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DISSERTATION ABSTRACT 
 
Yufei Zhao  
 
Doctor of Philosophy 
 
Department of Psychology 
 
June 2023 
 
Title: Content Representation in Lateral Parietal Cortex 
 
 

While the lateral parietal cortex (LPC) in the human brain is traditionally 

investigated for its functions in visual perception, more recent evidence has highlighted 

its substantial contribution to supporting human episodic memory. Early univariate 

neuroimaging studies suggest that the strength and direction of LPC activation during 

memory-related tasks is closely related to memory performance. Moreover, recent 

multivariate fMRI studies show that the neural activity patterns of LPC actively represent 

mnemonic contents at various granularities. Despite advances in understanding parietal 

contributions to episodic memory, the relationship between LPC multivariate content 

representation and univariate activation changes remains unexplored. Moreover, the 

mechanisms through which the LPC content representation supports episodic memory 

success are yet unidentified. In the current dissertation, I aim to investigate these topics 

by incorporating fMRI techniques with neural networks and multivariate pattern analysis 

methods in a set of two experiments. In chapter II, I demonstrate that repetition-related 

neural activity differences in the lateral parietal cortex represent stimulus-specific content 

information, and a greater amount of decodable content information contributes to memory 

success. In chapter III, I show that content representations in lateral parietal cortex can be 

adaptively distorted along a feature dimension in order to resolve memory interference, and 



 

v 

 

the degree of such adaptive change contributes to memory success. Together, these studies 

provide new insights into the nature of content representation in the lateral parietal cortex 

and how it supports memory success. 
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CHAPTER I 

GENERAL INTRODUCTION 

The last section of this chapter is from Zhao, Y., & Kuhl, B. A. (2023). Content 
Reinstatement. In The Oxford Handbook of Human Memory. (in press) 

Overview 

Human cognitive neuroscience aims to understand how complicated cognitive 

processes are guided, formed, and executed in the human brain. Episodic memory, the 

conscious memory for life events, is one of those complex cognitive processes that is 

involved in almost all daily events of our life (Tulving, 1985). From finding the right spot 

where the car is parked to introducing a travel site during small talk, we rely on our 

memory functions in a precise way to accomplish our daily tasks.  

From the results of early lesion studies, the medial temporal lobe (MTL), where 

the hippocampus is located, as well as the prefrontal cortex (PFC) have been considered 

as the brain regions that form the neural architecture of episodic memory (Eichenbaum, 

2004; Ranganath & Knight, 2003; Scoville & Milner, 1957; Shimamura, 1995; Squire, 

1992; Stuss & Benson, 1984). Although traditional research focuses on the neural 

mechanisms of how MTL and PFC support the encoding and retrieval of episodic 

memory, a growing number of neuroimaging studies suggest that the lateral parietal 

cortex’s (LPC) contribution may also be crucial to understanding episodic memory. 

Specifically, the retrieval success effect (also known as old/new effects) have been 

obtained by both electroencephalogram (EEG) and fMRI studies. These studies show that 

LPC subregions demonstrate differential activity during successful memory retrieval 

(Henson et al., 1999; Konishi et al., 2000; Rugg, 1995). Moreover, univariate activity 
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changes in LPC have also been found to increase with the recollection of memory details 

(Henson et al., 1999). 

Based on the results of these early studies on LPC’s contribution to episodic 

memory, the traditional theory about LPC suggests this region processes memory in a 

content-general way (Cabeza et al., 2008; Wagner et al., 2005). Specifically, early 

univariate studies demonstrated that LPC activation is modulated by memory retrieval 

success, leading to the theoretical account that the lateral parietal cortex may serve as a 

mnemonic evidence accumulator (Wagner et al., 2005) or it may direct attention to 

memory representations in other brain regions (Cabeza et al., 2008). With the 

development of multivoxel pattern analysis (MVPA), accumulating evidence indicates 

that distributed patterns of LPC activation actively represent retrieved content (Bird et al., 

2015; Buchsbaum et al., 2012; Kuhl & Chun, 2014), challenging the traditional theory of 

content-general representation in LPC. However, little is known about the nature of 

content representations in LPC, how they relate to content representations in other brain 

regions, and how they are involved in supporting successful memory. 

This proposed dissertation focuses on understanding the nature and functional 

significance of mnemonic content representations in LPC. In the remaining sections of 

this chapter, I will review the early findings of how LPC contributes to human memory 

from univariate neuroimaging studies and lesion studies. Then I will summarize the 

popular theoretical hypotheses about LPC’s contribution to memory. Last, I will consider 

recent advances in understanding the content representation in LPC based on MVPA 

methods. 
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From Sensory to Memory: the Role of Human Lateral Parietal Cortex 

The early view of the human LPC focused on its contribution to visuospatial and 

sensorimotor functions (Culham & Kanwisher, 2001). One of the most convincing pieces 

of evidence for this view is that unilateral parietal damage leads to hemispatial neglect, 

referring to the inability to report visual stimuli in the contralesional hemifield (Bisiach & 

Luzzatti, 1978; Danckert & Ferber, 2006; Driver & Vuilleumier, 2001; Vallar, 1998). Yet 

with the advance of human neuroimaging techniques such as positron emission 

tomography (PET) and functional magnetic resonance imaging (fMRI), LPC has shown 

involvement in many memory-based high-ordered cognitive tasks, and its role in human 

episodic memory has gradually been established in the past decade of human cognitive 

neuroscience research. This section aims to provide an overview of the early human 

neuroimaging and anatomical findings that set the foundation for investigating LPC as a 

memory region.  

Evidence of LPC’s contributions to human memory   

The first group of studies that demonstrated memory-related activity in LPC used 

block-design positron emission tomography (PET) studies. Increased activation was 

observed in LPC during conditions where subjects were retrieving memories, compared 

to the control condition (Buckner et al., 1995; Petrides et al., 1995; Tulving et al., 1994). 

As the event-related experiment design became popular among EEG and fMRI research, 

measuring item/trial-level brain activity revealed a more interesting role of LPC in 

supporting memory. A host of fMRI studies found that during the recognition memory 

task, in which participants are asked to decide whether each stimulus has been 

encountered before, LPC showed distinct responses for successfully recognized old 
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stimuli and correctly identified new stimuli (Hutchinson et al., 2009; H. Kim, 2013; 

Skinner & Fernandes, 2007; Spaniol et al., 2009). Moreover, a similar distinction was 

observed in EEG studies, with the parietal cortex showing different event-related 

potentials (ERP) for hit versus correct rejection trials (Mecklinger, 2000; Rugg & Curran, 

2007).  

The detected old/new effects triggered more investigations into LPC’s 

contribution to the memory process (Cabeza et al., 2008; Wagner et al., 2005) and the 

follow-up works provided ample evidence of the specific roles of LPC in different stages 

of the memory process. For example, a few studies suggested that, instead of signaling 

the true oldness/newness of the encountered stimuli, LPC reflects the degree of subjective 

oldness. That is, LPC shows greater activation for stimuli that were subjectively 

perceived as old (compared to new), regardless of whether these old/new judgments were 

correct or not (Kahn et al., 2004; Wheeler & Buckner, 2003). This evidence indicates that 

LPC is involved in the process of retrieval, but does not necessarily signal success in 

retrieval. Moreover, other works showed that LPC activations during memory retrieval 

correlate with the amount of memory event details recollected (Dobbins et al., 2003; 

Eldridge et al., 2000; Henson et al., 1999; Wheeler & Buckner, 2004). This evidence 

foretold LPC’s role in counting and representing recollected mnemonic details (see the 

output buffer hypothesis and the mnemonic accumulator hypothesis in the next session for 

more details)  

Together, this early evidence from univariate fMRI studies provided strong 

evidence that LPC contributes to multiple aspects of human memory, including 
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recognizing old memories, subjective judgment of memory oldness, and tracking details 

of recollected memories. 

Functional Distinctions between Dorsal and Ventral LPC  

As investigations of LPC reveal accumulating evidence of its contribution to 

memory processes, much work has found that LPC does not function as one functionally 

united entity. Instead, the LPC consistently demonstrated functional separation among its 

dorsal and ventral components during both encoding and memory retrieval.  

The subsequent memory effect is one of the well-investigated phenomena during 

memory encoding (Uncapher & Wagner, 2009). With this paradigm, neural activities are 

categorized based on the fate of each stimulus, being either remembered or forgotten. In 

this way, memory success can be correlated with neural activities during encoding, and 

therefore, candidate neural correlates of encoding success and failure can hence be 

identified. Convergent findings from this paradigm showed that dorsal LPC demonstrated 

a positive subsequent memory effect, with increased activation during encoding in this 

region for subsequently remembered items compared to forgotten items (Buckner et al., 

2001; Davachi et al., 2001; Ranganath et al., 2004). On the contrary, a negative 

subsequent memory effect is consistently observed in ventral LPC, with decreased 

activation during encoding related to remembered items (Daselaar et al., 2004; Otten, 

2007; Otten & Rugg, 2001; see the cortical binding of relational activity hypothesis in the 

next session for more details). Notably, the observed functional divergence between 

dorsal and ventral PPC is consistent across different retention intervals, study materials, 

and study tasks (H. Kim, 2011; Uncapher & Wagner, 2009).  
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Similar functional divergence between the dorsal and ventral LPC was observed 

during retrieval as well. Research showed that these two regions react differently for the 

recollection-based and familiarity-based memory retrieval processes. A typical research 

paradigm under this issue is the “remember/know” recognition task. In this task, subjects 

need to indicate whether they can recollect any encoded details about the learned stimuli 

(remember), or they only believe the item has been encountered but can’t retrieve any 

details (know) (Tulving, 1985). During this task, dorsal LPC consistently demonstrates 

greater activation for the “know” response compared to correction rejections, while 

ventral LPC is more activated for the “remember” response over the “know” response 

(Montaldi et al., 2006; Sharot et al., 2004; Wheeler & Buckner, 2004; Woodruff et al., 

2005). Similar findings were derived from the source recognition task. In this task, 

subjects were asked to report the incidentally encoded context of learned stimuli (e.g., 

locations, colors, categories of task), and the successful context judgment is believed to 

reflect the memory recollection process (Hutchinson et al., 2009). Consistent with 

previous findings, the ventral LPC was more activated when the source judgment was 

correct (More memory details required; Cansino et al., 2002; Kahn et al., 2004), the 

dorsal LPC activated when the recognition was successful without the recollection of the 

source memory (Frithsen & Miller, 2014; Kahn et al., 2004; see the attention-to-memory 

model for details).  

Anatomy of LPC that supports human memory 

The functional relevance of a brain region can be largely attributed to its 

anatomical structure and connectivity across the rest of the brain. Thus, the works 

reviewed above suggest 1) specific anatomical wiring routes that bestow LPC its role in 
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episodic memory and 2) distinct anatomical wiring routes for dorsal and ventral LPC that 

give rise to their distinct functional properties. Here I reviewed the basic anatomy and 

functional connectivity evidence of LPC that support the univariate observations 

reviewed above.  

The lateral posterior parietal (LPC) cortex locates between the somatosensory 

cortex and the visual cortex (Whitlock, 2017). As expected, LPC can be anatomically 

divided into the dorsal and ventral components, separated by the intraparietal sulcus  

(Cabeza et al., 2008). The dorsal LPC consists of the intra-parietal sulcus (IPS) and the 

superior parietal lobule (SPL), while the supramarginal gyrus (SMG) and angular gyrus 

(ANG) together are considered as the ventral LPC (Sestieri et al., 2017). Notably, the 

dorsal and ventral components of LPC, although anatomically adjacent, demonstrated 

distinct anatomical connections with the rest of the brain. Early anatomical connectivity 

findings of LPC derived from primate research suggested that the monkey dorsal LPC 

projects to the frontal cortex, which has been long established as the attention and 

cognitive control-related hub (Lewis & van Essen, 2000; Makris et al., 2005; Petrides & 

Pandya, 1984, 1999; Schmahmann et al., 2007). On the other hand, ventral LPC 

demonstrates strong anatomical connections with regions in the medial temporal lobe 

(MTL), which has historically been considered the memory processing hub. Specifically, 

LPC demonstrated bidirectional connectivity with the entorhinal cortex (Insausti & 

Amaral, 2008; Muñoz & Insausti, 2005; Wellman & Rockland, 1997), the perirhinal 

cortex and the parahippocampal cortex (Blatt et al., 2003; Lavenex et al., 2002; Seltzer & 

Pandya, 1984; Suzuki & Amaral, 1994), and the hippocampus subregions (Clower et al., 

2001; Rockland & van Hoesen, 1999).  
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Human functional connectivity studies have further corroborated the anatomical 

connections identified in the primate studies. In particular, dorsal LPC demonstrated 

strong functional relevance with the prefrontal regions. Together, they serve as parts of 

the dorsal attention network (DAN) (Corbetta et al., 2008; Corbetta & Shulman, 2002), 

which is important for orienting attention aligned with top-down goals (Kincade et al., 

2005; Majerus et al., 2018). On the other side, ventral LPC is functionally coupled with 

the medial temporal lobe (H. Kim, 2012; Rushworth et al., 2006; Sestieri et al., 2011; 

Takahashi et al., 2008; Vincent et al., 2006). These regions collaborate together for the 

default mode network (DMN), which has been proven to be critical for behaviors under 

external goals (Raichle et al., 2001). 

This anatomical and functional connectivity evidence clearly suggested that the 

dorsal LPC collaborates with frontal regions for goal-oriented behaviors, while ventral 

LPC works closely with memory-related regions. This evidence rationalizes the 

functional difference between dorsal and ventral LPC and the important role LPC plays 

in retrieving goal-relevant episodic memory (see the attention-to-memory model 

reviewed below for more details).  

Lesion and TMS studies further support how LPC contributes to human memory 

It is worth noting that early lesion studies often failed to provide evidence of 

LPC’s contribution to episodic memory. That is, lesions in the parietal lobe rarely lead to 

obvious memory-related deficits, such as retrograde or anterograde amnesia (i.e., patients 

with LPC lesions do remember things in the past, and can form new memories; Berryhill, 

2012; Critchley, 1953). Nevertheless, with fast-growing evidence from the human 

neuroimaging literature, more recent lesion and transcranial magnetic stimulation (TMS) 
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studies on LPC suggested that the malfunction of LPC indeed negatively influences 

episodic memory, but in a subtle, yet very significant way.  

For example, with the recognition memory paradigm, one study found that 

although the patients with bilateral parietal lesions didn’t exhibit any deficit in 

recognition accuracy, they demonstrated significantly lower confidence in rating their 

“old” responses compared to healthy controls (Hower et al., 2014). Similarly, another 

lesion study showed that compared with the healthy control group, patients with LPC 

damage were more willing to respond with “know” compared to “remember” even when 

all the source memory judgments were correct (Ciaramelli et al., 2017). These results 

matched findings from functional studies that LPC is involved in subjective judgment of 

memory oldness, and is responsible for tracking the amount of detail recollected (see 

earlier sub-sections).  

Moreover, it was shown that lesions or disturbances in dorsal versus ventral LPC 

tend to affect different aspects of memory processes. Specifically, lesions in the ventral 

LPC tend to be more directly associated with memory retrieval whereas lesions in the 

dorsal LPC affect the effectiveness of goal-directed attention (Humphreys et al., 2021). 

For example, studies have found that ventral LPC damage or TMS disturbance decreases 

memory vividness, confidence, and recollect details compared to the healthy controls 

(Berryhill et al., 2007). On the other hand, evidence from TMS showed that disturbance 

to dorsal LPC leaves memory-related performances relatively intact but significantly 

affects goal-directed, perceptual attention performance (Capotosto et al., 2017). 
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 Traditional theories on how LPC supports memory 

 Thus far I have reviewed early neuroimaging evidence of LPC’s involvement 

during various memory processes. Along with these findings, multiple theories regarding 

how LPC supports memory have then been established. These theories proposed the roles 

of LPC during memory encoding and retrieval and how dorsal and ventral LPC work 

together to allow successful memory processes. In particular, here I review four 

important accounts of how LPC supports memory. Note that each of these accounts was 

developed to explain a specific type of findings, but are not necessarily mutually 

exclusive and instead often share key concepts and lead to similar conclusions.  

 The mnemonic accumulator hypothesis was first introduced by Wagner et al. 

(2005),  accounting for LPC’s role in recognition memory (see old/new effect reviewed 

above). This account proposed that LPC works as an information accumulator that 

temporally integrates memory-based evidence retrieved from MTL until a criterion is 

reached that leads to the decision (Shadlen & Newsome, 2001). This account resembles 

the drift-diffusion process of memory retrieval (Ratcliff et al., 1978). In the case of 

recognition memory, evidence of a stimulus being a previously encountered object is 

accumulated within LPC; once the accumulated memory strength reaches the decision 

threshold, the judgment of oldness, or otherwise newness, is subsequently made (Dunn, 

2004). This account explains how LPC is responsible for the observed old/new effect 

during recognition memory and why LPC favor’s subjective oldness instead of the 

ground truth. Notably, although proposed as an accumulator, the current account suggests 

that the LPC holds the mnemonic evidence in a content-general way, without 

representing retrieved information per se (Kuhl et al., 2014). However, this account does 
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not readily explain why some subregions in LPC are more sensitive to source information 

compared to item information itself (Dobbins et al., 2002).  

