
ACCESSING THE TOPOLOGICAL PROPERTIES OF NEURAL NETWORK

FUNCTIONS

by

MARISSA MASDEN

A DISSERTATION

Presented to the Department of Mathematics
and the Divison of Graduate Studies of the University of Oregon

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

June 2023

DISSERTATION APPROVAL PAGE

Student: Marissa Masden

Title: Accessing the Topological Properties of Neural Network Functions

This dissertation has been accepted and approved in partial fulfillment of the
requirements for the Doctor of Philosophy degree in the Department of Mathematics
by:

Dev Sinha Chair
Benjamin Young Core Member
Peter Ralph Core Member
Luca Mazzucato Core Member
Thanh Nguyen Institutional Representative

and

Krista Chronister Vice Provost for Graduate Studies

Original approval signatures are on file with the University of Oregon Division of
Graduate Studies.

Degree awarded June 2023

ii

© 2023 Marissa Masden

This work is licensed under a Creative Commons

Attribution-ShareAlike License.

iii

DISSERTATION ABSTRACT

Marissa Masden

Doctor of Philosophy

Department of Mathematics

June 2023

Title: Accessing the Topological Properties of Neural Network Functions

We provide a framework for analyzing the geometry and topology of the

canonical polyhedral complex of ReLU neural networks, which naturally divides

the input space into linear regions. Beginning with a category appropriate for

analyzing neural network layer maps, we give a categorical definition. We then

use our foundational results to produce a duality isomorphism between cellular

poset of the canonical polyhedral complex and a cubical set. This duality uses sign

sequences, an algebraic tool from hyperplane arrangements and oriented matroid

theory.

Our theoretical results lead to algorithms for computing not only the

canonical polyhedral complex itself but topological invariants of its substructures

such as the decision boundary, as well as for evaluating the presence of PL

critical points. Using these algorithms, we produce some of the first empirical

measurements of the topology of the decision boundary of neural networks, both

at initialization and during training. We observing that increasing the width of

neural networks decreases the variability observed in their topological expression,

but increasing depth increases variability.

iv

A code repository containing Python and Sage code implementing some of the

algorithms described herein is available in the included supplementary material.

v

CURRICULUM VITAE

NAME OF AUTHOR: Marissa Masden

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED:

University of Oregon, Eugene, OR
Walla Walla University, College Place, WA

DEGREES AWARDED:

Doctor of Philosophy, Mathematics, 2023, University of Oregon
Bachelor of Science, Mathematics, 2015, Walla Walla University
Bachelor of Science, Chemistry, 2015, Walla Walla University

AREAS OF SPECIAL INTEREST:

Applied Topology, especially in the context of machine learning and the
computational and mathematical sciences.

PROFESSIONAL EXPERIENCE:

Graduate Employee, University of Oregon, 2017-2023

GRANTS, AWARDS AND HONORS:

NSF Research Training Grant, University of Oregon Department of
Mathematics, Summer 2022.

Johnson Fellowship, University of Oregon Department of Mathematics,
Summer 2019.

Dean’s First Year Merit Award, University of Oregon Department of
Mathematics, AY 2017-2018

vi

ACKNOWLEDGEMENTS

First, I would like to thank my advisor, Dev, not only for his invaluable

support, guidance, and inspiration in the process of research and writing, but also

for his enthusiasm for and belief in my work.

I am also grateful towards all of those who have served as a mentor to me in

other capacities. This includes the members of my dissertation committee, as well

as the graduate students preceding me, who have all offered advice and provided

a sense of belonging. Special thanks towards Eli Grigsby and Kathryn Lindsey for

additionally welcoming me into their sphere of collaboration.

Finally, (uncountably) infinite love and thanks to my husband, Kyle, for his

unwavering encouragement, patience, and sacrifice. No words can fully express my

appreciation.

vii

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION . 1

1.1. Algebraic Topology and Machine Learning 2

1.2. Topology and the Linear Regions of ReLU Neural Networks . . 7

1.3. Comparison to Prior Work . 8

1.4. Dissertation Summary . 10

1.5. Further Directions . 13

II. CATEGORICALLY DEVELOPING THE CANONICAL POLYHEDRAL
COMPLEX . 16

2.1. Preliminaries: ReLU Neural Networks 16

2.2. Preliminaries: Polyhedral Geometry 19

2.3. A Category for ReLU Neural Networks’ Layer Maps 23

2.4. The Canonical Polyhedral Complex Constructed Categorically 30

III. ACCESSING THE TOPOLOGY OF NEURAL NETWORK
FUNCTIONS . 36

3.1. Piecewise Linear Transversality 36

3.2. Supertransversal Neural Networks 37

3.3. Combinatorially Characterizing C(F) with Sign Sequences . . . 40

viii

Chapter Page

3.4. Algebra of Sign Sequences . 47

3.5. The Duality Between C(F) and S(F) 50

3.6. Computing Decision Boundary Topology from S(F) 54

3.7. Local Combinatorics of Vertices for PL Morse Theory 56

IV. ALGORITHMS FOR COMPUTING C(F) 62

4.1. Näıve Computation of C(F) by Looping through Regions . . . 62

4.2. Avoiding Numerical Error and Singular Matrices 69

4.3. An Alternative Algorithm . 74

V. EXPERIMENTAL OBSERVATIONS OF NEURAL NETWORKS’
TOPOLOGICAL PROPERTIES . 78

5.1. Empirical Measurements about Vertices of C(F) 78

5.2. Decision Boundaries of Randomly-Initialized Neural Networks 81

5.3. Neural Networks During Training 88

APPENDICES

A. EXPLICIT WEIGHTS AND BIASES FOR COUNTEREXAMPLES 98

B. IMPLEMENTATIONS OF ALGORITHMS 100

C. LICENSE INFORMATION . 101

ix

Chapter Page

REFERENCES CITED . 102

SUPPLEMENTAL FILES

CODE REPOSITORY: IMPLEMENTATIONS OF ALGORITHMS

x

LIST OF FIGURES

Figure Page

1 The typical evolution of the decision boundary of a neural network success-
fully trained on a torus-shaped dataset. 2

2 (Left) An ideal data manifold. (Middle) Addition of noise in R2. (Right)
Data sampled from a manifold with noise. 4

3 (Left) A decision boundary which exhibits topological generalization. (Right)
A decision boundary which fails to topologically generalize. 4

4 In both figures, F1 is two-to-one. Top: Autoencoder mode collapse due to
the failure of F2 to be surjective. Bottom: The more points which satisfy
F2◦F1(x) = id(x), the less “continuous” the intermediate composites
become. 6

5 Topological errors in interpolation through the latent space of an auto-
encoder R3 → R2 → R3. 7

6 A layer map, with its associated hyperplane arrangement. 17

7 If F : R2 → R3 is a layer map, R and M∈R pictured. 21

8 Two combinatorially equivalent but nonisomorphic polyhedral complexes
in EPoCx. No affine function will send the parallelogram directly to
the trapezoid without subdivision. 27

9 The pullback diagram of M∈R. 30

10 Top: A bent hyperplane with nongeneric behavior (some cells are codimen-
sion 0). Bottom: A more general codimension-1 bent hyperplane. . 33

11 (Top) A supertransversal neural network. (Bottom) A non-supertransversal
neural network. 37

12 A simple manifold arrangement which is not sign codable because there
are two PL submanifolds, but more than four regions. 42

13 An example of a manifold arrangement satisfying strong hypotheses which
is still not sign codable. 43

xi

Figure Page

14 Two neural networks with the same sign sequences of the top dimensional
regions but different combinatorics. 44

15 “Multiplication” of polyhedra on the sign sequence cubical complex, pictured
geometrically. 49

16 (Left) A canonical polyhedral complex and (Right) its geometric dual. 52

17 Left: The decision boundary of a randomly-initialized neural network F :
R2 → R, in red, and the canonical polyhedral complex. Right: A
graph of the function F . 55

18 Left: The star of x in M . Middle: A cone neighborhood for x in M . Right:
A link complex for x in M . 56

19 Left: An exemplar PL critical point of index 1 on the standard cross-
polytope in R2. Right: The exemplar PL regular point. 57

20 The equatorial shift map. Left: g−1(0) induces a subdivision on the boundary
of St(3) separating opposite points. Right: There is a combinatorial
equivalence sending each cell in the subdivision on the left to the corresp-
onding cell in the subdivision of the boundary of St(3) given by the
reflection of the first subdivision, shifting g−1(0) to the equator of
St(3). 60

21 Illustration of the key step in Lemma 4.1.2 65

22 An illustration of the first algorithm for computing C(F). Upper left: Step
1. Upper right and bottom left: Step 2, keeping the green vertices and
discarding the red ones for regions C and D respectively. Bottom right:
The complete C(F). 67

23 If F1 is the pictured layer map, it is almost impossible for any bent hyper-
plane from a layer map given by F2 or later to intersect edge E, as F1(E)
is the origin. 72

24 The improved algorithm for obtaining the vertices of C(F). Upper left: Step
2a, selecting an edge. Upper right: Step 2a, finding the location of the
intersection of each bent hyperplane and that edge, if it exists, via
computations on region C. Lower left: Step 2b for k = 2, specifically
on the region D, with the other two regions to investigate highlighted.
Bottom right: Final C(F). 76

25 Time required to compute C(F) for randomly-initialized neural networks
of input dimensions n0 = 2 and 3 and two hidden layers, for the
näıve and improved algorithms. 77

xii

Figure Page

26 Left: The number of vertices of C(F) increases subexponentially with width.
Right: Dividing the number of vertices by Nn0 demonstrates O(Nn0)
scaling. 79

27 Distribution of minimum distance between vertices of C(F) by the input
dimension and width of F . The width is the 95th percentile of minimum
distances. 80

28 Average Betti numbers of the network decision boundary at initialization,
with 95% confidence interval shown. 81

29 Distribution of the total number of connected components of the decision
boundary for architectures of width 5. 87

30 Distribution of the total number of connected components of the decision
boundary for architectures of width 15. 87

31 The XOR task. Left: Sample data. Left middle: Density function for the
two data distributions. Right middle: Ideal classification function with
true ideal decision boundary superimposed. Right: Generically perturbed
ideal decision boundary. 89

32 The Torus task. Left: Labeled data drawn from the two density functions.
Right: A wireframe skeleton of the decision boundary of a neural network
trained on the sample data, with edges from C(F). 91

33 A comparison between shallow (left) and deep (right) architectures’
topological generalization on the XOR task. 92

34 The average value of β1 approaches 2 as the neural networks train on the
XOR task. Wider neural networks approach topological generalization
faster and exhibit less variability in learned topological features. . . 93

35 Left: The Betti numbers of the decision boundary of (3, 15, 15, 1) neural
networks during training on the Torus task using momentum. The width
of the bar is a 95% confidence interval for the average βi at that time
step. Right: A boxplot of log(loss) by topology for the same task, late
training. 94

36 An example, and typical, training path of a neural network successfully
trained on the torus. 94

37 The Betti numbers of the decision boundaries of neural networks as they
trained on the Torus task with pure SGD, separated by architecture. 95

38 Loss of neural networks trained on the torus, by final Betti numbers. . 96

xiii

LIST OF TABLES

Table Page

1 The sign sequence of the cells in Figure 15, together with some computed
products. 50

2 Betti numbers of the compactified decision boundary dependent on architect-
ure, across the range of widths studied (50 networks of each architecture).
In βn0−1, deeper architectures exhibit greater variability and greater
apparent change with width across the range of widths studied. This
information is seen in Figure 28 . 85

3 Average number of bounded and unbounded components of the decision
boundary dependent on architecture. Bounded components became
exceedingly rare with increased input dimensions, to the extent that
measured variability is 0 for some of the given architectures. 86

xiv

CHAPTER I

INTRODUCTION

Artificial neural networks have rapidly impacted our society, but they are still

far from mathematically understood. Lack of understanding of machine learning

behavior leaves space for unintended consequences of its use. Traditionally, the

mathematical study of machine learning relies on the domains of statistics and

functional analysis. However, there are geometric interpretations of the behavior of

the basic objects of study. For example, in a classification task, data sampled from

Euclidean space must be classified into two categories, and the decision boundary

is a geometric object delineating the boundary between two regions of Euclidean

space that a machine learning model has learned to represent the classification.

In this thesis, we develop a theoretical framework and implementable

algorithms for fully analyzing neural network functions from the perspective of

geometry and topology. The techniques developed apply theoretically to almost all

ReLU neural networks, relying on a remarkable duality between the polyhedral

complex describing the neural network function and a subcomplex of a cube.

The resulting theoretical framework leads to algorithms which are implementable

in practice for input dimensions up to 10 or several intermediate layers. These

algorithms allow for exact computation of the topological behavior of real neural

networks of arbitrary size, limited only by computational power. Previously, such

computations could only be performed for either input dimension two or one

hidden layer. We thus open the black box of the geometry of a neural network,

visualizing small neural networks in their entirety and obtaining exact topological

1

measurements of their level sets, as pictured in Figure 1 for the training of a neural

network on a torus-shaped dataset.

FIGURE 1. The typical evolution of the decision boundary of a neural network
successfully trained on a torus-shaped dataset.

In a bit more detail, we establish a combinatorial description of ReLU neural

network functions’ canonical polyhedral complex, using algebraic tools from

hyperplane arrangements and oriented matroid theory in Chapter III, expanding

geometric dualities from these theories to this more complicated setting. The

organization through cubical duality gives an approach to obtain explicit chain

complexes describing the cellular topology of the level sets of these functions. These

descriptions are implementable in code, so in Chapter IV we produce algorithms

computing the described structure when given a specific neural network. Using

this code, we obtain empirical measurements of the topology of neural networks at

initialization and during training, shared in Chapter V.

1.1. Algebraic Topology and Machine Learning

This thesis is motivated by the question of whether machine learning

algorithms can be expected to topologically generalize to unseen examples. More

precisely,

Problem 1. In a given hypothesis class, does there exist a function whose sublevel

or level sets can represent the characteristic function of a given manifold? What is

2

the probability that the sublevel sets of a function sampled from that hypothesis

class have given topological invariants?

This question is broad, and mostly out of reach with current tools. Instead,

we begin to approach the following subproblem:

Problem 2. In the hypothesis class of fully-connected, feedforward ReLU neural

networks with a given parametrization, classify the achievable and/or probable

topology and geometry of the functions’ level and sublevel sets.

To understand these questions, here we discuss the utility of algebraic

topology for understanding the performance of a neural network model.

Classification as a Topological Task

To understand topology’s role in generalization, consider the manifold

hypothesis [9], which suggests that, in many applications, real-valued data can

be modeled as being sampled from an embedded manifold (or a manifold with

singularities) in its underlying feature space Rn, with some n-dimensional Gaussian

noise. (See Figure 2)

Under this hypothesis, the ideal classifier — the function p(y = 1|x)— is

smooth, and generically has manifold level sets. The 0.5 level set, consisting of

points which are equally likely to belong to each class, is called the ideal decision

boundary. For a network F to correctly perform a simple classification task, its

decision boundary {x | F (x) = 0.5} must have the same topological invariants as

the ideal decision boundary, otherwise we say it fails to topologically generalize.

As seen in Figure 3, a neural network might perform with perfect accuracy on

data sampled from a manifold, but fail to topologically generalize. In other words,

3

FIGURE 2. (Left) An ideal data manifold. (Middle) Addition of noise in R2.
(Right) Data sampled from a manifold with noise.

FIGURE 3. (Left) A decision boundary which exhibits topological generalization.
(Right) A decision boundary which fails to topologically generalize.

topological generalization cannot be deduced a priori by measuring the network’s

performance on a sample of the data. In Section 5.3 we train small neural networks

and explicitly measure their topological generalization.

Furthermore, if the neural networks are selected from a hypothesis class (such

as a specific architecture) which does not contain functions which can express the

appropriate topological invariants, there will necessarily be failures of topological

generalization by all neural networks trained on the given data [14].

4

Known Topological Failures of Neural Network Behavior

Contemporary neural network functions experience topological and

geometric failures in their learned behaviors. For example, in the context of

binary classification, toy datasets explored in [14] demonstrate empirically that the

architecture of a neural network is predictive of whether it will successfully learn to

classify data given generated topological properties. Furthermore, neural networks’

architecture were shown to restrict learnable topology. However, theoretical bounds

on the exact topological restrictions on the decision boundary were unexplored.

In a more contemporary setting, is common to view generative models as

learning a density function on a manifold in their output space. Essentially, random

points are generated in Rn and a neural network function is optimized towards a

function whose outputs on these random points are approximately sampled from

a density function on an n-dimensional output manifold. It is not surprising that

interpolation problems may occur, as direct interpolation between points in Rn

will generally fail to stay on a given submanifold of Rn, but a generative model

is specifically designed so that any point in its input latent space should output

a plausible object of the appropriate manifold, and the goal is that interpolation

between those points should correspond to a meaningful path in the output space.

To be more explicit, consider the context of autoencoders, a simple form of

generative model (Figure 4). In training an autoencoder, we suppose that data is

sampled from an k-dimensional submanifold of Rn. A neural network is trained to

compress the data from Rn into the latent space Rk, and then decompress back into

Rn, via a function

Rn F1−→ Rk F2−→ Rn

5

FIGURE 4. In both figures, F1 is two-to-one. Top: Autoencoder mode collapse
due to the failure of F2 to be surjective. Bottom: The more points which satisfy
F2 ◦ F1(x) = id(x), the less “continuous” the intermediate composites become.

