
USING DEEP LEARNING TO BACKCAST HYDROLOGIC RESPONSE AND INFORM

LANDSLIDE EARLY WARNING SYSTEMS

by

JONATHAN SHEPPARD

A THESIS

Presented to the Department of Earth Sciences

and the Division of Graduate Studies of the

University of Oregon in partial fulfillment

of the requirements

for the degree of

Master of Science

June 2023

 2

THESIS APPROVAL PAGE

Student: Jonathan Sheppard

Title: Using Deep Learning to Backcast Hydrologic Response and Inform Landslide Early

Warning Systems

This thesis has been accepted and approved in partial fulfillment of the requirements for the

Master of Science degree in the Earth Sciences by:

Joshua Roering Chairperson

Leif Karlstrom Member

Joseph Dufek Member

and

Krista Chronister Vice Provost for Graduate Studies

Original approval signatures are on file with the University of Oregon Division of Graduate

Studies.

Degree awarded June 2023

 3

© 2023 Jonathan Sheppard

 4

THESIS ABSTRACT

Jonathan Sheppard

Master of Science

Department of Earth Sciences

June 2023

Title: Using Deep Learning to Backcast Hydrologic Response and Inform Landslide Early

Warning Systems

Landslides are difficult to predict due to the influence of variable geologic and environmental

factors, such as geomechanical properties, rainfall, ground saturation, topography, and

earthquakes, exert on the probability of a slope failure. Deep learning (DL) models can

accurately predict the site-specific hydrologic response on hillslopes using soil moisture, pore

pressure, and rainfall monitoring data. Landslide early warning systems can utilize empirical

thresholds from deep learning-derived soil hydrology properties to improve landslide hazard

prediction accuracy. We study the possibility of improving a logistical regression-based landslide

early warning system being used in Sitka, AK by incorporating pore pressure responses that

correspond to past known landslide events. Because pore pressure records for past known events

are nonexistent, we must backcast soil hydrology timeseries from weather records, without

including antecedent soil hydrology as initial conditions. We assess the accuracy of predictions at

various rainfall intensity thresholds made by a Long Short-Term Memory (LSTM) DL model

trained on weather features compared to a model that includes antecedent soil hydrology

conditions. We find that the average accuracy of our model decreases by up to 20% for

important, high-intensity rainfall events.

 5

DISCLAIMER

These data and analyses have not received USGS approval and as such are provisional and

subject to revision. These plots are released on the condition that neither the USGS nor the U.S.

Government shall be held liable for any damages resulting from its authorized or unauthorized

use.

 6

Without the motivation and support from my family, the guidance and patience from my advisor,

the laughter and comraderie from my lab mates, or the winds of chance that pushed me to the

University of Oregon, this work would’ve never come to fruition. Thank you all for the

encouragement and dedication towards excelling and enlightening..

 7

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION ... 9

II. METHODS ... 12

2.1 OVERVIEW... 12

2.2 STUDY AREA .. 12

2.3 DATA SOURCE ... 13

2.4 SOURCE PRECIPITATION COMPARISON.. 14

2.5 MACHINE LEARNING METHODS ... 15

2.6 DATA PREPROCESSING, EXPERIMENTAL FRAMEWORK, AND PARAMETER TUNING 16

III. RESULTS .. 18

IV. DISCUSSION .. 23

4.1 MISSING INITIAL CONDITIONS FOR MODELING ... 23

4.2 TRAINING MODELS FOR INTENSE RAINFALL EVENT PREDICTIONS .. 24

4.3 MODEL PARAMETERS & SENSITIVITY .. 25

V. CONCLUSIONS ... 27

APPENDIX: MODEL CODE .. 28

REFERENCES CITED .. 39

 8

LIST OF FIGURES

Figure Page

FIGURE 1. .. 13

FIGURE 2. .. 14

FIGURE 3. .. 17

FIGURE 4. .. 18

FIGURE 5. .. 20

FIGURE 6. .. 21

FIGURE 7. .. 22

 9

I. INTRODUCTION

Rainfall-induced landslides are a deadly, recurring problem across the globe. In 2004-

2016, more than 55,000 people lost their lives to landslides (Sim, Lee, & Wong, 2022) and

economic losses were estimated to be at $20 billion annually, which is 17% of the total ($121

billion) yearly mean global disaster losses from 1980-2013 (Klose et al., 2016). In that time span,

4,862 fatal non-seismically induced landslide events were reported, with 79% being triggered by

rainfall. Further, the loss of life disproportionately affects medium and developing nations, with

only 5% of fatalities coming from highly developed nations (Lacasse et al., 2010; Lacasse and

Nadim 2014), highlighting the importance of being able to assess the potential for landslide

initiation via hydrologic response to rainfall on hillslopes in at-risk communities. This is often

facilitated by hydrologic models characterized by varying degrees of complexity, such as

empirical thresholds relating rainfall intensity and/or soil hydrologic measurements

corresponding to past landslide events (e.g., Guzzetti et al., 2008; Wieczorek & Guzzetti, 2000;

Mirus et al., 2018a), deterministic, physically based numerical models (e.g., Bellugi et al., 2015;

Montgomery & Dietrich, 1994; Simunek at al. 2005), or models based on machine learning

(Orland et al., 2020; Papacharalampous et al., 2019; Hewamalage et al., 2021; Lara-Benítez et

al., 2021). The varying methods bring unique advantages and disadvantages: empirical

relationships between soil hydrologic properties and rainfall provide an efficient means of

characterizing regional landslide susceptibility, but have limited predictive capabilities (Bogaard

& Greco, 2018; van Natijne et al., 2020). Conversely, physical models of variably saturated flow

can be used to obtain thresholds and extrapolate beyond the observed period of record (e.g.,

Fusco et al., 2019; Thomas et al., 2018), but these methods require significant parametrization

and computational resources.

 10

More recently, it has been shown that machine learning models merge the benefits of both

empirical thresholds and physically based models by providing low-cost, site-specific hydrologic

response predictions that implicitly capture the characteristics of multi-dimensional variably

saturated flow while relying on the quality and abundance of in-situ soil hydrology

measurements (Orland et al., 2020; Shen et al., 2018). The Deep Learning (DL) model presented

by Orland et al. (2020) provides an accurate and computationally efficient method of predicting

the timing and magnitude of hydrologic response to rainfall on hillslopes in various soil

conditions with as little as six months of training data. As a result, this tool may be useful for

informing landslide early warning systems (LEWS) that account for antecedent conditions, such

as soil moisture or pore pressure, that affect the likelihood of incoming storms to trigger

landslides.

The community of Sitka, AK has implemented a LEWS based on a logistical regression

statistical model using rainfall thresholds from recorded past landslide events (Patton et al.,

2023). In an effort to investigate avenues of increasing model accuracy, pore pressure has been

identified as a candidate additional parameter to incorporate. The current inventory of past

landslides used to train the logistic regression model includes landslides from 2015 to 2020.

Several soil hydrology monitoring instruments have been set up as early as 2020, resulting in

current soil hydrology characteristics, but none for the corresponding landslide events prior to

2020.

