, Ba+, and Yb+ respectively). This bound appears because the D-

manifold scattering error in that model approaches a non-zero value at large red

detunings. However, in our model, this lower bound does not exist. The Raman
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scattering error approaches zero at large red detunings. This is as it should be, due

to considerations of energy conservation.

4.2.3. Higher levels

The above models have incorporated scattering probability contributions

from higher levels in m qubits, but not g qubits (a disparity we will justify in

this section). Higher levels contribute to the scattering probability in two ways:

through increasing the overall scattering rate, and increasing or decreasing the

Rabi frequency. Because the Rabi frequency and scattering rate have different

scaling in detuning, the inclusion of higher levels can actually result in a net

decrease in scattering probability for some parameter regimes.

There are two factors which clearly attenuate the magnitude of contributions

from the higher levels to the Raman scattering error: the larger frequency

denominators of the scattering rates and the smaller radial overlap with higher

levels’ wavefunctions. To numerically estimate the contribution of the higher levels,

we calculated it for the P3/2, F5/2, and F7/2 manifolds available in the University of

Delaware database Barakhshan et al., n.d. in Ca+, Sr+, and Ba+.

The contributions from higher levels differ substantially in m qubits and

g qubits. Destructive interference in the Rabi frequency due to higher levels

causes m qubit behavior to change noticeably at large red- and blue-detunings.

Interference effects are largely absent in g qubits, however, since the contributions

of higher P1/2 and P3/2 essentially cancel. The reason for this cancellation is

that Raman scattering flips the electron spin via the spin-orbit coupling L · S

in the excited state. However, the dipole matrix element for this process is equal

in magnitude but opposite in sign for the two fine-structure manifolds P1/2 and
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P3/2 Cline et al., 1994; Ozeri, 2007. Since we are considering tunings far from the

resonant excitation of the higher levels, these matrix elements largely cancel out

their contributions; deviations from the g qubit model neglecting higher levels do

not exceed more than a few percent until about 1 PHz detuning, where the laser

frequency reaches a resonance with a higher P manifold.

Including the higher levels in the m qubit model lowers scattering probability

at the 10−4 error level by a small amount for red detunings. The corrections for

blue detuning, however, can be much larger at the 10−4 error level; inclusion of the

higher levels increases the gate error for blue detuning. These corrections are large

enough that when higher levels are included, Sr+ and Ba+ can no longer get below

the 10−4 error level for blue detuning.

4.2.4. Rayleigh scattering errors

So far, we have neglected Rayleigh scattering-induced errors. Previous

discussions of scattering in the literature (e.g. Ozeri, 2007) have characterized

the infidelity contribution of Rayleigh scattering-induced dephasing as being

proportional to the difference in elastic scattering rates; however, as is shown

in Uys et al., 2010, the dephasing rate due to Rayleigh scattering must be

computed by including interference between the Rayleigh scattering amplitudes.

This can lead to Rayleigh scattering becoming the dominant source of error for

certain parameter regimes. However, since we are considering clock qubits in

both m qubits and g qubits, the Rayleigh-scattering-induced decoherence will be

negligible. Tan, 2016

Rayleigh scattering can however cause errors during two-qubit gates in

two other ways: recoil from the momentum kick during Rayleigh scattering and
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nonlinearities in the two-qubit gate. Both effects were studied in Ozeri, 2007 and

recoil was found to yield a gate error of the form

ϵRay = PE2q
⟨|β|2⟩
2K

, (4.21)

where PE2q is the probability of a elastic Rayleigh scattering event during the

two-qubit gate, β the recoil displacement in phase space due to the scattering

event, and K is the number of loops traced out in phase space (again, K = 1

for our gate). The expected value of |β|2 depends on the polarization choice, but

we can determine an upper bound on the reduction in fidelity by taking the recoil

displacement to equal its maximum value. For our choice of laser beam geometry,

the squared magnitude of the recoil displacement is given by Ozeri, 2007

|β|2 =
η2

2

(
1√
2

+ cosθ

)2

, (4.22)

where η is the Lamb-Dicke parameter and θ is the angle of the recoil direction

from the axis along the motional mode to which we are coupling. The maximum

value is at θ = 0, so

⟨|β|2⟩ ≤ η2
(

3

4
+

1√
2

)
(4.23)

implying

ϵRay ≤ PE2qη
2

(
3

8
+

1

2
√

2

)
. (4.24)

The ratio of this upper bound on Rayleigh recoil error to the Raman scattering

error during a two-qubit gate is plotted in Fig. 4.5 for m qubits and g qubits. The

two lightest species, Be+ and Mg+, have the largest Rayleigh scattering errors
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precisely because they are so light; their low masses increase their sensitivity to

photon recoil. Additionally, they have higher frequency Raman transitions which

makes their Lamb-Dicke parameters larger and therefore further increases their

sensitivity to Rayleigh scattering events. In the other species, for most of the

detuning range, the Rayleigh recoil errors are small. For m qubits, the magnitude

of this contribution to the error is 5 or 6 orders of magnitude lower at the 10−4

error level compared to Raman scattering contribution in the various species of

ions we consider. The g Rayleigh recoil error is roughly 1 to 3 orders of magnitude

smaller than the Raman scattering error for most of the detuning range shown

(again, except for Be+ and Mg+). The m qubits fare better than g qubits with

respect to the Rayleigh recoil error in large part because m qubits have lower

branching ratios to the qubit manifold, which leads to a lower probability of elastic

scattering events. Furthermore, due to their lower frequency transitions, they have

lower Lamb-Dicke parameters, which further suppresses the Rayleigh recoil error.

The infidelity contribution of gate nonlinearities due to recoil momentum

displacement is even smaller. As noted in Ozeri, 2007, the error due to such

nonlinearities is proportional to η4. This is negligible for most g qubits and even

less important in m qubits, due to their smaller Lamb-Dicke parameters. In Be+

and Mg+, this error can still be larger than the Raman scattering error, but it is

small compared to the Rayleigh recoil error.

4.3. Power Requirements

Now we will calculate the power required to achieve a given gate error rate

(recall that we are considering a two beam single-qubit gate and a three-beam two-

qubit gate). We first rewrite Eqn. 4.3,
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FIGURE 4.5. Ratio of the upper bound on Rayleigh recoil error to Raman
scattering error during a two-qubit gate for m qubits and g qubits. The m qubit
ions are labeled by diamonds and the g qubit ions are labeled by squares. Note
that, for the detunings plotted, the Rayleigh recoil error upper bound exceeds
the Raman scattering error only for g qubits in Be+, Mg+, and Ca+. The steep
declines in the ratio in m qubits at large blue detunings is due to destructive
interference with the F7/2 manifolds in the Rayleigh scattering rate. Figure
from Moore, Campbell et al., 2023.

ρq
γ

g2Pi

=
4ℏω3

3/2

3πϵ0c3E2
, (4.25)

where ρq is the inelastic fraction of the scattering from P3/2 to the qubit manifold,

ωPi is the frequency of the transition from the qubit manifold to P3/2, and E

is the peak electric field strength. Note that this equation differs from Eqn. 15

of Ozeri, 2007 only by the factor ρq. This is because gPi in Ozeri, 2007 is defined

for S1/2 ↔ P3/2 transitions, and the branching ratio from P3/2 to the lower D levels

was considered small enough that the authors treated the decay rate to S1/2 as the

total decay rate. In m qubits, gPi is defined for transitions from D5/2 ↔ P3/2,
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but ρq is too small to treat this decay rate as the total. The decay rate to an

individual level must then be the total decay rate weighted by the branching ratio

to that level.

By rewriting g2Pi in Eqn. 4.25 in terms of ΩR and its detuning dependence

r(∆), defined as

r(∆) = |ΩR(∆)|/g2Pi =

∣∣∣∣∣∑
k

(⟨1|r⃗ · ϵ̂∗r|k⟩⟨k|r⃗ · ϵ̂b|0⟩
µ2
ki(ωkP −∆)

+
⟨1|r⃗ · ϵ̂r|k⟩⟨k|r⃗ · ϵ̂∗b |0⟩
µ2
ki(ωki + ωPi + ∆)

)∣∣∣∣∣,
(4.26)

we can write the power requirement as a function of detuning for single and

two-qubit gates as (see Appendix C for derivation)

P1q(∆) =
ℏω3

Piw
2
0

3c2ρqγ

π

τ1qr(∆)
(4.27)

and

P2q(∆) =
2ℏω3

Piw
2
0

3
√

2c2ρqγ

π
√
K

τ2qη(∆)r(∆)
, (4.28)

where w0 is the beam waist and η(∆) is the Lamb-Dicke parameter (including

detuning dependence). Because the gate error is also some function of ∆, ϵ(∆)

(Sections 4.2.1 and 4.2.2), we can visualize the power and error requirements by

plotting the set of points (ϵ(∆),P(∆)), shown in Figs. 4.6 and 4.7.

For the simplified model, r(∆) can be directly related to the gate error ϵ,

allowing us to write the power as a function of error as (Appendix C)

P1q(ϵ1q) = ρ
5πℏω3

Piw
2
0

2c2ϵ1q

π

τ1q
(4.29)
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and

P2q(ϵ2q) = ρ
10πℏω3

Piw
2
0

c2ϵ2q

π

τ2q

K

η2
, (4.30)

for single and two-qubit gates, respectively.

As can be seen in Figs. 4.6 and 4.7, the power requirements for g qubits are,

for a large range of detunings, about one order of magnitude smaller than the

required power for m qubits at the same error probability; this is mostly because

of the small branching ratio to D5/2 qubit manifold. However, we note that high

power lasers are readily available at the large red detunings anticipated for m

qubits, so these higher power requirements may not be a limiting factor.