This function is trained to mimize the distance x − F2(F1(x)), under the

heuristic that that points sampled from Rk should be sent to points in M by

approximately the same distribution as the data. If M ⊆ Rn is a closed k-manifold,

the topological problems are obvious; no set of continuous functions F1 and F2 can

satisfy F2 ◦ F1 = idM if M has any nontrivial homology. As the composite is

optimized to be as close to the identity as possible, the result is frequently that

nearby points in Rk are sent to vastly different points on M , and interpolation

between these points in Rk passes through out-of-distribution points in Rn. The

alternative is significant portions of M fail to be in the image of F2 ◦ F1, a state

known as mode collapse (Figure 5).

This is still a problem in modern generative models. Even large generative

models can exhibit demonstrable topological failure in their behavior. For example,

in [20] a large generative model, trained to generate faces from random noise,

is demonstrated to have discontinuities of this form through the existence of a

6

FIGURE 5. Topological errors in interpolation through the latent space of an
autoencoder R3 → R2 → R3.

two-dimensional subset of output images generated from a continuous patch in

input space. The patch in input space has the topology of a disc, but the apparent

discontinuity in output space demonstrates a topological failure in the latent space

embedding.

1.2. Topology and the Linear Regions of ReLU Neural Networks

Models for machine learning based on the rectified linear unit, or ReLU [23]

(popularized in 2010), are widely acknowledged to have improved convergence

properties for and decreased computational expense of training neural networks,

among other benefits. The mathematical objects under study in this thesis are the

class of fully-connected, feedforward ReLU neural networks, which may be thought

of mathematically as a class of real-parametrized functions.

For fully-connected ReLU networks [23], the canonical polyhedral complex

of the network, as defined by [10], encodes its decomposition of input space

into piecewise linear regions and determines key structures such as the decision

boundary for a binary classification task. Investigation of properties and

characterizations of this decomposition of input space are ongoing, in particular

with respect to counting the top-dimensional linear regions [26, 17, 22, 25, 28],

since these bounds give one measure of the expressivity of the associated network

7

architecture. It is common to describe linear regions of the input space, Rn0 ,

using “activation patterns” or “neural codes” recorded as vectors in {0, 1}N [18].

Unfortunately, having a list of which activation patterns are present in the interiors

of the linear regions does not determine their pairwise intersection properties

(Theorem 3.3.5), and computing the intersections of these regions directly is not

numerically stable. Furthermore, the polyhedra comprising the linear regions

appear, at first glance, arbitrarily complicated.

Until now, a theoretical understanding of adjacency between regions and more

generally the connectivity of lower-dimensional faces has been undocumented. In

this thesis, we give the first full account of face relations in all dimensions, which

are encoded by activation patterns we call sign sequences in {−1, 0, 1}N . Such face

relations are important because understanding the face relations in the canonical

polyhedral complex is necessary to relate combinatorial properties of the polyhedral

complex of a network to the topology of regions into which the decision boundary

partitions input space, geometric measurements such as the presence of critical

points [11], or other notions of topological expressivity, as explored by [14, 5].

1.3. Comparison to Prior Work

The seminal paper [10] establishes a high-level view of the cellular structure of

the canonical polyhedral complex, but does not establish explicit low-dimensional

information as we do here. Under weak assumptions, they show the canonical

polyhedral complex’s (n0 − 1)-skeleton may be described as the preimages of

hyperplanes from each layer map, but arbitrary k-skeletons are unexamined for

k < (n0−1), as are general face relations. The subsequent work [11] establishes local

8

models for the polyhedral structure at the intersection of hyperplanes in shallow

neural networks, but does not address deeper network structures as we do here.

Hyperplane arrangements and sign sequences are used in [16, 17] to study

linear regions, but primarily for computing volumes and counting top-dimensional

regions, and not obtaining adjacency relations. In particular, in these works

properties of hyperplane arrangements are used to establish statistical properties

of the canonical polyhedral complex. While our work does rely on properties of

hyperplane arrangements in a similar way, we focus on encoding the full face poset

to obtain topological information.

Others who approach explicit computation of linear regions as in [32] do

so using halfspace intersections, and we use vertices. While in theory one could

intersect top-dimensional regions pairwise to obtain their shared faces, this is

not numerically stable, especially when the linear equations involved arise from

matrix multiplication. Our algorithm tracks known equalities and uses discrete

signs to track face relations, avoiding issues potentially arising from numerical

error in polyhedral intersection. Furthermore, in contrast to approaches by [6]

and other neuroscientific and biological applications where boundary structure

is not biologically meaningful, in the context of artificial networks the boundary

intersections are in fact computable.

Other characterizations of the combinatorics of ReLU networks’ polyhedral

complexes exist, but lack explicit implementation or applicability to deeper

networks. The paper [4] describes the regions of the canonical polyhedral complex

according to the roots of a polynomial, but no algorithm is presented on how to

obtain these roots, nor how to explicitly determine whether two polyhedra are

connected by a shared face. The authors of [31] provide a tropical characterization

9

of the polyhedral complex including its face relations, but rely on the translation

of network functions to tropical rational functions with integer coefficients, which

is a discontinuous operation. In contrast, we conjecture that the signs of vertices

present in the sign sequence cubical complex are stable in open sets of parameter

space and could therefore be recorded to track changes in a network’s topology

during training. The subsequent application of tropical geometry by [2] appears

limited to networks with single hidden layers. Additionally, [18] establish a

characterization of the regions of single-layer hyperplane networks which relies on

similar sign labelings, but the methods do not apply to deeper networks.

Finally, some reachability analysis algorithms using polyhedral methods such

as those by [29, 30] use signs to determine how polyhedra have been “split” by

a layer map, tracking the face lattices of the output polyhedra of each layer. In

theory, this approach could plausibly record which polytopes in the input space

intersect in shared regions, but these papers consider polytopes independently

from another in the next layer for purposes of parallelization. It is unclear whether

enough information is retained to store which “splits” line up between polytopes, as

this is not needed in their applications. Additionally, this approach requires storing

all faces for the face lattice in each polytope, whereas we show this information is

fully contained in the sign sequences of the vertices.

1.4. Dissertation Summary

This dissertation establishes a combinatorial description of ReLU neural

network functions’ canonical polyhedral complex using algebraic tools from

hyperplane arrangements and oriented matroid theory. This structure gives an

approach to obtain explicit topological descriptions of the level sets of neural

10

network functions, which are furthermore implementable in code, computing

the described structure when given a specific neural network. In addition, tools

from piecewise linear Morse theory are applicable to the broader (not generally

PL-Morse) class of ReLU neural network functions, giving general tools for

understanding the topology of sublevel and level sets of ReLU functions [11].

Here we additionally provide local characterizations of vertices of the canonical

polyhedral complex before approaching an extension of this understanding to deep

neural networks.

In Chapter II we introduce a number of preliminaries (Sections 2.1-2.2),

followed by the introduction of a category which preserves the combinatorics of

polyhedral complexes under piecewise linear maps in Section 2.3, finally presenting

an alternative development of the canonical polyhedral complex within this

category in Section 2.4.

In Chapter III, we then seek to understand the cellular topology of the

canonical polyhedral complex through its face poset and local characterizations

of its vertices. These characterizations rely on piecewise linear analogs of

transversality, reviewed in Section 3.1. Then, in 3.2 we introduce appropriate

conditions for a ReLU neural network to satisfy the results of the rest of this work,

and show that these conditions are (fiberwise) generic. In the following Section 3.3,

we see that the bent hyperplane arrangement inherits a number of properties from

co-oriented hyperplane arrangements in Rni under these transversality assumptions

about the layers of a neural network. For example, a co-oriented hyperplane

arrangement of m hyperplanes in Rn induces an assignment of a sign sequence in

{−1, 0, 1}m to each point in Rn [1]. This sign sequence pulls back to the canonical

polyhedral complex, and uniquely identifies each cell of the complex, providing a

11

combinatorial description of each cell [32], which we reprove here in an alternative

approach.

In Section 3.4 we then show that the composition operation between sign

sequences, derived from the same operation in oriented matroids [3], is additionally

well-defined as an operation between cells of the canonical polyhedral complex, and

fully encodes the cellular poset of the canonical polyhedral complex. As a result, we

see in Section 3.5 that the geometric dual of the canonical polyhedral complex is a

cubical complex consisting of n0-dimensional cubes in an N -dimensional hypercube

[−1, 1]N , where N =
∑m

i=1 ni is the sum of the intermediate dimensions of the

ReLU neural network.

An immediate corollary is that for almost all ReLU neural networks the

full cellular poset can be generated by the sign sequences of the vertices of the

canonical polyhedral complex together with the coboundary operation, which is

dual to the boundary operation in the cube. Methods to use this sign sequence

information to obtain the topological invariants of the decision boundary and

the presence of PL critical points are then described in Sections 3.6 and 3.7,

respectively.

In Chapter IV we then explore how the vertices of the canonical polyhedral

complex, together with their sign sequences, can be computed in a relatively

numerically stable way, even though sign evaluation in {−1, 0, 1} is unstable. This

allows for the explicit computation of a structure encoding the canonical polyhedral

complex without needing to store information separately about all cells, which is

combinatorially explosive.

We provide algorithms in Sections 4.1 and 4.3, which we have implemented

in Python, which compute the canonical polyhedral complex of a given neural

12

network together with Sage scripts which evaluate topological invariants of a

decision boundary with an added point at infinity. Discussion of the numerical

stability of these algorithms is provided in Section 4.2. Once the vertices of the

canonical polyhedral complex are computed, tracking face relations of cells using

sign sequences is computationally straightforward, and each bent hyperplane is

readily encoded as the cellular subcomplex of the canonical polyhedral complex

whose cells’ sign sequences contain a zero in a distinguished coordinate. We discuss

both a näıve and a more efficient method for obtaining this same information.

We finish in Chapter V with empirical experiments about neural networks.

For random neural networks at initialization, we obtain distributional information

about the number and minimum pairwise distance between vertices (Section 5.1),

as well as statistics about the mod-two homology of the decision boundary with the

distinguished point at infinity at initialization (Section 5.2). We additionally track

topological invariants of the decision boundary for neural networks which have

been trained on synthetic data for specific topological tasks (Section 5.3). These

empirical measurements demonstrate that increasing depth increases the variability

of neural networks’ topological behavior both at initialization and during training,

but increasing width appears to decrease the observed variability, even though

increased width is known to increase networks’ theoretical topological expressivity.

1.5. Further Directions

The tools developed in this work can be useful by providing a local

characterization of vertices of C(F), which can be used to obtain geometric

properties of ReLU functions. For example, access to solid angles would allow for

extensions to work such as [4] on distributional properties of local curvature of

13

decision boundaries. This local characterization additionally makes piecewise linear

Morse theory as in [11, 12] applicable to C(F), as discussed briefly in section 3.7.

Morse theory describes local extrema and saddle points by diagonalizing a second

derivative matrix. Replacing a 0 with ±1 in a vertex’s sign sequence identifies

opposite edges incident to a vertex, giving axes for a “piecewise linear second

derivative.”

Another possible future application of this work is to analyze topological

generalization of real networks. A key indicator of a network’s generalizability

is whether its sublevel sets have the appropriate topological properties [5]. In

addition, the architecture of a classification network influences the topology of

the expressible decision boundaries of that network [14]. Empirically, topological

data analysis provides practical approximation for low-dimensional features of high

dimensional data. While approximations exist to obtain the topological properties

of a network’s decision boundaries using topological data analysis [21], these

properties are dependent on the geometry of the network function. In places where

the network’s decision boundary has high curvature, the approximation methods

may lead to inaccuracy between the true topology of a network’s decision boundary

and the topology which is approximated by persistent homology methods, but it is

precisely those locations where a network is vulnerable to adversarial examples [8].

A measure of the true topology of the decision boundary could provide a metric for

comparison.

Lastly, it may be possible to obtain an explicit theoretical understanding of

the evolution of a network’s decision boundary through a training path, and not

merely an empirical understanding as is described here. We believe that changes

in the face structure of C(F) should be “discrete” in that they only change at

14

finitely many locations in a general training path, which would thus open an avenue

for tracking the vertices of C(F) as the network trains in parameter space, and

establishing theoretical limits on the possible discrete changes that may occur to

the set of vertices of C(F) during training.

15

CHAPTER II

CATEGORICALLY DEVELOPING THE CANONICAL POLYHEDRAL

COMPLEX

We proceed by defining what is meant by a polyhedral complex and a neural

network before defining the primary object of study, the canonical polyhedral

complex C(F) of a neural network F , as introduced by Grigsby and Lindsey [10].

We provide an alternative characterization of C(F) as a natural construction arising

from the composition operation in the appropriate category.

2.1. Preliminaries: ReLU Neural Networks

The ReLU function became popularized in the early 2010s as a function

which enabled the improved training of neural networks [23]. However, because

ReLU neural networks are constructed from functions which are not smooth, many

classical results about smooth functions cannot be applied to their analysis or their

sublevel and level set topology.

Definition 2.1.1 (ReLU, σn). The following terms refer to activation functions of

a neural network:

– ReLU: R → R denotes the function ReLU(x) := max{0, x}.

– σn : Rn → Rn is the function which applies ReLU coordinatewise. By abuse,

we often drop n and write σ when dimensionality is clear.

We introduce the definition of a neural network here to motivate the notation

used in the rest of this document. Aligning with the framework in [10], we

investigate the following class of neural network functions.

16

Definition 2.1.2 ([10], Definition 2.1). Let n0, ..., nm ∈ N. A fully-connected

ReLU neural network with architecture (n0, ..., nm, 1) is a collection N = {Ai}

of affine maps Ai : Rni → Rni+1 for i = 0, ...,m. Such a collection determines a

function FN : Rn0 → R, the associated neural network map, given by the

composite

Rn0
F1=ReLU◦A1−−−−−−−−→ Rn1

F2=ReLU◦A2−−−−−−−−→ Rn2
F3=ReLU◦A3−−−−−−−−→ ...

Fm=ReLU◦Am−−−−−−−−→ Rnm
G=Am+1−−−−−→ R1

We say that this network has depth m+1 and width max{n1, ..., nm, 1}. The

maps Fk are called the kth layer maps.

FIGURE 6. A layer map, with its associated hyperplane arrangement.

Each neural network function can be decomposed into its intermediate

composites, and this perspective will become useful later. We introduce the

following notation here to capture this process:

Definition 2.1.3. If F = G ◦Fm ◦ ... ◦F1 is a ReLU neural network with F : Rn0 →

R, then we denote:

F(k) = Fk ◦ ... ◦ F1

and write that this is F ending at the kth layer.

17

Likewise, we denote

F (k) = G ◦ Fm ◦ ... ◦ Fk

and call F (k) : Rnk−1 → R by F starting at the kth layer.

Thus F = F (k) ◦ F(k−1) for any k.

In addition to decomposing neural networks by their intermediate composites,

each layer map is associated to a hyperplane arrangement in a canonical way. In

[10] it is established that a co-oriented hyperplane arrangement,

Ak = {H(k)
1 , ...,H(k)

nk
}

in Rnk−1 may be associated to each layer map Fk, defined by the affine solution set

arrangement of Ak as follows:

Definition 2.1.4 ([10] §2). If the affine map Ak is given by (W (k)|b(k)), with rows

W
(k)
i not identically zero, the solution set of (W

(k)
i |b(k)i) · (x⃗|1) = 0 gives hyperplane

H
(k)
i , with co-orientation defined by a unit normal vector in the direction of the

gradient of (Wi|bi) · (x⃗|1). Furthermore, the positive half-space H
(k)+
i

H
(k)+
i := {x⃗ ∈ Rn : (W

(k)
i |b(k)i) · (x⃗|1) > 0}

and the region H
(k)−
i is defined analogously.

Note: It is traditional to call W (k) the weights of Ak and b(k) the biases of

Ak.

Properties of these hyperplane arrangements will be useful for deriving

properties of neural networks. The first, most basic property is genericity,

18

which captures whether each layer map in isolation is associated with a generic

hyperplane arrangement.

Definition 2.1.5 ([10] 2.9). A layer map Fk is said to be generic if the

corresponding affine solution set arrangement H
(k)
i is generic as a hyperplane

arrangement. A neural network whose layer maps are all generic is called a generic

neural network.

In [10] it is shown that (Lebesgue) almost all neural networks of a given

architecture are generic. Generic hyperplane arrangements have well-documented

properties; see [1].

2.2. Preliminaries: Polyhedral Geometry

We will associate a polyhedral complex to each ReLU neural network.

Polyhedral complexes are constructed from polyhedral sets. Here we use the term

polyhedral set to refer to an intersection of halfspaces which may be unbounded, in

contrast to polytopes, which are generally defined to be compact. A summary of

relevant results and definitions about polyhedral complexes and complexes arising

from affine hyperplane arrangements found in [10], Sections 2-3, and [12], Sections

1-2, with the most relevant information repeated below.

Definition 2.2.1 (Polyhedra, Polyhedral Complex, cf. [10]).

– A polyhedron is an intersection of the form
⋂

1≤i≤m H+
i for some set of

(codimension 1) hyperplanes H1, ..., Hm ⊂ Rn. Here H+
i is the half-space

of Rn consisting of the union of the hyperplane Hi and one of the connected

components of Rn \Hi.

19

– A point is on the interior of a polyhedron P if it is on the interior of P with

respect to the subspace topology of the affine span of P , except when P is

a point, in which case by convention its interior is nonempty. We use the

notation P ◦ to denote the interior of P .

– A face of a polyhedron P embedded in Rn is a set of the form H ∩ P ,

where H is a codimension 1 hyperplane in Rn and H ∩ P does not contain

any interior point of P . (The empty set is a face of any polyhedron.) A

hyperplane which intersects P in a nonempty face is called a supporting

hyperplane of P . All other hyperplanes which intersect P are called cutting

hyperplanes of P . We denote the relation “C is a face of D” with C ≤ D.