Here we develop an strategy for training a DL model to backcast pore pressure values

that encompass the entirety of their logistical regression landslide inventory that spans 2015 to

2020. The lack of past site-specific weather and soil hydrology data precludes the use of

antecedent pore pressure data for training of a DL-based predictions of hydrologic response pre-

 11

2020 and requires the use of a semi-local weather dataset to use for training. We begin by

showing that using a semi-local weather record source is an acceptable proxy for local weather,

where overlapping timeseries of precipitation are well correlated. We then explore the effect of

antecedent weather conditions, number of predictions made per timestep, and number of

predictions made per model epoch on model accuracy during various thresholds of high intensity

rainfall events, which are of primary concern for landslide initiation. As we lack antecedent pore

pressure conditions (i.e., the initial conditions) for model predictions, we further show that the

overall model accuracy is slightly degraded but comparable to a model that otherwise includes

antecedent pore pressure as a training input feature.

 12

II. METHODS

2.1 Overview

 To formulate and test the DL model for backcasting pore pressure responses, we first

collected weather and soil hydrology timeseries from sources near Sitka, AK. The soil hydrology

data is limited to recent years (2020-) and does not extend to the period covering the past

landslide events. We use a longer record for weather that is collected at a nearby site (~4km away

from the soil hydrology sensor location) as the model input and compared the precipitation

measured at each site to ensure that the amounts were comparable, such that the rainfall at the

nearby site source could be used as a proxy. We then explore model sensitivity and tune the

model using three hyperparameters required by the DL algorithm. Model accuracy is then

assessed by measuring the error during various rainfall intensity thresholds which have higher

chances of initiating landslide events.

2.2 Study Area

 We apply DL to assess hydrologic response in Sitka, a remote, steep community in

southeast Alaska (Figure 1). The landscape surrounding Sitka is filled with steep hillslopes and

thin volcanic soils, which are particularly susceptible to shallow-seated landslides. The climate in

Sitka is characterized by high annual precipitation, mainly attributed to atmospheric rivers from

September to December (Wendler et al., 2016; Sharma et al., 2015). As debris flows are

commonly initiated by shallow landslides during intense precipitation, this leaves isolated

communities in the region, like Sitka, exposed to the deadly hazards of debris flows.

 13

Figure 1. Study area. Google Earth image of Sitka, AK (©Landsat/Copernicus and Maxar Technologies, 2023).

Shown are the PASI NWS station and the USGS Harbor Mountain monitoring station.

2.3 Data Source

 We used soil hydrologic data collected from the USGS monitoring site on Harbor

Mountain north of Sitka, AK as target features (Figure 1). The USGS monitoring station has

sensors installed in two soil pits on the edge of a steep hollow similar to the initiation zones of

past landslides. Both pits record soil moisture (VWC) and pore pressure at two depths and a

single depth, respectively. The pits have different responses for soil moisture and pore pressure

(Figure 2). We focus on targeting pore pressure predictions and chose to study pore pressures

from soil pit 2 to build a responsive model more in line with observed landslide-initiating pore

pressure responses. The instrument record includes 5-minute measurements of rain, VWC, and

pore pressure acquired from 2020 to 2023.

 14

 For training features, we use weather records (primarily precipitation, but wind is also

included) from the nearby Nation Weather Service (NWS) station (NWS station code PASI)

operated by the Federal Aviation Administration (FAA) at Sitka Airport (NOAA NCEI, 2001)

(Figure 1). Weather data has been recorded at the airport since 2002 in hourly to sub-hourly

intervals.

Figure 2. Compilation of USGS Harbor Mountain station records from June 2020 to March 2023 for precipitation,

soil moisture, and suction (pressure) across both soil pits. Data has been down sampled from five-minute intervals to

three-hour intervals. Precipitation is cumulative over the three-hour interval and soil moisture and suction are the

maximum over the three-hour interval.

2.4 Source Precipitation Comparison

 As depicted in Figure 1, the PASI gauge is 4.3 kilometers from the USGS monitoring

station on Harbor Mountain, with a 575-meter elevation difference. As pronounced spatial

heterogeneity in precipitation is typical of southeast Alaska (Patton et al., 2023), we performed a

 15

correlation analysis on the local precipitation data of the USGS monitoring station and the semi-

local PASI gauge.

2.5 Machine Learning Methods

 Various machine learning methods have been applied to the field of geosciences, from

Artificial Neural Networks (ANNs) (DeVries et al., 2017; Abrahart & See, 2007; Ren et al.,

2019; Araya & Ghezzehei) to variations of the ANN, such as the Recurrent Neural Network

(RNN) and the Long Short-Term Memory (LSTM) models. RNNs incorporate information from

the previous timestep and make predictions based on a weighting between the past and present

inputs. LSTM models advance this approach by incorporating an internal state which is

propagated through time, allowing the model to handle longer term temporal dependencies.

Furthermore, LSTM-based models are conceptually better suited than statistically-based

autoregressive time series models, given a LSTM’s capacity to approximate non-linear

relationships between input and output variables, as opposed to assuming linear relationships

between lagged endogenous or exogeneous variables in most autoregressive models (Box et al.,

2008). For a more in-depth discussion of the LSTM architecture, we refer to Olah (2015), and for

applications to hydrology, we refer to Kratzert et al. (2018).

 We use the DL model presented by Orland (2020), which is an LSTM “encoder-decoder”

model with a global Luong attention mechanism (Luong et al., 2015). The encoder-decoder

architecture was built to solve sequence-to-sequence problems, such that both the input and

output of a model are sequences of data. The encoder reads in and learns an input sequence, then

feeds the input into a decoder which receives a fixed representation (understanding) of the input

sequence. From this fixed representation, the decoder learns the proper non-linear

 16

transformations to translate the input to an output sequence or variable length (Sutskever et al.,

2014).

2.6 Data Preprocessing, Experimental Framework, and Parameter Tuning

 Modeling steps include preparing input sequences into a set number of previous hours of

data at three-hour resolution containing precipitation and wind data (referred to as antecedent

weather), and the measured hourly maximum and cumulative precipitation for the next set

number of hours of data (referred to as a forecast). These input data pair with the future pore

pressure data from the current timestep to a set time in the future (referred to as the prediction

span)(Figure 3). In doing so, we provide our model with both prior and anticipated weather

information as inputs and seek to draw an explicit link between these inputs and the

corresponding pore pressure response within a specified forecast period. Model training occurs

by applying a moving window to the input provided, with a size equal to the antecedent weather

and the prediction span and then finding the best set of non-linearized weights and biases that

apply to current and past information which most closely match the observed pore pressure

response.

 We perform model tuning on three hyperparameters which show increased sensitivity to

model performance and complexity. We assess model performance based on the RMSE of the

model during rainfall events above a threshold amount of rainfall within three hours. The initial

2D hyperparameter space tested contained the first two hyperparameter investigated, the duration

or length of antecedent weather and the prediction span of the future target pore pressure. These

parameters combined to control the size of the temporal window the model is allowed to see at

any given timestep. By varying these parameters, we effectively vary the amount of training data

 17

our model has access to at any given timestep, which is a key component of any machine

learning model.

