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THESIS ABSTRACT 

 

Jonathan Sheppard 

 

Master of Science 

 

Department of Earth Sciences 

 

June 2023 

 

Title: Using Deep Learning to Backcast Hydrologic Response and Inform Landslide Early 

Warning Systems 

 

 

Landslides are difficult to predict due to the influence of variable geologic and environmental 

factors, such as geomechanical properties, rainfall, ground saturation, topography, and 

earthquakes, exert on the probability of a slope failure. Deep learning (DL) models can 

accurately predict the site-specific hydrologic response on hillslopes using soil moisture, pore 

pressure, and rainfall monitoring data. Landslide early warning systems can utilize empirical 

thresholds from deep learning-derived soil hydrology properties to improve landslide hazard 

prediction accuracy. We study the possibility of improving a logistical regression-based landslide 

early warning system being used in Sitka, AK by incorporating pore pressure responses that 

correspond to past known landslide events. Because pore pressure records for past known events 

are nonexistent, we must backcast soil hydrology timeseries from weather records, without 

including antecedent soil hydrology as initial conditions. We assess the accuracy of predictions at 

various rainfall intensity thresholds made by a Long Short-Term Memory (LSTM) DL model 

trained on weather features compared to a model that includes antecedent soil hydrology 

conditions. We find that the average accuracy of our model decreases by up to 20% for 

important, high-intensity rainfall events. 
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I. INTRODUCTION 

 

Rainfall-induced landslides are a deadly, recurring problem across the globe. In 2004-

2016, more than 55,000 people lost their lives to landslides (Sim, Lee, & Wong, 2022) and 

economic losses were estimated to be at $20 billion annually, which is 17% of the total ($121 

billion) yearly mean global disaster losses from 1980-2013 (Klose et al., 2016). In that time span, 

4,862 fatal non-seismically induced landslide events were reported, with 79% being triggered by 

rainfall. Further, the loss of life disproportionately affects medium and developing nations, with 

only 5% of fatalities coming from highly developed nations (Lacasse et al., 2010; Lacasse and 

Nadim 2014), highlighting the importance of being able to assess the potential for landslide 

initiation via hydrologic response to rainfall on hillslopes in at-risk communities. This is often 

facilitated by hydrologic models characterized by varying degrees of complexity, such as 

empirical thresholds relating rainfall intensity and/or soil hydrologic measurements 

corresponding to past landslide events (e.g., Guzzetti et al., 2008; Wieczorek & Guzzetti, 2000; 

Mirus et al., 2018a), deterministic, physically based numerical models (e.g., Bellugi et al., 2015; 

Montgomery & Dietrich, 1994; Simunek at al. 2005), or models based on machine learning 

(Orland et al., 2020; Papacharalampous et al., 2019; Hewamalage et al., 2021; Lara-Benítez et 

al., 2021). The varying methods bring unique advantages and disadvantages: empirical 

relationships between soil hydrologic properties and rainfall provide an efficient means of 

characterizing regional landslide susceptibility, but have limited predictive capabilities (Bogaard 

& Greco, 2018; van Natijne et al., 2020). Conversely, physical models of variably saturated flow 

can be used to obtain thresholds and extrapolate beyond the observed period of record (e.g., 

Fusco et al., 2019; Thomas et al., 2018), but these methods require significant parametrization 

and computational resources.  
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More recently, it has been shown that machine learning models merge the benefits of both 

empirical thresholds and physically based models by providing low-cost, site-specific hydrologic 

response predictions that implicitly capture the characteristics of multi-dimensional variably 

saturated flow while relying on the quality and abundance of in-situ soil hydrology 

measurements (Orland et al., 2020; Shen et al., 2018). The Deep Learning (DL) model presented 

by Orland et al. (2020) provides an accurate and computationally efficient method of predicting 

the timing and magnitude of hydrologic response to rainfall on hillslopes in various soil 

conditions with as little as six months of training data. As a result, this tool may be useful for 

informing landslide early warning systems (LEWS) that account for antecedent conditions, such 

as soil moisture or pore pressure, that affect the likelihood of incoming storms to trigger 

landslides.  

The community of Sitka, AK has implemented a LEWS based on a logistical regression 

statistical model using rainfall thresholds from recorded past landslide events (Patton et al., 

2023). In an effort to investigate avenues of increasing model accuracy, pore pressure has been 

identified as a candidate additional parameter to incorporate. The current inventory of past 

landslides used to train the logistic regression model includes landslides from 2015 to 2020. 

Several soil hydrology monitoring instruments have been set up as early as 2020, resulting in 

current soil hydrology characteristics, but none for the corresponding landslide events prior to 

2020.  

Here we develop an strategy for training a DL model to backcast pore pressure values 

that encompass the entirety of their logistical regression landslide inventory that spans 2015 to 

2020. The lack of past site-specific weather and soil hydrology data precludes the use of 

antecedent pore pressure data for training of a DL-based predictions of hydrologic response pre-
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2020 and requires the use of a semi-local weather dataset to use for training. We begin by 

showing that using a semi-local weather record source is an acceptable proxy for local weather, 

where overlapping timeseries of precipitation are well correlated. We then explore the effect of 

antecedent weather conditions, number of predictions made per timestep, and number of 

predictions made per model epoch on model accuracy during various thresholds of high intensity 

rainfall events, which are of primary concern for landslide initiation. As we lack antecedent pore 

pressure conditions (i.e., the initial conditions) for model predictions, we further show that the 

overall model accuracy is slightly degraded but comparable to a model that otherwise includes 

antecedent pore pressure as a training input feature. 
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II. METHODS 

 

2.1 Overview 

 

 To formulate and test the DL model for backcasting pore pressure responses, we first 

collected weather and soil hydrology timeseries from sources near Sitka, AK. The soil hydrology 

data is limited to recent years (2020-) and does not extend to the period covering the past 

landslide events. We use a longer record for weather that is collected at a nearby site (~4km away 

from the soil hydrology sensor location) as the model input and compared the precipitation 

measured at each site to ensure that the amounts were comparable, such that the rainfall at the 

nearby site source could be used as a proxy. We then explore model sensitivity and tune the 

model using three hyperparameters required by the DL algorithm. Model accuracy is then 

assessed by measuring the error during various rainfall intensity thresholds which have higher 

chances of initiating landslide events.  