 Consistent with the idea that LPC temporarily stores mnemonic evidence, the 

output buffer hypothesis proposed that LPC is the buffer for retrieved contents before a 

behavioral decision is rendered, yet the temporary stored evidence is in a content-specific 

manner  (Vilberg & Rugg, 2008; Wagner et al., 2005). In particular, the output buffer 

hypothesis resembles the multi-modal episodic buffer for working memory, where 

information is maintained and manipulated and serves as an interface between long-term 

memory and executive functions (Baddeley, 2000). According to the current account, 

LPC does not hold long-term memory but instead, it maintains and represents multi-

modal information content recollected from other parts of the brain during memory 

retrieval until a decision threshold is reached. This hypothesis is supported by the 

evidence that ventral LPC is involved in the recollection-based but not the familiarity-

based recognition process. That is, recollection requires solid mnemonic evidence 

represented in the buffer (i.e., LPC) in order to reach such a decision threshold. Likewise, 

this hypothesis is also consistent with the finding that LPC activation during memory 

retrieval is necessary for vivid autobiographical memories (Cabeza, 2008). 

 The cortical binding of relational activity (CoBRA) hypothesis extends the output 

buffer account by proposing the role of LPC during both memory retrieval and encoding 

processes and in interacting with other brain regions to bind multi-modal mnemonic 

evidence (Shimamura, 2011). Multi-modal binding is an established process in the MTL 

during episodic memory encoding through rapid associative processes via long-term 

potentiation (Morris, 2006). In this way, the MTL binding process creates the initial link 
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for multi-model episodic features and consolidates such links through reactivation and 

memory replay (Frankland & Bontempi, 2005). During episodic memory retrieval, the 

strongly linked memory features will be reactivated together, leading to the creation of 

neocortical bindings within the LPC, despite the geographical separation among features 

(Shimamura, 2011). Note that the anatomical connectivity of LPC facilitates such a 

multi-modal binding process as it is intricately connected to multiple brain regions such 

as both the dorsal and ventral visual pathway, MTL, and the prefrontal cortex (Andersen 

et al., 1990). The current account can be used to understand the negative subsequent 

memory effect observed in ventral LPC, such that less activity during encoding leads to 

better retrieval performances (Daselaar et al., 2004; Otten, 2007; Otten & Rugg, 2001). 

According to the CoBRA hypothesis, it is MTL that performs multi-modal binding 

during memory encoding whereas the LPC binding is created during retrieval. As a 

result, minimal LPC activity during encoding indicates a prioritization of MTL binding 

whereas increased LPC activity can disturb the encoding process by accidentally 

retrieving goal-irrelevant information (Vannini et al., 2011). 

 The functional dissociation and integration between dorsal and ventral LPC are 

proposed by the attention-to-memory model (AtoM; Cabeza, 2008; Ciaramelli et al., 

2008). The attention component of AtoM states that the dorsal PPC mediates top-down, 

goal-directed cognitive tasks whereas the ventral PPC responds to bottom-up, salience-

driven stimuli (Corbetta & Shulman, 2002). Generalizing the functional dissociation in 

PPC from attention to memory, the AtoM hypothesis accounts for the positive and 

negative subsequent memory effects observed in dorsal and ventral LPC, respectively. 

Specifically, the positive subsequent memory effect observed in the dorsal PPC reflects 
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executive processing of allocating goal-directed attention for mnemonic encoding (Wager 

& Smith 2003). On the other hand, the negative subsequent memory effect detected in the 

ventral PPC likely indicates a form of attentional competition, in which the attentional 

resources necessary for encoding success were shifted away for some goal-irrelevant yet 

salient distractors, or due to the nature of the task such as context switching (Uncapher & 

Wagner, 2009). Moreover, the AtoM hypothesis also explains how the dorsal LPC is 

more engaged during the “know” responses whereas the ventral LPC is more active 

during the “remember” responses (Ciaramelli et al., 2017). That is, “know” responses are 

often associated with relatively poor memory details and thus benefit more exhaustive 

memory search, requiring dorsal LPC to allocate attention internally to search for 

memory evidence. On the contrary, “remember” responses indicate ampler details 

associated with the stimulus, with episodic features being retrieved rather automatically 

and thus resembling a “bottom-up” attentional process.  

Content representation in LPC 

 The empirical evidence for LPC’s involvement in memory processes reviewed 

above is mostly based on univariate neuroimaging findings. That is, the primary concern 

of these studies is the relationship between cognitive variables and the averaged 

amplitude of BOLD activities of brain regions. Although univariate analysis is productive 

in identifying important neural substrates underlying specific cognitive functions (e.g., 

establishing the involvement of LPC in memory processes), it is limited in investigating 

and understanding the issue of representations (Norman et al., 2006). Namely, the exact 

information carried in different brain structures (e.g., the memory features stored in 

LPC), as represented by fine-grained patterns of distributed activity, instead of the 
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indiscriminate average, of cortical neural activities. Indeed, as suggested by the output 

buffer and cortical binding hypothesis, the LPC temporarily maintains memory features 

in a content-specific way.  

Two multivariate-based analyses techniques—pattern similarity analysis 

(Kriegeskorte et al., 2008) and multi-voxel classification (Norman et al., 2006)—were 

developed to investigate the neural representation in a content-specific way. Pattern 

similarity analysis measures the correlation (or similarity) between neural activity 

patterns in two different presentations of the stimulus in the same brain region. The two 

presentations could be both encoding/perception trials (measuring content representation 

strength during encoding) or memory retrieval trials (measuring content representation 

strength during retrieval). Content representation (during both encoding and memory 

retrieval) is quantified as greater neural activity pattern similarity between different 

presentations of the same stimuli compared to those of different stimuli. The multi-voxel 

classification relies on neural activity patterns during perception trials to train classifiers 

for distinguishing various contents of the stimuli; the trained classifiers are then tested to 

predict the specific content categories or identities based on retrieval trials' neural activity 

patterns. Content representation, in this case, is quantified as the above-chance prediction 

accuracy of the classifiers trained on classifying content information. Neuroimaging 

studies that have leveraged these two methods, which have surged in the past decade, 

have suggested that distributive patterns of neural activities in LPC encode memory 

features of remembered stimuli at different levels, including category level (e.g., faces vs. 

scenes), event-level (e.g., which face), or even feature-level (e.g., color; Bird et al., 2015; 

Buchsbaum et al., 2012; Jost et al., 2012; Khader et al., 2005; Polyn et al., 2005; St-
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Laurent et al., 2015). Yet such content representation does not exclusively exist in the 

parietal areas; in fact, the sensory cortex also carries the property of content 

representation throughout many memory processes (Kuhl et al., 2011). This raises the 

question of how specific properties or mechanisms of content representations in LPC 

differ from those in sensory regions and allow LPC to contribute to the memory 

processes. While this topic is still an active area of investigation, here I outline two 

developing perspectives for which LPC content representations demonstrate unique 

memory-oriented properties, which show systematically different properties compared to 

sensory regions.  

 First, content representation observed in LPC tends to be stronger during retrieval 

than during encoding/perception, whereas the sensory regions’ content representations 

are stronger during encoding/perception than memory retrieval (Chen et al., 2017; Favila 

et al., 2018; Xiao et al., 2017). Interestingly, recent evidence indicates that the rodent 

LPC also more strongly represents past sensory experience than the current sensory 

experience (Akrami et al., 2018), suggesting that this may be a fundamental property of 

LPC. The fact that LPC shows stronger content representations during memory retrieval 

than encoding is surprising in that it does not fit with the intuitive idea that represented 

information during retrieval is a degraded version of perception—that retrieval can only 

approximate perception. However, these findings align well with evidence that LPC 

exhibits asymmetries in univariate BOLD responses during memory retrieval vs. memory 

encoding, echoing the content representation asymmetry of LPC during encoding versus 

retrieval. As discussed in the previous section, regions within the ventral LPC exhibit 

increased BOLD responses during successful memory retrieval (strong LPC content 
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representation during retrieval), but decreased activity during successful memory 

encoding (relatively weak LPC content representation during perception; Daselaar, 2009; 

Kim et al., 2010; Lee et al., 2017; Vannini et al., 2011). While there is, to date, no 

definitive account of why LPC might show stronger representations during memory 

retrieval than during encoding, it suggests a transformation in how information is 

represented during encoding vs. retrieval (Favila et al., 2018; Xiao et al., 2017). Note that 

such transformation happens in the LPC, but not in any sensory regions, which might be 

important in shaping perceptions to form memories.  

The second mechanistic difference in content representations between LPC and 

sensory regions that may contribute to LPC’s role in memory processes is that the content 

representations in LPC are sensitive to top-down goals (Favila et al., 2018; Kuhl et al., 

2013). That is, content representations in LPC are biased in favor of goal-relevant 

information. In one study (Kuhl et al., 2013), participants encoded face and scene images 

that appeared either on the left- or right-hand side of a computer screen. During retrieval, 

subjects were either asked to retrieve (and behaviorally report) the visual category of the 

retrieved image (face or scene) or the original spatial location of the retrieved image (left 

or right). In visual cortical areas, representation of visual category information was highly 

robust but was completely insensitive to subjects’ top-down goals: visual category 

representation was as strong when visual category information was relevant compared to 

when it was irrelevant (location trials). In contrast, the representation of visual category 

information in LPC was markedly stronger when that information was relevant. This 

pattern of results suggests that the representation of visual category information in visual 

cortical areas was relatively automatic, regardless of top-down goals, but that LPC played 
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some role in filtering information according to task demands. These findings were 

conceptually replicated in a study by Favila et al. (2018) in which subjects were cued to 

retrieve either the category of an object image (e.g., backpack, flower, etc.) or the color 

of the object image (e.g., red, green, etc.). Strikingly, visual cortical areas represented 

both feature dimensions (object category and color) equally strongly, regardless of top-

down goals. In contrast, dorsal LPC exhibited a stronger (and selective) representation of 

task-relevant feature information.  

Approach and structure of the dissertation 

As suggested in the previous section, LPC possess two important properties when 

representing content information. First, the multivariate neural representation of an 

episode differs between when it was first encountered (i.e., encoding) and when it was 

the target of episodic retrieval. Second, LPC content representations are sensitive to and 

thus can be modulated by top-down goals. Yet it remains elusive how LPC multivariate 

neural representations change across encoding and retrieval and how LPC sensitivity to 

top-down goals contribute to human memory success. The primary goal of this 

dissertation is to fill this gap by extending our understanding of the nature and behavioral 

relevance of LPC content representations.   

 These investigations are conducted in a set of two human fMRI studies. Chapter II 

aims to examine how differences in LPC neural representations between encoding and 

retrieval are indicative of recognition memory success. Specifically, I show that the 

differences in LPC multivariate neural representation patterns across encoding and 

retrieval inherently contain decodable, feature-level information about stimuli. 

Importantly, I provided evidence that the degree of the decodable information embedded 
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in the encoding-retrieval neural representation differences is predictive of behavioral 

memory success. Chapter III aims to test how adaptive (i.e., goal-relevant) content 

representation modulations in LPC can solve memory interference and contribute to 

episodic memory success. Specifically, I show that LPC content representations engaged 

adaptive distortions that differentiate confusing memories, and the extent of such 

differentiation process is predictive of behavioral memory success. Lastly, in chapter IV, 

I summarize and discuss how these findings advance our understanding of the functional 

role of LPC in supporting memory. 
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CHAPTER II 

REPETITION-RELATED MEMORY SIGNALS IN PARIETAL CORTEX 

INTEGRATE INFORMATION ABOUT STIMULUS CONTENT 

This chapter contains unpublished co-authored material. I am the primary author 
of this chapter, and I incorporated editing advice from Brice A. Kuhl. and J. Ben 
Hutchinson. The experiment design and data collection were done by Emily J. Allen, 
Yihan Wu, Thomas Naselaris, and Kendrick Kay. My contributions to this chapter 
include data processing, model building, data analyses, and manuscript writing.  

Introduction 

Research on recognition memory has long shown that repeated presentations of 

the same stimulus tend to induce systematic changes in brain activity compared to when 

it was first encountered (Grill-Spector et al., 2006). Specifically, sensory modalities, such 

as visual and auditory processing, consistently show reduced univariate activation 

strength in response to repeated presentations of past stimuli or features (i.e., repetition 

suppression; Grill-Spector & Malach, 2004; Segaert et al., 2013). For example, evidence 

from both human fMRI and primate single-cell recording studies show that the primate 

visual memory area (i.e., inferior temporal cortex) and human visual cortex responded to 

the repeated stimulus with reliably less BOLD signal or spiking rate (Henson et al., 2000; 

Jiang et al., 2000; Li et al., 1993; Miller et al., 1991; Sobotka & Ringo, 1996). On the 

other hand, parietal regions demonstrate the opposite univariate pattern of repetition 

suppression in memory research. That is, the parietal cortex shows greater univariate 

neural activity in response to old stimuli (i.e., repetition enhancement; Wagner et al., 

2005). Importantly, the enhancement of neural activity is only present when memory 

retrieval of the old stimulus is successful, and, similarly, memory strength for the 

stimulus is predictive of the degree of univariate activity enhancement (Hutchinson et al., 
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2009). Together, although visual and parietal regions respond to repeated stimuli in 

opposite manners, both sets of results suggest that repetition-induced changes in 

univariate neural activities (i.e., repetition suppression and enhancement) are memory-

based in nature. However, how repetition-related neural activity changes are related to 

memory components remains elusive.  

With the recent development of multivariate pattern analysis, it has been shown 

that patterns of neural activity in both visual and parietal regions reflect specific contents 

of episodic memories (Bird et al., 2015; Buchsbaum et al., 2012; Jost et al., 2012; Khader 

et al., 2005; St-Laurent et al., 2015). For example, previous research has succeeded in 

decoding memory contents of various granularity (e.g., from event to feature level) from 

both regions (Norman et al., 2006). Moreover, evidence suggests that the neural activity 

patterns of the same stimulus across two repetitions are consistently more similar 

compared to those of different stimuli (Kriegeskorte et al., 2008), suggesting that the 

neural activity patterns in visual and parietal regions must contain specific content 

information specific to each stimulus. Notably, the degree to which the memory content 

is reinstated or decoded can reliably predict subsequent memory performances (Kuhl & 

Chun, 2014; Lee et al., 2017). These advances in multivariate content representation raise 

an important question regarding the nature of repetition-induced univariate effects (i.e., 

suppression and enhancement). Specifically, content information is indexed by either 

characterizing patterns at encoding or retrieval separately or by testing for the similarity 

between encoding and retrieval. But, if recognition memory signals are fundamentally 

expressed as a difference across repetitions (encoding to retrieval), this raises the 

question of whether that difference metric is also related to the content, and whether the 
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neural activity patterns of repetition suppression and enhancement may also contain 

content information.  

In the current study, we aim to examine whether the repetition-related neural 

activity changes contain content information. We analyzed data from an open-source 

dataset, the Natural Scene Dataset (NSD), where each of the eight subjects viewed 10,000 

images three times over a year’s time course (Allen et al., 2022). In particular, we 

focused on the first and second presentations of each stimulus. Regions that demonstrated 

univariate repetition-related changes (repetition enhancement or repetition suppression) 

were selected as the ROIs. We quantified the content of the images based on weights 

from a late layer of a popular convolutional neural network, VGG16 (Simonyan & 

Zisserman, 2014). We tried to decode the content information from the neural activity 

pattern difference between the two presentations of each stimulus, and we predicted 

regions that demonstrate univariate activity changes would demonstrate content coding 

within the activity difference. We also predicted that behavioral recognition memory 

success would be critical for decoding content information from repetition-related 

differences in activation. 

Methods 

Participants 

Eight participants (six female, mean age = 26.5, age range = 19-32 years) with 

normal or corrected-to-normal vision were recruited for the experiment. None of the 

participants had cognitive deficits or color blindness. Informed consent was obtained in 

accordance with the University of Minnesota Institutional Review Board. 
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Experimental Paradigm 

All participants performed a long-term continuous recognition task. Specifically, 

each participant viewed 10,000 distinct images over 40 sessions with each image 

repeating 3 times (including the first presentation). For each trial, participants were asked 

to indicate whether they have seen the image before via a button box (i.e., recognition 

task). Among the 10,000 images presented to each participant, 9000 images were unique 

for the given participant while the remaining 1000 images were shared across 

participants. Note that the time intervals between image repetitions were identical across 

all participants, thus matching the recognition task difficulties. 

During each trial, the image was on for 3 seconds and off for 1 second. Each run 

contained 75 trials, resulting in a total of 300 seconds. The first 3 trials and last 4 trials of 

each run were always blank trials, and the remaining 68 trials included another 5 

randomly positioned blank trials. Additionally, for even-numbered runs, the 63rd stimulus 

trial was always a blank trial, resulting in 63 and 62 stimulus trials for odd and even runs, 

respectively. Note that the blank trials were positioned such that the continuous number 

of stimulus trials in each run always ranged from 9 to 14 trials. Each scanning session 

contained 12 runs with 750 stimulus trials in total. This temporal ordering of stimulus and 

blank trials was consistent across 40 sessions. Due to the time restriction, 4 out of 8 

participants finished all 40 sessions. The remaining participants finished at least 30 

sessions. Since not all participants finished viewing each image for the third time, for the 

following analyses, we only used the first and second presentations of the images. To 

avoid the extremely long time spacing between the first and second representation, we 
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only used images that have a lag within 20 sessions (~5 months) between the first and 

second presentation. More comprehensive details can be found in (Allen et al., 2022). 