From Fig. 4.7, we can also see the the discrepancies between the simplified

model and the full model reappearing. The full model power curves bend

backwards past the minima of ϵ(∆), entering a regime of diminishing returns

where the gates both take longer and have higher errors. For a fixed gate time,

this farther tuning from resonance means more power is required to drive the gate.
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FIGURE 4.6. Total power required to achieve a given error rate during a single-
qubit π-rotation gate in the full model (assumes 20 µm beam waist and 1 µs gate
time). The m qubit ions are labeled by diamonds and the g qubit ions are labeled
by squares. Errors for red-detuned g qubits here are calculated from detunings
below P1/2 only. Figure from Moore, Campbell et al., 2023.
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FIGURE 4.7. Total power required to achieve a given error rate during a two-
qubit Mølmer-Sørensen gate (assumes 20 µm beam waist, 10 µs gate time, and a
5 MHz axial trap frequency). The m qubit ions are labeled by diamonds and the
g qubit ions are labeled by squares. Solid lines correspond to full model, dashed
lines correspond to the simplified model. Errors for red-detuned g qubits here are
calculated from detunings below P1/2 only. Figure from Moore, Campbell et al.,
2023.
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CHAPTER V

ZEEMAN QUBITS IN 40CA+

The analysis of Chapter IV centers around hyperfine qubits in trapped

alkaline earth ions. However, while our lab ultimately plans to trap 43Ca+, we

have so far trapped only 40Ca+, which, having no nuclear spin, has no hyperfine

structure. We chose to trap 40Ca+ first because it has a simpler atomic structure

(downsides will be discussed in the section below). This chapter will give the

details of the Zeeman qubits on which we have performed our experiments and

extends the theory of Chapter IV to them.

5.1. Zeeman Qubits in the D5/2 Manifold

Since 40Ca+ has no nuclear spin, its energy manifolds only possess fine

structure, i.e., they only have Zeeman sublevels. For our experiments, we choose to

encode our qubit as follows: |1⟩ = |D5/2,m = +5/2⟩ and |0⟩ = |D5/2,m = +3/2⟩.

One disadvantage of using this Zeeman qubit is that it is not possible to make a

“clock” qubit with Zeeman levels. The transition frequency of a clock qubit is at

an extremum, such that the derivative of the frequency with respect to magnetic

field is zero. This implies that the frequency is relatively insensitive to magnetic

field noise and Rayleigh scattering. This is possible with hyperfine qubits, but not

in Zeeman qubits, since the qubit frequency is linear in the B-field. However, these

qubits are easy for us to prepare and control, and are sufficient for our experiments

in this work, and so we elect to use them.

It is easy to prepare the qubit in the |0⟩ state via the optical pumping

scheme shown in 5.2. We begin with 397 nm (σ+-polarized) and 866 nm laser beam
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pulses. This prepares the mJ = +1/2 state in the S1/2 manifold. From there,

we apply 393 nm (σ+-polarized) and 866 nm laser beam pulses to pump out the

population of mJ = +1/2 sublevel of S1/2 via the mJ = +3/2 sublevel of P3/2.

Finally, we apply an 854 nm π-polarized laser beam to depopulate the sublevels

of D5/2, except for the mJ = +5/2, the level we are trying to prepare. We then

repeat this pulse sequence until the desired fidelity is achieved (usually around 7

times). We are able to obtain about 99% preparation fidelity this way.

With the qubit initialized to |0⟩, we are nearly ready to perform our gate.

One problem remains, though: all ∆m = ±1 transitions are degenerate since their

separation frequencies are set by the Zeeman splitting. We therefore need a way to

separate our qubit transition from the other transitions in the D5/2 manifold. We

achieve this by applying a σ+-polarized 854 nm beam. This induces a light shift

on all sublevels aside from the qubit states (this technique was first used in Curtis,

2010; see also Sherman et al., 2013). Importantly, absent polarization impurities, it

also causes no scattering from the qubit states.

After the gate, we perform readout by first shelving the m = +3/2

population in the m = +1/2 state. We do this so that when we deshelve with the

854 nm π-polarized laser beam we avoid back-scattering to the m = +5/2 sublevel.

We can then pump this population out of the D5/2 manifold, and then turn on the

397 nm and 866 nm lasers to check for population in the S1/2 and D3/2 manifolds.

Finally, after this, we can completely depump the D5/2 manifold with the 854 nm

σ−/σ+-polarized laser beams. This is important for resetting the ion into the S1/2

manifold after readout is complete. The complete suite of operations on this qubit

is portrayed in Figure 5.2.
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FIGURE 5.1. The D5/2 Zeeman qubit. The qubit is isolated with 854 nm light
shift beam and the gates are driven with the 976 nm Raman laser beams, or an rf
magnetic field.
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FIGURE 5.2. Laser and rf operations on the 40Ca+ Zeeman qubit in the
D5/2 manifold. The preparation pulse sequence is performed N times, until a
satisfactory preparation fidelity is achieved. The qubit operations (using the
976 nm Raman beams) may then be performed while the 854 nm light shift beam
is on. To read out the qubit, we first shelve the m = +3/2 population in the
m = +1/2 state and then deshelve this population with an 854 nm π-polarized
laser beam. We then check for population in the S1/2 and D3/2 manifolds with the
397 nm and 866 nm laser beams. Finally, we can depump into the S1/2 manifold
with the 854 nm σ−-polarized laser beam.
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5.1.1. Light Shifts

As discussed in Section 5.1, we need to energetically separate our qubit

sublevels from the other Zeeman sublevels. We manage this by using an 854 nm

σ+-polarized laser beam. This couples the m = +1/2 sublevel of the D5/2 manifold

to the m = −1/2 sublevel of P3/2 manifold. This generates a light shift on the

m = +1/2 sublevel, lifting the degeneracy as desired. The light shift can be

calculated from

∆LS = g2
∑
k

| ⟨k| d⃗ · ϵ̂ |D5/2,m = +1/2⟩ |2
∆

, (5.1)

where k indexes all sublevels of the P3/2 manifold.

It is worth noting that the 976 nm Raman beams are also capable of

generating light shifts. However, the magnitude of the differential light shift from

the 976 nm beams scales with the Rabi frequency, so the different transitions would

never be well-resolved if this were the sole light shift. Therefore, we generally need

the 854 nm light shift beam to make our qubit usable.

While the light shift beam is necessary to isolate the qubit states, it does

introduce one other problem. Any σ− polarization impurity in the 854 nm beam

will cause scattering from the qubit states. However, the σ− polarization impurity

is small, typically around 0.1%. The scattering error from σ− impurities in a

10 mW 854 nm beam during a 10µs single-qubit gate is shown in Figure 5.3. From

the figure, it is clear that keeping impurities low is paramount, since we also want

to maintain a large light shift. The relationship between light shift magnitude and

beam power can be seen in Figure 5.4
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FIGURE 5.3. Trade-off between scattering error ϵSD from σ− impurities in a
10 mW 854 nm beam during a 10µs single-qubit gate and light shift magnitude for
various σ− fractional impurities.

5.2. Scattering Theory for Zeeman Qubits

There is no essential difference in the derivation of the scattering rate for

Zeeman qubits as compared to hyperfine qubits. The scattering rate will have the

same form as Eqn. 4.6 and Eqn. 4.7, but the matrix elements must be calculated

differently. The transition dipole matrix element between upper and lower states

|u⟩ and |l⟩ is given by
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FIGURE 5.4. Power and detuning requirements for various light shifts from the
854 nm σ+-polarized beam.

⟨u| dmu−ml
|l⟩ =(−1)2Ju+Ll−ml

√
(2Jl + 1)(2Ll + 1)

× Ju1Jlmuml −mu−mlLlLu1JuJlS.

(5.2)

Additionally, when working with Zeeman qubits, one convenient feature of

hyperfine qubits is unavailable to us: the possibility of producing clock qubits.

Because the qubit frequency is determined solely by the Zeeman splitting in

Zeeman qubits, it varies linearly with the B-field, which ensures that there will

be no local minimum at which to generate a clock qubit. Besides increasing
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dephasing, this also means we cannot use the same argument to neglect Rayleigh-

scattering-induced decoherence as was given in Section 4.2.4. While this will

worsen gate performance, it serves as no obstacle to our goal of measuring the

Raman scattering error and comparing it to the predictions of the theory.

5.2.1. Rayleigh-Scattering-Induced Decoherence

The Rayleigh-scattering-induced decoherence can be calculated as in Uys

et al., 2010,

Γel = g2Pi

∑
j

γPf

∣∣∣∣∑
k

( | ⟨k| r⃗ · ϵ̂j |0⟩ |2
µ2
Pi (ωkP −∆)

+
| ⟨k| r⃗ · ϵ̂j |0⟩ |2

µ2
Pi (ωki + ωkf + ∆)

)

−
∑
k

( | ⟨k| r⃗ · ϵ̂j |1⟩ |2
µ2
Pi (ωkP −∆)

+
| ⟨k| r⃗ · ϵ̂j |1⟩ |2

µ2
Pi (ωki + ωkf + ∆)

)∣∣∣∣2(1 +
∆

ωPf

)3

.

(5.3)

As noted in Section 4.2.4, this decoherence is negligible for clock qubits. Since we

cannot generate a clock qubit in 40Ca+, we cannot neglect the Rayleigh-scattering-

induced decoherence. We can quantify the importance of this decoherence by

plotting its ratio to the Raman scattering decoherence, as in 5.5.

