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DISSERTATION ABSTRACT 
 
Kelly Robles 
 
Doctor of Philosophy 
 
Department of Psychology 
 
June 2023 
 
Title: The Role of Fractal Fluency on Visual Perception 
 
 

From quarks to galaxies, the natural world is organized with fractal geometry. Fractal 

fluency theory suggests that due to their omnipresence in our visual world, fractals are more 

fluently processed by the visual system resulting in enhanced cognitive performance and 

aesthetics. However prior research has yet to define the boundaries of fractal perception. Thus, the 

present dissertation aims to explore 1) how individual differences and 2) inclusion of additional 

structure impact fractal perception, as well as define the unique contribution of fractal statistics 

on 3) visual judgments in Euclidean space and 4) memory performance. In four empirical 

chapters, I demonstrate robust trends in fractal perception across wide variation in viewing 

conditions. Moreover, fractals are shown to be perceived as definitively unique compared to 

nonfractal images. Together these findings provide insight into how the visual system handles 

self-repeating patterns and reaffirms the vast potential of fractal installments for occupant 

wellbeing.  

 

This dissertation includes previously published and unpublished co-authored material. 
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CHAPTER I 

INTRODUCTION  

From quarks to galaxies, the natural world is organized with fractal geometry 

(Mandelbrot, 1982; Falk & Balling, 2010; Taylor, 2021; Brielmann et al., 2022). Self-similar 

repetition not only serves as an efficient function for biological growth (Mandelbrot, 1982) but 

also as a common theme present in items of beauty (Viengkham & Spehar, 2018; Taylor et al., 

2011; Taylor, 2003; Taylor et al., 2007; Rawls et al., 2021; Lukman et al., 2007; Graham & 

Field, 2008; Forsythe et al., 2017; Beauvois, 2007). Though fractal structure had been long 

discussed in the world of mathematics (Segal, 1978), Mandelbrot (1978) popularized the term 

with his creation of a recursive set of self-similar patterns and direct acknowledgement of fractal 

structure being intertwined throughout nature (Mandelbrot, 1968; Mandelbrot, 1982). Further 

investigation of fractal organization emerged from the study of aesthetics to show that fractal 

structure is not only associated with beautiful natural formations (Falk & Balling, 2010; 

Hagerhall et al.,2018) but also human-made art (Taylor, 2003; Beauvois, 2007; Lukman et al., 

2007; Graham & Field, 2008; Graham & Redies, 2010). Furthermore, even the pattern in which a 

viewer’s eyes move when scanning a scene or evaluating beautiful works reflects fractal 

organization (Guastello & Gregson, 2016). The prevalence of fractals in the observable 

surroundings has compelled researchers to probe the connection between these abundant patterns 

and a seemingly universal response to their presence (Spehar et al., 2003; Falk & Balling, 2010; 

Taylor & Spehar, 2016).  

Regardless of whether they are viewed as a two-dimensional (2D) surface, three-

dimensional (3D) form, or even a dynamic texture; fractal patterns are composed of a unique set 

of internal factors. The combination of the pattern’s fundamental configuration (referred to as the 
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“seed pattern”), exactness of pattern repetition, level of recursion, presence of symmetry, and 

ratio of coarse-to-fine structure (known as fractal dimension referred to as “D-value”) create the 

distinctive character of any given fractal (Boselie & Leeuwenburg, 1985). Multiple procedures 

exist for generating fractal seed patterns, including inverse-Fourier and midpoint displacement 

for segment perturbation, as well as specific methods of pixel deletion or addition (Bies et al., 

2016; Smith et al., 2020; Friedenberg et al., 2021). Repetition of fractal seed patterns across 

scales typically occurs in either a statistical manner (Mandelbrot, 1982) (sometimes referred to as 

“natural fractals” due to their prevalence in the natural world such as tree-branches, coastlines, 

etc.) or an exact manner (Hagerhall et al., 2015; Bies et al., 2016) which may also integrate a 

degree of symmetry to the pattern. The fractal seed can then be grown to occupy a greater 

amount of space and repeat at finer scales which can be measured as the individual pattern’s D-

value (or also be measured in terms of alpha, the slope of the amplitude spectrum). Variations 

across these factors produce consistent alterations in viewer perceptions (Bies et al., 2016); with 

greater predictability and processing efficiency through arrangement simplicity, exactness of 

repetition, and symmetry (Hagerhall et al., 2015; Friedenberg et al., 2021). This ease of 

processing is posited as the underlying factor for positive viewer experiences and general 

aesthetic preference for fractal patterns (Falk & Balling, 2010; Spehar et al., 2015; Taylor & 

Spehar; 2016; Robles et al., 2021). 

Fractal Fluency Theory relies on the prevalence of fractals and their self-similar structure 

to suggest that the visual system is tuned to process fractal patterns more efficiently (Taylor & 

Spehar, 2016). By being able to distill complex patterns down to their smallest representative 

elements, the overall pattern can be understood without the visual system expending additional 
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metabolic energy to repeatedly process the same information projected at various scales 

(Isherwood et al., 2017). Peak processing fluency coincides with fractal patterns that are most 

often encountered in the natural environment, particularly those of low-moderate complexity 

(Spehar et al., 2003; Sprott, 1993; Taylor et al., 2005). Although further research is required to 

determine whether this tuning is created through exposure during a critical period of 

development or due to evolutionary processes (Robles et al., 2020; Falk and Balling, 2010; 

Taylor et al., 2018; Hagerhall et al., 2008), Fractal Fluency Theory is supported by behavioral 

findings of improved performance on navigation (Juliani et al., 2016), object-naming (Rogowitz 

& Voss, 1990), and attention maintenance (Hagerhall et al., 2015) for natural fractal patterns of a 

low-moderate complexity. Furthermore, robust literature demonstrates that experiences of visual 

appeal also peak with fractals of this complexity (Taylor et al., 2011; Taylor & Sprott, 2008, 

Spehar et al., 2003). Through more fluent processing of the constant stream of visual information 

coming from the environment, reserved metabolic energy can be better devoted to deeper 

processing and engagement with the stimuli on a higher level to drive aesthetic perceptions.   

Despite a general sense of agreement with individual interpretations of the surrounding 

visual world, individual differences are documented to influence viewer perceptions (Forsythe et 

alk., 2017; Güçlütürk et al., 2016; Hagerhall et al., 2018; Pyankova, 2019; Rezaei et al., 2020; 

Spehar et al., 2016; Spehar et al., 2015; Street et al., 2015). Variations in typical perception are 

often associated with factors impacting the speed and effortfulness of an observer’s processing 

abilities. Extent of pattern experience and understanding accumulate with observer age allowing 

the individual to learn successful handling of contextual information (Roder et al., 2000; 

Billington et al., 2008). It is suggested that the viewer incrementally acquires an understanding 
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of greater complexity in their surroundings, possibly encouraging a shift in preference towards 

patterns with the greatest comprehensible complexity (Kidd et al., 2012). Besides typical 

development, the occurrence of atypical processing strategies apparent with cognitive disorders 

coincides with variations in natural pattern perception. For example, individuals scoring higher 

on the Autism Spectrum can maintain a greater visual perceptual load (Bayliss & Kritihos, 2011) 

and be less impacted by global context (Hadad, 2018; Grinter et al., 2009) which results in a 

tolerance for higher visual complexity. Conversely, individuals with age induced 

neurodegeneration (Forsythe et al., 2017) and schizophrenia (Rezaei et al., 2020) appear to be 

more easily overwhelmed by additional complexity. Beyond internal cognitive factors, 

familiarity with environments of different spatial scaling may additionally weight viewer fractal 

experiences to prefer complexities that coincide with more commonly encountered spatial 

frequencies (Hagerhall et al., 2018). The effects of experience and cognitive variations cannot be 

removed from an observer’s perception. Thus, the first goal of the current dissertation is to assess 

fractal perception across a broad sampling of viewers in order to isolate the impact of individual 

differences on visual experiences. 

Fractal patterns are omnipresent in nature, but rarely are individual fractal patterns 

perfectly arranged without overlapping forms or contextual elements of differing configuration 

in any given view of a landscape (Mandelbrot, 1982). Correct interpretation of the surrounding 

environment requires not only being able to successfully process this cacophony of individual 

visual patterns, but also to account for relationships between these patterns across changes in 

viewing condition and angle (Renning et al., 2013; Vishwanath et al., 2005; Lee & Saunders, 

2013). Variation in visual processing can modify viewer experience, particularly the ease with 



 

21 

 

which the viewer can simplify a given pattern or stimulus to a representative element that 

requires lower effort to interpret (Billington et al., 2008; Rezaei et al., 2020). With even the 

slight increase in predictable order, particularly with respect to symmetry (Bies et al., 2016) and 

exactness of repetition across scales (Robles et al., 2020), pattern processing is facilitated, 

leading to a tolerance for overall pattern complexity and thus a shift in observer preference 

towards more complex images (Bies et al., 2016; Hagerhall et al., 2016; Güçlütürk et al., 2016). 

Beyond internal variations of pattern structure, visual order surrounding an image is also factored 

into viewer interpretation (Aboushi et al., 2019; Sereno et al, 2020). Considering the above 

factors, the second aim is to evaluate how the inclusion of additional structure yields a composite 

pattern impacting observer perceptions. 

The impact of divergent composition is never more evident than the amalgamation of 

humanmade Euclidean design (e.g., built environments) with natural fractal patterns. Unlike the 

self-similar fractal relationships found in natural landscapes, Euclidean arrangements appear 

starkly artificial. These humanmade configurations of regular straight lines are exemplified by 

the indoor spaces in which most people spend the majority of their time. Whereas the human 

visual system is adept at handling natural configurations of spatial frequencies, additional effort 

is required to process Euclidean arrangements (O’Hare & Hibbard, 2011; Penacchio & Wilkins, 

2015; Le et al., 2017). Moreover, this expenditure of additional energy from managing unnatural 

visual statistics is correlated with an overall increase in occupant stress levels producing negative 

psychological experiences and decreased general well-being, manifesting in symptoms of 

discomfort, visual strain, and prevalence of headaches (Penacchio & Wilkins, 2015; O’Hare & 

Hibbard, 2011; Ogawa & Motoyoshi, 2020). Increasing exposure to nature and natural patterns 
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such as fractals is shown to benefit observer well-being (Burtan et al., 2021; Hagerhall et al., 

2015; Ulrich, 1981) and have a restorative effect on attention (Berman et al., 2008; Hagerhall et 

al., 2015; Kaplan & Kaplan, 1989; Kaplan & Kaplan, 1982). Installments of fractal-based design 

may mitigate the effects of unnatural visual processing strain as they can be added into existing 

built environments to decrease visual strain without sacrificing the functionality of the space 

(Smith et al., 2020; Roe et al., 2020; Abboushi et al., 2019; Taylor & Sprott, 2008). Fractal 

installations inject elements of natural configurations into manufactured spaces and serve as a 

break from the visually draining surroundings, lowering levels of visual processing effort to 

facilitate occupant relaxation (Hagerhall et al., 2015; Smith et al., 2020). Building off results 

from the second aim, the third aim of this dissertation is to define how perception is 

systematically altered with the integration of fractal arrangement into simple Euclidean structure. 

Findings from this line of research will functionally serve to inform selection of fractal designs 

tailored to the purpose of a space, in addition to furthering scientific awareness of the unique 

impact of underlying fractal structure on perception of the visual world.  

The ability to understand a fractal pattern in its entirety from the comprehension of a 

subset of its components is an underlying tenet of Fractal Fluency Theory (Taylor & Spehar, 

2016) and is theorized to be responsible for peaks in performance coinciding with low-moderate 

fractal complexity (Juliani et al., 2016, Taylor et al., 2017; Hagerhall et al., 2015). The self-

similar arrangement inherent to fractal statistics has been suggested to make these complex 

patterns easier to understand. However, it is not well understood whether this increase in 

processing fluency occurs at a detriment to encoding pattern distinctiveness. Although 

recognition of natural scenes is driven by global structure (Greene & Olivia, 2009), success of 
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image discrimination and recognition is impacted by the structural features of a target, including 

number of shared local elements in an item or scene (Schurgin et al., 2020). Despite the human-

eye being highly sensitive to alterations within a given pattern (Spehar et al., 2015; Isherwood et 

al., 2017; Isherwood et al., 2021), the shared features fundamental to fractals (ie. seed, recursion, 

black-white ratio) greatly increases the difficulty in discriminating between patterns. With the 

arrangement of many simple local elements being repeated to create a global pattern, fractals 

could be processed in a similar manner on both local and global scales. In line with other aspects 

of cognitive performance, memory performance for fractal patterns may be reflective of a 

general fractal fluency and expose how encoding and retrieval may vary with fractal 

arrangement. The final aim of this dissertation is to explore how fractals are encoded and 

represented in long term memory. Results from this research will further our understanding of 

how fractals are processed in the visual system and can be applied to decisions on design 

implementation.  

Overview of the Dissertation 

The goals of this dissertation are to 1) assess the impact of individual differences on 

perception of fractal patterns, 2) evaluate how the inclusion of additional structure integrates into 

overall pattern perception, 3) define the unique contribution fractal structure imparts on visual 

judgements in Euclidean space, and 4) probe the relationship between fractal perception and 

memory performance. In four empirical studies, I will show that trends in fractal perception are 

established early in life (Chapter 2), can be modulated through the incorporation of artistic 

elements (Chapter 3), as well as Euclidean structure (Chapter 4), and that variations in pattern 
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structure can impact memory abilities (Chapter 5). Importantly, these chapters will demonstrate 

how visual fractal structure in our surroundings contributes to shared perceptual experiences. 

Together, this series of studies add to a growing literature of Fractal Fluency Theory including 

the utility of integrating fractal designs into human-made environments and furthers our 

understanding of the role the statistics of nature play in our perceptions of the visual world. 

Chapter 2 will address the broad generalizability of fractal preference across a wide span 

in development, exposure, and individual cognitive differences. Previous work in the field has 

heavily focused on the perception and preferences of neuro-typical young adults to conclude a 

common preference for statistical fractal patterns with low-moderate complexity (Bies et al., 

2016; Spehar et al., 2016; Street et al., 2016; Pyankova et al., 2019) and exact fractal patterns 

with high complexity (Bies et al., 2016; Hagerhall et al., 2015; Friedenberg et al., 2021). 

However, trends are shown to shift in the presence of cognitive variations associated with older-

aged populations (Forsythe et al., 2017).  Furthermore, the manner in which an individual 

integrates contextual information critical in pattern perception varies across development 

(Hadad, 2018), as well as with processing tendencies due to exposure and familiarity of a given 

pattern complexity (Roder et al., 2000), or with the degree to which the individual processes 

pattern features (Billington et al., 2008). Thus, it is unclear whether these well-established trends 

in fractal preference are present in younger individuals with lower levels of exposure and 

understanding of novel fractal structure. Chapter 2 of the dissertation will address this gap in the 

literature by comparing fractal preference of children and adults. Importantly, it will demonstrate 

how these major factors of individual differences in processing style or years of exposure are not 

driving forces behind fractal preferences. Moreover, it will show that preference for both 
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statistical and exact fractal patterns is stable across a wide range in age and cognitive differences 

and reflects a likely fluency of fractal processing established earlier in development.   

The broad findings of a stable fractal preference from the previous chapter then inspires 

Chapter 3 to address the perceptual effects of fractal design installments in shared spaces. 

Previous studies have determined the ability of fractal patterns to alter the experience of a given 

object or space (Juliani et al., 2016; Taylor et al., 2018; Abboushi et al., 2019; Roe et al., 2020; 

Spehar & Stevanov, 2021) suggesting that these patterns can be utilized to mitigate negative 

health effects associated with Euclidean spatial structure (O’Hare & Hibbard, 2011; Ogawa & 

Motoyoshi, 2020). To effectively incorporate fractal designs, the space’s overall function and 

design must be considered in addition to the desired psychological experience of the occupant. 

To address these facets, Chapter 3 will test how perceptions of various fractal designs change 

with alterations to overall image design and arrangement. Fractal inspired carpet designs which 

incorporate various design elements, fractal elements, and arrangements into their composition 

(Smith et al., 2020) will be assessed with ratings of broad psychological effects to determine how 

fractal-inspired-design can balance aesthetic and psychological goals of a space. Furthermore, 

viewer subpopulations which have been shown to exist amongst well-established trends in fractal 

preference (Street et al., 2016; Hagerhall et al., 2018; Spehar et al., 2016; Güçlütürk et al., 2016) 

will be explored in order to more thoroughly consider which designs should be selected to 

produce the most positive psychological impact for the greatest number of occupants in a shared 

space. Consistent with Chapter 2, stable trends driven by complexity of pattern components are 

uncovered across a large sample, with consistent small subpopulations that systematically vary. 

Overall aesthetic preference for these fractal designs is demonstrated to be derived from the 
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balance of contrasting psychological needs for increased arousal and decreased tension. 

Furthermore, the incorporation of design elements provides additional order in the patterns and 

shifts average viewer ratings toward moderate-high complexity patterns to maintain stronger 

preference in most viewers without incurring distaste from subgroups. Results from this chapter 

suggest that installment of specific fractal designs can predict and possibly modulate occupant 

perceptions of common Euclidean surroundings.  

            Building upon Chapter 3, which explores the effects of a specific fractal design, Chapter 

4 will define the unique impact of fractal structure as a whole on pattern perception to 

disentangle how fractal organization interacts with contrasting Euclidean configurations. 

Findings from this research will fill a critical gap of outlining the distinct effect fractal statistics 

have on visual perception as a whole and how the introduction of Euclidean structure must be 

handled to optimize the utility of fractal design incorporation in human-made spaces. Whereas 

previous research supports the potential of fractal installations to promote positive psychological 

experiences of a space (Taylor & Sprott, 2008; Aboushi et al., 2019; Robles et al., 2021) no 

studies have directly confirmed the extent to which an underlying fractal structure is the driver of 

these consistent trends in perception as opposed to stylistic features of the image such as general 

complexity or black-white ratio. This study is the first to compare viewer perception of fractals 

and statistically equivalent patterns with fractal structure removed to definitively confirm the 

distinctive role of fractal order on the human visual experience further, reinforcing the utility of 

studying these natural patterns. Established trends of fractal perceptions have been heavily  

assessed in contextual isolation, with stimuli serving as a singular visual surface (Bies et al., 

2016; Spehar et al., 2003; Spehar et al., 2015). However, in the visual world fractal items rarely 
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appear as two-dimensional surfaces devoid of additional composition or surrounding 

components. Chapter 4 answers the fundamental question: how does fractal perception change 

with the integration of additional non-fractal structure? This study examines how even the most 

basic Euclidean structure, reminiscent of a prototypical surrounding three-dimensional space, 

alters viewer perceptions of fractal patterns and must be accounted for to predict the efficacy of 

fractal design in human-made spaces. Findings from this chapter serve as an imperative step in 

comprehending how fractals produce predictable perceptions. 

