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DISSERTATION ABSTRACT

Yang Hu

Doctor of Philosophy

Department of Mathematics

June 2023

Title: Metastable Complex Vector Bundles Over Complex Projective Spaces

In the unstable range, topological vector bundles over finite CW complexes

are difficult to classify in general. Over complex projective spaces CP n, such

bundles are far from being fully classified, or even enumerated, except for a few

small dimensional cases studied in the 1970’s [7, 15, 16, 17] using classical tools

from homotopy theory, and more recently [14] using the modern tool of chromatic

homotopy theory. We apply another modern tool, Weiss calculus, to enumerate

topological complex vector bundles over CP n with trivial Chern class data, in the

first two cases of the metastable range.
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CHAPTER I

INTRODUCTION

As families of vector spaces parametrized by points in a topological space,

vector bundles are basic structures studied across topology and geometry. Over

reasonable spaces, like manifolds or finite CW complexes, the classification of

vector bundles can be phrased in terms of a basic homotopy calculation. That

is, vector bundles are representable in the homotopy category. For example,

topological complex vector bundles of a fixed rank r over a finite complex X,

whose isomorphism classes we denote by Vectr(X), are identified with [X,BU(r)]

– homotopy classes of maps from X to the classifying space BU(r), for which

our standard model is the Grassmannian Grr(C∞) of r-planes in C∞. However,

calculating homotopy classes of maps between two spaces is notoriously difficult,

even when one or both of the spaces is a sphere. It is therefore both surprising

and not-so-surprising that even topological bundles over complex projective spaces

CP n are far from being fully classified, or even enumerated, except for a few low

dimensional cases studied in the 1970s [7, 15, 16, 17] and more recently [14].

We applied a modern tool, Weiss calculus [20], to obtain some enumeration

results for bundles over CP n. Here and in what follows, a bundle shall stand for

a topological complex vector bundle (or an isomorphism class of such, depending

on the context) unless otherwise stated. To state our main results, first note that

vector bundles can be measured through cohomology invariants, of which first

examples include Chern classes, which are remarkably effective but not complete

invariants. Since classifying spaces BU(r) are rationally formal, the set of bundles

with fixed Chern data is finite. The following notations are fixed throughout:
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Vectr(X) ∼= [X,BU(r)] denotes the pointed set of isomorphism classes of rank r

bundles over a finite dimensional CW complex X, and Vect0
r(X) denotes the subset

of rank r bundles over X whose Chern classes all vanish.

1.1. Main Results

We enumerate certain unstable topological complex vector bundles over

complex projective spaces.

Theorem 1.1 (The first unstable case). Let l > 2 be an integer, and let ψ(l) denote

the cardinality of Vect0
l−1(CP l). Then ψ(l) = 2 if l is odd, and ψ(l) = 1 if l is even.

Theorem 1.2 (The second unstable case). Let l > 3 be an integer, and let φ(l)

denote the cardinality of Vect0
l−2(CP l). The numbers φ(l) exhibit the following 24-

fold periodic behavior.

l mod 24 0 1 2 3 4 5 6 7 8 9 10 11
ψ(l) 1 1 12 2 1 3 2 4 3 1 4 6

l mod 24 12 13 14 15 16 17 18 19 20 21 22 23
φ(l) 1 1 6 4 1 3 4 2 3 1 2 12

TABLE 1. The enumeration of rank l− 2 bundles over CP l, whose Chern classes all
vanish.

Broadly speaking, there are two steps to proving these results. First, in

Theorem 2.1 we use Weiss calculus to identify stably trivial vector bundles over

some d-dimensional complex X with {X,ΣCP∞r }, when a bundle has rank r with

d
4
≤ r ≤ d−1

2
, which we call the metastable range. Here {X, Y } as usual denotes

stable homotopy classes of maps, which is the direct limit lim−→[ΣnX,ΣnY ], and CP∞r

is the stunted projective space CP∞/CP r−1.

Weiss calculus is a framework which applies to some spaces given by

evaluation of functors on the category of vector spaces, resolving them by a
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tower of fibrations with infinite loop spaces as fibers. Resolution by infinite loop

spaces, which are essentially abelian group objects, is a time-honored technique

in homotopy theory, with the Postnikov tower and unstable Adams resolutions

being standard examples. The machinery of Weiss calculus gives a custom-made

resolution of BU(r) for any r, which in the metastable range translates to the

stable mapping set above.

Stable mapping sets are amenable to standard tools such as Adams and

Atiyah-Hirzebruch spectral sequences, and the second part of our analysis is to

employ such tools to make this calculation when X is a complex projective space,

with needed incorporation of delicate calculations by Mosher [13], Toda [19], and

Matsunaga [11, 12]. Since stable mapping sets are abelian groups, the identification

of Theorem 2.1 equips Vect0
r(X) with an abelian group structure in the metastable

range. We calculate these groups, which are cyclic of the orders given. We prefer

to present our main results in terms of cardinality, since we don’t have an intrinsic

description of a group structure on Vect0
r(X).

We also calculate action of vector bundles on spheres in these sets. This

action is defined through the collapse map CP l → CP l ∨ S2l, or equivalently

by taking as vector bundle on CP l, finding an isomorphic representative which is

trivial on some Euclidean neighborhood, and replacing that trivial bundle on the

neighborhood by the corresponding bundle on the sphere.

Proposition 1.3. The action of Vect0
l−1(S2l) on Vect0

l−1(CP l) is transitive and free

when l is odd, trivial when l is even. The action of Vect0
l−2(S2l) on Vect0

l−2(CP l)

is trivial when l = 0, 1, 4, 9, 12, 13, 16, 21 mod 24; transitive and free when l =

3, 5, 7, 8, 11, 15, 17, 19, 20, 23 mod 24; transitive but not free in all other cases.
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We also calculate the restriction map between the sets of vector bundles in

question.

Proposition 1.4. The map Vect0
l−2(CP l) → Vect0

l−2(CP l−1) induced by the

standard inclusion CP l−1 → CP l is trivial, for all l > 3.

In addition to the question of natural group structure on these sets, open

questions invited by our work include finding representatives for these isomorphism

classes of bundles, in particular finding whether these have holomorphic

representatives, as well as finding invariants distinguishing these bundles. For some

of these questions, it might be helpful to have a more direct comparison between

Vect0
r(X) and stable maps to stunted projective spaces.

For perspective on our techniques, recall that rank r bundles over projective

spaces with trivial Chern classes are measured by [CP l, U/U(r)], since vanishing

of Chern classes in this case implies stable triviality, and the homogeneous space

U/U(r) is the homotopy fiber of the standard map BU(r) → BU . So whenever

having a rank r bundle over CP l that is stably trivial, one obtains, on the face of

it, a map from CP l to the finite dimensional complex Stiefel manifold U(l)/U(r).

However, these classifying maps cannot be added in the naive way that directly

resembles bundle addition: although the direct sum of two rank r bundle over CP l

that are stably trivial is again stably trivial, the geometric dimension of the direct

sum can often be strictly greater than r. So the calculation of maps from CP l to

U(l)/U(r) is unstable in nature, and for example the unstable Adams spectral

sequences computing them are not accessible. Using Weiss calculus enables us to

replace the Stiefel manifolds U(l)/U(r) by the infinite loop spaces QΣCP∞r (where

Q(−) = Ω∞Σ∞(−)), so that the loop sum provides an implicit way of adding

stably trivial rank r bundles. One is therefore able to replace the calculation of
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unstable mapping sets with stable ones, and hence to extract the desired unstable

information from stable calculations.

1.2. Background and History

We first fix notations. The cohomology ring of CP l is isomorphic to the

truncated polynomial algebra Z[x]/(xl+1), where x in degree two is identified with

the first Chern class of the dual of the tautological line bundle. The Chern classes

of any bundle ξ over CP l are integer multiples of the powers of x, and will therefore

be treated sometimes as integers.

Classification of topological complex vector bundles is typically organized

around K-theory and Chern classes, which in special cases give complete

information. When 2r ≥ dimX, bundles are stable – that is, isomorphism is

equivalent to stable isomorphism – and can hence be studied through K-theory.

When r = 1, line bundles are determined by the first Chern class c1. However,

when 1 < r < 1
2

dimX, rank r bundles over X are much harder to compute and

detect. For example, the calculation

Vect2(S6) ∼= [S6, BU(2)] ∼= [S5, SU(2)] ∼= π5(S3) ∼= Z/2

implies that there is a nontrivial rank 2 bundle over the 6-sphere, but such a bundle

can only have vanishing Chern classes.

Since the classifying spaces BU(r) are rationally formal, there will only be

finitely many rank r bundles with a given set of Chern classes. We call the counting

of this set Chern enumeration. One key special case of Chern enumeration is

finding the cardinality of Vect0
r(X), which we call vanishing Chern enumeration.
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Our main results, Theorems 1.1 and 1.2, resolve the vanishing Chern enumeration

question for complex projective spaces, in some of the cases where the first layer of

the Weiss tower of BU(−) determines the entire story – see Theorem 2.1.

Another key case of Chern enumeration is determining when the number

of vector bundles with fixed Chern classes is non-zero, which we call the Chern

realization question. Such results are given by arithmetic conditions on the Chern

classes. For example, Alan Thomas [18] proves that integer pairs (c1, c2) can serve

as the Chern classes for some stable bundle over CP l with ci = 0 for i ≥ 3 precisely

when the Schwarzenberger condition [10] is satisfied.

Starting with Chern realization results and then applying K-theory

techniques, Atiyah and Rees [7] obtain the following Chern enumeration for rank

two bundles over CP l for l = 3 and l = 4.

Theorem 1.5 (Atiyah-Rees ’76 [7]). Let ξ ↓ CP 3 be a stable bundle with ci(ξ) = 0,

i ≥ 3.

1. If c1(ξ) is even, then ξ has exactly two rank 2 representatives.

2. If c1(ξ) is odd, then ξ has a unique rank 2 representative.

Theorem 1.6 (Atiyah-Rees ’76 [7]). Every stable bundle ξ ↓ CP 4 with ci(ξ) = 0,

i ≥ 3, contains a unique rank 2 representative.

As special cases of these theorems, one obtains vanishing Chern enumeration

results. We will give alternate proofs of these in Section 3, as illustrative first cases

of our more general results.

Corollary 1.7. Over CP 3 there is a unique nontrivial rank 2 bundle with vanishing

Chern classes.
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Corollary 1.8. Over CP 4 there is no nontrivial rank 2 bundle with vanishing

Chern classes.