Under this definition, polyhedra may not be bounded, but they are always

closed. As a result, an affine hyperplane arrangement induces a natural polyhedral

decomposition on its ambient space.

For convenience, we occasionally make use of the following:

Definition 2.2.2. Each proper face F of P is itself a polyhedral set in Rn of

dimension less than or equal to n − 1. We call the inclusion ιPF : F → P the

characteristic inclusion of F in P .

If D and F are faces of P satisfying D ⊆ F , then ιPD = ιPF ◦ ιFD. Finally,

polyhedral complexes are defined in [10, 12] as follows:

Definition 2.2.3 ([10], 3.11). A polyhedral complex C of dimension d is a finite

set of polyhedral sets of dimension k embedded in Rn, for 0 ≤ k ≤ d, called the

cells of C, satisfying the properties:

(i) if P ∈ C, then every face of P is in C.

20

(ii) If P,Q ∈ C, then P ∩Q is the single mutual face of P and Q.

Note that it is not necessarily the case that n = d, that is, polyhedral

complexes of dimension d < n may be embedded in Rn.

Next, we provide notation for the underlying set of a polyhedral complex.

Definition 2.2.4 ([10]). If C is a polyhedral complex, we denote by |C| the

underlying set of C, given by the union of all cells in C.

FIGURE 7. If F : R2 → R3 is a layer map, R and M∈R pictured.

This notion of each polyhedral complex having an underlying set is used when

constructing new polyhedral complexes through piecewise linear maps (see Figure

7):

Definition 2.2.5 ([10], [12]). Let M and R be polyhedral complexes with a map

f : |M | → Rr linear on cells of M , where R is embedded in Rr. The level set

complex of f is the set M∈R defined as:

M∈R := {S ∩ f−1(Y)|S ∈ M,Y ∈ R}

21

It is straightforward and established in [10, 12] that this does indeed result

in a polyhedral complex and the resulting map is cellular on the subdivision

M∈R, which we will use to construct a category for polyhedral complexes in which

combinatorial information is preserved under isomorphisms.

Later, we will additionally make use of the following lemma regarding

boundary relations, rewritten so as to not require the M∈R notation.

Lemma 2.2.6 (cf. [12], Lemma 2.4). Let M ⊆ Rm and N ⊆ Rn be polyhedral

complexes and f : |M | → Rn be continuous and affine on cells of M . Let ≤ denote

face relations in the respective polyhedral complexes. If C ≤ C ′ are polyhedra in M ,

and D ≤ D′ are polyhedra in N , then

C ∩ f−1(D) ≤ C ′ ∩ f−1(D′)

is a face relation in the polyhedral complex consisting of the cells

{C ∩ F−1(D) : D ∈ N,C ∈ M}.

Finally, we use the following notation for consistency with previous work,

providing a notation for affine hyperplane arrangement R(i) associated to an affine

map Ai.

Definition 2.2.7 (R(i), πj, cf. [10], Definition 6.7). Let Ai : Rni−1 → Rni be an

affine function for 1 ≤ i ≤ n. Denote by R(i) the polyhedral complex associated

to the hyperplane arrangement in Rni−1 , induced by the hyperplanes given by the

solution set to Hij = {x ∈ Rn : πj ◦ Ai(x) = 0}, where πj is the linear projection

onto the jth coordinate in Rni .

22

2.3. A Category for ReLU Neural Networks’ Layer Maps

There is no one generally accepted category for polyhedral complexes, so we

define a suitable category consisting, intuitively, of finite, geometrically realizable

polyhedral complexes, beginning with the objects:

Definition 2.3.1 (Objects in Euclidean Polyhedral Complexes). An object in

Euclidean Polyhedral Complexes (EPoCx) is a finite Euclidean polyhedral

complex, that is, a polyhedral complex C = {P1...Pn} embedded in Rm.

Classically, a piecewise affine linear function is a continuous map f : |C| → |D|

such that there exists a polyhedral subdivision C ′ of C on which f is affine linear. If

we take these to be morphisms in this category with no further structure, then the

combinatorial structure (face poset) of polyhedral complexes is not defined up to

isomorphism.

To enforce the definition of combinatorial structure in this category up to

isomorphism between polyhedral complexes, we define morphisms to be generated

through functions on their underlying sets of the following two types.

Definition 2.3.2 (Morphisms for Euclidean Polyhedral Complexes). We define

morphisms in EPoCx in the following way:

– A polyhedral subdivision of a polyhedral complex C is a polyhedral

complex C ′ such that |C ′| = |C| and every cell C ′ ∈ C ′ is a subset of a

cell C ∈ C. If C ′ is a subdivision of C then there is a formal subdivision

morphism from C to C ′.

– A strictly affine morphism from a polyhedral complex C to D is a function

|C| → |D| which is continuous, affine on cells, and the image of the interior of

23

each cell C◦ ∈ C is contained in the interior of a single cell D◦ ∈ D. (This cell

D is therefore determined by C).

– A morphism in EPoCx is a subdivision morphism followed by a strictly

affine morphism.

Strictly affine morphisms are so named due to being a stronger condition

than simply requiring the restriction of the function to each cell to be affine (which

is the traditional definition of piecewise linear functions). However, strictly affine is

a weaker condition than cellular morphisms (which are ones in which the image of

each cell C ∈ C would need to be equal to a cell in D.) Two morphisms in EPoCx

may be considered as equal if and only if their subdivision morphisms and their

strictly affine morphisms are equal. We choose to permit only formal subdivisions,

and not the inverse, in order to ensure, as shall be seen, that the combinatorics of a

polyhedral complex are preserved under isomorphism.

To equip EPoCx with structure of a category we must define composition

between these morphisms. We note briefly that the identity morphism ι : C → C is

given by the trivial subdivision which keeps the same set of polyhedra, followed by

the identity morphism on |C|. However, composition is more complicated.

Lemma 2.3.3. Let F : C → D and G : D → E be morphisms in EPoCx, equipped

with associated subdivision morphisms FS : C → C ′ and GS : D → D′, and equipped

with strictly affine morphisms given by associated functions f : |C ′| → |D| and

g : |D′| → |E|. Then we define G ◦ F : C → E as follows.

First, the associated function on underlying sets is given by g ◦ f , and second,

the associated subdivision is C ′′ = C ′
∈D′ (Definition 2.2.5).

This construction assures the associativity of ◦ in EPoCx.

24

Proof. First, we must justify that g ◦ f is a strictly affine morphism from |C ′′| to D

to finish ensuring that morphisms in EPoCx are closed under composition.

We must see that g ◦ f is affine on cells in C ′′ and that for each cell C in C ′′,

g ◦ f(C) is contained in a single cell of E . Let C ∈ C ′′. Then C ⊂ S for some

S ∈ C ′. Because f is strictly affine, f |S is affine and therefore f |C is affine. Next, by

definition, C = S ∩ f−1(Y) for some S ∈ C ′ and some Y ∈ D′. This implies that

f(C) ⊂ Y for some polyhedron Y ∈ D′. Because g is strictly affine, g|Y is affine,

so g|f(C) is affine. Furthermore, because g is strictly affine, g(Y) is contained in a

single cell E ∈ E , so g(f(C)) is also contained in that same cell.

Next, we show associativity. Function composition on sets is already

associative. Thus, we only need to ensure that the subdivision morphism associated

with H ◦ (G ◦ F) is equal to the subdivision associated with (H ◦G) ◦ F .

Let F : C → D, G : D → E and H : E → C(F) be morphisms in EPoCx,

with associated subdivisions Cf , Dg and Eh respectively. The cells of the subdivision

associated to H ◦ (G ◦ F) are given by the following:

Ch(gf) = {T ∩ (g ◦ f)−1(Z) | T ∈ Cgf , Z ∈ Eh}

where Cgf = {S ∩ f−1(Y) | S ∈ Cf , Y ∈ Dg}.

In comparison, the cells of the subdivision associated to (H ◦G) ◦ F are given

by the following:

C(hg)f = {S ∩ f−1(X) | S ∈ Cf , X ∈ Dhg}

where Dhg = {Y ∩ g−1(Z) | Y ∈ Dg, Z ∈ Eh}

Compressing these set definitions, we have:

25

Ch(gf) = {(S ∩ f−1(Y)) ∩ (g ◦ f)−1(Z) | S ∈ Cf , Y ∈ Dg, Z ∈ Eh}

and

C(hg)f = {S ∩ f−1(Y ∩ g−1(Z)) | S ∈ Cf , Y ∈ Dg, Z ∈ Eh}

Written in this way, we observe that since preimages distribute over

intersection, S ∩ f−1(Y ∩ g−1(Z)) = (S ∩ (f−1(Y)) ∩ (g ◦ f)−1(Z)) and the two

sets of polyhedra (and therefore the two subdivisions) are equal.

This structure is sufficient to ensure that relevant combinatorial structure is

defined up to isomorphism between polyhedral complexes, since a composition of

morphisms in this category can only induce further subdivisions of a polyhedral

complex.

Lemma 2.3.4. In EPoCx, a strictly affine morphism F : C → D induces an

order-preserving map on the face poset of C to the face poset of D. Resultingly, if C

and D are isomorphic in EPoCx, they have order- and grade-equivalent face posets,

where grading is given by face dimension.

Proof. First, let C ≤ C ′ in C and let F : C → D be a strictly affine morphism. By

definition of strictly affine, there is a unique cell D′ ∈ D such that F (C ′◦) ⊂ D′◦.

Since C is contained in the closure of C ′, we have that f(C) is contained in the

closure of D′. So, f(C) must be contained in either D′◦ or the interior of one of the

faces of D′. The map between sets of polyhedra given by sending each cell C ∈ C to

the unique D ∈ D with f(C◦) ⊂ D◦ is thus order-preserving.

If C and D are isomorphic in EPoCx by F : C → D and G : D → C (and

f, g the corresponding induced map on underlying sets) we note that if F or G

26

FIGURE 8. Two combinatorially equivalent but nonisomorphic polyhedral
complexes in EPoCx. No affine function will send the parallelogram directly to
the trapezoid without subdivision.

includes any subdivision except the trivial subdivision morphism on their respective

polyhedral complexes then the subdivision associated with G ◦ F or F ◦ G, which

is a further subdivision, will not be the trivial subdivision, making either G ◦ F

or F ◦ G not equal to the identity in EPoCx on its respective polyhedral complex.

Thus, both F and G may be taken to be strictly affine maps and by the previous

paragraph must induce order-preserving maps on the face posets of C and D.

Furthermore the composites g ◦ f and f ◦ g induce order isomorphisms from the

face poset of C to itself and the face poset of D to itself, so the face posets of C and

D are isomorphic with isomorphisms given by the induced maps from f and g.

We observe that if f(C◦) ⊂ D◦ then g(D◦) ⊂ C◦ by the order isomorphism.

However, (g ◦ f)|C = idC so g(D) = C. By symmetry, f(C) = D. Thus, the two

cells must be topologically homeomorphic and therefore the same dimension.

Two polyhedral complexes which are combinatorially equivalent might not be

isomorphic in this category. Indeed, no affine map will send a parallelogram in R2

to a general quadrilateral in R2 even though the two polyhedra are combinatorially

equivalent (Fig. 8). We highlight this as a geometric obstruction to isomorphism,

in contrast with the more obvious combinatorial obstructions to isomorphism.

So, while the face poset is an isomorphism invariant in this category, it does not

uniquely determine each polyhedral complex even in the most simple cases.

27

We additionally wish to establish that pullbacks exist in this category and

furthermore the general construction M∈R is a pullback in this category.

Lemma 2.3.5. If F : C → Z and G : D → Z are morphisms in EPoCx with

associated subdivisions Cf and Dg then the pullback P of f and g exists and can

be characterized as the polyhedral complex whose cells can are given (possibly not

uniquely) by

{(x, y) ∈ C ×D : f(x) = g(y)}

for cells C ∈ Cf and D ∈ Dg.

Proof. We observe that P is a polyhedral complex when equipped with the given

cell structure.

Define the coordinatewise projections p1 and p2 of each cell P = {(x, y) ∈

C × D : f(x) = g(y)} to C and D. We note that p1 and p2 affine on P and their

images are contained entirely on C and D. Thus taking p1 and p2 on each cell of P

extends to strictly affine morphisms on P , thus these are morphisms in EPoCx and

the following diagram commutes:

P D

C Z

P1

P2

G

F

Observe that subdivision on P given by P1 ◦ F is equal to the subdivision on

P given by p1, which is the trivial subdivision, by construction.

Next, suppose Q is another polyhedral complex such that the following

diagram commutes:

Q D

C Z

Q2

Q1 G

F

28

Then u = (q1, q2) : |Q| → |C|× |D| is a piecewise linear map with image in |P|.

We also note the underlying set of |P| is equal to the pullback in Sets, so the map

u : |Q| → |P| is the unique map in Set respecting the commutative diagram by the

uniqueness of pullbacks in Set.

We also need to show that there is a unique choice of corresponding

subdivision of the map |Q| → |P| such that this diagram commutes. As

F ◦ Q1 = G ◦ Q2, in particular the subdivisions corresponding to both composites

must be equal. Let Qfg be this shared subdivision. We claim that setting the

subdivision corresponding to U to the same subdivision as Qfg is the unique choice

of subdivision such that the diagram commutes in EPoCx.

Selecting this subdivision does ensure that U : |Q| → |P| is a morphism

in EPoCx. Let Q be a cell in the subdivision Qfg. By construction we know that

q1|Q : Q → |C| and q2|Q : Q → |D| are affine on Q and have image in C and D

respectively, where C and D are cells of Cf and Dg respectively. Thus the product

(q1, q2) : Q → C ×D is affine. As g ◦ q1 = f ◦ q2 the image of (q1, q2) is contained in

a single cell P of P . Therefore, (q1, q2) is a strictly affine morphism.

Additionally, since the subdivisions corresponding to F ◦P1 and G ◦P2 are the

trivial subdivision on P , the composite subdivision corresponding to F ◦P1 ◦U must

equal the subdivision corresponding to U . As the composite F ◦ P1 ◦ U must have

the subdivision Qfg this must be the same subdivision corresponding to U .

Thus, not only is the choice of setwise function for U unique, but the choice of

subdivision is as well, and P is a pullback in EPoCx.

In particular, the polyhedral complex M∈R is isomorphic to the pullback in

this diagram:

29

M∈R R

M Rnf

FIGURE 9. The pullback diagram of M∈R.

2.4. The Canonical Polyhedral Complex Constructed Categorically

For fully-connected ReLU networks [23], the canonical polyhedral complex of

the network, as defined by Grigsby and Lindsey [10], encodes its decomposition

of input space into linear regions and determines key structures such as the

decision boundary for a binary classification task. Investigation of properties and

characterizations of this decomposition of input space are ongoing, in particular

30

with respect to counting the top-dimensional linear regions [26, 17, 22, 25, 28],

since these bounds give one measure of the expressivity of the associated network

architecture.

Below we provide several equivalent definitions for the canonical polyhedral

complex, and show that they are equivalent to the definition by Grigsby and

Lindsey [10].

The Canonical Polyhedral Complex

As a piecewise-affine linear function, a neural network function FN , which we

simplify to F , defines an obvious polyhedral decomposition of input space, namely

into the (largest) polyhedra on which it is affine-linear. However [10] shows the

utility of considering not only the decomposition which F itself defines, but the

common refinement of decompositions by intermediate composites.

We may define the canonical polyhedral complex C(F) as the subdivision in

EPoCx of Rn0 induced by the composite Fm ◦ ... ◦F1 cf. Definition 2.3.2, where each

of the Fi : Rni−1 → Rni consists of the subdivision given by R(i) followed by the

piecewise affine function, as described.

For implementation, we prefer a definition through explicit identification of

cells, using further language from [10]:

Definition 2.4.2 ([10], Definition 8.1). If F is a ReLU neural network, the node

map Fi,j is defined by:

πj ◦ Ai ◦ Fi−1 ◦ ... ◦ F1 : Rn0 → R

31

Remark 2.4.3. Note here that πj is projection on to the jth coordinate, i indexes

layers, and j indexes neurons. For fixed i, the solutions to πj ◦ Ai = 0 are

hyperplanes in Rni−1 , which together form a hyperplane arrangement described

earlier. These hyperplane arrangements are equipped naturally with the structure

of a polyhedral complex. Recall that we denote the polyhedral complex associated

to Ai by R(i) (Definition 2.2.7).

In particular, the locus in input space where Fij = 0 is of particular interest,

and to draw analogies to hyperplane arrangements, we use the phrase “bent

hyperplane.”

Definition 2.4.4 ([10], Definition 6.1). A bent hyperplane of C(F) is the

preimage of 0 under a node map, that is, F−1
ij (0) for fixed i, j.

A bent hyperplane can contain polyhedral regions with codimension less than

one, but this occurs with zero probability (see Figure 10). The conditions under

which the bent hyperplanes’ maximal cells are always codimension 1 are listed by

[10].

The canonical polyhedral complex C(F) consists precisely of the polyhedra

in Rn0 which may be described by selecting one polyhedron Ri ⊂ Rni from each

hyperplane arrangement R(i), considering the preimages (Fi−1 ◦ .. ◦F0)
−1(Ri) in Rn0 ,

and then taking the intersection of the resulting polyhedra, which we formalize in

Definition 2.4.5.

The original definition of the canonical polyhedral complex C(F) uses the

notion of a “level set complex,” defined by [12]. We streamline the definition,

working more directly in two ways.

32

FIGURE 10. Top: A bent hyperplane with nongeneric behavior (some cells are
codimension 0). Bottom: A more general codimension-1 bent hyperplane.

33

Definition 2.4.5 (Canonical Polyhedral Complex C(F), cf. [10], Definition 6.7).