 

2.2 Study Area 

 

 We apply DL to assess hydrologic response in Sitka, a remote, steep community in 

southeast Alaska (Figure 1). The landscape surrounding Sitka is filled with steep hillslopes and 

thin volcanic soils, which are particularly susceptible to shallow-seated landslides. The climate in 

Sitka is characterized by high annual precipitation, mainly attributed to atmospheric rivers from 

September to December (Wendler et al., 2016; Sharma et al., 2015). As debris flows are 

commonly initiated by shallow landslides during intense precipitation, this leaves isolated 

communities in the region, like Sitka, exposed to the deadly hazards of debris flows. 
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Figure 1. Study area. Google Earth image of Sitka, AK (©Landsat/Copernicus and Maxar Technologies, 2023). 

Shown are the PASI NWS station and the USGS Harbor Mountain monitoring station. 

 

2.3 Data Source 

 

 We used soil hydrologic data collected from the USGS monitoring site on Harbor 

Mountain north of Sitka, AK as target features (Figure 1). The USGS monitoring station has 

sensors installed in two soil pits on the edge of a steep hollow similar to the initiation zones of 

past landslides. Both pits record soil moisture (VWC) and pore pressure at two depths and a 

single depth, respectively. The pits have different responses for soil moisture and pore pressure 

(Figure 2). We focus on targeting pore pressure predictions and chose to study pore pressures 

from soil pit 2 to build a responsive model more in line with observed landslide-initiating pore 

pressure responses. The instrument record includes 5-minute measurements of rain, VWC, and 

pore pressure acquired from 2020 to 2023. 
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 For training features, we use weather records (primarily precipitation, but wind is also 

included) from the nearby Nation Weather Service (NWS) station (NWS station code PASI) 

operated by the Federal Aviation Administration (FAA) at Sitka Airport (NOAA NCEI, 2001) 

(Figure 1). Weather data has been recorded at the airport since 2002 in hourly to sub-hourly 

intervals.  

 

 

Figure 2. Compilation of USGS Harbor Mountain station records from June 2020 to March 2023 for precipitation, 

soil moisture, and suction (pressure) across both soil pits. Data has been down sampled from five-minute intervals to 

three-hour intervals. Precipitation is cumulative over the three-hour interval and soil moisture and suction are the 

maximum over the three-hour interval. 

 

 

 

2.4 Source Precipitation Comparison 

 

 As depicted in Figure 1, the PASI gauge is 4.3 kilometers from the USGS monitoring 

station on Harbor Mountain, with a 575-meter elevation difference. As pronounced spatial 

heterogeneity in precipitation is typical of southeast Alaska (Patton et al., 2023), we performed a 
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correlation analysis on the local precipitation data of the USGS monitoring station and the semi-

local PASI gauge.  

 

2.5 Machine Learning Methods 

 

 Various machine learning methods have been applied to the field of geosciences, from 

Artificial Neural Networks (ANNs) (DeVries et al., 2017; Abrahart & See, 2007; Ren et al., 

2019; Araya & Ghezzehei) to variations of the ANN, such as the Recurrent Neural Network 

(RNN) and the Long Short-Term Memory (LSTM) models. RNNs incorporate information from 

the previous timestep and make predictions based on a weighting between the past and present 

inputs. LSTM models advance this approach by incorporating an internal state which is 

propagated through time, allowing the model to handle longer term temporal dependencies. 

Furthermore, LSTM-based models are conceptually better suited than statistically-based 

autoregressive time series models, given a LSTM’s capacity to approximate non-linear 

relationships between input and output variables, as opposed to assuming linear relationships 

between lagged endogenous or exogeneous variables in most autoregressive models (Box et al., 

2008). For a more in-depth discussion of the LSTM architecture, we refer to Olah (2015), and for 

applications to hydrology, we refer to Kratzert et al. (2018). 

 We use the DL model presented by Orland (2020), which is an LSTM “encoder-decoder” 

model with a global Luong attention mechanism (Luong et al., 2015). The encoder-decoder 

architecture was built to solve sequence-to-sequence problems, such that both the input and 

output of a model are sequences of data. The encoder reads in and learns an input sequence, then 

feeds the input into a decoder which receives a fixed representation (understanding) of the input 

sequence. From this fixed representation, the decoder learns the proper non-linear 
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transformations to translate the input to an output sequence or variable length (Sutskever et al., 

2014).  

 

2.6 Data Preprocessing, Experimental Framework, and Parameter Tuning 

 

 Modeling steps include preparing input sequences into a set number of previous hours of 

data at three-hour resolution containing precipitation and wind data (referred to as antecedent 

weather), and the measured hourly maximum and cumulative precipitation for the next set 

number of hours of data (referred to as a forecast). These input data pair with the future pore 

pressure data from the current timestep to a set time in the future (referred to as the prediction 

span)(Figure 3). In doing so, we provide our model with both prior and anticipated weather 

information as inputs and seek to draw an explicit link between these inputs and the 

corresponding pore pressure response within a specified forecast period. Model training occurs 

by applying a moving window to the input provided, with a size equal to the antecedent weather 

and the prediction span and then finding the best set of non-linearized weights and biases that 

apply to current and past information which most closely match the observed pore pressure 

response.  

 We perform model tuning on three hyperparameters which show increased sensitivity to 

model performance and complexity. We assess model performance based on the RMSE of the 

model during rainfall events above a threshold amount of rainfall within three hours. The initial 

2D hyperparameter space tested contained the first two hyperparameter investigated, the duration 

or length of antecedent weather and the prediction span of the future target pore pressure. These 

parameters combined to control the size of the temporal window the model is allowed to see at 

any given timestep. By varying these parameters, we effectively vary the amount of training data 
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our model has access to at any given timestep, which is a key component of any machine 

learning model. 