As the figure shows, red-detuning lowers the fractional Rayleigh scattering

error and for our laser system (at -44 THz detuning) will have about 6% more

scattering error on top of ϵSD due to Rayleigh scattering. The error is therefore

not substantially larger.
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FIGURE 5.5. Ratio of Rayleigh scattering error, ϵRay, to Raman scattering errors
associated with scattering to S1/2 and D3/2, ϵSD.
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CHAPTER VI

SCATTERING RATE MEASUREMENTS

With the scattering rate calculations in hand, we now turn to the

experimental verification of them.

6.1. 976 nm laser setup

As discussed above, although m qubits require larger detunings to achieve

the same gate error as g qubits, the required Raman laser wavelengths for m

qubits in 40Ca+ is in a wavelength range where there are powerful (watts to

kilowatts) lasers available. This enables us to complete the gates in the low error

regime in a reasonable amount of time.

We chose to use a free-space 700 mW 976 nm hybrid external cavity laser

(a HECL; from Innovative Photonics Solutions, model I0976SB0700B) with a

CTL300E-1-1200 Koheron driver. This laser is compact, powerful, and inexpensive,

being about an order of magnitude more powerful than our Toptica lasers and

having two orders of magnitude smaller volume. At 976 nm, this laser is -44 THz

detuned from the D5/2 ↔ S1/2 transition. We chose to use this wavelength because

any wavelength longer than 963 nm (see Table 8.1) allows the two-qubit gate to

reach a spontaneous scattering error below 10−4. We choose 976 nm in particular

because it is used to pump erbium-doped fiber amplifiers in telecommunications

and therefore is widely available. Per Figure 4.4, at the -44 THz detuning this laser

achieves, we expect a minimum achievable Raman-scattering-induced gate error

of 9 × 10−5. The laser is protected by a optical isolator (Newport, part number

ISO-04-980-MP). The laser can be seen in Figure 6.1.
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FIGURE 6.1. 976 nm laser.

FIGURE 6.2. 976 nm optical setup.

The laser geometry we use for our scattering experiments is shown in

Figure 6.2. The laser beam is split and then sent through two AOMs. These

are the same AOMs as discussed in Section 3.6. There, it goes into the beam

delivery system and is sent to the ions. Note that, in our scattering measurement

experiments, we adjust the waveplate to divert all power into one beam at a time

and use the undeflected beam out of the AOM in order to maximize available

power at the ion. We keep the AOM on so that we can still use the SU servo (see

Section 3.7) to control the beam power. Because we are using the zeroth order

beam, we have to use a shutter to block the laser beam when we want no 976 nm

light on the ion, and this is much slower than turning off the beam with the AOM,

since the shutter takes a few milliseconds to block the beam.
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6.2. Scattering rate experiments

The analyses of Chapters IV and V allow us to quantify the scattering rates

in metastable qubits. In this section, I detail our measurements of scattering rates

to the S1/2 and D3/2 manifolds for m qubits encoded in the mJ = +5/2 and

+3/2 Zeeman sublevels of the D5/2 manifold in 40Ca+. The big picture of the

experiment is that we prepare the qubit in one of its two states, then apply one

of the 976 nm Raman beams, either the π- or σ−-polarized beam. We consider σ−

and π-polarized laser beams because they are used to drive Raman gates in our

qubit, and so enables us to infer the Raman scattering error we can expect during

such a gate. Then, in each relevant combination of initial state and laser beam

polarization, we measure the scattering rate (note that we do not consider the

mJ = +5/2 plus π-polarized beam scenario, since, absent polarization impurities,

there will be no scattering in this case).

A more detailed explanation of the experiment is as follows: first, we

calibrate the separation frequency between the mJ = +5/2 and mJ = +3/2

Zeeman sublevels of D5/2, with and without the 976 nm beam applied. This

enables us to measure the light shift of the qubit separation frequency, from which

we infer the laser intensity at the ion. Next, after preparing the ion in either the

mJ = +5/2 or mJ = +3/2 Zeeman sublevel of D5/2, we perform a natural

lifetime measurement (i.e., we measure the lifetime with the 976 nm laser beam

turned off). We do this by preparing the ion in one of the qubit states and wait

for some duration. We then read out the state by first checking for fluorescence

with the 397 nm and 866 nm cooling lasers. If the ion is bright, we infer that we

have scattered or decayed from D5/2. Conditional on the ion being dark in the

previous step, we apply an rf π pulse on the mJ = +3/2 ↔ mJ = +1/2 transition,
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and subsequently apply an 854 nm π-polarized depump beam, and finally check

for fluorescence using our 397 nm and 866 nm cooling lasers applied. The rf pulse

helps avoid back-scattering to the initial state and the fluorescence tells us if there

was any population in the sublevels of D5/2 (aside from mJ = +5/2). Afterwards,

we also apply an 854 nm beam with both σ+ and σ− polarization to depump the

mJ = +5/2 population and again look for fluorescence with our 397 nm and

866 nm cooling lasers; this checks whether or not the ion has heated excessively.

If the ion has indeed heated excessively, it will appear dark and we reject the

data from this experiment. If instead we detect a bright ion during the 393 nm +

866 nm step, we conclude that the ion was in the mJ = +5/2 state. We count up

how often this happens and then repeat the experiment for various delays between

state preparation and readout. We then fit an exponential curve to this data,

giving us a measure of the natural lifetime τNat of the D5/2 manifold. We then

repeat this experiment, but this time with the 976 nm Raman beam on throughout

the experiment. The data generated by this experiment is another exponentially

decaying lifetime curve, yielding lifetime τRam. We can infer the Raman scattering

rate ΓRam from these two measurements via

ΓRam =
1

τRam

− 1

τNat

. (6.1)

6.2.1. Systematic Errors in Natural Lifetime Measurements

The method describe above of measuring the scattering rate has a knock-

on benefit of checking for certain systematic errors from the measurement, which

allows us to make unbiased measurements of the scattering rate. By systematic

errors, I refer to any effects which lengthen or shorten the lifetime regardless of
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whether the 976 nm laser is on or off. Because of how we calculate the scattering

rate, such errors will cancel out of the calculation.

An example of such an effect is cooling laser leakage. Early on in our

experiment, we noticed that our natural lifetimes were higher than expected from

the literature. After investigation, we discovered that the 393 nm beam was present

in the trap when it should have been off. This caused scattering from S1/2 to D5/2

and lengthened the measured lifetime. However, because the leakage was present

when the 976 nm laser beam was on and when it was off, this systematic error

canceled out when we calculated the Raman scattering error. After removing the

393 nm leakage, we did not notice any further discrepancies between our measured

natural lifetime and the literature values, as we show below. However, there are

still errors specific to each experimental condition (initial state choice and laser

beam polarization) to consider. In the next section, I will give a detailed discussion

of these three experimental conditions.

6.2.2. Prepare mJ = +5/2 State, Apply 976 nm σ− Beam

In the first experimental condition, we prepare the mJ = +5/2 state and

apply a σ−-polarized 976 nm laserer beam. The raw data, showing population over

time at various powers, can be seen in Figure 6.4.

To interpret our experimental results correctly, understanding back-scattering

to the D5/2 manifold is paramount. If we scatter back to the mJ = +5/2 state,

this does not hinder our goal of measuring the scattering rate to the S1/2 and D3/2

manifolds (although these Rayleigh scattering events would hurt the qubit during

a gate). The scattering rate remains the same as we expect. However, if the ion

scatters back to the mJ = +3/2 or mJ = +1/2 state, the scattering rate will
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differ due to the different Clebsch-Gordan couplings of the Zeeman sublevels. The

effect will be small though, since the scattering rate is low enough that we expect,

most probably, zero or one scattering events in each experiment (where the ion

is exposed to the laser for at most one second). The back-scattering contributes

to scattering rate measurement error directly if there are two scattering events,

one to the D5/2 manifold and then one outside of D5/2. The back-scattering can

also contribute if it scatters back to mJ = +3/2 or +1/2 and then fails to scatter

anywhere else. This is because scattering events where the ion first scatters back

to mJ = +5/2 and then to S1/2 or D3/2 do contribute to the scattering rate, but

the rate of these events is different for mJ = +3/2 or +1/2. This effect is, a priori,

likely to be small though, since the total scattering rate is already low and the ion

only scatters to the D5/2 manifold 5% of the time, and the scattering rates from

each of the other states are not significantly different from the scattering rate from

the initial state.

During this experiment, scattering back to the D5/2 manifold can change our

measured scattering. To estimate the size of this effect, suppose the scattering rate

from the initial state to S1/2 and D3/2, ΓSD, is 1 Hz. By using the probabilities to

scatter to each state in Figure 6.3 and assuming that at most one back-scattering

event occurs in the experiment (a reasonable assumption given the low branching

ratios), we can calculate the expected scattering rate after accounting for back-

scattering, and find it to be 0.994 Hz, a 0.6% difference. Because the scattering

rate is linear in the beam power, this effect will simply decrease the slope of

the linear relationship by 1%. Below, we will verify experimentally that this

effect is negligible by showing that a model which considers only scattering from
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mJ = +5/2 fits the data very well, and the slope of the fit is 0.7% smaller than the

theory line, in line with our estimate.
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FIGURE 6.3. Scattering diagram for the various initial states and beam
polarizations. Possible first-order scattering events indicated by wavy green arrows,
with the dark green arrows indicating the scattering events we actually measure
(i.e., scattering to S1/2 and D3/2). Light red arrows indicate coupling of the other
sublevels (besides the initial state) of D5/2 to P3/2.
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6.2.3. Prepare mJ = +3/2 State, Apply 976 nm σ− Beam

In the second experimental condition, we prepare the mJ = +3/2 state and

apply a σ−-polarized 976 nm laserer beam. The raw data, showing population over

time at various powers, can be seen in Figure 6.6.