Let F : Rn0 → R be a ReLU neural network with m layers and let F(k) and F (k) be

as in 2.1.3. Define C(F) as follows:

1. (Forward Construction) Define C(F(1)) by R(1) (Definition 2.2.7). Then let

C(F(k)) be defined in terms of C(F(k−1)) as the polyhedral complex consisting

of the following cells:

C(F(k)) =
{
C ∩ F−1

(k−1)(R) : C ∈ C(F(k−1)), R ∈ R(k)
}

Then C(F) is given by C(F(m)).

2. (Backwards Construction) Define C(F (m)) by R(m). Then C(F (k−1)) can be

defined from C(F (k)) as the polyhedral complex consisting of the following

cells:

C(F (k−1)) =
{
R ∩ F−1

k−1(C) : R ∈ R(k−1), C ∈ C(F (k))
}

Then C(F) is given by C(F (1)).

Remark 2.4.6. While this defines C(F) mathematically, this does not describe a

tractable algorithm for its computation, which is forthcoming in Section 4.1.

It is established by [10] and [12] that each intermediate complex C(Fk ◦ ... ◦

F1) is a polyhedral complex which subdivides the previous one, and resultingly F

is affine linear on each cell of C(F). However, this is also immediately apparent

by considering C(F) as representing a subdivision morphism corresponding to a

composite in EPoCx. So, the work necessary to define EPoCx pays off here:

34

Lemma 2.4.7. The forward and backwards definitions of C(F) are equivalent.

Proof. Each of the Fi be identified with the morphism in EPoCx consisting of

subdividing Rni into R(i) followed by the layer map Fi as a function. The first

definition inductively expresses the subdivision of Rn0 given by the the morphism

Fk ◦ (Fk−1 ◦ ... ◦ F1):

C(F(k)) =
{
C ∩ F−1

(k−1)(R) : C ∈ C(F(k−1)), R ∈ R(k)
}

The second definition inductively expresses the subdivision of Rnk−1 given by

(Fm ◦ ... ◦ Fk+1) ◦ Fk:

C(F (k)) =
{
R ∩ F−1

k (C) : R ∈ R(k), C ∈ C(F (k+1))
}

Composition of morphisms in EPoCx is associative, so the resulting

expressions are equal.

35

CHAPTER III

ACCESSING THE TOPOLOGY OF NEURAL NETWORK FUNCTIONS

3.1. Piecewise Linear Transversality

The notion of transversality on cells will be critical for the next section.

Function transversality is discussed in textbooks such as [13].

Definition 3.1.1 ([10], Definition 4.5). Let X be a polyhedral complex of

dimension d in Rn, let f : |X| → Rr be a map which is smooth on all cells of X

and let Z be a smoothly embedded submanifold (without boundary) of Rr. We say

f is transverse on cells of X to Z and write f ⋔X Z if the restriction of f to the

interior C◦ of every k-cell C of X is transverse to Z when 0 ≤ k ≤ d.

Remark 3.1.2. By convention the interior of each 0-cell is nonempty. Otherwise,

we would need to add the condition that the restriction of f to every 0-cell of X is

transverse to Z.

Lastly, we will need the following notions of generic regarding hyperplane

arrangements and neural networks, respectively.

Definition 3.1.3 ([10] Definitions 2.7, 2.9). A hyperplane arrangement in Rn

is called generic if each all sets of k hyperplanes intersect in an affine space of

dimension n− k. A neural network is called generic if all of its affine maps Ai have

generic corresponding hyperplane arrangements, R(i).

In [10] it is also established that the union of bent hyperplanes of C(F) form

the (n0 − 1)-faces of C(F) with probability 1. In the next section we expand on this

characterization for lower-dimensional subcomplexes.

36

3.2. Supertransversal Neural Networks

Our results apply to certain subsets of ReLU neural networks, called generic

(Definition 3.1.3) and supertransversal (Definition 3.2.1), additional technical

conditions which are nonrestrictive in light of the lemma that almost all networks

are supertransversal. That almost all networks are, additionally, generic, was

established by [10]. As a result, in all but a measure-zero subset of neural networks,

the theory developed below will hold.

Definition 3.2.1. Let F be a ReLU neural network of depth m. Let F(i) : Rni → R

be the neural network defined by the last m − i layers of F as in definition 2.1.3.

Suppose, for all 1 ≤ i ≤ n, Fi is transverse on cells of R(i−1) to the interior of all

cells of C(F (i)). Then we call F a supertransversal neural network.

FIGURE 11. (Top) A supertransversal neural network. (Bottom) A non-
supertransversal neural network.

Supertransversality ensures a analog of hyperplane arrangement genericity in

the bent hyperplane arrangement associated with a neural network. We will show

37

that supertransversality guarantees that codimensionality is preserved in each cell

under preimages. As seen in Figure 11, in a nonsupertransversal neural network,

three bent hyperplanes in R2 may intersect in a 0-cell (as highlighted), whereas

generically we would hope that they do not intersect. However, it is clear from

examining the image of F1 in the second layer that by a slight perturbation of the

hyperplane associated with F2 will lead to another supertransversal neural network.

Indeed, even though the condition of network supertransversality is stronger than

the notion of network transversality in [10] (Definition 8.2), it still holds on a full-

measure subset of neural network parameter space, as we show here.

Lemma 3.2.2. Supertransversality is full measure in RP , where P is the set of

network parameters.

Proof. First, a single-layer neural network F (m) : Rnm → R is trivially

supertransversal; R has one cell which is already full dimension.

Next suppose that F (k) is supertransversal, and let Fk−1 : Rnk−1 → Rnk be

a network layer. Suppose it is the case that Fk−1 is nontransverse on some cell R

of R(i−1) to some cell C of C(F(k)). If so, it must be the case that Fk−1(R) ∩ C is

nonempty and T (Fk−1(R)) ⊕ T (C) ̸= Rnk . Call T (Fk−1(R)) ⊕ T (C) by TR,C . If

TR,C ̸= Rnk−1 , then it is instead a vector subspace of less than full rank, and an

affine translation of C(F (k)) by any vector in Rnk − TR,C will ensure Fk−1(R) ∩ C is

subsequently empty, since F is affine on R and C contained in an affine subspace of

Rnk .

Let δR,C be the minimum distance between pairs of points in Fk−1(R) and C.

Since these cells are closed (though not necessarily compact), this is well defined,

and furthermore if R ∩ C = ∅, then δR,C > 0. Let δ = {min δR,C : Fk−1(R) ∩ C = ∅}.

Then δ > 0.

38

Since there are finitely many cells R and C, the set

Rnk−1 −
⋃
R,C

TR,C

is generic in Rnk−1 , where the union is taken over only those cells where TR,C is not

full rank. An affine translation of C(F (k)) by any vector in this set with magnitude

greater than 0 but less than δ yields a supertransversal network.

Since this can be performed regardless of the weights and biases of Fk, and an

affine translation of the input space of F (k) does not change its supertransversality

properties, the network Fk−1 ◦ F (k) is supertransversal on a full-measure subset of

parameter space, which completes our inductive step.

In order to establish additional properties regarding the existence of cells

satisfying certain relations in supertransversal networks, we will rely on the

following lemma.

Lemma 3.2.3. Let f : M → Rn be a PL map affine on cells of an embedded

polyhedral complex M ⊂ Rm. Let N be a polyhedral complex embedded in Rn.

Suppose f is transverse on cells of M to the interior of all cells of N .

If C ≤ C ′ is a face relation in M , D ≤ D′ is a face relation in N , and

f(C◦) ∩D is nonempty, then f(C ′◦) ∩D′◦ is nonempty.

Proof. First we show that f(C◦) ∩ D′◦ is nonempty. If D = D′ then we are done.

Otherwise, consider f(C), which is the image of the polyhedron C under an affine

map. If the affine span A of f(C) does not intersect the interior of D′, then A ∩D′

is contained in a proper face E ′ of D′. In this case, T (f(C)) ⊕ T (E ′) ̸= Rn , and f

is not transverse on C to E ′. Therefore, A ∩D′◦ is nonempty.

39

Within A we have ∂(A ∩ D′) ⊆ A ∩ ∂(D′). As a result letting x ∈ C◦ and

f(x) ∈ D′, every open neighborhood of f(x) in A must have nontrivial intersection

with the interior of D′. Take an open neighborhood N of x in C◦. We note that

f : C → A is a submersion (locally a surjective linear map). Thus f(N) is open in

A, and N ∩D′◦ must be nonempty, so C◦ ∩ f−1(D′◦) is nonempty.

To see that D′◦ ∩ f(C ′◦) is nonempty, take x ∈ C◦ with f(x) ∈ D′◦. If N is

a neighborhood of f(x) in D′◦ then f−1(N) must be an open neighborhood of x in

M , containing x ∈ C. As C ⊂ ∂C ′, f−1(N) ∩ C ′ is nonempty, so f(C ′◦) ∩ D′ is

nonempty.

3.3. Combinatorially Characterizing C(F) with Sign Sequences

For networks with N neurons, binary strings of length N (which we will

denote using -1 and 1) may serve as a labeling scheme to describe which neurons

are active at a point in a ReLU network’s input space [18] on the interior of cells of

C(F). To encode all face relationships, we use sign sequences, which include 0 as a

possible sign.

An algorithm for the computation of the sign sequence complex appears in

section 4.1.

Sign Sequences

The combinatorial characterization of C(F) is through the following

combinatorial construction called sign sequences. The primary use of these sign

sequences is to track face relations, but first we show that sign sequences are

sufficent to list the cells of C(F). Though this is proven in various forms elsewhere

[19], we provide a different proof using differential topological methods.

40

Definition 3.3.2. Define s : C(F) → {−1, 0, 1}N by sij(C) = sgn(Fij(C)). We call

s(C) the sign sequence of the cell C.

This construction is used in the theory of oriented matroids and hyperplane

arrangements, cf. [1], and in particular the construction may be used to identify

polyhedra in an affine hyperplane arrangement by denoting which halfspaces and

hyperplanes were intersected to form that region. However, many of the properties

fail to hold for arbitrary PL manifold arrangements. We must show that the

construction still provides a combinatorial description of the polyhedra of the

network:

Theorem 3.3.3. The function s is well-defined and injective on cells of C(F).

Proof. To see that s is well-defined, suppose x1, x2 ∈ Rn0 are such that

sgn(Fij(x1)) ̸= sgn(Fij(x2)) for some i, j. We wish to show that x1 and x2 are

not in the same cell of C(F). However, we see that the images Fi−1 ◦ ... ◦ F1(x1)

and Fi−1 ◦ ... ◦ F1(x2) cannot be in the same cell of of R(i) (the induced polyhedral

decomposition of Rni−1 by Ai), because they differ in their location relative to the

jth hyperplane. Thus x1 and x2 are in different cells of C(F(i)). As C(F) is a further

polyhedral subdivision of C(F(i)), x1 and x2 are in different cells of C(F). So, s is

well defined.

Next, suppose C0 and C1 are cells such that s(C0) = s(C1). Let x0 ∈ C0 and

x1 ∈ C1. We wish to show C0 = C1. We proceed by induction on layers in the

forward direction.

We show first that, as a base case for induction, x0 and x1 are in the same cell

in C(F1).

41

Indeed since s(C0) = s(C1), x0 and x1 are contained in the same cell of R(1),

following the corresponding fact for hyperplane arrangements, this immediately

means that x0 and x1 are in the same cell of C(F1).

Now suppose as an inductive hypothesis that x0 and x1 are in the same cell

of C(F(k)). Call y0 = F(k)(x0) and y1 = F(k)(x1). Because sgn(F(k+1)j(x1)) =

sgn(F(k+1)j(x2)) for all 0 ≤ j ≤ nk, this implies that y0 and y1 are in the

same intersection of halfspaces and hyperplanes in the co-oriented hyperplane

arrangement Ak+1, that is, the same cell of R(k+1). Therefore, as x1 and x2 are

in the same cell C of C(F(k)) and their image is in the same cell C ′ of R(k+1) we

conclude x0 and x1 are in the same cell in C(F(k+1)) given by

C ∩ (F(k+1))
−1(C ′)

That this is a unique polyhedral cell in C(F(k+1)), follows the work in [12],

Lemma 2.5. By induction, as F is composed of finitely many layers, x0 and x1 are

in the same cell of C(F).

FIGURE 12. A simple manifold arrangement which is not sign codable because
there are two PL submanifolds, but more than four regions.

The injectivity of s is special to constructions arising from hyperplane

arrangements, and not general manifold arrangements. Indeed, a set of

codimension-1 PL submanifolds may easily subdivide Rn in a way which this

injectivity fails; see Figure 12.

42

FIGURE 13. An example of a manifold arrangement satisfying strong hypotheses
which is still not sign codable.

Definition 3.3.4. Let M1, ...,Mm ⊆ Rn be codimension-1 co-oriented manifolds

embedded in Rn, with M+
i and M−

i in Rn corresponding to the two connected

components in Rn\M and M0
i corresponding to M itself. We then call the manifold

arrangement sign codable if the set M s1
1 ∩ ... ∩ M sm

m is connected for all sign

sequences {si}mi=1 ∈ {−, 0,+}m

Even if Mi are codimension-1 connected co-orientable PL manifolds embedded

in Rn whose intersection subdivides Rn into polyhedral regions, and the resulting

polyhedral subdivision is dual to a cubical complex, it is possible that the manifold

arrangmeent is not sign-codable. As seen in Figure 13, labeling each region by

its location relative to the co-orientation of those manifolds fails to be injective.

The pictured example depicts 3 PL submanifolds in R2 whose embedding has the

aforementioned properties, but there are too many cells (14 vertices, 30 edges, and

17 2-gons) to be labeled by the 27 possible labelings in {−1, 0, 1}3.

Later, we will show that not only is C(F) sign codable, but its full intersection

poset can be reconstructed from vertices and sign sequences. It is more traditional

to work “top down,” considering the top dimensional polyhedra and their faces.

But unlike theories such as hyperplane arrangements and oriented matroids, there

43

is no guarantee that knowing the sign sequences of the top-dimensional regions

allows one to deduce the sign sequences of the zero-dimensional regions (circuit-

cocircuit duality does not hold). The following example is an explicit illustration of

this fact.

Theorem 3.3.5. There exists a pair of networks F1 and F2 such that the set

of strings encoding the activation patterns in the interiors of the cells of C(F1)

and C(F2) are equal, but the polyhedral complexes C(F1) and C(F2) are not

combinatorially equivalent.

FIGURE 14. Two neural networks with the same sign sequences of the top
dimensional regions but different combinatorics.

Proof. We provide an example in Figure 14. Two neural networks F1 : R2 → R4 →

R and F2 : R2 → R4 → R have the pictured canonical polyhedral complexes (not

to scale). One has a bounded decision boundary, whereas the other is unbounded.

However, both have identical sign sequences of their top-dimensional regions, given

by:

44

(-1, 1, -1, 1, 1), (-1, 1, 1, -1, 1), (1, -1, -1, -1, 1),

(-1, 1, -1, 1, -1), (-1, -1, 1, -1, 1) (-1, 1, 1, 1, -1),

(1, -1, -1, 1, -1), (1, -1, 1, -1, 1), (-1, -1, 1, 1, -1),

(-1, 1, 1, 1, 1), (-1, -1, -1, 1, -1), (1, -1, -1, 1, 1)

(-1, -1, 1, 1, 1), (1, -1, 1, 1, -1), (1, -1, 1, 1, 1),

(1, 1, -1, 1, -1), (1, 1, -1, 1, 1)

That these canonical polyhedral complexes have the same set of sign

sequences of their top-dimensional regions is more easily seen by looking at the

differences between the two pictures, which only depend on the blue “decision

boundary.” Each region which is subdivided into two regions by the blue bent

hyperplane in the left image is also subdivided by the blue bent hyperplane in the

right image.

The two canonical polyhedral complexes pictured have differing combinatorics

and differing topology of their decision boundaries, but the set of sign sequences

of the top dimensional regions is equal (see Theorem 3.3.5). Explicit weights and

biases for this construction are available in the supplementary materials, and

additionally recorded explicitly in Appendix A.

Dimension of Cells from Sign Sequences

As shown in [10], it is not always the case that the preimages F−1
ij (0)

are (n0 − 1)-dimensional. In order to establish dimension of cells in general,

supertransversality and genericity are key. In fact, the sign sequence of a cell is

determinative under these conditions, as it encodes the dimension of the cell.

45

Lemma 3.3.7. Let F be generic and supertransversal. Let C be a k-cell of C(F).

Then s(C) has exactly n0 − k entries which are zero. That is, C is contained in the

intersection of n0 − k bent hyperplanes.

Proof. This is certainly true for any neural network of the form G ◦ Fm

satisfying the condition that Fm is generic as a layer map, as the bent hyperplane

arrangement is equal to the hyperplane arrangement, which is a generic hyperplane

arrangement (Definition 3.1.3).

We proceed via induction, using the backwards construction of C(F)

(Definition 2.4.5).

Suppose by way of induction F (i) = G ◦ Fm ◦ ... ◦ Fi, and that C(F (i)) satisfies

the condition that C ∈ C(F (i)) is a k-cell if and only if C is contained in exactly

ni − k bent hyperplanes.

Now, suppose Fi−1 is transverse on the cells of R(k−1) to C for all C in

C(F (i)). Consider F (i−1) = G ◦ Fm ◦ ... ◦ Fi ◦ Fi−1.

Let C ′ be a cell in C(F (i−1)). By definition, C ′ is given by F−1
1 (C) ∩ D for

some C ∈ C(F (i)) and some minimal (by inclusion) cell D of R(i−1). In particular,

we may assume C ′ is not contained in any proper face of D. If D has codimension

ℓ, then D is in the intersection of exactly ℓ hyperplanes in R(i−1) by the genericity

of F . Because F1 is transverse on cells of R(i−1) to C, codim(C ′) in the interior of

D is equal to codim(C) = k, with total codimension k + ℓ.