Stimuli 

All images were selected from Microsoft’s Common Objects in Context (COCO) 

image database (Lin et al., 2014). Images were cropped into squares along the largest 

dimension when necessary, resulting in a total of 73,000 colored RGB images with a size 

of 425 pixels x 425 pixels. 

fMRI data acquisition 

Imaging data were collected on a 7T Siemens Magetom passive-shielded scanner 

with 32 channels head coil at the Center for Magnetic Resonance Research at the 

University of Minnesota. Functional data were acquired using a high-resolution T2 

gradient-echo EPI sequence at 1.9-mm isotropic resolution with whole-brain coverage 

(84 axial slices, slice thickness = 1.8mm, slice gap = 0 mm, field-of-view = 216 mm (FE) 

x 216 mm (PE), phase-encode direction anterior-to-posterior, matrix size = 120 x 120, TR 

= 1600 ms, TE = 22.0 ms, flip angle = 62°, echo spacing = 0.66 ms, bandwidth = 1736 

Hz/pixel, partial Fourier = 7/8, in-plane acceleration factor (iPAT) = 2, multiband slice 

acceleration factor = 3). Several dual-echo EPI fieldmaps were acquired periodically over 

each scan session (2.2mm × 2.2mm × 3.6mm resolution, TR = 510ms, TE1 = 8.16ms, 

TE2 = 9.18ms, flip angle = 40°, partial Fourier = 6/8). Anatomical images were collected 

using a 3T Siemens Prisma scanner with a standard 32 channels head coil. Several (6-10) 

whole brain T1 weighted scans were acquired for each participant across the experiment 

using MPRAGE sequence (0.8mm isotropic resolution, TR = 2400ms, TE = 2.22ms, TI = 

1000ms, flip angle = 8°, inplane acceleration factor (iPAT) = 2). 
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fMRI data preprocessing 

T1 weighted images were corrected for gradient nonlinearities using the Siemens 

gradient coefficient file from the scanner. Multiple volumes acquired for a given subject 

were first co-registered and then averaged to create a single T1-weighted anatomical 

image. The T1 volume was processed by FreeSurfer 6.0.0 with -hires option. Manual 

edits of segmentation were performed to improve the accuracy of surface reconstruction. 

Several additional cortical surfaces were generated at 25%, 50%, and 75% positions of 

the distance between the pial surface and the boundary between white and gray matter. 

These surfaces were used to generate surface representations of the fMRI data. 

fMRI data preprocessing was performed with customized scripts in MATLAB in 

the subject native space. Temporal resampling was performed to correct slice differences 

and spatial resampling was performed to correct head motion, EPI distortion, and 

gradient non-linearities. In the current paper, we used the upsampled 1-mm high-

resolution version of the data. For each subject, all later fMRI data sessions were co-

registered to the mean fMRI volume of the first fMRI data session. 

Single-trial estimation 

GLM analysis was performed on the pre-processed time series data in a 1mm 

functional space with a customized package GLMsingle (Allen et al., 2022). The best-

fitting HRFs were chosen for each voxel from the GLMsingle library for compensating 

the differences in hemodynamic time courses across voxels. GLMdenoise was adapted 

for single-trial estimation for removing noise from beta estimates (Kay et al., 2013). The 

estimated single-trial betas were further resampled to three different cortical surface 
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depths and averaged together using cubic interpolation. The result was then transformed 

to fsaverage space using nearest neighbor interpolation.  

Region of interest 

fMRI data analyses were conducted with a set region of interest (ROIs) located in 

the visual, parietal, and motor cortices derived from the HCP MMP1 atlas (Glasser et al., 

2016). The ROIs were selected to be sensitive to memory success. Specifically, for each 

participant and parcel in the atlas, we computed the univariate activation contrast of hit 

vs. miss trials during the second presentation. IP1, IP2, and PFm from the lateral parietal 

cortex (LPC) demonstrated a retrieval success effect (significantly greater activation for 

the second presentation compared to the first), whereas PHA1 and PHA2 from the ventral 

temporal region showed a significant repetition suppression effect. We also included low-

level visual region V1 as the control region. 

Univariate analysis of memory success 

All parcels from the lateral parietal region and ventral temporal region, as well as 

V1, were involved in this analysis. For each subject and ROI, we first computed the 

averaged Beta for the first presentation and the second presentation separately, and then 

took the difference between averaged activation of the first presentation over the second 

presentation. One-sample t-tests were conducted for each subject and ROI on whether the 

activation difference between the presentations is different from 0. Images were excluded 

from analysis if the response to the first presentation was not a correct rejection (i.e., 

‘new’) or if the lag between the 1st and 2nd presentation of an image was greater than 20 

sessions. 
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Quantifying image content 

Each image was passed through a pre-trained VGG16 to derive feature maps at 

convolutional layer 4 (referred to as the early layer), convolutional layer 7 (referred to as 

the middle layer), and fully connected layer 3 (referred to as the late layer) (Simonyan & 

Zisserman, 2014). For the two convolutional layers, we concatenated the feature map 

matrices at each layer to obtain the 1-D vector format feature map. PCA was conducted 

on the vectorized feature map of each layer across all images. We kept the top 10 

principal components for each layer, which explained 4.2%, 3.2%, and 66.3% of the 

variance for the early, middle, and late layers respectively. The content of each image 

was quantified as the loading of these 10 principal components for the given image (see 

figure 2.1). 

 

Figure 2.1.  Paradigm, stimuli, and illustration of machine learning models.  
a, Experiment paradigm. Subjects viewed each image for 3 seconds, while making the old/new judgment. 
b, Pairwise picture stimuli similarities measured by feature maps from different layers of VGG16. c, 
Predict the image content by using the neural activity difference from the two presentations. 

 

Mapping brain signals to image content 

To map the brain signal to image content, we trained a ridge regression model for 

each ROI, using the image-specific neural activity patterns as input features to predict the 

image content, as represented by the loadings of the 10 PCs of the feature maps derived 

from VGG16. Model estimation was done within each subject and each ROI. To quantify 
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the model performance, we used a 10-fold cross-validation framework with the negative 

mean squared error (neg. MSE) at the trial level as the indicator of the model 

performance. As described previously, the model outcome, Y, is the 10 principal 

components of a certain VGG16 layer feature map. Then neg. MSE was computed by 

(Predicted Y – True Y)/10, since we have 10 components for each Y. Specifically, for 

each train-test split, we built a true model with neural activity pattern as input, and 10 

PCs of the feature maps from VGG16 as output. In addition to the true model, we built 

500 null models with permutation data (by randomly shuffling the order of the label) to 

form a null distribution of the negative MSE of each trial. We computed the z-score of 

the true negative MSE (z-neg. MSE) of each trial using the mean and variance of the 

corresponding null distribution. 

To confirm the ROI selection, we used the first presentation of each image with 

the correct response (correct rejection) as the input to predict the top 10 PCs of the early 

(Conv4), middle (Conv7), and late layer (FC3) of VGG16. For each subject and ROI, we 

compute the model performance (z-neg. MSE) and tested whether the model performance 

is significantly above the chance level for each selected ROI with a one-sample t-test. 

Only images with correct rejection during the first presentation and the two presentations 

of the image’s lag was smaller than 20 sessions were included in the analysis. 

Content decoding from repetition-related differences  

For memory content decoding based on repetition-related brain activity 

differences, we subtracted the brain activity during the second presentation from the first 

presentation of each image. Then we used these activity differences as the model input to 

predict the top 10 PC of the late layer of VGG16. For each subject and ROI, we compute 
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the model performance (z-neg. MSE) and tested whether the model performance is 

significantly above the chance level for each selected ROI with a one-sample t-test. Only 

images with correct rejection during the first presentation and the two presentations of the 

image’s lag was smaller than 20 sessions were included in the analysis. 

Content decoding as a function of behavioral expressions of memory 

To investigate whether the repetition-related differences are related to behavior, 

we separately computed the z-neg. MSE for hit trials and miss trials (whether the 

response to the second presentation is correct) for each ROI and subject, and then tested 

the model performance for hit and miss trials separately with a one-sample t-test. We 

next subtracted the averaged z-neg. MSE of miss trials from hit trials and tested whether 

the model performance was better for hit trials over miss trials with a one-sample t-test 

for each ROI. For control analysis, we first tested whether the result was driven by the 

imbalanced trials. We computed the ratio of hit trials over miss trials for each subject and 

calculated the Pearson correlation for the hit trials ratio and the hit/miss effect (z-neg. 

MSE). Next, for each subject and parietal ROI (IP1, IP2, PFm), we built models with hit 

trials and tested them on the hit trials, and built models with miss trials and tested it on 

the miss trials. We compared the model performance (z-neg. MSE) built with hit trials 

and miss trials at three parietal ROIs by two-way ANOVA with ROI and hit/miss as the 

two main factors. Then, we built and tested three different types of models with data from 

presentation 1 and presentation 2 neural activity of the presentations separately. For each 

of these three types of models, we measured the z-neg. MSE separately for hit trials and 

miss trials at each ROI for each subject. Then we subtracted the averaged z-neg. MSE of 
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the miss trials from the hit trials, and tested whether these values were different from 0 

with one-sample t-tests.  

Statistical modeling and analysis 

Statistical analyses were performed using Python 3.7. The pre-trained VGG16 

model from the Pytorch module was used for the feature map extraction. Principle 

component analysis, ridge regression model, and cross-validation were conducted with 

the Scikit-Learn module. All t-tests were done with the Scipy module two-tailed, with α = 

0.05. All ANOVAs were computed with the Statsmodels module. All error bars in the 

figures represent S.E.M. 

Results 

Univariate effects of recognition memory in parietal and ventral temporal cortices 

We first sought to identify candidate ROIs from lateral parietal and ventral 

temporal cortices that reflected repetition-related univariate changes. To do this, we 

selected ROIs that exhibited differences in univariate activation for the first presentation 

versus the second presentation of the same stimulus. For each anatomical parcel in lateral 

parietal and ventral temporal cortices, the mean activation was computed for the two 

presentations and these values were compared via two-tailed paired-sample t-tests. Three 

lateral parietal regions exhibited greater activation for the second presentation compared 

to the first (i.e., retrieval success; IP1: t7 = -3.14, p = 0.016; IP2: t7 = -4.26, p = 0.004; 

PFm: t7 = -3.46, p = 0.011) whereas two regions in the ventral temporal cortex (PHA1, t7 

= 2.58, p = 0.036; PHA2, t7 = 2.40, p = 0.048) exhibited the opposite pattern (i.e., 

repetition suppression). These five ROIs were used for all subsequent analyses. For 

comparative purposes, we also included the early visual cortex as a control region. Note 
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that the early visual cortex does not demonstrate significant differences in univariate 

activation between first and second representations (V1: t7 = -1.55, p = 0.166). 

 

Figure 2.2.  Univariate results.  
a,The univariate activity changes across the two presentations. b, Illustration for ROIs. Error bars reflect 
+/- S.E.M.; ** p < 0.01, * p < 0.05 
 
Measuring content information with VGG16  

To quantify the content of each scene image, we used the activation map of the 

selected hidden layer in a pre-trained deep convolutional neural network (VGG16) as an 

unbiased measure for image content information (Simonyan & Zisserman, 2014). The 

activation map in the selected layer aims to capture the high-level semantic information 

encoded within the lateral parietal and ventral temporal regions. To achieve this property, 

we focused on the final fully connected layer (the deepest layer in the network). The 

rationale comes from the nature that the deep convolutional neural network resembles the 

functional hierarchy of the human ventral visual stream, with shallow layers capturing 

low-level visual features (e.g., color) and deep layers being more sensitive about visual 

content information of semantic meanings (see Figure 2.1b). To quantitively validate our 

choice of the deep layer, we first tested the degree to which information from the last 
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VGG16 layer (FC3), in comparison to that from shallow regions, is reflected in the neural 

activity patterns expressed in parietal and visual cortical areas during the first 

presentation of each image. In particular, we expect to see greater relevance between 

shallow layers and early visual region (i.e., V1), and between FC3 and the remaining 

ROIs.  

To construct a decoding model, we first reduced the dimensionality of the hidden 

layer activation maps using Principal Components Analysis (PCA) for each scene image. 

Specifically, we selected the top 10 components, allowing the content of each scene 

image to be expressed as a vector of 10 component scores for each layer (early, middle, 

late). For each ROI, we trained ridge regression models on stimulus-induced neural 

activity patterns to predict the 10-vector content representation of each stimulus, with 

respect to each layer. The model was tested using a ten-fold cross-validation framework, 

and the model performance for each fold was measured as the averaged negative MSE 

(neg. MSE, where a larger number represents better prediction; see Methods) between the 

predicted and actual component scores across all  stimuli. Statistical significance was 

derived from a permutation test where labels (i.e., content representation vectors) were 

randomly shuffled (see Methods). 

As shown in Figure 2.3, the prediction performance of the model constructed with 

FC3 content representations was well above chance for each of the lateral parietal (IP1, 

IP2, PFm) and visual (PHA1, PHA2, V1) ROIs. Notably, model performances for the 

lateral parietal (IP1, IP2, PFm) and ventral temporal ROIs (PHA1, PHA2) gradually 

increased as content representations were computed from shallower to deeper layers, as 

shown by significant main effects of the layer in one-way repeated measures ANOVAs 
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(IP1: F2,14 = 22.60, p < 0.0001; IP2: F2,14 = 24.00, p < 0.0001; PFm: F2,14 = 28.86, p < 

0.0001; PHA1: F2,14 = 67.05, p < 0.0001; PHA2: F2,14 = 49.65, p < 0.0001). In contrast, 

model performance in V1 was better off from content representations computed from 

shallower compared to the deeper layers layer (F2,14 = 575.14, p < 0.0001). Separate two-

way ANOVAs confirmed that the pattern of data across layers in V1 significantly 

differed from the pattern of data across layers in each of the lateral parietal and ventral 

temporal ROIs (V1 vs. IP1: F2,14 = 162.06, p < 0.0001; V1 vs. IP2: F2,14 = 335.75, p < 

0.0001; V1 vs. PFm: F2,14 370.49, p < 0.0001; V1 vs. PHA1: F2,14 = 202.86, p < 0.0001; 

V1 vs. PHA2: F2,14 = 170.24, p < 0.0001). These results provide evidence that the content 

information represented in the lateral parietal and ventral temporal ROIs is best captured 

by activation maps of a deep (compared to shallow) CNN layer. It is also worth noting 

that V1 showed relatively weak decoding performance for deep layer content 

representations, indicating that there was not a global bias toward better performance for 

FC3 (e.g., as an artifact of the dimensionality reduction step). 

Table 2.1. Prediction performance of models constructed with different layers of VGG16.  
Note: * p < .05; ** p < .01; *** p < .001. 
 

ROI 
Early layer Middle layer Late layer 

Mean SD t7 p sig. Mean SD t7 p sig. Mean SD t7 p sig. 

IP1 0.37 0.23 4.45 0.003 ** 0.59 0.39 4.28 0.004 ** 0.84 0.49 4.85 0.002 ** 

IP2 0.22 0.12 5.08 0.001 ** 0.33 0.20 4.74 0.002 ** 0.49 0.27 5.01 0.002 ** 

PFm 0.17 0.11 4.56 0.003 ** 0.27 0.17 4.44 0.003 ** 0.44 0.24 5.09 0.001 ** 

PHA1 0.74 0.23 9.26 0.000 *** 1.16 0.33 9.89 0.000 *** 1.59 0.50 8.97 0.000 *** 

PHA2 0.78 0.35 6.29 0.000 *** 1.23 0.49 7.13 0.000 *** 1.76 0.72 6.90 0.000 *** 

V1 1.49 0.16 26.44 0.000 *** 1.77 0.19 27.06 0.000 *** 0.73 0.14 15.20 0.000 *** 

 

Content decoding from repetition-related differences  

The preceding analyses provided evidence that content information encoded in the 

lateral parietal and ventral temporal ROIs can be best quantified using the activation  
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Figure 2.3.  Prediction performance of the model constructed with different layers of VGG16.  
To confirm the ROI selection, we used the first presentation of each image with the correct response 
(correct rejection) as the input to predict the top 10 PCs of the early (Conv4), middle (Conv7), and late 
layer (FC3) of VGG16. Error bars reflect +/- S.E.M.; *** p < 0.001, ** p < 0.01 
profile of the selected layer in VGG 16 (FC3). Here, we aim to examine the critical 

question of whether the difference in repetition-induced neural activity —from the first 

presentation to the second presentation—contained content information about image 

stimuli, as represented by VGG16. Note that if the stimulus-evoked neural activity 

patterns are identical every time the stimulus was encountered, content information 

decoding from repetition-related neural differences would not be possible, even if content 

information robustly presents in each individual encounter. Moreover, even if there are 

robust changes in repetition-induced neural activity signals (i.e., memory-related signals), 

these differences could be orthogonal to content information. Thus, the successful 

decoding performance of an ROI suggests that the nature of repetition-induced neural 

***

**

**
**

**
****

**
**

**

***

***

***

***

***

***

***

***



 

 

 

34 

activity in this region is memory-related signals that incorporate stimulus content 

information.  