Back-scattering is also possible for this condition, of course. However, for the

same reasons outlined above, its effect is negligible. We can undertake the same

calculation as in the previous section to confirm this. In this case, we obtain a

scattering rate of 0.986 Hz, a 1.4% difference. This is larger that in the mJ = +5/2

case, and we will see in the results below that the theory line is indeed 1.4% higher

than the data fit line (though still within the error bars).

6.2.4. Prepare mJ = +3/2 State, Apply 976 nm π Beam

In the third and final experimental condition, we prepare the mJ = +3/2

state and apply a π-polarized 976 nm laserer beam. The raw data, showing

population over time at various powers, can be seen in Figure 6.8.

Back-scattering plays a role in this condition as well, but in this case it exerts

a strong effect. The reason for this is that the ion can scatter into the mJ = +5/2

state, but once the ion is in this state, it is not susceptible to Raman scattering

from the π-polarized laser beam (there is no mJ = +5/2 level to which it can

couple in the P3/2 manifold). As you can see in Figure 6.3, the ion will scatter

into the mJ = +5/2 state in 3.91% of all scattering events. Making the same

assumptions as above, the scattering rate will be 3.4% lower after accounting for

back-scattering.

Fortunately, this effect is easy to correct for on the experiment side in this

case. To do so, we can just count how often the ion is dark after depumping
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with the 854 nm π-polarized beam. This serves as a measure of the mJ = +5/2

population. Once we have this measure across all the experiments, we can remove

the back-scattering effect by dividing the population data by 1− ρ+5/2, where ρ+5/2

is the measured population of mJ = +5/2. Note that this option works well only

in this case, since for the other combinations of initial state and laser polarization,

there is no state in which the back-scattering population remains in one sublevel

throughout the experiment.

6.2.5. Experimental Results and Analysis

For each dataset generated, we took a separate natural lifetime measurement.

One advantage of this is it lets us check for any errors that are systematic across

the laser-on and laser-off conditions. We measured a natural lifetime in good

agreement with the literature value of 1168(9) ms (see Kreuter et al., 2005).

Our measured lifetimes were 1165(10) ms, 1154(9) ms, and 1161(13) ms for the

mJ = +5/2 σ− beam, mJ = +3/2 σ− beam, and mJ = +3/2 π beam datasets,

respectively.

The scattering rate is linear in the laser intensity applied, and the slope

can be calculated from the Kramers-Heisenberg formula (see Appendix A).

Noting this, we can compare the model we developed in Chapters IV and V the

experiment by varying the laser intensity and comparing the slopes of these theory

lines to the slope of the line fitted to the data. Plots of these lines are given in

figures 6.5, 6.7, and 6.9.

The scattering rate measurements are in good agreement with the theory.

The fitted slope is within the uncertainty range of the theory line’s slope, and vice

versa. The uncertainty ranges of the theory line and the fit line are calculated
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differently. For the fit line, the uncertainty range spans all lines with slopes within

one standard error of the fitted slope. For the theory line, the uncertainty range

spans all lines with slopes that fall within the uncertainty range of the model

parameters. These parameter uncertainties are dominated by uncertainty in

the P3/2 lifetime (precision of 0.6%, see Meir et al., 2020), so this uncertainty

essentially determines the uncertainty range of the theory line. This corroborates

the scattering rate calculations which went into Chapters IV and V, and therefore

demonstrates low scattering errors are achievable in trapped-ion qubits. Similar

experiments were also performed at UCLA on g qubits in 133Ba+ ions, again

achieving good agreement with the predicted scattering rates (see Boguslawski

et al., 2022).

The next step of this research is to actually implement a two-qubit,

Raman-beam-induced gate using these 976 nm lasers. Our lab’s progress towards

implementing such a gate and increasing its fidelity is the subject of the next

chapter.
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FIGURE 6.4. Lifetime measurement results for mJ = +5/2 initial state with σ−-
polarized 976 nm laser beam applied. I fit an exponential decay function 1 − eγt

to the data and infer the scattering rate by taking the difference between the γ fit
parameters of the natural lifetime and laser-incident lifetime datasets.
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FIGURE 6.5. Scattering rate measurement results for mJ = +5/2 initial state with
σ−-polarized 976 nm laser beam applied.
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FIGURE 6.6. Lifetime measurement results for mJ = +3/2 initial state with σ−-
polarized 976 nm laser beam applied. I fit an exponential decay function 1 − eγt

to the data and infer the scattering rate by taking the difference between the γ fit
parameters of the natural lifetime and laser-incident lifetime datasets.
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FIGURE 6.7. Scattering rate measurement results for mJ = +3/2 initial state with
σ−-polarized 976 nm laser beam applied.
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FIGURE 6.8. Lifetime measurement results for mJ = +3/2 initial state with
π-polarized 976 nm laser beam applied. Note that all population measurements
shown here were renormalized by subtracting out the measured mJ = +5/2
populations. I fit an exponential decay function 1 − eγt to the data and infer the
scattering rate by taking the difference between the γ fit parameters of the natural
lifetime and laser-incident lifetime datasets.
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FIGURE 6.9. Scattering rate measurement results for mJ = +3/2 initial state with
π-polarized 976 nm laser beam applied. The data points here were inferred from
raw scattering data with mJ = +5/2 population subtracted out.
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CHAPTER VII

TWO-QUBIT GATE

As discussed in the introduction, our lab has begun work towards

implementing a two-qubit Mølmer-Sørensen entangling gate in our ion trap.

As discussed in Chapter II, two-qubit gates have previously been used to

generate entanglement in m qubits (see Bazavan et al., 2023 and Roos et al.,

2004). However, we are attempting to implement the first Raman-beam-induced

entangling gate in m qubits. This will serve as a proof-of-principle for m qubit

Raman-driven operations.

7.1. Mølmer-Sørensen Gate Setup

Since we are using the qubit |↓⟩ = |D5/2,mJ = +3/2⟩, |↑⟩ =

|D5/2,mJ = +5/2⟩, we must drive the MS gate using σ−- and π-polarized laser

beams. The beams and magnetic field geometry in our setup are shown in

Figure 7.1.

The Mølmer-Sørensen gate effects entanglement by simultaneously driving

the red- and blue-sideband transitions, and so the detunings of the two σ− beams

are appropriately chosen to drive these transitions. The different detunings of the

σ− beams are generated by applying two rf tones to the AOM for that beam.

The difference between the k⃗ vectors of the π- and σ− beams, ∆k⃗, is at 45◦

with respect to the mode vector of interest (see Figure 7.1) we are interested in

driving. We choose a radial mode because the it is useful for other experiments

we perform and it has a higher frequency than the axial modes, which reduces

the heating rate but lowers the gate speed. However, this has the downside that
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FIGURE 7.1. Schematic geometry of Mølmer-Sørensen gate physical setup. A
pair of σ−-polarized laser beams travels perpendicular to a π-polarized laser beam,
with all of these beams at 45◦ from the ion chain axis. The radial modes are along
x and y (the difference and sums of these mode vector axes give the axes shown
on the figure). The B field runs parallel to the σ−-polarized laser beams. The
difference between the π-polarized beam’s and each of the σ−-polarized beams’ k
vectors is shown as ∆k⃗.

stabilizing the rf amplitude is more difficult than stabilizing the dc potential (see

Section 3.4). Additionally, while, from the perspective of minimizing scattering

errors, counter-propagating beams would be superior (they would lower the

scattering rate by a factor of
√

2), it comes with several downsides. Because of

the geometry of our trap electrodes and the direction of the B field, a counter-

propagating beam geometry would require us to split the power in the σ− beams

equally between σ+ and σ− polarization, which could waste power. For our MS

gate, the power at the ion is 45 mW in the π-polarized beam, with another 45 mW

split evenly (22.5 mW each) between the two σ−-polarized beams. This uneven
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distribution of power is optimal from the perspective of minimizing scattering

errors from a three-beam MS setup Moore, Campbell et al., 2023.

Using the pulse sequence discussed in Chapter V, we are able to achieve

a state preparation and readout fidelities of 99.2% and 99.1%, respectively. As

for single-qubit operations, we are able to achieve highly-coherent, stimulated-

Raman-induced Rabi flops, as seen in Figure 7.2. With a Ramsey experiment, we

measure a coherence time of about 1 ms. The decay time in the contrast gives us

our coherence time. With spin echoes, we are able to increase the coherence time

to 2 ms.
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FIGURE 7.2. Carrier transition Rabi flopping at 137(4) kHz Rabi frequency from
976 nm Raman laser beams in the D5/2 Zeeman qubit.

96



We are also able to drive the sideband transitions quite coherently, albeit less

so than the carrier (because the system is not completely in the motional ground

state). See Figure 7.3. This data is taken after cooling below the Doppler limit, an

important step in implementing the MS gate. Although we could just use resolved

sideband cooling, we instead follow the Doppler cooling with another sub-Doppler

cooling technique, EIT cooling (see Morigi, Eschner and Keitel, 2000 and Lechner

et al., 2016). We use this technique simply because it is faster than resolved

sideband cooling. After this, we cool further with resolved sideband cooling. With

this method, the measured phonon number ⟨n⟩ reaches 0.04(1).