As C is contained in the intersection of exactly k bent hyperplanes in C(F (i)),

C ′ is contained in the intersection of the preimage of precisely those same k bent

hyperplanes in C(F(i−1)). Furthermore C ′ is contained in the intersection of the ℓ

hyperplanes in R(i−1) which intersect to form D, and no additional hyperplanes

as C ′ is not contained in any proper face of D. Thus C ′ is contained in the

46

intersection of precisely k + ℓ bent hyperplanes in C(F(i−1)) and has codimension

k + ℓ. The number of zeros in s(C ′) must be equal to the number of bent

hyperplanes it is contained in, by definition. This completes the inductive step.

3.4. Algebra of Sign Sequences

Now we can define a key algebraic structure which will lead to the ability

to deduce the structure of C(F) in general, via a particular algebraic structure

which allows us to generate all sign sequences of cells from the sign sequences of the

vertices. The following holds for all supertransversal networks (and does not rely

on the layer maps being generic). It is a result of the existence of a multiplicative

“composition” derived from oriented matroid theory [3].

Lemma 3.4.1. Let F be a supertransversal neural network.

If C and D are two cells of C(F), the product S(C) · S(D) given by:

(S(C) · S(D))ij =


S(C)ij if S(C)ij ̸= 0

S(D)ij otherwise

is well-defined as a product between sign sequences. That is, there exists a cell

E in C(F) such that S(C) · S(D) = S(E) for all such cells C and D.

Furthermore, C ≤ E, that is, C is a face of E or equal to E.

Thus, sign sequences of a supertransversal network form a semigroup.

Proof. First, this is true for any single-layer network F : Rnm → R, since it is true

for hyperplane arrangements; see [1], Section 1.4 for a treatment.

Now, suppose these properties hold for any supertransversal k-layer neural

network and inductively, using the backwards construction of C(F), let F be a k+1-

layer supertransversal neural network. Then F (2) = G ◦ Fk+1 ◦ ... ◦ F2 is a k-layer

47

supertransversal network and our inductive hypothesis holds for C(F (2)). We will

denote the sign sequences of cells with respect to C(F (2)) by S(2)(C).

Let C and D be cells of C(F) = C(F (2) ◦ F1). Then C = R1 ∩ F−1
1 (C ′)

and D = R2 ∩ F−1
1 (D′), for cells R1, R2 in R(1) and cells C ′, D′ ∈ C(F (2)), by the

definition of C(F). Now, by inductive hypothesis S(2)(C ′) · S(2)(D′) = S(2)(E ′) for

some cell E ′ in C(F (2)), and C ′ is a face of E ′.

Denote the sign sequences with respect to R(1) as S1. Since R(1) is a

polyhedral complex induced by an affine hyperplane arrangement, S1(R1) · S1(R2) =

S1(R3) for R3 a region in R(1), and R1 is a face of R3 or equal to R3.

Let E = R3 ∩ F−1
1 (E ′). We wish to show that S(C) · S(D) = S(E), and that

C is a face of E or equal to it. Now, S(C) is obtained by S1(R1) concatenated with

S(2)(C ′), and likewise for the other cells. Since S1(R1) · S1(R2) = S1(R3) by the

corresponding hyperplane arrangement and S(2)(C ′) · S(2)(D′) = S(E ′) by inductive

hypothesis, by concatenation this gives S(C) · S(D) = S(E).

To see that E is nonempty we must note that since F is supertransversal, F1

is transverse on R1 to C ′, and apply Lemma 3.2.3 to obtain that R◦
3 ∩ F−1

1 (E ′)◦ is

nonempty.

Lastly, we recall from Lemma 2.2.6 that C ′ ≤ E ′ and R1 ≤ R3 implies that

(F−1
1 (C ′) ∩R1) ≤ (F−1

1 (E ′) ∩R3), that is, C ≤ E.

The following properties of the product defined above continue to follow from

similar constructions in hyperplane arrangements [1].

Lemma 3.4.2. For all supertransversal networks, the following relations hold for

all C and D in C(F), where the relation ≤ denotes “is a face of”:

1. C ≤ D if and only if S(C) · S(D) = S(D)

48

2. S(C) · S(D) = S(D) · S(C) if and only if there is a cell E with D ≤ E and

C ≤ E.

3. S(C) · S(D) = S(C) if and only if all bent hyperplanes which contain D also

contain C.

Proof.

1. We have already shown if S(C) · S(D) = S(D) then C ≤ D. If S(C) · S(D) ̸=

S(D) then there is some index where sij(C) = ±1 and sij(D) = −sij(C). If

so, then C and D are sent to opposite sides of some hyperplane in some layer;

this cannot occur if C ≤ D.

2. Immediate from the previous statement and Lemma 3.4.1.

3. S(C) · S(D) = S(C) if and only if for all node maps for which Fij(C) = 0,

we also have Fij(D) = 0. But this is true if and only if all bent hyperplanes

which contain C also contain D.

FIGURE 15. “Multiplication” of polyhedra on the sign sequence cubical complex,
pictured geometrically.

49

TABLE 1. The sign sequence of the cells in Figure 15, together with some
computed products.

Cell Sign Sequence

v (1,1, 0, 0)

E (1,1,-1, 0)

C (1,1, 1,-1)

v · C (1,1, 1,-1)

v · E (1,1,-1, 0)

These characterizations are primarily useful for using code to track face

relations via a discrete structure. As implemented in Section 3.6, we can use these

to compute the topological properties of the decision boundary of a network using

sign sequences. These properties can be seen illustrated in Figure 15. If the three

hyperplanes H1,1, H1,2 and H1,3 are co-oriented towards the cell C, and H2,1 is co-

oriented away from the cell C, the pictured cells have the sign sequences indicted in

Table 1. The product is computed and pictured for certain pairs of cells.

3.5. The Duality Between C(F) and S(F)

We now assemble the ideas from the previous sections to present a duality

between the canonical polyhedral complex of a generic, supertransversal neural

network and a pure cubical complex, providing new structure to the combinatorics

of the canonical polyhedral complex. This duality sends k-cells in C(F) to (n0 − k)-

cells of the cube. We will call this subcomplex S(F).

This shows that for a given neural network the properties of the sign sequence

complex make it straightforward to compute the combinatorial structure of the

polyhedral complex of a network across all dimensions upon obtaining the sign

sequences of the vertices of C(F).

50

Definition 3.5.1. Here, we use the term pure to refer to a polyhedral complex

where every face is contained in some other polyhedron of uniform top dimension.

In this case every maximal cell of S(F) is an (n0)-cell.

In particular, vertices of C(F) correspond to n0-cells of S(F). Since the

complex S(F) is pure and n0-dimensional, knowing which n0-cells are present is

sufficient to determine all face relations in the subcomplex of the hypercube. An

important corollary is:

Corollary. For generic, supertransversal neural networks, the sign sequences of the

vertices of C(F) determine the face poset of the polyhedral complex C(F).

For a visualization, see Figure 16. On the left we depict C(F) for a specific

neural network function F : R2 → R3 → R. The three straight lines and the

solid colored regions together form R(1), which is also C(F1). In the middle we see

that F1 : R2 → R3 is piecewise linear on cells of C(F1). The hyperplane in R3 is

the hyperplane associated with A2 : R3 → R, and this hyperplane together with

the two halfspaces on either side of it form R(2). The cells of C(F) on the left are

mathematically determined by taking one region R of R(2), considering its preimage

F−1
1 (R), and taking the intersection of this preimage with a cell of C(F1). On the

right, the geometric dual sign sequence complex S(F) is superimposed in white

over C(F), with one vertex for each region of C(F). As we prove in general, S(F) is

cubical, with each two-cube (quadrilateral) containing a unique vertex of C(F).

Theorem 3.5.2. For each generic, supertransversal neural network F : Rn0 → R

with at least n0 hidden units in the first layer, the image of the map S : C(F) →

{−1, 0, 1}n uniquely defines a pure n0-dimensional subcomplex of the hypercube

[−1, 1]N endowed with the product CW structure. We call this subcomplex S(F).

51

FIGURE 16. (Left) A canonical polyhedral complex and (Right) its geometric dual.

In the image, the vertices in S(F) correspond to n0-cells in C(F), and in general

the k-cells of S(F) correspond to codimension-k cells of C(F).

Proof. Recall that cubical faces of [−1, 1]N (with its product CW structure) can be

identified by sequences of {−1, 0, 1}N .

First if F has at least n0 hidden units in the first layer and it is generic, then

C(F) contains vertices as some of its cells, since the intersection of n0 hyperplanes

in general position in Rn0 is a point. Since C(F) is a connected polyhedral complex,

if any of its polyhedra have vertices, then all of them do (see [11], Corollary 5.29).

For any C ∈ C(F) there is a vertex v ≤ C. There are n0 coordinates where

S(v) = 0 by Lemma 3.3.7. Furthermore S(v) · S(C) = S(C) by Lemma 3.4.1. Thus

S(C) is equal to S(v) except those places where S(v) = 0. But this is equivalent

to the condition that the n0-cell S(v) ∈ S(F) has S(C) on its boundary. So, every

in the image of S(F) is contained in an n0-cube which is also in the image of S(F).

(There are no n0 + 1-cubes in the image of S(F) by Lemma 3.3.7.) Thus the image

of S(F) is “pure n0-dimensional” in the sense that every cube in S(F) is a face of

an n0-cube in S(F).

Next we show that for a given n0-cube in the image of S(F), all its faces

are in the image of S(F). Our strategy is to show that there exists an edge

corresponding to each possible sign sequence incident to the corresponding vertex.

52

Then we may apply the sign sequence multiplication in Lemma 3.4.1 to obtain all

remaining faces. This is equivalent to establishing that a vertex v of C(F) has 2n0

neighboring edges, each of which are obtained by replacing a single 0 from S(v)

with 1 or −1. Of course, any vertex must be incident to at least n0 edges since it

belongs to a polyhedral complex with domain Rn0 , so we show that if there exists

an edge incident to v with Sij(E) = 1 while Sij(v) = 0, then there also exists an

edge with Sij(E) = −1 (and, by symmetry, vice versa).

Suppose that this is not the case for some v. Then without loss of generality

there exists an earliest (i, j) node map satisfying that Fij(v) = 0 but for all edges

E neighboring v in C(F), Fij(E) ≥ 0, since for each edge E, S(E) differs from

S(v) only in one location. Since the edge set of v is nonempty, this implies that Fij

cannot be affine on any affine subspace of Rn0 containing v unless Fij = 0 on that

subspace.

As v cannot be a vertex of C(F(i−1)), since it is contained in the intersection

of fewer than n0 bent hyperplanes before Fij, it is contained in the interior of a

larger cell C in C(F(i−1)). As a result, Fij is affine on the interior of C. But by the

previous paragraph, this means that Fij(C) = 0, and thus F(i) is not transverse

on C to a cell contained in R(i), and cannot be transverse on C to any polyhedral

subdivision (including C(F (i))). This implies that there is a layer of F(i−1) which

fails to be transverse on cells, which is a contradiction.

So, if v is a vertex of C(F), then for each node map Fij such that Fij(v) = 0,

v has an incident edge with Fij(E) = 1 and an incident edge with Fij(E) = −1 by

the same argument. We note by supertransversality that S(E) must have n0 − 1

entries which are zero. Also, since v is incident to E, by Lemma 3.4.2, S(E) must

have the same entries as S(V) except possibly where S(v) = 0. This means S(E) =

53

S(v) except for at the (i, j) coordinate, as required. Since this occurs at all node

maps for which Fij(v) = 0, we are done.

Once the existing cells in S(F) have been located, we only need to establish

an explicit duality. The majority of the work has already been done.

Lemma 3.5.3. The face poset of C(F) is the opposite poset of the face poset of

S(F), and the (mod-two) cellular boundary map of S(F) is dual to the (mod-two)

cellular boundary map of C(F).

Proof. In [−1, 1]N , the cells consist of cubes which are uniquely defined by their

center, at points given by sequences in {−1, 0, 1}N . The dimension of each cube

is given by the number of 0 entries in this sequence. The cellular boundary of this

cube consists of cells one dimension lower, with a 1 or −1 replacing a 0 in the sign

sequence, providing the (mod two) boundary in S(C). In C(F), if s(C) is related to

s(D) by replacing one zero entry of C with a 1 or −1, by Lemmas 3.4.2 and 3.3.7

that this is equivalent to C ≤ D and dim(C) + 1 = dim(D), which is equivalent

to C being a face of D, and additionally being a term of the (mod two) cellular

boundary of D.

We next describe some possible applications of the sign sequences of C(F)

before discussing how exactly to obtain the vertices in C(F) for a given neural

network function.

3.6. Computing Decision Boundary Topology from S(F)

The characterization of C(F) as dual to a cubical complex permits us to

define a straightforward mod-two cellular boundary, which is the transpose of

54

FIGURE 17. Left: The decision boundary of a randomly-initialized neural network
F : R2 → R, in red, and the canonical polyhedral complex. Right: A graph of the
function F .

the coboundary operation on the cubical complex, as seen in Lemma 3.5.3. This

enables the computation of the Betti numbers of the decision boundary.

In practice, if C is a polyhedron in C(F), then replacing one location for

which S(C)ij = 0 with ±1 gives the sign sequence of a polyhedron containing

C, and doing this operation for all locations computes all terms in the cellular

coboundary of C (ignoring orientation). We recover the decision boundary of a

network as the subcomplex of cells C in C(F) whose faces D, including vertices,

all satisfy F (D) = 0. By locating the vertices in S(F) which have a 0 as the last

entry in their sign sequence, this coboundary operation, with image restricted to

those cells whose last sign sequence entry is zero, gives a chain complex of cells of

the decision boundary, for example as pictured in Figure 17.

In general, the presence of unbounded cells makes this map not quite

correspond to a cellular chain complex. In particular, not every edge has

two vertices. By adding a single ‘vertex at infinity’ to unbounded edges, the

corresponding chain complex has a straightforward interpretation as the chain

55

FIGURE 18. Left: The star of x in M . Middle: A cone neighborhood for x in M .
Right: A link complex for x in M .

complex of the compactification of the decision boundary within the one-point

compactification of Rn.

Eplicit implementation of this algorithm is provided in the code repository

provided in the supplementary material.

3.7. Local Combinatorics of Vertices for PL Morse Theory

The topology of sublevel and level sets for neural networks may also

be approached through Piecewise Linear (PL) Morse theory. There is no one

generally accepted approach to PL Morse theory. The thesis [12] provides a general

framework which depends on the following local constructions at vertices; see

Figure 18.

Definition 3.7.1 ([12], pgs. 15-16, 29). Let M be a polyhedral complex, and let

x ∈ |M |◦. The star of x in M is the union of all polyhedra which have a face in x.

A cone neighborhood for x in M is a compact neighborhood of x in M which is

equal to the cone on x with its boundary, L, called the link of P . A link complex

of x in M is a polyhedral complex which may serve as the link of x in M .

It is always possible to find a link complex for x in M which is contained in

its star.

56

FIGURE 19. Left: An exemplar PL critical point of index 1 on the standard cross-
polytope in R2. Right: The exemplar PL regular point.

Combining [12], Definition 3.1 with Thm. 3.11, we see that the following may

be used as a definition for PL Morse critical points with index i (See Figure 19).

Definition 3.7.2. Let M be a combinatorial d-manifold and let f : |M | → R be

piecewise affine on cells. Let x ∈ |M |. Let St(d) be the standard cross-polytope in

Rd centered at the origin o and define fi : St(d) → R by

fi(x1, .., xd) =
i∑

k=1

−|xk|+
d∑

k=i+1

|xk|

If there are combinatorially equivalent link complexes for x and o contained in

the stars of x and o such that f − f(x) and fk have the same signs at corresponding

vertices, then x is a critical point of f with index i.

The definition of PL Morse regular points is analogous, but with f : St(d) →

R defined as fi(x1, ..., xd) = x1. It is possible for individual points to not satisfy

either definition, at which point they are degenerate critical points.

Under Def. 3.1, [12] establishes that sublevel sets of a PL Morse function

behave as the sublevel sets of a smooth Morse function, in that the the homotopy

type of M≤a equals that of M≤b so long as [a, b] contains no critical points, and

57

there is an F -level preserving isotopy between them. Additionally, critical points

may only occur at vertices of M or on cells for which F is constant. However, the

theory in [12] is limited to compact polytopal complexes. In [11] we extend this

theory to the noncompact setting of the canonical polyhedral complex, and show

that flat cells (those cells on which F is constant) are the analog of critical points

for ReLU neural networks. It is likely that the theory more generally applies in the

category of Euclidean polyhedral complexes.

In [11], Proposition 6.6 we additionally jointly establish that for neural

networks F with architecture (n,m, 1) (that is, shallow neural networks with a

single hiddden layer), the criticality of individual vertices of C(F) with respect

to F can be determined by computing the gradient on the edges. However, no

such statement was established for deeper neural networks because there was no

guarantee regarding the combinatorial properties of neighborhoods of vertices.

With the work of establishing the combinatorial properties of C(F) complete, we

briefly extend these results here.

Theorem 3.7.3. If F is a supertransversal, generic neural network with no flat

cells except vertices, then a vertex v of C(F) is critical if and only if the grad-F

orientation on edges incident to v corresponding to opposite signs in each coordinate

where s(v) = 0 are either both pointing towards or pointing away from v for all

pairs.

Furthermore, the index of the critical vertex is given by the number of pairs of

edges oriented towards v.