 The last model hyperparameter tuned is batch size. The batch size is a hyperparameter 

that defines the number of samples to evaluate? analyze? before updating the internal model 

parameters. A similar, but separate model hyperparameter is the model epochs, which is the the 

number of times that the learning algorithm will cycle through the entire training dataset when 

fitting. As model weights are set randomly upon initialization, each model run typically 

converges on a similar, but not necessarily identical solution. However, training for 2000-5000 

epochs consistently results in a series of weights and biases that lead to comparable results across 

model runs. 

 

Figure 3. Conceptual diagram showing model inputs and outputs. During training, a moving window slides across 

input data provided to it (solid), and the model adjusts its weights to produce a sequence of pore pressure values 

(dashed) from the model inputs that best matches the observed pore pressure sequence for those timesteps (not 

pictured). This process repeats until the model converges on a set of weights and biases that produces the lowest 

mean squared error measured across all predicted and observed sequences. 
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III. RESULTS 

 

In order to assess the correlation of rainfall amounts at the USGS Harbor Mountain 

station gauge and the Sitka Airport PASI gauge, we performed a pairwise comparison to compute 

the correlation coefficient for the two datasets. A correlation coefficient of 0.76 at a three-hour 

sampling interval was calculated for every sample in each dataset (Figure 4). As we are primarily 

interested in precipitation initiated shallow landslides, we focused on positive rainfall 

observations by filtering rainfall observations of 0 mm (dry conditions) out of both rainfall 

datasets and performed a similar analysis, which showed an increased correlation coefficient of 

0.80. Both correlation coefficients are above 0.75 which indicates that the records are well 

correlated. Therefore, we conclude that it is reasonable to use the Sitka Airport PASI gauge 

record as a proxy for the local USGS station gauge as the DL model training feature input. 

 

 

Figure 4. Pairwise comparison of precipitation data sourced from Sitka Airport PASI gauge and USGS Harbor 

Mountain station gauge, resampled to matching three-hour sampling intervals. Base comparison shows that there is a 

correlation coefficient of 0.76 between the records. When filtered such that only observations of non-zero 

precipitation are compared, the correlation coefficient becomes 0.80.  
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 To prepare for model input, we first preprocessed our data. We chose to calculate a 72-

hour forecast from our data, consistent with NWS forecasts of 3-hr rainfall intensity. Then we 

tune the model by finding the antecedent weather and prediction span that minimize the RMSE 

of pore pressure predictions during intense storm events above a threshold (Figure 5). We see an 

increase in model accuracy during intense storm events when we increase the antecedent weather 

length used in training and decrease the prediction span length being targeted. However, 

increasing antecedent weather length and decreasing the prediction span length both lead to 

longer model runtimes. Model weights are set randomly upon initialization, such that two models 

run sequentially with the same inputs should have a comparable but not necessarily identical 

RMSE values. We take into account this variability inherent in machine learning models by 

outlining the lower bounds of these parameters that would that result in a model that balances 

computational efficiency and accuracy during the high intensity events which are more likely to 

initiate a landslide than intervals with low precipitation. We determine that any antecedent 

weather length greater than 15 days into the past and any prediction span length less than 36 

hours into the future would be sufficient to produce model accuracies comparable to the most 

accurate model run during parameter tuning.  

To tune the batch size hyperparameter, we look for the balance of reproducibility, 

computational resource cost, and accuracy. An ideal batch size was found to be on the order of 

100. A such, we employ a mini-batch gradient descent, which means that our batch size is greater 

than 1, but less than the size of our training data set. Smaller batch sizes showed increasingly 

diminished ability to predict the largest and smallest values of observations, while larger batch 

sizes show decreasing returns on accuracy in exchange for decreasing returns on computational 
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cost savings (Figure 6). We run our model fitting for 3000 epochs to minimize the variability of 

model weights and ensure comparable results between model runs. 

 

 
Figure 5. Parameter tuning heatmap of Antecedent Weather length and Prediction Span length. Parameter space for 

tuning included Antecedent Weather from three to 23 days into the past and Prediction Span from 12 to 72 hours into 

the future. 

 

 Notably, the ability to backcast antecedent pore pressure data is unavailable during 

historic landslide events used to inform the LEWS. Antecedent pore pressure conditions provide 

the model with an initial condition as well as additional data to use during training. If poor initial 

conditions are used (i.e., values are too far away or on another scale to target values), the 

gradient descent used in machine learning can fail to converge, as starting predictions can be too 

far away from target values. We mitigate this outcome by scaling our data to values between zero 
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and one, so that our initial conditions will be captured within the gradient descent, resulting in 

model convergence.   

 

 

 
Figure 6. Comparison of the effect batch size has on model fit. Lower values of batch size (top, batch size=15) show 

decreased ability to correctly predict the full range of pore pressure values when compared to larger values of batch 

size (bottom, batch size=100). 

 

 

To assess the performance of our model, we calculated the RMSE for pore pressure 

predictions at various rainfall intensity thresholds (Figure 7). The number of rainfall events 

captured with an intensity threshold of 2 mm/3hr is over 1000 events. As the rainfall intensity 

threshold increases, we see an nonlinear decrease of captured (or analyzed) events, specifically 

26 events when for rainfall intensity of 14 mm/3hr. Because RMSE is a biased estimator, the 

larger number of rainfall events at lower thresholds may be a more encompassing estimate of 

error for rainfall events outside of the training dataset. For comparison, we perform the same 
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analysis for a model which includes antecedent soil hydrology conditions and observe that 

including antecedent soil hydrology conditions increases accuracy by up to 20%. 