            Chapter 5 branches away from the previous measurements of subjective perceptions to 

investigate the impact of underlying fractal structure on more objective cognitive abilities, 

specifically how underlying fractal structure is processed during memory tasks. The distinct 

structure of fractal arrangement allows these patterns to be processed in an efficient and low-

effortful manner (Taylor & Spehar, 2016). This fluency of processing has been demonstrated to 

facilitate viewer comprehension that promotes object-naming (Rogowitz & Voss, 1990) and 

navigational abilities (Juliani et al., 2016). In both instances, observers are quicker to process 

lower complexity fractal patterns as a whole and rely on features of low-moderate complexity for 

greater success in their given task, thus lending more support to an underlying processing 

fluency for these patterns. Can Fractal Fluency Theory then account for fractal pattern memory 

as a whole? Chapter 5 seeks to determine how fractal structure impacts whole pattern recognition 

and if these patterns are encoded on a holistic or component basis. The first study investigates 

participant memory for fractal stimuli compared to mathematically matched non-fractal images 

to identify the utility of fractal structure for whole-pattern memory. This study suggests that the 
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self-similar nature of fractal arrangement promotes more effective visual encoding than visually 

comparable non-fractal images without negating distinct internal features necessary to 

differentiate between similar stimuli.  To further probe how self-similarity in pattern features can 

affect visual component memory, study two assesses source memory for elements within fractal 

and non-fractal images. This chapter extends the understanding of Fractal Fluency Theory to 

show how the viewer can efficiently reduce fractal images to their fundamental structure to 

promote whole pattern recognition. These findings provide a more nuanced view of fractal 

processing and its impact on image distinctiveness which should be accounted for when 

informing decisions on pattern utility. Finally, chapter 6 will integrate findings from across the 

studies to synthesize a broader understanding of fractal perception across variations in 

individuals, contexts, and tasks and provide a general discussion that ties them to the broader 

literature of Fractal Fluency Theory.  
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CHAPTER II 

A SHARED FRACTAL AESTHETIC ACROSS DEVELOPMENT 

From Robles, K. E., Liaw, N. A., Taylor, R. P., Baldwin, D. A., & Sereno, M. E. (2020). A shared 
fractal aesthetic across development. Humanities and Social Sciences Communications, 7(1), 

158. https://doi.org/10.1057/s41599-020-00648-y 
 

The aesthetics of nature are influenced by fractal complexity (Mandelbrot, 1982; Taylor 

et al., 1999). Recursion (the number of pattern repetitions across scales) and fractal dimension D 

(the rate of pattern shrinkage between repetitions) set the relative contributions of coarse-to-fine 

structure for the overall fractal pattern, thus determining its visual complexity (Boselie & 

Leeuwenburg, 1985; Eysenck, 1942). The character of the pattern repetition (“statistical” versus 

“exact”) further influences perceived complexity, as does the degree of the pattern’s spatial 

symmetry (the presence of invariant geometric transformations such as reflections and rotations). 

The dependence of aesthetic preference on complexity has been established for both statistical 

(Fig. 2.1A, B) (Hagerhall et al., 2015; Taylor et al., 2011 as a review) and exact (Bies et al., 

2016a) (Fig. 2.1C, D) repetitions of fractal patterns.  

Statistical fractals are prevalent in natural scenery (e.g. trees, mountains, clouds, rivers) 

(Mandelbrot, 1982) and preference for them has been shown to peak at low–moderate 

complexity (approximately D = 1.3–1.4 on a scale between D = 1.1 and 1.9) and steadily 

decrease with additional complexity (Taylor et al., 2011; Taylor & Sprott, 2008). The paintings 

of Jackson Pollock reflect these findings in that the artist’s layering of paint establishes a fractal 

structure (Taylor et al., 1999, 2007), and preference for cropped black and white versions of 

these works peaks at mid-complexity (Spehar et al., 2003). Moreover, traditional and 

contemporary art from diverse cultures contain fractal properties (Graham & Field, 2008;  
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Graham & Redies, 2010), suggesting a universal preference for patterns of low- moderate 

perceived complexity with subgroups of preference for different D-values (Bies et al., 2016a; 

Spehar et al., 2016; Street et al., 2016; Pyankova et al., 2019). Notably, an analysis of famous 

artworks indicates preference for lower D-values with age-related conditions including 

Alzheimer’s and Parkinson’s diseases (Forsythe et al., 2017). Contrasting the overall preference 

for low–mid-complexity statistical fractals, increased tolerance of fractal complexity elicited by 

the symmetries and precise repetition of exact fractals generates preference for higher D- values 

(Bies et al., 2016a).  

Figure 2.1. Fractal stimuli. A-D. Examples of the two statistical A and B and two exacts C and D seeds used 
in the experiment. The sequence of images depicts the progression from low (D=1.1 on the far left) to high 
(D=1.9 on the far right) complexity. 
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Previous research indicates that heightened preference and psychophysical performance 

are associated with common low–moderate natural patterns (Spehar et al., 2003; Sprott, 1993; 

Taylor et al., 2005) reminiscent of savanna scenes (Falk & Balling, 2010). Fractal Fluency theory 

suggests the visual system is tuned, either through repeated exposure or evolutionary 

mechanisms, to better process complexities most encountered in the surrounding natural 

environment (Falk & Balling, 2010; Taylor et al., 2018, Hagerhall et al., 2008) and it is this 

efficiency that leads to fractal preference. In contrast, unnatural Euclidean patterns and 

environments have been linked to increased strain on the visual system producing headaches 

(Penacchio & Wilkins, 2015) and lower aesthetic preference (Taylor, 1998). Additional studies 

recommend installations of naturalistic low–moderate D fractals to reduce occupants’ stress 

levels in built environments (Hagerhall et al., 2015; Taylor et al., 2005). Combined, the above 

studies highlight the importance of understanding fractal fluency for optimizing our visual 

environments across all age groups.  

Impact of individual differences and age 

Perceptual integration of contextual information varies across development and can 

impact susceptibility to visual illusions (Hadad, 2018). Differences in general perceptual 

strategies or age-related handling of contextual information may alter the perception of patterns, 

either by influencing the degree to which local compared to global features of patterns are 

processed (Billington et al., 2008), or the degree of contextual experience and familiarity an 

individual has with different pattern complexities (Roder et al., 2000). A local bias reflecting a 

predilection for small-scale, detailed structure might guide preference for more complex patterns, 

whereas a global bias may produce a preference for larger scale structure which is more 

discernable in patterns with low–mid range complexity. Likewise, the so-called Goldilocks effect  
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may account for changes in preference (Kidd et al., 2012). Beginning in infancy, an individual 

incrementally acquires knowledge of more complicated and novel aspects of the surrounding 

environment, thus gradually learning how to 

comprehend more complex patterns and concepts. 

After decades of exposure to natural patterns, this 

theory suggests that understanding of visual 

patterns will have deepened compared to that of 

early childhood, shifting preference towards the 

most complex patterns an individual can process 

(Roder et al., 2000; Kidd et al., 2012). To define 

the impact of these factors on fractal aesthetics, it 

is vital to consider a wider sample of participant 

ages (children as well as adults) and account for 

the impact of individual perceptual biases (determined by assessing Systemizing Quotient (SQ) 

scores (Baron-Cohen et al., 2001) and susceptibility to global context effects in the Ponzo Task 

(Hadad, 2018), see Fig. 2.2 (Walter et al., 2008)). Overall, if robust trends found in adults are 

present in children (especially since few tasks result in steady performance across a wide age gap 

(Stevenson, 1972)), it would support the conclusion that these preferences are likely resulting 

from a common visual tuning established earlier in life. This would be of notable interest in part 

because early life is often largely spent in Euclidian shelters, which are inherently less complex 

than nature’s fractal environments (Clements, 2004).	 

Figure 2.2. Depiction of the Ponzo Task. 
Depiction of the Ponzo Task. Surrounding 
contextual information provided by the vertical 
lines influences the accuracy of length judgments 
of the horizontal lines. Greater susceptibility to 
this illusion is related to a global processing bias. 
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Methods 

Participants 

To examine the extent to which preference for complexity in fractal patterns may change 

across development, 178 participants comprised of students from the University of Oregon and 

guests of the Eugene Science Center were recruited for the current study. Eighty-two of the 

participants were adults recruited through the University of Oregon’s SONA participant pool 

system (75 females, age ranging between 18 and 40 years, mean age 20 years old), and the other 

96 participants were children between the ages of 3 and 10 years old (43 females, mean age 6.5 

years old) who visited the Eugene Science Center. We sampled roughly equal numbers of male 

and female children from each age range (3–4, 5–6, 7–8, and 9–10 years old), and at least 20 

children were recruited for each age group. Adult participants received class credit for their 

participation in the current study, whereas child participants received either stamps or stickers for 

their time. Informed consent was acquired following protocol approved by the Institutional 

Review Board at the University of Oregon. Consent for child participants was obtained through a 

consent form signed by the child’s parent or legal guardian in addition to verbal consent from the 

child, whereas adult participants completed a single consent form.  

Visual displays 

Stimuli were displayed on a Microsoft Surface- Pro touch screen electronic tablet which 

was placed on a table in front of participants and propped up at an angle within reaching distance 

~25 cm from the participants. Questionnaires given to adult participants were presented on an 

additional hand-held touch screen electronic tablet (iPad) while child participants completed 

perceptual tasks.  
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Stimuli and tasks  

Fractal stimuli and preference task. Fractals are complex because they possess structural 

similarity across scales. Exact fractals are built by precisely repeating a pattern at different 

magnifications. In contrast, statistical fractals are built by introducing randomness into their 

construction which disrupts the precise repetition such that only the pattern’s statistical qualities 

repeat across scales. Two sets of statistical (Fig. 2.1A, B) and exact (Fig. 2.1C, D) fractals were 

used. Exact midpoint displacement fractals (Fig. 2.1C) were generated according to an algorithm 

described by Fournier (Fournier et al., 1982; Bies et al., 2016a, b). Exact H-tree fractals (Fig. 

2.1D) repeat an H-pattern at increasingly fine size scales. The statistical fractals were created 

using a variant of the midpoint displacement method (Fournier et al., 1982; Bies et al., 2016b). 

Two different sets of statistical fractals of varying complexity were generated from two different 

seeds. The complexity of a fractal pattern is determined by the rate at which the exact or 

statistical pattern deceases in size with each iteration of the repetition process (Mandelbrot, 1982; 

Taylor et al., 2011). The rate is set by the pattern’s fractal dimension or “D”, which ranges from 

1.1 to 1.9 (1.1, 1.3, 1.5, 1.7, and 1.9) in our stimulus sets (see Fig. 2.1 for an example stimulus 

set). 

Participants viewed either exact or statistical fractal patterns presented in two randomized 

blocks, with each block consisting of only one fractal pattern stimulus set (exact midpoint 

displacement or H-tree; statistical midpoint displacement seed #1 or #2). Each stimulus set 

consisted of five unique patterns of different complexity or D-value (e.g., Fig. 2.1A). A two-

alternative forced choice task was used, resulting in 10 trials (10 fractal pairs) per block. All 

fractal pattern complexities were paired once within a block, resulting in each complexity being 

presented four times within a block. Stimulus pairing and presentation order were random with 
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the constraints that (1) all fractal pattern complexities were paired only once, (2) half of the 10 

trials consisted of patterns with higher complexity on the right side and half on the left side, and 

(3) each pattern of a given complexity appeared on both left and right sides. Between trials, a 

smiley face icon served as a fixation point that had to be touched to produce the next pair of 

images.  

Ponzo stimuli and task. Following the fractal preference task, participants completed 10 

trials of a Ponzo task. In this task participants were presented with vertical lines angled towards 

the center of the screen and two horizontal lines placed between the slanted vertical lines in the 

upper and lower halves of the screen (see Fig. 2.2 for an example stimulus). The length of each 

horizontal line was randomly generated such that it did or did not intersect the vertical lines, and 

each horizontal line was larger or smaller than the other. Participants adjusted the lower line to 

match the length of the upper line. Accuracy and directional bias of adjustments were measured 

as a difference in pixels between the upper and lower-line segments and whether these 

adjustments overestimated or underestimated the target length.  

Questionnaire 

After the fractal preference and Ponzo tasks, all adult participants completed the SQ 

questionnaire. The quotient was determined based upon participants’ ratings of the degree to 

which the statements were like or unlike themselves, which provided a score of overall 

systemizing and emotional tendencies (Baron-Cohen et al., 2001). A children’s SQ (Auyeung et 

al., 2009) was completed by parents or guardians on a separate electronic tablet while child 

participants completed the fractal preference and Ponzo tasks.  

Procedure and design  
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Participants were presented with either exact or statistical fractals and completed three 

practice trials prior to two blocks of two alternative forced choice decisions. The practice stimuli 

were different than the experimental stimuli. Participants were instructed to touch the fixation 

image to initiate the presentation of pairs of fractal patterns. Image pairs remained on the screen 

until participants made a selection by physically touching the image they preferred (“liked best”). 

Upon completion of the fractal preference task, participants were presented with a Ponzo illusion 

task. In this task participants were instructed to drag their finger along a line segment to adjust its 

length until it matched the length of a parallel line segment positioned above it. Adult 

participants completed an online questionnaire that contained demographic questions as well as 

the SQ. Parents or guardians of child participants completed a children’s version of this 

questionnaire while the child completed the other tasks. Throughout the experiment, researchers 

sat next to child participants and encouraged children to maintain focus on the tasks. At the 

conclusion of the experiment all participants were compensated and debriefed according to the 

protocols approved by the Institutional Board at the University of Oregon.  

Results 

Data from 82 adult participants (between 18 and 33 years old) and 96 child participants 

(between 3 and 10 years old) were retained from the 83 adults and 118 children who participated 

in the experiment. Data were excluded due to failure to (a) complete the study, (b) comprehend 

instructions, or (c) maintain focus during the experiment.  

Fractal preference task 

A three-way mixed 5 × 2 × 2 ANOVA (D-value (1.1, 1.3, 1.5, 1.7, 1.9) × age (3–10-year-

old children, and 18 years and older adults) × Fractal-Type (statistical, exact)) was performed 
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using IBM SPSS Statistics for Macintosh, Version 25.0) on preference data for the fractal 

patterns (recorded as proportion of trials a given pattern was chosen in a two- alternative forced 

choice pairing), with D-value as a within- subjects variable and Fractal-Type and Age as 

between-subjects variables (see Table 2.1). Mauchly’s test indicated a violation of the 

assumption of sphericity for D-value (χ2(9)=292.18, p< 0.001**). Therefore, degrees of freedom 

were corrected using Greenhouse–Geisser estimates of sphericity (ε = 0.521). As indicated by a 

single asterisk for statistical significance of p < 0.05 and double asterisk for significance of 

p<0.001, only a significant main effect of D-value emerged in the analysis (F(2.08, 362.67) = 

3.79, p = 0.02*, 95% CI [0, 0.06], ηp2 = 0.02), [Age (F (1, 174)=0.001, p=0.97, 95% CI [0, 

0.001], ηp2<0.001) and fractal-type (F(1, 174) = 2.13, p = 0.15, 95% CI [0, 0.06], ηp2=0.01)]. 

Furthermore, no significant interactions appeared between D-value and age (F(2.08, 362.67) = 

2.37, p = 0.09, 95% CI [0, 0.04], ηp2 = 0.01), fractal-type and age (F(1, 174) = 0.001, p=0.97, 

95% CI [0, 0.001], ηp2<0.001), or among D-value, fractal-type and age (F(2.08, 362.67) = 0.36, 

p = 0.71, 95% CI [0, 0.02], ηp2 = 0.002). The sole significant interaction was between D-value 

and fractal-type (F(2.08, 362.67) = 2.94, p = 0.05*, 95% CI [0, 0.05], ηp2 = 0.02) (see Fig. 2.3). 

A follow-up three-way mixed 5 × 4 × 2 ANOVA (D-value (1.1, 1.3, 1.5, 1.7, 1.9) × age (3–4, 5–

6, 7–8, and 9–10-year-old children) × fractal-type (statistical, exact)) was performed on child 

participant data (see Table 2.2). Once again, Mauchly’s test indicated a violation of the 

assumption of sphericity for D-value (χ2(9) = 88.30, p < 0.001**), thus degrees of freedom were 

corrected using Greenhouse–Geisser estimates of sphericity (ε = 0.634). No significant main  

effects were uncovered [D-value (F(2.54, 223.28)=2.35, p=0.08, 95% CI [0, 0.07], ηp2=0.03), 
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  Table 2.1: Mixed ANOVA across D-value, Age, and Fractal Type 

 df numerator df denominator F p ηp2 95% 
CI 

D-Value 
(1.1, 1.3, 1.5, 1.7, 1.9) 

2.08 362.67 3.79 .02* .02 0, .06 

Age  
(adult or child) 

1 174 0.001 .97 <.001 0, .001 

Fractal-Type  
(exact or statistical) 

1 174 2.13 .15 .01 0, .06 

D-Value * Age 2.08 362.67 2.37 
 

.09 
 

.01 0, .04 

D-Value * Fractal-Type 2.08 362.67 2.94 .05* .02 
 

0, .05 
 

Age * Fractal-Type 1 174 0.001 .97 <.001 0, .001 

D-Value * Age * Fractal-Type 2.08 362.67 0.36 .71 .002 0, .02 

 
*p<.05 are statistical significance 

Figure 2.3. Participant data demonstrating interaction between D-value and fractal-type. Adult (left 
panel), child (middle panel), and all (right panel) participant data demonstrating an interaction between D-
value and fractal-type. Fractal preference for both children and adults rose steadily for exact fractal patterns 
and peaked at higher complexity. Preference for statistical fractals peaked at low-moderate complexity (D= 
1.3) and decreased with additional complexity. All sets of data were fit with second-order polynomial 
functions (dashed lines).   
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age (F(3, 88)=1.05, p= 0.38, 95% CI [0, 0.11], ηp2 = 0.03) and Fractal-Type (F(1, 88) = 0.97, p 

= 0.33, 95% CI [0, 0.09], ηp2 = 0.01)]. The only significant interaction was between D-value and 

fractal-type (F(2.54, 223.28) = 3.49, p = 0.02*, 95% CI [0, 0.09], ηp2 = 0.04) (see Fig. 2.3, 

middle panel).  