Repetition-induced activation difference was computed for each image stimulus 

(first presentation – second presentation) and used to predict content information 

captured by the VGG FC3 layer. The model performance was cross-validated and 

statistical significance was derived from the permutation test. We found that content 

information can be successfully decoded from lateral parietal and visual ROIs, as 

assessed by permutation tests and z-neg. MSE (lateral parietal: t7 > 2.38, p < 0.049; V1: t7 

= 4.37, p = 0.003 one-sample t-tests, see Table 2.2) but not from ventral temporal ROIs 

(t7 < 2.34, p > 0.052).  

 

Figure 2.4.  Content decoding from repetition-related brain activity changes. 
For memory content decoding based on repetition-related brain activity differences, we subtracted the brain 
activity during the second presentation from the first presentation of each image. Then we used these 
activity differences as the model input to predict the top 10 PC of the late layer of VGG16. For each subject 
and ROI, we compute the model performance (z-neg. MSE) and tested whether the model performance is 
significantly above the chance level for each selected ROI with a one-sample t-test. Error bars reflect +/- 
S.E.M.; ** p < 0.01, * p < 0.05 
 
Content decoding as a function of behavioral expressions of memory 

The preceding results suggested that the repetition-induced neural activity 

differences can be memory-based signals that contain content information. It is yet  

*

***

*
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Table 2.2. Content decoding from repetition-related brain activity changes. 
Note: * p < .05; ** p < .01; *** p < .001. 
 

ROI Mean SD t7 p sig. 

IP1 0.03 0.03 3.13 0.017 * 
IP2 0.02 0.02 2.38 0.049 * 
PFm 0.03 0.03 2.49 0.041 * 

PHA1 0.02 0.03 1.56 0.162  

PHA2 0.02 0.02 2.34 0.052  
V1 0.02 0.01 4.37 0.003 ** 

 

unclear to which degree such memory-based signals can contribute to memory success. 

Thus, we next aim to examine whether the ability to decode content information from 

repetition-induced neural activity is related to recognition memory success for an image 

stimulus. Specifically, we used the same ridge regression models trained above but sorted 

the test trials based on their recognition memory outcomes, either being recognized as a 

familiar image (‘hit’) or a new image (‘miss’). The rationale is that if the memory-based 

nature of repetition-induced neural activity differences indeed contributes to recognition 

memory success, the model performance should be better for hit trials.  

We directly compared performance accuracy for hit vs. miss trials by subtracting 

the mean z-neg. MSE of miss trials from the mean z-neg. MSE of hit trials. Our results 

revealed that for ROIs that demonstrate significant repetition-induced univariate changes 

(i.e., either repetition suppression or retrieval success), the model performance was 

significantly better for hit compared to miss trials (IP1: t7 = 4.89, p = 0.002, IP2: t7 = 

3.33, p = 0.013, PFm: t7 = 4.74, p = 0.002; PHA1: t7 = 4.74, p = 0.002; PHA2: t7 = 2.46, p 

= 0.044; one-sample t-tests; Table 2.3; Figure 2.5). A follow-up one-way repeated 

measure ANOVA indicated no performance difference between parietal and ventral 

temporal ROIs (F1, 7 = 0.33, p = 0.582). More broadly speaking, the repetition-induced 
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activity changes only contain content information for successfully remembered hit trials, 

but not for forgotten stimuli. On the contrary, the early visual cortex showed no 

difference for hit  versus miss trials (t7 = 0.84, p = 0.43), suggesting that the content 

information in V1 does not contribute to the behavioral differences in recognition 

memory.  

Next, we found that when separately considering hit trials, content information 

could be successfully decoded from almost all ROIs, with trending statistical significance 

in one ventral temporal ROI (Table 2.3; Figure 2.5; IP1: t7 = 4.80, p = 0.002; IP2: t7 = 

3.25, p = 0.014; PFm: t7 = 3.43, p = 0.011; PHA1: t7 = 2.47, p = 0.092; PHA2: t7 = 2.47, 

p = 0.043; V1: t7 = 3.14, p = 0.016; one-sample t-test). Notably, there was no difference 

between averaged model performance between parietal and ventral temporal cortices (F1, 

7 = 1.32, p = 0.288, one-way repeated measures ANOVA). On the other hand, for miss 

trials, only two visual regions, V1 and PHA2 exhibited above-chance performance (V1: t7 

= 3.84, p = 0.006; PHA1: t7 = -2.5, p = 0.041; one-sample t-test; Table 2.3; Figure 2.5). 

There was no observable difference between parietal and temporal cortices (F1, 7 = 0.33, p 

= 0.582, one-way repeated measures ANOVA). These results indicate that repetition-

induced activity differences in ventral temporal and parietal ROIs contain content 

information, but only for hit trials.  

Distinct content decoding profile between first and second presentations 

To better understand how repetition-induced neural activity changes contribute to 

behavioral recognition memory success, we examined the content decoding performances 

of models relying on the neural activity patterns from only a single presentation (rather 

than repetition-related difference). We found that model performances during the first  
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Figure 2.5.  Content decoding as a function of behavioral expressions of memory. 
We tested whether the model performance was different for hit trials and miss trials. Error bars reflect +/- 
S.E.M.; ** p < 0.01, * p < 0.05 
 

Table 2.3. Content decoding as a function of behavioral expressions of memory. 
Note: * p < .05; ** p < .01; *** p < .001. 
 

 

presentation resemble the subsequent memory effect. That is, the degree to which 

information about an image stimulus could be decoded from each ROI strongly depended 

on whether the stimulus was later successfully remembered. Specifically, models trained 

on all regions demonstrated significantly better performance for subsequently-

remembered stimuli compared to subsequently-forgotten stimuli (IP1: t7 = 6.39, p = 

0.0003, one-sample t-test; IP2: t7 = 6.13, p = 0.0004; PFm: t7 = 2.89, p = 0.023; PHA1: t7 

= 4.74, p = 0.002; PHA2: t7 = 2.46, p = 0.044; V1: t7 = 3.40, p = 0.009). There was no 

significant difference for averaged parietal regions and ventral temporal regions (F1, 7 = 

0.003, p = 0.957, one-way repeated measures ANOVA). Interestingly, the content 

decoding profile demonstrated the opposite pattern during the second presentation. That 

*

**

**

**

**
* *

*

*

* * *

ROI 
Hit Miss Hit-Miss 

Mean SD t7 p sig. Mean SD t7 p sig. Mean SD t7 p sig. 

IP1 0.06 0.04 4.8 0.002 ** -0.02 0.02 -2.33 0.053  0.08 0.05 4.89 0.002 ** 

IP2 0.04 0.04 3.25 0.014 * -0.01 0.02 -1.67 0.138  0.05 0.05 3.33 0.013 * 

PFm 0.05 0.04 3.43 0.011 * -0.01 0.01 -1.28 0.240  0.05 0.03 4.74 0.002 ** 

PHA1 0.04 0.06 1.95 0.092 
 

-0.02 0.03 -2.12 0.072 
 

0.06 0.07 2.46 0.044 * 

PHA2 0.04 0.05 2.47 0.043 * -0.01 0.01 -2.50 0.041 * 0.05 0.06 2.64 0.033 * 

V1 0.02 0.02 3.14 0.016 * 0.02 0.01 3.84 0.006 ** 0.01 0.02 0.84 0.429  
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is, content decoding model performances were greater for forgotten stimuli compared to 

remembered ones for all ROIs, with trending statistical significance in parietal regions 

(IP1: t7 = -1.5, p = 0.177, IP2: t7 = -2.17, p = 0.066; PFm: t7 = -1.68, p = 0.137; PHA1: t7 

= -2.81, p = 0.026; PHA2: t7 = -2.92, p = 0.022; V1: t7 = -2.66, p = 0.032; one-sample t-

test; Table 2.4; Figure 2.6). The average model performance of hit-over-miss was 

significantly different in averaged parietal and ventral temporal regions (F1, 7 = 11.08, p = 

0.013, one-way repeated measures ANOVA). Specifically, the three visual ROIs 

demonstrated significantly better decoding results for miss trials (perceived as new trials 

to subjects) compared to hit trials (perceived as old stimuli to subjects), but not for the 

parietal regions. We argue that this profile indicates an efficient episodic memory 

encoding strategy. That is, the brain, especially the visual regions, treats the forgotten 

stimuli as new images and thus automatically encodes the content information of the 

“miss” trials, thus leading to greater content decoding performance for miss trials during 

the second presentation. Together, these results suggested that repetition-induced neural 

differences contribute to recognition memory success by adopting a specific encoding 

strategy over old vs. new image stimuli.   

 

Figure 2.6.  Content decoding by the two presentations separately. 
We built models by presentation 1 / presentation 2 separately to test whether the results from the difference 
model were driven by a certain presentation. Error bars reflect +/- S.E.M.; *** p < 0.001, ** p < 0.01, * p < 
0.05 
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Table 2.4. Content decoding by the two presentations separately. 
Note: * p < .05; ** p < .01; *** p < .001. 
 

ROI 
Presentation 1 Presentation 2 

Mean SD t7 p sig. Mean SD t7 p sig. 

IP1 0.16 0.07 6.39 0.0003 *** -0.1 0.19 -1.5 0.177  

IP2 0.11 0.05 6.13 0.0004 *** -0.12 0.15 -2.17 0.066  

PFm 0.07 0.06 2.89 0.023 * -0.09 0.15 -1.68 0.137  

PHA1 0.09 0.07 3.59 0.009 ** -0.16 0.16 -2.81 0.026 * 

PHA2 0.13 0.14 2.67 0.032 * -0.24 0.23 -2.92 0.022 * 

V1 0.04 0.03 3.60 0.009 ** -0.05 0.06 -2.66 0.032 * 
 

 

Discussion 

Previous studies have provided consistent evidence that the human brain, when 

encountering an old stimulus, responds differently compared to when the stimulus was 

first perceived. Specifically, visual regions exhibit less univariate activation when 

processing an old stimulus (repetition suppression) whereas parietal regions show the 

opposite pattern (repetition enhancement). The current study investigated the nature of 

these repetition-related univariate effects from a multivariate perspective. Specifically, 

regions of interest (ROIs) were identified in visual and parietal regions that demonstrate 

robust repetition-induced univariate effects (i.e., repetition enhancement and 

suppression).  We then examined whether the pattern of repetition-related neural 

differences represents content information about the stimuli, measured using a pre-trained 

convolutional neural network (VGG16), and how the degree of the content representation 

relates to recognition memory success. First, our results suggest that both parietal and 

visual regions that show significant univariate-activation changes also robustly reflect 

memory contents in the multi-voxel activity patterns. Importantly, the degree of content 
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information in regions that demonstrated either repetition enhancement (parietal regions) 

or repetition suppression (ventral visual regions) is predictive of recognition memory 

success, suggesting these regions’ role in memory-related processes. Interestingly, we 

found that content representation during the first presentation (i.e., encoding) alone can 

predict subsequent recognition memory success in both parietal and ventral temporal 

regions, while content representation during the second presentation (i.e., retrieval) favors 

forgotten stimuli, especially in ventral temporal regions.  

Repetition-related neural differences reflect content information 

Recognition memory refers to the ability to identify stimuli that have been previously 

encountered. Previous studies have suggested that recognition memory success is coupled 

with repetition-related univariate changes in the visual and lateral parietal regions. Here, 

we examined the nature of these univariate activation changes and how they may 

contribute to recognition memory success. Our results show that, when participants 

successfully recognized a stimulus as an old image, predictive models could rely on the 

pattern of repetition-related neural differences to reconstruct content information 

pertaining to the very stimulus. In other words, the multivoxel patterns of repetition 

enhancement and repetition suppression for remembered trials carry stimulus-specific 

information. Note that the below-threshold content representation in the two visual areas 

observed in Figure 2.4 was driven by the minimum content representations for the miss 

trials. These results suggest the univariate activation changes in both visual and parietal 

regions do not demonstrate an invariant form of neuronal excitement for fatigue that 

uniformly acts on all LPC or visual voxels. Instead, voxels are enhanced or suppressed at 

different degrees during the re-exposure of an old stimulus, and such a repetition-related 
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multi-voxel modulation is largely attributed to the content information of the given 

stimulus. Note that this modulation can be mostly driven by how the stimulus is encoded 

during its first presentation, which will be discussed in details in the following 

subsections. Interestingly, our results also show that content representation does not limit 

to regions that demonstrate robust repetition-related univariate changes. In particular, the 

early visual regions (V1), though not showing significant univariate changes in response 

to repeatedly presented stimulus, also show content representation in its repetition-related 

neural differences. 

The degree of content representation in the pattern of repetition enhancement and 

repetition suppression predicts recognition memory success 

Previous work suggests that the degree of repetition-related univariate activation 

changes in the parietal regions, but not the visual areas, are indicative of recognized 

memory success. Specifically, the effect of repetition enhancement is stronger for hit 

compared to miss trials in the parietal regions, but no difference in the magnitude of 

repetition suppression was observed in the visual regions (Ward et al., 2013). Here, we 

examined whether the degree of content representations in the visual and parietal regions 

is related to recognition memory success and whether this brain-behavioral relationship 

varies between parietal and visual regions. Contrary to what was observed in previous 

univariate analyses, our results suggested that the degree to which content information in 

both visual and parietal regions is indicative of recognition memory success. Specifically, 

the predictive models demonstrated significantly better performances for remembered 

(i.e., hit) compared to forgotten (i.e., miss) trials. That is, the degree to which the 

multivoxel pattern of repetition-related changes, either repetition enhancement or 



 

 

 

42 

suppression, resembles true stimulus-specific content information determines whether a 

given stimulus can be successfully recognized by participants. These results suggest that 

although the univariate activation of the visual areas does not show greater suppression in 

response to “remembered” old stimuli, the information carried in the pattern of repetition 

suppression may be sharpened, which then contributes to recognition memory success. It 

is worth noting that although the repetition-related neural differences in the early visual 

cortex (V1) do show content representation, the degree of V1 content representation does 

not differ between remembered and forgotten trials. It is thus suggested that in LPC and 

VTC, only the neural differences pattern in regions that show repetition-related univariate 

effects can be predictive of recognition memory success.  

Repetition-related neural differences as a result of encoding strategy  

We also looked at the first and second presentations to investigate the source of 

the content representation embedded in the repetition-related neural differences. We 

speculate that the differences in content representation profiles between the two 

presentations are due to certain properties of memory encoding. It has been suggested 

that the amount and accuracy of stimulus-specific information encoded in the brain when 

stimuli are first encountered will determine whether the stimulus can be subsequently 

remembered (Lee et al., 2017). Consistent with the previous theory, our results show that 

when participants encountered the stimuli for the first time, greater content 

representations were observed for subsequently remembered items. Conversely, when 

participants re-encountered the stimuli, greater content representations were found for the 

forgotten items (participants forgot they have seen the image before). This bias toward 

encoding subjectively new stimuli may be due to the fact that the brain favors new 
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information over the old (Nyberg, 2005). That is, the remembered items were sharply 

represented in the parietal and visual areas only when it was first encountered but were 

not the main target of encoding when it was re-encountered. In this way, the repetition-

related differences contained content representations carried over from the first 

presentation. On the other hand, by staying subjectively new, the forgotten items were the 

target of memory encoding of both presentations, although the sharpness of content 

presentations may vary. As a result, content representations from the two presentations 

can be canceled out when computing the repetition-related neural differences, leading to 

weaker content representation strength compared to the remembered items.  

Using Convolutional neural network to quantity memory content  

In the current study, memory contents were quantified using feature maps from a 

deep convolutional neural network (CNN), VGG16 (Simonyan & Zisserman, 2014). 

VGG16 is a typical deep CNN that consists of 16 convolutional layers that resembles the 

human ventral visual stream. Neurons in each convolutional layer extract information (by 

performing convolution computation) from the previous layer’s output (feature maps) 

with a certain receptive field (filters) (Güçlü & van Gerven, 2015). In this way, early 

convolutional layers in a VGG16 tend to capture relatively low-level visual features, such 

as angle and color whereas deeper layers were able to capture increasingly complex 

visual features that convey semantic meanings, such as “ocean” or “baseball games” 

(Zeiler & Fergus, 2014). Thus, feature maps of a CNN reveal image content at different 

granularity, and this property makes it possible to extract different levels of features in an 

image stimulus.  
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Although some research has found that late layers from CNNs show similar 

categorization performance as the ventral visual system in primates (Cadieu et al., 2014; 

Khaligh-Razavi & Kriegeskorte, 2014; Yamins et al., 2014), little is known about the 

mapping relationships between human visual system to layers from CNN. Here we chose 

convolutional layer 4 as the early layer for capturing low-level features like color and 

angles, convolutional layer 7 as the middle layer for capturing combined shapes and 

colors, and fully connected layer 3 as the late layer for capturing complex semantic-level 

features. This decision was made based on the visualization of image projection on each 

feature map (Figure 2.1b). Future works could provide more insights into explaining the 

connections between the human visual system and the CNN structures.  