 

 

(a) (b) 

 

 
 

 

Figure 7. (a) Predicted and observed pore pressure response from October 2022 through March 2023 for a model 

run without including antecedent conditions during training (top) and a model run with antecedent pore pressure 

during training (bottom). (b) RMSE of both model type predictions during various rainfall intensity thresholds. 
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IV. DISCUSSION 

 

 The accuracy of a LEWS in slide-prone regions is of vital importance for the safety of the 

local population. The differences in local resident response to predicted landslide hazard present 

a challenge when implementing a LEWS and constraining that hazard prediction improves and 

contextualizes the amount of risk being modeled, allowing for knowledgeable decisions. As 

such, uncertainty in hazard prediction should be transparent and minimized. The accuracy of the 

logistical regression model being deployed in Sitka, AK could be improved by including an 

analysis of pore pressure responses for the corresponding landslides in their model inventory. 

Local pore pressure records do not exist for that time span but can be approximated with DL 

predictions. 

 

4.1 Missing Initial Conditions for Modeling 

 

As local pore pressure records do not exist for the period of time that spans past 

landslides that inform the LEWS, the DL model will not have access to them as initial conditions 

(antecedent conditions). Antecedent conditions are considered to be an important factor when 

considering hydrologic conditions and physical landslide initiation controls as most rainfall 

initiated shallow landslides occur during intense rainfall that follow periods of prolonged 

wetness (Zhao et al., 2019; Lazzari et al., 2018; Mirus et al., 2018b; Godt et al., 2006). Initial 

conditions within machine learning are important, as machine learning algorithms typically 

utilize a gradient descent approach to minimizing a loss function between predicted and observed 

values (Pathak et al., 2017; Wen et al., 2022) and a poor initial condition can cause the model to 

fail to converge. The problem is highlighted for systems, such as soil hydrology, where a small 

change in soil wetness and pore pressure initial conditions can differentiate whether soils have 
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enough shear strength to resist slope failure and landslide initiation. This gives rise to two limits 

in our model which has no initial conditions: (1) We limit our model accuracy by not providing 

initial conditions. (2) We are limited in the length of our prediction span based on the dynamic 

complexity of hydrology systems, which can evolve in varying ways depending on given initial 

conditions. Our results show that model accuracy become limited for predictions beyond 36 

hours, which is comparable to similar models (Orland et al., 2020) with a slight decrease in 

accuracy and an increase in the required antecedent weather length. 

 

4.2 Training Models for Intense Rainfall Event Predictions 

 

Our model’s accuracy assessment has shown that even without including antecedent soil 

hydrology conditions, it is still possible to predict pore pressure response during intense rainfall. 

We have focused on minimizing the RMSE of model predictions during these intense rainfall 

events. This is contrary to the loss equation used when training the model, which assesses the 

MSE (a less biased estimator) fit of every prediction equally. As the many landslides triggered by 

rainfall are caused by the buildup of water pore pressure into the ground during rainfall events 

after a period of prolonged wetness, we focus on the accuracy of our model predictions during 

intense rainfall, because accurate predictions during intense rainfall events lends itself directly to 

increasing accuracy for landslide hazard predictions (Mirus et al., 2018a; Bogaard et al., 2018; 

Fusco et al., 2019). The implications of focusing on the RMSE of select model predictions as 

opposed to the results of the overall model MSE fit do not, however, imply that overall model fit 

is low. It rather implies that every pore pressure response prediction that the model gives will not 

have equal importance in the context of landslide hazard prediction. 
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4.3 Model Parameters & Sensitivity 

 

 Throughout model training, we discovered several model hyperparameters that 

significantly impacted model performance. Length of antecedent weather and number of forward 

predictions made per timesteps combined controlled the quantity of data the model had access to 

during training, a crucial part of a machine learning model. Increasing the length of antecedent 

weather increased model performance by allowing the model access to a longer duration of 

antecedent conditions, which is a good proxy for the antecedent wetness (Zhao et al., 2019). 

Antecedent rainfall is important to hillslope conditions and landslide initiation probability, but 

the critical threshold for how much is important has been contended in various papers, ranging 

from several hours to several weeks and likely varies by study area (Segoni, 2018). We found 

that, in the absence of antecedent soil moisture data, increasing the amount of antecedent weather 

conditions from 36 hours (Orland et al., 2020) to above two weeks proved to provide comparable 

results for an increase in computational resources. For the prediction span (number of forward 

predictions made from a given timestep), decreasing the value provided more accuracy at the 

cost of increased computational resources. Increases this value past 36 hours generated 

inaccurate predictions (Figure 5). We found that predicting 24-36 hours forward based on the 

previous 2-3 weeks of antecedent weather provided a balance of accuracy and computation costs, 

with lower values of prediction span and higher values of antecedent weather gaining 

diminishing amounts of accuracy for increasing model runtime. 

 The last model hyperparameter, batch size (number of predictions made per model 

epoch), was found to have an optimal value of 100, which proved to balance model 

computational performance with model prediction accuracy. We found that predictions made 
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from models training with lower values tended to show a reduced capacity to capture the 

smallest and largest of the observed pore pressure record. Larger values quickly showed 

improved fit with a disparate increase in computational costs. We found values on the order of 

100 to provide accurate results without long model runtimes.  
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V. CONCLUSIONS 

 

 We demonstrate that weather records separated by 4.3 kilometers and 575 meters in 

elevation in a region described by pronounced spatial heterogeneity in precipitation are well 

correlated and can serve as a proxy for hydrologic response on the local scale. Our model 

performs well even without considering important antecedent soil hydrology conditions, with a 

marginal decrease in accuracy. Excluding antecedent soil hydrology conditions in a LSTM model 

with limited training data can therefore be mitigated by expanding the duration of the antecedent 

weather data input to stand as a proxy for soil moisture conditions. Thus, the limited quantity of 

training data on the local scale serves as a first-order limit on the model’s predictive capability. 

Further, model accuracy bias during intense storm events is related to number of storms at each 

intensity threshold, with more storms providing a less biased estimate of error. With previous 

work exemplifying the capabilities of such a LSTM DL model to learn and understand the 

physical hydrologic processes in landslide-prone hillslopes, we propose that this model has the 

capabilities to predict and backcast hydrologic response to rainfall in data-limited conditions and 

environments. 