It is later proved, both by Rees [15] and by Smith [16], that for every l ≥ 5

there exists some nontrivial rank 2 bundle over CP l with vainishing Chern classes,

so that vanishing Chern enumeration is nontrivial. Using obstruction-theoretic

techniques, Switzer [17] gives alternative proofs of the Atiyah-Rees theorems and

goes further to resolve Chern enumeration for rank two bundles over CP 5 and CP 6.

Recently, progress in this subject has been made by Opie [14], who uses the

theory of topological modular forms – a modern tool from chromatic homotopy

theory, to obtain a full classification of rank 3 bundles over CP 5. In particular, the

Chern enumeration for such bundles is completely determined, and invariants have

been constructed to distinguish bundles having the same Chern classes. However,

Chern enumeration for complex projective spaces remains a mystery in general.

1.3. Outline

In Chapter 2 we give a brief account of Weiss calculus. The classifying space

BU(r) is the value of the functor BU(−) : V 7→ BU(V ) at the standard vector

space Cr. To detect rank r bundles over CP l we map CP l to the Weiss tower of

BU(−) evaluated at V = Cr. The Weiss tower of BU(−) is studied in detail by

Arone [3]. We shall make use of the description of the first layer and a connectivity

estimate of the higher layers to prove our identification

Vect0
r(CP l) ∼= {CP l,ΣCP∞r }

in the metastable range.

7



For those less familiar with stable homotopy techniques, in Chapter 3 we

give illustrative examples of our main results, presenting new proofs of Corollaries

1.7 and 1.8, which enumerate Vect0
2(CP 3) and Vect0

2(CP 4). After our stable map

identification theorem, these results are proved by showing that {CP 3,ΣCP∞2 } ∼=

Z/2 and {CP 4,ΣCP∞2 } = 0. To do so we apply the 2-primary Adams spectral

sequence to compute some first stable homotopy groups of ΣCP∞2 , and consider

these as coefficients of the cohomology theory represented by the infinite loop space

QΣCP∞2 . The computation is then finished with an Atiyah-Hirzerbruch spectral

sequence argument.

Chapter 4 is dedicated to the proof of our main results, Theorems 1.1 and 1.2,

following the strategy of Section 3. Rank (l− 1) and (l− 2) bundles over CP l are in

the metastable range, and the associated Weiss tower yields identifications

Vect0
l−1(CP l) ∼= {CP l,ΣCP∞l−1} and Vect0

l−2(CP l) ∼= {CP l,ΣCP∞l−2}.

In the first case, Theorem 1.1, we apply the 2-primary Adams spectral sequence to

compute some first few stable homotopy groups of ΣCP∞l−1 (with details presented

in Appendix A), and then organize the computations of {CP l,ΣCP∞l−1} with

the Atiyah-Hirzebruch spectral sequence. The proof of Theorem 1.2 has similar

ingredients, but with some added complexity for two reasons. First, both the prime

2 and the prime 3 are involved. Secondly, more detailed study of 3-cell stunted

projective spaces is required in order to determine a crucial d4-differential in the

Atiyah-Hirzebruch spectral sequence, where we make use of results of Mosher [13].

Finally, after establishing the main calculations, we prove Propositions 1.3 and 1.4.

8



CHAPTER II

WEISS CALCULUS

We apply Weiss calculus to equate the vanishing Chern enumeration problem

over complex projective spaces with the calculation of a stable homotopy mapping

set, in the metastable range. The following simplification of the Weiss tower in the

case at hand is key to our metastable computations.

Theorem 2.1. Let l > 2 be an integer. Then the map

Map∗
(
CP l, BU(V )

)
−→ Map∗

(
CP l, T1BU(V )

)
induces a bijection on π0 after evaluating at V = Cr, provided that l

2
≤ r ≤ l− 1. In

this case, π0Map∗
(
CP l, BU(V )

)
= [CP l, BU(r)] fits into the exact sequence

0 −→ {CP l,ΣCP∞r } −→ [CP l, BU(r)] −→ [CP l, BU ],

which we call the metastable exact sequence. It then follows that

Vect0
r(CP l) ∼= {CP l,ΣCP∞r }.

To prove Theorem 2.1, we begin with a brief account of Weiss calculus.

2.1. Fundamentals of Weiss Calculus

Weiss initiated the study of his calculus, inspired by Goodwillie calculus,

in [20]. There he focuses on orthogonal calculus, but we apply unitary calculus

here. Let J be the category whose objects are finite dimensional complex vector
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spaces with positive definite inner product (all in a fixed universe C∞), and whose

morphisms are linear isometric inclusions. We consider J as a topological category

since its morphism sets are Stiefel manifolds. Weiss calculus studies continuous

functors from J to pointed spaces.

For each n ≥ 0 there is a distinguished class of n-polynomial functors, and

the idea of calculus is to approximate a general functor by these polynomial ones –

analogous to the philosophy of classical calculus. Each continuous functor F : J →

Top∗ is equipped with a tower of fibrations

· · · −→ TnF −→ Tn−1F −→ · · · −→ T1F −→ T0F

where TnF is n-polynomial, called the Weiss tower of F . For each n there is a

comparison map F → TnF compatible with the tower, regarded as the universal

approximation of F by an n-polynomial functor. We say the tower converges to F

if F → holimnTnF is a weak equivalence. With appropriate connectivity conditions,

some towers terminate after finitely many steps.

The homotopy fiber LnF := hofib (TnF → Tn−1F ) is an n-homogeneous

functor, which we call the n-th Weiss layer of F . A fundamental theorem of Weiss

calculus is that n-homogeneous functors are classified by U(n)-spectra, and in

particular LnF is of the form

V 7−→ Ω∞(Θ ∧ SnV )hU(n)

where Θ is some U(n)-spectrum, nV = Cn ⊗C V with U(n) acting on the left, and

SnV denotes the one point compactification. The classifying spectrum Θ is called

the n-th Weiss derivative of F .

10



The Weiss tower, like the Goodwillie tower, can be viewed as a tool which

resolves unstable structures by stable ones. While the values of these functors can

be viewed as unstable homotopy types, the layers are infinite loop spaces by the

above classification theorem, and thus stable. Moreover, the bottom T0F of the

tower is by definition (T0F )(V ) = hocolimkF (V ⊕ Ck), which is manifestly a

stabilization. For F (V ) := BU(V ) the bottom layer T0F is the constant functor

V 7→ BU , the classifying space for stable bundles.

2.2. Identification of Derivatives

We build on the seminal work of Arone [3] on the derivatives of the functor

F (V ) := BU(V ), whose n-th derivative is denoted by Θn, n ≥ 1. We denote by

Ln the unreduced suspension of the realization of the category of non-trivial direct-

sum decompositions of Cn, and by Adn the adjoint representation of U(n). The

following result provides a closed-form description of Θn.

Theorem 2.2 (Arone ’02 [3]). For every n ≥ 1, Θn is equivalent to

Map∗(Ln,Σ∞SAdn).

It follows immediately that the n-th layer of F is of the form

(LnF )(V ) ' Ω∞Map∗(Ln,Σ∞SAdn ∧ SnV )hU(n).

For a general n, the n-th derivative Map∗(Ln,Σ∞SAdn) need not have a

homotopy type we can readily describe. However, the first derivative, and hence

the first layer, can be made explicit in a way which is of fundamental importance to

this paper.

11



Proposition 2.3. The first Weiss layer (L1F )(V ) of F is equivalent to

Q(ΣSV )hU(1), which in turn is equivalent to QΣCP∞r when V = Cr.

Proof. By Theorem 2.2, (L1F )(V ) is equivalent to Ω∞Map∗(L1,Σ
∞SAd1 ∧ SV )hU(1).

Since the space L1 is just S0, and SAd1 is S1 with trivial U(1)-action, (L1F )(V ) is

identified with Q(ΣSV )hU(1). To establish the second equivalence, we first observe

that when V = Cr the space SVhU(1) = S2r
hU(1) is the Thom space of the vector bundle

γ⊕r over BU(1) = CP∞. Indeed, the action of U(1) on S2r = SV |V=Cr restricts to

scalar multiplication of U(1) on Cr. Therefore the unreduced homotopy orbit

uS2r
hU(1) := EU(1)×U(1) S

2r =
(
EU(1)×U(1) S

V
)
|V=Cr

is the fiberwise one-point compactification of the vector bundle γ⊕r over CP∞. The

reduced homotopy orbit S2r
hU(1) is obtained from uS2r

hU(1) by collapsing the section

of CP∞ at infinity, and is therefore the desired Thom space. On the other hand,

we recall (say from Proposition 4.3 of [6]) that CP r+N/CP r−1 is the Thom space

of γ⊕r1,N , where γ1,N denotes the canonical line bundle over CPN . Letting N →

∞ identifies the Thom space of γ⊕r over CP∞ with CP∞r = CP∞/CP r−1. We

conclude that S2r
hU(1) ' CP∞r , and hence that

(L1F )(Cr) ' QΣS2r
hU(1) ' QΣCP∞r .

For each integer l > 2, we define a functor F l so that

F l(V ) = Map∗
(
CP l, BU(V )

)
.

12



Then [CP l, BU(r)] = π0F
l(Cr), and the Weiss tower of F l can be obtained as

follows.

Proposition 2.4. The following are equivalences:

(TnF
l)(V ) ' Map∗

(
CP l, (TnF )(V )

)
, and (LnF

l)(V ) ' Map∗
(
CP l, (LnF )(V )

)
.

Proof. By the construction of Weiss calculus (see Section 5 of [20]), TnF is a direct

homotopy colimit of some homotopy limits. For every finite complex X the second-

variable mapping functor Map∗(X,−) preserves arbitrary homotopy limits and

filtered homotopy colimits.

Thus the Weiss tower of F l can be presented by the following diagram.

...

Map∗
(
CP l, (T2F )(V )

)
Map∗

(
CP l, (L2F )(V )

)
Map∗

(
CP l, (T1F )(V )

)
Map∗

(
CP l, (L1F )(V )

)
Map∗

(
CP l, BU(V )

)
Map∗(CP l, BU)

Convergence still holds because the original tower becomes more highly

connected in each layers (see Section 2.3). The base Map∗(CP l, BU) of the Weiss

tower is generally not a connected space. However, in this paper we work over the

base point component, namely the component of the stable trivial bundle.