 

A series of planned comparisons on the full data set explored the locus of the significant  

interaction between D-value and fractal-type. Average preference for statistical fractals ranged 

from a low of 0.18 (SD = 0.14) for D = 1.9 to a high of 0.23 (SD = 0.09) for D = 1.3. Paired 

samples t-tests revealed that mean preference differed significantly between D = 1.1 (M = 0.18, 

SD = 0.12) and 1.3 (M = 0.23, SD = 0.09) [t(85)=−4.55, p< 0.001**, 95% CI [−0.17, −0.07], d = 

0.45], D = 1.3 and 1.9 (M = 0.18, SD = 0.14) [t(85) = 2.03, p = 0.046*, 95% CI [−0.002, 0.24], d 

= 0.41], as well as D = 1.7 (M = 0.21, SD = 0.09) and 1.9 [t(85) = 2.26, p = 0.027*, 95% CI 

[0.01, 0.14], d = 0.24]. Seen in Fig. 2.3—right panel, across the five fractal complexities, 

 
Table 2.2: Mixed ANOVA across D-value, Ages, and Fractal Type 

 df 
numerator 

df denominator F p ηp2 95% CI 

D-Value 
(1.1, 1.3, 1.5, 1.7, 1.9) 

2.54 223.28 2.35 .08 .03 0, .07 

Ages  
(3-4, 5-6, 7-8, 9-10, +18) 

3 88 1.05 .38 .03 0, .11 

Fractal-Type  
(exact or statistical) 

1 88 .97 .33 .01 0, .09 

D-Value * Ages 7.61 223.28 1.49 
 

.17 
 

.48 0, .08 

D-Value * Fractal-Type 2.54 223.28 3.49 .02* .04 
 

0, .09 
 

Ages * Fractal-Type 3 88 1.05 .38 .03 0, .11 

D-Value * Ages * Fractal-Type 7.61 223.28 0.36 .76 .02 0, .02 

*p<.05 are statistical significance 
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preference for statistical patterns peaked with low–moderate D and decreased with more extreme 

D-values. Regarding exact fractals, average preference increased with additional complexity 

from a low of 0.17 (SD = 0.11) for D = 1.1 to 0.22 (SD = 0.11) for D = 1.9. Preference for exact 

patterns differed significantly between D = 1.1 (M = 0.17, SD = 0.11) and 1.5 (M = 0.21, SD = 

0.07) [t(91) = −2.83, p = 0.006*, 95% CI [−0.18, −0.03], d = 0.44], D = 1.1 and 1.7 (M = 0.22, 

SD = 0.09) [t(91) = −2.73, p = 0.008*, 95% CI [−0.22, −0.03], d = 0.49], D = 1.1 and 1.9 (M = 

0.22, SD = 0.11) [t(91) = −2.59, p = 0.011*, 95% CI [−0.23, −0.03], d = 0.48], D = 1.3 (M=0.18, 

SD=0.08) and 1.5 [t(91) = −2.15, p = 0.034*, 95% CI [−0.12, −0.005], d = 0.32], as well as D = 

1.3 and 1.7 [t(91) = −2.11, p = 0.038*, 95% CI [−0.16, −0.005], d = 0.38] (see Table 2.3). Paired 

independent samples t-tests between preference for exact and statistical patterns across the five 

D-values demonstrated that preference for only two D-values were significantly impacted by 

fractal-type, D = 1.3 (t(176) = −3.30, p < 0.001**, 95% CI [0.22, 0.8], d = 0.52) and D = 1.9 

(t(159.28) = 2.18, p = 0.030*, 95% CI [−0.62, −0.03], d=0.32). For D = 1.3, exact fractal patterns 

elicited a significantly lower preference score (M = 0.18, SD = 0.08) than statistical patterns (M =  

 
Table 2.3: Independent Samples t-Tests across D-value and Fractal Type 

 D=1.1 D=1.3 D=1.5 D=1.7 D=1.9 

 Statistical 
Patterns 

Exact 
Patterns 

Statistical 
Patterns 

Exact 
Patterns 

Statistical 
Patterns 

Exact 
Patterns 

Statistical 
Patterns 

Exact 
Patterns 

Statistical 
Patterns 

Exact 
Patterns 

D=1.1  
- 

 
- 

t= -4.55* 
(d=.45) 

t= -1.72 
(d=.19) 

t= -1.53 
(d=.29) 

t= -2.83* 
(d=.44) 

t= -1.38 
(d=.28) 

t= -2.73* 
(d=.49) 

t= -.002 
(d=0) 

t= -2.59* 
(d=.48) 

D=1.3    
- 

 
- 

t= 1.51 
(d=.21) 

t= -2.15* 
(d=.32) 

t= 1.04 
(d=.21) 

t= -2.11* 
(d=.38) 

t= 2.03* 
(d=.41) 

t= -1.94 
(d=.37) 

D=1.5      
- 

 
- 

t= .04 
(d=.01) 

t= -.65 
(d=.10) 

t= 1.47 
(d=.27) 

t= -.70 
(d=.11) 

D=1.7        
- 

 
- 

t= 2.26* 
(d=.24) 

t= -.18 
(d=.02) 

D=1.9          
- 

 
- 

*p<.05 are statistical significance 
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0.23, SD = 0.09). Conversely, for D = 1.9, exact fractal patterns engendered a significantly 

higher preference score (M = 0.22, SD = 0.11) than that of statistical patterns (M = 0.18, SD = 

0.14).  

To summarize, in a direct comparison of preference for exact and statistical fractals of 

differing complexity, our findings confirmed the established trends of a preference for low–

moderate complexity D-values for statistical fractals (Taylor et al., 2011) and higher D-values 

for exact fractals (Bies et al., 2016a). Importantly, the lack of a significant effect of age on 

preference for D-values (no age × D-value interaction) suggests that preferences for fractal 

patterns are stable by early childhood. While the effect sizes for the F-tests are generally small, 

they are in alignment with results from previous research (Street et al., 2016) which demonstrate 

a wide range of effect sizes for preference tasks.  

Individual differences tasks 

The Ponzo task was completed by 82 adult and 29 child participants. Task accuracy was 

recorded as average difference in pixels (error) between the adjusted and target line lengths. 

Overall participant error was 33.24 pixels (SD = 37.11). Average adult error was 24.82 pixels 

(SD = 24.38), while average child error was 41.66 pixels (SD = 45.09). SQ scores were recorded 

as point totals for agreement with a series of statements regarding systemizing tendencies. SQ 

scores for adults can range from 0 to 150, whereas the children’s version of the questionnaire is 

roughly half the length with scores ranging from 0 to 56. Adults averaged an SQ score of 63.7 

(SD = 20.68) points, while children averaged 25 (SD = 8.15) points.  

We completed independent samples t-tests comparing adults’ and children’s Ponzo and 

SQ scores and a correlational analysis between SQ scores and Ponzo errors, since previous work 

links susceptibility to visual illusions that rely on context (including the Ponzo illusion) to lower 
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SQ scores (Billington et al., 2008; Walter et al., 2008). Child and adult SQ scores were first 

standardized since they were recorded on different scales. A t-test comparing standardized SQ 

scores for adults versus children revealed no significant age-related differences in systemizing 

tendencies [t(109)=0, p=1.0, 95% CI [−0.42, 0.42], d=0.00]. After log transforming Ponzo scores 

to address their non-normal distribution, a t-test comparing Ponzo scores for these groups 

showed significant age-related differences in Ponzo task accuracy [t(162) = −4.91, p < 0.001**, 

95% CI [−1.08, −0.45], d = −0.77] (see Table 2.4). Distributions of the child data may have been 

particularly affected by attrition (due to inadequate comprehension of Ponzo task instructions by 

some child participants and lack of SQ completion by parents). No significant correlation was 

detected between SQ and Ponzo scores (r = −0.12, p = 0.22) likely explained by prior research 

regarding age-related differences in illusion susceptibility (Hadad, 2018). A one-tailed 

correlational analysis on SQ scores and Ponzo error in adult participants alone (n = 82) detected 

a significant correlation (r = −0.21, p = 0.028*) (with higher SQ scores relating to reduction in 

Ponzo errors), and was performed since the link between visual illusion susceptibility and SQ 

scores was previously established only in adult participants (Walter et al., 2008) and attrition of 

child participants (n = 23) reduced the data available.  

 

                 Table 2.4. Independent Samples  t-Test across Age-Category and Perceptual-Task 

 Child Ponzo error (in pixels) Child Systemizing Quotient (SQ) 

Adult Ponzo error (in 
pixels) 

t(162)=-4.91** 
d=-.77 

_ 

Adult Systemizing 
Quotient (SQ) 

_ t(109)=0 
d=.00 

*p<.05 are statistical significance 
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To determine if individual differences in perceptual strategies (measured by either the SQ 

or Ponzo test) could significantly explain variance in fractal preference, we performed a 2-step 

multiple linear regression analysis to predict fractal preference from fractal-type, D-value, SQ 

score, and Ponzo error (see Table 2.5). The first step of the model, including fractal-type, 

 
        Table 2.5: Two-Step Regression predicting Fractal Preference 

 df 
numerator 

df denominator F p R2 95% CI 

Fractal Preference ~ Fractal 
Type and D-Value 

3 886 5.98 <.001
* 

.02 .0, .04 

 
 

 
Step 1: 

  
Beta 

 
t 

 
p 

95% CI 
for Beta 

  Constant .24 3.82 <.001
* 

.12, .36 

  Fractal Type .29 3.24 <.001
* 

.12, .47  

  D-Value .08 2.64 <.001
* 

.01, .25 

  Fractal Type* 
D-Value 

-.2 -3.30 <.001
* 

-.31, -.08 

 
 

 df 
numerator 

df denominator F p R2 95% CI 

Fractal Preference ~ Fractal 
Type, D-Value, SQ Score, and 

Ponzo Error 

5 519 .66 .66 .01 .0, .02 

 
 

 
Step 2: 

  
Beta 

 
t 

 
p 

95% CI 
for Beta 

  Constant .35 3.61 <.001
* 

.16, .55 

  Fractal Type .16 1.30 .19 -.08, .41 

  D-Value .10 1.80 .07 -.01, .20 

  Fractal Type* 
D-Value 

-.11 -1.33 .19 -.27, .05 

  SQ Score <.00
1 

.001 .99 -.02, .02 

  Ponzo Error <.00
1 

.00 .99 -.07, .07 

*p<.05 are statistical significance 
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D-value, and the interaction of the two variables, significantly explained variance in preference 

(F(3, 886) = 5.98, p < 0.001**, R2 = 0.02, 95% CI [0.0, 0.04]). The second step, adding SQ 

scores and Ponzo error to the model, was unable to significantly account for additional variance 

in fractal preference (F(5, 519) = 0.66, p = 0.66, R2 = 0.01, 95% CI [0.0, 0.02]). 

 

To rule out the impact of possible differences in data due to child participant attrition and 

SQ test dissimilarities, an additional regression was completed to predict adult preference alone, 

with a model containing SQ score and Ponzo error F(2, 407) = 0.00, p = 0.99, R2 < 0.001, 95% 

CI [0.0, 0.0]) (see Table 2.6). This model also failed to significantly explain variance in fractal 

preference. Thus, despite the robust measurement of processing bias in our sample, no significant 

linear relationship emerged between these factors and fractal preference.  

 
        Table 2.6: Regression predicting Adult Fractal Preference 

 df 
numerator 

df 
denominator 

F p R2 95% CI 

Adult Fractal Preference ~ SQ 
Score and Ponzo Error 

2 407 .00 .99 .01 .0, .0 

 
 

 
 

  
Beta 

 
t 

 
p 

95% CI 
for Beta 

  Constant .5 8.46 <.001
* 

.38, .62 

  SQ Score <.001 .001 .99 -.03, .03  

  Ponzo 
Error 

<.001 .00 .99 -.09, .09 

*p<.05 are statistical significance 
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Discussion 

Fractal patterns that recur in a statistical manner are prevalent in natural environments 

(Spehar et al., 2003; Taylor et al., 2018; Hagerhall et al., 2008) and both statistical and exact 

fractals are found in the art of many cultures (Graham & Redies, 2010). Preference is shown to 

peak at low–moderate fractal complexity (D) for statistical fractals and at higher D-values for 

exact patterns (Bies et al., 2016a) (since simplicity is introduced into these patterns though 

symmetry and exact repetitions), supporting a Fractal Fluency model in which common natural 

patterns are most fluently processed. In the first direct comparison of preference for statistical 

and exact fractals, the current study bolsters previous findings by confirming these robust 

preference trends and establishes that these preferences are apparent by early childhood, 

suggesting that this common fractal aesthetic is formed earlier in development.  

We investigated the degree to which individual differences in processing style (assessed 

using the SQ and Ponzo task) might account for trends in fractal preference. The presence of a 

local or global processing bias could alter preference for pattern complexity by shifting 

preference toward higher complexity patterns containing more fine-scale/local detail for a local 

bias, or, for a global bias, toward lower complexity patterns in which larger scale forms are more 

apparent. Despite a wide range in SQ scores and Ponzo task performance and replication of a 

systematic relationship between these two assessments for adult participants (higher SQ scores 

correlate with lower Ponzo task error), no relationship was found between processing bias and 

preference for fractal complexity. The non-significant relationship between processing style and 

trends in fractal preference might be indicative of a developmentally early-emerging and broadly 

universal aesthetic that reflects the environmental complexity of early-humans as opposed to the 

more Euclidian environment experienced by most modern day children. However, these findings 
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may have been impacted by underpowered sample sizes (in which the child sample suffered from 

attrition on these two assessments), prompting replication in larger samples to further 

substantiate this result.  

Prior to this study, exposure to and facility in processing fractal patterns might have been 

expected to vary across the lifespan due to environmental and developmental factors. If fractal 

aesthetics reflected the most commonly encountered complexities across repeated exposure, 

differences would be expected to arise between individuals who differ in decades of experience 

(particularly since typical early life is primarily spent within Euclidian structures of low visual 

complexity) (Clements, 2004). Additionally, change in preference across childhood from simpler 

to more complex fractal patterns would have been expected if pattern comprehension changed 

incrementally with age. Instead, our finding of consistent preference trends across childhood and 

through adulthood suggests a stable fractal aesthetic is established early in life. This leaves open 

the possibility that an early biological or evolutionary mechanism optimizes the visual system for 

processing fractals—the most common spatial structure (of low–moderate complexity) found in 

nature (Falk & Balling, 2010), supporting a universal Fractal Fluency theory. In addition to 

defining possible sub-group behaviours in preferences across the lifespan (Bies et al., 2016a; 

Street et al., 2016), future studies must examine earlier stages of development (from infancy to 3 

years of age) to further define the impact of experience with fractal patterns on visual tuning and 

the development of what may be a universal aesthetic preference. Addressing the developmental 

impact on fluency of fractal processing is vital to understanding and regulating aesthetic 

experiences in both natural and built environments.  
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CHAPTER III 

AESTHETICS AND PSYCHOLOGICAL EFFECTS OF FRACTAL BASED DESIGN 

From Robles, K. E., Roberts, M., Viengkham, C., Smith, J. H., Rowland, C., Moslehi, S., 
Stadlober, S., Lesjak, A., Lesjak, M., Taylor, R. P., Spehar, B., & Sereno, M. E. (2021). 

Aesthetics and Psychological Effects of Fractal Based Design. Frontiers in Psychology, 12, 
3413. https://doi.org/10.3389/fpsyg.2021.699962 

 
Driving nature’s aesthetics, fractal patterns are prevalent across both microscopic and 

global structures in natural environments (Mandelbrot, 1982; Taylor, 2021). Fractals are 

comprised of self-similar patterns repeating across scale, with varying levels of recursion 

(number of repetitions across scales) and fractal dimension “D-value” (rate of pattern shrinkage 

between repetitions) that drive perceptions of pattern complexity by determining the relative 

contributions of coarse-to-fine structure for the overall pattern. Additionally, the nature of pattern 

repetition (occurring in either an exact or statistical manner) also impacts perceptions of pattern 

preference and complexity (Taylor et al., 2005, 2011; Taylor & Sprott, 2008; Hagerhall et al., 

2015; Bies et al., 2016). The aesthetic quality of fractal patterns has been well observed (Spehar 

et al., 2003) and can be highlighted by its appearance in art (Taylor et al., 1999, 2018; Graham & 

Field, 2008; Graham & Redies, 2010; Viengkham & Spehar, 2018). Across diverse cultures, 

fractal patterns are present in both contemporary and traditional artworks. Exemplified by the 

fractal structure created by the layering of paint in paintings of Jackson Pollock (Taylor et al., 

1999, 2007; Taylor, 2003), fractal patterns can elicit highly aesthetic responses through changes 

in complexity.  

Furthermore, fractal patterns have the prospect of altering more than just the aesthetic 

experience of a given object (Juliani et al., 2016; Taylor et al., 2018; Abboushi et al., 2019; Roe 

et al., 2020; Spehar & Stevanov, 2021). Fractals can be installed into larger Euclidean spaces to 

mitigate the effect of unnatural spatial frequency content that can lead to visual strain and 
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discomfort (O’Hare & Hibbard, 2011; Ogawa & Motoyoshi, 2020). The increasing amount of 

time people spend indoors surrounded by Euclidean architecture produces visual strain because 

of the additional visual effort required to process more artificial spatial frequencies is suggested 

to lead to detrimental effects such as increased rates of headaches (Penacchio & Wilkins, 2015). 

Beyond alleviating physical discomfort, occupant stress levels can be minimized through fractal 

installations reminiscent of nature by reducing cognitive and visual strain produced by 

surrounding unnatural spatial frequencies (Taylor, 2006; Hagerhall et al., 2008; Le et al., 2017). 

These positive impacts of viewing fractals can be considered within the context of biophilia 

(Wilson, 1984) which recognizes the inherent need of humans to connect to nature. In particular, 

it is possible that the stress-reduction (Ulrich, 1981; Ulrich et al., 1991; Kellert, 1993) and 

attention restoration (Kaplan & Kaplan, 1982, 1989) impacts studied in pioneering investigations 

of viewing nature might be induced through nature’s fractals by easing visual processing.  

To utilize the beneficial effects of natural geometry, the ScienceDesignLab (SDL) was 

formed in 2017 to generate patterns informed by the psychology of aesthetics (Smith et al., 

2020). To transform the patterns into the built environment, SDL collaborated with the Mohawk 

Group - one of the world’s largest flooring manufacturers. Floors represent a common, 

expansive space for exposing people to aesthetic patterns. Known as Relaxing Floors, the 

designs were launched in Spring 2019 and have since received ten awards for human-focused 

design. The designs were composed from fractal patterns based on the hypothesis that fractals 

are responsible for the positive impacts of viewing nature’s scenery.  

Whereas most studies of nature’s statistical fractals focus on images of individual objects, 

typical scenes feature ‘fractal composites’ in which individual objects merge to form an overall 

pattern. In addition to more closely capturing the essence of nature, Relaxing Floors exploited 
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the extra flexibility offered by the composition process to develop patterns that were intriguing 

from a design perspective. To describe the compositional principle underpinning these fractals, 

we considered the analogy of individual fractal trees combining to create a fractal forest. Fractal 

trajectories called ‘Lévy flights,’ featuring flights with multiple length scales, were used as the 

starting point for these designs (Scott, 2005; Ferreira et al., 2012; Figure 3.1A). Much like a bird 

dropping a seed whenever it lands, the seeds then grow into fractal trees at the locations between 

the flight trajectories. For 

simplicity, the seeds shown in 

Figures 3.1B–D have a circular 

shape. The seed’s size can be 

scaled relative to the length of the 

previous flight, thus transferring 

the flight trajectory’s scaling properties to the dropped seed (Figure 3.1D).  