There are two beam geometries to choose from when performing an MS

gate, the phase sensitive and phase insensitive geometries (see A. Hughes, 2021

and Lee et al., 2005). These are shown schematically in Figure 7.4. We do not

have the option to use the phase insensitive geometry, as it requires one of the

beams be σ+-polarized, but this does not couple mJ = +5/2 to any state in P3/2.

We therefore use the phase sensitive geometry instead (the two geometries can be

seen in Figure 7.4). This makes our setup more sensitive to laser-phase-fluctuation-

induced dephasing, although this can be mitigated to some extent (see Lee et al.,

2005 and Section A3 of A. Hughes, 2021).

This setup allows us to generate entanglement because the sidebands couple

the ions’ internal, electronic states to the collective motional state of the ion

crystal. The entanglement generation of this setup can only be appreciated when

looking at the joint state of the two ions, as shown in Figure 7.5.

Figure 7.5 shows why each σ− beam is detuned slightly from the sideband

resonance: this ensures that the intermediate states, |↑↓⟩ and |↓↑⟩ are not

populated. This setup allows population transfer between the states |↑↑⟩ and |↓↓⟩,

97



0 100 200 300 400 500 600
Raman Pulse Duration ( s)

0.0

0.2

0.4

0.6

0.8

1.0
Po

pu
la

tio
n 

in
 m

J=
+

3/
2

FIGURE 7.3. Sideband transition Rabi flopping at a sideband Rabi frequency of
8.20(2) kHz from 976 nm Raman laser beams in the D5/2 Zeeman qubit. The fit to
this data indicates that the measured phonon number ⟨n⟩ in this run was 0.04(1)
and the Lamb-Dicke parameter is 0.060(2).

and so, for an appropriately chosen gate time, we can map the state |↓↓⟩ to the

Bell state 1√
2
|↑↑⟩+ 1√

2
|↓↓⟩.

We can increase our gate’s robustness to detuning errors with Walsh

modulation. Walsh modulation involves applying a π phase shift or a π pulse

in the middle of the gate. This flips the trajectory of the ion state in phase

space Hayes et al., 2011. This behavior is shown in Figure 7.6.

The reason this enhances the robustness of the gate is that while the phase

space trajectory may form one incomplete loop on its own, flipping the direction
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FIGURE 7.4. Phase insensitive (left) and phase sensitive (right) beam geometries
in a single ion for MS gate.

of the trajectory with Walsh modulation will create two loops which, together, are

more likely to close. We can most clearly see the utility of Walsh modulation by

looking at its direct effects on a single ion. To do so, we measure the population in

the |↑⟩ state in a single ion with and without this π phase shift (these schemes are

called W (0) and W (1), respectively), with results shown in Figure 7.7. We found

that the feature associated with loop closure (found at 1/Tg for W (0) and 2/Tg at

W (1)) is broader for W (1), which shows that,with this setup, we can expect the

MS gate’s performance to be more robust to detuning errors.

99



FIGURE 7.5. Schematic of Mølmer-Sørensen gate’s effect on the joint state of an
ion pair’s energy. The detunings are chosen so that the only resonant coupling is
between the |↑↑⟩ and |↓↓⟩ states.

7.2. Preliminary Results

Early tests of this gate have yielded promising results. In Figure 7.8, I plot

the measured population in each of the possible joint two-ion states as a function

of the detuning from the sideband resonance. Our data shows a population of 80%

in the the |↑↑⟩ and |↓↓⟩ states. However, for an ideal gate, we would expect that

the population would be evenly split between the |↑↑⟩ and |↓↓⟩ states, with no

population in the other state. While our results are consistent with a fidelity of

80%, we will need to perform a parity measurement to confirm this Tan, 2016.
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FIGURE 7.6. Effect of Walsh modulation on ion state trajectory in phase space.
The first loop would close if not for detuning errors, but the Walsh modulation
flips the trajectory, allowing the ion to make a second loop and close the path.

7.3. Future Directions

There are two primary tasks for the future of the investigation into this

m qubit MS gate. First, we will need to verify entanglement with a parity

measurement. Second, we will need to improve the gate time and fidelity.

To the first point: strictly speaking, population measurements are insufficient

to confirm that we are generating entanglement. To ensure we are truly creating

entangled states, we will need to implement a parity measurement. This will

require that we can control the relative phase of our Raman laser beams, which

is not possible in our current setup. However, we will easily remedy this by

upgrading our ARTIQ crate (Section 3.7) to version 8, which allows us to control

the relative phase of separate rf channels on the DDS boards.

101



FIGURE 7.7. Preliminary results for the calibration experiment with Walsh
modulation. In the W (0) case, shown at the top, the system returns to the
ground state at detuning 1/Tg, while in the W (1) case, shown at the bottom, it
returns at detuning 2/Tg (Tg is 100 ms and 200 ms for the W (0) and W (1) cases,
respectively). Note the broader feature associated with loop closure in the W (1)
case.

To the second point: in the future, we will explore multiple options for

improving the gate time and fidelity. For the gate time, we completed the MS

gate in 200µs, but the preliminary data was taken with an older setup which

had 45 mW of power in each polarization. We estimate that, after accounting

for losses to the intermediate optics, we could achieve a total power of 300 mW:

150 mW in the π-polarized beam and 75 mW in each σ−-polarized beam, with the
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FIGURE 7.8. Preliminary results for the Mølmer-Sørensen gate with possible
entanglement generation. Population corresponds to the fraction of experiments
when both ions are bright (|↑↑⟩), one ion is bright and the other is dark
(|↑↓⟩/|↓↑⟩), and when both ions are dark (|↓↓⟩). This data was taken without
Walsh modulation. There was 45 mW of power in each polarization as discussed
above. The 854 nm beam provided a light shift of 697(1) kHz on the mJ = +1/2
state during the gate, and a differential light shift on the qubit from the 976 nm
Raman beams of 27(1) kHz. The gate time was 200µs.

current setup. We can further reduce the gate time by increasing the intensity

with improved beam focusing. The increased beam power alone will improve the

gate time by a factor of three, so we can expect to achieve a gate time of roughly

60µs with the current setup. Once we have added in Walsh modulation, however,

the gate time will be a factor of
√

2 longer than this.
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For increasing the gate fidelity, there are many options. First, it is worth

noting that the current experimental setup is, in many ways, superior to the

setup used to take the data seen in Figure 7.8. Since taking the preliminary MS

data, we have improved the qubit and motional coherence. We improved the

qubit coherence with feedforward, which suppresses qubit decoherence from 60 Hz

electromagnetic signals from wires in the lab. We improved motional coherence

and frequency stability with temperature stabilization and implementation of a

device which removes amplitude modulation from the rf source 3.4. It is also worth

noting that the heating rate is a common limitation of gate performance, but we

can mitigate this issue by driving the gate faster or using an out-of-phase mode.

Second, the qubit coherence time is only 10 times larger than the gate time, which

is a strong limitation. We could improve this with magnetic shielding, but the

solution we plan to implement is utilizing clock qubits in 43Ca+. This would also

eliminate the need for the 854 nm light shift laser. Additionally, for 43Ca+, the

fidelity limit from Raman scattering with 976 nm Raman beams is 9 × 10−5, so the

gate will likely be limited by the other factors mentioned above, not the Raman

scattering error.
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CHAPTER VIII

CONCLUSION

In this thesis, we studied scattering errors in trapped-ion qubits. Our

motivation for doing so was the omg scheme, an ion trap quantum computing

architecture that utilizes multiple different qubit types in the same ion species.

Because the omg scheme requires the use of m qubits, and photon scattering

commonly contributes substantially to the errors, we sought to characterize

scattering errors during logic gates in m qubits. In the course of doing so, we

found issues with past models of g qubit scattering errors, and reexamined them

as well.

We therefore constructed a model of two-photon scattering errors during

stimulated Raman transitions in trapped-ion qubits which incorporates all two-

photon scattering processes, as well as the detuning dependencies of all system

parameters involved. We also estimated the contribution to the scattering error

from higher energy levels in m qubits and computed an upper bound on Rayleigh

scattering error in both m and g qubits, finding this latter error to be negligible

in all but the lightest ion species for most of the detuning range considered. We

found that including all the above effects produced non-negligible corrections to

simpler models of the systems, in particular that the more complete model implies

there is no lower bound on Raman scattering-induced infidelity of g qubits as

suggested by past models of such errors Ozeri, 2007. While we originally developed

this theory for hyperfine qubits, it is easily extended to the Zeeman qubits we

actually studied in our experiments.
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Our experimental study of the scattering rates began from the observation

that the inclusion or exclusion of the various features of the model predicted

different slopes for the linear relationship between the scattering rate and laser

beam intensity. This implied that we could test the accuracy of the calculations

by measuring the scattering rate at various laser intensities, fitting a line to these

points, and comparing the slope of the fit to the slope predicted by the theory.

The experimental results provide strong evidence that the calculation is accurate,

with fit slopes on each data set comfortably within one standard error of the

theory slope. Our collaborators at UCLA conducted a similar experiment on g

qubits in 133Ba+ and obtained results that also verified the theory Boguslawski

et al., 2022.

Finally, the results of the calculations (summarized in Table 8.1) show that,

although m qubits have a lower bound on gate infidelity and the detunings and

powers required for 10−4 error in m qubits are larger than in g qubits, low errors

should still be experimentally achievable in m qubits because high power lasers are

more readily available at the required wavelengths for the ion species considered.