Proof. The sign sequence of a cell C incident to v can be identified with a region of

the hyperplane arrangement induced by the coordinate axes in Rn0 by evaluating

58

sij(C) for the (i, j) entries for which sij(v) = 0. This gives a combinatorial

equivalence between the link complex of v and St(n0).

If the grad-F orientations are paired in opposite directions, the axes may be

permuted so that the edges with relative grad-F orientations towards v correspond

to the first i axes, giving a combinatorial equivalence with St(n0) with vertices

having the same signs as fi. Therefore v is critical, and i gives the index of v.

The other direction is more subtle. We exploit the fact that the described link

complex lk(v) has known connectivity and symmetry, given by the connectivity

of St(n0). Select a link complex of v such that its vertices are in general position.

Let E and Ẽ be a pair of edges with grad-F orientations toward and away from v,

respectively, and let w be the point on lk(v) ∩ E, with w̃ giving the opposite point

on lk(v) ∩ Ẽ.

This allows us to reduce this question to the problem of checking that for

any PL function on St(n0) with g(1, 0...0) = 1, g(−1, 0, ...0) = −1 and vertices

in general position, there is a combinatorial equivalence of a subdivision of St(n0)

with a different subdivision of St(n0) such that the standard PL regular f applied

at the subdivision has the same signs.

We observe that because of general position g−1(0) intersects each pair of

edges between w and w̃ in a unique point, and the reflection along the x1 = 0

plane gives a combinatorially equivalent subdivision, for which each region between

g−1(0) and the equator is combinatorially equivalent with itself via a second

reflection. This ensures that the equatorial shift map s : St(n0) → St(n0) illustrated

in Figure 20 actually gives a combinatorial equivalence between the subdivision

induced by g(0) and the standard cross-polytope, with equal signs to the standard

regular f : St(n0) → R, and v is a PL-regular point.

59

FIGURE 20. The equatorial shift map. Left: g−1(0) induces a subdivision on the
boundary of St(3) separating opposite points. Right: There is a combinatorial
equivalence sending each cell in the subdivision on the left to the corresponding
cell in the subdivision of the boundary of St(3) given by the reflection of the first
subdivision, shifting g−1(0) to the equator of St(3).

In practice, this means if the vertices of C(F) have been computed, the

critical vertices of C(F) which are not incident to unbounded edges can be

identified explicitly by evaluating F on each vertex. The grad-F orientation of each

edge is therefore away from v on the edge (v, w) if F (w) > F (v), and towards v on

that edge if F (w) < F (v).

To evaluate whether a vertex incident to an unbounded edge is critical

requires more work. Unbounded edges may be identified as those edges which are

incident to only one vertex after applying the coboundary operation. Generically,

each unbounded edge in C(F) has a sign sequence with exactly n0 − 1 zero entries,

and the vertex with exactly n0 zero entries which it is incident to can be used to

identify its direction as follows.

1. E is the intersection of n0 − 1 bent hyperplanes, the last of which occurs in

layer ℓ. This implies that E is next to a n0-cell in layer ℓ − 1 which Fℓ does

60

not collapse, that is, on which Fℓ(C) is nonzero. Identify the sign sequence of

this cell in C(F(ℓ−1)). Call this sign sequence s.

2. Find the linear equations of Hi where i are the indices for which s(E) is zero,

relative to the sign sequence s. This determines a vector v⃗ in Rn0 .

3. Let x be the unique vertex of C(F) incident to E. Its sign sequence differs

from s(E) in one (ij)-coordinate. Let Aij be affine function which is equal to

the node map Fij when restricted to C. Consider Aij(x+ v⃗).

(a) If Aij(x+ v⃗) is equal in sign to sij(E) let y = x+ v⃗.

(b) Otherwise, let y = x− v⃗.

4. Evaluate F (x) and F (y). If F (y) > F (x) then the grad-F orientation on E is

away from x, otherwise the grad-F orientation on E is towards x.

Once grad-F orientations have been obtained, to determine whether v is

a critical vertex, we apply Theorem 3.7.3. If all pairs of opposite edges to v

point in opposite directions, then v is critical, with index given by the number of

“downward-facing pairs,” which are pairs of edges both with grad-F orientation

pointing towards v.

61

CHAPTER IV

ALGORITHMS FOR COMPUTING C(F)

4.1. Näıve Computation of C(F) by Looping through Regions

In order to make use of the algorithms outlined in Sections 3.6 and 3.7, it is

necessary to obtain the canonical polyhedral complex of a neural network.

For a given neural network, sign sequences follow from locating potential

vertices, thus knowing locations of the 0 entries in its sign sequence, and then

evaluating the network to obtain its remaining signs.

We prove that the process of computing C(F) can be done iteratively

through layers, beginning with the first layer. Letting R(k) be the polyhedral

complex associated with the hyperplane arrangement in layer k, the complex

C(Fk ◦ ... ◦ F1) is given precisely by the intersection complex of C(Fk−1 ◦ ... ◦ F1) and

(Fk−1 ◦ ... ◦ F1)
−1(R(k)). (See Definition 2.4.5). To obtain the vertices of a particular

network’s canonical polyhedral complex, we may therefore begin by obtaining the

vertices corresponding to C(F1), its first layer’s canonical polyhedral complex.

Lemma 4.1.1. Let F be a supertransversal, generic neural network.

The 0-cells of C(F(1)) are given by the solutions to

{Wαx = bα : α ⊂ [n1] & |α| = n0}

where W is the weight matrix of the network and α denotes a subset of the n1

vertices.

A vertex v obtained by solving Wαx = bα satisfies si(v) = 0 iff i ∈ α.

Proof. These are the vertices of a generic, affine hyperplane arrangement.

62

The sign sequences of the top-dimensional regions which are present in C(F1)

can be determined by the sign sequences of the vertices of C(F1), ignoring signs

corresponding to neurons in later layers. The exact coboundary operation defining

how to obtain these sign sequences is described by Lemma 3.5.3.

Following the computation of the first layer, subsequent layers’ vertices

may be found by analyzing the preimage of each bent hyperplane for additional

intersections of k bent hyperplanes from the new layer together with n0 − k bent

hyperplanes from the previous layers. Since Fk−1 ◦ ... ◦ F1 is affine on each region of

C(Fk−1 ◦ ... ◦ F1), restricted to each region, Fij(x) is affine.

In order to compute the vertices of C(F) corresponding to bent hyperplanes

from further layers, we loop through regions C of C(F(k−1)) and solve systems of

linear equations arising from n0 bent hyperplanes on that region, at least one of

which corresponds to a new bent hyperplane Fkj. The following lemma guarantees

that if we select these combinations of Fij corresponding to earlier layers from only

those on the boundary of C, we are guaranteed to obtain all new vertices in C(F(k)).

Furthermore, once such an intersection x is found with new bent hyperplanes we

may determine whether the intersection belongs to the polyhedral complex by

evaluating Fij(x) at only the bent hyperplanes which were not intersected. Thus,

we do not have to determine whether sgn(Fij(x)) = 0, removing a source of floating

point error.

Lemma 4.1.2. Let F be a generic, supertransversal neural network with at least n0

hidden units in its first layer.

If C is a cell of C(Fk−1 ◦ ... ◦ F1), then Fij(C) is affine for all i ≤ k. Call the

corresponding affine map Aij : Rn0 → R. Then,

63

1. All 0-cells of C(Fk ◦ ... ◦ F1) which are contained in the closure of C and which

are not already in C(Fk−1 ◦ ... ◦ F1) are the solution to a system of n0 affine

equations, of which 1 ≤ ℓ ≤ n0 are of the form:

Akm(x) = 0

and 0 ≤ n0 − ℓ ≤ n0 − 1 equations are of the form:

Aij(x) = 0; i < k

Here, the Aij of the n0 − ℓ equations from earlier layers are selected such

that there exists a vertex of C in the intersection of the corresponding bent

hyperplanes. In other words, the remaining n0 − ℓ equations describe the affine

span of a face of C.

2. A solution to the system of equations described in (1) corresponds to a 0-cell

of C(Fk ◦ ... ◦F1) contained in the closure of C if and only if, for all remaining

(i, j) pairs with i ≤ k − 1, we have that sij(v) = sij(C).

Proof. For statement (1), suppose that v is in the closure of C, where C is a cell of

C(Fk−1 ◦ ... ◦ F1), and v is a vertex of C(Fk ◦ ... ◦ F1). By Theorem 3.5.2, v is the

solution to Fij(x) = 0 for exactly n0 node maps. Since Fij|C = Aij, then Aij(v) = 0

for those n0 node maps. If i < k for all of these node maps Fij, then in fact v is a

0-cell of C(Fk−1 ◦ ... ◦ F1). So if v is a vertex of C(Fk ◦ ... ◦ F1) and not a vertex of

C(Fk−1 ◦ ... ◦ F1), at least one of the Fij must be a node map with i = k. Thus, any

vertex of C(Fk ◦ ... ◦ F1) which is contained in the closure of C must be a solution

to a system of equations of this form. For any solution of this form to be nonempty

64

FIGURE 21. Illustration of the key step in Lemma 4.1.2

when intersecting with the closure of C, the the Aij corresponding to this system of

equations must satisfy the condition that C ∩
⋂
{x : Aij(x) = 0} is nonempty. Since

none of the Aij from earlier layers intersect the interior of C, the intersection of the

Aij are describing the linear span of a face of C, which must contain a vertex of C.

For statement (2), of course if v is a solution to the system of equations

described in (1) and also is in the closure of C, then by Lemma 3.4.2, sij(v) =

sij(C) when i ≤ k − 1, except for where sij(v) = 0, which by Theorem 3.5.2 occurs

for precisely the bent hyperplanes which were intersected to obtain sij.

In the other direction, if x is a solution to the above system of equations

but is not a 0-cell of C(F), it must not be contained in the closure of C. Then x

is contained in the interior of some other cell of C(Fk−1 ◦ ...◦F1), call it D, such that

D is not a face of C (Figure 21). If there is some bent hyperplane corresponding

to one of the remaining (i, j) pairs such that sij(D) ̸= sij(C) then we are done.

Otherwise we will see a contradiction. If S(D) = S(C) except at (i, j) pairs

corresponding to some of the Aij, then by our selection of equations earlier, there

is a face E of C which has the sign sequence equal to zero at these coordinates

(contained in the intersection of the solution of Aijx = 0). If E = D, then D is a

face of C and we have a contradiction. The only other option is that E is a proper

face of D by Lemma 3.4.2. The intersection of the solutions to Aij = 0 contains the

65

affine span of E, so the intersection of these with the closure of D is contained in a

proper face of D, and so x, an element of this intersection, cannot be in the interior

of D. This contradicts our assumption that x is in the interior of D.

This shows that if x is a solution to the above system of equations but is not

a 0-cell of C(F), then there exists some (i, j) pair with i ≤ k − 1 such that sij(x) ̸=

sij(C) and which does not correspond to the hyperplanes which were intersected.

Remark 4.1.3. When determining if a solution x to the system of equations in

Lemma 4.1.2 is a vertex of C(F(k)), we look at its sign sequence. However, its sign

relative to {Aij} is numerically unstable. We would like to guarantee it belongs to

the closure of C by evaluating the node maps which do not include Aij. A concern

is that it is contained in a different cell D with identical signs to C in C(F(k−1))

except possibly in the locations of the Aij which we intersected, which would make

this task impossible. The argument in part (2) shows this does not occur, and the

situation pictured in Figure 21 is impossible.

In summary, the following sequence of steps can be used to compute the sign

sequences of C(F), as depicted in Figure 22.

Computing Sign Sequences. To obtain the vertices of C(F), and thus the n0-

cells of S(F):

1. Compute the intersections of the hyperplanes from the first layer, as

in Lemma 4.1.1. Obtain their sign sequences by evaluating Fij on each

intersection. Restricting these sign sequences to the signs of F1j obtains

C(F1).

2. To compute C(Fi), loop through regions C in C(Fi−1). On each region C,

66

FIGURE 22. An illustration of the first algorithm for computing C(F). Upper
left: Step 1. Upper right and bottom left: Step 2, keeping the green vertices and
discarding the red ones for regions C and D respectively. Bottom right: The
complete C(F).

(a) For 1 ≤ k ≤ n0, compute the intersections of k bent hyperplanes from

the new layer with n0 − k bent hyperplanes from previous layers, the

latter of which are selected so that their intersection forms an n0 − k-face

of C.

(b) Evaluate Fij(x) for each computed intersection x. Then keep x as a

vertex of C(F) if and only if Fij(x) = Fij(C) for i ≤ k − 1, following

Lemma 4.1.2.

Explicit implementation of this algorithm is included in the code repository

provided in the supplementary material.

67

We finally discuss the question of algorithmic complexity. As deep ReLU

networks only have polynomially many regions in the number of hidden units, at

least on average at initialization [17], and the number of possible combinations of k

neurons from ni neurons together with n0 − k neurons from n0 + ... + nk−1 neurons

is also polynomial in the total number of hidden units, it is possible to obtain the

canonical polyhedral complex C(F) in polynomial expected time in the number of

hidden units.

Lemma 4.1.4. Let F : Rn0 → R be a randomly-initialized ReLU neural network

satisfying the conditions in [17].

If N =
∑m

i=1 ni is the number of hidden units of F , then the average number

of linear equations and sign sequence evaluations required for the computation of

S(F) via the algorithm above is O(N2n0+1).

Proof. The first step in Lemma 4.1.1 involves solving
(
n1

n0

)
equations, which is

O(nn0
1). Then in the the recursive step in Lemma 4.1.2, in each subsequent layer

i ≥ 2, there are an average of O((n1 + · · · + ni−1)
n0) regions to iterate through [17].

In each region, there are fewer than
(
n1+···+ni

n0

)
new equations to solve. This yields

the following big-O upper bound for the average computational complexity of this

algorithm:

nn0
1 +

m∑
i=1

(n1 + · · ·+ ni−1)
n0n1 + · · ·+ ni)

n0 ≤ Nn0 +
m∑
i=1

Nn0

Since N = n1 + · · · + nm, and each of the ni ≥ 1, it must be the case that the

depth m ≤ N , so this expression is

O(N2n0+1)

68

This is polynomial in N and exponential in n0.

We compare with some other possible näıve approaches to computing the

face relations of C(F). Existing methods of tracking which vertices are present

in a way which could hypothetically allow for tracking pairwise intersection

between cells currently track the full face poset [29, 30], and are thus storage-

intensive. Next, consider the approach of computing which regions are present and

then computing their intersections. First, näıve search for all regions’ activation

patterns in (−1, 1)N would require determining whether there are solutions to

2N linear inequalities in N variables, which would then define highly redundant

descriptions of polyhedral regions. This can be done more optimally than checking

each set of inequalities [26, 32]. However, without having tracked sign information,

to determine if two polyhedra share a face and find the dimension of that face,

requires finding whether the union of two sets of N linear inequalities is consistent

with the expectation that there will be cancellation of redundancies by the exact

equality of some linear combinations of these linear inequalities in order to observe

the existence of lower-dimensional faces. Numerical error in the expression of these

linear inequalities can thus lead to catastrophic failure in identifying shared lower-

dimensional faces, especially the dimension of those faces, as we see in Section 4.2.

4.2. Avoiding Numerical Error and Singular Matrices

The algorithm in the previous section works perfectly under the assumption

that systems of linear equations can be solved with complete accuracy. We next

account for the practical limitations which arise in floating point computation.

69

Numerical Stability of Vertex Sign Sequences and Polyhedral Intersection

We first discuss the problem of computing the sign sequence of a vertex of

C(F). Naively, if we compute a solution x to Fij(x) = 0, and then numerically

evaluate the node map Fij(x), the result may not be exactly zero due to floating

point error. However, machine epsilon-level errors obtained when solving for the

location of a vertex will not generally lead to errors in computing the sign sequence

of a vertex, for the following reasons. When determining the sign sequence of

a vertex, which of its signs are zero is determined by which hyperplanes were

intersected, and the remaining signs are stable to small perturbations, since the sets

Fij > 0 and Fij < 0 are open sets. As long as the error in computing solutions

to linear equations is small compared to the size of the cells in the polyhedral

complex, the proposed algorithm will find the correct sign sequence of each vertex,

and as a result the correct combinatorics of the polyhedral complex.

More explicitly, suppose that in step (1) we only find an approximate

intersection x̃ instead of an exact intersection x, with |x̃ − x| < ε determined

by machine precision. According to the above Lemma 4.1.2, if we do locate

the exact intersection x, determining whether this point x is a vertex of the

polyhedral complex C(F) relies only on determining the sign of Fij(x) for indices

(i, j) corresponding to the bent hyperplanes which were not intersected. Under

the supertransversality assumptions, Fij(x) is strictly nonzero in these (i, j)

coordinates. We also note that Fij is continuous, so there is an open neighborhood

N containing x where, for all x̃ ∈ N , we have Fij(x̃) = Fij(x) for all relevant i, j.

We can therefore expect that, despite possible numerical error in computing x̃, the

computation of the sign sequence of the corresponding vertex is stable under these

perturbations, since by recording which bent hyperplanes were intersected via signs

70

we have eliminated the unstable operation of determining which signs were exactly

0.