Results from this current study showed that using a CNN is a valid method to 

quantify stimulus content perceived by participants. In recent years, a growing body of 

cognitive neuroscience research is trying to utilize advances in deep learning to 

understand human brain mechanisms. While recurrent neural networks and transformers 

might be more similar to the human memory system due to their storage or attention 

properties, CNNs resemble the human visual system better given their feedforward 

structure. 
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CHAPTER III 

ADAPTIVE MEMORY DISTORTIONS ARE PREDICTED BY FEATURE 

REPRESENTATIONS IN PARIETAL CORTEX 

From Zhao, Y., Chanales, A. J., & Kuhl, B. A. (2021). Adaptive memory distortions are 
predicted by feature representations in parietal cortex. Journal of Neuroscience, 41(13), 
3014-3024.  

Introduction 

Given the vast number of memories that humans store, the overlap between 

memories is inevitable. For example, one may have taken multiple vacations to the same 

town or parked in the same garage on many occasions. There is a long history of 

behavioral studies in psychology documenting the many contexts in which this type of 

overlap leads to memory interference and forgetting (Anderson & Spellman, 1995; 

Barnes & Underwood, 1959; Mensink & Raaijmakers, 1988; Osgood, 1949; Wixted, 

2004). As a result, a primary focus of theoretical models of memory has been to specify 

the computational mechanisms by which interference is resolved (Colgin et al., 2008; 

O’Reilly & McClelland, 1994; Treves & Rolls, 1994). These models have largely 

focused on how memories are encoded so that the content of memories is protected 

against interference. An alternative perspective, however, is that instead of protecting 

memories from interference, there is adaptive value in allowing the content of memories 

to be shaped by interference (Hulbert & Norman, 2015; G. Kim et al., 2017). 

Specifically, to the extent that overlap across memories is the root cause of interference, 

then distorting memories to reduce this overlap is a potentially effective remedy. 

 Evidence from recent neuroimaging studies hints at the idea that memory 

representations are distorted as an adaptive response to interference. Namely, several 
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studies have found that when similar events are encoded into memory, this triggers a 

targeted exaggeration of differences in patterns of activity in the hippocampus (Ballard et 

al., 2019; Chanales et al., 2017; Dimsdale-Zucker et al., 2018; Favila et al., 2016; Hulbert 

& Norman, 2015; G. Kim et al., 2017; Schapiro et al., 2012; Schlichting et al., 2015). The 

key observation in these studies is that similar memories ‘move apart’ from each other in 

representational space, suggesting a form of memory repulsion. Yet, a critical limitation 

of these studies is that the feature dimensions along which memories move are 

underspecified. That is, do changes in neural representations correspond to changes in the 

information content of memories? On the one hand, neural activity pattern may become 

separated without any changes to underlying memories. Alternatively, changes in neural 

activity patterns may reflect adaptive changes in memory content. For example, if two 

vacations to the same city were associated with different weather conditions, then 

weather-related information may be a salient component of corresponding memories and 

weather-related differences between those vacations may be exaggerated to improve 

memory discriminability (e.g., “That was the year it was really cold,” vs. “That was the 

year it was really hot”).  

While it has proven difficult to translate hippocampal activity patterns to explicit 

feature dimensions (LaRocque et al., 2013; Liang et al., 2013), feature dimensions are far 

more accessible in (or decodable from) neocortical regions involved in memory retrieval. 

In particular, there is rapidly growing evidence that lateral parietal cortex carries detailed 

information about the content of retrieved memories (Chen et al., 2017; Long et al., 2016; 

Xiao et al., 2017) and amplifies behaviorally relevant information (Favila et al., 2018; 

Kuhl et al., 2013). Moreover, recent studies have shown that memory representations in 
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parietal cortex can be decomposed into separable feature dimensions (Bone et al., 2020; 

Favila et al., 2018; Lee et al., 2019). Thus, lateral parietal cortex may provide a unique 

window into how memory representations are shaped by interference. 

Here, we tested whether interference between highly similar memories triggers 

adaptive distortions in parietal memory representations and corresponding behavioral 

expressions of memories. Our motivating theoretical perspective was that subtle 

differences between similar memories are prioritized and exaggerated to reduce the 

potential for interference. To test these ideas, we modified a recent behavioral paradigm 

that demonstrated adaptive biases in long-term memory for objects (Chanales et al., 

2021). We predicted that competition between memories for similar objects would trigger 

a memory-based exaggeration of subtle differences between those objects, and that 

greater exaggeration would be associated with lower memory interference. Using pattern-

based fMRI analyses, we tested whether memory representations in lateral parietal cortex 

(a) preferentially express features that are critical for discriminating similar objects and 

(b) predict feature-specific distortions in behavioral expressions of memory. 

Materials and Methods 

Participants 

Thirty-two (21 female; mean age = 23.5 years) right-handed, native English 

speakers from the University of Oregon community participated in the experiment. Three 

participants were excluded from analysis (two due to falling asleep inside the scanner, 

one due to technical error), resulting in a final set of 29 participants (19 female; mean age 

= 23.7 years) included in data analysis. Participants were screened for motion during the 

scanned recall tasks, but no participants exceeded the exclusion criteria (mean framewise 
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displacement > 0.25) for any of the runs. The sample size was comparable to similar 

fMRI studies in the field. All participants had normal or corrected-to-normal vision. 

Informed consent was obtained in accordance with the University of Oregon Institutional 

Review Board. 

Overview of Experimental Paradigm 

We modified a paradigm from a recent behavioral study that was used to 

demonstrate adaptive biases in long-term memory for object colors (Chanales et al., 

2021). In the prior (and current) study, participants learned associations between faces 

and object images. Critically, the objects contained ‘pairmates’ for which the object 

images were identical except for their color (e.g., a blue backpack and a purple 

backpack), and successful learning required discriminating between these pairmates. In 

the current study, we used a two-day procedure in which participants received extensive 

behavioral training on face-object associations on Day 1 and then returned on Day 2 for 

additional behavioral training, followed by an fMRI session, and finally a behavioral 

color memory test (Figure 3.1). A critical feature of our design is that we held color 

similarity between pairmates constant (24 degrees apart), but we included a competitive 

and non-competitive condition (Figure 3.1b). In the competitive condition, pairmate 

images corresponded to the same object category (e.g., two beanbags of slightly different 

colors). In the non-competitive condition, pairmates corresponded to distinct object 

categories (e.g., a pillow and a ball of slightly different colors). Thus, in both conditions 

the pairmates were 24 degrees apart in color space; but, for the competitive condition,  
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Figure 3.1.  Experimental design and procedure.   
a, Overview of paradigm. On Day 1, participants completed 14 Study and Associative Memory Test 
rounds. During Study, participants were shown object-face pairs and during Associative Memory Test, 
participants were shown an object and selected the corresponding face from a set of four choices. The set of 
four choices included the target face along with the face associated with the object’s pairmate. On Day 2, 
participants completed four additional Study and Associative Memory Test rounds before entering the 
fMRI scanner. During scanning, participants completed a Cued Recall task during which face images were 
shown and participants recalled the corresponding image and indicated, by button press, the vividness of 
their recall. After exiting the scanner, participants completed a Color Memory Test during which a face 
image was shown alongside a greyscale version of the corresponding object. Participants used a continuous 
color wheel to indicate their memory for the object’s color. Finally participants completed 2 more 
Associative Memory Test rounds. b, Sample structure of object stimuli. For both the competitive and non-
competitive conditions, pairmate stimuli were 24 degrees apart in color space. For the competitive 
condition, pairmates were from the same object category; for the non-competitive condition, pairmates 
were from distinct categories. For both conditions, some objects had identical colors (Same-color). fMRI 
pattern similarity for Pairmate and Same-color comparisons were compared against a Baseline comparison 
of stimuli that were from different object categories and 24 degrees apart in color space. c,d, Responses on 
the color memory test were used to categorize memory for each object’s color as being biased toward or 
away from the color of the competing object (c) and to measure the signed distance, in degrees, between 
participants’ responses and the true color of the target (d). 
 

color was the only feature dimension on which the pairmates differed. In contrast, for the 

non-competitive condition, object category also differed between pairmates. Thus, 

although color distance between pairmates was matched across conditions, color 

information was more important in the competitive condition. For the fMRI session, 

participants were shown faces, one at a time, with the only instruction being to retrieve 

corresponding objects as vividly as possible. An important feature of our procedure is 

a b

c
Color wheel (degree)

216 240 264 288 312 336

48 72 96 120 144 168

Co
m

pe
titi

ve
No

n-
co

m
pe

titi
ve

 

Pairmates

Sa
m

e-
co

lor Baseline

Pairmates

Sa
m

e-
co

lor Baseline

0

Away from competitor
+ signed distance  

Distance between 
participant’s response and 
actual color

Towards competitor
- signed distance 

Co
lo

r w
he

el

True color of the target

Response

Color 
wheel

Target

Pairmate

Towardscompetitor

Aw
ay

 fr
om

co
mp

eti
to

r

d
Move the cursor to change the 

color of the item
Recall item

Vivid?

?

0.5s

2.5s

1s   Y/N

Study

behavior scan
Day 1 Day 2

......
behavior behavior

Associative memory test

Cued recall (fMRI) Color memory test

targetother other pairmate’s
face



 

 

 

50 

that participants were not explicitly instructed to retrieve color information during the 

fMRI scans, nor had color memory been tested at any point prior to scanning. Rather, we 

only tested color memory after participants exited the scanner. 

Stimuli 

Participants learned associations between 24 object images and 24 images of 

white male faces. The 24 object images corresponded to 18 distinct object categories 

(e.g., beanbag, hat, umbrella, balloon) and 12 distinct color values. Thus, some of the 24 

object images were from the same object category (e.g., two beanbags) or had the same 

color value. The object images were generated from an image set that allowed for each 

image’s color to be rotated along a 360° color wheel (Brady et al., 2013). To assign 

colors to each object, the 360° color wheel was divided into 15 evenly spaced color 

values (0°, 24°, 48°, etc.). These 15 values were arbitrarily chosen but were fixed across 

participants.  For each participant, 6 consecutive color values were selected (randomly 

positioned among the set of 15 color values) for the competitive condition. For example, 

color values of 48°, 72°, 96°, 120°, 144°, and 168° might be selected for the competitive 

condition (Figure 3.1b). Likewise, 6 consecutive color values were selected for the non-

competitive condition. The 6 values for the non-competitive condition always ‘started’ 

48° after the competitive color values ‘ended.’ For example, if the color values for the 

competitive condition spanned 48° to 168°, then the color values for the non-competitive 

condition would be 216°, 240°, 264°, 288°, 312°, 336° (Figure 3.1b).  

For both conditions, the 6 color values were clustered into 3 sets of consecutive 

color values: e.g., 48° and 72°, 96° and 120°, 144° and 168°. Each of these sets included 

a total of 4 object images (resulting in 12 object images for each condition). For the 
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competitive condition, the four images in each set represented two color values (e.g., 48° 

and 72°) and two object categories (e.g., beanbag and jacket). For example, the set might 

include a 48° beanbag, a 72° beanbag, a 48° jacket and a 72° jacket (Figure 3.1b). Object 

images within each set that were from the same object category (e.g., the 48° beanbag 

and the 72° beanbag) are referred to as ‘pairmates.’ For the non-competitive condition, 

the four images in each set represented two color values (e.g., 216° and 240°) and four 

distinct object categories (Figure 3.1b). Although none of the object images in the non-

competitive condition were from the same object category, the four images in each set 

were also divided into pairmates, with pairmates being images from distinct object 

categories and, as in the competitive condition, with color values 24° apart. For example, 

if a set in the non-competitive condition included a 216° lunchbox, a 216° pillow, a 240° 

hat, and a 240° ball, the 216° lunchbox and the 240° hat might be arbitrarily designated 

as one set of pairmates and the 216° pillow and the 240° ball as the other set of pairmates. 

These non-competitive pairmates functioned as a critical control condition for behavioral 

and fMRI analyses (see fMRI Pattern Similarity Analyses, below). 

The mapping between the 24 object images and the 24 face images was randomly 

determined for each participant. All face and object images were 250 * 250 pixels. 

Pre-scan face-object training 

Participants completed the experiment on two consecutive days (Figure 3.1a). On 

Day 1, participants learned 24 face-object associations across 14 training rounds. Each 

training round consisted of a study phase and an associative memory test phase. During 

study phases, participants were presented with the 24 face-object associations, one 

association at a time, in random order. Each trial started with a fixation cross presented in 
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the center of the screen (1.5 s), followed by the face-object association (3.5 s). Faces 

were presented to the left of the objects. During the associative memory test phases, 

object images were presented at the top of the screen with four face choices below. The 

four face choices always included the target face (i.e., the face associated with the 

presented object image), the pairmate’s face (i.e., the face that was associated with the 

presented object’s pairmate), and two foil faces (associated with non-pairmate objects). 

Participants were asked to select the face that was associated with the presented object. 

After responding, participants received feedbacks indicating whether or not they were 

correct and showing the correct face-object association for 1.5 s. Each trial in the 

associative memory test was self-paced up to a maximum of 8 s. On Day 2, participants 

completed 4 additional training rounds immediately prior to entering the fMRI scanner. 

The procedure was the same as on Day 1.  

Scanned perception and cued recall tasks 

During fMRI scanning, participants completed 6 consecutive rounds of a 

perception task and 6 consecutive rounds of a cued recall task (each round corresponded 

to a separate fMRI scan). The order of the perception and cued recall tasks was 

counterbalanced across participants. In the perception task, each trial presented one of the 

24 object images in the center of the screen for 0.5 s followed by a fixation cross for 3.5 

s. A black cross was embedded within the object images at a random location on 25% of 

trials and participants were instructed to make a button press whenever they detected a 

black cross. In each perception round, each object image was presented twice, in block 

randomized order. Participants were instructed to remain centrally-fixated, on a white 

fixation cross, throughout each perception run. Each perception round contained a 10 s 
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null trial (fixation cross only) at the beginning and end of each scan and 12 null trials (4 s 

each) randomly distributed throughout the run. Here, we do not consider data from the 

perception task because (a) our primary hypotheses related to participants’ memories for 

the object images and (b) subtle color differences between were more to detect in the 

scanner environment.  

In the cued recall task, each trial started with one of the 24 face images presented 

at the center of the screen for 0.5 s, followed by a blank screen for 2.5 s, and then a 

question mark for 1 s. Participants were instructed to recall the object image that was 

associated with the presented face as vividly as possible and to hold the image in mind 

throughout the trial. Participants were instructed to rate the vividness of their memories 

(‘vivid’ or ‘not vivid’) via a button box response when the question mark appeared. The 

question mark was followed by a fixation cross for 2 s before next trial began. Responses 

were recorded during the trial and during the 2 s fixation cross between trials. Together, 

the intertrial interval was 6 s. All face-object associations were tested twice in each 

retrieval round, in block randomized order. Each retrieval round contained a 10 s null 

trial (fixation cross only) at the beginning and end of each scan and 12 null trials (4 s 

each) randomly distributed throughout the run.  

Post-scan behavioral tests 

After participants completed the perception and cued recall tasks, they exited the 

scanner and completed five rounds of the color memory test. During the color memory 

test, each trial began with one of the 24 face images presented on the left side of the 

screen and the corresponding object image presented on the right of the screen. 

Importantly, the object image was initially in grey scale. Participants were instructed to 
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move a cursor along a color wheel (Figure 3.1a, c) to adjust the color of the object to the 

remembered color value. Participants clicked the mouse to record their response and then 

moved on to the next trial. Each face-object association was tested once per round and the 

task was self-paced. After completing the five color memory test rounds, participants 

completed two final rounds of the associative memory test—the same task they 

completed during the training rounds on Day 1 and just prior to fMRI scanning. The sole 

purpose of the post-scan associative memory test was to motivate participants to maintain 

their effort and memory accuracy throughout the fMRI session as the post-scan 

associative memory test was used to determine a monetary bonus for participants (a fact 

which participants were made aware of prior to the fMRI scan). 