In sum, low Raman scattering errors are achievable in stimulated Raman-driven

gates for both m and g trapped-ion qubits at sufficiently large red detunings.
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9Be+ 25Mg+ 43Ca+ 87Sr+ 133Ba+ 135Ba+ 137Ba+ 171Yb+ 173Yb+

ω0/2π (GHz)
m - - 0.025 0.036 0.062 0.012 0.00047 - -
g 1.3 1.8 3.2 5.0 9.9 7.2 8.0 12.6 10.5

η
m - - 0.036 0.021 0.028 0.028 0.028 - -
g 0.213 0.143 0.077 0.053 0.038 0.038 0.038 0.046 0.047

∆/2π (THz)
m - -

-40.0
(963 nm)

-66.0
(1335 nm)

-45.3
(676 nm)

-45.6
(677 nm)

-45.9
(677 nm)

- -

g
-1.00

(313 nm)
-4.55

(281 nm)
-9.05

(402 nm)
-13.0

(429 nm)
-26.4

(515 nm)
-26.6

(516 nm)
-26.9

(516 nm)
-15.3

(376 nm)
-15.4

(376 nm)

Power (W)
m - - 4.9 9.1 4.4 4.4 4.5 - -
g 0.067 0.13 0.30 0.37 0.94 0.96 0.98 0.67 0.67

TABLE 8.1. Comparison of g and m qubit gate characteristics. The qubit
frequency for m and g qubits is given in the first two rows. The Lamb-Dicke
parameter η is given for a 5 MHz trap frequency and counter-propagating beams at
the P3/2 resonances frequencies (resonance with D5/2 and S1/2 in m and g qubits,
respectively). The detuning ∆ corresponds to the detuning (from P3/2 in m qubits
and from P1/2 in g qubits) required for 10−4 error, and the corresponding laser
wavelength is given parenthetically below each detuning. Total power requirements
are given for the 10−4 error threshold of the two-qubit Mølmer-Sørensen gate of
Section 4.2.2, driven by 3 Raman beams.
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APPENDIX A

DERIVATION OF SCATTERING RATE

To derive the general Raman ΛV scattering formula (Eqn. 4.6), begin with

Eqn. 8.7.3 of Loudon, 2000,

Γi→f,ΛV =
∑
ksc,λ

πe4ωωscn

2ϵ20ℏ2V 2

∣∣∣∑
k

(⟨f | r⃗ · ϵ̂∗λ |k⟩ ⟨k| r⃗ · ϵ̂ |i⟩
ωk − ω

+
⟨f | r⃗ · ϵ̂ |k⟩ ⟨k| r⃗ · ϵ̂∗λ |i⟩

ωk + ωsc

)∣∣∣2δ(ωfi+ωsc−ω).

(A.1)

This equation describes the ΛV scattering rate to state f during virtual

transitions from state i through the manifold containing the states indexed by

k (where all these states are hyperfine sublevels). The transitions are driven by

an n-photon laser beam of frequency ω and polarization ϵ̂, scattering a photon

with frequency ωsc and polarization ϵ̂∗λ, where λ indexes the two independent

polarizations in the chosen basis. The rate is calculated by summing contributions

from all scattering modes ksc, λ allowed in the quantization volume V . The

frequencies can be understood by the energy level diagram of Fig. A.1.

Rearranging this equation, we find

Γi→f,ΛV =
∑
ksc,λ

ℏωn
ϵ0V

πe4ωsc

2ϵ0ℏ3V

∣∣∣∣∣∑
k

(⟨f | r⃗ · ϵ̂∗λ |k⟩ ⟨k| r⃗ · ϵ̂ |i⟩
ωk − ω

+
⟨f | r⃗ · ϵ̂ |k⟩ ⟨k| r⃗ · ϵ̂∗λ |i⟩

ωk + ωsc

)∣∣∣∣∣
2

δ(ωfi+ωsc−ω).

(A.2)
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〉|k〉|〉

〉|f〉

〉||i

∆k

ωk

FIGURE A.1. Relevant frequency definitions for Eqn. A.1. The transitions are
driven by a laser beam of frequency ω. Scattered photon frequency is given by
ωsc = ω − ωfi.

Now, if we model the laser field as a classical electric field plane wave with

amplitude E,

Elas(r, t) =
E

2

(
ϵ̂ei(k·r−ωt) + ϵ̂∗e−i(k·r−ωt)

)
, (A.3)

we can calculate the temporal and spatial average of

⟨E∗
las(r, t) · Elas(r, t)⟩ =

E2

2
. (A.4)

Comparing this to the quantized result in an n photon Fock state, ⟨n| Ê†Ê |n⟩ =

ℏω
ϵ0V

(n+ 1
2
) allows us to make the replacement, assuming n≫ 1,

2ℏω
ϵ0V

n ≈ E2 (A.5)

to get
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Γi→f,ΛV =
∑
ksc,λ

E2πe4ωsc

4ϵ0ℏ3V

∣∣∣∣∣∑
k

(⟨f | r⃗ · ϵ̂∗λ |k⟩ ⟨k| r⃗ · ϵ̂ |i⟩
ωk − ω

+
⟨f | r⃗ · ϵ̂ |k⟩ ⟨k| r⃗ · ϵ̂∗λ |i⟩

ωk + ωsc

)∣∣∣∣∣
2

δ(ωfi+ωsc−ω).

(A.6)

Next, we can take the limit of large quantization volume V ,

∑
ksc

→ V

(2π)3

∫∫
dωscdΩ

ω2
sc

c3
, (A.7)

enabling us to write the spontaneous scattering rate in the form

Γi→f,ΛV =
∑
λ

∫∫
dωscdΩ

E2e4ω3
sc

32π2c3ϵ0ℏ3

∣∣∣∣∑
k

(⟨f | r⃗ · ϵ̂∗λ |k⟩ ⟨k| r⃗ · ϵ̂ |i⟩
ωk − ω

+
⟨f | r⃗ · ϵ̂ |k⟩ ⟨k| r⃗ · ϵ̂∗λ |i⟩

ωk + ωsc

)∣∣∣∣2δ(ωfi + ωsc − ω).

(A.8)

Now we wish to perform the integral over dΩ ≡ dϕ dθ sin(θ), the direction

of the scattered photon’s k-vector, k̂sc. For this, it is conceptually helpful to

gather terms into an expression for the vector transition dipole matrix element

for spontaneous scattering,

r⃗sc(ωsc) ≡
Ee

2ℏ
∑
k

(⟨f | r⃗ |k⟩ ⟨k| r⃗ · ϵ̂ |i⟩
ωk − ω

+
⟨f | r⃗ · ϵ̂ |k⟩ ⟨k| r⃗ |i⟩

ωk + ωsc

)
(A.9)

which allows us to write Eq. (A.8) in the form

Γi→f,ΛV =
∑
λ

∫∫
dωscdΩ

e2ω3
sc

8π2c3ϵ0ℏ
|r⃗sc · ϵ̂∗λ|2δ(ωfi + ωsc − ω). (A.10)
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Without loss of generality, we will choose a polarization basis such that one

of the basis polarization vectors lies in the plane of r⃗sc and k̂sc; we will call this

vector ϵ̂sc (note that the other basis vector will not contribute to the scattering, as

it will necessarily be perpendicular to r⃗sc). Choosing θ to be the angle between r⃗sc

and k⃗sc, the angle between r⃗sc and ϵ̂sc is π
2
− θ, which implies

|r⃗sc · ϵ̂sc|2 =|r⃗sc|2 cos2
(
π
2
− θ

)
=|r⃗sc|2 sin2(θ),

(A.11)

allowing us to carry out the integral over the direction of the spontaneously

emitted photon to get

Γi→f,ΛV =

∫
dωsc

e2ω3
sc

3πc3ϵ0ℏ
|r⃗sc(ωsc)|2δ(ωfi + ωsc − ω)

=
e2(ω − ωfi)

3

3πc3ϵ0ℏ
|r⃗sc(ω − ωfi)|2

=
e2(ω − ωfi)

3

3πc3ϵ0ℏ
(|r⃗sc(ω − ωfi)|)2

=
e2(ω − ωfi)

3

3πc3ϵ0ℏ

√∑
q

|r⃗sc(ω − ωfi) · êq|2
2

=
e2(ω − ωfi)

3

3πc3ϵ0ℏ
∑
q

|r⃗sc(ω − ωfi) · êq|2

=
E2e4(ω − ωfi)

3

12πc3ϵ0ℏ3
∑
q

∣∣∣∣∣∑
k

(⟨f | r⃗ · êq |k⟩ ⟨k| r⃗ · ϵ̂ |i⟩
ωk − ω

+
⟨f | r⃗ · ϵ̂ |k⟩ ⟨k| r⃗ · êq |i⟩

ωk + ω − ωfi

)∣∣∣∣∣
2

(A.12)

where êq is a polarization vector corresponding to π, σ+, or σ−, with q indexing

these possibilities.
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Now, if ∆k ≡ ω − ωk is the detuning relative to some level k, we see that

we can write ω − ωfi as ωk − ωfi + ∆k. Since we choose to measure the detuning

relative to the P3/2 manifold, we define ∆ = ω − ωPi, where ωPi is the frequency

of the transtion between the manifold containing |i⟩ and P3/2. This allows us to

rewrite ω − ωfi as ωPf + ∆, where ωPf is the frequency of the transition between

the manifold containing state f and P3/2; additionally, we may rewrite ωk − ω as

ωk − ωPi −∆. Rewriting ω − ωfi as such and rearranging gives us

Γi→f,ΛV =
E2e4ω3

Pf

12πc3ϵ0ℏ3
∑
q

∣∣∣∣∣∑
k

(⟨f | r⃗ · êq |k⟩ ⟨k| r⃗ · ϵ̂ |i⟩
ωk − ωPi −∆

+
⟨f | r⃗ · ϵ̂ |k⟩ ⟨k| r⃗ · êq |i⟩

ωk + ωPf + ∆

)∣∣∣∣∣
2(

1 +
∆

ωPf

)3

=
e4ω3

Pf

3πc3ϵ0ℏ
E2

4ℏ2
∑
q

∣∣∣∣∣∑
k

(⟨f | r⃗ · êq |k⟩ ⟨k| r⃗ · ϵ̂ |i⟩
ωk − ωPi −∆

+
⟨f | r⃗ · ϵ̂ |k⟩ ⟨k| r⃗ · êq |i⟩

ωk + ωPf + ∆

)∣∣∣∣∣
2(

1 +
∆

ωPf

)3

.