We contrast the numerical stability of this algorithm to the naive approach of

intersection of two polyhedra P1 and P2 belonging to C(F) which were computed

without tracking information about activation patterns or sign sequences. We

expect the polyhedra of C(F) to intersect in either a lower-dimensional set, or not

at all. If using a computational approach such as [32], P1 and P2 are stored in H-

representations as A1x ≤ b1 and A2x ≤ b2 then the question of whether P1 and

P2 intersect, and in what dimension they intersect, is determined by redundancy

elimination on the union of the two systems of inequalities. If the polyhedra share

a face, we expect all points of P1 to satisfy wx ≤ b and all points of P2 to satisfy

wx ≥ b for some set of weights w. Under redundancy elimination, this will resolve

to wx = b. However, once computed and stored, the H-representations P1 and P2

may not have the same entries for the row w: numerical error, arising from matrix

multiplication on different matrices (some with zeroes, and others without). This

could lead to P1 satisfying the inequality w1x ≤ b and P2 satisfying the inequality

w2x ≥ b instead, with slightly different weights w1 and w2. Even if |w1 − w2| < ε is

small, these equations could have drastically different solution sets if |w1| and |w2|

are also small, leading to numerical instability in the problem of determining the

rank of intersection of P1 and P2, requiring thresholding.

Avoiding Singular Matrices

Another possible problem which can occur during the computation of C(F)

is if the algorithm attempts to solve for an intersection of bent hyperplanes which

should not exist at all. It is possible for the matrix corresponding to the linear map

71

FIGURE 23. If F1 is the pictured layer map, it is almost impossible for any bent
hyperplane from a layer map given by F2 or later to intersect edge E, as F1(E) is
the origin.

Fi restricted to a region to be less than full rank. In this case, sometimes the region

or the boundary of the region is collapsed. For example, in Figure 23 we observe

that generically the preimage of any plane in R3 cannot intersect the edge E due to

its image under F1 being a point. Furthermore, any hyperplane intersecting image

of the the blue region under F1 must have a preimage which is parallel to E, and

generically no hyperplane will intersect the image of the purple region incident to

E. However, it may be the case that a linear algebra solver might not identify the

system as singular, and thereby seek an intersection between the bent hyperplane

and E. Once found, the intersection may even have the correct sign sequence!

However, it is possible to use sign sequences to avoid this problem to begin with,

by directing the algorithm to skip solving this system of equations.

To describe when we should not attempt to find the intersection of bent

hyperplanes in a region, we use the following lemma.

Lemma 4.2.3. Suppose F(ℓ) is generic and supertransversal. Let D be a k-cell of

C(F(ℓ)). Let Mi(D) be the count #{j | sij(D) = 1}. Call mℓ(D) = mini≤ℓ{Mi(D)}.

72

1. If mℓ(D) < k, then a set of n0 − k hyperplanes in R(ℓ+1) may intersect F(ℓ)(D)

and each other nontrivially only in a measure-zero subset of parameter space

of Fℓ+1.

2. If mℓ(D) ≥ k, then it is generic for a set of n0 − k hyperplanes in R(ℓ) to

intersect each other in the affine span of Fℓ(D) in one point.

Proof. Observe that Mi(D) gives an upper bound on the rank of Fi|F(i−1)(D). The

composite F(ℓ)|D must have rank bounded above by their minimum mℓ. Generically

in the parameter space of F(ℓ), this rank is equal to min(mℓ, k).

For the first statement, if the dimension of the affine span of F(ℓ)|(D) is less

than k, then a set of k hyperplanes intersecting this affine span will generically not

have a shared intersection within this affine span.

For 2. if mℓ ≥ k then with probability 1 the rank of F(ℓ)|D is equal to k, so

dimF(ℓ)(D) = k and a set of k hyperplanes intersecting the affine span of F(ℓ)(D)

generically intersect in a single point therein.

Therefore by computing mi(D) we may evaluate the sign sequences of a k-

cell D to determine whether intersections with n0−k hyperplanes could exist before

proceeding with their computation.

Remaining Numerical Error

In practice the floating point errors which are observed to occur when

following this algorithm appear to be when a different number of bent hyperplanes

appear to converge at a single point than should under supertransversality, due to

insufficient resolution; that is, genericity failures. Analyses of when this may occur

are given in section 5.1.

73

4.3. An Alternative Algorithm

The given algorithm in Section 4.1 is not completely efficient, as it computes

the possible location of intersections multiple times. Each vertex is contained in

2n0 regions, so searching all regions for each vertex locates that vertex 2n0 times.

Leveraging polyhedral geometry, we may reduce the multiplicity of solutions,

thereby leading to an exponential improvement in time complexity. The process

given by this algorithm is illustrated in Figure 24.

The strategy here is to only look for intersections of bent hyperplanes which

are possible to occur according to sign polyhedral geometry. The step in 2a limits

the computation of intersections of single new bent hyperplanes with edges from

the previous layer by sign sequence. Then in order for two or more new bent

hyperplanes to intersect in a region, they must also have intersected the boundary

of that region. So, in step 2b we work upwards in dimension on the boundaries of

regions to avoid investigating all regions.

To obtain the vertices of C(F):

1. Compute the intersections of the hyperplanes from the first layer. Obtain the

sign sequences of the vertices by evaluating F on each intersection.

2. For each subsequent layer i, loop through dimensions 1 ≤ k ≤ n0:

(a) For k = 1, obtain the sign sequence of the set of edges in C(F(n))

through the coboundary operation on vertices. For each edge E, if its

vertices differ at sign (i, j), compute the intersection of the hyperplane

corresponding to Fij and that edge. These are vertices found as the

intersection of k = 1 new hyperplane with n0 − 1 old hyperplanes.

(b) Then for each dimension k ≥ 2, do the following:

74

i. Obtain the sign sequences of vertices found as the intersection of

k − 1 new hyperplanes with n0 − k + 1 old hyperplanes.

ii. Obtain the all k-dimensional regions R which are incident to the

most recently added vertices, through the coboundary operation.

Any intersection of k new hyperplanes with n0 − k old hyperplanes

must occur within these regions R.

iii. For each R, determine whether it is possible for k new hyperplanes

to intersect within this region by Lemma 3.9.3. Then obtain the

sign sequence of an n0-dimensional region C incident to the k-

dimensional region by replacing all remaining 0 entries with −1. For

each j in which a new vertex incident to R has a 0, obtain the node

map within C corresponding to Fij; this gives an equation defining a

hyperplane intersecting the boundary of R.

iv. For each set of k distinct new hyperplanes which intersect

the boundary of R, find the intersections of these k new bent

hyperplanes with the n0 − k bent hyperplanes corresponding

to the region R. Evaluate whether they occur within R via sign

sequences as before. These new vertices are the intersection of k new

hyperplanes with n0 − k old hyperplanes.

v. If there are no new intersections, terminate the loop and move to the

next layer.

Using this algorithm, the presence of a vertex with a given sign sequence is

evaluated at most once. In particular, the intersection of k hyperplanes from the

next layer is only computed if all k hyperplanes intersect the boundary of the

region they are supposed to intersect on. An empirical comparison of the time

75

FIGURE 24. The improved algorithm for obtaining the vertices of C(F). Upper
left: Step 2a, selecting an edge. Upper right: Step 2a, finding the location of the
intersection of each bent hyperplane and that edge, if it exists, via computations on
region C. Lower left: Step 2b for k = 2, specifically on the region D, with the other
two regions to investigate highlighted. Bottom right: Final C(F).

required to compute the vertices of C(F) using this algorithm compared with the

algorithm in Section 4.1 for input dimensions 2 and 3 is presented in Figure 25.

Explicit implementation of this algorithm is provided in the code repository

included in the supplementary materials.

76

FIGURE 25. Time required to compute C(F) for randomly-initialized neural
networks of input dimensions n0 = 2 and 3 and two hidden layers, for the näıve
and improved algorithms.

77

CHAPTER V

EXPERIMENTAL OBSERVATIONS OF NEURAL NETWORKS’

TOPOLOGICAL PROPERTIES

We proceed from theory to implementation to make experimental

observations. The first two sets of experiments in this section are about randomly-

initialized neural networks, and the third is about neural networks’ decision

boundaries during training.

5.1. Empirical Measurements about Vertices of C(F)

To understand when algorithmic failure is likely to occur, we measure the

empirical distribution of properties of vertices in C(F) for different architectures.

The canonical polyhedral complex associated to a single layer has a fixed number

of vertices due to direct correspondence with hyperplane arrangements. However,

deeper neural networks have a variable number of vertices, and distributional

information about the number of vertices as well as the minimum paired distance

between inequal vertices are reported herein.

Under standard normal weights and biases, we initialize 50 neural networks

of input dimensions n0 = 2, 3, 4 and widths from n0 + 1 to 29, or the highest value

computationally accessible.

First, we discuss the number of vertices present in C(F) at initialization, by

architecture. The number of top-dimensional regions of C(F) for a ReLU neural

network at initialization is, on average, O(N
n0

n0!
) [17]. Each region may contain

a very high number of vertices, and each vertex is incident to 2n0 regions, so

measuring the distribution of number of vertices is still beneficial. indeed, without

78

FIGURE 26. Left: The number of vertices of C(F) increases subexponentially
with width. Right: Dividing the number of vertices by Nn0 demonstrates O(Nn0)
scaling.

knowing the number of unbounded regions, the number of vertices cannot be

determined from the number of regions directly. We observe that the number of

vertices, also, scales as O(Nn0) (Figure 26).

We additionally measure the distance between the closest pair of vertices for

each neural network, as seen in Figure 27. This scaling provides a way to obtain

numerical estimates for the accuracy necessary to solve for vertices of C(F) under

supertransversality assumptions. While the distance between vertices is not a lower

bound on the distance a vertex could move before its measured sign sequence

changes, these measurement may be used as a proxy in the following way. Let D

be the minimum distance between vertices of C(F). If D is smaller than machine

epsilon or the accuracy of the numerical solver, then two vertices v1 and v2 which

satisfy d(v1, v2) = D will numerically satisfy Fij(v1) = Fij(v2), and have numerically

equal sign sequences. Any (i, j) coordinates for which sij(v1) ̸= sij(v2) will resolve

under evaluation as s̃ij(v1) = s̃ij(v2) = 0, making it appear as if more bent

hyperplanes intersect in a single point than are predicted in general.

79

FIGURE 27. Distribution of minimum distance between vertices of C(F) by the
input dimension and width of F . The width is the 95th percentile of minimum
distances.

80

In practice, this form of numerical error occurred qualitatively most often

when neural networks with insufficient architecture were trained on topologically

complex tasks.

5.2. Decision Boundaries of Randomly-Initialized Neural Networks

We obtain statistics about the decision boundaries of binary classification

networks, and find stark differences in the behaviors of shallow and deeper network

architectures. To our knowledge, this is the first experimental determination of the

exact topology of a large collection of decision boundaries with input dimension

greater than two while having more than one hidden layer.

FIGURE 28. Average Betti numbers of the network decision boundary at
initialization, with 95% confidence interval shown.

81

Experimental design

We randomly initialize 50 networks of fully-connected architectures (k, n, 1)

and (k, n, n, 1) for 2 ≤ k ≤ 4 with standard normal weights and biases (See

Figure 17). We will call the networks of architecture (k, n, 1) “shallow” and those

of architecture (k, n, n, 1) “deep” for the purposes of comparison in this section.

We compute the canonical polyhedral complex C(F) for each network using an

implementation of the algorithm described in Section 4.1 using Pytorch linear

algebra solver [24]. We then obtain the Betti numbers βi for 0 ≤ i ≤ k − 1 of the

decision boundary of the network at initialization, by constructing the boundary

map determined in Lemma 3.5.3, with additional point at infinity. The Betti

numbers were obtained using a Sage implementation of general chain complexes

[27]. The resulting Betti numbers provide a measure of topological complexity of

the decision boundary at initialization.

Results and Discussion

We observe that the topology of the decision boundary for shallow networks,

regardless of input dimension, remains constant over the range of dimensions

investigated. Figure 28 depicts a range of networks of shallow architecture (top)

with deep architecture (bottom), together with standard error. In contrast, for

deep networks, there is both greater variability in the distribution of the topology

of the decision boundary, and increasing width seems to, at least for n0 > 2, lead

to the the topological properties of the decision boundary appearing to change in

distribution as the width n increases. We conjecture that a plausible explanation is

that deep networks appear to require greater width before their network functions

converge to Gaussian processes in distribution [7].

82

Two of these Betti numbers measure the number of bounded and unbounded

components of the decision boundary. Since all unbounded components are

compactified by attaching them to the same point, in the compactification they

correspond to (n0 − 1)-cycles belonging to the same connected component, which

are counted by βn0−1. So the number of bounded and unbounded components can

be computed by β0 − 1 and βn0−1 − β0 + 1, respectively.

We observe that bounded connected components of the decision boundary

at initialization are rare, with frequency decreasing with input dimension in both

shallow and deep networks: For example, 8.1% of networks of the form (2, n, 1)

contain at least one bounded component, whereas only 0.05% of networks of the

form (4, n, 1) contain as much at initialization. Furthermore, regarding the number

of unbounded components, across all shallow networks investigated, the largest

number of unbounded components observed at initialization was 3, with a mode of

1 (average 1.0, 1.03 and 1.04, for n0 = 2, 3, and 4 respectively). In deeper networks,

in contrast, the number of unbounded components at initialization appears to be

on average greater (1.1, 1.4, 1.4, respectively) reaching maximum observed values

of 5, 7 and 12 for n0 = 2, 3, and 4 respectively. However, the most common

observation is still that a network at initialization has one unbounded connected

component, and whether there is any trend associated with width is unclear. These

observations lend additional credence to the notion that depth has a stronger

influence than width on the topological complexity that a network can be easily

trained to express.

83

Additional Distributional Information

Here we report additional distributional information about the topology

of decision boundaries of randomly initialized ReLU networks with different

architectures. Table 2 summarizes distributional information about the Betti

numbers of the decision boundary, and Table 3 summarizes information about

the connected components of the decision boundary. Figure 30 gives additional

distributional information for selected architectures. While shallow architectures

again have a very constant distribution of the number of unbounded components

even across input dimension, the number of unbounded components seen at

initialization in deeper architectures is much greater, and the distributional

variability with width is apparent.

84

TABLE 2. Betti numbers of the compactified decision boundary dependent on
architecture, across the range of widths studied (50 networks of each architecture).
In βn0−1, deeper architectures exhibit greater variability and greater apparent
change with width across the range of widths studied. This information is seen in
Figure 28

Shallow Architectures

β0 βn0−1

Average SD Average SD

(2, 5, 1) 1.06 0.24 1.02 0.55
(2, 15, 1) 1.14 0.40 1.06 0.58

(3, 5, 1) 1.00 0.00 1.00 0.29
(3, 15, 1) 1.00 0.00 0.96 0.28

(4, 5, 1) 1.00 0.00 1.00 0.00
(4, 15, 1) 1.00 0.00 1.00 0.20

Deep Architectures

β0 βn0−1

Average SD Average SD

(2, 5, 5, 1) 1.06 0.24 1.18 0.63
(2, 15, 15, 1) 1.10 0.30 1.32 0.71

(3, 5, 5, 1) 1.00 0.00 1.48 0.88
(3, 15, 15, 1) 1.00 0.00 1.28 0.73

(4, 5, 5, 1) 1.00 0.00 1.74 1.01
(4, 15, 15, 1) 1.00 0.00 1.24 0.96

85

TABLE 3. Average number of bounded and unbounded components of the decision
boundary dependent on architecture. Bounded components became exceedingly
rare with increased input dimensions, to the extent that measured variability is 0
for some of the given architectures.

Shallow Architectures

Unbounded Bounded

Average SD Average SD

(2, 5, 1) 0.96 0.60 0.06 0.23
(2, 15, 1) 0.92 0.53 0.14 0.40
(3, 5, 1) 1.00 0.28 0.00 0.00
(3, 15, 1) 0.96 0.28 0.00 0.00
(4, 5, 1) 1.00 0.00 0.00 0.00
(4, 15, 1) 1.00 0.20 0.00 0.00

Deep Architectures

Unbounded Bounded

Average SE Average SD

(2, 5, 5, 1) 1.12 0.68 0.06 0.24
(2, 15, 15, 1) 1.22 0.76 0.10 0.30
(3, 5, 5, 1) 1.46 0.91 0.02 0.14
(3, 15, 15, 1) 1.18 0.83 0.10 0.30
(4, 5, 5, 1) 1.74 1.00 0.00 0.00
(4, 15, 15, 1) 1.24 0.95 0.00 0.00

86

FIGURE 29. Distribution of the total number of connected components of the
decision boundary for architectures of width 5.

FIGURE 30. Distribution of the total number of connected components of the
decision boundary for architectures of width 15.

87

5.3. Neural Networks During Training

The previous two experimental sections computed the topological properties

of a neural network when randomly initialized. We next focus on how the topology

of the decision boundary of a neural network changes as the neural network is

trained on a given dataset. This may give insight into whether neural networks

topologically generalize, as discussed in the introduction. Furthermore, the

changes which take place in the decision boundary’s topology during training

may shed light on whether there is topological bias in the algorithm of stochastic

gradient descent.

In this experiment, we train neural networks of a range of architectures to

classify what we are calling the XOR task (Figure 31) and the Torus task (Figure

32).

Experimental Setup

Neural networks of different architectures were trained on the XOR and

Torus tasks via stochastic gradient descent, using binary crossentropy loss, until

apparent validation loss convergence. The weights of the trained neural networks

were recorded during the training process. Betti numbers of the decision boundary

of the neural network were then computed at evenly spaced time steps throughout

training. Descriptions of the specific methods for each task follow.

XOR Task

The XOR task is a classical machine learning task which is used to illustrate

the necessity of at least one hidden layer for neural networks to successfully

learn certain tasks, and is an exemplar for the role of topology in neural network

88

architecture selection. The classical XOR task is to train a multilayer perceptron

to classify the points (1, 1) and (−1,−1) as belonging to one class and the single

points (−1, 1) and (1,−1) as belonging to a second class. To make this task

compatible with the manifold hypothesis, we define two classes each sampled from

mixed Gaussian density functions, with centers at the given points, as illustrated in

Figure 31.