2.3. Cohomology Descriptions of Layers

An insight of Arone [3] is that the spectra Θn ' Map∗(Ln,Σ∞SAdn),

appearing here as Weiss derivatives of the functor F (−) = BU(−), are closely

related to the Goodwillie derivatives of the identity functor. Building on prior
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work including that of Arone [2], Arone-Dwyer [4] and Arone-Mahoword [5], the

following cohomology description of Θn, and hence that of the layers LnF , is

established in [3]. In what follows, Ak−1 denotes the subalgebra of the mod p

Steenrod algebra A, generated by elements Sq1, Sq2, · · · , Sq2k−1

if p = 2 and by

elements β,P1,Pp, · · · ,Ppk−2
if p is odd.

Theorem 2.5 (Arone ’02 [3]). The spectrum Θn is rationally contractible for n >

1. Integrally, it is contractible unless n is a prime power. If n = pk > 1 then

the homology of Θpk is all p-torsion, and the mod p cohomology of Θpk is free over

Ak−1.

The rational contractibility alternatively follows from the fact that the spaces

BU(n) are rationally formal, so Chern classes, which are pulled back from the

bottom layer of the tower BU , determine vector bundles. The main conclusion we

shall draw from Arone’s work is the connectivity of the layers. In fact, since Ln is

a CW complex of dimension n2 − 1, and since Adn has dimension n2, the spectrum

Θn = Map∗(Ln,Σ∞SAdn) is 0-connected. It follows from the dimension estimate

that, when n equals the prime power pk, the lowest nontrivial reduced cohomology

of (LpkF )(V ) appears in degree no less than 1 + 2pk · dimC V . (If n is not a prime

power then (LnF )(V ) is infinitely connected, by Theorem 2.5.) The corollary below

then follows.

Corollary 2.6. Let r be the dimension of V . Then (L2F )(V ) is 4r-connected. The

higher layers (LiF )(V ), i ≥ 3 are more than 4r-connected.

2.4. Proof of Theorem 2.1

Let l > 2, and r be such that l
2
≤ r ≤ l − 1. Consider the Weiss tower of

F l(V ) = Map∗
(
CP l, BU(V )

)
at V = Cr, which by Proposition 2.4 is obtained by

14



mapping CP l to the Weiss tower of F (V ) = BU(V ). According to the connectivity

estimate of Corollary 2.6, the layers LnF (Cr) of the tower are at least 4r-connected

for all n ≥ 2. Since CP l is 2l-dimensional and 2l ≤ 4r, spaces

(LnF
l)(Cr) ' Map∗

(
CP l, LnF (Cr)

)
are connected for n ≥ 2 and hence the connected components of the Weiss tower

of F l at V = Cr stabilize after the first stage. Recall from Proposition 2.3 that

(L1F )(V ) ' Q(ΣSV )hU(1), which is QS2r+1
hU(1) ' QΣCP∞r when evaluated at V = Cr.

So we conclude that the first layer L1F
l of F l at V = Cr is of the form

(L1F
l)(Cr) ' Map∗

(
CP l, QS2r+1

hU(1)

)
' Map∗(CP l, QΣCP∞r ).

To sum up, the first stage of the Weiss tower of F l at V = Cr consists of the

fibration

Map∗
(
CP l, QΣCP∞r

)
−→ Map∗

(
CP l, T1BU(Cr)

)
−→ Map∗

(
CP l, BU

)
,

and Map∗
(
CP l, BU(r)

)
→ Map∗

(
CP l, T1BU(Cr)

)
induces a bijection on π0. Given

that

π1Map∗
(
CP l, BU

) ∼= [CP l, U ] = K̃−1
U (CP l) = 0,

one obtains the following exact sequence from the homotopy long exact sequence

associated with the above fibration:

0 −→ [CP l, QΣCP∞r ] −→ [CP l, BU(r)] −→ [CP l, BU ].
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This exactness implies that the subset of rank r bundles over CP l which stabilize

to the trivial bundle, is identified with the abelian group [CP l, QΣCP∞r ] =

{CP l,ΣCP∞r }. To set up the identification Vect0
r(CP l) ∼= {CP l,ΣCP∞r }, it remains

to show that stably trivial bundles over CP l are precisely those having trivial

Chern classes. Recall that for any finite CW complex X, the Chern character

ch : K̃0
U(X) → H̃even(X;Q) is an isomorphism after tensoring with Q. Since

K̃0
U(CP l) is torsion-free, the Chern character is in fact injective on CP l. Let’s also

recall the following Chern character formula for ξ ∈ K̃0
U(CP l)

ch(ξ) = c1(ξ) +
c2

1(ξ)− 2c2(ξ)

2!
+ · · ·+ Ql(c1(ξ), · · · , cl(ξ))

l!
,

where Ql is the polynomial over Z characterized by the property that

Ql(σ1, · · · , σl) = xl1 + · · ·+xln, where σi is the i-th elementary symmetric polynomial

in the variables x1, · · · , xn. It follows immediately from the above formula that

ch(ξ) = ch(η) for ξ, η ∈ K̃0
U(CP l) (i.e., for stable bundles ξ, η over CP l) precisely

when (c1(ξ), · · · , cl(ξ)) = (c1(η), · · · , cl(η)). Thus for bundles over CP l, stable

triviality is equivalent to the triviality of their Chern data. Theorem 2.1 is now

proved.
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CHAPTER III

FIRST CASES: RANK TWO BUNDLES OVER CP 3 AND CP 4

The goal of this chapter is to make calculations with the Weiss tower to

recover the two classical examples, Corollaries 1.7 and 1.8. Namely, the vanishing

Chern enumeration of rank 2 bundles over CP 3, and that of rank 2 bundles over

CP 4. By Theorem 2.1 we have the identifications

Vect0
2(CP 3) ∼= {CP 3,ΣCP∞2 } and Vect0

2(CP 4) ∼= {CP 4,ΣCP∞2 }.

We prove Corollaries 1.7 and 1.8 by showing that

{CP 3,ΣCP∞2 } ∼= Z/2 and {CP 4,ΣCP∞2 } = 0.

We shall regard these as generalized cohomology computations and apply

the Atiyah-Hirzebruch spectral sequence. To learn the coefficient ring, namely the

stable homotopy groups of ΣCP∞2 , we apply the Adams spectral sequence. Note

that it suffices to work 2-locally in these two cases. Indeed, if p is an odd prime

then the stable homotopy of ΣCP∞2 does not have nontrivial p-primary torsion in

degrees not exceeding 8 (see part (3) of Lemma 4.5). For those unfamiliar with

the Adams spectral sequence, the recent expository paper of Beaudry-Campbell

[8] provides a wonderful introduction. We start by describing the action of the

Steenrod squares on the cohomology of ΣCP∞2 , and then construct an explicit

minimal resolution to compute the Adams E2-page through a range. Calculations

are 2-local unless otherwise stated.
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3.1. First Stable Homotopy Groups of ΣCP∞2

We compute π∗(QΣCP∞2 ) = πs∗(ΣCP∞2 ) through a range. The mod two

cohomology of ΣCP∞2

H∗(ΣCP∞2 ;Z/2) ∼= Z/2 · {y5, y7, · · · , y2n+1, · · · }

has a single Z/2-generator in every odd degree i ≥ 5, which we denote by the

yi. There are no nontrivial cup products. The class y2n+1 can be identified with

the suspension of the class xn in the cohomology of CP∞, and the action of the

Steenrod squares is then identified with that on CP∞. The diagram below exhibits

the action of the Steenrod squares on elements of H∗(ΣCP∞2 ;Z/2) in low degrees.

The straight line segments represent a nontrivial action of Sq2, and the curved ones

represent that of Sq4 or Sq8.

y5 y7 y9 y11 y13 y15 y17

We now apply the Adams spectral sequence to compute the (2-local part of)

the stable homotopy of ΣCP∞2 , which has

Es,t
2 = Exts,tA

(
H∗(ΣCP∞2 ;Z/2),Z/2

)
=⇒ πst−s(ΣCP∞2 ).

In the Appendix we present an explicit minimal A-resolution of

H∗(ΣCP∞2 ;Z/2) to compute these Ext groups. We summarize the result as follows.

As usual, the horizontal axis is t − s and the vertical axis is s. Each small

circled dot represents a Z/2. Bigger circled dots with question marks inside denote
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5 6 7 8 9 10 11 12 13 14 15

0

1

2

3

4

? ? ?

? ? ? ?

? ? ? ? ?

? ? ? ? ? ?

FIGURE 1. The 2-primary Adams E2-page for πs∗(ΣCP∞2 ).

unknown groups. Places without circled dots are all zero. As usual, vertical line

segments represent multiplication by h0, line segments of slope one represent

multiplication by h1, and line segments of slope 1/3 represent multiplication by

h2, etc. There is a single h0 tower along colunms t − s = 5 and t − s = 7. There is

nothing in the chart whenever t− s ≤ 4, as ΣCP∞2 is 4-connected.

Any dr-differential starting from or arriving at columns with t− s ≤ 8, ∀r ≥ 2

must be trivial. One can then read off some first few stable homotopy groups of

ΣCP∞2 , which we summarize as follows.

Lemma 3.1. The stable homotopy groups πsi (ΣCP∞2 ) for i ≤ 8 are as follows.

i ≤ 4 5 6 7 8
πsi (ΣCP∞2 ) 0 Z(2) Z/2 Z(2) ⊕ Z/2 Z/2

TABLE 2. The stable homotopy groups πsi (ΣCP∞2 ) for i ≤ 8.

This information of stable homotopy groups of ΣCP∞2 is crucial as we

compute {CP 3,ΣCP∞2 } and {CP 3,ΣCP∞2 } in the following sections.
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3.2. Recovery of Corollary 1.7

We now make use of Lemma 3.1 to compute {CP 3,ΣCP∞2 }. To start,

consider the following long exact sequence

· · · → {S4,ΣCP∞2 } −→ {S5,ΣCP∞2 } −→ {ΣCP 2,ΣCP∞2 } −→ {S3,ΣCP∞2 } → · · · .

associated to the cofiber sequence S3 η→ S2 → CP 2 (where η denotes the Hopf

map). According to Lemma 3.1 the groups {S3,ΣCP∞2 } and {S4,ΣCP∞2 } both

vanish. Therefore the middle two groups in the above sequence are isomorphic, and

by Lemma 3.1 we obtain that

{ΣCP 2,ΣCP∞2 } ∼= {S5,ΣCP∞2 } = πs5(ΣCP∞2 ) ∼= Z(2).