(A.13)

We begin the next step by noting Eqn. 4.3,

e2ω3
Pf

3πϵ0ℏc3
µ2
Pf =

1

τfl
≡ γPf

where γPf is the decay rate from the P3/2 manifold to the manifold containing

state f ; this is given by αfγ, where αf is the branching ratio into the manifold

containing state f and γ is the total spontaneous decay rate for the manifold

containing state l. With this, we can write
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Γi→f,ΛV =
γPf

µ2
Pf

e2E2

4ℏ2
∑
q

∣∣∣∣∣∑
k

(⟨f | r⃗ · êq |k⟩ ⟨k| r⃗ · ϵ̂ |i⟩
ωk − ωPi −∆

+
⟨f | r⃗ · ϵ̂ |k⟩ ⟨k| r⃗ · êq |i⟩

ωk + ωPf + ∆

)∣∣∣∣∣
2(

1 +
∆

ωPf

)3

= γPf
e2E2

4ℏ2
∑
q

∣∣∣∣∣∑
k

(⟨f | r⃗ · êq |k⟩ ⟨k| r⃗ · ϵ̂ |i⟩
µPf (ωk − ωPi −∆)

+
⟨f | r⃗ · ϵ̂ |k⟩ ⟨k| r⃗ · êq |i⟩
µPf (ωk + ωPf + ∆)

)∣∣∣∣∣
2(

1 +
∆

ωPf

)3

.

(A.14)

Now we divide and multiply by µPi, i.e., the matrix element of Eqn. 5.2

between the P3/2 and the manifold containing i.

Γi→f,ΛV = γPf
e2E2

4ℏ2
∑
q

∣∣∣∣∑
k

µPi

( ⟨f | r⃗ · êq |k⟩ ⟨k| r⃗ · ϵ̂ |i⟩
µPfµPi(ωk − ωPi −∆)

+
⟨f | r⃗ · ϵ̂ |k⟩ ⟨k| r⃗ · êq |i⟩
µPfµPi(ωk + ωPf + ∆)

)∣∣∣∣2(1 +
∆

ωPf

)3

Γi→f,ΛV = γPf
e2E2µ2

Pi

4ℏ2
∑
q

∣∣∣∣∑
k

( ⟨f | r⃗ · êq |k⟩ ⟨k| r⃗ · ϵ̂ |i⟩
µPfµPi(ωk − ωPi −∆)

+
⟨f | r⃗ · ϵ̂ |k⟩ ⟨k| r⃗ · êq |i⟩
µPfµPi(ωk + ωPf + ∆)

)∣∣∣∣2(1 +
∆

ωPf

)3

.

(A.15)

Noting the definition of gPi (Eqn. 4.5), this becomes

Γi→f,ΛV = γPfg
2
Pi

∑
q

∣∣∣∣∣∑
k

( ⟨f | r⃗ · êq |k⟩ ⟨k| r⃗ · ϵ̂ |i⟩
µPfµPi(ωk − ωPi −∆)

+
⟨f | r⃗ · ϵ̂ |k⟩ ⟨k| r⃗ · êq |i⟩
µPfµPi(ωk + ωPf + ∆)

)∣∣∣∣∣
2(

1 +
∆

ωPf

)3

.

(A.16)

Finally, we make our result applicable to gates; we do so by averaging over

the undisturbed state |i⟩ during the course of the gate. If we consider a σ̂x gate,
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then an ion initially in the state |0⟩ will get mapped to |1⟩. The ion’s state |i⟩ then

has a time dependence given by |i(t)⟩ = cos(2πt/τ) |0⟩ + sin(2πt/τ) |1⟩, where τ is

the gate time. Considering this time dependence and averaging Eqn. A.16 over the

gate time gives

Γf,ΛV = γPf
g2Pi

2

∑
i,q

∣∣∣∣∣∑
k

( ⟨f | r⃗ · êq |k⟩ ⟨k| r⃗ · ϵ̂ |i⟩
µPfµPi(ωk − ωPi −∆)

+
⟨f | r⃗ · ϵ̂ |k⟩ ⟨k| r⃗ · êq |i⟩
µPfµPi(ωk + ωPf + ∆)

)∣∣∣∣∣
2(

1 +
∆

ωPf

)3

,

(A.17)

where |i⟩ now indexes the two qubit states, |0⟩ and |1⟩.

By the same reasoning, we can get the ladder scattering rate (which

contributes in m qubits but not g qubits),

Γf,lad = γPf
g2Pi

2

∑
i,q

∣∣∣∣∑
k

( ⟨f | r⃗ · êq |k⟩ ⟨k| r⃗ · ϵ̂∗ |i⟩
µPfµPi (ωkP + ∆ + 2ωPD)

+
⟨f | r⃗ · ϵ̂∗ |k⟩ ⟨k| r⃗ · êq |i⟩
µPfµPi (ωkP −∆ + ωDf )

)∣∣∣∣2(1− 2ωPD + ∆

ωPf

)3

.

(A.18)

To generate the full model scattering rate, we sum over all scattering events

i→ f except for i→ i scattering events, since we are ignoring Rayleigh scattering.

We can get the simplified model’s scattering rate equation by neglecting the

V scattering term in Eqn. A.17 and assuming (1 + ∆/ωPf )3 ≈ 1

Γf ≈ γPf
g2Pi

2

∑
i

∣∣∣∣∣∑
k,q

⟨f | r⃗ · êq |k⟩ ⟨k| r⃗ · ϵ̂ |i⟩
µPfµPi (ωkP −∆)

∣∣∣∣∣
2

. (A.19)

We can again obtain the Raman scattering rate by summing over all scattering

events except for i→ i.
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APPENDIX B

DECAY RATE FROM FERMI’S GOLDEN RULE

Here we derive Eqn. 4.3. To do so, begin with Fermi’s Golden Rule (Eqn.

1 in J. M. Zhang and Liu, 2016) for the rate of spontaneous decay from excited

atomic state i to a state f ,

γi→f =
2π

ℏ

∣∣∣⟨f | ĤI |i⟩
∣∣∣2ρ(Eω0) (B.1)

where ρ(Eω0) is the density of states in energy at the energy of a photon with

frequency ω0 (the resonant frequency of the transition between i and f), and ĤI

is the interaction Hamiltonian. The corresponding matrix element is given by (see

§2.2 of Metcalf and Straten, 1999)

⟨f | ĤI |i⟩ = e

√
ℏω0

2ϵ0V
⟨f | d⃗ · ϵ̂sc |i⟩

where V is the quantization volume, d⃗ is the dipole operator, and ϵ̂sc is the

polarization unit vector of the scattered photon. Putting these together, we get

γi→f =
πe2ω0

ϵ0V

∣∣∣⟨f | d⃗ · ϵ̂sc |i⟩∣∣∣2ρ(Eω0) (B.2)

Now, to find ρ(Eω0), we consider the number of modes N , i.e, the sum of 1 over

all polarizations and wave vectors, which for large quantization volume V (see eqn

1.1.11 in Loudon, 2000) goes as
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N =
∑
λ

∑
ksc

1→ 2
V

(2π)3

∫ ∫
dωscdΩ

ω2
sc

c3
= 2

V

ℏ(2π)3

∫ ∫
dEωscdΩ

ω2
sc

c3
=

V

π2ℏ

∫
dEωsc

ω2
sc

c3

(B.3)

where the first factor of 2 came from the sum over the two independent

polarizations λ. So

ρ(Eω0) =
V ω2

0

π2ℏc3
(B.4)

which gives

γi→f =
πe2ω0

ϵ0V

V ω2
0

π2ℏc3
∣∣∣⟨f | d⃗ · ϵ̂sc |i⟩∣∣∣2 =

e2ω3
0

πϵ0ℏc3
∣∣∣⟨f | d⃗ · ϵ̂sc |i⟩∣∣∣2 (B.5)

and, finally, after averaging over the random polarization direction,

γi→f =
e2ω3

0

3πϵ0ℏc3
∣∣∣⟨f | |d⃗| |i⟩∣∣∣2 (B.6)
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APPENDIX C

POWER REQUIREMENTS DERIVATION

Here we derive the expressions given in Section 4.3. For a Gaussian laser

beam of power P we consider Steck, n.d.:

E2 =
4P

πw2
0cϵ0

, (C.1)

γ

g2Pi

=
ℏω3

Piw
2
0

3c2Pαq

, (C.2)

where w0 is the laser beam waist and αq is the branching ratio for transitions

between P3/2 and the qubit manifold. Note that in general |ΩR| = g2Pir(∆) for

some r(∆), so we can replace g2Pi with |ΩR|/r(∆). This means that the power can

be written as

P =
ℏω3

Piw
2
0

3c2αqγ

|ΩR|
r(∆)

. (C.3)

For a single-qubit gate, |ΩR| = π/2τ1q where τ1q is the gate time; for a two-qubit

gate, |ΩR| = π
√
K/2
√

2τ2qη(∆). This allows us to write the total power required

for each as a function of ∆:

P1q(∆) = 2
ℏω3

Piw
2
0

6c2αqγ

π

τ1qr(∆)
(C.4)

and

P2q(∆) = 4
ℏω3

Piw
2
0

6
√

2c2αqγ

π
√
K

τ2qη(∆)r(∆)
, (C.5)
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where the factor of 2 in front of Eqn. C.4 is due to the use of two beams of equal

power, and the factor of 4 in front of Eqn. C.5 is due to the use of two beams of

equal power along with one beam with double the power.