Because the true ideal decision boundary of this task is nonmanifold (See

Figure 31, right), to evaluate topological generalization we note that the true

decision boundary of a neural network which has topologically generalized on this

task is given by a generic perturbation of the ideal decision boundary, pictured in

the fourth image. Under the distinguished-point compactification, this decision

boundary is a wedge sum of two circles, so we expect the decision boundary of a

topologically-generalized neural network will satisfy β0 = 1, β1 = 2.

FIGURE 31. The XOR task. Left: Sample data. Left middle: Density function
for the two data distributions. Right middle: Ideal classification function with true
ideal decision boundary superimposed. Right: Generically perturbed ideal decision
boundary.

Thirty different shallow (one hidden layer) and deep (two hidden layer) neural

networks with input dimension 2 and widths 5, 10, 15 20 and 25 were initialized

using the same scheme as in Section 5.2. Following initialization, the neural

networks were trained using stochastic gradient descent. Each training step was

89

performed on a sample of 20 points sampled from each class, with a learning rate of

10−3. The neural networks were trained for 500 training steps, and the weights were

saved every 50 training steps. The Betti numbers of the decision boundary were

computed for each of the recorded weights.

Torus Task

The Torus task consists of the classification task of separating a torus

generated through the standard parametrization from an annulus at its center, as

pictured in Figure 32.

Thirty different shallow (one hidden layer) and deep (two hidden layer)

neural networks with input dimension 3 and widths ranging from 5 to 20 were

initialized using the same scheme as in Section 5.2. Following initialization the

neural networks were trained using stochastic gradient descent against binary

crossentropy loss. Each training step was performed on a sample of 50 data points

sampled from each class, with a batch size of 50, learning rate of 5 × 10−4, and

trained for a total of 500, 000 training steps.

Results and Discussion

XOR Task

All architectures selected were capable of learning the XOR task. As expected

due to their greater number of parameters, deep neural networks reached a lower

loss, on average, than shallow neural networks with the same width. We compare

the effects of increasing width and increasing depth on topological generalization.

Neural networks with greater width generally showed improved topological

generalization, on average. As networks get wider, a greater proportion of trained

90

FIGURE 32. The Torus task. Left: Labeled data drawn from the two density
functions. Right: A wireframe skeleton of the decision boundary of a neural
network trained on the sample data, with edges from C(F).

networks exhibit Betti numbers consistent with topological generalization (Figure

33). Additionally, wider neural networks approached topological generalization

sooner in their training path (Figure 34). We conclude that increasing parameters

by widening the neural network appears to improve the ability of the neural

network to topologically generalize. This is somewhat surprising: Classical machine

learning wisdom is that increasing the complexity of a hypothesis class reduces the

generalization capacity of a model (the bias-variance tradeoff). Here the hypothesis

class has increased complexity, and a greater topological complexity is capable of

being expressed by these wider neural networks, but the increased width does not

lead to increased variability in the learned decision boundary; in fact, the opposite

has occurred.

In contrast to increasing width, increasing depth does appear to increase

the observed topological complexity of learned decision boundaries. First of all,

as seen in Figure 34, wider networks required more training steps to approach

the expected β1 = 2 on average. While it is plausible that this is an artifact of

91

FIGURE 33. A comparison between shallow (left) and deep (right) architectures’
topological generalization on the XOR task.

learning rate, the pictured training paths indicate that apparent convergence in

topological complexity was reached in the training paths investigated, and that

the final topological complexity was typically more variable even after apparent

convergence. Secondly, after training convergence, even though deep neural

networks had lower loss in comparison to the shallow neural networks of the same

width, they exhibited worse topological generalization, with over 92% of shallow

neural networks exhibiting topological generalization, whereas only 84% of deep

neural networks exhibited such generalization. The greater topological variability

exhibited by deeper neural networks at initialization was carried through to their

training behavior.

Torus Task

Evaluation showed that the networks trained on the Torus task, despite the

hyperparameter search, were relatively underfit, performing subjectively poorly on

the task. Though training loss remained relatively constant, these networks failed

to reach a trained state, as evidenced by validation loss remaining relatively high

92

FIGURE 34. The average value of β1 approaches 2 as the neural networks train on
the XOR task. Wider neural networks approach topological generalization faster
and exhibit less variability in learned topological features.

(above 10−3). Higher learning rates corresponded with higher validation loss at

convergence, and continuing to decrease learning rate led to slower training but

apparent validation loss values remaining minimized around 10−3.

While a systematic assay of network dynamics was not performed, we

observe that different choices in training regime led to different network topological

properties during training. To reach a point of comparison, an alternative training

regime was selected for the (3, 15, 15, 1) architecture, adding a momentum term to

the gradient descent process. Twenty of these networks were trained with batch

size 50, learning rate .01 and momentum factor 0.9. These networks, with the same

architecture but different training regime, reached final validation loss below 10−4.

A contrast between the underfit networks trained with stochastic gradient descent

and the successfully-trained networks follows.

We first observe the successfully-trained architectures’ training path and final

measures of topological generalization. The training behavior of neural networks

trained with a (3, 15, 15, 1) architecture using momentum, as well as the plot of the

Betti numbers of the final decision boundary vs. loss, are pictured in Figure 35.

93

FIGURE 35. Left: The Betti numbers of the decision boundary of (3, 15, 15, 1)
neural networks during training on the Torus task using momentum. The width of
the bar is a 95% confidence interval for the average βi at that time step. Right: A
boxplot of log(loss) by topology for the same task, late training.

We observe many of the same trends in convergence behavior of the average Betti

numbers of the neural networks at the end of training: overall, the neural networks

appear to converge towards the desired β0 = 2, β1 = 2 and β2 = 1, with β1 requiring

the longest number of training steps to converge. The network training additionally

appears biased to low values of β1.

FIGURE 36. An example, and typical, training path of a neural network
successfully trained on the torus.

At the end of training, only three different sets of topological invariants were

observed, as pictured in the boxplot. The neural networks which exhibited the

lowest loss typically had appropriate topological generalization, but there were

some neural networks which exhibited β2 = 2 insted of β2 = 1; this corresponds

94

to an additional unbounded portion of the decision boundary, likely one which is far

away from the bulk of the support of the density function. The (2, 0, 1) signature

corresponds to a decision boundary which has the same homology groups as a 2-

sphere. Since the most common decision boundary at initialization is topologically

a plane, we observe qualitatively that the general training path the decision

boundary changes in topology from a noncompact plane, to a compact sphere, to a

torus (by merging two sides of the sphere and “punching a hole” in it), as pictured

in Figure 36.

FIGURE 37. The Betti numbers of the decision boundaries of neural networks as
they trained on the Torus task with pure SGD, separated by architecture.

In contrast, the neural networks which were underfit exhibit clear differences

in their training behavior with respect to the Betti numbers of the decision

boundary during training. In Figure 37, we observe that shallow networks appeared

95

to fail to approach, on average, the desired β0 = β1 = 2, but surprisingly, β0 did

exhibit a temporary average increase during the training regime. This phenomenon

is not observed for deeper networks with respect to β0, but is observed to some

extent in the deep networks’ failure to learn β1.

Furthermore, while loss appeared to reach a constant value, the average β0

appears to continue to be changing at the end of the training. It may be that the

training was terminated at a gradient plateau, and that further training would

lead to successful topological generalization. Lastly, the collapse in variability of

β1 could hypothetically correspond to the same phenomenon occurring much faster

in the network trained with momentum which occurs around step 2500.

When we observe the Betti numbers of the decision boundaries at the end

of training for the underfit networks, we see much greater variety in topological

features, with the neural networks with the lowest loss within each architecture

typically having the decision boundary topology of a sphere (Figure 38). Overall,

the neural networks trained on this task with stochastic gradient descent failed to

learn the appropriate β1.

FIGURE 38. The loss of neural networks trained on the torus task, by final Betti
numbers.

96

We hypothesize that another possible explanation for the failure of the neural

networks trained with stochastic gradient descent is that there may be an implicit

bias within stochastic gradient descent towards minimizing local absolute curvature

of the underlying function. It is known that in low-dimensional settings, regularized

stochastic gradient descent has an implicit bias towards interpolating discrete

curvature [15]. The results observed here are consistent with this case for higher-

dimensional inputs.

97

APPENDIX A

EXPLICIT WEIGHTS AND BIASES FOR COUNTEREXAMPLES

The explicit pair of counterexamples constructed in Theorem 3.3.5 were

constructed by applying small perturbations around a single nongeneric neural

network with weights,

W1 =



0 1

1
2

−
√
3
2

−1
2

−
√
3

2

1 0


b1 = [−1,−1,−1, 5]

W2 = [1, 1, 1, 0] b2 = −0.1

The parameters of the first neural network model are given approximately by:

W1 =



5.197 · 10−3 1.004

4.984 · 10−1 −8.465 · 10−1

−4.849 · 10−1 −8.746 · 10−1

1.006 −7.160 · 10−3


b1 =

[
−1 −1 −1 5

]

W2 =

[
9.972 · 10−1 9.972 · 10−1 9.972 · 10−1 −5.275 · 10−2

]
b2 = −0.1

The parameters of the second neural network model are given approximately

by:

98

W1 =



5.301 · 10−4 1.000

4.996 · 10−1 −8.604 · 10−1

−5.003 · 10−1 −8.612 · 10−1

1.001 1.448 · 10−3


b1 =

[
−1 −1 −1 5

]

W2 =

[
1 1 1 −0.5

]
b2 = −0.1

99

APPENDIX B

IMPLEMENTATIONS OF ALGORITHMS

The code developed for this dissertation is available in the zipped file in

the suppl ementary materials. This zipped file is formatted as a repository, and

contains the code for the algorithms described in Sections 3.6 in Sage, as well as

code for the algorithms in Sections 4.1 and 4.3 in Python.

100

APPENDIX C

LICENSE INFORMATION

PyTorch [24] is under a Modified BSD license, permitting use in other

projects and requiring its licensing information repackaged when its source code

is redistributed. We do not redistribute its source code in our work.

Sage [27] is licensed under the GNU General Public License (GPL). It is free

to use and distribute. We do not redistribute its source code in our work, but it is

necessary to run the decision boundary topology computations.

101

REFERENCES CITED

[1] M. Aguiar and S. Mahajan. Topics in Hyperplane Arrangements. American
Mathematical Society, Providence, RI, 2017.

[2] M. Alfarra, A. Bibi, H. Hammoud, M. Gaafar, and B. Ghanem. On the decision
boundaries of deep neural networks: A tropical geometry perspective. CoRR,
abs/2002.08838, 2020.

[3] B. Anders, M. Las Vergnas, B. Sturmfels, N. White, and G. M. Ziegler. Oriented
Matroids (Encyclopedia of Mathematics and its Applications, Series Number
46). Cambridge University Press, paperback edition, 1 2000.

[4] R. Balestriero, R. Cosentino, B. Aazhang, and R. Baraniuk. The geometry of
deep networks: Power diagram subdivision. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in
Neural Information Processing Systems, volume 32. Curran Associates, Inc.,
2019.

[5] M. Bianchini and F. Scarselli. On the complexity of neural network classifiers: A
comparison between shallow and deep architectures. IEEE Transactions on
Neural Networks and Learning Systems, 25(8):1553–1565, Aug. 2014.

[6] C. Curto, A. Veliz-Cuba, and N. Youngs. Analysis of Combinatorial Neural
Codes: An Algebraic Approach, pages 213–240. 01 2019.

[7] A. G. de G. Matthews, J. Hron, M. Rowland, R. E. Turner, and Z. Ghahramani.
Gaussian process behaviour in wide deep neural networks. In International
Conference on Learning Representations, 2018.

[8] A. Fawzi, S.-M. Moosavi-Dezfooli, P. Frossard, and S. Soatto. Empirical study of
the topology and geometry of deep networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June 2018.

[9] C. Fefferman, S. Mitter, and H. Narayanan. Testing the manifold hypothesis.
Journal of the American Mathematical Society, 29(4):983–1049, feb 2016.

[10] J. E. Grigsby and K. Lindsey. On transversality of bent hyperplane
arrangements and the topological expressiveness of relu neural networks, 2020.
Available at https://arxiv.org/abs/2008.09052.

[11] J. E. Grigsby, K. Lindsey, and M. Masden. Local and global topological
complexity measures of relu neural network functions. arXiv, 2022.

102

https://arxiv.org/abs/2008.09052

[12] R. Grunert. Piecewise Linear Morse Theory. PhD thesis, 2017.

[13] V. Guillemin, V. Guillemin, A. Pollack, V. GUILLERMIN, and P. Alan.
Differential Topology. Mathematics Series. Prentice-Hall, 1974.

[14] W. H. Guss and R. Salakhutdinov. On characterizing the capacity of neural
networks using algebraic topology. CoRR, abs/1802.04443, 2018.

[15] B. Hanin. Ridgeless interpolation with shallow relu networks in 1d is nearest
neighbor curvature extrapolation and provably generalizes on lipschitz
functions. arXiv preprint arXiv:2109.12960, 2021.

[16] B. Hanin and D. Rolnick. Complexity of linear regions in deep networks. ArXiv,
abs/1901.09021, 2019.

[17] B. Hanin and D. Rolnick. Deep relu networks have surprisingly few activation
patterns. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc., 2019.

[18] V. Itskov, A. Kunin, and Z. Rosen. Hyperplane neural codes and the polar
complex. In N. A. Baas, G. E. Carlsson, G. Quick, M. Szymik, and
M. Thaule, editors, Topological Data Analysis, pages 343–369, Cham, 2020.
Springer International Publishing.

[19] M. Jordan, J. Lewis, and A. G. Dimakis. Provable certificates for adversarial
examples: Fitting a ball in the union of polytopes. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett,
editors, Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc., 2019.

[20] N. Lei, D. An, Y. Guo, K. Su, S. Liu, Z. Luo, S.-T. Yau, and X. Gu. A
geometric understanding of deep learning. Engineering, 6(3):361–374, mar
2020.

[21] W. Li, G. Dasarathy, K. Natesan Ramamurthy, and V. Berisha. Finding the
homology of decision boundaries with active learning. In H. Larochelle,
M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in
Neural Information Processing Systems, volume 33, pages 8355–8365. Curran
Associates, Inc., 2020.

[22] G. F. Montufar, R. Pascanu, K. Cho, and Y. Bengio. On the number of linear
regions of deep neural networks. Advances in neural information processing
systems, 27, 2014.

103

[23] V. Nair and G. E. Hinton. Rectified linear units improve restricted boltzmann
machines. In Proceedings of the 27th International Conference on
International Conference on Machine Learning, ICML’10, page 807–814,
Madison, WI, USA, 2010. Omnipress.

[24] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito,
M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and
S. Chintala. Pytorch: An imperative style, high-performance deep learning
library. In Advances in Neural Information Processing Systems 32, pages
8024–8035. Curran Associates, Inc., 2019.

[25] T. Serra and S. Ramalingam. Empirical bounds on linear regions of deep
rectifier networks. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pages 5628–5635, 2020.

[26] T. Serra, C. Tjandraatmadja, and S. Ramalingam. Bounding and counting
linear regions of deep neural networks. In ICML, 2018.

[27] The Sage Developers. SageMath, the Sage Mathematics Software System
(Version 9.0), 2018. https://www.sagemath.org.

[28] H. Xiong, L. Huang, M. Yu, L. Liu, F. Zhu, and L. Shao. On the number of
linear regions of convolutional neural networks. In International Conference
on Machine Learning, pages 10514–10523. PMLR, 2020.

[29] X. Yang, H.-D. Tran, W. Xiang, and T. Johnson. Reachability analysis for
feed-forward neural networks using face lattices. 2020.

[30] X. Yang, T. Yamaguchi, H.-D. Tran, B. Hoxha, T. T. Johnson, and
D. Prokhorov. Reachability analysis of convolutional neural networks. 2021.

[31] L. Zhang, G. Naitzat, and L.-H. Lim. Tropical geometry of deep neural
networks. In J. Dy and A. Krause, editors, Proceedings of the 35th
International Conference on Machine Learning, volume 80 of Proceedings of
Machine Learning Research, pages 5824–5832. PMLR, 10–15 Jul 2018.

[32] X. Zhang and D. Wu. Empirical studies on the properties of linear regions in
deep neural networks. In International Conference on Learning
Representations, 2020.

104

	Introduction
	 Algebraic Topology and Machine Learning
	 Topology and the Linear Regions of ReLU Neural Networks
	 Comparison to Prior Work
	 Dissertation Summary
	 Further Directions
	Categorically Developing the Canonical Polyhedral Complex
	 Preliminaries: ReLU Neural Networks
	 Preliminaries: Polyhedral Geometry
	 A Category for ReLU Neural Networks' Layer Maps
	 The Canonical Polyhedral Complex Constructed Categorically

	Accessing the Topology of Neural Network Functions
	 Piecewise Linear Transversality
	 Supertransversal Neural Networks
	 Combinatorially Characterizing C(F) with Sign Sequences
	 Algebra of Sign Sequences
	 The Duality Between C(F) and S(F)
	 Computing Decision Boundary Topology from S(F)
	 Local Combinatorics of Vertices for PL Morse Theory

	Algorithms for computing C(F)
	 Naïve Computation of C(F) by Looping through Regions
	 Avoiding Numerical Error and Singular Matrices
	 An Alternative Algorithm

	Experimental Observations of Neural Networks' Topological Properties
	 Empirical Measurements about Vertices of C(F)
	 Decision Boundaries of Randomly-Initialized Neural Networks
	 Neural Networks During Training

	 Explicit Weights and Biases for Counterexamples
	 Implementations of Algorithms
	 License Information
	REFERENCES CITED