 

 

 

 

 

 

 

 



 28 

APPENDIX: MODEL CODE 

 

 
%load_ext autoreload 

%autoreload 2 

 
#everything we will import to use later 

import os 

os.environ["TF_CPP_MIN_LOG_LEVEL"]="3" 

import warnings 

warnings.filterwarnings('ignore') 

warnings.simplefilter('ignore') 

import numpy as np 

import pandas as pd 

from datetime import datetime, date, timedelta 

from matplotlib import pyplot as plt 

from tensorflow.keras.models import model_from_json 

import tensorflow_addons as tfa 

from functions import * 

 

%matplotlib inline 

 

import tensorflow.compat.v1 as tf 

from tensorflow import keras 

from tensorflow.keras import backend as K 

from tensorflow.keras import Model 

from tensorflow.keras.layers import * 

from tensorflow.keras.wrappers.scikit_learn import KerasRegressor 

from sklearn import preprocessing 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import mean_squared_error 

import tqdm 

from tqdm.keras import TqdmCallback 

 
## OPTIONS FOR SCRIPT 

 

# Dataset location 

DATA_FILEPATH = 

'./sitka_data/processed_for_training_3_hour_72_1_no_vwc_max_pp_only.csv' 

 

# these two variables are in units of your data. Current runs have been using 

3 hour data, so N_TARG is really 36 hours forward 

N_TRAIN = 21*8  #how long should the antecedant window be? 

N_TARG = 12  #how long should forward predictiono span be? 

 

# standard ML value 

TEST_VALIDATION_SPLIT = 0.7 

 

# One of these must be true, at least 

PP_TARGETING = True 

VWC_TARGETING = False 
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ANTECEDANT_SOIL_HYDROLOGY = False 

 

# if this is true, you generally wouldn't want OUTPUT to be true, as you'd 

just be writing out the same data again 

LOAD_POSTPROCESS_FEATURES_AND_TARGETS = False 

LOAD_FEATURES_FILENAME = '' 

LOAD_TARGETS_FILENAME = '' 

LOAD_TARGET_INDICES_FILENAME = '' 

 

# if this is true, you generally don't want LOAD to have been true above, as 

you'd just be writing out the same data again 

OUTPUT_POSTPROCESS_FEATURES_AND_TARGETS = False 

OUTPUT_FEATURES_FILENAME = '' 

OUTPUT_TARGETS_FILENAME = '' 

OUTPUT_TARGET_INDICES_FILENAME = '' 

 

EPOCHS = 2000 

BATCH_SIZE = 150 

 

BACKASTING = False 

 
ocr = pd.read_csv(DATA_FILEPATH, index_col=0) 

 

# Search data headers for strings related to soil hydrology 

pp_cols = [] 

VWC_cols = [] 

if PP_TARGETING: 

    pp_cols = [v for v in ocr.columns if "Pressure_" in v]  # measures number 

of features for pp 

if VWC_TARGETING: 

    VWC_cols = [v for v in ocr.columns if "vwc_" in v]  # measures number of 

features for VWC 

 

num_targets = len(pp_cols) + len(VWC_cols) 

ocr.index = pd.to_datetime(ocr.index) 

 
ntrain = N_TRAIN  #how long should the antecedant window be? 

ntarg = N_TARG  #how long should forward predictiono span be? 

 
if not ANTECEDANT_SOIL_HYDROLOGY: 

    # scale data, no antecedant pp 

    data = ocr 

    data_scaling_features = 

preprocessing.MinMaxScaler(feature_range=(0,1)).fit(data.iloc[:,:-

num_targets]) 

    data_scaled_df = 

pd.DataFrame(data_scaling_features.transform(data.iloc[:,:-num_targets]), 

index=ocr.index) 

    data_scaling_targets = 

preprocessing.MinMaxScaler(feature_range=(0,1)).fit(data.iloc[:,-

num_targets:]) 
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    data_scaled_df = pd.concat([data_scaled_df, 

(pd.DataFrame(data_scaling_targets.transform(data.iloc[:,-num_targets:]), 

index=ocr.index))], axis = 1) 

    data_scaled_df.fillna(-1, inplace=True) 

 

    if LOAD_POSTPROCESS_FEATURES_AND_TARGETS: 

        features = np.load(LOAD_FEATURES_FILENAME) 

        targets = np.load(LOAD_TARGETS_FILENAME) 

        target_indices = np.load(LOAD_TARGET_INDICES_FILENAME) 

         

    else: 

        # prepare features and targets 

        features, targets, target_indices = 

lstm_prep_no_pp(data_scaled_df.index.values, data_scaled_df.values[:,:-

num_targets],  

                                                      

data_scaled_df.values[:,-num_targets:], num_targets, ntrain, ntarg) 

 

    # create bounds for the prediction intervals 

    intervals = np.zeros(len(target_indices)) 

    for i in range(0, len(intervals), targets.shape[1]): 

        intervals[i]=1 

 

    intervals[intervals==0] = np.nan 

 

    binary_indices = np.copy(target_indices) 

 

    for i in range(0, len(binary_indices), forecast_hrs): 

        binary_indices[i] = np.datetime64("NaT") 

 

    # set -1s to nan to be ignored 

    targets[targets==-1] = np.nan 

 
if ANTECEDANT_SOIL_HYDROLOGY:   

    # scale data, w/ antecedant pp 

    data = ocr 

    data_scaling = 

preprocessing.MinMaxScaler(feature_range=(0,1)).fit(data.iloc[:,:]) 

    data_scaled = 

pd.DataFrame(data_scaling.transform(data.iloc[:,:]),index=ocr.index) 

    data_scaled_df = data_scaled.fillna(-1) 

 

    if LOAD_POSTPROCESS_FEATURES_AND_TARGETS: 

        features = np.load(LOAD_FEATURES_FILENAME) 

        targets = np.load(LOAD_TARGETS_FILENAME) 

        target_indices = np.load(LOAD_TARGET_INDICES_FILENAME) 

         

    else: 