 The last model hyperparameter tuned is batch size. The batch size is a hyperparameter

that defines the number of samples to evaluate? analyze? before updating the internal model

parameters. A similar, but separate model hyperparameter is the model epochs, which is the the

number of times that the learning algorithm will cycle through the entire training dataset when

fitting. As model weights are set randomly upon initialization, each model run typically

converges on a similar, but not necessarily identical solution. However, training for 2000-5000

epochs consistently results in a series of weights and biases that lead to comparable results across

model runs.

Figure 3. Conceptual diagram showing model inputs and outputs. During training, a moving window slides across

input data provided to it (solid), and the model adjusts its weights to produce a sequence of pore pressure values

(dashed) from the model inputs that best matches the observed pore pressure sequence for those timesteps (not

pictured). This process repeats until the model converges on a set of weights and biases that produces the lowest

mean squared error measured across all predicted and observed sequences.

 18

III. RESULTS

In order to assess the correlation of rainfall amounts at the USGS Harbor Mountain

station gauge and the Sitka Airport PASI gauge, we performed a pairwise comparison to compute

the correlation coefficient for the two datasets. A correlation coefficient of 0.76 at a three-hour

sampling interval was calculated for every sample in each dataset (Figure 4). As we are primarily

interested in precipitation initiated shallow landslides, we focused on positive rainfall

observations by filtering rainfall observations of 0 mm (dry conditions) out of both rainfall

datasets and performed a similar analysis, which showed an increased correlation coefficient of

0.80. Both correlation coefficients are above 0.75 which indicates that the records are well

correlated. Therefore, we conclude that it is reasonable to use the Sitka Airport PASI gauge

record as a proxy for the local USGS station gauge as the DL model training feature input.

Figure 4. Pairwise comparison of precipitation data sourced from Sitka Airport PASI gauge and USGS Harbor

Mountain station gauge, resampled to matching three-hour sampling intervals. Base comparison shows that there is a

correlation coefficient of 0.76 between the records. When filtered such that only observations of non-zero

precipitation are compared, the correlation coefficient becomes 0.80.

 19

 To prepare for model input, we first preprocessed our data. We chose to calculate a 72-

hour forecast from our data, consistent with NWS forecasts of 3-hr rainfall intensity. Then we

tune the model by finding the antecedent weather and prediction span that minimize the RMSE

of pore pressure predictions during intense storm events above a threshold (Figure 5). We see an

increase in model accuracy during intense storm events when we increase the antecedent weather

length used in training and decrease the prediction span length being targeted. However,

increasing antecedent weather length and decreasing the prediction span length both lead to

longer model runtimes. Model weights are set randomly upon initialization, such that two models

run sequentially with the same inputs should have a comparable but not necessarily identical

RMSE values. We take into account this variability inherent in machine learning models by

outlining the lower bounds of these parameters that would that result in a model that balances

computational efficiency and accuracy during the high intensity events which are more likely to

initiate a landslide than intervals with low precipitation. We determine that any antecedent

weather length greater than 15 days into the past and any prediction span length less than 36

hours into the future would be sufficient to produce model accuracies comparable to the most

accurate model run during parameter tuning.

To tune the batch size hyperparameter, we look for the balance of reproducibility,

computational resource cost, and accuracy. An ideal batch size was found to be on the order of

100. A such, we employ a mini-batch gradient descent, which means that our batch size is greater

than 1, but less than the size of our training data set. Smaller batch sizes showed increasingly

diminished ability to predict the largest and smallest values of observations, while larger batch

sizes show decreasing returns on accuracy in exchange for decreasing returns on computational

 20

cost savings (Figure 6). We run our model fitting for 3000 epochs to minimize the variability of

model weights and ensure comparable results between model runs.

Figure 5. Parameter tuning heatmap of Antecedent Weather length and Prediction Span length. Parameter space for

tuning included Antecedent Weather from three to 23 days into the past and Prediction Span from 12 to 72 hours into

the future.

 Notably, the ability to backcast antecedent pore pressure data is unavailable during

historic landslide events used to inform the LEWS. Antecedent pore pressure conditions provide

the model with an initial condition as well as additional data to use during training. If poor initial

conditions are used (i.e., values are too far away or on another scale to target values), the

gradient descent used in machine learning can fail to converge, as starting predictions can be too

far away from target values. We mitigate this outcome by scaling our data to values between zero

 21

and one, so that our initial conditions will be captured within the gradient descent, resulting in

model convergence.

Figure 6. Comparison of the effect batch size has on model fit. Lower values of batch size (top, batch size=15) show

decreased ability to correctly predict the full range of pore pressure values when compared to larger values of batch

size (bottom, batch size=100).

To assess the performance of our model, we calculated the RMSE for pore pressure

predictions at various rainfall intensity thresholds (Figure 7). The number of rainfall events

captured with an intensity threshold of 2 mm/3hr is over 1000 events. As the rainfall intensity

threshold increases, we see an nonlinear decrease of captured (or analyzed) events, specifically

26 events when for rainfall intensity of 14 mm/3hr. Because RMSE is a biased estimator, the

larger number of rainfall events at lower thresholds may be a more encompassing estimate of

error for rainfall events outside of the training dataset. For comparison, we perform the same

 22

analysis for a model which includes antecedent soil hydrology conditions and observe that

including antecedent soil hydrology conditions increases accuracy by up to 20%.

(a) (b)

Figure 7. (a) Predicted and observed pore pressure response from October 2022 through March 2023 for a model

run without including antecedent conditions during training (top) and a model run with antecedent pore pressure

during training (bottom). (b) RMSE of both model type predictions during various rainfall intensity thresholds.

 23

IV. DISCUSSION

 The accuracy of a LEWS in slide-prone regions is of vital importance for the safety of the

local population. The differences in local resident response to predicted landslide hazard present

a challenge when implementing a LEWS and constraining that hazard prediction improves and

contextualizes the amount of risk being modeled, allowing for knowledgeable decisions. As

such, uncertainty in hazard prediction should be transparent and minimized. The accuracy of the

logistical regression model being deployed in Sitka, AK could be improved by including an

analysis of pore pressure responses for the corresponding landslides in their model inventory.

Local pore pressure records do not exist for that time span but can be approximated with DL

predictions.

4.1 Missing Initial Conditions for Modeling

As local pore pressure records do not exist for the period of time that spans past

landslides that inform the LEWS, the DL model will not have access to them as initial conditions

(antecedent conditions). Antecedent conditions are considered to be an important factor when

considering hydrologic conditions and physical landslide initiation controls as most rainfall

initiated shallow landslides occur during intense rainfall that follow periods of prolonged

wetness (Zhao et al., 2019; Lazzari et al., 2018; Mirus et al., 2018b; Godt et al., 2006). Initial

conditions within machine learning are important, as machine learning algorithms typically

utilize a gradient descent approach to minimizing a loss function between predicted and observed

values (Pathak et al., 2017; Wen et al., 2022) and a poor initial condition can cause the model to

fail to converge. The problem is highlighted for systems, such as soil hydrology, where a small

change in soil wetness and pore pressure initial conditions can differentiate whether soils have

 24

enough shear strength to resist slope failure and landslide initiation. This gives rise to two limits

in our model which has no initial conditions: (1) We limit our model accuracy by not providing

initial conditions. (2) We are limited in the length of our prediction span based on the dynamic

complexity of hydrology systems, which can evolve in varying ways depending on given initial

conditions. Our results show that model accuracy become limited for predictions beyond 36

hours, which is comparable to similar models (Orland et al., 2020) with a slight decrease in

accuracy and an increase in the required antecedent weather length.