Figure 3.2 shows the seed growth process that replaces each circle in Figure 3.1 with a 

‘tree’ pattern based on a traditional fractal called the Sierpinski Carpet. This fractal grows from a 

square-shaped seed by repeating the square at multiple size scales (note that while Figure 3.2B 

shows three levels of repetition for demonstration purposes, the patterns used in the carpets 

typically feature 2 levels). In principle, the square-shaped seeds can be replaced with any shape, 

providing designers with considerable flexibility for future designs. Similarly, the black 

background can be replaced by various pattern textures including the lines used in the design that 

we will study here (Figure 3.2D). To convert the design from an exact to statistical pattern, 

randomness is introduced into the lengths of the black lines and also in the positions of the white 

squares (Figures 3.2E–H). The rate at which the seed changes size between the repetition levels 

Figure 3.1. Fractal flights. (A) Lévy flight trajectories; (B) circular 
seed patterns are added to the ‘landing’ locations between these 
trajectories; (C) the trajectories are removed; (D) the sizes of the 
circles are scaled based on the length of the previous flights.  
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can then be adjusted using D-value (Methods) – Figures 3.2E–G shows examples of fast (Figure 

3.2E) to slow (Figure 3.2H) rates, each with a different randomization. The resulting fractal trees 

are then embedded at the landing sites between the fractal flights (Figure 3.3A). This design 

strategy therefore has the potential to incorporate fractal scaling in three key ways: (1) the fractal 

spacing between the trees (determined by the flights), (2) the distributions of the tree sizes (again 

set by the flights) and (3) the fractal growth of the seeds into trees.  

A second motivation for the ‘bird flight’ composition strategy is that when viewing 

fractal patterns eye movements have been found to follow fractal trajectories (Taylor et al., 

2011). This is because if the eye’s gaze is directed at just one location within the fractal scenery 

the peripheral vision only has sufficient resolution to detect coarse patterns. Therefore, the gaze 

shifts position to allow the eye’s fovea to detect the fine scale patterns at multiple locations. This 

Figure 3.2. Fractal trees. (A) The tree growth starts out with a filled square; (B) a square-shaped seed is used 
to grow a Sierpinski pattern with D=1.8; (C) the black background is replaced with a line construction; (D) a 
square-shaped seed is used to grow a Sierpinski pattern superimposed on this lined background. The patterns 
are then randomized to morph the exact fractal into a statistical fractal. The D-value of the final fractal is 
inputted during this growth process. Four examples are shown here (E) 1.2, (F) 1.4, (G) 1.6, (H) 1.8. 
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allows the eye to experience the coarse and fine scale patterns necessary for confirmation of the 

fractal character of the stimulus. The reason the eye adopts a fractal trajectory when performing 

this task can be found in studies of animals 

such as birds foraging for food in their 

natural terrains. Their foraging motions 

are also fractal. For example, the short 

trajectories allow a bird to look for food in 

a small region and then to fly to 

neighboring regions and then onto regions 

even further away, allowing efficient 

searches across multiple size scales. The 

eye adopts the same motion when 

‘foraging’ for visual information. These 

designs therefore place the tree locations 

using the same fractal statistics that the eye adopts when viewing them.  

One challenge remained. For manufacturing demands, the 6ft (15 cm) by 12ft (30 cm) 

pattern of Figure 3.3A is divided into either 2ft by 2ft ‘tiles’ or 1ft by 3ft ‘planks,’ which will 

then be randomly re-assembled when installed in order accommodate the unique layout of any 

given space without altering the fractal D-value of the installation. We therefore had to simulate 

this division process to ensure that it did not disrupt the design aesthetic (in particular, that any 

discontinuities at the tile or plank edges fit well within the overall pattern) nor the fractal 

aesthetic (that the discontinuities did not alter the forest fractal’s D value). Figure 3.3B shows an 

example of the randomized flooring pattern. Figure 3.4 (left image) shows the patterns as they 

Figure 3.3. Fractal ‘forests.’ The forests integrate the 
flights of Figure 3.1 with the seed design of Figure 3.2. (A) 
is an image of the original (i.e., Before randomization) 
forest pattern with D = 1.6; (B) shows the same forest after 
it has been divided into tiles and the tiles randomized.  
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appear on the carpets. In addition to this tuning of pattern characteristics to achieve the fractal 

aesthetics, the patterns also need to translate well to the carpet format seen in Figure 3.4A. The 

tufted carpet background had to be textural enough to hide the tile edges without creating a 

pattern that would alter the intended D-value. New tufting techniques which hide unused yarns to 

create controlled texture were used to achieve an optimized construction for aesthetics. The 

Relaxing Floors collection featured three fractal forests generated using the above principles, 

each with an overall D value of 1.6. The three designs (Smith et al., 2020) differed in the number 

of repeating levels within the tree, the shapes chosen to build the tree, and also the extent to 

which the tree size was set relative to the flight trajectory. Here we focus on the design which 

used the trees shown in Figure 3.2 and which set all the trees to be the same size (irrespective of 

flight size).  

Previous research demonstrates that visual complexity is a key component in the visual 

impact of fractals. Compared to the simplicity of Euclidean shapes, the fractal repetition of 

Figure 3.4. Installations. The fractal pattern of Figure 3.3 employed as a floor design at the University of 
Oregon, United States (A), as wall patterns in the Fractal Chapel in the State Hospital in Graz, Austria (B), and 
as a design for computer screen-savers (C).  
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patterns at different scales results in fractal shapes that are inherently complex. The current series 

of studies expands upon typical measurement of fractal preference or complexity to address 

broader perceptual judgments (including ratings of complexity, engagement, preference, 

refreshment, and relaxation) of these “global forest” patterns and their respective local “tree-

seed” patterns that are currently installed in multiple settings with the potential to promote 

viewer wellbeing (see Figure 3.4 for example installations). Figure 3.4 highlights an important 

key to success – the development of versatile designs that form the basis of multiple applications, 

in this case as carpet patterns for a university environment (in the Mohawk collaboration), as wall 

patterns used to disperse light throughout a chapel (in a collaboration with INNOCAD 

Architecture), and as computer screen savers (the latter are being made available for free 

personal use). The choice to use fractal patterns generated with design elements in mind, as 

opposed to images directly recruited from nature, serves to provide greater versatility in pattern 

design and application such that the base natural fractal pattern can be repeatedly varied to 

accommodate changing space requirements as well as adapting varying aesthetic design 

elements.  

We will investigate these varied responses to global forest patterns of differing 

complexity by conducting studies in two laboratories (one at the University of Oregon in the 

United States [Experiment 1A] and the other at the University of New South Wales in Australia 

[Experiment 1B]) using slightly different rating scales as a test of the robustness of these effects. 

The use of both unipolar and bipolar rating scales is employed to ensure that our measurements 

are both sensitive enough to detect differences in psychological effects related to the fractal 

design patterns and generalizable across different measurement conditions. It is hypothesized 

that both of our rating scales will be able to identify consistent variations in the psychological 
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effects of the various fractal design patterns, thus providing evidence of robust response patterns 

across measurement types. The goal of these studies is to establish an empirical basis for the 

optimal selection of fractal designs to meet varying psychological and aesthetic needs of a space 

(see Roe et al., 2020, for another example of this approach) by explicitly identifying whether 

general fractal preferences extend to more complex man-made fractal patterns and additional 

dimensions of psychological judgments. Finally, our results from subgroup analyses will guide 

the selection of specific fractal designs that balance various pattern factors (including D-value 

and arrangement) in order to benefit the most occupants possible without negatively impacting 

subgroups.  

Experiment 1- Perception of Fractal “Global Forest” Patterns 

We first examined the role of physical complexity and pattern arrangement in 

determining perceived complexity, engagement, preference, refreshment, and relaxation in 

‘global forest’ fractal patterns. Experiment 1A used a series of unipolar slider tasks while 

Experiment 1B used a series of bipolar slider tasks.  

 

Experiment 1A-Perception of Fractal “Global Forest” Patterns With Unipolar Ratings  

Materials and Methods 

Stimuli 

We used the pattern’s fractal dimension D to quantify visual intricacy. For the tree-seed 

patterns, the D-value dictates the rate of shrinkage of the patterns between repetition levels 

(Figures 3.2E–H). Similarly, the fractal flights follow a power law distribution with an exponent 

related to D that adjusts the relative sizes of the flights. In each case, high D results in a slower 
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rate of shrinkage between the coarse and fine features. Lying on a scale between 1 and 2, higher 

D-value patterns feature larger contributions of fine scale patterns and thus appear to be rich in 

intricate detail. The D-values of the fractal forests were set by inputting the appropriate scaling 

parameters when generating the fractal trajectories and tree-seeds, and then a box-counting 

technique (Fairbanks & Taylor, 2011) was used to analyze the completed forest pattern to 

confirm that it scales according to the target D-value. This technique covers the pattern with a 

mesh of boxes and counts the boxes that are occupied by the pattern. By repeating the count for 

different box sizes, the pattern characteristics can be assessed at multiple size scales and 

confirmed to be scale invariant.  

Fractal scaling was confirmed from the minimum pattern size of 0.2 inches (0.5 cm) up to 

24 inches (61 cm). The box- counting method cannot confirm fractal scaling at scales larger than 

24 inches due to a limited number of boxes at these scales (Fairbanks and Taylor, 2011). 

However, based on the fractal input parameters, it is expected that fractal scaling continues 

beyond the confirmed range. We note that even this restricted range of confirmed fractal scaling 

exceeds the magnification factor for typical physical fractals, for which the coarsest pattern is 25 

times larger than the smallest (Avnir et al., 1998). Crucially, this factor of 25 was used for the 

stimuli used in most of the previous research that revealed the positive observation effects 

(Taylor et al., 2017, 2018). The scaling ranges of our designs therefore exceed those known to 

induce the positive effects.  

Figure 3.5A–D shows examples of the ‘forest’ stimuli used in Experiment 1 with D-

values of 1.2 (A), 1.4 (B), 1.6 (C), and 1.8 (D). The left side of each panel shows the original 

patterns while the right side shows the randomized version simulating the random pattern of 
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‘carpet squares’ installation in a space. Figure 3.5E shows example tree-seed stimuli of different 

D-values (1.2, 1.4, 1.6, and 1.8) that appear within the global forest stimuli.  

 

Figure 3.5. Example stimuli used in the experiments. Fractal ‘forest’ stimuli used in Experiment 1 of 
differing D-values where D = 1.2 (A), 1.4 (B), 1.6 (C), and 1.8 (D). On the left side of each panel (A-D) 
are images of the original forest pattern. On the right stimuli used in Experiment 1 of differing D-values 
where D = 1.2 (A), 1.4 (B), 1.6 (C), and 1.8 (D). On the right side of (A-D) are images of randomized 
versions of the original forest patterns, where the same forest has been divided into tiles and the tiles 
randomized. Fractal ‘tree’ stimuli used in Experiment 2 (E) of D-values 1.2, 1.4, 1.6, and 1.8 from the left 
to the right side of the panel. 
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Participants  

To address how the addition of global fractal order may impact the perceptual judgments 

of fractal patterns, 78 participants comprised of undergraduate Psychology students from the 

University of Oregon were recruited for the current study through the SONA participant pool 

system (66 females, age ranging between 18 and 30 years old, mean age 20 years old). Informed 

consent was acquired following a protocol approved by the Institutional Review Board at the 

University of Oregon and all participants received class credit for their participation.  

Visual Displays 

This study was generated in PsychoPy3 (Peirce et al., 2019) and used the online research 

study platform of Pavlovia and was completed on participants’ personal computers with program 

stimuli scaled to the individual computer’s respective full- screen dimensions.  

Design and procedure 

Participants viewed the “global forest” fractal patterns presented in five randomized 

blocks, with each block consisting of a singular judgment type (complexity, engaging, 

preference, refreshing, or relaxing). Each block’s stimulus set consisted of 5 unique patterns 

ranging across 4 levels of complexity or D-value (1.2, 1.4, 1.6, and 1.8) and varying in 

arrangement (non-randomized or randomized) giving rise to 40 trials per block and 200 total 

stimulus-related trials across the experiment. A slider response task was used to self-report 

ratings for each fractal pattern. Before each block, participants were instructed to make a single 

randomly ordered judgment (complexity, preference, engaging, refreshing, or relaxing) for each 

stimulus presented in that block. Specifically, they were asked to answer one of 5 questions for 

each block: “How _______ is the image?” with one of 5 different words placed in the blank 

(complex, engaging, preferable, refreshing, relaxing). They were told to indicate their rating of 
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each given pattern on a slider ranging between 0 and 1 located below the image, with the “0” end 

of the slider indicating “not at all” and the “1” end of the slider indicating “completely.” They 

were asked to use the full range of the slider and to click on the slider to indicate their rating. 

Periodically, an attention check trial appeared in which participants were instructed to select 

either “0” or “1.” The images remained on the screen until participants selected their rating. 

Upon completion of the experiment, participants completed a demographic questionnaire and 

were debriefed according to the protocol approved by the Institutional Review Board at the 

University of Oregon.  

Results 

Data from 78 adult participants (between 18 and 33 years old) were retained from the 130 

adults who participated in the experiment. Data were excluded due to: (a) failure to complete the 

study (6 participants), (b) failure of greater than 3 attention checks (24 participants), or (c) 

recording the same rating for greater than four consecutive trials. If the same rating was recorded 

for more than 4 consecutive trials, the entire block of ratings was excluded. Furthermore, if all 

blocks for a given judgment type were removed, then the participant was excluded (22 

participants).  

Fractal judgment task  

A 3-way repeated measures 4 × 5 × 2 ANOVA [D-value (1.2, 1.4, 1.6, and 1.8) × 

Judgment (complexity, engaging, preference, refreshing, and relaxing) × Arrangement 

(randomized, non- randomized)] was performed using IBM SPSS Statistics for Macintosh 

(Version 25.0) on rating data for the fractal patterns (recorded as the location selected on a rating 

response slider), with D-value, Judgment, and Arrangement as within-subjects variables 

Mauchly’s test indicated a violation of the assumption of sphericity for D-value [χ2(5) = 160.41, 
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p < 0.001∗∗], the interaction between D-value and Arrangement [χ2(5) = 37.92, p < 0.001∗ ∗ ], 

D-value and Judgment [χ2 (77) = 510.44, p < 0.001∗ ∗ ], as well as the three-way interaction 

between D-value, Arrangement, and Judgment [χ2(77) = 134.45, p < 0.001∗ ∗ ]. Therefore, 

degrees of freedom were corrected using Greenhouse-Geisser estimates of sphericity (ε = 0.408, 

0.679, 0.365, and 0.672, respectively). Indicated with a double asterisk for significance of p < 

0.001 and single asterisk for significance of p < 0.05, a significant main effect of D-value 

[F(1.22, 61.2) = 23.84, p < 0.001∗∗, 95% CI [0.15, 0.23], ηp2 = 0.32] and Arrangement emerged 

[F(1, 50) = 19.67, p < 0.001∗ ∗ , 95% CI [0.09, 0.45], ηp 2 = 0.28]. Additional significant 

interactions were detected between D-value and Judgment [F(4.38, 219.07) = 55.42, p < 0.001∗∗	

, 95% CI [0.43, 0.59], ηp2 = 0.53], D-value and Arrangement [F(2.04, 101.86) = 11.37, p < 

0.001∗ ∗ , 95% CI [0.06, 0.31], ηp 2 = 0.19], Arrangement and Judgment [F(3.47,173.45) = 2.15, 

p = 0.04∗, 95% CI [0.0, 0.1], ηp2 = 0.09], as well as D-value, Arrangement, and Judgment 

[F(8.06, 403.14) = 1.86, p = 0.02∗, 95% CI [0.0, 0.06], ηp2 = 0.33]. For illustrative purposes we 

plot the 3 significant interactions (Figure 3.6). For the D-value and Judgment interaction, some 

judgments had ratings that increased in value with D (complexity, engagement, and preference), 

while others were relatively flat (refreshing) or decreased (relaxing) (Figure 3.6A). For the D-

value and Arrangement interaction, ratings were slightly higher for non-randomized fractal 

patterns with mid-range D-values (Figure 3.6B). Finally, for the Judgment and Arrangement 

interaction, the amount of difference between the non-randomized and randomized versions of 

the patterns varied across judgment type (Figure 3.6C). The 3-way interaction indicates that the 

Dimension by Arrangement interaction varies across Judgment-type. This can be seen more 

clearly in Figure 3.7. Below we present a series of planned analyses exploring the interaction 
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Figure 3.6. Experiment 1A results for “global 
forest” fractal patterns using a unipolar rating 
scale. Results show significant 2-way 
interactions among the experiment’s 3 factors: 
fractal dimension (D), stimulus pattern 
arrangement (“0” for non-randomized and “1” 
for randomized), and judgment type (complex, 
engaging, preferred, refreshing, and relaxing). 
Participant rating (on a scale from 0 to 1) is 
plotted as a function of (A) D-value and 
different judgment conditions, (B) D-value and 
different pattern arrangements, and (C) 
judgment and randomization conditions (error 
bars represent standard error).   
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between D-value and pattern Arrangement for different Judgment types in more detail using 

ANOVAs, paired t-tests (Table 3.1), and a 2-step cluster analysis to determine if subgroups 

could better explain perceptual trends. 

Complexity 
A 2-way 4 × 2 repeated-measures ANOVA [D-value (1.2, 1.4, 1.6, and 1.8) × 

Arrangement (randomized, non-randomized)] was completed to examine the impact of D-value 

and Arrangement on pattern complexity judgments (Figure 3.7A). Assumptions of the violation 

of sphericity were indicated by Mauchly’s test for D-value [χ2 (5) = 123.06, p < 0.001∗ ∗ ] and 

the interaction between D-value and Arrangement [χ2 (5) = 15.66, p = 0.01∗ ], thus degrees of 

freedom were corrected using Greenhouse- Geisser estimates of sphericity (ε = 0.512 and 0.87, 

respectively). A significant main effect of D-value [F(1.54, 118.21) = 343.44, p < 0.001∗ ∗ , 95% 

CI [0.76, 0.85], ηp 2 = 0.82], Arrangement [F(1,77) = 10.63, p = 0.002∗, 95% CI [0.02, 0.26], 

ηp2 = 0.12], and interaction between D-value and pattern arrangement [F(2.6,200.94) = 2.99, p = 

0.04∗, 95% CI [0.0, 0.07], ηp2 = 0.04] were identified. Average complexity ratings (collapsed 

over pattern arrangement type) ranged from a low of 0.18 (SD = 0.18) for D=1.2 to a high of 

0.77(SD=0.15) for D=1.8, indicating that participants perceived greater complexity for patterns 

with higher D-values. Paired samples t-tests revealed significant differences in perceived 

complexity between all pairs of D-values (Table 3.1). When comparing non-random and random 

pattern arrangements, significant differences exist for the mid-range D-values: D = 1.4 [t(77) = 

3.79, p < 0.001∗∗, 95% CI [0.02, 0.08], d = 0.32] and D = 1.6 [t(77) = 2.31, p = 02∗, 95% CI 

[0.01, 0.07], d = 0.28]. The interaction between D-value and Arrangement indicates that the 

ratings differed across arrangement type depending on D-value, with slightly higher ratings for 

non-randomized compared to randomized fractal patterns with mid-range D-values.  
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To determine whether the observed trends could be due to a combination of responses 

from subgroups of participants, we performed a two-step cluster analysis similar to that used by 

Bies et al. (2016) and described in more detail in Noru ̆sis (2012). We performed a hierarchical 

cluster analysis using Ward’s method to separate individuals into groups using their complexity 

Figure 3.7. Experiment 1A results for 
“global forest” fractal patterns for 5 
different judgment conditions (how 
complex, engaging, preferred, refreshing, 
and relaxing). (A–E) shows plots of mean 
ratings as a function of fractal dimension 
(D) and 2 pattern arrangements (not 
randomized “0,” randomized “1”) for the 
different judgment conditions (error bars 
represent standard error). (F–H) shows 
plots of mean ratings as a function of fractal 
dimension (D) and 2 pattern arrangements 
(not randomized “0,” randomized “1”) for 
each subpopulation identified with cluster 
analysis (error bars represent standard 
error). 