        # prepare features and targets 

        features, targets, target_indices = 

lstm_prep_w_pp(data_scaled_df.index.values, data_scaled_df.values, 

num_targets, ntrain, ntarg) 
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    # create bounds for the prediction intervals 

    intervals = np.zeros(len(target_indices)) 

    for i in range(0,len(intervals),targets.shape[1]): 

        intervals[i]=1 

 

    intervals[intervals==0] = np.nan 

 

    binary_indices = np.copy(target_indices) 

 

    for i in range(0,len(binary_indices),36): 

        binary_indices[i]=np.datetime64("NaT") 

 

    # set -1s to nan to be ignored 

    targets[targets==-1] = np.nan 

 
if OUTPUT_POSTPROCESS_FEATURES_AND_TARGETS: 

        np.save(OUTPUT_FEATURES_FILENAME, features) 

        np.save(OUTPUT_TARGETS_FILENAME, targets) 

        np.save(OUTPUT_TARGET_INDICES_FILENAME, target_indices) 

 
# split training/testing data, and separate train/test data from 20 years of 

backcasting prediction data. 

index_usgs_gap_start = ocr.index.get_loc("2020-06-09 21:00:00") 

split = TEST_VALIDATION_SPLIT 

pp_index = int(np.ceil(index_usgs_gap_start/ntarg)) 

 

train_split_index = int(features.shape[0]-pp_index) 

test_split_index = int(train_split_index*(1-split)) 

 

train_features = features[pp_index:-test_split_index] 

test_features = features[-test_split_index:] 

 

predict_features = features[:int(pp_index+1)]  #use these predict array when 

backcasting 

 

train_targets = targets[pp_index:-test_split_index] 

test_targets = targets[-test_split_index:] 

test_indices = target_indices[-test_targets.shape[0]*test_targets.shape[1]:] 

 

predict_targets = targets[:int(pp_index+1)] 

predict_indices = 

target_indices[:predict_targets.shape[0]*predict_targets.shape[1]] 

 
# The below model is inspired by and adapted from: 

https://github.com/LukeTonin/keras-seq-2-seq-signal-prediction 

# Define an input shape. This is the tensor shape our model expects from now 

on. 

# This is essential for a stateful model 

batch = None 

 

# this doesn't seem to have a huge effect on the model 
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#n_units = 36 

n_units = 72 

#n_units = features.shape[2] 

 

encoder_inputs = Input(batch_input_shape=(batch, train_features.shape[1], 

train_features.shape[2]), name="encoder_input") 

 

encoder_lstm = LSTM(n_units, return_state=True, stateful=False, 

return_sequences=True, name="encoder") # define encoder 

# connect encoding layer to our inputs, return all states 

 

encoder_outputs, state_h, state_c = encoder_lstm(encoder_inputs) 

encoder_states = [state_h, state_c] 

 
# Define inputs to the decoder. 

decoder_inputs = Input(batch_input_shape=(batch, None, 

train_targets.shape[2]), name="decoder_input") 

 

# Create Decoder... 

decoder_lstm = LSTM(n_units, return_state=True, return_sequences=True, 

stateful=False, name="decoder") 

 

# Important step: connect Decoder to our input layers and use the hidden and 

cell states  

# from the encoder to instantiate this layer 

#decoder_outputs, decoder_h, decoder_c = decoder_lstm(decoder_inputs, 

initial_state=[state_h, state_c]) 

decoder_outputs, decoder_h, decoder_c = decoder_lstm(decoder_inputs, 

initial_state=encoder_states) 

decoder_states = [decoder_h, decoder_c] 

 

#create attention layer 

# ---------------------- 

attention = dot([decoder_outputs, encoder_outputs], axes=[2, 2], 

name="attention_dot") 

attention2 = Activation('softmax')(attention) 

 

context = dot([attention2, encoder_outputs], axes=[2,1], name="context_dot") 

decoder_combined_context = concatenate([context, decoder_outputs]) 

 

# ---------------------- 

 

decoder_dense1 = Dense(50, activation='tanh', name="decoder_dense1") 

dense_context = decoder_dense1(decoder_combined_context) 

 

dropout = Dropout(0.5) 

drop = dropout(dense_context) 

 

decoder_dense2 = Dense(train_targets.shape[2], activation='linear', 

name="decoder_context") 

decoder_outputs = decoder_dense2(drop) 
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model = Model(inputs=[encoder_inputs, decoder_inputs], 

outputs=decoder_outputs) 

model.compile(optimizer='adam', loss=mse_nan, metrics=mse_nan) 

 
# initialize tqdm callback with default parameters 

tqdm_callback = tfa.callbacks.TQDMProgressBar() 

 

# if a computer can fit every epoch in one go, set epochs to 1 (or any lower 

number) and encase the fit command in a for loop. 

# successive calls to the fit command will increasingly fit the model 

model.fit([train_features, train_features[:,-ntarg:,-num_targets:]], 

train_targets, epochs=EPOCHS, batch_size=BATCH_SIZE, verbose=0, shuffle=True, 

callbacks=[TqdmCallback(verbose=0)]) 

 

print("Fitting complete! ") 

 
#define inference ('inf') model, a separate encoding model. This just outputs 

our encoder states 

encoder_model = Model(encoder_inputs, [encoder_outputs, encoder_states]) 

inf_encoder_outputs, inf_encoder_states = encoder_model(encoder_inputs) 

 

# set state shapes, which tells our decoder to accepts inputs states of the 

specificed size 

decoder_states_inputs = [Input(shape=(n_units,)), Input(shape=(n_units,))] 

 

# create our decoding layer. accepts same shape as decoder inputs and encoder 

states 

inf_decoder_outputs, inf_state_h, inf_state_c = decoder_lstm(decoder_inputs, 

initial_state=decoder_states_inputs) 

 

# save decoder output states. We'll use these as the input states for our 

decoder for predicting each next timestep 

# after the initial input of our encoder states 

inf_decoder_states = [inf_state_h, inf_state_c] 

 

inf_attention = dot([inf_decoder_outputs, inf_encoder_outputs], axes=[2, 2]) 

inf_attention2 = Activation('softmax')(inf_attention) 

 

inf_context = dot([inf_attention2, inf_encoder_outputs], axes=[2,1]) 

inf_decoder_combined_context = concatenate([inf_context, 

inf_decoder_outputs]) 

 

inf_dense_context = decoder_dense1(inf_decoder_combined_context) 

inf_drop = dropout(inf_dense_context) 

 

inf_final_outputs = decoder_dense2(inf_drop) 

 

# finally, instantiate our decoder model. Inputs are the original sequence + 

the encoder states.  