4.2 Training Models for Intense Rainfall Event Predictions

Our model’s accuracy assessment has shown that even without including antecedent soil

hydrology conditions, it is still possible to predict pore pressure response during intense rainfall.

We have focused on minimizing the RMSE of model predictions during these intense rainfall

events. This is contrary to the loss equation used when training the model, which assesses the

MSE (a less biased estimator) fit of every prediction equally. As the many landslides triggered by

rainfall are caused by the buildup of water pore pressure into the ground during rainfall events

after a period of prolonged wetness, we focus on the accuracy of our model predictions during

intense rainfall, because accurate predictions during intense rainfall events lends itself directly to

increasing accuracy for landslide hazard predictions (Mirus et al., 2018a; Bogaard et al., 2018;

Fusco et al., 2019). The implications of focusing on the RMSE of select model predictions as

opposed to the results of the overall model MSE fit do not, however, imply that overall model fit

is low. It rather implies that every pore pressure response prediction that the model gives will not

have equal importance in the context of landslide hazard prediction.

 25

4.3 Model Parameters & Sensitivity

 Throughout model training, we discovered several model hyperparameters that

significantly impacted model performance. Length of antecedent weather and number of forward

predictions made per timesteps combined controlled the quantity of data the model had access to

during training, a crucial part of a machine learning model. Increasing the length of antecedent

weather increased model performance by allowing the model access to a longer duration of

antecedent conditions, which is a good proxy for the antecedent wetness (Zhao et al., 2019).

Antecedent rainfall is important to hillslope conditions and landslide initiation probability, but

the critical threshold for how much is important has been contended in various papers, ranging

from several hours to several weeks and likely varies by study area (Segoni, 2018). We found

that, in the absence of antecedent soil moisture data, increasing the amount of antecedent weather

conditions from 36 hours (Orland et al., 2020) to above two weeks proved to provide comparable

results for an increase in computational resources. For the prediction span (number of forward

predictions made from a given timestep), decreasing the value provided more accuracy at the

cost of increased computational resources. Increases this value past 36 hours generated

inaccurate predictions (Figure 5). We found that predicting 24-36 hours forward based on the

previous 2-3 weeks of antecedent weather provided a balance of accuracy and computation costs,

with lower values of prediction span and higher values of antecedent weather gaining

diminishing amounts of accuracy for increasing model runtime.

 The last model hyperparameter, batch size (number of predictions made per model

epoch), was found to have an optimal value of 100, which proved to balance model

computational performance with model prediction accuracy. We found that predictions made

 26

from models training with lower values tended to show a reduced capacity to capture the

smallest and largest of the observed pore pressure record. Larger values quickly showed

improved fit with a disparate increase in computational costs. We found values on the order of

100 to provide accurate results without long model runtimes.

 27

V. CONCLUSIONS

 We demonstrate that weather records separated by 4.3 kilometers and 575 meters in

elevation in a region described by pronounced spatial heterogeneity in precipitation are well

correlated and can serve as a proxy for hydrologic response on the local scale. Our model

performs well even without considering important antecedent soil hydrology conditions, with a

marginal decrease in accuracy. Excluding antecedent soil hydrology conditions in a LSTM model

with limited training data can therefore be mitigated by expanding the duration of the antecedent

weather data input to stand as a proxy for soil moisture conditions. Thus, the limited quantity of

training data on the local scale serves as a first-order limit on the model’s predictive capability.

Further, model accuracy bias during intense storm events is related to number of storms at each

intensity threshold, with more storms providing a less biased estimate of error. With previous

work exemplifying the capabilities of such a LSTM DL model to learn and understand the

physical hydrologic processes in landslide-prone hillslopes, we propose that this model has the

capabilities to predict and backcast hydrologic response to rainfall in data-limited conditions and

environments.

 28

APPENDIX: MODEL CODE

%load_ext autoreload

%autoreload 2

#everything we will import to use later

import os

os.environ["TF_CPP_MIN_LOG_LEVEL"]="3"

import warnings

warnings.filterwarnings('ignore')

warnings.simplefilter('ignore')

import numpy as np

import pandas as pd

from datetime import datetime, date, timedelta

from matplotlib import pyplot as plt

from tensorflow.keras.models import model_from_json

import tensorflow_addons as tfa

from functions import *

%matplotlib inline

import tensorflow.compat.v1 as tf

from tensorflow import keras

from tensorflow.keras import backend as K

from tensorflow.keras import Model

from tensorflow.keras.layers import *

from tensorflow.keras.wrappers.scikit_learn import KerasRegressor

from sklearn import preprocessing

from sklearn.model_selection import train_test_split

from sklearn.metrics import mean_squared_error

import tqdm

from tqdm.keras import TqdmCallback

OPTIONS FOR SCRIPT

Dataset location

DATA_FILEPATH =

'./sitka_data/processed_for_training_3_hour_72_1_no_vwc_max_pp_only.csv'

these two variables are in units of your data. Current runs have been using

3 hour data, so N_TARG is really 36 hours forward

N_TRAIN = 21*8 #how long should the antecedant window be?

N_TARG = 12 #how long should forward predictiono span be?

standard ML value

TEST_VALIDATION_SPLIT = 0.7

One of these must be true, at least

PP_TARGETING = True

VWC_TARGETING = False

 29

ANTECEDANT_SOIL_HYDROLOGY = False

if this is true, you generally wouldn't want OUTPUT to be true, as you'd

just be writing out the same data again

LOAD_POSTPROCESS_FEATURES_AND_TARGETS = False

LOAD_FEATURES_FILENAME = ''

LOAD_TARGETS_FILENAME = ''

LOAD_TARGET_INDICES_FILENAME = ''

if this is true, you generally don't want LOAD to have been true above, as

you'd just be writing out the same data again

OUTPUT_POSTPROCESS_FEATURES_AND_TARGETS = False

OUTPUT_FEATURES_FILENAME = ''

OUTPUT_TARGETS_FILENAME = ''

OUTPUT_TARGET_INDICES_FILENAME = ''

EPOCHS = 2000

BATCH_SIZE = 150

BACKASTING = False

ocr = pd.read_csv(DATA_FILEPATH, index_col=0)

Search data headers for strings related to soil hydrology

pp_cols = []

VWC_cols = []

if PP_TARGETING:

 pp_cols = [v for v in ocr.columns if "Pressure_" in v] # measures number

of features for pp

if VWC_TARGETING:

 VWC_cols = [v for v in ocr.columns if "vwc_" in v] # measures number of

features for VWC

num_targets = len(pp_cols) + len(VWC_cols)

ocr.index = pd.to_datetime(ocr.index)

ntrain = N_TRAIN #how long should the antecedant window be?