 

76 

 

ratings for each level of D. Since the resultant agglomeration matrix did not indicate a multiple 

cluster solution, we did not follow up with a k-means clustering analysis.  

Engaging 

A 2-way 4 × 2 repeated-measures ANOVA [D-value (1.2, 1.4, 1.6, and 1.8) × 

Arrangement (randomized, non-randomized)] was completed to examine the impact of D-value 

and Arrangement on pattern engagement (Figure 3.7B). A violation of the assumption of 

sphericity was indicated by Mauchly’s test for D-value [χ2 (5) = 114.57, p < 0.001∗ ∗], thus 

degrees of freedom were corrected using Greenhouse-Geisser estimates of sphericity (ε = 0.521). 

A significant main effect of D-value [F(1.56, 114.01) = 194.5, p < 0.001∗ ∗ , 95% CI [0.63, 

0.78], ηp 2 = 0.73], Arrangement [F(1,73) = 19.69, p < 0.001∗∗, 95% CI [0.07, 0.36], ηp2 = 

0.21], and significant interaction between D-value and Arrangement [F(2.71,198.09) = 9.58, p = 

0.04∗, 95% CI [04, 0.19], ηp2 = 0.12] were identified. Collapsed over pattern arrangement, the 

mean engagement ratings ranged from a low of 0.22 (SD=0.17) for D=1.2 to a high of 0.72 

(SD=0.19) for D=1.8, suggesting that participants were more engaged when viewing the higher 

D-value patterns. Paired samples t-tests revealed significant differences in perceived engagement 

for all pairs of D-values (Table 3.1). Comparing the non-random and random arrangements for 

different D-values, significant differences exist for the mid-range D-values: D = 1.4 [t(73) = 

−4.12, p < 0.001∗∗, 95% CI [−0.09, −0.04], d = 0.44] and D = 1.6 [t(73) = −4.95, p < 0.001∗∗, 

95% CI [−0.14, −0.06], d = 0.73]. Again, the interaction between D-value and Arrangement 

indicates that the ratings differed across arrangement type depending on D-value, with slightly 

higher ratings for non-randomized compared to randomized fractal patterns with mid-range D-

values. A cluster analyses did not indicate a multiple cluster solution.  
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Table 3.1: Experiment 1A- Paired Samples t-Tests across D-value and Judgement 

 
Complex Engaging Preference Refreshing Relaxing 

D=1.2 vs D=1.4 t=-14.31** 
(d=.76)  

t=-8.19** 
(d=.66)  

t=-3.31* 
(d=.23) 

t=.71 
(d=.37)  

t=3.57** 
(d=.24)  

D=1.2 vs D=1.6 t=-23.26** 
(d=2.17) 

t=-15.79* 
(d=1.7)  

t=-6.12** 
(d=.75)  

t=.42 
(d=.05) 

t=3.88** 
(d=.51)  

D=1.2 vs D=1.8 t=-28.47** 
(d=3.56)  

t=-20.56** 
(d=2.77)  

t=-6.86** 
(d=1.02)  

t=1.24 
(d=.19)  

t=5.16** 
(d=.79)  

D=1.4 vs D=1.6 t=-16.51** 
(d=1.23)  

t=-14.68** 
(d=1.2)  

t=-6.04** 
(d=.63)  

t=.01 
(d=.0)  

t=3.17* 
(d=.34)  

D=1.4 vs D=1.8 t=-24.42** 
(d=2.97)  

t=-20.5** 
(d=2.4)  

t=-6.76** 
(d=1.2)  

t=1.25 
(d=.17)  

t=5.07** 
(d=.69)  

D=1.6 vs D=1.8 t=-18.38** 
(d=1.8)  

t=-13.98** 
(d=1.25)  

t=--5.03** 
(d=.59)  

t=1.91 
(d=.17)  

t=5.48** 
(d=.45)  

Preference 

A 2-way 4 × 2 repeated-measures ANOVA [D-value (1.2, 1.4, 1.6, and 1.8) × 

Arrangement (randomized, non-randomized)] was completed to examine the impact of D-value 

and Arrangement on pattern preference (Figure 3.7C). A violation of the assumption of 

sphericity was indicated by Mauchly’s test for D-value [χ2 (5) = 159.69, p < 0.001∗∗] and the 

interaction between D- value and Arrangement [χ2 (5) = 23.54, p < 0.001∗∗], thus degrees of 

freedom were corrected using Greenhouse-Geisser estimates of sphericity (ε = 0.445 and 0.795, 

respectively). A significant main effect of D-value [F(1.33,89.38) = 23.27, p < 0.001∗∗, 95% CI 

[0.11, 0.39], ηp2 = 0.26], Arrangement [F(1,67) = 18, p < 0.001∗∗, 95% CI [0.06, 0.37], ηp2 = 

0.21], and interaction between D-value and Arrangement were identified [F(2.39,159.84) = 6.25, 

p = 0.001∗, 95% CI [0.01, 0.17], ηp2 = 0.09]. Collapsed over pattern arrangement, average 

ratings of preference ranged from a low of 0.31(SD=0.25) for D=1.2 to a high of 0.57(SD=0.26) 

* indicates significance of p < 0.05 
** indicates significance of p < 0.001  
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for D = 1.8, indicating that participants’ preference for global forest fractals increases with 

pattern complexity. Paired samples t-tests revealed significant differences in preference for all 

pairs of D-values (Table 3.1). Comparing non-random and random arrangements, significant 

differences exist for the mid-range D-values: D = 1.4 [t(67) = 5.40, p < 0.001∗∗, 95% CI [0.05, 

0.11], d = 0.47] and D = 1.6 [t(67) = 4.45, p < 0.001∗∗, 95% CI [0.06, 0.15], d = 0.65].  

A 2-step cluster analysis identified and separated individuals into 2 subgroups (Figure 

3.7F). We investigated whether there was an interaction between cluster-membership, D-value, 

and arrangement by performing a mixed ANOVA with 4 levels of D, 2 levels of arrangement, 

and 2 groups. Mauchly’s test indicated a violation of the assumptions of sphericity for D-value 

[χ2 (5) = 58.05, p < 0.001∗ ∗] and the interaction between D-value and arrangement [χ2 (5) = 

21.95 p = 0.001∗]. Therefore, degrees of freedom were corrected using Greenhouse-Geisser 

estimates of sphericity (ε = 0.676 and 0.805, respectively). A significant main effect of D-value 

[F(2.03,133.78) = 16.01, p < 0.001∗∗, 95% CI [0.08, 0.3], ηp2 = 0.2] and Arrangement emerged 

in the analysis [F(1,66) = 18.88, p < 0.001∗∗, 95% CI [0.07, 0.38], ηp2 = 0.22], as well as a 

significant interaction between D-value and Cluster groups [F(2.03,133.78) = 105.22, p < 

0.001∗∗, 95% CI [0.51, 0.68], ηp2 = 0.62] as well as D-value and Arrangement [F(2.41,159.32) 

= 7.12, p < 0.001∗∗, 95% CI [0.02, 0.18], ηp2 = 1.0]. The first cluster accounts for 66% of the 

sample and is most reflective of the overall perceptual trend with preference ratings increasing 

with higher D-value. The second cluster includes the remaining 34% of the sample and 

demonstrates an opposing trend with preference peaking with lower D-value and decreasing with 

added complexity. Although, on average, preference is highest for D = 1.8 (Figure 3.7C), the 
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subgroup analysis shows that the D-value with the greatest agreement in preference amongst 

individuals in the different subgroups is D = 1.6 (Figure 3.7F).  

Refreshing 

A 2-way 4 × 2 repeated-measures ANOVA [D-value (1.2, 1.4, 1.6, and 1.8) × 

Arrangement (randomized, non-randomized)] was completed to examine the impact of D-value 

and Arrangement on perceived pattern refreshment (Figure 3.7D). A violation of the assumption 

of sphericity was indicated by Mauchly’s test for D-value [χ2 (5) = 213.96, p < 0.001∗ ∗], thus 

degrees of freedom were corrected using Greenhouse-Geisser estimates of sphericity (ε = 0.399). 

Both the main effect of pattern Arrangement [F(1,71) = 11.66, p = 0.001∗, 95% CI [0.02, 0.29], 

ηp2 = 0.14] and interaction between D-value and Arrangement were significant [F(2.72,193.37) 

= 7.95, p < 0.001∗∗, 95% CI [0.03, 0.18], ηp2 = 0.1], but not D-value itself [F(1.2,84.89) = 0.77, 

p = 0.41, 95% CI [0.0, 0.09] ηp 2 = 0.01]. Between non-random and random arrangements, 

significant differences exist for the mid- range D-values: D = 1.4 [t(71) = 2.79, p = 0.01∗, 95% 

CI [0.01, 0.08], d = 0.2] and D = 1.6 [t(71) = 4.54, p < 0.001∗∗, 95% CI [0.06, 0.16], d = 0.67]. 

A 2-step cluster analysis identified and separated individuals into two subgroups with 

respect to ratings of pattern refreshment (Figure 3.7G). We investigated whether there was an 

interaction between cluster-membership, D-value, and arrangement by performing a mixed 

ANOVA with 4 levels of D, 2 levels of arrangement, and 2 groups. Mauchly’s test indicated a 

violation of the assumptions of sphericity for D-value [χ2(5) = 73.86, p < 0.001∗ ∗] and 

interaction between D-value and Arrangement [χ2 (5) = 11.49, p = 0.04∗]. Therefore, degrees of 

freedom were corrected using Greenhouse-Geisser estimates of sphericity (ε = 0.580 and 0.893, 

respectively). Whereas the main effect of D-value was not significant [F(1.74,121.72) = 1.49, p 
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= 0.23, 95% CI [0.0, 0.09], ηp2 = 0.02], a significant main effect of Arrangement emerged in the 

analysis [F(1,70) = 11.85, p = 0.001∗, 95% CI [0.03, 0.29], ηp2 = 0.15], as well as a significant 

interaction between D-value and Cluster membership [F(1.74,121.72) = 143.09, p < 0.001∗∗, 

95% CI [0.57, 0.73], ηp2 = 0.67] and between D-value and Arrangement [F(2.68,187.57) = 8.32, 

p < 0.001∗∗, 95% CI [0.03, 0.18], ηp2 = 0.11]. The first cluster encompassed 51% of participants 

and produces a trend that increases with D-value. The second cluster contains the remaining 49% 

of participants and, in a steeper fashion, decreases with additional D-value. Although these 

represent opposing trends in judgments of refreshment, the D-value with the greatest agreement 

in refreshment ratings amongst individuals across subgroups is D = 1.6 (Figure 3.7G).  

Relaxing 

A 2-way 4 × 2 repeated-measures ANOVA [D-value (1.2, 1.4, 1.6, and 1.8) × 

Arrangement (randomized, non-randomized)] was completed to examine the impact of D-value 

and Arrangement on perceptions of pattern relaxation (Figure 3.7E). A violation of the 

assumption of sphericity was indicated by Mauchly’s test for D-value [χ2 (5) = 239.32 p < 

0.001∗ ∗ ], thus degrees of freedom were corrected using Greenhouse-Geisser estimates of 

sphericity (ε = 0.388). A significant main effect of D-value [F(1.16,79.11) = 11.9, p < 0.001∗∗, 

95% CI [0.03, 0.29], ηp2 = 0.15] and Arrangement [F(1,68) = 8.19, p = 0.01∗, 95% CI [0.01, 

0.25], ηp2 = 0.11], and interaction between D-value and pattern arrangement were identified 

[F(2.74,186.02) = 4.7, p = 0.01∗ 95% CI [0.01, 0.13], ηp2 = 0.01]. Collapsed over pattern 

arrangement, average ratings of pattern relaxation ranged from a low of 0.34 (SD = 0.27) for D = 

1.8 to a high of 0.56 (SD = 0.29) for D = 1.2, suggesting that participants perceived patterns as 
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less relaxing with increasing D-value. Paired samples t-tests revealed significant differences in 

perceived relaxation between D-values (see Table 3.1). Comparing non-random and random 

arrangements, significant differences exist for the mid- to high- D patterns: D = 1.4 [t(68) = 2.22, 

p < 0.001∗∗, 95% CI [0.0, 0.07], d = 0.21], D = 1.6 [t(68) = 3.15, p = 002∗, 95% CI [0.03, 0.12], 

d = 0.5], and D = 1.8 [t(68) = 2.18, p = 0.03∗, 95% CI [0.0, 0.1], d = 0.22].  

A 2-step cluster analysis identified and separated individuals into two subgroups with 

respect to ratings of pattern relaxation. Mauchly’s test indicated a violation of the assumptions of 

sphericity for D-value [χ2(5) = 93.78, p < 0.001∗∗]. Therefore, degrees of freedom were 

corrected using Greenhouse-Geisser estimates of sphericity (ε = 0.554). A significant main effect 

of D-value [F(1.66,111.27) = 7.28, p = 0.002∗, 95% CI [0.01, 0.2], ηp2 = 0.1] and Arrangement 

[F(1,67) = 13.86, p < 0.001∗∗, 95% CI [0.04, 0.33], ηp2 = 0.17] were identified, as well as 

significant interactions between D-value and Clusters [F(1.66,111.27) = 168.83, p < 0.001∗∗, 

95% CI [0.62, 0.77], ηp2 = 0.72], Arrangement and Cluster membership [F(1,67) = 8.81, p = 

0.004∗, 95% CI [0.01, 0.26], ηp2 = 0.12], and D-value and Arrangement [F(2.72,181.88) = 5.79, 

p = 0.001∗, 95% CI [0.01, 0.15], ηp2 = 0.08]. The first cluster encompassed 64% of participants 

and produces a trend in which ratings of pattern relaxation steeply decrease with higher D-

values. Conversely, the second cluster contains the remaining 36% of participants and increases 

with additional D-value. Similar to subgroup behavior for preference and refreshment ratings 

which also showed opposing trends in judgments, the D-value with the greatest agreement in 

relaxation ratings amongst individuals across subgroups is D = 1.6 (Figure 3.7H).  

Discussion 
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Experiment 1A explored broad psychological effects of fractal patterns used in 

installations of multiple mediums including carpets, wall patterns, and screensavers. Overall, we 

find that perceptions of fractal pattern complexity, engagement, and preference, increase with 

greater D-value, perception of pattern refreshment is unchanging across D-value, and perception 

of relaxation decreases with D-value. For some judgments, the observed overall trends can be 

explained by the subgroup patterns of responses. We found 2 subgroups for preference, 

refreshment, and relaxation judgments with opposing trends. The overall trend for preference 

was positive, with increasing rating values with increasing D-value, because the largest subgroup 

trend was positive; the trend for refreshing was flat because the 2 subgroups were equivalent in 

size; and, finally, the overall trend for relaxation was negative (decreasing with D-value) because 

the largest subgroup trend was negative. Interestingly, the D-value with the greatest agreement 

amongst individuals for the preference, refreshing, and relaxing judgments was D = 1.6.  

Experiment 1B-Perception of Fractal “Global Forest” Patterns With Bipolar Ratings  

Materials and Methods 

Stimuli  

The current experiment used the same stimuli as described in Experiment 1A. 

Participants 

81 participants (69 females), comprised of undergraduate Psychology students from the 

UNSW Sydney volunteered to participate in the current study through the SONA participant 

pool system in exchange for course credit. The mean age of participants was 20.42 years 

(ranging between 18 and 47 years). All study protocols, including obtaining Informed Consent 

were approved by the UNSW Human Research Advisory Panel (Reference ID: HREAP-C 2349).  
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Visual displays 

The study was generated with Inquisit (by Milliseconds) software and run via the Inquisit 

Web Platform. The participants completed the study on their personal computers with program 

stimuli scaled to the individual computer’s respective full- screen dimensions.  

Design and procedure 

Like in the Experiment 1A, participants viewed the “global forest” fractal patterns 

presented in separate randomized blocks, with each block consisting of a singular judgment type 

(complexity, engaging, preference, refreshing, or relaxing). Each block’s stimulus set consisted 

of 4 unique patterns ranging across eight levels of complexity or D-value (1.1, 1.2, 1.3, 1.4, 1.5, 

1.6, 1.7, and 1.8) and varying in arrangement (non-randomized or randomized) giving rise to 64 

trials per block and 320 total stimulus-related trials across the experiment. Instead of a slider- 

type response, we used five, Lickert-type, bipolar scales with values ranging from 1 to 7. The 

scales used were simple-complex; dislike (1) -like (7); indifferent (1) – engaged (7); relaxed (1) 

– tense (7); tired (1) – refreshed (7). [BS1] Participants indicated their response by pressing a 

number corresponding to their evaluation of a given pattern. Before each block, participants were 

introduced to a scale that will be used in that block, with the scale remaining visible on all trials. 

Upon completion of the experiment, participants completed a demographic questionnaire and 

were debriefed according to the protocol approved by the UNSW Human Research Ethics 

Advisory Panel C.  

Results 

Data from 75 adult participants were analyzed with 6 participants excluded due to a 

failure to complete the study (4 participants), or technical error with data recording (2 

participants).  
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Fractal judgment task 

A 3-way 8 × 5 × 2 repeated-measures ANOVA [D-value (1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 

and 1.8) × Judgment (complexity, engaging, liking, refreshing, and tense) × Arrangement 

(randomized vs. non-randomized)] was performed using IBM SPSS Statistics for Macintosh 

(Version 25.0) on rating data for the fractal patterns (recorded as location selected on a rating 

response slider). Mauchly’s test indicated a violation of the assumption of sphericity for D-value 

[χ2(27) = 638.83, p < 0.001∗∗], Judgment [χ2(9) = 39.25, p < 0.001∗∗], the interaction between 

D-value and Arrangement [χ2(27) = 63.65, p < 0.001∗∗], D-value and Judgment [χ2(405) = 

2571.82, p < 0.001∗∗], Judgment and Arrangement [χ2(9) = 64.32, p < 0.001∗∗], as well as the 

three- way interaction between D-value, Arrangement, and Judgment [χ2(405) = 647.13, p < 

0.001∗∗]. Therefore, degrees of freedom were corrected using Greenhouse-Geisser estimates of 

sphericity (ε = 0.205, 0.789, 0.749, 0.121, 0.692, and 0.542, respectively). Indicated with a 

double asterisk for significance of p < 0.001 and single asterisk for statistical significance of p < 

0.05, a significant main effect of D-value [F(1.44,106.27) = 153.44, p < 0.001∗∗, 95% CI [0.57, 

0.74], ηp2 = 0.68] and Arrangement emerged [F(1,74) = 31.44, p < 0.001∗∗, 95% CI [0.3, 0.44], 

ηp2 = 0.3]. Additional significant interactions were found between D-value and Judgment 

[F(3.38,249.96) = 32.35, p < 0.001∗∗, 95% CI [0.21, 0.38], ηp2 = 0.3], D-value and 

Arrangement [F(5.25, 388.12) = 4.95, p < 0.001∗∗, 95% CI [0.02, 0.10], ηp2 = 0.06], 

Arrangement and Judgment [F(2.78,204.98) = 9.59, p < 0.001∗∗, 95% CI [0.04, 0.09], ηp2 = 

0.12], as well as D-value, Arrangement, and Judgment [F(15.18,1123.58) = 2.75, p < 0.001∗∗, 

95% CI [0.01, 0.05], ηp2 = 0.04]. For illustrative purposes we plot the 3 significant interactions 

(Figure 3.8). For the D-value and Judgment interaction, most judgments had ratings that 
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increased in value with D (complexity, engagement, like, and tense), while one was relatively 

flat (refreshing) (Figure 3.8A). For the D-value and Arrangement interaction, ratings were 

increasingly higher for non-randomized compared to randomized fractal patterns as D-values 

increased (Figure 3.8B). Finally, for the Judgment and Arrangement interaction, the amount of 

difference between the non-randomized and randomized versions of the patterns varied across 

judgment type (Figure 3.8C). The 3-way interaction indicates that the Dimension by 

Arrangement interaction varies across Judgment-type. This can be seen more clearly in Figure 

3.9. Similar to the previous studies, a series of planned comparisons explored the locus of the 

significant interaction between D-value and Judgment through ANOVAs, paired t-tests (Table 

3.2), and a 2-step cluster analyses to determine if subgroups of participant responses could better 

explain perceptual trend data.  