Measuring color memory bias 

The post scan color memory test was used to measure participants’ color memory 

for each object image. However, rather than focusing on the accuracy of recall, we were 

critically interested in recall bias. Bias was measured in two ways. The first measure—

mean signed distance—was computed by first averaging the responses across the 5 color 

memory test trials for each object image. The difference between the mean response and 

the actual color value for a given object image reflects the color memory distance for that 

object image. Critically, if the mean response was biased away from the color of the 

pairmate object (Figure 3.1c), the distance measure was positively signed; if the mean 

response was biased toward the color of the pairmate object (Figure 3.1c), the distance 

measure was negatively signed. By averaging the signed distance measure across the 12 

object images within each condition, the mean signed distance was computed for each 

condition (competitive, non-competitive) and for each participant. The second measure—
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percentage of away responses—was computed by ignoring the distance between 

participants’ responses and the actual color values and instead simply computing the 

percentage of responses that were biased away from the color of the pairmate object. It is 

important to note that this measure was computed at the trial level. Thus, for a given 

object image, if a participant recalled the object’s color ‘away from’ the pairmate on 4 

out of the 5 test trials for that object image, the percentage of away responses for that 

object image would be 80%. Although we did not expect (or observe) notable differences 

between the two measures (mean signed distance and percentage of away responses), the 

percentage of away responses addressed the concern that any observed effects for the 

mean signed distance measure were driven by a few extreme responses. 

fMRI data acquisition 

Imaging data were collected on a Siemens 3 T Skyra scanner at the Robert and 

Beverly Lewis Center for NeuroImaging at the University of Oregon. Functional data 

were acquired using a T2*-weighted multiband EPI sequence with whole-brain coverage 

(repetition time = 2 s, echo time = 36 ms, flip angle = 90°, multiband acceleration factor 

= 3, inplane acceleration factor = 2, 72 slices, 1.7 × 1.7 × 1.7 mm voxels) and a 32-

channel head coil. Note that due to an a priori decision to focus on visual and parietal 

cortical areas, we used a high-resolution protocol that fully covered visual/parietal 

regions but only partially covered frontal cortex.  Each perception scan (6 total) consisted 

of 130 total volumes. Each retrieval scan (6 total) consisted of 190 total volumes. Oblique 

axial slices were aligned parallel to the plane defined by the anterior and posterior 

commissures. A whole-brain T1-weighted MPRAGE 3D anatomical volume (1 × 1 × 1 

mm voxels) was also collected. 
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fMRI data preprocessing 

fMRI data preprocessing was performed using fMRIPrep 1.3.1 (Esteban et al., 

2019). The T1-weighted (T1w) image was corrected for intensity non-uniformity with 

N4BiasFieldCorrection (Tustison et al., 2010) and skull-stripped using 

antsBrainExtraction.sh (ANTs 2.2.0) with OASIS30ANTs as the target template. Brain 

surfaces were reconstructed using recon-all from FreeSurfer 6.0.1 (Dale et al., 1999). 

Spatial normalization to the ICBM 152 Nonlinear Asymmetrical template version 2009c 

(Fonov et al., 2009) was performed through nonlinear registration with antsRegistration 

(ANTs 2.2.0). For the functional data, susceptibility distortion corrections were estimated 

using 3dQwarp (Cox & Hyde, 1997). The BOLD reference was then co-registered to the 

T1w reference by bbregister (FreeSurfer) using boundary-based registration with nine 

degrees of freedom (Greve & Fischl, 2009). Head-motion parameters were estimated by 

mcflirt from FSL 5.0.9 (Jenkinson et al., 2002). Slice-time correction was done by 

3dTshift from AFNI 20160207 (Cox & Hyde, 1997). Functional data were smoothed with 

a 1.7 mm FWHM Gaussian kernel and high pass filtered at 0.01Hz. Smoothing and 

filtering were done with the Nipype pipeline tool (Gorgolewski et al., 2011). 

Response estimates were obtained for each trial (one regressor per trial, 4 s 

duration) in each cued recall run using the “least-squares separate” method (Mumford et 

al., 2012). With this method, each item was estimated in a separate GLM as a separate 

regressor while all remaining items were modeled together with another regressor. The 

six movement parameters and framewise displacement were included in each GLM as 

confound regressors. This resulted in t maps that were used for the pattern similarity 

analysis. Given that all analyses averaged data across multiple trials—mitigating the 
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influence of any one trial—we did not perform any data exclusion for outliers at the trial 

level. 

Regions of interest 

fMRI analyses were conducted using a set of visual and parietal regions of 

interest (ROIs) that were identical to those used by Favila, Samide, Sweigart, & Kuhl 

(2018) to measure object and color representations during memory recall. While our 

primary focus was on the parietal ROIs, we anticipated that visual regions might also 

reflect feature-specific information during memory retrieval. For low level visual regions, 

we combined bilateral V1v and V1d as V1 and combined bilateral LO1 and LO2 as LO 

based on Wang, Mruczek, Arcaro, & Kastner (2014). For high level visual regions, we 

generated a VTC ROI by combining bilateral fusiform gyrus, collateral sulcus, and lateral 

occipitotemporal sulcus derived from the output of Freesurfer segmentation routines. For 

lateral parietal cortex, we referenced Yeo et al. (2011)’s 17-network resting state atlas. 

The parietal nodes from Network 12 and 13 (subcomponents of the frontoparietal control 

network) are referred to as dorsal lateral intraparietal sulcus (dLatIPS) and ventral lateral 

intraparietal sulcus (vLatIPS), respectively. For the parietal node of Network 5 (dorsal 

attention network), we separated it along the intraparietal sulcus to create a dorsal region 

we refer to as posterior intraparietal sulcus (pIPS) and a ventral region we refer to as 

ventral IPS (vIPS) (Sestieri et al., 2017). The vertices in lateral occipital cortex were 

eliminated in these two regions. The parietal nodes of Networks 15–17 (subcomponents 

of the default mode network) were combined into a region we refer to as angular gyrus 

(AnG).  
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For post hoc analyses, we generated medial temporal and hippocampus subfield 

ROIs using ASHS (Yushkevich et al., 2015). We selected bilateral CA1, subiculum, 

entorhinal cortex, and parahippocampal cortex. We combined CA2, CA3 and dentate 

gyrus into a single ROI (CA23DG) and combined BA35 and BA36 into a perirhinal 

cortex ROI.  

fMRI Pattern similarity analyses 

Pattern similarity analyses were used to measure the similarity of fMRI activity 

patterns for various pairs of object images during the cued recall task. To calculate 

pattern similarity, we first computed the mean activity pattern for each of the 24 recalled 

objects by averaging t maps for odd runs and even runs separately. Pearson correlations 

were then computed between the mean t map of odd runs and even runs. All the 

correlations were z-transformed (Fisher’s z) before subsequent analyses. All analyses 

were performed in the participant's native T1w space and were done separately for each 

ROI. Pattern similarity analyses focused on three specific correlations within each ‘set’ of 

4 object images (see Figure 3.1b and Stimuli for explanation of ‘sets’): (1) ‘Pairmate 

correlations’ (see Stimuli for definition of pairmates), (2) ‘Same-color correlations,’ 

which refer to correlations between object images from different object categories but 

with identical color values (Figure 3.1b), and (3) ‘Baseline correlations,’ which refer to 

object images from different object categories and different color values (24 degrees 

apart; Figure 3.1b). Again, it is important to emphasize that all pattern similarity analyses 

were performed within the sets of 4 object images and, critically, the same correlations 

were applied for the competitive and non-competitive conditions. 
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Neural representation of color information 

To test whether representation of color information was stronger in the 

competitive condition than the non-competitive condition, we first obtained (for each 

condition, ROI, and participant) the mean ‘Same-color correlation’ and the mean 

‘Baseline correlation.’ Both of these correlations reflect correlations between object 

images from different object categories (Figure 3.1b), but the same-color correlation 

reflects images with identical color values whereas the baseline correlation reflects 

images with a 24° difference in color. Thus, the difference between these measures 

(same-color – baseline) isolates color-related similarity. Of critical interest was whether 

this color-related similarity was stronger in the competitive condition than the non-

competitive condition. Critically, color similarity was objectively identical across 

conditions, but we predicted stronger color representation in the competitive condition 

owing to its greater diagnostic value in the competitive condition. It is important to note 

that the inclusion of a separate baseline correlation for each condition (competitive, non-

competitive) controlled for potential global similarity differences between conditions 

(i.e., that correlations among all pairs of object images might be higher in one condition 

vs. the other).  

Neural similarity between pairmates 

To test whether similarity between pairmates was stronger in the competitive 

condition than the non-competitive condition, we first obtained (for each condition, ROI, 

and participant) the mean ‘Pairmate correlation’ and the mean ‘Baseline correlation.’ For 

the competitive condition, pairmate correlations reflect object images from the same 

object category but with a 24° difference in color (Figure 3.1b). For the non-competitive 
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condition, pairmate correlations reflect object images from different object categories, 

again with a 24° difference in color (Figure 3.1b). Thus, pairmate similarity was 

objectively greater in the competitive condition than the non-competitive condition. For 

both conditions, the baseline correlations reflect object images from different object 

categories and with a 24° difference in color. Thus, the difference between these 

measures (pairmate – baseline) was intended to isolate object-related similarity 

(specifically for the competitive condition). As with the color information analysis, the 

condition-specific baseline correlations controlled for potential global similarity 

differences between conditions. 

Neural measures of pairmate similarity predict color memory repulsion 

To test whether similarity between vIPS representations of pairmates during 

competitive recall predicted the degree to which there was repulsion of color memories 

(as measured in the post-scan color memory test), we first computed the mean signed 

color memory distance for the two objects in each set of pairmates. This yielded a single 

value representing the distance between a given set of pairmates, with greater distance 

reflecting greater repulsion. Next, for vIPS we computed dissimilarity between each set 

of pairmates, as defined by: 1 – the Pairmate correlation. (Note: for this analysis we used 

dissimilarity, as opposed to similarity, simply for ease of interpretation). Thus, for each 

participant and for each condition (competitive, non-competitive), this resulted in 6 

values representing color memory distance between each set of pairmates and 6 values 

representing vIPS dissimilarity between each set of pairmates. We then performed a 

Spearman correlation between these two measures. For each condition, one-sample t-tests 

were performed on the participants’ z-transformed Spearman’s rs values to test whether 
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the mean correlation between color memory distance and vIPS dissimilarity differed from 

0. For comparison, similar analyses were also performed for other ROIs (Table 1). 

 

Table 3.1. Summary of key statistical analyses.  
Color representation analyses refer to paired-samples t-tests comparing color similarity effects (see Methods) 
for the competitive vs. non-competitive conditions. Pairmate similarity analyses refer to paired-samples t-
tests comparing pairmate similarity effects (see Methods) for the competitive vs. non-competitive conditions. 
The relation to mean signed distance refers to one-sample t-tests comparing z-transformed correlations 
between fMRI pairmate dissimilarity and mean signed color memory distance to a test statistic of 0 (no 
relationship). Results from individual visual and parietal ROIs are presented in separate rows. Note: * p < .05, 
uncorrected; ** p < .05, Bonferroni corrected; *** p < .01, Bonferroni corrected. 
 

ROI 
Color representation  Pairmate similarity   Relation to mean signed distance 

 Competitive Non-competitive 
t28 p  t28 p  t28 p t28 p 

V1 1.22 0.232  0.89 0.382  0.82 0.417 -0.34 0.734 
LO 2.27 0.031*  1.71 0.098  1.34 0.190 -0.75 0.458 
VTC 1.16 0.257  0.45 0.653  2.13 0.042* 0.59 0.558 
pIPS 1.85 0.075  0.84 0.409  3.08 0.005** 1.08 0.289 
dLatIPS 1.68 0.104  0.73 0.472  1.50 0.145 0.65 0.520 
vLatIPS 1.69 0.101  0.52 0.609  2.92 0.007** -1.89 0.069 
AnG 0.57 0.573  0.36 0.720  0.75 0.462 -0.72 0.475 

vIPS 2.67 0.012*  3.12 0.004**   3.75 0.0008*** 0.78 0.443 
 

 

To better visualize the relationship between color memory distance and vIPS 

dissimilarity, for each participant the 6 pairmates in the competitive condition were 

divided into three bins (2 pairmates per bin) based on vIPS pairmate dissimilarity (low, 

medium, high). We then computed the mean signed color memory distance (from the 

post-scan color memory test) and the mean associative memory accuracy (from the pre-

scan associative memory test) for each of these bins. One-way ANOVA was used to test 

whether mean signed distance and/or mean associative memory accuracy varied as a 

function of vIPS dissimilarity bin. Finally, we performed a multilevel mediation analysis 
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to test whether color memory mediated the relationship between vIPS pairmate 

dissimilarity and associative memory accuracy. This analysis was performed by 

obtaining, for each participant, the mean color memory distance, vIPS dissimilarity, and 

associative memory performance for each of the 6 pairmates in each condition. Mediation 

analyses included a random intercept for each participant, but random slopes were not 

included due to the small number of data points per condition/participant. 

Statistical analysis 

Statistical analyses were performed using R version 3.6.3. All t-tests were two-

tailed, with α = 0.05. All repeated measures ANOVAs were computed with the afex 

package using Type III sums of squares. Effect sizes for t-tests were estimated using the 

effsize package. Multilevel mediation analyses were computed using the mediation 

package. Multilevel models were built using the lme4 package. All error bars in the 

figures represent S.E.M. 

Results 

Associative Memory Performance 

Participants completed three separate sessions that tested memory for object-face 

associations (14 rounds on Day 1; 4 rounds before scanning on Day 2; 2 rounds after 

scanning on Day 2; Figure 3.1a). Participants showed improved accuracy across test 

rounds in the Day 1 session, from a mean of 56.9% (SD = 12.8%) on round 1 to a mean 

of 95.5% (SD = 4.8%) on round 14 (main effect of test round: F5.56, 155.73 = 91.29, p < 

0.0001, h2 = 0.55). Accuracy did not vary by test round for either of the Day 2 sessions 

(Day 2 pre-scan: F2.77, 77.63 = 1.63, p = 0.194, h2 = 0.01; Day 2 post-scan: F1, 28 = 0.14, p = 

0.713, h2 = 0.0009). Critically, accuracy was lower in the competitive condition than the 
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non-competitive condition for each of the sessions (Day 1: F1, 28 = 115.89, p < 0.0001, h2 

= 0.29; Day 2 pre-scan: F1, 28 = 21.8,1 p < 0.0001, h2 = 0.15; Day 2 post-scan:  F1, 28  = 

22.25, p < 0.0001, h2 = 0.20; Figure 3.2a). For subsequent analyses, we focused on 

associative memory performance from the Day 2 pre-scan session (an a priori decision; 

see Methods). Notably, for the Day 2 pre-scan session, lower accuracy in the competitive 

condition (M = 93.2%, SD = 6.9%) than the non-competitive condition (M = 98.9%, SD 

= 2.1%) was driven by an increased rate of selecting faces that were associated with the 

pairmate image (competitive condition: M = 6.0%, SD = 6.6%; non-competitive 

condition: M = 0.2%, SD = 0.6%; t28= 4.74, p < 0.0001, 95% CI = [0.03 0.08], Cohen’s d 

= 1.16, paired t-test; Figure 3.2a). The rate of other errors did not differ in the competitive 

vs. non-competitive conditions (competitive: M = 0.8%, SD = 1.4%; non-competitive: M 

= 0.98%, SD = 1.6%; t28 = -0.18, p = 0.861, 95% CI = [-0.01 0.01], Cohen’s d = -0.04,  

paired t-test). Thus, as intended, the competitive condition specifically increased 

interference between pairmate images.  

Color Memory Bias 

Immediately after the fMRI session, participants completed a color memory test. 

Color memory was indexed in two ways: (1) using a continuous, signed measure of 

distance, in degrees, between the reported and actual color; positive values indicate a bias 

away from the competing memory and negative values indicate a bias toward the 

competing memory, and (2) using a categorical measure of the percentage of responses 

that were biased away from the competing memory (see Methods for details of each 

measure). We refer to these two measures as the signed distance and percentage of away 

responses, respectively. 
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Figure 3.2.  Behavioral results.  
a, Associative memory performance across the experiment. The overall error rate (pairmate error + other 
error) was higher in the competitive condition than the non-competitive condition for each of the 
associative memory test sessions (Day 1, Day 2 pre-scan, Day 2 post-scan (not shown); all p’s < 0.0001). 
Subsequent analyses focused on associative memory performance from the Day 2 pre-scan session. For the 
Day 2 pre-scan session, participants were significantly more likely to select faces that were associated with 
the pairmate image (pairmate error) in the competitive condition (M = 6.0%, SD = 6.6%) compared to the 
non-competitive condition (M = 0.2%, SD = 0.6%; p < 0.0001), confirming that similarity between 
pairmates was a source of interference. b, Signed distance of responses in the color memory test. For the 
competitive condition, mean signed distance was significantly greater than 0 (p = 0.000003), reflecting a 
bias away from the color of the pairmate object (repulsion). Signed distance did not differ from 0 in the 
non-competitive condition (p = 0.771). The difference between the competitive and non-competitive 
conditions was also significant (p = 0.007). c, Percentage of away responses in the color memory test. The 
percentage of color memory responses ‘away from’ the color of the pairmate object was significantly 
greater than 50% for the competitive condition (p = 0.0001), but not for the non-competitive condition (p = 
0.189). The difference between the competitive and non-competitive conditions was also significant (p = 
0.001). d, Relationship between associative memory accuracy and mean signed color memory distance. For 
the competitive condition, participants with greater mean signed color memory distance (greater repulsion) 
exhibited better associative memory accuracy [r = 0.50, p = 0.007, one outlier (red dot) excluded for 
associative memory performance < 3 SD below mean]. Notes: colored dots reflect data from individual 
participants. Error bars reflect +/- S.E.M.; *** p < 0.001, ** p < 0.01   
 

For the competitive condition, mean signed distance was significantly greater than 

0 (5.09 ± 4.69, mean ± SD; t28 = 5.84, p = 0.000003, 95% CI = [3.30 6.87], Cohen’s d = 

1.08, one-sample t-test; Figure 3.2b), indicating that participants’ color memory was 

systematically biased away from the color of the pairmate. In contrast, for the non-

competitive condition—where the only difference was that pairmates were not from the 

same object category—signed distance did not differ from 0 (-0.39 ± 7.08; t28 = -0.29, p = 

0.771, 95% CI = [-3.08 2.31], Cohen’s d = -0.05, one-sample t-test). Signed distance was 

significantly greater (i.e., a stronger bias away from the pairmate) in the competitive 

condition compared to the non-competitive condition (t28 = 2.90, p = 0.007, 95% CI = 
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[1.61 9.34], Cohen’s d = 0.92, paired t-test). These data clearly demonstrate that 

similarity between images triggered the color memory bias. 