ntarg = N_TARG #how long should forward predictiono span be?

if not ANTECEDANT_SOIL_HYDROLOGY:

 # scale data, no antecedant pp

 data = ocr

 data_scaling_features =

preprocessing.MinMaxScaler(feature_range=(0,1)).fit(data.iloc[:,:-

num_targets])

 data_scaled_df =

pd.DataFrame(data_scaling_features.transform(data.iloc[:,:-num_targets]),

index=ocr.index)

 data_scaling_targets =

preprocessing.MinMaxScaler(feature_range=(0,1)).fit(data.iloc[:,-

num_targets:])

 30

 data_scaled_df = pd.concat([data_scaled_df,

(pd.DataFrame(data_scaling_targets.transform(data.iloc[:,-num_targets:]),

index=ocr.index))], axis = 1)

 data_scaled_df.fillna(-1, inplace=True)

 if LOAD_POSTPROCESS_FEATURES_AND_TARGETS:

 features = np.load(LOAD_FEATURES_FILENAME)

 targets = np.load(LOAD_TARGETS_FILENAME)

 target_indices = np.load(LOAD_TARGET_INDICES_FILENAME)

 else:

 # prepare features and targets

 features, targets, target_indices =

lstm_prep_no_pp(data_scaled_df.index.values, data_scaled_df.values[:,:-

num_targets],

data_scaled_df.values[:,-num_targets:], num_targets, ntrain, ntarg)

 # create bounds for the prediction intervals

 intervals = np.zeros(len(target_indices))

 for i in range(0, len(intervals), targets.shape[1]):

 intervals[i]=1

 intervals[intervals==0] = np.nan

 binary_indices = np.copy(target_indices)

 for i in range(0, len(binary_indices), forecast_hrs):

 binary_indices[i] = np.datetime64("NaT")

 # set -1s to nan to be ignored

 targets[targets==-1] = np.nan

if ANTECEDANT_SOIL_HYDROLOGY:

 # scale data, w/ antecedant pp

 data = ocr

 data_scaling =

preprocessing.MinMaxScaler(feature_range=(0,1)).fit(data.iloc[:,:])

 data_scaled =

pd.DataFrame(data_scaling.transform(data.iloc[:,:]),index=ocr.index)

 data_scaled_df = data_scaled.fillna(-1)

 if LOAD_POSTPROCESS_FEATURES_AND_TARGETS:

 features = np.load(LOAD_FEATURES_FILENAME)

 targets = np.load(LOAD_TARGETS_FILENAME)

 target_indices = np.load(LOAD_TARGET_INDICES_FILENAME)

 else:

 # prepare features and targets

 features, targets, target_indices =

lstm_prep_w_pp(data_scaled_df.index.values, data_scaled_df.values,

num_targets, ntrain, ntarg)

 31

 # create bounds for the prediction intervals

 intervals = np.zeros(len(target_indices))

 for i in range(0,len(intervals),targets.shape[1]):

 intervals[i]=1

 intervals[intervals==0] = np.nan

 binary_indices = np.copy(target_indices)

 for i in range(0,len(binary_indices),36):

 binary_indices[i]=np.datetime64("NaT")

 # set -1s to nan to be ignored

 targets[targets==-1] = np.nan

if OUTPUT_POSTPROCESS_FEATURES_AND_TARGETS:

 np.save(OUTPUT_FEATURES_FILENAME, features)

 np.save(OUTPUT_TARGETS_FILENAME, targets)

 np.save(OUTPUT_TARGET_INDICES_FILENAME, target_indices)

split training/testing data, and separate train/test data from 20 years of

backcasting prediction data.

index_usgs_gap_start = ocr.index.get_loc("2020-06-09 21:00:00")

split = TEST_VALIDATION_SPLIT

pp_index = int(np.ceil(index_usgs_gap_start/ntarg))

train_split_index = int(features.shape[0]-pp_index)

test_split_index = int(train_split_index*(1-split))

train_features = features[pp_index:-test_split_index]

test_features = features[-test_split_index:]

predict_features = features[:int(pp_index+1)] #use these predict array when

backcasting

train_targets = targets[pp_index:-test_split_index]

test_targets = targets[-test_split_index:]

test_indices = target_indices[-test_targets.shape[0]*test_targets.shape[1]:]

predict_targets = targets[:int(pp_index+1)]

predict_indices =

target_indices[:predict_targets.shape[0]*predict_targets.shape[1]]

The below model is inspired by and adapted from:

https://github.com/LukeTonin/keras-seq-2-seq-signal-prediction

Define an input shape. This is the tensor shape our model expects from now

on.

This is essential for a stateful model

batch = None

this doesn't seem to have a huge effect on the model

 32

#n_units = 36

n_units = 72

#n_units = features.shape[2]

encoder_inputs = Input(batch_input_shape=(batch, train_features.shape[1],

train_features.shape[2]), name="encoder_input")

encoder_lstm = LSTM(n_units, return_state=True, stateful=False,

return_sequences=True, name="encoder") # define encoder

connect encoding layer to our inputs, return all states

encoder_outputs, state_h, state_c = encoder_lstm(encoder_inputs)

encoder_states = [state_h, state_c]

Define inputs to the decoder.

decoder_inputs = Input(batch_input_shape=(batch, None,

train_targets.shape[2]), name="decoder_input")

Create Decoder...

decoder_lstm = LSTM(n_units, return_state=True, return_sequences=True,

stateful=False, name="decoder")

Important step: connect Decoder to our input layers and use the hidden and

cell states

from the encoder to instantiate this layer

#decoder_outputs, decoder_h, decoder_c = decoder_lstm(decoder_inputs,

initial_state=[state_h, state_c])

decoder_outputs, decoder_h, decoder_c = decoder_lstm(decoder_inputs,

initial_state=encoder_states)

decoder_states = [decoder_h, decoder_c]

#create attention layer

attention = dot([decoder_outputs, encoder_outputs], axes=[2, 2],

name="attention_dot")

attention2 = Activation('softmax')(attention)

context = dot([attention2, encoder_outputs], axes=[2,1], name="context_dot")

decoder_combined_context = concatenate([context, decoder_outputs])

decoder_dense1 = Dense(50, activation='tanh', name="decoder_dense1")

dense_context = decoder_dense1(decoder_combined_context)

dropout = Dropout(0.5)

drop = dropout(dense_context)

decoder_dense2 = Dense(train_targets.shape[2], activation='linear',

name="decoder_context")

decoder_outputs = decoder_dense2(drop)

 33

model = Model(inputs=[encoder_inputs, decoder_inputs],

outputs=decoder_outputs)

model.compile(optimizer='adam', loss=mse_nan, metrics=mse_nan)

initialize tqdm callback with default parameters

tqdm_callback = tfa.callbacks.TQDMProgressBar()

if a computer can fit every epoch in one go, set epochs to 1 (or any lower

number) and encase the fit command in a for loop.

successive calls to the fit command will increasingly fit the model

model.fit([train_features, train_features[:,-ntarg:,-num_targets:]],

train_targets, epochs=EPOCHS, batch_size=BATCH_SIZE, verbose=0, shuffle=True,

callbacks=[TqdmCallback(verbose=0)])

print("Fitting complete! ")