Next we consider the cofiber sequence S5 η3→ CP 2 → CP 3, where η3 denotes

the attaching map of the top cell of CP 3. In the following diagram

· · · {ΣCP 2,ΣCP∞2 } {S6,ΣCP∞2 } {CP 3,ΣCP∞2 } 0

{S5,ΣCP∞2 } ∼= Z(2)

(Ση3)∗

∼=

the top row is part of the long exact sequence associated with a cofiber sequence,

and the vertical map in the triangle is the isomorphism we just analyzed. Let qi :

CP i → S2i be the quotient map by the (2i − 1)-skeleton. By Lemma 3.1 we have

{S6,ΣCP∞2 } ∼= πs6(ΣCP∞2 ) ∼= Z/2. Thus

(Ση3)∗ : {ΣCP 2,ΣCP∞2 } −→ {S6,ΣCP∞2 }
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is seen to be a homomorphism Z(2) → Z/2, and {CP 3,ΣCP∞2 } is the cokernel of

this homomorphism. We claim that (Ση3)∗ : Z(2) → Z/2 is the zero homomorphism.

Note that the homomorphism {S5,ΣCP∞2 } → {S6,ΣCP∞2 } in the above diagram is

induced by the composite

(
S6 Ση3−→ ΣCP 2 Σq2−→ S5

)
= Σ

(
S5 η3−→ CP 2 q2−→ S4

)
.

Here we recall a general fact. Let ηl : S2l−1 → CP l−1 denote the attaching map

of the top cell of CP l. Then the composite S2l−1 ηl−→ CP l−1 ql−1−→ S2l−2 is the

suspension of the Hopf map S3 η−→ S2 if l is even, and is null when l is odd. (This

fact can be seen as a description of the structure of the stunted projective spaces

CP l
l−1 = CP l/CP l−2, l ≥ 3. Indeed, it is detected by the action of Sq2 that

this two-cell complex is equivalent to S2l ∨ S2l−2 if l is odd, and is equivalent to

Σ2l−4CP 2 when l is even.) It follows that the composite

Z(2)
∼= {S5,ΣCP∞2 }

∼=−→ {ΣCP 2,ΣCP∞2 }
(Ση3)∗−→ {S6,ΣCP∞2 } ∼= Z/2

is induced by a null map, and is hence the zero homomorphism. This completes the

proof that {CP 3,ΣCP∞2 } ∼= Z/2, and hence that of Corollary 1.7.

3.3. Recovery of Corollary 1.8

We now show that {CP 4,ΣCP∞2 } = 0, which recovers Corollary 1.8. Rather

than using long exact sequences associated to cofibration sequences, we organize

the calculation with the Atiyah-Hirzebruch spectral sequence. Recall that {X,Σ∗Y }

can be regarded as a generalized cohomology theory of X. Filtering by skeleta leads

to the Atiyah-Hirzebruch Spectral Sequence (AHSS) for these stable maps with
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Ep,q
2 = Hp

(
X; π−q(Y )

)
, which converges to {X,Σp+qY } if X is a finite complex.

The AHSS computing {CP 4,ΣCP∞2 } thus has

Ep,q
2 = Hp

(
CP 4; πs−q(ΣCP∞2 )

)
=⇒ {CP 4,Σp+q+1CP∞2 }.

We show the E2 term through a range below. As Ep,q
2 vanishes for all p > 8

and for all q > −5, only the circled groups can contribute in total degree zero.

4 5 6 7 8 ≥ 9

≥ −4 0 0 0 0 0 0

−5 Z(2) 0 Z(2) 0 Z(2) 0

−6 Z/2 0 Z/2 0 Z/2 0

−7 Z(2) ⊕ Z/2 0 Z(2) ⊕ Z/2 0 Z(2) ⊕ Z/2 0

−8 Z/2 0 Z/2 0 Z/2 0

FIGURE 2. The E2-page of the AHSS for {CP 4,ΣCP∞2 }.

We analyze the relevant d2 differentials. By the construction of the AHSS,

the differential d2 : E2a,−b
2 → E2a+2,−b−1

2 is induced by the connecting map

CP a+1/CP a → ΣCP a/CP a−1 in the cofiber sequence

CP a/CP a−1 → CP a+1/CP a−1 → CP a+1/CP a → ΣCP a/CP a−1.

This connecting map, S2a+2 → S2a+1, both reflects and is determined by the

structure of the two-cell stunted projective space CP a+1/CP a−1, and is detected
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by Sq2. As is discussed in Section 3.2, when a is odd this connecting map is a

suspension of η : S3 → S2, and when a is even it is null. Furthermore,

E2a,−b
2 = πsb(ΣCP∞2 ), and E2a+2,−b−1

2 = πsb+1(ΣCP∞2 ).

In summary, d2 : E2a,−b
2 → E2a+2,−b−1

2 is a homomorphism πsb(ΣCP∞2 ) →

πsb+1(ΣCP∞2 ), which is multiplication by η when a is odd, and is zero when a is

even.

For example, taking a = 3 and b = 6, one concludes that E6,−6
2 → E8,−7

2 is

the homomorphism Z/2 → Z(2) ⊕ Z/2 induced by η. This homomorphism is onto

the second summand of Z ⊕ Z/2, due to the fact that on the Adams E2-page the

dot at (6, 1) is connected with that at (7, 2) via multiplication by h1. Similarly, one

deduces that E6,−7
2 → E8,−8

2 is the homomorphism Z(2) ⊕ Z/2 → Z/2 which is the

surjection when restricted to the first summand and is zero when restricted to the

second.

It follows that Ep,−p
r = 0 for all p and all r ≥ 3. So {CP 4,ΣCP∞2 } = 0, and

Corollary 1.8 is proved.

23



CHAPTER IV

PROOF OF MAIN RESULTS

In this chapter we prove our main results, Theorems 1.1 and 1.2, together

with Propositions 1.3 and 1.4. Recall that Theorems 1.1 and 1.2 give, respectively,

the vanishing Chern enumeration for bundles of rank (l − 1) and (l − 2) over

CP l. Both these cases are in the metastable range, so by Theorem 2.1 there are

identifications

Vect0
l−1(CP l) ∼= {CP l,ΣCP∞l−1} and Vect0

l−2(CP l) ∼= {CP l,ΣCP∞l−2}.

We perform these stable calculations, following the strategy of Section 3.3 to

regard them as generalized cohomology computations.

4.1. First Stable Homotopy Groups of ΣCP∞n

Both the calculations of {CP l,ΣCP∞l−1} and {CP l,ΣCP∞l−2} rely on the

knowledge of some first few 2-primary stable homotopy groups of ΣCP∞n . The

latter also requires knowledge of the 3-primary groups. This section is dedicated

to presenting the results of these calculations, with details postponed to Appendix

A.

The cohomology of ΣCP∞n has a single Z/2-generator y2n+2k+1 in every odd

degree greater than or equal to 2n + 1. The class y2n+2k+1 can be identified with

the suspension of the class xn+k in the cohomology of CP∞, to compute the action

of the Steenrod squares. The stable homotopy groups πsi (ΣCP∞n ) within the range

i ≤ 2n + 4 require only the information of the Steenrod square actions on the finite
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skeleton ΣCP n+4
n of ΣCP∞n . These actions, and hence the Adams E2-pages, exhibit

an 8-fold periodic behavior. We obtain the following result, whose detailed proof is

contained in the Appendix.

Lemma 4.1. The 2-primary stable homotopy groups πsi (ΣCP∞n ) for i ≤ 2n + 4 can

be described as follows.

1. πsi (ΣCP∞n ) = 0 whenever i ≤ 2n, and πs2n+1(ΣCP∞n ) = Z(2).

2. πs2n+2(ΣCP∞n ) = 0 if n is odd, and πs2n+2(ΣCP∞n ) = Z/2 if n is even.

3. πs2n+3(ΣCP∞n ) = Z(2) if n is odd, and πs2n+3(ΣCP∞n ) = Z(2) ⊕ Z/2 if n is even.

4. πs2n+4(ΣCP∞n ) exhibits the following 8-fold periodicity.

n mod 8 0 1 2 3 4 5 6 7
πs2n+4(ΣCP∞n ) Z/8 Z/2 Z/2 0 Z/4 Z/4 Z/2 0

TABLE 3. The 8-fold periodic behavior of πs2n+4(ΣCP∞n ).

4.2. The First Unstable Case

We compute {CP l,ΣCP∞l−1} through analysis of the AHSS, which has

Ep,q
2 = Hp

(
CP l; πs−q(ΣCP∞l−1)

)
=⇒ {CP l,Σp+q+1CP∞l−1}.

When l is even, πs2l−1(ΣCP∞l−1) = Z(2) and πs2l(ΣCP∞l−1) = 0 by Lemma 4.1,

and therefore the E2-page has the form as described in Figure 3.

The terms Ep,q
2 vanish for all p > 2l and for all q > −(2l − 1). Since all

groups are zero along the diagonal p + q = 0, one concludes immediately that

{CP l,ΣCP∞l−1} = 0.
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2 3 · · · 2l − 2 2l − 1 2l ≥ 2l + 1

≥ −(2l − 2) 0 0 · · · 0 0 0 0

−(2l − 1) Z(2) 0 · · · Z(2) 0 Z(2) 0

−2l 0 0 · · · 0 0 0 0

FIGURE 3. The AHSS E2-page for {CP l,ΣCP∞l−1}, when l is even.

When l is odd, πs2l−1(ΣCP∞l−1) = Z(2) and πs2l(ΣCP∞l−1) = Z/2 by Lemma 4.1,

and therefore the E2-page has the form as described in Figure 4.

2 3 · · · 2l − 2 2l − 1 2l ≥ 2l + 1

≥ −(2l − 2) 0 0 · · · 0 0 0 0

−(2l − 1) Z(2) 0 · · · Z(2) 0 Z(2) 0

−2l Z/2 0 · · · Z/2 0 Z/2 0

FIGURE 4. The AHSS E2-page for {CP l,ΣCP∞l−1}, when l is odd.

We now determine the differential d2 : Z(2) = E
2l−2,−(2l−1)
2 → E2l,−2l

2 = Z/2.

As is previously analyzed, this is a homomorphism πs2l−1(ΣCP∞l−1) → πs2l(ΣCP∞l−1)

induced by a map S2l → S2l−1, which is a suspension of η : S3 → S2 when l is even,

and null when l is odd. Thus the above differential is the zero as l is odd, and the

circled group Z/2 survives to the infinity page. Since this is the only nonzero group

along the diagonal p+ q = 0 on that page, we conclude that {CP l,ΣCP∞l−1} = Z/2.