Simple-complex 

 A 2-way 8 × 2 repeated-measures ANOVA [D-value (1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, and 

1.8) × Arrangement (randomized vs. non- randomized)] was completed to examine the impact of 

D-value and Arrangement on pattern complexity judgments (Figure 3.9A). Assumptions of the 

violation of sphericity were indicated by Mauchly’s test for D-value [χ2 (27) = 521.02, p < .001 

**] and interaction between D-value and Arrangement [χ2(27) = 76.63, p < 0.001∗∗], thus 

degrees of freedom were corrected using Greenhouse-Geisser estimates of sphericity (ε = 0.232 

and 0.764, respectively). A significant main effect of D-value was identified [F(1.62,119.95) = 

204.35, p < 0.001∗∗, 95% CI [0.65, 0.79], ηp2 = 0.73], however, no significant effect of 

Arrangement [F(1,74) = 0.89, p = 0.35, 95% CI [0, 0.1], ηp2 = 0.01], nor interaction between D-

value and pattern arrangement [F(5.35,395.78) = 0.79, p = 0.56, 95% CI [0, 0.02], ηp2 = 0.01] 
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Figure 3.8. Experiment 1B. Results for 
“global forest” fractal patterns using a 
bipolar rating scale. Results show 
significant 2-way interactions among the 
experiment’s 3 factors: fractal dimension 
(D), stimulus pattern arrangement (“0” for 
non-randomized and “1” for randomized), 
and judgment type (complex, engaging, 
liking, refreshing, and tense). Participant 
rating (on a scale from 1 to 10) is plotted as 
a function of (A) D-value and different 
judgment conditions, (B) D-value and 
different pattern arrangements, and (C) 
judgment and randomization conditions 
(error bars represent standard error).  
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Figure 3.9. Experiment 1B results for “global forest” fractal patterns for 5 different judgment conditions 
(complex, engaging, liking, refreshing, and tense). (A–E) shows plots of mean ratings as a function of fractal 
dimension (D) and 2 pattern arrangements (not randomized “0,” randomized “1”) for the different judgment 
conditions (error bars represent standard error). (F–H) shows plots of mean ratings as a function of fractal 
dimension (D) and 2 pattern arrangements (not randomized “0,” randomized “1”) for each subpopulation 
identified with cluster analysis (error bars represent standard error).  
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     Table 3.2: Experiment 1B- Paired Samples t-Tests across D-value and Judgement 
  Simple-

Complex 
Indifferent-
Engaging 

Dislike- 
Like 

Tired-
Refreshing 

Relaxing-
Tense 

D=1.1 vs D=1.2 t=-3.43* 
(d=1.3) 
  

t=-1.93** 
(d=.93) 
  

t=-1.35 
(d=.17) 
  

t=.39 
(d=.01) 
  

t=-3.95** 
(d=.15) 
  

D=1.1 vs D=1.3 t=-10.05** 
(d=.51) 
  

t=-16.01** 
(d=.32) 
  

t=-3.03* 
(d=1.42) 
  

t=.99 
(d=.04) 
  

t=-6.63** 
(d=.34) 
  

D=1.1 vs D=1.4 t=-14.18** 
(d=1.02) 
  

t=-10.61** 
(d=.8) 
  

t=-3.51* 
(d=.25) 
  

t=1.10 
(d=.08) 
  

t=-11.23** 
(d=.78) 
  

D=1.1 vs D=1.5 t=-18.17** 
(d=1.51) 
  

t=-13.01** 
(d=1.1) 
  

t=-4.32** 
(d=.36) 
  

t=.58 
(d=.06) 
  

t=-12.84** 
(d=1.18) 
  

D=1.1 vs D=1.6 t=-19.81** 
(d=2.09) 
  

t=-14.87** 
(d=1.7) 
  

t=-4.82** 
(d=.52) 
  

t=.19 
(d=.08) 
  

t=-14.55** 
(d=1.61) 
  

D=1.1 vs D=1.7 t=-21.02** 
(d=2.61) 
  

t=-16.62** 
(d=1.9) 
  

t=-4.05** 
(d=.47) 
  

t=.72 
(d=.10) 
  

t=-17.25** 
(d=2.25) 
  

D=1.1 vs D=1.8 t=-24.54** 
(d=3.03) 
  

t=-17.54** 
(d=2.14) 
  

t=-3.48** 
(d=.44) 
  

t=.38 
(d=.06) 
  

t=-18.89** 
(d=2.61) 
  

D=1.2 vs D=1.3 t=-6.51** 
(d=.35) 
  

t=-4.72** 
(d=1.15) 
  

t=-1.71 
(d=.08) 
  

t=.78 
(d=.03) 
  

t=-3.52* 
(d=.17) 
  

D=1.2 vs D=1.4 t=-11.02** 
(d=.83) 
  

t=-11.13** 
(d=1.71) 
  

t=-2.75* 
(d=.18) 
  

t=1.04 
(d=.06) 
  

t=-9.41** 
(d=.61) 
  

D=1.2 vs D=1.5 t=-15.53** 
(d=1.28) 
  

t=-13.45** 
(d=2.06) 
  

t=-3.69** 
(d=.3) 
  

t=.46 
(d=.04) 
  

t=-12.04** 
(d=1.0) 
  

D=1.2 vs D=1.6 t=-16.89** 
(d=1.83) 
  

t=-15.58** 
(d=2.55) 
  

t=-4.51** 
(d=.47) 
  

t=.08 
(d=.01) 
  

t=-13.53** 
(d=1.43) 
  

D=1.2 vs D=1.7 t=-18.69** 
(d=2.36) 
  

t=-17.18** 
(d=1.68) 
  

t=-3.65** 
(d=.42) 
  

t=.67 
(d=.09) 
  

t=-16.21** 
(d=2.07) 
  

D=1.2 vs D=1.8 t=-21.79** 
(d=2.75) 
  

t=-18.29** 
(d=2.9) 
  

t=--3.19* 
(d=.39) 
  

t=.31 
(d=.04) 
  

t=-18.15** 
(d=2.43) 
  

D=1.3 vs D=1.4 t=-7.79** 
(d=.52) 
  

t=-7.0** 
(d=.45) 
  

t=-1.4 
(d=.10) 
  

t=.57 
(d=.03) 
  

t=-7.62** 
(d=.46) 
  

D=1.3 vs D=1.5 t=-14.22* 
(d=1.01) 
  

t=-11.16** 
(d=.82) 
  

t=-2.83* 
(d=.21) 
  

t=.06 
(d=.01) 
  

t=-11.44** 
(d=.89) 
  

D=1.3 vs D=1.6 t=-16.31** 
(d=1.61) 

t=-13.35** 
(d=1.37) 

t=-3.75** 
(d=.39) 

t=-.37 
(d=.03) 

t=-14.24** 
(d=1.35) 
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Table 3.2. (continued) 

  Simple-
Complex 

Indifferent-
Engaging 

Dislike- 
Like 

Tired-
Refreshing 

Relaxing-
Tense 

D=1.3 vs D=1.6 t=-16.31** 
(d=1.61) 

t=-13.35** 
(d=1.37) 

t=-3.75** 
(d=.39) 

t=-.37 
(d=.03) 

t=-14.24** 
(d=1.35) 
  

D=1.3 vs D=1.7 t=-19.33** 
(d=2.19) 
  

t=-15.86** 
(d=1.61) 
  

t=-3.06* 
(d=.34) 
  

t=.48 
(d=.33) 
  

t=-17.24** 
(d=2.03) 
  

D=1.3 vs D=1.8 t=-22.58** 
(d=2.51) 
  

t=-16.61** 
(d=1.84) 
  

t=-2.64* 
(d=.32) 
  

t=.11 
(d=.02) 
  

t=-19.23** 
(d=2.42) 
  

D=1.4 vs D=1.5 t=-7.38** 
(d=.49) 
  

t=-6.59** 
(d=.41) 
  

t=-2.01 
(d=.13) 
  

t=-.50 
(d=.02) 
  

t=-6.49** 
(d=.45) 
  

D=1.4 vs D=1.6 t=-12.26** 
(d=1.4) 
  

t=-11.68** 
(d=1.01) 
  

t=-3.79** 
(d=.33) 
  

t=-.78 
(d=.08) 
  

t=-10.29** 
(d=.92) 
  

D=1.4 vs D=1.7 t=-16.81** 
(d=1.77) 
  

t=-13.51** 
(d=1.28) 
  

t=-2.78* 
(d=.28) 
  

t=.30 
(d=.04) 
  

t=-14.57** 
(d=1.63) 
  

D=1.4 vs D=1.8 t=-20.82** 
(d=2.21) 
  

t=-15.08** 
(d=1.54) 
  

t=-2.32* 
(d=.26) 
  

t=-.11 
(d=.01) 
  

t=-17.68** 
(d=2.04) 
  

D=1.5 vs D=1.6 t=-8.49** 
(d=.67) 
  

t=-8.47** 
(d=.61) 
  

t=-2.64* 
(d=.21) 
  

t=-.59 
(d=.05) 
  

t=-6.11** 
(d=.47) 
  

D=1.5 vs D=1.7 t=-14.74** 
(d=.67) 
  

t=-12.28** 
(d=.91) 
  

t=-1.95 
(d=.17) 
  

t=.74 
(d=.07) 
  

t=-13.35** 
(d=1.18) 
  

D=1.5 vs D=1.8 t=-19.12** 
(d=1.83) 
  

t=-13.59** 
(d=1.67) 
  

t=-1.58 
(d=.18) 
  

t=.13 
(d=.01) 
  

t=-17.27** 
(d=1.61) 
  

D=1.6 vs D=1.7 t=-10.34** 
(d=.75) 
  

t=-5.87** 
(d=.35) 
  

t=.38 
(d=.02) 
  

t=1.69 
(d=.11) 
  

t=-10.3** 
(d=.73) 
  

D=1.6 vs D=1.8 t=-17.44** 
(d=1.2) 
  

t=-9.82** 
(d=.6) 
  

t=.33 
(d=.02) 
  

t=.57 
(d=.05) 
  

t=-15.23** 
(d=1.18) 
  

D=1.7 vs D=1.8 t=-7.99** 
(d=.41) 
  

t=-5.86** 
(d=.25) 
  

t=.04 
(d=.0) 
  

t=-.90 
(d=.04) 
  

t=-9.9** 
(d=.47) 
  

	 	* indicates significance of p < 0.05 
** indicates significance of p < 0.001  



 

90 

 

were identified. Average complexity ratings (collapsed over pattern arrangement type) ranged 

from a low of 2.09 (SD = 1.16) for D = 1.1 to a high of 5.60 (SD = 1.16) for D = 1.8, indicating 

that participants perceive greater complexity for patterns with higher D-values. Paired samples t-

tests revealed significant differences in perceived refreshment between all pairs of D-values 

(Table 3.2). A cluster analysis did not indicate a multiple cluster solution. 

Indifferent-engaging 

A 2-way 8 × 2 repeated-measures ANOVA [D-value (1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, and 

1.8) × Arrangement (randomized vs. non-randomized)] was completed to examine the impact of 

D- value and Arrangement on pattern engagement (Figure 3.9B). A violation of the assumption 

of sphericity was indicated by Mauchly’s test for D-value [χ2(27) = 443.38, p < 0.001∗∗] and 

interaction of D-value and Arrangement [χ2(27) = 88.06, p < 0.001∗∗], thus degrees of freedom 

were corrected using Greenhouse-Geisser estimates of sphericity (ε = 0.260 and 0.661, 

respectively). A significant main effect of D-value [F(1.82,134.71) = 131.39, p < 0.001∗∗, 95% 

CI [0.54, 0.71], ηp2 = 0.64], Arrangement [F(1,74) = 16.98, p < 0.001∗∗, 95% CI [0.05, 0.33], 

ηp2 = 0.19], and interaction between D-value and pattern arrangement were identified 

[F(4.63,342.64) = 3.8, p = 0.003∗, 95% CI [0.01, 0.09], ηp2 = 0.05]. Collapsed over pattern 

arrangement, the mean engagement ratings ranged from a low of 2.15 (SD = 1.15) for D = 1.1 to 

a high of 4.98 (SD = 1.48) for D = 1.8, suggesting that participants were more engaged when 

viewing the higher D-value patterns. Paired samples t-tests revealed significant differences in 

perceived engagement for all pairs of D-values (Table 3.2). Comparing the non-random and 

random arrangements for different D-values, significant differences exist for the mid- to high-

range D-values: D = 1.4 [t(74) = 3.1, p = 0.003∗, 95% CI [0.1, 0.45], d = 0.26], D = 1.5 [t(74) = 
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2.68, p = 01∗, 95% CI [0.07, 0.48], d = 0.26], D = 1.6 [t(74) = 3.16, p = 0.002∗, 95% CI [0.18, 

0.78], d = 0.4], D = 1.7 [t(74) = 3.05, p = 0.003∗, 95% CI [0.13, 0.62], d = 0.27], and D = 1.8 

[t(74) = 3.77, p < 0.001∗∗, 95% CI [0.25, 0.8], d = 0.36]. The interaction between D-value and 

Arrangement indicates that the ratings differed across arrangement type depending on D-value, 

with increasingly higher ratings for non-randomized compared to randomized fractal patterns as 

D-values increased.  

A 2-step cluster analysis identified and separated individuals into 3 subgroups (Figure 

3.9F). Mauchly’s test indicated a violation of the assumptions of sphericity for D-value [χ2(27) = 

214.33, p < 0.001∗∗] and the interaction between D-value and Arrangement [χ2(27) = 82.31, p < 

0.001∗∗]. Therefore, degrees of freedom were corrected using Greenhouse-Geisser estimates of 

sphericity (ε = 0.446 and 0.673, respectively). A significant main effect of D-value 

[F(3.12,224.58) = 116.01 p < 0.001∗∗, 95% CI [0.54, 0.67], ηp2 = 0.62], and Arrangement 

emerged in the analysis [F(1,72) = 22.75, p < 0.001∗∗, 95% CI [0.09, 0.39], ηp2 = 0.24], as well 

as significant interactions between D-value and Clusters [F(6.24,224.58) = 31.25, p < 0.001∗∗, 

95% CI [0.36, 0.53], ηp2 = 0.47] and D-value and Arrangement [F(4.71,339.19) = 5.37, p < 

0.001∗∗, 95% CI [0.02, 0.12], ηp2 = 0.07]. All three clusters of engagement ratings increase with 

D-value, but with different rates of incline.  

Dislike-like 

A 2-way 8 × 2 repeated-measures ANOVA [D-value (1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, and 

1.8) × Arrangement (randomized vs. non-randomized)] was completed to examine the impact of 

D-value and Arrangement on pattern preference (Figure 3.9C). A violation of the assumption of 
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sphericity was indicated by Mauchly’s test for D-value [χ2 (27) = 534, p < 0.001∗∗] and the 

interaction between D-value and Arrangement [χ2(27) = 108.05, p < 0.001∗∗], thus degrees of 

freedom were corrected using Greenhouse-Geisser estimates of sphericity (ε = 0.232 and 0.608, 

respectively). A significant main effect of D-value [F(1.63,120.26) = 6.71, p = 0.003∗, 95% CI 

[0.01, 0.18], ηp2 = 0.08], Arrangement [F(1,74) = 19.74, p < 0.001∗∗, 95% CI [0.07, 0.36], ηp2 

= 0.21], and the interaction between D-value and pattern arrangement [F(4.26,314.93) = 6.05, p 

< 0.001∗∗, 95% CI [0.02, 0.13], ηp2 = 0.08] were identified. Collapsed over pattern 

arrangement, average ratings of preference ranged from a low of 3.21(SD=1.6) for D=1.1 to a 

high of 4.0 (SD = 1.45) for D = 1.6, indicating that participants’ preference for global forest 

fractals increases with pattern complexity. Paired samples t-tests revealed significant differences 

in preference between D-values (see Table 3.2). Comparing non-random and random 

arrangements, significant differences exist for D = 1.2 [t(74) = 2.66, p = 0.01∗, 95% CI [0.07, 

0.47], d = 0.17], D = 1.5 [t(74) = 4.25, p < 0.001∗∗, 95% CI [0.26, 0.72], d = 0.4], D = 1.6 [t(74) 

= 3.93, p < 0.001∗∗, 95% CI [0.41, 1.26], d = 0.55], D = 1.7 [t(74) = 2.38, p = 0.02∗, 95% CI 

[0.07, 0.75], d = 0.25], and D = 1.8 [t(74) = 4.14, p < 0.001∗∗, 95% CI [0.43, 1.21], d = 0.47]. 

The interaction between D-value and Arrangement indicates that the ratings differed across 

arrangement type depending on D-value, with generally increasingly higher ratings for non-

randomized compared to randomized fractal patterns as D-values increased.  

Two subgroups were identified in ratings of pattern liking with the two-step cluster 

analysis (Figure 3.9G). Mauchly’s test indicated a violation of the assumptions of sphericity for 

D-value [χ2 (27) = 397.62, p < 0.001∗∗] and interaction between D-value and Arrangement 

[χ2(27) = 109.84, p < 0.001∗∗]. Therefore, degrees of freedom were corrected using Greenhouse-
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Geisser estimates of sphericity (ε = 0.286 and 0.603, respectively). A significant main effect of 

D-value [F(2.0,146.05) = 14.31, p < 0.001∗∗, 95% CI [0.06, 0.26], ηp2 = 0.16] and Arrangement 

[F(1,73) = 19.12, p < 0.001∗∗, 95% CI [0.06, 0.36], ηp2 = 0.21], as well as interactions between 

D-value and Clusters [F(2.0,146.05) = 28.72, p < 0.001∗∗, 95% CI [0.16, 0.38], ηp2 = 0.29] as 

well as Arrangement and Clusters were identified [F(4.22,308.32) = 6.33, p < 0.001∗∗, 95% CI 

[0.02, 0.18], ηp2 = 0.08]. Cluster 1, comprising 57% of the sample, shows similar ratings of 

pattern liking for low and moderate patterns then decreases with higher D-values. However, 

Cluster 2, comprising 43% of participants, demonstrates an increasing liking of the patterns with 

increasing D-value.  