# outputs: sequence prediction + the states used for the decoder 

decoder_model = Model([encoder_inputs, decoder_inputs]+decoder_states_inputs, 

[inf_final_outputs]+inf_decoder_states) 
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if not ANTECEDANT_SOIL_HYDROLOGY: 

    # no antecedent pp 

    predictions = predict(test_features, encoder_model, decoder_model, 

num_steps_to_predict=train_targets.shape[1], 

                          num_features_to_predict=train_targets.shape[2], 

batch_size=None) 

 

    tests, preds = rescale_no_pp(test_features, test_targets, predictions, 

data_scaling_features, data_scaling_targets, test_indices) 

 

else:  

    # w antecedent pp 

    predictions = predict(test_features, encoder_model, decoder_model, 

num_steps_to_predict=train_targets.shape[1], 

                          num_features_to_predict=train_targets.shape[2], 

batch_size=None) 

 

    tests, preds = rescale_w_pp(test_features, test_targets, predictions, 

data_scaling, test_indices) 

 
if BACKCASTING: 

    # backcast (w no antecedent pp) 

    predictions = predict(predict_features, encoder_model, decoder_model, 

num_steps_to_predict=train_targets.shape[1], 

                          num_features_to_predict=train_targets.shape[2], 

batch_size=None) 

 

    tests_back, preds_back = rescale_no_pp(predict_features, predict_targets, 

predictions, data_scaling_features, data_scaling_targets, predict_indices) 

 
# score, scores = evaluate_forecasts(tests.values, preds.values) 

 

# #evaluate model performance on RMSE of just hazardous pore pressure values 

# print("\nLSTM Performance:") 

 

# Pore Pressure Threshold 

# y_pos, pred_pos, rmse, diff_array = threshold_rmse_eval(tests.values, 

preds.values, -1.0) 

 

# Rainfall Threshold 

#rmse = threshold_rmse_eval_rain(tests, preds, 

ocr["precip_accum_one_hour_mm"], 10.0) 

#print(rmse) 

 
#creating rmse array to save and plot 

#rmse_thresh = [] 

 

#thresholds = np.arange(2,15,1) 

 

#for i in thresholds: 
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#    rmse_thresh.append(threshold_rmse_eval_rain(tests, preds, 

ocr["precip_accum_one_hour_mm"], i)) 

     

#print(rmse_thresh) 

 

#np.save('./sitka_data/comparison_figs/with_antecedant_threshold_analysis.npy

', rmse_thresh) 

 
# import matplotlib.lines as mlines 

 

# ocr.index = ocr.index.tz_localize(None) 

 

# # start_1 = pd.to_datetime('2015-08-01') 

# # end_1 = pd.to_datetime('2015-09-01') 

 

# start_1 = pd.to_datetime('2022-05-30') 

# end_1 = pd.to_datetime('2022-10-01') 

 

# start_3 = pd.to_datetime('2022-10-01') 

# end_3 = pd.to_datetime('2023-03-21') 

 

# #messy plot of rainfall and test data/predictions. I've been messing with 

the y axis range to help clean it up 

 

# #col_list = VWC_cols + pp_cols 

# col_list = pp_cols 

 

# fig, (ax1, ax3) = plt.subplots(2, 1, figsize=(15,10), sharex=False, 

constrained_layout=True) 

# #fig, ax3 = plt.subplots(figsize=(10,4), sharex=False) 

# #fig.suptitle("Pore Pressure Predictions without Antecedant") 

 

# # ax1.scatter(tests.index, tests.iloc[:, 1], c='k', linewidth=1, 

label='Observed Data') 

# # ax1.scatter(preds.index, preds.iloc[:, 1], c='green', 

label='Predictions_1') 

 

# ax1.plot(tests.iloc[:, 0], c='k', linewidth=1, label='Observed Data') 

# ax1.plot(preds.iloc[:, 0], c='green', label='Predictions_1') 

 

# ax3.plot(tests.iloc[:, 0], c='k', linewidth=1, label='Observed Data') 

# ax3.plot(preds.iloc[:, 0], c='green', label='Predictions_1') 

 

# #ax1.scatter(target_indices, intervals, c='k', marker='|', s=50, alpha=0.5) 

 

# ax1.set_xlim(start_1, end_1) 

# ax3.set_xlim(start_3, end_3)   

 

# ax1.set_ylabel('Max Suction (psig)') 

# ax1.set_ylim(-0.3, 0.7) 

# ax1.xaxis.set_visible(True) 
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# ax3.set_ylabel('Max Suction (psig)') 

# ax3.set_ylim(-0.3, 0.7) 

# ax3.xaxis.set_visible(True) 

 

# #plt.xticks(rotation=45) 

 

# ax1.tick_params(axis='both', labelcolor='k', labelsize=13) 

# ax3.tick_params(axis='both', labelcolor='k', labelsize=13) 

 

# ax2 = ax1.twinx()  # instantiate a second axes that shares the same x-axis 

# ax4 = ax3.twinx()  # instantiate a second axes that shares the same x-axis 

 

# ax1.patch.set_visible(False) 

# ax1.set_zorder(ax2.get_zorder() + 1) 

 

# ax3.patch.set_visible(False) 

# ax3.set_zorder(ax4.get_zorder() + 1) 

 

# ax2.set_ylabel('Rainfall (mm)', color='royalblue')  # we already handled 

the x-label with ax1 

# ax2.bar(preds.index, ocr.loc[preds.index, ocr.columns[0]], 

color='royalblue', alpha=0.8,width=0.2) 

# ax2.tick_params(axis='y', labelcolor='royalblue', labelsize=13) 

 

# ax2.set_ylim(0,40) 

 