We have proved that {CP l,ΣCP∞l−1} = 0 when l is even, and

{CP l,ΣCP∞l−1} = Z/2 when l is odd, completing the proof of Theorem 1.1.
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4.3. The Second Unstable Case

We now prove Theorem 1.2, by calculating {CP l,ΣCP∞l−2}. In this case both

the prime 2 and the prime 3 are involved. We carry out the 2-local calculation in

the next subsection, and the 3-local computation in the second next. The results

are as follows.

Theorem 4.2. Let l ≥ 4 be an integer. Then {CP l,ΣCP∞l−2}(2) exhibits the

following 8-fold periodic behavior.

l mod 8 0 1 2 3 4 5 6 7
{CP l,ΣCP∞l−2}(2) 0 0 Z/4 Z/2 0 0 Z/2 Z/4

TABLE 4. The 8-fold periodic behavior of {CP l,ΣCP∞l−2}(2).

Theorem 4.3. Let l ≥ 4 be an integer. Then {CP l,ΣCP∞l−2}(3) exhibits the

following 3-fold periodic behavior.

1. The group vanishes whenever l is 0 or 1 mod 3.

2. The group is isomorphic to Z/3 when l is 2 mod 3.

Moreover, {CP l,ΣCP∞l−2} has no p-torsion for p ≥ 5. Combining Theorems

4.2 and 4.3, one obtains immediately the enumerations in Theorem 1.2.

Calculations at the prime 2

We prove Theorem 4.2, with 2-local computations throughout. We regard

{CP l,ΣCP∞l−2} again as a cohomology calculation and apply the AHSS, which has

Ep,q
2 = Hp

(
CP l; πs−q(ΣCP∞l−2)

)
=⇒ {CP l,Σp+q+1CP∞l−2}.
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By Lemma 4.1, stable homotopy groups of ΣCP∞l−2 can be summarized as

follows.

πs2l−3(ΣCP∞l−2) πs2l−2(ΣCP∞l−2) πs2l−1(ΣCP∞l−2) πs2l(ΣCP∞l−2)
l = 0 mod 8 Z(2) Z/2 Z(2) ⊕ Z/2 Z/2
l = 1 mod 8 Z(2) 0 Z(2) 0
l = 2 mod 8 Z(2) Z/2 Z(2) ⊕ Z/2 Z/8
l = 3 mod 8 Z(2) 0 Z(2) Z/2
l = 4 mod 8 Z(2) Z/2 Z(2) ⊕ Z/2 Z/2
l = 5 mod 8 Z(2) 0 Z(2) 0
l = 6 mod 8 Z(2) Z/2 Z(2) ⊕ Z/2 Z/4
l = 7 mod 8 Z(2) 0 Z(2) Z/4

TABLE 5. First few nontrivial 2-primary stable homotopy groups of ΣCP∞l−2.

Therefore the AHSS also exhibits an 8-fold periodic behavior. Since the

proofs for these eight cases are similar, we shall first present a proof for one

case in detail, and then sketch the proofs for the remaining seven cases. Let us

consider the case l ≡ 2 mod 8. In this case our goal is to show that, 2-locally,

{CP l,ΣCP∞l−2} ∼= Z/4.

Part of the E2-page of the spectral sequence is presented in Figure 5. The

groups Ep,q
2 vanish for all p > 2l and for all q > −(2l− 3), so only the circled groups

can contribute in total degree zero.

We first analyze the relevant d2-differentials. As is discussed in Section 3.3,

they are determined by the structures of certain two-cell stunted projective

spaces, where the attaching maps are detected by Sq2. For example, for each q

the differential d2l−2,q
2 : E2l−2,q

2 −→ E2l,q−1
2 is a homomorphism induced by

the map CP l/CP l−1 → ΣCP l−1/CP l−2, which is part of the cofiber sequence

defining CP l/CP l−2. This map S2l → S2l−1 is a suspension of η : S3 → S2

since our l is even. Similarly, by the structure of CP l−1/CP l−3, the differentials
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2l − 4 2l − 3 2l − 2 2l − 1 2l

≥ −(2l − 4) 0 0 0 0 0

−(2l − 3) Z(2) 0 Z(2) 0 Z(2)

−(2l − 2) Z/2 0 Z/2 0 Z/2

−(2l − 1) Z(2) ⊕ Z/2 0 Z(2) ⊕ Z/2 0 Z(2) ⊕ Z/2

−2l Z/8 0 Z/8 0 Z/8

FIGURE 5. The 2-primary AHSS E2-page for {CP l,Σp+q+1CP∞l−2}, l ≡ 2(8).

d2l−4,q
2 : E2l−4,q

2 −→ E2l−2,q−1
2 are all induced by the null map, and are therefore all

zero.

The Adams spectral sequence for the stable homotopy of ΣCP∞l−2 has the

following form. (See the Appendix for details.)

0

1

2

3

4

2l − 3 2l − 2 2l − 1 2l 2l + 1

FIGURE 6. The 2-primary Adams E2-page for πs∗(ΣCP∞l−2), l ≡ 2(8).

When l = 2 mod 8, we use similar analysis as previous to conclude the

following about the d2 differentials:

1. d
2l−2,−(2l−3)
2 is the surjection Z(2) → Z/2;
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2. d
2l−2,−(2l−2)
2 : Z/2→ Z(2) ⊕ Z/2 is the inclusion into the second summand;

3. d
2l−2,−(2l−1)
2 : Z(2) ⊕ Z/2→ Z/8 is given by (0, 4);

4. d2l−4,q
2 = 0 for all q.

For example, to determine d
2l−2,−(2l−1)
2 : Z(2) ⊕ Z/2 → Z/8 in the third

case above, we first note that it is a homomorphism πs2l−1(ΣCP∞l−2) → πs2l(ΣCP∞l−2)

given by multiplication by η, where η now denotes the stable element. We then

examine the Adams chart above to notice that the dot at (2l − 1, 2), which

yields the Z/2-summand of the domain, is connected with the dot at (2l, 3) by h1,

which represents the element 4 in the target group. This implies that d
2l−2,−(2l−1)
2

restricted to the Z/2-summand is multiplication by 4. Similarly, we conclude that

d
2l−2,−(2l−1)
2 restricted to the Z(2)-summand must be the zero homomorphism, since

the dots at (2l − 1, 0) and (2l, 1) are not connected by h1.

For degree reasons there cannot be any d3-differential in the AHSS, and the

E4-page is partly depicted in Figure 7. Here along the diagonal line p + q = 0 there

is a single group of E2l,−2l
4 = Z/4, and it follows immediately that {CP l,ΣCP∞l−2}

is a quotient of Z/4, by the image of the possibly nontrivial d4 differential

d
2l−4,−(2l−3)
4 : E

2l−4,−(2l−3)
4 → E2l,−2l

4 .

By the construction of the AHSS, the d4 differentials is determined by the

structure of the three-cell complex CP l/CP l−3. The differential d
2l−4,−(2l−3)
4 :

E
2l−4,−(2l−3)
4 → E2l,−2l

4 is induced by a map λl : S2l = CP l/CP l−1 →

ΣCP l−2/CP l−3 = S2l−3, which belongs to the (2-local) third stable stem πs3(S0) ∼=

Z/8. More precisely, consider the following commutative diagram. Here both the

rows and the middle two columns are part of cofiber sequences, and δn−1 and δn−2

are connecting maps in those cofiber sequences.
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2l − 4 2l − 3 2l − 2 2l − 1 2l > 2l

≥ −(2l − 4) 0 0 0 0 0 0

−(2l − 3) Z(2) 0 2Z(2) 0 Z(2) 0

−(2l − 2) ∗ 0 0 0 0 0

−(2l − 1) ∗ 0 Z(2) 0 Z(2) 0

−2l ∗ 0 ∗ 0 Z/4 0

FIGURE 7. The 2-primary AHSS E4-page for {CP l,Σp+q+1CP∞l−2}, l ≡ 2(8).

CP l−1/CP l−2 ΣCP l−2/CP l−3 ΣCP l−1/CP l−3 ΣCP l−1/CP l−2

CP l−1/CP l−2 CP l/CP l−2 CP l/CP l−1 ΣCP l−1/CP l−2

= δl−2 δl−1 =

When l is even, CP l−1/CP l−3 splits as S2l−2 ∨S2l−4. Denote by p the quotient

map

S2l−1 ∨ S2l−3 = ΣCP l−1/CP l−3 → ΣCP l−2/CP l−3 = S2l−3,

which sections the inclusion ΣCP l−2/CP l−3 → ΣCP l−1/CP l−3. In this case λl is

the composite p ◦ δl−1. When l is odd, CP l/CP l−2 splits as S2l ∨ S2l−2. Denote by j

the standard inclusion

S2l = CP l/CP l−1 → CP l/CP l−2 = S2l ∨ S2l−2,

which sections the quotient map CP l/CP l−2 → CP l/CP l−1. In this case λl is the

composite δl−2 ◦ j.
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l mod 8 0 1 2 3 4 5 6 7
homotopy class of λl ν ν 0 2ν ν ν 2ν 0

TABLE 6. The 8-fold periodic behavior of λl.

In [13] Mosher determines the homotopy classes of the λl’s, which exhibit an

8-fold periodic behavior which we present as follows. Write ν for the Hopf map

S7 → S4 generating the 2-local third stable stem.

Lemma 4.4 (Mosher [13], Proposition 5.2). Let l ≥ 4 be an integer. The homotopy

class of λl satisfies an 8-fold periodicity as follows.

Theorem 4.2 follows immediately from Lemma 4.4. When l = 2 mod 8,

Lemma 4.4 suggests that the differential d
2l−4,−(2l−3)
4 we study is induced by the

null map. It follows that the cokernel of d
2l−4,−(2l−3)
4 is Z/4. For degree reasons

there can be no further nontrivial differentials starting from or arriving at the

diagonal p + q = 0. Thus we conclude that {CP l,ΣCP∞l−2} ∼= Z/4 when for l = 2

mod 8.

In all other cases, determining d
2l−4,−(2l−3)
4 comes down to learning the

homotopy class of λl, which by Lemma 4.4 is some multiple of ν. Applying analysis

of CP l/CP l−3 as above and using Lemma 4.4 proves Theorem 4.2 in all these cases.

We present sketched proofs of each case in the following subsection.

Full proof of Theorem 4.2

In this subsection we sketch the proofs of Theorem 4.2 in the remaining seven

cases. We compute {CP l,ΣCP∞l−2} at the prime 2, applying the AHSS which has

Ep,q
2 = Hp

(
CP l; πs−q(ΣCP∞l−2)

)
=⇒ {CP l,Σp+q+1CP∞l−2}.
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In all following AHSS pages, we shall omit writing out columns labeled by

p ≥ 2l + 1, since each such column consists purely of zero groups.