#define inference ('inf') model, a separate encoding model. This just outputs

our encoder states

encoder_model = Model(encoder_inputs, [encoder_outputs, encoder_states])

inf_encoder_outputs, inf_encoder_states = encoder_model(encoder_inputs)

set state shapes, which tells our decoder to accepts inputs states of the

specificed size

decoder_states_inputs = [Input(shape=(n_units,)), Input(shape=(n_units,))]

create our decoding layer. accepts same shape as decoder inputs and encoder

states

inf_decoder_outputs, inf_state_h, inf_state_c = decoder_lstm(decoder_inputs,

initial_state=decoder_states_inputs)

save decoder output states. We'll use these as the input states for our

decoder for predicting each next timestep

after the initial input of our encoder states

inf_decoder_states = [inf_state_h, inf_state_c]

inf_attention = dot([inf_decoder_outputs, inf_encoder_outputs], axes=[2, 2])

inf_attention2 = Activation('softmax')(inf_attention)

inf_context = dot([inf_attention2, inf_encoder_outputs], axes=[2,1])

inf_decoder_combined_context = concatenate([inf_context,

inf_decoder_outputs])

inf_dense_context = decoder_dense1(inf_decoder_combined_context)

inf_drop = dropout(inf_dense_context)

inf_final_outputs = decoder_dense2(inf_drop)

finally, instantiate our decoder model. Inputs are the original sequence +

the encoder states.

outputs: sequence prediction + the states used for the decoder

decoder_model = Model([encoder_inputs, decoder_inputs]+decoder_states_inputs,

[inf_final_outputs]+inf_decoder_states)

 34

if not ANTECEDANT_SOIL_HYDROLOGY:

 # no antecedent pp

 predictions = predict(test_features, encoder_model, decoder_model,

num_steps_to_predict=train_targets.shape[1],

 num_features_to_predict=train_targets.shape[2],

batch_size=None)

 tests, preds = rescale_no_pp(test_features, test_targets, predictions,

data_scaling_features, data_scaling_targets, test_indices)

else:

 # w antecedent pp

 predictions = predict(test_features, encoder_model, decoder_model,

num_steps_to_predict=train_targets.shape[1],

 num_features_to_predict=train_targets.shape[2],

batch_size=None)

 tests, preds = rescale_w_pp(test_features, test_targets, predictions,

data_scaling, test_indices)

if BACKCASTING:

 # backcast (w no antecedent pp)

 predictions = predict(predict_features, encoder_model, decoder_model,

num_steps_to_predict=train_targets.shape[1],

 num_features_to_predict=train_targets.shape[2],

batch_size=None)

 tests_back, preds_back = rescale_no_pp(predict_features, predict_targets,

predictions, data_scaling_features, data_scaling_targets, predict_indices)

score, scores = evaluate_forecasts(tests.values, preds.values)

#evaluate model performance on RMSE of just hazardous pore pressure values

print("\nLSTM Performance:")

Pore Pressure Threshold

y_pos, pred_pos, rmse, diff_array = threshold_rmse_eval(tests.values,

preds.values, -1.0)

Rainfall Threshold

#rmse = threshold_rmse_eval_rain(tests, preds,

ocr["precip_accum_one_hour_mm"], 10.0)

#print(rmse)

#creating rmse array to save and plot

#rmse_thresh = []

#thresholds = np.arange(2,15,1)

#for i in thresholds:

 35

rmse_thresh.append(threshold_rmse_eval_rain(tests, preds,

ocr["precip_accum_one_hour_mm"], i))

#print(rmse_thresh)

#np.save('./sitka_data/comparison_figs/with_antecedant_threshold_analysis.npy

', rmse_thresh)

import matplotlib.lines as mlines

ocr.index = ocr.index.tz_localize(None)

start_1 = pd.to_datetime('2015-08-01')

end_1 = pd.to_datetime('2015-09-01')

start_1 = pd.to_datetime('2022-05-30')

end_1 = pd.to_datetime('2022-10-01')

start_3 = pd.to_datetime('2022-10-01')

end_3 = pd.to_datetime('2023-03-21')

#messy plot of rainfall and test data/predictions. I've been messing with

the y axis range to help clean it up

#col_list = VWC_cols + pp_cols

col_list = pp_cols

fig, (ax1, ax3) = plt.subplots(2, 1, figsize=(15,10), sharex=False,

constrained_layout=True)

#fig, ax3 = plt.subplots(figsize=(10,4), sharex=False)

#fig.suptitle("Pore Pressure Predictions without Antecedant")

ax1.scatter(tests.index, tests.iloc[:, 1], c='k', linewidth=1,

label='Observed Data')

ax1.scatter(preds.index, preds.iloc[:, 1], c='green',

label='Predictions_1')

ax1.plot(tests.iloc[:, 0], c='k', linewidth=1, label='Observed Data')

ax1.plot(preds.iloc[:, 0], c='green', label='Predictions_1')

ax3.plot(tests.iloc[:, 0], c='k', linewidth=1, label='Observed Data')

ax3.plot(preds.iloc[:, 0], c='green', label='Predictions_1')

#ax1.scatter(target_indices, intervals, c='k', marker='|', s=50, alpha=0.5)

ax1.set_xlim(start_1, end_1)

ax3.set_xlim(start_3, end_3)

ax1.set_ylabel('Max Suction (psig)')

ax1.set_ylim(-0.3, 0.7)

ax1.xaxis.set_visible(True)

 36

ax3.set_ylabel('Max Suction (psig)')

ax3.set_ylim(-0.3, 0.7)

ax3.xaxis.set_visible(True)

#plt.xticks(rotation=45)

ax1.tick_params(axis='both', labelcolor='k', labelsize=13)

ax3.tick_params(axis='both', labelcolor='k', labelsize=13)

ax2 = ax1.twinx() # instantiate a second axes that shares the same x-axis

ax4 = ax3.twinx() # instantiate a second axes that shares the same x-axis

ax1.patch.set_visible(False)

ax1.set_zorder(ax2.get_zorder() + 1)

ax3.patch.set_visible(False)

ax3.set_zorder(ax4.get_zorder() + 1)

ax2.set_ylabel('Rainfall (mm)', color='royalblue') # we already handled

the x-label with ax1

ax2.bar(preds.index, ocr.loc[preds.index, ocr.columns[0]],

color='royalblue', alpha=0.8,width=0.2)

ax2.tick_params(axis='y', labelcolor='royalblue', labelsize=13)

ax2.set_ylim(0,40)

ax4.set_ylabel('Rainfall (mm)', color='royalblue') # we already handled

the x-label with ax1

ax4.bar(preds.index, ocr.loc[preds.index, ocr.columns[0]],

color='royalblue', alpha=0.8,width=0.2)

ax4.tick_params(axis='y', labelcolor='royalblue', labelsize=13)

ax4.set_ylim(0,40)

one_line = mlines.Line2D([], [], color='green', marker='',

markersize=15, label='Max Suction, without Antecedant')

two_line = mlines.Line2D([], [], color='blue', marker='',

markersize=15, label='2 Hour')

black_line = mlines.Line2D([], [], color='k', marker='',

markersize=15, label='Observed Pressures')

ax1.legend(handles=[one_line, black_line], loc='upper center',

fontsize='large', bbox_to_anchor=(0.52,1.01), ncol=4,

markerscale=1.3, frameon=False)

ax3.legend(handles=[one_line, black_line], loc='upper center',

fontsize='large', bbox_to_anchor=(0.52,1.01), ncol=4,

markerscale=1.3, frameon=False)

plt.legend(handles=[one_line_hr, one_line_ft, black_line], loc='upper

center',

 37

fontsize='small', bbox_to_anchor=(0.52,1.01), ncol=4,

markerscale=1.3, frameon=False)