Tired-refreshing 

A 2-way 8 × 2 repeated-measures ANOVA [D-value (1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, and 

1.8) × Arrangement (randomized vs non- randomized)] was completed to examine the impact of 

D-value and Arrangement on perceived pattern refreshment (Figure 3.9D). A violation of the 

assumption of sphericity was indicated by Mauchly’s test for D-value [χ2 (27) = 853.96, p < 

0.001∗ ∗ ] and the interaction between D-value and Arrangement [χ2(27) = 46.53, p = 0.01∗], 

thus degrees of freedom were corrected using Greenhouse-Geisser estimates of sphericity (ε = 

0.174 and 0.847, respectively). The only significant effect was for Arrangement [F(1,74) = 

15.97, p < 0.001∗∗, 95% CI [0.05, 0.32], ηp2 = 0.18]. Ratings for non-randomized patterns (M = 

3.68, SD = 1.53) were slightly higher than randomized patterns (M = 3.53, SD = 1.57). No 

significant main effect of D-value [F(1.22,90.04) = 0.14, p = 0.75, 95% CI [0, 0.05], ηp2 = 

0.002], or interaction between D-value and pattern arrangement [F(5.93,438.61) = 1.54, p = 0.16, 

95% CI [0, 0.04], ηp2 = 0.02] were found. Between non-random and random arrangements 
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significant differences exist for D = 1.2 [t(74) = 2.22, p = 0.03∗, 95% CI [0.02, 0.36], d = 0.1], D 

= 1.6 [t(74) = 2.86, p = 0.01∗, 95% CI [0.09, 0.52], d = 0.27] and D = 1.7 [t(74) = 2.63, p = 01∗, 

95% CI [0.07, 0.47], d = 0.18]. No subgroups were found amongst participant ratings of fractal 

pattern refreshment.  

Relaxing-tense 

A 2-way 8 × 2 repeated-measures ANOVA [D-value (1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, and 

1.8) × Arrangement (randomized vs. non-randomized)] was completed to examine the impact of 

D-value and Arrangement on perceptions of patterns tension (non-relaxing quality) (Figure 

3.9E). A violation of the assumption of sphericity was indicated by Mauchly’s test for D-value 

[χ2(27) = 560.25, p < 0.001∗∗] and interaction between D-value and Arrangement [χ2(27) = 

52.99, p = 0.002∗], thus degrees of freedom were corrected using Greenhouse-Geisser estimates 

of sphericity (ε = 0.218 and 0.842, respectively). A sole significant main effect of D-value was 

identified [F(1.53,113.17) = 140.86, p < 0.001∗∗ , 95% CI [0.05, 0.32], ηp 2 = 0.66]. Thus no 

main effect of Arrangement [F(1,74) = 2.01, p = 0.16, 95% CI [0, 0.05], ηp2 = 0.03] or 

significant interaction between D-value and pattern Arrangement were found [F(5.89,436.1) = 

1.38, p = 0.22, 95% CI [0, 0.04], ηp2 = 0.02]. Average ratings of pattern relaxation ranged from 

a low of 2.28 (SD = 1.29) for D = 1.1 to a high of 5.63 (SD = 1.28) for D = 1.8, suggesting that 

participants perceived patterns as more tense with increasing D-value. Paired samples t-tests 

revealed significant differences in perceived relaxation for all pairs of D-values (Table 3.2).  

Three subgroups of participant perceptions of tension/relaxation were identified through 

two step cluster analysis (Figure 3.9H). Mauchly’s test indicated a violation of the assumptions 

of sphericity for D-value [χ2(27) = 259.97, p < 0.001∗∗] and interaction between D-value and 
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Arrangement [χ2 (27) = 52.56 p = 0.002∗]. Therefore, degrees of freedom were corrected using 

Greenhouse-Geisser estimates of sphericity (ε = 0.367 and 0.839, respectively). A significant 

main effect of D-value [F(2.57,185.17) = 101.1 p < 0.001∗∗, 95% CI [0.49, 0.65], ηp2 = 0.58] 

and interaction between D-value and Clusters [F(5.14,185.17) = 41.63, p < 0.001∗∗, 95% CI 

[0.42, 0.6], ηp2 = 0.54] emerged in the analysis. Cluster 1 containing 64% of participants as well 

as cluster 2 containing 19% of participants both produced a perceptual trend in which ratings of 

tension increased with pattern complexity. Cluster 3 containing the remaining 17% of the 

sample, produces a flat trend in ratings of pattern tension/relaxation.  

Overall, we find that bipolar ratings of fractal ‘global-forest’ pattern complexity, 

preference, and engagement increase with additional D-value, whereas ratings of relaxation 

decrease with additional D-value. Perceptions of pattern refreshment are impacted by participant 

membership to contradictory rating trends, producing greater variance in ratings thus a flatter 

trend in relaxation ratings.  

Discussion 

Experiment 1B expands our investigation of psychological effects of these installed 

patterns but incorporates a different population of viewers and bipolar rating design. In this 

iteration of the perceptual rating task, participants are still recruited from a college population 

but from a different continent in the opposing global hemisphere (Australia) with a very different 

natural landscape. The rating task is also altered such that participants are instructed to rate their 

perception of images on a larger sliding scale between two opposing descriptors. Even with a 

new population and expanded study design results are highly similar to Experiment 1A. Similar 

to Experiment 1A, complexity, engaging, and preference ratings of ‘global-forest’ patterns all 

increase with increasing D-value; perceptions of pattern relaxation (taken as the reversed rating 
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of ‘tense’ for this experiment) decrease with D-value; and refreshment did not change with D-

value.   

Experiment 2- Perception of Fractal “Tree-Seed” Patterns 

Materials and Methods 

Stimuli 

Experiment 2 isolates the local components of the ‘global- forest’ patterns. These local 

‘tree-seed’ patterns represent a local fractal pattern composed of rectangular ‘seeds’ with 

locations determined by the generated flightpath (see the description of the generation method in 

the Introduction and Experiment 1A). The stimuli consisted of a total of 20 patterns, with 5 

examples each of 4 D-values (D = 1.2, 1.4, 1.6, and 1.8). Figure 3.5E shows an example pattern 

from each D-value.  

Participants 

To identify the locus of these perceptual trends, 39 participants comprised of 

undergraduate Psychology students from the University of Oregon were recruited for the current 

study through the SONA participant pool system (22 females, age ranging between 18 and 29 

years old, mean age 20 years old). Informed consent was acquired following a protocol approved 

by the Institutional Review Board at the University of Oregon and all participants received class 

credit for their participation.  

Design and Procedure 

Participants viewed a series of fractal “tree-seed” patterns presented in five randomized 

blocks. Each block’s stimulus set consisted of 5 unique patterns ranging across 4 levels of 
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complexity or D-value (D = 1.2, 1.4, 1.6, and 1.8). A slider response task was used to self-report 

ratings for each fractal pattern, resulting in 20 trials per block. Each block consisted of a singular 

judgment type (complexity, engaging, preference, refreshing, or relaxing).  

Before each block, participants were instructed to make a single randomly ordered 

judgment (complexity, preference, engaging, refreshing, or relaxing) for each stimulus presented 

in that block. Specifically, they were asked to answer one of 5 questions for each block: “How 

_______ is the image?” with one of 5 different words placed in the blank (complex, engaging, 

preferable, refreshing, relaxing). They were told to indicate their rating of each given pattern on a 

slider ranging between 0 and 1 located below the image, with the “0” end of the slider indicating 

“not at all” and the “1” end of the slider indicating “completely.” They were asked to use the full 

range of the slider and to click on the slider to indicate their rating. Periodically, an attention 

check trial appeared in which participants were instructed to select either “0” or “1.” The images 

remained on the screen until participants selected their rating. Upon completion of the 

experiment, participants completed a demographic questionnaire and were debriefed according 

to the protocols approved by the Institutional Review Board at the University of Oregon.  

 

Results 

Data from 39 adult participants (between 18 and 29 years old) were retained from the 60 

adults who participated in the experiment. Data were excluded due to: (a) failure to complete the 

study, (b) failure of greater than 3 attention checks, or (c) recording the same rating for greater 

than four consecutive trials.  

Fractal Judgment Task 
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A 2-way repeated-measures 4 × 5 ANOVA [D-value (1.2, 1.4, 1.6, and 1.8) × Judgment 

(complexity, engaging, preference, refreshing, relaxing)] was performed using IBM SPSS 

Statistics for Macintosh (Version 25.0) on rating data for the fractal patterns (recorded as 

location selected on a rating response slider). Mauchly’s test indicated a violation of the 

assumption of sphericity for D-value [χ2 (5) = 59.58, p < 0.001**], and Judgment [χ2 (9) = 

25.24, p = 0.003∗], and the interaction of D-value and Judgment [χ2 (77) = 216.75, p < p < 

0.001∗∗]. Therefore, degrees of freedom were corrected using Greenhouse- Geisser estimates of 

sphericity (ε = 0.525, 0.732, and 0.463, respectively). Indicated by a double asterisk for 

significance of p < 0.001 and single asterisk for significance of p < 0.05, significant main effects 

of D-value [F(1.58, 59.88) = 12.64, p < 0.001∗∗, 95% CI [0.07, 0.4], ηp2 = 0.25] and Judgment 

[F(2.93, 111.29) = 5.55, p = 0.002∗, 95% CI [0.02, 0.23], ηp2 = 0.13], as well as an interaction 

between D-value and Judgment emerged [F(5.56, 211.26) = 17.88, p < 0.001∗∗, 95% CI [0.21, 

0.4], ηp2 = 0.32]. For the D-value and Judgment interaction, some judgments had ratings that 

increased in value with D (complexity, engagement, preference), while others were relatively flat 

or slightly decreasing (refreshing, relaxing) (Figure 3.10). Similar to the prior experiments, a 

series of planned comparisons explored the locus of the significant interaction between D-value 

and Judgment using ANOVAs, paired t-tests (Table 3.3), as well as a 2-step clustering analysis 

to determine if subgroups could further explain perceptual trends.  

Complexity 

A one-way repeated measures ANOVA was completed on the effects of D-value on 

ratings of pattern complexity (Figure 3.11A). Mauchly’s test indicated a violation of the 

assumptions of sphericity for D-value [χ2(5)= 28.03, p < 0.001**], thus degrees of freedom were  
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corrected using Greenhouse-Geisser 

estimates of sphericity (ε = 0.659). A 

significant main effect of D-value [F(1.98, 

75.08) = 107.58, p < 0.001∗ ∗ , 95% CI 

[0.63, 0.8], ηp 2 = 0.74] was detected. 

Average complexity ratings ranged from a 

low of 0.29 (SD=0.15) for D=1.2 to a high 

of 0.74(SD=0.13) for D=1.8, indicating that 

participants perceive greater complexity 

with the presence of higher D-value. Paired 

samples t-tests revealed significant 

differences in perceived complexity between all pairs of D-values (Table 3.3). A 2-step 

clustering analysis identified no significant subgroups for pattern complexity.  

Engaging 

A one-way repeated measures ANOVA was completed on the effects of D-value on 

ratings of pattern engagement (Figure 3.11B). Mauchly’s test indicated a violation of the 

assumption of sphericity for D-value [χ2 (5) = 28.01, p < 0.001∗∗], thus, degrees of freedom 

were corrected using Greenhouse-Geisser estimates of sphericity (ε = 0.660). A significant main 

effect of D-value exists for ratings of pattern engagement [F(1.98, 75.24) = 33.07, p < 0.001∗∗, 

95% CI [0.29, 0.58], ηp 2 = 0.47]. Average engagement ratings ranged from a low of 0.32 (SD = 

0.18) for D = 1.2 to a high of 0.65 (SD = 0.16) for D = 1.8, suggesting that patterns are perceived 

as more engaging with the introduction of higher D-values. Paired samples t-tests revealed  

Figure 3.10. Experiment 2 results for ‘tree-seed’ 
fractal patterns using a unipolar rating scale. Results 
show a significant interaction between fractal 
dimension (D) and judgment type (complex, engaging, 
preferred, refreshing, and relaxing). Participant rating 
(on a scale from 0 to 1) is plotted as a function of D-
value for the different judgment conditions.  
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significant differences in perceived engagement between all pairs of D-values (Table 3.3). No 

clusters were found amongst the participant ratings of pattern engagement.  

Preference 

A one-way repeated measures ANOVA was completed on the effects of D-value on 

ratings of pattern preference (Figure 3.11C). Mauchly’s test indicated a violation of the 

assumption of sphericity for D-value [χ2 (5) = 42.16, p < 0.001∗ ∗ ]. Therefore, degrees of 

freedom were corrected using Greenhouse-Geisser estimates of sphericity (ε = 0.586). No 

significant main effect of D-value was identified [F(1.58, 66.76) = 2.54, p = 0.09, 95% CI [0,  

Table 3.3: Experiment 2- Paired Samples t-Tests across D-value and 
Judgement 

 
Complex Engaging Preference Refreshing Relaxing 

D=1.2 
vs 

D=1.4 

t=-10.01** 

(d=1.29) 
 

t=-4.49** 

(d=.8) 
 

t=-.36 

(d=.05) 
 

t=2.11* 

(d=.33) 
 

t=2.13* 

(d=.38) 
 

D=1.2 
vs 

D=1.6 

t=-11.69** 

(d=2.35) 
 

t=-6.02** 

(d=1.61) 
 

t=-.71 

(d=.15) 
 

t=1.42 

(d=.37) 
 

t=1.98 

(d=.53) 
 

D=1.2 
vs 

D=1.8 

t=-13.39** 

(d=3.21) 
 

t=-7.33** 

(d=1.94) 
 

t=-1.77 

(d=.49) 
 

t=1.36 

(d=.39) 
 

t=.90 

(d=.29) 
 

D=1.4 
vs 

D=1.6 

t=-6.30** 

(d=1.03) 
 

t=-3.67** 

(d=.77) 
 

t=-.71 

(d=.12) 
 

t=-.20 

(d=.0) 
 

t=.66 

(d=.13) 
 

D=1.4 
vs  

D=1.8 

t=-8.41** 

(d=1.71) 
 

t=-5.38** 

(d=1.15) 
 

t=-2.17* 

(d=.51) 
 

t=.27 

(d=.09) 
 

t=-.42 

(d=.05) 
 

D=1.6 
vs  

D=1.8 

t=-5.22** 

(d=.77) 
 

t=-3.45** 

(d=.47) 
 

t=-2.47* 

(d=.44) 
 

t=.60 

(d=.10) 
 

t=-1.37 

(d=.15) 
 

* indicates significance of p < 0.05 
** indicates significance of p < 0.001  
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0.18], ηp2 = 0.06]. Paired samples t-tests did reveal significant differences in preference between 

D-values (see Table 3.3) indicating a trend of higher preference ratings for patterns with higher 

D-values, at least among D-values of 1.4, 1.6, and 1.8.  

Figure 3.11. Experiment 2 results for ‘tree-
seed’ fractal patterns for 5 different 
judgment conditions (how complex, 
engaging, preferred, refreshing, and 
relaxing). (A–E) shows plots of mean ratings 
as a function of fractal dimension (D) for the 
different judgment conditions (error bars 
represent standard error). (F) shows a plot of 
the mean ratings as a function of fractal 
dimension (D) for each subpopulation 
identified with cluster analysis (error bars 
represent standard error).  
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Two subgroups emerged in the 2-step cluster analysis (Figure 3.11F). Mauchly’s test 

indicated a violation of the assumptions of sphericity for D-value [χ2(5) = 11.89, p = 0.04∗]. 

Therefore, degrees of freedom were corrected using Greenhouse- Geisser estimates of sphericity 

(ε = 0.861). Both a significant main effect of D-value [F(2.58, 95.58) = 9.29, p < 0.001∗∗, 95% 

CI [0.06, 0.32], ηp2 = 0.2], and significant interaction between D-value and sub-groups [F(2.58, 

95.58) = 42.07, p < 0.001∗∗, 95% CI [0.38, 0.62], ηp2 = 0.53] emerged. Cluster 1 comprised 

56% of the sample and represents a trend of fractal preference peaking at the lowest D-value and 

decreasing with added complexity. Conversely, cluster 2 which accounts for the remaining 44% 

of the sample, represents an opposing trend with fractal preference increasing steeply with D-

value and peaking at the highest complexity.  

Refreshing 

A one-way repeated measures ANOVA was completed on the effects of D-value on 

ratings of pattern refreshment (Figure 3.11D). Mauchly’s test indicated a violation of the 

assumption of sphericity for D-value [χ2 (5) = 54.02, p < 0.001∗ ∗ ]. Thus, degrees of freedom 

were corrected using Greenhouse-Geisser estimates of sphericity (ε = 0.554). No significant 

main effect of D-value was identified in the data [F(1.66, 63.11) = 1.49, p = 0.24, 95% CI [0, 

0.15], ηp2 = 0.04]. Paired samples t-tests revealed one significant difference in perceived 

refreshment between D = 1.2 and D = 1.4 (see Table 3.3). No subgroup clusters were identified 

in the data.  

Relaxing 

A one-way repeated measures ANOVA was completed on the effects of D-value on 

ratings of pattern relaxation (Figure 3.11E). Mauchly’s test indicated a violation of the 
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assumption of sphericity for D-value [χ2(5) = 64.07, p < 0.001∗∗]. Therefore, degrees of freedom 

were corrected using Greenhouse-Geisser estimates of sphericity (ε = 0.489). No significant 

main effect of D-value was identified in the data [F(1.47, 55.72) = 1.82, p = 0.18, 95% CI [0, 

0.18], ηp2 = 0.05]. Paired samples t-tests revealed a sole significant difference in perceived 

relaxation between D = 1.2 and D = 1.4 (see Table 3.3). No additional clusters are found 

amongst the participant ratings of pattern relaxation.  

Discussion 

Experiment 2 maintains the same methodological structure and perceptual decisions as 

Experiment 1A but replaces the ‘global-forest’ pattern with fractal ‘tree-seed’ patterns. Similar to 

Experiment 1, judgments of complexity and engagement increase with D-value and there is a 

trend for higher preference ratings for patterns with higher D-values and 2 subgroups with 

opposing responses for preference for pattern complexity. The smaller sample size in Experiment 

2 may have affected the strength of the overall positive trend. Also similar to Experiment 1, 

judgments for refreshing are similar across D-value. However, unlike Experiment 1, judgments 

of relaxing remain the same, rather than decrease, with D-value.  

General Discussion 

Evaluations of Euclidean human-made space can be altered by integrating the aesthetics 

of nature (Taylor et al., 2005; Hagerhall et al., 2015). Increased time spent amongst unnatural 

Euclidean structures is associated with higher rates of visual strain, headaches, and overall stress 

resulting from additional effort exerted by the visual system to process more artificial patterns 

(Hagerhall et al., 2008; O’Hare & Hibbard, 2011; Penacchio & Wilkins, 2015; Le et al., 2017; 

Ogawa & Motoyoshi, 2020). Fractal patterns have the opportunity to combat these negative 
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effects of unnatural environments by introducing easy to visually process natural patterns that 

can alter the occupants’ experience of a space. Previous research has shown that preference for 

statistically generated fractal patterns peaks at low-moderate fractal dimension (“D-value”), a 

level of complexity that is prevalent in nature. In contrast, preference for exact fractals peaks at 

higher D-values due to the increased order introduced by their exact repetition (Bies et al., 2016). 