The case l ≡ 0 mod 8

The E2-page of the AHSS is presented below.

2l − 4 2l − 3 2l − 2 2l − 1 2l

≥ −(2l − 4) 0 0 0 0 0

−(2l − 3) Z(2) 0 Z(2) 0 Z(2)

−(2l − 2) Z/2 0 Z/2 0 Z/2

−(2l − 1) Z(2) ⊕ Z/2 0 Z(2) ⊕ Z/2 0 Z(2) ⊕ Z/2

−2l Z/2 0 Z/2 0 Z/2

In this case l is even, so the d2 differentials d2l−2,∗
2 from the p = 2l − 2 column

is induced by multiplication by η. Since l − 2 ≡ 6 mod 8, it follows from the

corresponding Adams Spectral Sequence for ΣCP∞l−2 that

1. d
2l−2,−(2l−3)
2 is the surjection Z(2) → Z/2;

2. d
2l−2,−(2l−2)
2 : Z/2→ Z(2) ⊕ Z/2 is the inclusion into the second summand;

3. d
2l−2,−(2l−1)
2 : Z(2) ⊕ Z/2→ Z/2 is given by (0, 1);

Therefore, the two circled groups along the diagonal p+ q = 0 both disappear in the

E3-page. So in this case we conclude that

{CP l,ΣCP∞l−2} = 0.
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The case l ≡ 1 mod 8

The E2-page of the AHSS is presented below.

· · · 2l − 4 2l − 3 2l − 2 2l − 1 2l

≥ −(2l − 4) · · · 0 0 0 0 0

−(2l − 3) · · · Z(2) 0 Z(2) 0 Z(2)

−(2l − 2) · · · 0 0 0 0 0

−(2l − 1) · · · Z(2) 0 Z(2) 0 Z(2)

−2l · · · 0 0 0 0 0

In this case we see that all groups along the p + q = 0 diagonal are zero

groups. It follows that

{CP l,ΣCP∞l−2} = 0.

The case l ≡ 3 mod 8

The E2-page of the AHSS is presented below. In this case the only nontrivial

group along the p+q = 0 diagonal is E2l,−2l
2 = Z/2. Since l is odd, the d2 differential

d
2l−2,−(2l−1)
2 is induced by the null map. So this Z/2 survives to the E4-page.
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· · · 2l − 4 2l − 3 2l − 2 2l − 1 2l

≥ −(2l − 4) · · · 0 0 0 0 0

−(2l − 3) · · · Z(2) 0 Z(2) 0 Z(2)

−(2l − 2) · · · 0 0 0 0 0

−(2l − 1) · · · Z(2) 0 Z(2) 0 Z(2)

−2l · · · Z/2 0 Z/2 0 Z/2

It remains to analyze the d4-differential d
2l−4,−(2l−3)
4 , a homomorphism

Z(2) → Z/2. By Lemma 4.4, this differential is induced by 2ν. Since l − 2 ≡ 1

mod 8, it follows from the corresponding Adams Spectral Sequence for ΣCP∞l−2 that

d
2l−4,−(2l−3)
4 = 0. We conclude that

{CP l,ΣCP∞l−2} ∼= Z/2.

The case l ≡ 4 mod 8

The E2-page of the AHSS in this case is the same as that in the case l ≡ 0

mod 8. Similar arguments show that

{CP l,ΣCP∞l−2} = 0.
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The case l ≡ 5 mod 8

The E2-page of the AHSS in this case is the same as that in the case l ≡ 1

mod 8. The exact same argument shows that

{CP l,ΣCP∞l−2} = 0.

The case l ≡ 6 mod 8

The E2-page of the AHSS is presented below.

2l − 4 2l − 3 2l − 2 2l − 1 2l

≥ −(2l − 4) 0 0 0 0 0

−(2l − 3) Z(2) 0 Z(2) 0 Z(2)

−(2l − 2) Z/2 0 Z/2 0 Z/2

−(2l − 1) Z(2) ⊕ Z/2 0 Z(2) ⊕ Z/2 0 Z(2) ⊕ Z/2

−2l Z/4 0 Z/4 0 Z/4

In this case l is even, so the d2 differentials d2l−2,∗
2 from the p = 2l − 2 column

is induced by multiplication by η. Since l − 2 ≡ 4 mod 8, it follows from the

corresponding Adams Spectral Sequence for ΣCP∞l−2 that

1. d
2l−2,−(2l−3)
2 is the surjection Z(2) → Z/2;

2. d
2l−2,−(2l−2)
2 : Z/2→ Z(2) ⊕ Z/2 is the inclusion into the second summand;

3. d
2l−2,−(2l−1)
2 : Z(2) ⊕ Z/2→ Z/4 is the zero homomorphism;
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Therefore, the circled group Z/2 along the diagonal p + q = 0 both disappears in

the E3-page, while the Z/4 survives to E4. It remains to analyze the d4-differential

d
2l−4,−(2l−3)
4 , a homomorphism Z(2) → Z/4. By Lemma 4.4, this differential is

induced by 2ν. Since l − 2 ≡ 4 mod 8, it follows from the corresponding Adams

Spectral Sequence for ΣCP∞l−2 that d
2l−4,−(2l−3)
4 (1) = 2. The cokernel of d

2l−4,−(2l−3)
4

is therefore Z/2, which survives to the infinity page. We conclude that

{CP l,ΣCP∞l−2} ∼= Z/2.

The case l ≡ 7 mod 8

The E2-page of the AHSS is presented below.

2l − 4 2l − 3 2l − 2 2l − 1 2l

≥ −(2l − 4) 0 0 0 0 0

−(2l − 3) Z(2) 0 Z(2) 0 Z(2)

−(2l − 2) 0 0 0 0 0

−(2l − 1) Z(2) 0 Z(2) 0 Z(2)

−2l Z/4 0 Z/4 0 Z/4

In this case the only nontrivial group along the p + q = 0 diagonal is

E2l,−2l
2 = Z/4. Since l is odd, the d2 differential d

2l−2,−(2l−1)
2 is induced by the null

map. So this Z/4 survives to the E4-page. It remains to analyze the d4-differential

d
2l−4,−(2l−3)
4 , a homomorphism Z(2) → Z/4. By Lemma 4.4, this differential is
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induced by the null map, hence must vanish. So the Z/4 along the p + q = 0

diagonal survives to the infinity page, and we conclude that

{CP l,ΣCP∞l−2} ∼= Z/4.

The proof of Theorem 4.2 is now complete.

Calculations at the prime 3

In this subsection we prove Theorem 4.3, and we work 3-locally throughout.

At the prime 3, there is one possibly nonzero d4-differential in the AHSS to be

determined. This differential reflects the structure of CP l/CP l−3, and in some cases

the bottom cell and the top cell in this stunted projective space are related by the

3-primary Steenrod operation P1, which detects the generator of the third stable

stem at the prime 3.

Our strategy for the 3-local calculation is exactly the same as in the 2-local

case. First we calculate some 3-local stable homotopy groups of ΣCP∞l−2. In the

Appendix we shall prove the following 3-primary analogue of Lemma 4.1.

Lemma 4.5. The 3-primary stable homotopy groups πsi (ΣCP∞n ) for i ≤ 2n + 4 are

as follows.

1. πsi (ΣCP∞n ) = 0 for i ≤ 2n.

2. πs2n+1(ΣCP∞n ) = Z(3), π
s
2n+2(ΣCP∞n ) = 0, and πs2n+3(ΣCP∞n ) = Z(3).

3. πs2n+4(ΣCP∞n ) = 0 if n = 1, 2 mod 3, and πs2n+4(ΣCP∞n ) = Z/3 if n = 0

mod 3.
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2l − 4 2l − 3 2l − 2 2l − 1 2l > 2l

≥ −(2l − 4) 0 0 0 0 0 0

−(2l − 3) Z(3) 0 Z(3) 0 Z(3) 0

−(2l − 2) 0 0 0 0 0 0

−(2l − 1) Z(3) 0 Z(3) 0 Z(3) 0

−2l 0 0 0 0 0 0

FIGURE 8. The 3-primary AHSS E2-page for {CP l,Σp+q+1CP∞l−2}, l ≡ 0, 1(3).

We can now compute {CP l,ΣCP∞l−2} via the AHSS which has

Ep,q
2 = Hq

(
CP l; πs−q(ΣCP∞l−2)

)
=⇒ {CP l,Σp+q+1CP∞l−2}.

When l ≡ 0, 1 mod 3, the E2-page of the spectral sequence is presented in

Figure 8.

Note that Ep,q
2 vanish for all p > 2l and for all q > −(2l − 3). In particular, all

groups are zero along the diagonal p+ q = 0. Thus {CP l,ΣCP∞l−2} = 0.

When l ≡ 2 mod 3, the E2-page of the spectral sequence is presented in

Figure 9.

In this case the only nontrivial group along the diagonal p + q = 0 is the

circled E2l,−2l
2

∼= Z/3, and the only possible d2-differential hitting this group is

d
2l−2,−(2l−1)
2 : E

2l−2,−(2l−1)
2 → E2l,−2l

2 . This differential is either induced by the null

map or some suspension of η : S3 → S2, but since η is 3-locally null the differential

must vanish. So this copy of Z/3 survives to the E4-page.
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2l − 4 2l − 3 2l − 2 2l − 1 2l > 2l

≥ −(2l − 4) 0 0 0 0 0 0

−(2l − 3) Z(3) 0 Z(3) 0 Z(3) 0

−(2l − 2) 0 0 0 0 0 0

−(2l − 1) Z(3) 0 Z(3) 0 Z(3) 0

−2l Z/3 0 Z/3 0 Z/3 0

FIGURE 9. The 3-primary AHSS E2-page for {CP l,Σp+q+1CP∞l−2}, l ≡ 2(3).

There is a possibly nonzero differential d
2l−4,−(2l−3)
4 hitting E2l,−2l

4
∼= Z/3.

By the construction of the spectral sequence, this homomorphism Z(3) → Z/3 is

induced by a map S2l = CP l/CP l−1 → ΣCP l−2/CP l−3 = S2l−3, which belongs

to the (3-local) third stable stem πs3(S0) ∼= Z/3. We claim that this map must be

null. Indeed, if it was essential then it must be detected by the 3-primary Steenrod

operation P1, but P1(xl−2) = 0 when l = 2 mod 3. So we conclude that the

differential d
2l−4,−(2l−3)
4 is zero when l = 2 mod 3, and hence that {CP l,ΣCP∞l−2} =

Z/3 in this case.