#plt.title("Max PP, 72 Hr Forecast, 3 Input")

plt.setp(ax1.get_xticklabels(True, "major"), visible=True)

plt.setp(ax3.get_xticklabels(True, "major"), visible=True)

plt.rc('axes', labelsize=15)

#plt.rc('legend', fontsize=50)

#plt.tight_layout()

#plt.savefig('./sitka_data/comparison_figs/redo2_without_antecedant_batch_siz

e_150_epoch_3000.png', dpi=300)

plt.show()

wo_ante_rmse =

np.load("./sitka_data/comparison_figs/no_antecedant_threshold_analysis.txt.np

y")

w_ante_rmse =

np.load("./sitka_data/comparison_figs/with_antecedant_threshold_analysis.npy"

)

n_storms_per_thresh = [1045, 691, 484, 342, 245, 188, 137, 102, 82, 59, 45,

36, 26]

fig, ax = plt.subplots(figsize=(5,7), constrained_layout=True)

ax.plot(thresholds, wo_ante_rmse, color='red', marker='s', label="Without

Antecedant Suction")

ax.plot(thresholds, w_ante_rmse, color='teal', marker='o', label='With

Antecedant Suction')

ax.set(xlabel='Threshold of Rainfall Intensity [mm/3hr]', ylabel='RMSE for

Suction [psig]')

ax2 = ax.twinx()

ax2.plot(thresholds, n_storms_per_thresh, marker='*', label="# Storms")

ax2.set(ylabel='# Storms per Threshold')

plt.rc('axes', labelsize=20)

for index in range(len(thresholds[:3])):

ax2.text(thresholds[index]+.3, n_storms_per_thresh[index]-10,

n_storms_per_thresh[index], size=12, color='#1f77b4')

for index in range(len(thresholds[3:8])):

ax2.text(thresholds[3+index]-1.4, n_storms_per_thresh[3+index]-10,

n_storms_per_thresh[3+index], size=12, color='#1f77b4')

for index in range(len(thresholds[8:])):

 38

ax2.text(thresholds[8+index]-.5, n_storms_per_thresh[8+index]-35,

n_storms_per_thresh[8+index], size=12, color='#1f77b4')

fig.legend(loc="upper right", bbox_to_anchor=(1,1),

bbox_transform=ax.transAxes)

plt.savefig('./sitka_data/comparison_figs/RMSE_comparison_w_and_wo_antecedant

_2.png', dpi=300)

from sklearn.metrics import r2_score

from scipy.stats import linregress

col_list = pp_cols

fig, ax = plt.subplots(3, 1, figsize=(6,8), sharex=False)

i = 1

for col in col_list:

while i < (len(col_list)+1):

x = np.linspace(np.nanmin(tests.iloc[:,i-1]),

np.nanmax(tests.iloc[:,i-1]),100)

y = x

ax1 = ax[i-1]

ax1.plot(x, y, c='k')

ax1.scatter(tests.iloc[:,i-1], preds.iloc[:,i-1], c='slategrey',

s=15, alpha=0.4)

r2 = r2_score(tests.iloc[:,i-1], preds.iloc[:,i-1])

print(linregress(tests.iloc[:,i-1], preds.iloc[:,i-1]))

slope, intercept, r_value, p_value, std_err =

linregress(tests.iloc[:,i-1],

preds.iloc[:,i-1])

print(slope)

ax1.annotate(('R =

'+'{0:.3f}'.format((r_value))),(0.75,0.2),None,'axes fraction')

#r_values_full[pits_index, i-1] = r_value

#ax1.annotate(('Slope =

'+'{0:.3f}'.format((slope))),(0.10,0.72),None,'axes fraction')

#if i == 1:

#ax1.set_title('Soil Matric Potential - Observed vs. Predicted

Comparison')

ax1.set_ylabel('Predicted (kPa)')

ax1.set_xlabel('Observed Value (kPa)')

i = i+1

#pits_index += 1

plt.tight_layout()

#plt.savefig('36hr_36_24_d75dr50_cor_plot_SMALLER.svg',dpi=300)

 39

REFERENCES CITED

Bellugi, D., Milledge, D. G., Dietrich, W. E., Perron, J. T., & McKean, J. (2015). Predicting

shallow landslide size and location across a natural landscape: Application of a spectral

clustering search algorithm. Journal of Geophysical Research: Earth Surface, 120(12),

2552–2585. https://doi.org/10.1002/2015JF003520

Bogaard, T., & Greco, R. (2018). Invited perspectives: Hydrological perspectives on

precipitation intensity-duration thresholds for landslide initiation: Proposing hydro-

meteorological thresholds. Natural Hazards and Earth System Sciences, 18(1), 31–39.

https://doi.org/10.5194/nhess-18-31-2018

Fusco, F., De Vita, P., Mirus, B. B., Baum, R. L., Allocca, V., Tufano, R., Di Clemente, E., &

Calcaterra, D. (2019). Physically based estimation of rainfall thresholds triggering shallow

landslides in volcanic slopes of Southern Italy. Water, 11(9), 1915.

https://doi.org/10.3390/w11091915

Godt, J. W., Baum, R. L., & Chleborad, A. F. (2006). Rainfall characteristics for shallow

landsliding in Seattle, Washington, USA. Earth Surface Processes and Landforms, 31(1),

97–110. https://doi.org/10.1002/esp.1237

Guzzetti, F., Peruccacci, S., Rossi, M., & Stark, C. P. (2007). The rainfall intensity–duration

control of shallow landslides and debris flows: An update. Landslides, 5(1), 3–17.

https://doi.org/10.1007/s10346-007-0112-1

Hewamalage, H., Bergmeir, C., & Bandara, K. (2021). Recurrent neural networks for time series

forecasting: Current status and future directions. International Journal of Forecasting,

37(1), 388–427. https://doi.org/10.1016/j.ijforecast.2020.06.008

Klose, M., Maurischat, P., & Damm, B. (2015). Landslide impacts in Germany: A historical and

socioeconomic perspective. Landslides, 13(1), 183–199. https://doi.org/10.1007/s10346-

015-0643-9

Lacasse, S., & Nadim, F., Chen, W.-F., Duan, L. (2014). Landslide risk assessment and

mitigation strategy. In Superstructure design: Bridge engineering handbook (pp. 45–61).

essay, CRC Press.