The pattern of data was identical when considering the percentage of away 

responses. Namely, the percentage of away responses was significantly greater than 50% 

for the competitive condition (61.4 ± 3.6%; t28 = 4.49, p = 0.0001, 95% CI = [56.2% 

66.6%], Cohen’s d = 0.83, one-sample t-test; Figure 3.2c), but not for the non-

competitive condition (46.5 ± 14%; t28 = -1.35, p = 0.189, 95% CI = [41.2% 51.8%], 

Cohen’s d = -0.25, one-sample t-test). The difference between the two conditions was 

also significant (t28 = 3.58, p = 0.001, 95% CI = [0.06 0.23], Cohen’s d = 1.08, paired t-

test). While the percentage of away responses does not contain information about the 

magnitude of the bias in color memory, it rules out the possibility that the effects 

observed with the signed distance measure were driven by a minority of trials with very 

high bias. 

Relationship between associative memory and color memory bias 

A key component of our theoretical framework is that exaggerating the color 

distance (in memory) between similar objects plays an adaptive role in reducing memory 

interference. To test this idea, we correlated each participant’s associative memory 

performance (from the Day 2 pre-scan session) with their color memory performance. 

For the competitive condition, mean associative memory performance was positively 

correlated with mean signed distance (r = 0.50, t26 = 2.91, p = 0.007, 95% CI = [0.15 

0.73], one outlier excluded for associative memory performance < 3 SD below mean; 

Figure 3.2d), consistent with the idea that stronger color memory repulsion (i.e., a bias in 

color memory away from the pairmate) supports lower associative memory interference. 
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For the non-competitive condition, this correlation was not significant (r = -0.31 t26 = -

1.63, p = 0.114, 95% CI = [-0.61 0.08], one outlier excluded for signed distance > 3 SD 

above the mean). Thus, a bias in color memory away from the pairmate was not 

beneficial if the pairmate was not similar to (competitive with) the target. An identical 

pattern of data was observed when considering the percentage of away responses as an 

index of color memory. Namely, for the competitive condition there was a positive 

correlation between associative memory performance and the mean percentage of away 

responses (r = 0.42, t26 = 2.39, p = 0.025, 95% CI = [0.06 0.69], one outlier excluded for 

associative memory performance < 3 SD below mean) and no significant correlation for 

the non-competitive condition (r = -0.37, t27 = -2.05, p = 0.050, 95% CI = [-0.65 -0.002]).  

Neural representation of color information during recall 

The key design feature of the competitive condition was that color information 

was critical for discriminating between pairmates. Specifically, in the competitive 

condition the only difference between pairmates was a 24-degree color difference. This 

contrasts with the non-competitive condition where pairmates differed in color (again 24 

degrees) and object category. Because color information was therefore more important in 

the competitive condition, we predicted that representation of color information during 

the scanned recall trials would be relatively stronger in the competitive condition than the 

non-competitive condition. Notably, participants’ only instruction on the recall trials was 

to bring each stimulus to mind as vividly as possible (mean percentage of vivid responses 

= 95.42%, SD = 5.43%). Participants were not explicitly oriented to color information nor 

had participants’ memory for color been tested in any way to that point in the experiment. 
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To test for representation of color information, we computed the mean correlation 

of activity patterns evoked during recall of non-pairmate stimuli that shared an identical 

color value (e.g., red bean bag and red jacket; ‘same-color’ comparison, see Figure 3.1b) 

and subtracted from this value the mean correlation between non-pairmate stimuli that 

were 24 degrees apart in color space (e.g., red bean bag and brown jacket; ‘baseline’ 

comparison, see Figure 3.1b). Thus, the difference between these two measures (same-

color – baseline) provided an index of color information. We then compared this index 

across the competitive and non-competitive trials. Critically, in terms of physical 

properties of the stimuli, the comparison between the competitive and non-competitive 

trials was perfectly matched: there was no objectively greater similarity between the 

stimuli included in this analysis in the competitive condition compared to the non-

competitive condition—there was only a difference in the importance of the information. 

For this and subsequent fMRI analyses we used a set of visual and parietal regions 

of interest (ROIs) previously described in Favila et al. (2018) (see Methods; Figure 3.3a).  

Critically, these ROIs were previously shown to contain color and object feature 

representations during a memory recall task very similar to the current study. The set of 

ROIs included three visual ROIs (V1, LO, VTC) and five lateral parietal ROIs (pIPS, 

dLatIPS, vLatIPS, AnG, vIPS). 

An ANOVA with factors of condition (competitive, non-competitive) and ROI 

(all eight ROIs) revealed a significant main effect of condition, with relatively stronger 

color information in the competitive condition than the non-competitive condition (F1, 28 

= 5.03, p = 0.033, h2 = 0.04). Neither the main effect of ROI nor the condition x ROI 

interaction were significant (ROI: F4.55, 127.36 = 0.12, p = 0.984, h2 < 0.001; condition x  
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Figure 3.3.  Neural feature representations as a function of memory competition.  
a, Anatomical ROIs visualized on the Freesurfer average cortical surface. b, Color information as a function 
of memory competition. Color information was defined as the fMRI pattern similarity between pairs of same-
color objects relative to pattern similarity between baseline pairs of objects (see Figure 3.1b). Color 
information was significantly stronger in the competitive than non-competitive condition (i.e., values greater 
than 0) across the set of ROIs as a whole and in LO and vIPS individually (p’s < .05). c, Pairmate similarity 
as a function of memory competition. Pairmate similarity was defined as the fMRI pattern similarity between 
pairmate objects relative to pattern similarity between baseline pairs of objects. Only vIPS showed 
significantly greater pairmate similarity in the competitive than non-competitive conditions (p = 0.004). Error 
bars reflect +/- S.E.M.; ** p < 0.01, * p < 0.05  
 

ROI: F4.10, 114.92 = 0.78, p = 0.542, h2 = 0.008). Considering individual ROIs, only LO and 

vIPS exhibited significantly stronger color representation in the competitive than non-

competitive condition (LO: t28 = 2.27, p = 0.031, 95% CI = [0.002 0.03], Cohen’s d = 

0.69; vIPS: t28 = 2.67, p = 0.012, 95% CI = [0.004 0.03], Cohen’s d = 0.63; paired t-tests, 
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uncorrected; Figure 3.3b). Thus, as predicted, the greater relevance of color information 

in the competitive condition resulted in stronger representation of color information 

during recall, despite the fact that participants had not been explicitly oriented to color 

information in any way by this point of the experiment (the critical behavioral test of 

color memory occurred after fMRI scanning). 

Post-hoc analyses of medial temporal and hippocampal ROIs (see Methods) did 

not reveal stronger color representation in the competitive than non-competitive condition 

for any of the ROIs (|t|’s < 1.66, p’s > 0.109).  

Neural similarity between pairmates during recall 

We next tested whether neural similarity between pairmate stimuli was greater in 

the competitive than non-competitive condition. In terms of physical stimulus properties, 

pairmates were, of course, more similar in the competitive condition (e.g., two bean bags 

24 degrees apart in color space) than in the non-competitive condition (e.g., a pillow and 

a ball 24 degrees apart in color space). Thus, based on stimulus properties alone, fMRI 

pattern similarity between pairmates should be greater in the competitive condition than 

the non-competitive condition. To measure pairmate similarity we computed the mean 

correlation between pairmate stimuli (‘pairmate’ comparison, see Figure 3.1b) and 

subtracted from this value the mean correlation between non-pairmate stimuli that were 

also 24 degrees apart in color space (‘baseline’ comparison, see Figure 3.1b). The 

difference between these two values (pairmate – baseline) yielded an index of pairmate 

similarity which was then compared across the competitive and non-competitive 

conditions. 



 

 

 

70 

Although pairmate similarity was numerically greater in the competitive than non-

competitive condition across each of the eight ROIs, an ANOVA with factors of ROI and 

condition did not reveal a significant main effect of condition (F1, 28 = 2.30, p = 0.140, h2 

= 0.016). The main effect of ROI and the condition x ROI interaction were also not 

significant (ROI: F4.57, 127.90 = 0.68, p = 0.626, h2 = 0.006; condition x ROI: F3.82, 106.85 = 

0.58, p = 0.670, h2 = 0.006). However, there was a significant effect of condition, 

corrected for multiple comparisons (Bonferroni corrected), in vIPS, with greater pattern 

similarity in the competitive than non-competitive conditions (t28 = 3.12, p = 0.004, 95% 

CI = [0.005 0.02], Cohen’s d = 0.70, paired t-test; Figure 3.3c). Notably, as described 

above (Figure 3.3b), vIPS also exhibited significantly stronger color representation in the 

competitive than non-competitive condition. Moreover, vIPS also exhibited significant 

object and color representations during a recall task in a prior study (Favila et al., 2018). 

Thus, across two independent studies, we have consistently observed feature 

representations in this ROI during memory recall. 

Post-hoc analyses of medial temporal and hippocampal ROIs (see Methods) did 

not reveal greater pairmate similarity in the competitive than non-competitive condition 

for any of the ROIs (|t|’s < 1.42, p’s > 0.168).  

Neural measures of pairmate similarity predict color memory bias 

Results from the preceding analysis revealed greater similarity in vIPS 

representations of pairmates in the competitive condition than the non-competitive 

condition. While this measure of neural similarity reflects the greater physical similarity 

between pairmates in the competitive condition than the non-competitive condition, the 

key finding from our behavioral results is that there is an adaptive benefit to reducing 
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similarity (in memory) between pairmates in the competitive condition. This raises the 

question of whether similarity between vIPS representations of pairmates during 

competitive recall predicted the degree to which there was repulsion of color memories 

(as measured in the post-scan color memory test). To test this, for each condition 

(competitive, non-competitive) we correlated fMRI measures of pairmate dissimilarity (1 

– pattern similarity) with behavioral measures of mean signed color memory distance. 

This analysis was performed within participant (i.e., at the level of individual pairmates). 

Given that each condition only corresponded to 6 pairmates per participant, Spearman 

rank correlation was used in order to reduce the influence of any one data point. 

Correlation coefficients were then z-transformed, yielding a single z-transformed value 

for each condition and participant. 

For the competitive condition, the mean correlation between pairmate 

dissimilarity in vIPS during recall and mean signed color memory distance was 

significantly positive (vIPS: t28 = 3.75, p = 0.0008, 95% CI = [0.34 1.14], Cohen’s d = 

0.70, one-sample t-test; Figure 3.4a). In other words, the more dissimilar vIPS activity 

patterns were when recalling pairmates, the greater the color memory repulsion effect for 

those pairmates. There was no correlation between pairmate dissimilarity in vIPS and  
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Figure 3.4.  Neural measures of pairmate (dis)similarity predict color memory bias in vIPS.  
a, Mean correlation between vIPS pairmate dissimilarity during recall and mean signed color memory 
distance. Correlations were performed within participant and correlation coefficients were z-transformed. For 
the competitive condition, the mean correlation was significantly positive (p = 0.004), indicating that greater 
pairmate dissimilarity in vIPS was associated with a stronger bias to remember pairmates’ colors as away 
from each other. There was no correlation between vIPS pairmate dissimilarity and signed color memory 
distance for the non-competitive condition (p = 0.566). b, Relationship between vIPS pairmate dissimilarity 
(binned into low, medium, high groups) and mean signed color memory distance (purple) and associative 
memory accuracy (teal). Mean signed color memory distance and associative memory accuracy each 
significantly varied as a function of vIPS dissimilarity (p’s < .05), with greater vIPS dissimilarity associated 
with greater mean signed color memory distance and higher associative memory accuracy. *** p < 0.001, * 
p < 0.05 
 
signed color memory distance for the non-competitive condition (t28 = 0.78, p = 0.443, 

95% CI = [-0.22 0.49], Cohen’s d = 0.14; Figure 3.4a) and the difference between the 

competitive and non-competitive conditions was significant (t28 = 2.39, p = 0.024, 95% 

CI = [0.09 1.12], Cohen’s d = 0.61, paired t-test). Significant positive relationships were 

also observed when pairmate dissimilarity was measured from pIPS, VTC, and 

vLatIPS—again, only for the competitive condition (see table 1). 

As a complementary analysis—and to better visualize the results in vIPS—we 

binned pairmates, for each participant, based on vIPS dissimilarity (competitive condition 
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only). We generated three bins per participant: low, medium, and high pairmate 

dissimilarity. We then computed the mean signed color memory distance for each of  

these bins. A one-way ANOVA revealed a significant main effect of pairmate 

dissimilarity in vIPS on mean signed color memory distance (Figure 3.4b; F1.75, 48.90 = 

4.95, p = 0.014, h2 = 0.062), with greater dissimilarity between vIPS representations 

associated with greater distance in remembered color values (i.e., greater repulsion). We 

also computed mean accuracy on the associative memory test for these same vIPS 

dissimilarity bins in order to more directly test whether vIPS dissimilarity was associated 

with lower interference. Indeed, we again found a significant main effect of bin (F1.78, 49.87 

= 4.52, p = 0.019, h2 = 0.068), with behavioral accuracy increasing as a function of 

pairmate dissimilarity in vIPS. Finally, a mediation analysis performed at the level of 

individual pairmates (see Methods) revealed that the relationship between vIPS 

dissimilarity and associative memory accuracy was significantly mediated by signed 

color memory distance (β = 0.12, CI = [0.02 0.23], p = 0.016, 1000 bootstrapped 

samples), consistent with the interpretation that vIPS dissimilarity reflected the degree of 

color memory repulsion, which in turn was associated with better associative memory 

accuracy (lower interference). 

Discussion 

Here, we show that competition between similar memories triggers biases in their 

neural representations and corresponding behavioral expressions. Specifically, we 

demonstrate that subtle, diagnostic differences between events were exaggerated in long-

term memory and that this exaggeration reduced interference. Critically, these behavioral 
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expressions of memory distortion were predicted by adaptive, feature-specific changes to 

memory representations in parietal cortex. 

Our behavioral paradigm was designed to isolate the effect that competition had 

on color memory. Specifically, the competitive and non-competitive conditions had 

perfectly matched structures, with equivalent color distances between pairmates in both 

conditions (Figure 3.1b). The only difference was that pairmates in the competitive 

condition were from the same object category. As intended, this increased the number of 

interference-related errors, particularly during early stages of learning (Figure 3.2a). The 

increase in interference-related errors is consistent with a long history of behavioral 

studies of memory interference (Anderson & Spellman, 1995; Mensink & Raaijmakers, 

1988; Wixted, 2004). Our critical question, however, was whether competition distorted 

memory for object features that were otherwise successfully remembered. Results from 

the color memory post-test revealed a robust bias in color memory in the competitive 

condition—that is, participants exaggerated the distance between pairmates—but no 

systematic bias in the non-competitive condition. We refer to the bias in the competitive 

condition as a repulsion effect in order to emphasize that the bias was triggered by the 

representational proximity of competing memories (Bae & Luck, 2017; Chanales et al., 

n.d., 2017; Golomb, 2015), just as spatial proximity of like-poled magnets triggers 

magnetic repulsion. 

It is important to emphasize that the repulsion effect is distinct from—in fact, 

opposite to—an interference effect. That is, interference-related errors should lead 

participants to occasionally recall the color of the competing object—an error that would 

produce a bias in color memory toward the pairmate (Figure 3.1c, d). Here, we did not 
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test color memory until the very end of the experiment, so as to avoid explicitly orienting 

participants to color information prior to (or during) the fMRI session, but our 

speculation is that the repulsion effect only emerged after extensive practice and as 

interference errors subsided (Chanales et al., 2021). In this sense, the repulsion effect can 

be thought of as an aftereffect of initial memory interference. Although repulsion reflects 

a form of memory error, our findings indicate that it is an adaptive error: participants who 

exhibited a stronger repulsion effect also exhibited fewer interference-related errors 

(Figure 3.2d). To the extent that objective similarity between stimuli is a root cause of 

memory interference (Osgood, 1949), then exaggerating the difference between stimuli in 

memory is a potentially powerful means for reducing interference (Chanales et al., 2021; 

Favila et al., 2016; Hulbert & Norman, 2015). 