We have proved that, 3-locally, {CP l,ΣCP∞l−2} is zero if l = 0, 1 mod 3, and

is isomorphic to Z/3 when l = 2 mod 3. Theorem 4.3 then follows.
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4.4. Proof of Propositions 1.3 and 1.4

Finally, we prove Propositions 1.3 and 1.4. The former deals with the action

of the top cell, and the latter concerns extending a given rank l − 2 bundle over

CP l−1 to CP l.

Given a rank r bundle over CP l, let CP l → CP l ∨ S2l be the pinch map with

which we define the action of the Vectr(S
2l) on Vectr(CP l) in the Puppe sequence

· · · → [S2l, BU(r)]→ [CP l, BU(r)]→ [CP l−1, BU(r)].

Restricting to bundles with trivial Chern data, one obtains the action of Vect0
r(S

2l)

on Vect0
r(CP l) in the Puppe sequence

· · · → {S2l,ΣCP∞r } → {CP l,ΣCP∞r } → {CP l−1,ΣCP∞r }.

Let’s first consider the case r = l − 1. By Theorem 1.1, the action can

be nontrivial only when l is odd. In Section 4.2 we proved the isomorphism

{S2l,ΣCP∞r } ∼= {CP l,ΣCP∞l−1} ∼= Z/2 when l is odd. This implies that Vect0
l−1(S2l)

acts transitively and freely on Vect0
l−1(CP l) in this case.

We then investigate the case r = l − 2. At the prime 2, groups Vect0
l−2(S2l),

Vect0
l−2(CP l), and Vect0

l−2(CP l) can be summarized as in Table 7, according to

Lemma 4.1, Theorem 4.2, and Theorem 1.1, respectively.

l mod 8 0 1 2 3 4 5 6 7
{S2l,ΣCP∞l−2} Z/2 0 Z/8 Z/2 Z/2 0 Z/4 Z/4
{CP l,ΣCP∞l−2} 0 0 Z/4 Z/2 0 0 Z/2 Z/4
{CP l−1,ΣCP∞l−2} Z/2 0 Z/2 0 Z/2 0 Z/2 0

TABLE 7. The 2-primary Vect0
l−2(S2l), Vect0

l−2(CP l), and Vect0
l−2(CP l).
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So the action of Vect0
l−2(S2l) on Vect0

l−2(CP l) can only be nontrivial when l

equals 2, 3, 6, or 7 mod 8. Our analysis on the AHSS in Section 4.3.1 implies that

when l = 2 mod 8, the homomorphism {CP l,ΣCP∞l−2} → {CP l−1,ΣCP∞l−2} is the

zero homomorphism Z/4 → Z/2. Similarly, one can prove that {CP l,ΣCP∞l−2} →

{CP l−1,ΣCP∞l−2} is a zero homomorphism in all other cases. One now concludes

that {S2l,ΣCP∞l−2} → {CP l,ΣCP∞l−2} is surjective when l = 2, 6 mod 8, and is an

isomorphism when l = 3, 7 mod 8. This implies that the action of Vect0
l−2(S2l) on

Vect0
l−2(CP l) is transitive and free when l = 3, 7 mod 8, and is transitive but not

free when l = 2, 6 mod 8. At the prime 3, similar analysis shows that the action of

Vect0
l−2(S2l) on Vect0

l−2(CP l) is transitive and free when l = 2 mod 3, and is trivial

in all other cases. Combining the information at primes 2 and 3 yields Proposition

1.3.

The above discussion also proves Proposition 1.4, since {CP l,ΣCP∞l−2} →

{CP l−1,ΣCP∞l−2} is always the zero homomorphism.
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APPENDIX

SOME RELATED STABLE HOMOTOPY CALCULATIONS

Here we present the details of the calculation of the first few stable homotopy

groups of ΣCP∞n . Namely, we complete the proof of Lemma 4.1 and Lemma 4.5,

which compute, respectively, some first 2-local and 3-local stable homotopy groups

of ΣCP∞n .

First note that ΣCP∞n is 2n-connected, and hence πsi (ΣCP∞n ) = 0 for i ≤ 2n.

Secondly, πsi (ΣCP∞n ) = 0 for 2n + 1 ≤ i ≤ 2n + 4 is controlled by the structure of

the stunted projective space CP n+4
n = CP n+4/CP n−1.

A.1. Proof of Lemma 4.1

We start with the 2-primary calculations. The action of the mod 2 Steenrod

algebra on the mod 2 cohomology of ΣCP n+4
n exhibits the following 8-fold periodic

behavior. We present these actions in terms of diagrams as follows.

n = 0 mod 8
2n + 1 2n + 3 2n + 5 2n + 7 2n + 9

n = 1 mod 8
2n + 1 2n + 3 2n + 5 2n + 7 2n + 9

n = 2 mod 8
2n + 1 2n + 3 2n + 5 2n + 7 2n + 9

n = 3 mod 8
2n + 1 2n + 3 2n + 5 2n + 7 2n + 9

n = 4 mod 8

2n + 1 2n + 3 2n + 5 2n + 7 2n + 9
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n = 5 mod 8

2n + 1 2n + 3 2n + 5 2n + 7 2n + 9

n = 6 mod 8

2n + 1 2n + 3 2n + 5 2n + 7 2n + 9

n = 7 mod 8

2n + 1 2n + 3 2n + 5 2n + 7 2n + 9

We have constructed explicit minimal A-resolutions

· · · → Ps
∂s−→ · · ·P2

∂2−→ P1
∂1−→ P0

ε−→ H∗(CP n+4
n )→ 0

in each case to compute Adams E2 pages. We present details in only one example,

namely the case n = 2, with other cases being similar. In all cases, our hand

calculations were kindly verified by Robert Bruner using his computer code [9].

Focusing on the case of ΣCP∞2 , which is needed to prove Lemma 3.1, we

recall that H∗(ΣCP∞2 ) has the following action of A in low degrees.

y5 y7 y9 y11 y13 y15 y17

Filtration s = 0. To define P0 which surjects onto H∗(ΣCP∞2 ), we introduce a

free generator e0,5 in degree 5 to kill y5, and a free generator e0,7 in degree 7 to kill

y7. That is,

P0 := Ae0,5 ⊕Ae0,7 ⊕ · · · , ε(e0,5) = y5, ε(e0,7) = y7, · · ·
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The next free generator to introduce would be e0,15 in degree 15 so that ε(e0,15) =

y15, so P0 has no summands generated in degree t for 7 < t < 15.

A basis for Ker(ε) in degrees t ≤ 13 is presented below.

Deg 6 Sq1e0,5

Deg 7 Sq2e0,5

Deg 8 Sq3e0,5 Sq2Sq1e0,5 Sq1e0,7

Deg 9 Sq3Sq1e0,5 Sq4e0,5 + Sq2e0,7

Deg 10 Sq5e0,5 Sq4Sq1e0,5 Sq3e0,7 Sq2Sq1e0,7

Deg 11 Sq6e0,5 Sq5Sq1e0,5 Sq4Sq2e0,5 Sq3Sq1e0,7

Deg 12 Sq7e0,5 Sq6Sq1e0,5 Sq5Sq2e0,5 Sq4Sq2Sq1e0,5

Sq5e0,7 Sq4Sq1e0,7

Deg 13 Sq8e0,5 Sq7Sq1e0,5 Sq6Sq2e0,5 Sq4Sq2Sq1e0,5

Sq5Sq1e0,7 Sq4Sq2e0,7

Filtration s = 1. With the kernel of the surjection ε from P0 to the

cohomology of ΣCP∞2 in hand, we construct P1 together with a surjection onto

Ker(ε). We define

P1 := Ae1,6 ⊕Ae1,7 ⊕Ae1,8 ⊕Ae1,9 ⊕ · · · ,

∂1e1,6 = Sq1e0,5, ∂1e1,7 = Sq2e0,5, ∂1e1,8 = Sq1e0,7, ∂1e1,9 = Sq4e0,5 + Sq2e0,7, · · · .

Note that the first element of Ker(ε) that is not yet in ∂1(Ae∞, 6 ⊕ Ae∞,7 ⊕

Ae∞,∀⊕Ae∞,∃) is Sq8e0,5 in degree 13. So the next free generator to introduce to P1

is e1,13 so that ∂1e1,13 = Sq8e0,5. In particular, we see that P1 has no components of

degree t for 9 < t < 13. Furthermore, we note that e1,6 is connected with e0,5 by h0,
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e1,7 is connected with e0,5 by h1, e1,7 is connected with e0,7 by h0, e1,9 is connected

with e0,5 by h2 and with e0,7 by h1.

A basis for Ker(∂1) in degrees t ≤ 13 is presented below.

Deg 7 Sq1e1,6

Deg 8

Deg 9 Sq2Sq1e1,6 Sq3e1,6 + Sq2e1,7 Sq1e1,8

Deg 10 Sq3Sq1e1,6 Sq3e1,7

Deg 11 Sq4Sq1e1,6 Sq5e1,6 + Sq3Sq1e1,7 Sq2Sq1e1,8

Deg 12 Sq5Sq1e1,6 Sq5e1,7 + Sq4Sq1e1,7 Sq3Sq1e1,8

Deg 13 Sq6Sq1e1,6 Sq5Sq2e1,6 + Sq4Sq2e1,7 Sq4Sq1e1,8

Sq7e1,6 + Sq5e1,8 + Sq3Sq1e1,9 Sq4Sq2Sq1e1,6 Sq5Sq1e1,7

Filtration s = 2. We construct P2 together with a surjection onto Ker(∂1). We

define

P2 := Ae2,7 ⊕Ae2,9 ⊕Ae′2,9 ⊕ · · · ,

∂2e2,7 = Sq1e1,6, ∂2e2,9 = Sq1e1,8, ∂2e
′
2,9 = Sq3e1,6 + Sq2e1,7, · · · .

Note that the first element of Ker(ε) that is not yet in ∂2(Ae∈,7⊕Ae∈,∃⊕Ae′∈,∃)

is Sq7e1,6 + Sq5e1,8 + Sq3Sq1e1,9 in degree 13. So the next free generator to introduce

to P2 is e2,13 so that ∂2e2,13 = Sq7e1,6 + Sq5e1,8 + Sq3Sq1e1,9. In particular, we see

that P2 has no summands of degree t for 9 < t < 13. Furthermore, e2,7 is connected

with e1,6 by h0, e2,9 is connected with e1,8 by h0, and e′2,9 is connected with e1,7 by

h1.