If, as we did in Section 4.2, we neglect the effects of large detuning, we can

write power as a function of the gate error directly. We will start by rewriting

r(∆) = 2/15|∆| in terms of the single-qubit gate error ϵ1q,

ϵ1q = ρ
πγ

|∆| = ρ
15πγr(∆)

2

=⇒ r(∆) = 2ϵ1q
15ρπγ

, (C.6)or for a two-qubit gate,

ϵ2q = ρ
πγ

|∆|
4
√
K√

2η
= ρ

15πγr(∆)

2

4
√
K√

2η

=⇒ r(∆) =
2ϵ2q

15ρπγ

√
2η

4
√
K
.

(C.7)

Substituting into Eqns. C.4 and C.5, we get

P1q(ϵ1q) = ρ
5πℏω3

Piw
2
0

2c2ϵ1qαq

π

τ1q
(C.8)

and

P2q(ϵ2q) = ρ
10πℏω3

Piw
2
0

c2ϵ2qαq

π

τ2q

K

η2
. (C.9)
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APPENDIX D

RECOVERING CLASSICAL LIMITS

We can test the completeness of our model by seeing if it is able to recover

classical elastic scattering behavior in the limit of large detuning. Considering only

elastic scattering excludes ladder scattering processes (since they are inelastic).

This means we can write the elastic scattering rate as

Γ = E2 e4ω3
L

12πc3ϵ0ℏ3

∣∣∣∣∣∑
k

| ⟨i| r⃗ |k⟩ |2
(

1

ωki − ωL

+
1

ωki + ωL

)∣∣∣∣∣
2

. (D.1)

For Raman beams with intensity I, we have E2 = 2I/ϵ0c; additionally, we

can replace the scattering rate with the scattering cross-section σ via σ = ΓℏωL/I.

Putting these equations together, we get

σ = α28π

3

ω4
L

c2

∣∣∣∣∣∑
k

| ⟨i| r⃗ |k⟩ |2
(

1

ωki − ωL

+
1

ωki + ωL

)∣∣∣∣∣
2

, (D.2)

where α = e2/4πϵ0ℏc is the fine structure constant.

Now we can calculate the limits. For large blue detuning (ωL ≫ ωki for every

k), we have

(
1

ωki − ωL

+
1

ωki + ωL

)
≈ −2

ωki

ω2
L

, (D.3)

allowing us to rewrite Eqn. D.2 as

σblue = α232π

3

1

c2

∣∣∣∣∣∑
k

ωki| ⟨i| r⃗ |k⟩ |2
∣∣∣∣∣
2

. (D.4)
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Using the Thomas-Reiche-Kuhn sum rule (for the single valence electron only, and

neglecting recoil and the ion’s monopole charge), the sum can be evaluated to

∑
k

ωki| ⟨i| r⃗ |k⟩ |2 =
ℏ

2me

. (D.5)

This gives

σblue = α232π

3

1

c2
ℏ2

4m2
e

=
8π

3
α4a20, (D.6)

where a0 is the Bohr radius and α2a0 is the classical electron radius. So for large

blue detuning, the model recovers the Thomson cross-section of the valence

electron.

For red-detuning, (ωL ≪ ωki for every k), we have

(
1

ωki − ωL

+
1

ωki + ωL

)
≈ 2

ωki

, (D.7)

giving

σred = α28π

3

ω4
L

c2

∣∣∣∣∣∑
k

2| ⟨i| r⃗ |k⟩ |2
ωki

∣∣∣∣∣
2

. (D.8)

The DC polarizability of the ion can be written as

α(0) ≡ e2
∑
k ̸=i

⟨i| r⃗ |k⟩ ⟨k| r⃗ |i⟩+ ⟨k| r⃗ |i⟩ ⟨i| r⃗ |k⟩
Ek − Ei

, (D.9)

allowing us to rewrite Eqn. (D.8) as
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σred =
8π

3
α2 ω

4
L

c2e4
ℏ2|α(0)|2

=
8π

3

(ωL

c

)4

ℏ2| α
(0)

4πϵ0
|2

=
8π

3
k4Lℏ2|α(0)|2.

(D.10)

We can compare to the classical result by using the Clausius-Mossotti relation,

|α(0)|2 =

(
3ϵ0
N

)2(
ϵr − 1

ϵr + 2

)
=

(
3ϵ0
N

)2(
n2 − 1

n2 + 2

)
≈

(
3ϵ0
N

)2
4

9
(n− 1)2, (D.11)

where N is the number density of particles in the material, ϵr is the dielectric

constant, and n is the refractive index. The second equality is true for non-

magnetic media, and the third, approximate equality holds when n ≈ 1. Applying

this to Eqn. (D.10), we find

σred ≈
2k4L

3πN2
|n− 1|2, (D.12)

which is the expression for classical Rayleigh scattering (e.g. Jackson, 1999). Note

that if we had ignored the V scattering process, i.e., the 1/(ωki + ωL) term, we

would not have recovered the correct limits.
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APPENDIX E

QUANTUM CRYPTOGRAPHY PROTOCOL

Below, I detail a quantum cryptography protocol I helped develop with

Steven van Enk Moore and Enk, 2021.

Suppose that Alice and Bob are preaparing and sending separable qubit

states αA and βB, respectively, to a joint measurement device represented by a

measurement operator ξAB. Then the probability of getting a given measurement

is

P = Tr(αA ⊗ βBξAB) (E.1)

If Alice and Bob together would like to be able to tomographically reconstruct the

two-qubit measurement operator ξ, they each need to prepare 4 different (linearly

independent) states of their qubits. Given probabilities of the form (E.1), Alice

and Bob can gather the measured frequencies of detector “clicks” in a 4-by-4 data

matrix whose expectation value should (if there is a unique single-valued operator

ξ) have the form

F kl = Tr{αk
A ⊗ βl

B ξAB} (E.2)

for k, l = 1 . . . 4. The trace on the right-hand-side of Eq. (E.2) can be calculated by

expanding all operators in the Pauli basis as follows

αk =
∑
i

αk
i σi, βl =

∑
i

βl
i σi, ξ =

∑
i,j

xij σi ⊗ σj. (E.3)
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Substituting these expansions into the definition of the data matrix and noting

that

Tr{σiσj ⊗ σkσl} = 4δijδkl, (E.4)

yields the equation

F kl = 4
∑
i,j

xijα
k
i β

l
j. (E.5)

Eliminating the factor of four by defining S = F/4, we can rewrite the equation for

S as a matrix equation

S = ATXB (E.6)

where X has matrix element xij and A has columns made from vectors of the

Pauli expansion coefficients of Alice’s operators, and B is similarly defined for

Bob. Multiplying both sides of this equation on the left by (AT )−1 [we assume

the inverse exists, i.e., we assume Alice’s 4 operators to be linearly independent]

yields

(AT )−1S = XB. (E.7)

Now we assume that both Alice and Bob have control over their own operators

such that these operators do not vary over the course of the experiment. Next,

suppose that there are two trials, each using a different (not identical) set of

operators αk for Alice but the same set of operators βl for Bob. Then we can

eliminate the unknown matrix X and write the condition on there being a unique

X that does not depend on which operators αk Alice is using, as

(AT
1 )−1S1 = (AT

2 )−1S2, (E.8)
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where the left-hand and right-hand sides of the equation represent trials with

different operators αk′ . One alternative useful way of rewriting this same equation

is

S1S
−1
2 AT

2 (AT
1 )−1 = 1, (E.9)

even though this may fail, namely, if S2 is not invertible. It is helpful to write this

matrix product out in terms of the coefficients:

∑
k,l,m

(S1)ik(S−1
2 )kl(A

T
2 )lm((AT

1 )−1)mj = δij (E.10)

Written this way, it is easy to see how this equation can be used to test for

dependence of ξ on Alice’s operators: suppose, without loss of generality, that ξ

is somehow different for the operator αi
A of the first trial. Then every row but the

ith row of S1 is inverted by the remaining three matrices. Therefore, only the ith

row of the left-hand side matrix will differ from the identity. Conversely, since

Alice is able to calculate the left-hand side of (E.10) just from her knowledge

of her operators αk and from the data matrices S1 and S2 she can diagnose,

without needing any knowledge about Bob’s operators βl, with which of her state

preparations the measurement is correlated. She also does not need to reconstruct

the measurement operator ξ.

Note that all we need for this to work is that the trials are not identical.

That is, Alice needs just 5 different states at a minimum [to make two non-

identical sets of 4 states] to be able to run this check.

(By symmetry, Bob could diagnose the presence of correlations between ξ

and his states βl without needing knowledge of Alice’s operators. In this case Bob

would need to prepare at least 5 different states.)
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