# ax4.set_ylabel('Rainfall (mm)', color='royalblue')  # we already handled 

the x-label with ax1 

# ax4.bar(preds.index, ocr.loc[preds.index, ocr.columns[0]], 

color='royalblue', alpha=0.8,width=0.2) 

# ax4.tick_params(axis='y', labelcolor='royalblue', labelsize=13) 

 

# ax4.set_ylim(0,40) 

 

# one_line = mlines.Line2D([], [], color='green', marker='', 

#                   markersize=15, label='Max Suction, without Antecedant') 

# # two_line = mlines.Line2D([], [], color='blue', marker='', 

# #                   markersize=15, label='2 Hour') 

 

 

# black_line = mlines.Line2D([], [], color='k', marker='', 

#                   markersize=15, label='Observed Pressures') 

 

# ax1.legend(handles=[one_line, black_line], loc='upper center', 

#         fontsize='large', bbox_to_anchor=(0.52,1.01), ncol=4, 

#         markerscale=1.3, frameon=False) 

 

 

# ax3.legend(handles=[one_line, black_line], loc='upper center', 

#         fontsize='large', bbox_to_anchor=(0.52,1.01), ncol=4, 

#         markerscale=1.3, frameon=False) 

# # plt.legend(handles=[one_line_hr, one_line_ft, black_line], loc='upper 

center', 
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# #         fontsize='small', bbox_to_anchor=(0.52,1.01), ncol=4, 

# #         markerscale=1.3, frameon=False) 

 

# #plt.title("Max PP, 72 Hr Forecast, 3 Input") 

 

# # plt.setp(ax1.get_xticklabels(True, "major"), visible=True) 

# # plt.setp(ax3.get_xticklabels(True, "major"), visible=True) 

 

# plt.rc('axes', labelsize=15) 

# #plt.rc('legend', fontsize=50) 

# #plt.tight_layout() 

 

# 

#plt.savefig('./sitka_data/comparison_figs/redo2_without_antecedant_batch_siz

e_150_epoch_3000.png', dpi=300) 

# plt.show() 

 
# wo_ante_rmse = 

np.load("./sitka_data/comparison_figs/no_antecedant_threshold_analysis.txt.np

y") 

# w_ante_rmse = 

np.load("./sitka_data/comparison_figs/with_antecedant_threshold_analysis.npy"

) 

 
# n_storms_per_thresh = [1045, 691, 484, 342, 245, 188, 137, 102, 82, 59, 45, 

36, 26] 

 
# fig, ax = plt.subplots(figsize=(5,7), constrained_layout=True) 

 

# ax.plot(thresholds, wo_ante_rmse, color='red', marker='s', label="Without 

Antecedant Suction") 

# ax.plot(thresholds, w_ante_rmse, color='teal', marker='o', label='With 

Antecedant Suction') 

# ax.set(xlabel='Threshold of Rainfall Intensity [mm/3hr]', ylabel='RMSE for 

Suction [psig]') 

# ax2 = ax.twinx() 

 

# ax2.plot(thresholds, n_storms_per_thresh, marker='*', label="# Storms") 

# ax2.set(ylabel='# Storms per Threshold') 

 

# plt.rc('axes', labelsize=20) 

 

# for index in range(len(thresholds[:3])): 

#     ax2.text(thresholds[index]+.3, n_storms_per_thresh[index]-10, 

n_storms_per_thresh[index], size=12, color='#1f77b4') 

     

# for index in range(len(thresholds[3:8])): 

#     ax2.text(thresholds[3+index]-1.4, n_storms_per_thresh[3+index]-10, 

n_storms_per_thresh[3+index], size=12, color='#1f77b4') 

     

# for index in range(len(thresholds[8:])): 
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#     ax2.text(thresholds[8+index]-.5, n_storms_per_thresh[8+index]-35, 

n_storms_per_thresh[8+index], size=12, color='#1f77b4') 

 

# fig.legend(loc="upper right", bbox_to_anchor=(1,1), 

bbox_transform=ax.transAxes) 

# 

plt.savefig('./sitka_data/comparison_figs/RMSE_comparison_w_and_wo_antecedant

_2.png', dpi=300) 

 
# from sklearn.metrics import r2_score 

# from scipy.stats import linregress 

 

# col_list = pp_cols 

# fig, ax = plt.subplots(3, 1, figsize=(6,8), sharex=False) 

# i = 1 

# for col in col_list: 

#     while i < (len(col_list)+1): 

#         x = np.linspace(np.nanmin(tests.iloc[:,i-1]), 

np.nanmax(tests.iloc[:,i-1]),100) 

#         y = x 

#         ax1 = ax[i-1] 

#         ax1.plot(x, y, c='k') 

#         ax1.scatter(tests.iloc[:,i-1], preds.iloc[:,i-1], c='slategrey', 

s=15, alpha=0.4) 

       

#         r2 = r2_score(tests.iloc[:,i-1], preds.iloc[:,i-1]) 

#         print(linregress(tests.iloc[:,i-1], preds.iloc[:,i-1])) 

#         slope, intercept, r_value, p_value, std_err = 

linregress(tests.iloc[:,i-1], 

#                                                                

preds.iloc[:,i-1]) 

#         print(slope) 

#         ax1.annotate(('R = 

'+'{0:.3f}'.format((r_value))),(0.75,0.2),None,'axes fraction') 

#         #r_values_full[pits_index, i-1] = r_value 

#         #ax1.annotate(('Slope = 

'+'{0:.3f}'.format((slope))),(0.10,0.72),None,'axes fraction') 

#         #if i == 1: 

#             #ax1.set_title('Soil Matric Potential - Observed vs. Predicted 

Comparison') 

#         ax1.set_ylabel('Predicted (kPa)') 

#         ax1.set_xlabel('Observed Value (kPa)') 

 

#         i = i+1 

     

# #pits_index += 1 

 

# plt.tight_layout() 

# #plt.savefig('36hr_36_24_d75dr50_cor_plot_SMALLER.svg',dpi=300) 
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