A basis for Ker(∂2) in degrees t ≤ 13 is presented below.
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Deg 8 Sq1e2,7

Deg 9

Deg 10 Sq2Sq1e2,7 Sq1e2,9

Deg 11 Sq3Sq1e2,7

Deg 12 Sq4Sq1e2,7 Sq2Sq1e2,9 Sq5e2,7 + Sq3e2,9

Deg 13 Sq5Sq1e2,7 Sq3Sq1e2,9

Filtration s = 3. We construct P3 together with a surjection onto Ker(∂2). We

define

P3 := Ae3,8 ⊕Ae3,10 ⊕Ae3,12 ⊕ · · · ,

∂3e3,8 = Sq1e2,7, ∂3e3,10 = Sq1e2,9, ∂3e3,12 = Sq5e2,7 + Sq3e2,9, · · · .

Every element of Ker(∂2) in the range given above is contained in ∂3(Ae3,∀ ⊕

Ae3,∞′ ⊕ Ae3,∞∈). Furthermore, e3,8 is connected with e2,7 by h0, and e3,10 is

connected with e2,9 by h0.

A basis for Ker(∂3) in degrees t ≤ 13 is presented below.

Deg 9 Sq1e3,8

Deg 10

Deg 11 Sq2Sq1e3,8 Sq1e3,10

Deg 12 Sq3Sq1e3,8

Deg 13 Sq4Sq1e3,8 Sq2Sq1e3,10

Filtration s = 4. We construct P4 together with a surjection onto Ker(∂3). We

define

P3 := Ae4,9 ⊕Ae4,11 ⊕ · · · ,

∂4e4,9 = Sq1e3,8, ∂4e4,11 = Sq1e3,10, · · · .
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Every element of Ker(∂3) in the above range is contained in ∂4(Ae4,∃ ⊕

Ae4,∞∞). Furthermore, e4,9 is connected with e3,8 by h0, and e4,11 is connected

with e3,10 by h0.

Filtration s > 4. Inductively, suppose that the basis for Ker(∂s) (s ≥ 4) in

degrees t ≤ s+ 8 can be taken as follows.

Deg s+6 Sq1es,s+5

Deg s+7

Deg s+8 Sq2Sq1es,s+5 Sq1es,s+7

Deg s+9 Sq3Sq1es,s+5

Deg s+10 Sq4Sq1es,s+5 Sq2Sq1es,s+7

Then to build Ps+1 together with a surjection onto Ker(∂s), we let

Ps+1 := Aes+1,s+6 ⊕Aes+1,s+8 ⊕ · · · ,

∂s+1es+1,s+6 = Sq1es,s+5, ∂s+1es+1,s+8 = Sq1es,s+7.

Thus every element of Ker(∂s) in the above range is contained in

∂s+1(Ae∫+∞,∫+6 ⊕ Ae∫+∞,∫+∀). Furthermore, es+1,s+6 is connected with es,s+5 by h0,

and es+1,s+8 is connected with es,s+7 by h0. It also follows that a basis for Ker(∂s+1)

in degrees t ≤ s+ 9 can be taken as follows.

Deg s+7 Sq1es+1,s+6

Deg s+8

Deg s+9 Sq2Sq1es+1,s+6 Sq1es+1,s+8

Deg s+10 Sq3Sq1es+1,s+6

Deg s+11 Sq4Sq1es+1,s+6 Sq2Sq1es+1,s+8
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Thus we have established the following result, which is summarized in Figure

1

Proposition A.1. The Adams E2-page for ΣCP∞2 satisfies:

1. The groups vanish whenever t− s ≤ 4.

2. There is a single h0-tower starting at (s, t − s) = (0, 5), and there is nothing

else along t− s = 5.

3. There is a single Z/2 at (s, t − s) = (1, 6), and there is nothing else along

t− s = 6.

4. There is a single h0-tower starting at (s, t− s) = (0, 7), a single Z/2 at (s, t−

s) = (2, 7), and there is nothing else along t− s = 7.

5. There is a single Z/2 at (s, t − s) = (1, 8), and there is nothing else along

t− s = 8.

Any differential in the range t − s ≤ 8 must be trivial, so this is also the

Adams E∞ and thus stable homotopy in this range. More generally if n = 2

mod 8, this argument shows that ΣCP∞n has the following stable homotopy groups:

πs2n+1(ΣCP∞n ) = Z(2), π
s
2n+2(ΣCP∞n ) = Z/2, πs2n+3(ΣCP∞n ) = Z(2) ⊕ Z/2, and

πs2n+4(ΣCP∞n ) = Z/2.

The other seven cases can be proved in the exact same way. We obtain the

following conclusions.

When n = 0, 4 mod 8, the Adams E2-page for ΣCP∞n begins as follows.
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When n = 1, 5 mod 8, the Adams E2-page for ΣCP∞n begins as follows.
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When n = 2, 6 mod 8, the Adams E2-page for ΣCP∞n begins as follows.
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When n = 3, 7 mod 8, the Adams E2-page for ΣCP∞n begins as follows.
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In the last two Adams charts there is no room for any nontrivial differential

dr affecting the region t − s ≤ 2n + 4, for all r ≥ 2. The following can therefore be

concluded immediately.

When n = 2, 6 mod 8, we have that πs2n+1(ΣCP∞n ) = Z(2), that

πs2n+2(ΣCP∞n ) = Z/2, that πs2n+3(ΣCP∞n ) = Z(2) ⊕ Z/2, and that πs2n+4(ΣCP∞n ) =

Z/2.

When n = 3, 7 mod 8, we have that πs2n+1(ΣCP∞n ) = Z(2), that

πs2n+2(ΣCP∞n ) = 0, that πs2n+3(ΣCP∞n ) = Z(2), and that πs2n+4(ΣCP∞n ) = 0.

However, in each of the first two Adams charts (i.e., when n = 0, 4 or 1, 5

mod 8) there is a possible d2 differential (which is presented as the red dashed

arrow in the chart), which has to do with the determination of πs2n+4(ΣCP∞n ). To

determine these differentials, we recall some classical results.

First a result of Toda [19] relates the stable homotopy groups of CP∞n to the

metastable homotopy groups of unitary groups.

Theorem A.2 (Toda [19]). Let 0 ≤ t < n. Then πs2n+2t+1(CP∞n ) = π2n+2t+1U(n).

Secondly, the relevant homotopy groups were computed by Matsunaga [11].

Theorem A.3 (Matsunaga [11] [12]). Two-locally, metastable homotopy groups of

U(n) are given as follows
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1. π2n+3U(n) = Z/8 when n = 0 mod 8.

2. π2n+3U(n) = Z/4 when n = 4 mod 8.

3. π2n+3U(n) = Z/2 when n = 1 mod 8.

4. π2n+3U(n) = Z/4 when n = 5 mod 8.

So by Theorem A.2, πs2n+4(ΣCP∞n ) is given by the list of A.3. It follows that

the d2 differentials of interest must be zero when n = 0, 5 mod 8, and must be an

isomorphism when n = 1, 4 mod 8. We can now conclude the followings.

1. When n = 0 mod 8, we have that πs2n+1(ΣCP∞n ) = Z(2), that

πs2n+2(ΣCP∞n ) = Z/2, that πs2n+3(ΣCP∞n ) = Z(2) ⊕ Z/2, and that

πs2n+4(ΣCP∞n ) = Z/8.

2. When n = 4 mod 8, we have that πs2n+1(ΣCP∞n ) = Z(2), that

πs2n+2(ΣCP∞n ) = Z/2, that πs2n+3(ΣCP∞n ) = Z(2) ⊕ Z/2, and that

πs2n+4(ΣCP∞n ) = Z/4.

3. When n = 1 mod 8, we have that πs2n+1(ΣCP∞n ) = Z(2), that

πs2n+2(ΣCP∞n ) = 0, that πs2n+3(ΣCP∞n ) = Z(2), that πs2n+4(ΣCP∞n ) = Z/2.

4. When n = 5 mod 8, we have that πs2n+1(ΣCP∞n ) = Z(2), that

πs2n+2(ΣCP∞n ) = 0, that πs2n+3(ΣCP∞n ) = Z(2), and that πs2n+4(ΣCP∞n ) = Z/4.

This completes the 2-local computation and proves Lemma 4.1.

A.2. Proof of Lemma 4.5

We now work 3-locally to prove Lemma 4.5. The strategy is similar. The

action of the mod 3 Steenrod algebra on the mod 3 cohomology of CP n+4
n exhibits
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the following 3-fold periodicity. We present these actions in terms of diagrams.

They correspond, respectively, to cases n = 0, 1, 2 mod 3. Here each curved segment

indicates a nontrivial action of P∞.

n = 0 mod 3
2n + 1 2n + 3 2n + 5 2n + 7 2n + 9

n = 1 mod 3
2n + 1 2n + 3 2n + 5 2n + 7 2n + 9

n = 2 mod 3
2n + 1 2n + 3 2n + 5 2n + 7 2n + 9

One can then construct explicit minimal resolutions to compute the Adams

E2 page in each case. Note that when n = 1 mod 3, the resolution can be taken as

a degree 2n− 1 shift of a resolution of CP∞, which can be learned from Aikawa [1].

When n = 0 mod 3, the resolution can be taken as a direct sum of a resolution of

Z/3 and that of CP∞ followed by a degree shift of 2n + 1. We omit the details of

constructing resolutions and simply provide the Adams charts.

When n = 0 mod 3, the Adams E2-page for ΣCP∞n begins as follows.

0
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4

2n+ 1 2n+ 2 2n+ 3 2n+ 4 2n+ 5

When n = 1 mod 3, the beginnings of the Adams E2-page for ΣCP∞n is as

follows.
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When n = 2 mod 3, the beginnings of the Adams E2-page for ΣCP∞n is as

follows.
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In all the cases above, there is no room for any differential dr, for all r ≥ 2.

One can therefore read off the desired 3-local stable homotopy groups immediately.

Namely,

1. πs2n+1(ΣCP∞n ) = Z(3), π
s
2n+2(ΣCP∞n ) = 0, and πs2n+3(ΣCP∞n ) = Z(3).

2. πs2n+4(ΣCP∞n ) exhibits the following 3-fold periodic behavior. It is zero when

n = 0, 1 mod 3, and is Z/3 when n = 2 mod 3.

This completes the 3-local computations, and proves Lemma 4.5.
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