Lacasse S, Nadim F, Kalsnes B (2010) Living with landslide risk. Geotech Eng J SEAGS

AGSSEA 41:1–13

Lara-Benítez, P., Carranza-García, M., & Riquelme, J. C. (2021). An experimental review on

Deep Learning Architectures for time series forecasting. International Journal of Neural

Systems, 31(03), 2130001. https://doi.org/10.1142/s0129065721300011

https://doi.org/10.1002/2015JF003520

 40

Lazzari, M., Piccarreta, M., & Manfreda, S. (2018). The role of antecedent soil moisture

conditions on rainfall-triggeredshallow landslides. Natural Hazards and Earth System

Sciences Discussions. https://doi.org/10.5194/nhess-2018-371

Mirus, B., Smith, J., Godt, J., Baum, R., & Coe, J. (2016). Simulated effect of topography and

soil properties on hydrologic response and landslide potential under variable rainfall

conditions in the Oregon Coast Range, USA. Landslides and Engineered Slopes.

Experience, Theory and Practice, 1431–1439. https://doi.org/10.1201/b21520-176

Mirus, B.B, Morphew, M., & Smith, J. (2018a). Developing Hydro-Meteorological Thresholds

for Shallow Landslide Initiation and Early Warning. Water, 10(9), 1274.

https://doi.org/10.3390/w10091274

Mirus, B. B., Becker, R. E., Baum, R. L., & Smith, J. B. (2018b). Integrating real-time

subsurface hydrologic monitoring with empirical rainfall thresholds to improve landslide

early warning. Landslides, 15(10), 1909–1919. https://doi.org/10.1007/s10346-018-0995-z

Montgomery, D. R., & Dietrich, W. E. (1994). A physically based model for the topographic

control on shallow landsliding. Water Resources Research, 30(4), 1153–1171.

https://doi.org/10.1029/93WR02979

National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental

Information (NCEI): Global Surface Hourly Precipitation for Sitka Airport station PASI.

NOAA National Centers for Environmental Information, Retrieved from

https://www.ncei.noaa.gov/access/search/data-search/global-hourly, 2001.

Orland, E., Roering, J. J., Thomas, M. A., & Mirus, B. B. (2020). Deep learning as a tool to

forecast hydrologic response for landslide‐prone hillslopes. Geophysical Research Letters,

47(16). https://doi.org/10.1029/2020gl088731

Papacharalampous, G., Tyralis, H., & Koutsoyiannis, D. (2019). Comparison of stochastic and

machine learning methods for multi-step ahead forecasting of Hydrological Processes.

Stochastic Environmental Research and Risk Assessment, 33(2), 481–514.

https://doi.org/10.1007/s00477-018-1638-6

Pathak, J., Lu, Z., Hunt, B. R., Girvan, M., & Ott, E. (2017). Using machine learning to replicate

chaotic attractors and calculate Lyapunov exponents from data. Chaos: An Interdisciplinary

Journal of Nonlinear Science, 27(12), 121102. https://doi.org/10.1063/1.5010300

Patton, A. I., Luna, L. V., Roering, J. J., Jacobs, A., Korup, O., & Mirus, B. B. (2023). Landslide

initiation thresholds in data sparse regions: Application to landslide early warning criteria in

Sitka, Alaska, USA. EGUSphere. https://doi.org/10.5194/egusphere-2023-25

Segoni, S., Piciullo, L., & Gariano, S. L. (2018). A review of the recent literature on rainfall

thresholds for landslide occurrence. Landslides, 15(8), 1483–1501.

https://doi.org/10.1007/s10346-018-0966-4

https://doi.org/10.3390/w10091274

 41

Sharma, A. R., & Déry, S. J. (2020). Contribution of atmospheric rivers to annual, seasonal, and

extreme precipitation across British Columbia and southeastern Alaska. Journal of

Geophysical Research: Atmospheres, 125(9). https://doi.org/10.1029/2019jd031823

Sim, K. B., Lee, M. L., & Wong, S. Y. (2022). A review of landslide acceptable risk and

tolerable risk. Geoenvironmental Disasters, 9(1). https://doi.org/10.1186/s40677-022-

00205-6

Shen, C., Laloy, E., Elshorbagy, A., Albert, A., Bales, J., Chang, F.-J., Ganguly, S., Hsu, K.-L.,

Kifer, D., Fang, Z., Fang, K., Li, D., Li, X., & Tsai, W.-P. (2018). Hess opinions: Incubating

deep-learning-powered hydrologic science advances as a community. Hydrology and Earth

System Sciences, 22(11), 5639–5656. https://doi.org/10.5194/hess-22-5639-2018

Simunek, J., Genuchten, M. Van, & Sejna, M. (2005). The HYDRUS-1D software package for

simulating the one-dimensional movement of water, heat, and multiple solutes in variably-

saturated media. HYDRUS Software Ser.

Thomas, M. A., Mirus, B. B., & Collins, B. D. (2018). Identifying Physics-Based Thresholds for

Rainfall-Induced Landsliding. Geophysical Research Letters, 45(18), 9651–9661.

https://doi.org/10.1029/2018GL079662

van Natijne, A. L., Lindenbergh, R. C., & Bogaard, T. A. (2020). Machine Learning: New

Potential for Local and Regional Deep-Seated Landslide Nowcasting. Sensors, 20(5), 1425.

https://doi.org/10.3390/s20051425

Wen Y, Chaolu T, Wang X (2022) Solving the initial value problem of ordinary differential

equations by Lie group based neural network method. PLoS ONE 17(4): e0265992.

https://doi.org/10.1371/journal.pone.0265992

Wendler, G., Galloway, K., & Stuefer, M. (2015). On the climate and climate change of Sitka,

Southeast Alaska. Theoretical and Applied Climatology, 126(1–2), 27–34.

https://doi.org/10.1007/s00704-015-1542-7

Wieczorek, G., & Guzzetti, F. (2000). A review of rainfall thresholds for triggering landslides.

Mediterranean Storms, Proceedings of the EGS Plinius Conference ’99, 8(January), 404–

414. Retrieved from

http://www.idrologia.polito.it/~claps/pliniusonline/pdf_proceedings/Plinius/Wieczor

ek/WIECZOREK.pdf

Zhao, B., Dai, Q., Han, D., Dai, H., Mao, J., & Zhuo, L. (2019). Antecedent wetness and rainfall

information in landslide threshold definition. Hydrology and Earth System Sciences

Discussion. https://doi.org/10.5194/hess-2019-150

https://doi.org/10.1029/2018GL079662
https://doi.org/10.3390/s20051425
https://doi.org/10.1371/journal.pone.0265992

	I. INTRODUCTION
	II. METHODS
	2.1 Overview
	2.2 Study Area
	2.3 Data Source
	2.4 Source Precipitation Comparison
	2.5 Machine Learning Methods
	2.6 Data Preprocessing, Experimental Framework, and Parameter Tuning

	III. RESULTS
	IV. DISCUSSION
	4.1 Missing Initial Conditions for Modeling
	4.2 Training Models for Intense Rainfall Event Predictions
	4.3 Model Parameters & Sensitivity

	V. CONCLUSIONS
	APPENDIX: MODEL CODE
	REFERENCES CITED