Our fMRI analyses, which measured neural activity patterns as participants 

recalled object images, provided a unique means for covertly probing the qualities of 

participants’ memories. These analyses revealed two forms of adaptive memory 

representations in parietal cortex. First, despite the fact that participants were not 

instructed to think about or report objects’ colors during these recall trials, we observed 

stronger color information—across the full set of visual and parietal ROIs, and in vIPS 

specifically—during competitive than non-competitive recall trials. The stronger 

representation of color information during competitive trials can be viewed as an adaptive 

response to competition in that color information was the only (or diagnostic) feature 

dimension for discriminating pairmates in the competitive condition.  

Second, although pairmate similarity in vIPS was stronger during competitive 

than non-competitive recall trials (indicating that vIPS was sensitive to object similarity; 
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Figure 3.3c), we found that greater dissimilarity between vIPS pairmate representations 

during competitive recall trials was associated with greater color memory repulsion and 

less memory interference. In other words, minimizing the overlap of neural 

representations of pairmates was an adaptive response to competition. This relationship 

was observed within participants, at the level of individual pairmates, but it is important 

to emphasize that these measures were temporally offset: vIPS pattern similarity was 

measured during recall trials in the scanner (with the only instruction being to recall 

objects as vividly as possible) whereas behavioral expressions of color memory were 

only tested after scanning was completed. This again makes the point that color 

information—in this case the subtle difference in pairmate colors—was a salient 

component of activity patterns in vIPS during competitive recall.  

Importantly, when our two main fMRI findings are taken together, they indicate 

that an adaptive response to competition involved an increase in similarity between 

stimuli that shared a diagnostic feature value (i.e., objects of the same color) but a 

decrease in similarity between stimuli that had subtly different values for a diagnostic 

feature (i.e., pairmates, which had slightly different colors). This indicates that avoiding 

memory interference does not necessarily require a global reduction in similarity to all 

other memories (LaRocque et al., 2013), but instead may be accomplished by more 

targeted changes in representational structure that emphasize relevant similarities as well 

as important differences between events that are stored in memory. Critically, this idea is 

distinct from—if not fundamentally incompatible with—the traditional, and dominant 

view that interference is avoided through the orthogonalization of memory 

representations (Colgin et al., 2008; Yassa & Stark, 2011). Specifically, whereas 
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orthogonalization emphasizes an initial encoding of new memories as independent from 

existing memories, our findings instead emphasize that the representation of a given 

memory is highly dependent on representations of other memories (Hulbert & Norman, 

2015). 

Our fMRI findings also add to a growing body of evidence that implicates parietal 

cortex in actively representing content during memory retrieval (Kuhl & Chun, 2014; Lee 

et al., 2019; Lee & Kuhl, 2016; Rugg & King, 2018; Sestieri et al., 2017). Of most direct 

relevance, in a recent study we found that vIPS (a ventral subregion of parietal cortex) 

actively represents color and object category information during memory recall (Favila et 

al., 2018). However, this prior study focused on decoding the objective properties of 

recalled stimuli and did not test whether competition influenced or distorted these 

representations, nor did it establish a link between vIPS representations and behavioral 

expressions of memory. The current findings provide unique evidence that 

representations within this same vIPS subregion reflect subtle distortions in how events 

are remembered that are dissociable from the objective properties of the event. More 

generally, our findings highlight the behavioral relevance and detailed nature of memory 

representations in parietal cortex. 

While our findings provide strong evidence that representations in parietal cortex 

reflect the influence that competition had on memory representations, it is not necessarily 

the case that parietal cortex was the source of this influence. Rather, competition between 

memories is thought to induce targeted plasticity in the hippocampus (Norman et al., 

2007; Ritvo et al., 2019). In fact, hippocampal representations have been shown to 

specifically exaggerate differences between highly similar stimuli (Ballard et al., 2019; 
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Chanales et al., 2017; Dimsdale-Zucker et al., 2018; Favila et al., 2016; Hulbert & 

Norman, 2015; Schapiro et al., 2012; Schlichting et al., 2015). However, these 

exaggerations in hippocampal activity patterns have generally been observed during 

memory encoding or perception (Ballard et al., 2019; Chanales et al., 2017; Dimsdale-

Zucker et al., 2018; Favila et al., 2016; Hulbert & Norman, 2015; Schapiro et al., 2012; 

Schlichting et al., 2015), as opposed to memory recall, and they have not been translated 

to explicit feature spaces. Indeed, attempts to translate hippocampal activity patterns to 

explicit feature dimensions or categories have tended to be unsuccessful (LaRocque et al., 

2013; Liang et al., 2013). In post hoc analyses, we did not find any evidence that 

competition influenced feature representations in the hippocampus or medial temporal 

lobe ROIs. That said, one notable aspect of our study is that each object was retrieved 

from memory many times before fMRI scanning began. Given that repeated retrieval has 

specifically been shown to hasten the transfer of representations to parietal cortex (Brodt 

et al., 2016, 2018), this raises the question of whether the observed findings in parietal 

cortex were dependent on repeated retrieval. For example, it is possible that competition 

induces exaggerated representations that are initially expressed in the hippocampus but 

ultimately transformed, via retrieval, into stable representations in parietal cortex (Favila 

et al., 2020). While the current study cannot address this question, it represents an 

interesting avenue for future research. 

In summary, our findings provide unique evidence that memory-based 

representations in parietal cortex exhibit adaptive, feature-specific changes in response to 

competition and that these changes in parietal representations predict distortions in 

behavioral expressions of memory. More generally, our findings provide unique evidence 
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in support of the perspective that memory distortions are an adaptive component of the 

memory system (Schacter et al., 2011). 
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CHAPTER IV 

GENERAL DISCUSSION 

The lateral parietal cortex (LPC) was initially studied in the context of attentional 

and spatial cognition (Culham & Kanwisher, 2001). Nevertheless, more recent research 

has stressed LPC’s contribution to episodic memory (Buckner & Wheeler, 2001; Cabeza 

et al., 2008; Wagner et al., 2005). Specifically, LPC univariate activation profiles have 

been observed to relate to episodic memory encoding and retrieval success (Hutchinson 

et al., 2009; Wagner et al., 2005) and multivoxel activity patterns in LPC have been 

suggested to represent memory contents (Bird et al., 2015; Buchsbaum et al., 2012; Kuhl 

& Chun, 2014; Polyn et al., 2005; St-Laurent et al., 2015). In this dissertation, I applied a 

variety of fMRI data analyses to better understand the nature of content representations in 

LPC. Collectively, across a set of two fMRI experiments, I compared content 

representations and their functional relevance in different subregions of LPC; I explored 

different ways LPC content representations can contribute to behavioral success; and I 

compared functional significances between LPC and other brain regions in content 

representation. In the following sections, I discuss these findings in turn.  

Functional Heterogeneity of LPC during Content Representation 

Research from the past suggests that the dorsal and ventral LPC contribute to 

memory processes differentially. Specifically, as part of the dorsal attention network 

(DAN; Corbetta et al., 2008; Corbetta & Shulman, 2002), the dorsal LPC univariate 

activities track top-down attentional efforts during a memory process, such as allocating 

attention during memory encoding (i.e., positive subsequent memory effect; Uncapher & 

Wagner, 2009). On the other hand, as part of the default mode network (DMN; Raichle et 
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al., 2001), the ventral LPC univariate activities track bottom-up salience-driven memory 

processes, such as retrieving information about “remembered” items (Montaldi et al., 

2006; Sharot et al., 2004; Wheeler & Buckner, 2004; Woodruff et al., 2005). Although 

this attention-to-memory account (Cabeza, 2008; Ciaramelli et al., 2017) of LPC’s 

contribution to memory processes has been well-explored in terms of univariate 

activation, it remains unknown whether the functional heterogeneity between dorsal vs. 

ventral LPC is retained during multivariate, content representation within the LPC. In 

other words, it is unclear whether memory content representation in the dorsal and ventral 

LPC contributes to the memory processes differently.  

In a set of two experiments, I examined LPC content representation that 

contributes to recognition memory and interference resolution. Notably, with our 

experimental design, successful recognition memory relies on accurate neural 

reinstatement of content information, whereas resolving memory interference relies on 

goal-related adaptive content representation shifts. Consistent with the attention-to-

memory account, I found a double dissociation effect between dorsal and ventral LPC in 

contributing to attention- and memory-related processes. Specifically, results from 

chapter II suggest that the accuracy of content representations in ventral, but not dorsal 

LPC, determines the subsequent success in recognizing an encountered item. On the other 

hand, results from chapter III suggest that the content representations in dorsal (vIPS), 

but not ventral LPC, can be adaptively distorted to achieve specific attentional goals.  

These results suggest that the functional heterogeneity between dorsal and ventral 

LPC does not only exist in their univariate activity profiles, but also demonstrate how 

they represent memory contents. Consistent with what was observed with the univariate 
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findings, content representation in the dorsal LPC integrate top-down goals. That is, if the 

goal requires differentiating two episodes on a specific dimension, dorsal LPC content 

representation can be adaptively distorted along that dimension to serve the goal. 

Nevertheless, content representation in the ventral LPC focuses specifically on content 

features. Thus, the fidelity of ventral LPC content representation is the deterministic 

factor of retrieving past episodes.  

Relationship between LPC Content Representations and Behavior 

LPC neural activities have been shown to relate to human episodic memory 

success. For example, early neuroimaging findings have suggested that LPC univariate 

activation levels during both memory encoding and retrieval can be indicative of final 

memory success (Cabeza et al., 2008; Wagner et al., 2005). With the development of 

multivariate investigation approaches content (Bird et al., 2015; Buchsbaum et al., 2012; 

Kuhl & Chun, 2014), it has been shown that LPC neural activity patterns are meaningful 

and convey content information about memory episodes. Importantly, previous research 

showed that the degree to which such content representations can be precisely 

reconstructed during rehearsal and memory retrieval is deterministic of final memory 

success (Kuhl & Chun, 2014; Lee et al., 2017).  

Chapter II corroborates the relationship between the sharpness of content 

representations and behavioral memory success. Our findings and approaches were also 

able to extend our understanding of LPC content representations in two ways. First, 

previous work has typically quantified the precision of content representations by 

computing LPC activity pattern similarity. For example, Bird et al. (2015) quantified 

more precise content representation of complex naturalistic events as greater LPC neural 
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activity pattern similarity during encoding and rehearsal for any given participant. In 

other words, previous work did not have a “ground truth” measure of content 

information. In Chapter II, I attempted to define the common “ground truth” content 

information for all participants using the feature map from a pre-trained deep 

convolutional neural network (CNN; VGG16; Simonyan & Zisserman, 2014). 

Importantly, the feature map was extracted from relatively deep layers to make the 

“ground truth” of content information rely more on semantic rather than lower-level 

visual details. More importantly, instead of relying on correlational measures, I adopted a 

predictive approach to quantify the relationship between LPC content representation and 

the ground truth of content information. That is, the degree to which the ground truth can 

be predicted by LPC neural activity patterns was quantified as the preciseness of LPC 

content representations. With these changes, our results were consistent with previous 

findings, such that the more comprehensive and precise reinstatement of the target-

specific content representation can lead to success in memory retrieval.  

In addition to the differences in quantifying neural differences, Chapter II also 

differs from traditional content representation measures in how LPC neural activity 

patterns were selected. Specifically, previous studies focused on how much content is 

represented in LPC neural activity during retrieval or rehearsal, whereas chapter II 

examined how much content is represented in repetition-related neural differences (i.e., 

encoding-retrieval differences). Early univariate studies have shown that repetition-

related suppression and retrieval success effects differ between later remembered vs. 

forgotten items (Hutchinson et al., 2009; Uncapher & Wagner, 2009; Wagner et al., 

2005). Thus, I argue that repetition-related neural differences in LPC indicate how 



 

 

 

84 

memory episodes were processed or transformed after they were initially encoded. Our 

results from chapter II suggest that content information was indeed represented during the 

LPC repetition-related neural differences, and the degree of content representation can 

predict recognition memory success, indicating the potentially important role of such a 

post-encoding neural transformation process.  

Strikingly, however, our findings from chapter III suggested that precise content 

representation does not always lead to better behavioral memory performances. 

Specifically, when facing memory interferences (i.e., two episodes being particularly 

similar), the exact content representations of the two episodes do not necessarily lead to 

memory success. Instead, the results from chapter III suggest that, such memory 

interference can be resolved when the LPC content representations of the two episodes 

are adaptively pushed apart from each other. Moreover, the more they are “pushed apart” 

in LPC neural representations, the more they are remembered differently. Notably, a 

similar neural mechanism for resolving memory interference has also been observed in 

the hippocampus (Chanales et al., 2017; Favila et al., 2016). Specifically, it was found 

that, when facing memory interference, the hippocampus represents two similar episodes 

significantly more differently compared to two unrelated episodes (i.e., hippocampal 

differentiation; Hulbert & Norman, 2015). That is, the neural representations of 

competing memories are pushed apart in order to be successfully differentiated. Yet the 

relationship between hippocampal neural differentiation and LPC adaptive content 

representations remains elusive, and can benefit from future works that aim to understand 

the dependencies between the two neural processes. Together, works from the current 

dissertation extend our understanding of LPC content representations by demonstrating 
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different approaches to quantify reinstated content information, but also provide evidence 

on how LPC content representations can be adaptively distorted in the service of 

resolving memory interferences. 

Differences and Similarities between Content representations in LPC and VTC 
 

It is worth noting that content representation is not exclusive to the LPC. In fact, 

early research shows that successfully recalling past events involve reactivating event-

specific contents in sensory regions (Grill-Spector & Malach, 2004). For example, the 

ventral temporal cortex (VTC) reactivates visual category information when participants 

tried to recall a face or scene image (Kuhl et al., 2011; Kuhl & Chun, 2014). Previous 

studies have characterized two major differences in content representations between LPC 

and VTC: 1) content representation is stronger in VTC during perception but stronger in 

LPC during retrieval (Chen et al., 2017; Xiao et al., 2017), and 2) content representations 

in LPC during recall, but not VTC, predict success in memory recall (Kuhl & Chun, 

2014).  

Different from what was observed in previous studies, our results from chapter II 

suggest that a greater amount of content representation in both LPC and VTC are 

associated with remembered compared to forgotten stimuli. I speculate that this 

discrepancy could be caused by two possible factors. The first factor is that chapter II 

examines content representations within repetition-related neural patterns rather than 

within neural activity patterns during perception or recall. Furthermore, chapter II uses a 

recognition memory paradigm instead of a recall paradigm, which means that participants 

are exposed to the perceptual contents of the visual stimuli during both repetitions. 

Consequently, in the current study, the content representation may reflect how stimuli 
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were encoded, and the effect on memory, whereas previous studies examined how stimuli 

were retrieved, and the effect on memory (Chen et al., 2017; Xiao et al., 2017). In 

particular, since the brain prefers to encode subjectively new information (Nyberg, 2005), 

item-specific contents of the remembered stimuli are encoded only once during the first 

presentation, but those of the forgotten stimuli are repeatedly encoded across both 

presentations, which cancels out when neural differences are computed. Thus, the 

repetition-related neural differences would consist mainly of content representations of 

the remembered stimuli. Together, our results from chapter II suggest that item-specific 

content representations in LPC and VTC may contribute to recognition memory in a 

similar way during encoding, although they may contribute to memory differently during 

recall according to previous research (i.e., content representation in LPC is more relevant 

to memory success than VTC during recall; Kuhl & Chun, 2014).  

Moreover, our results from chapter III reveal another systematic difference in 

content representation between LPC and VTC. That is, while both regions show content 

representations during recall, only those in LPC demonstrate adaptive modulations biased 

by the goal. Specifically, our results suggest that while resolving memory interference, 

LPC adaptively distorted content representations of similar memories in order to better 

separate them. On the contrary, VTC sticks with the unbiased content representation 

without showing adaptive changes. This finding is consistent with the theory of spatial 

transformation of content representation (Favila et al., 2020). Specifically, it is suggested 

that content representation is transformed from VTC during perception to LPC during 

retrieval. Critically, this spatial transformation also involves systematical changes of the 

content representation, which tend to shift from perceptual to conceptual representations. 
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That is, content representations in VTC are primarily concerned with absolute perceptual 

details, which remain consistent regardless of the goals. On the other hand, content 

representations in LPC reflect high-level, conceptual properties, which can be flexibly 

modulated by the goals. Together, works from the current dissertation reveal both 

similarities and differences in content representations between LPC and VTC. Future 

works can potentially focus on understanding the hierarchical relationships between LPC 

and VTC during perception and retrieval and how information is shared between the two 

regions.  

Conclusion  

 In this thesis, I have investigated the nature and behavioral relevance of content 

representation in LPC. These experiments explored novel approaches to quantify content 

representations using pre-trained convolutional neural networks in addition to the 

conventional pattern similarity measures. Our results demonstrate the functional 

heterogeneity in content representation between dorsal and ventral LPC. Moreover, I 

show that the behavioral relevance of LPC content representation can resemble that of the 

visual region during perception. Nevertheless, LPC content representation also 

demonstrates its uniqueness in adaptive modulation biased by the high-level goal during 

memory retrieval. Understanding how perceptual and mnemonic details are similarly or 

differently represented and transformed between the parietal and visual regions is critical 

for deepening our understanding of human memory.  
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