In order to maximize the possible positive effects of a composite fractal design that may provide 

greater flexibility to be used in installations that vary in media, location, and artistic style, the 

current set of studies explores a novel range of perceptual responses to fractal designs that 

expands beyond typical measurements of viewer preference in order to categorize trends in 

fractal perception for individual and group profiles taken from a more expansive sample of 

observers.  

Across 3 experiments that vary in stimulus pattern composition, participant population, 

and rating scale we find similar trends in fractal perception. Experiment 1 used ‘global-forest’ 

fractal designs to demonstrate that ratings of pattern complexity, engagement, and preference 

increase with fractal complexity or D-value. In contrast, perception of pattern refreshment stays 

constant across D-value while perception of relaxation decreases with increasing D-value. 

Experiment 2 investigates the contribution of the local ‘tree-seed’ patterns to ratings of the 

“global-forest” designs. By replicating Experiment 1A using images of individual ‘tree-seed’ 

patterns that feature in the global design, we are able to get a measure of the contribution of the 

local patterns to the ratings of the overall composite design. Results demonstrate that most of the 

trends in participant ratings remain consistent with those of the overall fractal installation design. 

Specifically, perceptions of pattern complexity and engagement, and to a certain extent 

preference, all increase with increasing D-value. Also similar are judgments for refreshing which 
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in all experiments are similar across D-value. However, unlike Experiment 1, judgments of 

relaxing remain the same, rather than decrease, with D-value. These results suggest that the local 

patterns contribute to the perception of the global design. Thus, across this set of studies, robust 

perceptions of fractal patterns remain consistent across countries, methodology, and to a certain 

extent, pattern design. The use of unipolar and bipolar scales between Experiments 1A and 1B 

show similar overall trends for the ‘global-forest’ fractal designs.  

Across both studies subgroupings have a significant impact on overall trends, supporting 

previous findings of individual differences in preference for fractal complexity (Bies et al., 2016; 

Spehar et al., 2016; Street et al., 2016). Opposing subgroup trends are found for perceptual 

ratings of preference, refreshing, and relaxing. The opposing nature of these subgroups can serve 

to inform industrial design choices when selecting fractal patterns for installation by taking into 

consideration the D-value with the greatest agreement amongst individuals for the various 

judgments, thus benefiting the majority of occupants without negatively affecting the experience 

of subgroups of occupants. Specifically, if the goal is to optimize the engagement, preference, 

refreshment, and relaxation qualities of the fractal design across participants, then a pattern with 

mid-high D-value would provide this optimal balance, since these patterns have the greatest 

agreement among individual participant ratings for preference, engagement and refreshment 

while maintaining mid- range relaxing effects that become much lower for patterns with the 

highest D-values. More generally, our results highlight the potential of fractals for human-

centered design - the choice of D value might ultimately depend on both the occupants and the 

functionality of the space (e.g., classrooms might be different from hospitals).  

Both studies also demonstrate an effect of pattern randomization, whereby ratings of 

engagement, preference, refreshing, and relaxing qualities are slightly higher for non- 
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randomized compared to randomized patterns. Fortunately, for many of the installations (e.g., 

carpets and projected light patterns) the visibility of the edges defining the randomly positioned 

tiles is much less apparent in the installations than in the randomized patterns presented here.  

Lastly, the similarity between findings of Study 1A and 1B are not impacted by the 

geographical location of participants. Our findings suggest that perceptions of fractal patterns are 

not altered by the diverse natural environments where participants reside. This result supports the 

finding that preference for fractal complexity forms early in human development (sometime prior 

to three years of age) and is not further altered by life experience in western participants (Robles 

et al., 2020). Although this study recruits from a broader group of participants, our findings are 

still limited due to the overarching homogeneity in “WEIRD” participant samples. However, the 

addition of variation in geographical location and composition of cultural subgroupings suggests 

that these consistent perceptions of fractal patterns are experienced by broader populations 

around the global, thus encouraging further studies addressing fractal perceptions in more 

diverse samples. Taken as a whole, findings from Experiment 1 lends support to possible 

universality of fractal pattern perception, despite variability in testing methods, individual 

differences driving rating subgroups, and samples coming from experience with two different 

natural landscapes.  

The “global-forest” patterns with D = 1.6 have already been installed into humanmade 

spaces in hopes of reducing occupant stress while increasing the aesthetic experience of the 

space. For patterns to successfully decrease stress levels, they must elicit lower physiological 

arousal and provide a restorative effect for attention (Hagerhall et al., 2015). Relaxation and 

refreshment coincide with lower levels of arousal whereas engagement requires elevated levels 

of arousal. For installations to be effective without altering the overall aesthetics of the space, 
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patterns must balance desirable levels of preference and engagement with relaxing and refreshing 

qualities. Unlike the fractal preference for natural statistical fractals (Spehar et al., 2016), 

preference for the current fractal patterns increase with increasing D-value more similar to fractal 

patterns that repeat in an exact manner (Bies et al., 2016). This result may be due to a number of 

factors including: (1) an increased preference for patterns with higher element density that is 

present in the higher D-value patterns; (2) the introduction of Euclidean structure and exact 

repetition found in the repeating rows of the ‘tree-seed’ patterns; and (3) the visibility of the 

square-shaped seed pattern that is used to grow the fractal ‘tree-seed’ patterns. For a biophilic 

installation to have the greatest stress reducing effect, the fractal design would be required to 

possess a mid-high D-value which would maintain elevated pattern preference, but not suffer 

from the steepest decline in pattern relaxation that occurs at the highest D-values. The fractal 

patterns employed in the installations shown in Figure 3.4 all have these optimal mid-high D-

values.  

Future studies will further explore the ways in which these fractal designs impact 

occupants’ perceptions by expanding our studies to assess the extent to which our findings apply 

to broader populations of participants, additional changes in pattern design (including different 

local components, global flight-path arrangements, and global design), and can be directly 

identified with changes in physiological and verbal measures of stress and arousal. Further 

replications will be conducted utilizing Virtual Reality (VR) to assess responses to these patterns 

installed in 3-dimensional architectural spaces in order to more directly manipulate participant 

experience and measure changes in psychological effects in an immersive environment. By 

balancing perceptual factors, patterns can be produced and installed to maximize aesthetic 

experiences of particular spaces. The collaboration of design, physics, psychology, and 
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technology provides a vital opportunity to test for and determine visual patterns that produce 

optimal perceptual responses and experiences in occupants of human-made structures. By 

selecting fractal patterns with D-values that are appropriate for particular built environments and 

mediums, instillations of these natural patterns have the opportunity to decrease eye- strain, 

headache rates, and stress (O’Hare & Hibbard, 2011; Penacchio & Wilkins, 2015; Le et al., 

2017) in a large percentage of viewers (Bies et al., 2016; Street et al., 2016; Pyankova et al., 

2019) while potentially increasing the aesthetic experience of the space.  
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CHAPTER IV 

BRINGING NATURE INDOORS: CHARACTERIZING THE UNIQUE CONTRIBUTION OF 

FRACTAL STRUCTURE AND THE EFFECTS OF EUCLIDEAN CONTEXT ON 

PERCEPTION OF FRACTAL PATTERNS 

From Robles, K. E., Gonzales-Hess, N., Taylor, R. P., & Sereno, M. E. (2023). Bringing nature 
indoors: Characterizing the unique contribution of fractal structure and the effects of Euclidean 
context on perception of fractal patterns. Frontiers in Psychology. (Manuscript under revision). 

 

The positive impact of bringing nature indoors reaches far beyond the aesthetic benefits 

of adding a plant to an office windowsill (Berman et al., 2008; Korpela et al., 2017). Fractals 

embody the self-similar pattern repetition found throughout nature (Mandelbrot, 1982; Taylor, 

2021) and have been harnessed to improve occupant wellbeing (Smith et al., 2020; Taylor & 

Sprott, 2008). Exemplified by research supporting fractal fluency theory (Taylor & Spehar, 

2016; Taylor et al., 2018) the visual system is tuned to more efficiently process fractal patterns of 

low-moderate complexity which are prevalent through nature (Spehar et al., 2003; Taylor et al., 

2018; Hagerhall et al., 2008). This processing fluency supports perceptions of high aesthetic 

quality (Friedenberg et al., 2021) as well as peaks in task performance (Juliani et al., 2016; 

Spehar et al., 2015; Burtan et al., 2021; Taylor et al., 2017; Ferreira et al., 2012). In the same 

manner in which exposure to nature encourages positive psychological states (Ulrich, 1981; 

Ulrich et al., 1991; Kellert, 1993; Kaplan & Kaplan, 1982; Kaplan & Kaplan, 1989; Hagerhall et 

al., 2015) incorporation of fractal patterns into visual surroundings supports the biophilic 

hypothesis of a fundamental human need for connection to nature (Wilson, 1984).  

Across a robust body of research (Spehar et al., 2003; Bies et al., 2016; Robles et al., 

2020) as well as prevalence in artistic works (Taylor et al., 1999; Graham & Field, 2008; 

Graham & Redies, 2010; Taylor et al., 2018; Vienkgham & Spehar, 2018; Taylor, 2003; Taylor 
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et al., 2007), fractal arrangements have demonstrated a high aesthetic quality. Judgments of 

fractal preference closely follow variations in perceived pattern complexity, with those 

possessing exact repetition and symmetry encouraging a greater tolerance for objective 

complexity than those that repeat in a statistical manner more common throughout the natural 

world (Taylor et al., 2005; Hagerhall et al., 2015; Taylor et al., 2011; Bies et al., 2016; Taylor & 

Sprott, 2008; Robles et al., 2020). Objective pattern intricacy results from variations in the 

relative coarse-to-fine pattern structure determined by internal pattern factors such as variations 

in recursion (number of repetitions across scales) and complexity of fractal dimension “D-value” 

(the rate of pattern shrinkage between repetitions to quantify the ratio of fine structure), 

perceived pattern complexity also constrains broader pattern judgments (Robles et al., 2021; 

Abboushi et al., 2019). Selection of optimal fractal features expands beyond observed 

improvements to aesthetic experiences of a given object, to facilitate viewer cognition and 

performance on a wide span of tasks (Juliani et al., 2016; Abboushi et al., 2019; Taylor et al., 

2018; Roe et al., 2020; Spehar & Stevanov, 2021).  

In stark contrast to the statistical configuration of nature embodied by fractals, 

humanmade spaces are composed of Euclidean arrangements which require further energy to 

sufficiently process (Taylor, 2006; Hagerhall et al., 2008; Le et al., 2017). Alongside diminished 

aesthetic experiences (for review see Brielmann et al., 2022) greater time spent inside artificial 

environments coincides with negative health effects including visual strain, headaches, and 

general increases in feelings of stress (Pennacchio & Wikins, 2015; O’Hare & Hibbord, 2011; 

Ogawa & Motoyoshi, 2020). In recent years interior design has sought to inject more naturalistic 

elements into interior space to improve occupant experiences (Smith et al., 2020; Korpela et al., 

2017). Specifically, fractal installations have been manufactured to explicitly address the 
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problems of an overabundance of unnatural spatial frequencies in occupant space by providing 

an opportunity to help mitigate the negative effects of Euclidean environments without 

compromising the utility of a given structure (Smith et al., 2020; Roe et al., 2020; Taylor & 

Sprott, 2008). The benefit of bringing natural design indoors can be maximized through 

conscientious selection of fractal configurations that balance aesthetic and perceptual properties 

of the pattern along with the confining factors of the space.  

The current study investigates the influence of pattern structure on observer experiences, 

specifically how internal composition (with the presence or absence of fractal organization) and 

external context (with the presence or absence of surrounding Euclidean configuration) alter 

well-established trends in fractal perception (Robles et al., 2021; Abboushi et al., 2019). In the 

first ever study to compare ratings of fractal images to corresponding statistically matched 

nonfractal patterns, unipolar ratings are collected across a broad range of experiential 

measurements to isolate the impact of fractal structure on predictable viewer experience. The 

goal of this series of experiments is to establish an empirical basis for guiding optimal 

installment of fractal-based designs to maximize pattern effectiveness in eliciting various 

psychological experiences of a space. Moreover, results from subgroup analyses will inform 

calculated selection of designs that balance various internal pattern factors (including complexity 

and arrangement) as well as surrounding structure in order to accommodate occupants with 

contradictory preferences. 

 

Experiment 1 – Isolating the impact of fractal structure on pattern perception 

Materials and Methods 

Stimuli: 



 

117 

 

In order to isolate the unique influence of fractal structure, participants were presented 

with both fractal and matched non-fractal images. All stimuli are first generated as fractal images 

and then systematically altered to produce non-fractal matches. Fractal patterns are initially 

generated in a graphic user interface (GUI) using midpoint displacement produce a series of 5 

black-white fractal images per unique seed pattern (D-value of 1.1, 1.3, 1.5, 1.7, 1.9) (Figure 

4.1A). The non-fractal control stimuli were created by generating normally distributed white 

noise, which was then Fourier transformed and band-pass filtered to match the average region 

size of a given fractal stimulus (Figure 4.2). The control stimuli are matched to the 5 levels of 

fractal dimension in two ways: 1) by equating mean region size (mean number of contiguous 

white or black pixels >3 pixels in a given 

fractal stimulus; “Average” control; see 

Figure 4.1B), and 2) by capturing larger 

scale structure by matching the upper 

mean (the mean of all above-average 

region sizes) in a given fractal image; 

“Large” scale control; see Figure 4.1C). 

This procedure generates control stimuli 

with similar levels of intricacy to their 

fractal matches, but without their fractal 

characteristics.  

Participants: 

To quantify the unique impact of 

Figure 4.1. Examples of the three stimulus patterns 
generated by the same seed pattern and ranging from low 
(left column) to high intricacy (right column). (A) Fractals: 
fractal patterns with a fractal dimension (D) = 1.1, 1.5, and 
1.9. (B) Average-nonfractals: non-fractal patterns with 
region sizes averaged to match the average region size of 
the original fractal pattern. (C) Large-nonfractals: non-
fractal patterns with region sizes averaged to match the 
large-scale region size of the original fractal pattern. 

   

  

 



 

118 

 

underlying fractal structure on observer perceptions, 110 undergraduate Psychology students 

from the University of Oregon were recruited for the current study through the SONA participant 

pool system (69 females, age ranging between 18-32 years old, mean age 21 years old). Prior to 

participation, informed consent was acquired following a protocol approved by the Institutional 

Review Board at the University of Oregon and demographic information was collected. All 

participants were compensated with class credit.  

Visual Displays: 

Experiment 1 was generated in PsychoPy3 (Peirce et al., 2019). Participants were seated 

approximately 70cm from a computer with 27-inch monitor with screen resolution of 2,560 X 

1440 pixels and 60Hz refresh rate. Thus, stimuli size was roughly 720 x 720 pixels or 13.8 

degrees of visual angle across.  

Design and Procedure:  

Participants completed 18 randomized blocks of self-report slider judgments, with each 

block consisting of one pattern type (fractal, basic non-fractal, upper non-fractal) and a singular 

judgment type (complexity, appeal, naturalness, interest, relaxing, exciting). Each block’s 

stimulus set consisted of 4 unique patterns ranging across 5 levels of intricacy (equal or matched 

to a D-value 1.1, 1.3, 1.5, 1.7, 1.9) giving rise to 20 trials per block and 360 total stimulus-related 

trials across the experiment. At the start of each block, participants were instructed to make a 

single randomly ordered judgment for each stimulus presented in that block. Specifically, they 

were asked to answer one of 6 questions for each block: “How _______ is the image?” with one 

of 6 different words placed in the blank (complex, appealing, natural, interesting, relaxing,  
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Figure 4.2. Two examples of the control stimulus 
generation process. A field of normally distributed 
white noise is generated, then processed using a Fast 
Fourier Transform to yield the frequency domain. 
The resulting frequency information was then 
multiplied with a circular filter to eliminate some 
amount of high frequency information. The product 
was then inverse Fast Fourier Transformed to yield 
the final noise pattern, which was then thresholded 
to produce a black and white image. (A) shows a 
wide filter, which results in a large range of 
frequencies in the final image, (B) employs a tighter 
filter, which eliminates higher frequencies and 
produces a final pattern with lower frequency 
information. The algorithm used to generate control 
stimuli systematically manipulated filter size to 
produce controls that closely matched the average 
region size of a given fractal stimulus. 
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exciting). Participants rated each pattern by clicking on a slider located beneath the image 

ranging between 0-1, with the “0” end of the slider indicating “not at all” and the “1” end of the 

slider indicating “completely.” They were instructed to use the full range of the slider and stimuli 

remained on the screen until a response was recorded. Upon completion of the experiment, 

participants were debriefed according to the protocol approved by the Institutional Review Board 

at the University of Oregon. 

Results 

Data from 94 participants were retained from the 110 individuals who participated in the 

experiment. Data were excluded due to 1) failure to complete the study (3 participants), 2) failure 

to follow directions (8 participants), or 3) in greater than 3 blocks, a participant made 4 or more 

consecutive ratings that were within a thousandth of a degree of one another (5 participants).  

Pattern Judgment Task:  

A 3-way repeated-measures 3x5x6 ANOVA (Pattern-Type (fractal, Average-nonfractal, 

Large-nonfractal) x Intricacy (equal or matched to D-values of 1.1, 1.3, 1.5, 1.7, 1.9) x Judgment 

(complexity, appeal, naturalness, interest, relaxing, exciting)) was performed using IBM SPSS 

Statistics for Macintosh, (Version 28.0) on rating data for the black-white patterns (recorded as 

location selected on a rating response slider). Mauchly’s test indicated a violation of the 

assumption of sphericity for Pattern-type (χ2(2)=21.69, p<.001**), Intricacy (χ2(9)=415.06, 

p<.001**), Judgment (χ2(14)=45.21, p<.001**), as well as the interactions between Pattern-type 

and Intricacy (χ2(35)=562.39, p<.001**), Intricacy and Judgment (χ2(209)=1723.43, p<.001**), 

Pattern-type and Judgment (χ2(54)=135.04, p<.001**), and the three-way interaction among 

Pattern-type, Intricacy, and Judgment (χ2(819)=2282.14, p<.001**). Therefore, degrees of 

freedom were corrected using Greenhouse-Geisser estimates of sphericity (ε=.826, .343, .832, 
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.338, .258, .756, and .348 respectively). 

Indicated with a double asterisk for significance 

of p<.001 and a single asterisk for significance 

of p<.05, were significant main effects of 

Intricacy (F(1.37,127.63)=17.77, p<.001**, 95% 

CI [.06,.27], ηp2=.16), Pattern-type 

(F(1.65,153.72)=3.78, p<.001**, 95% CI [0,.31], 

ηp2=.25), and Judgment (F(4.16,387.07)=19.67, 

p<.001**, 95% CI [.10,.53], ηp2=.41). Additional 

significant interactions were detected between 

Intricacy and Judgment (F(5.15,479.28)=158.30, 

p<.001**, 95% CI [.58,.67], ηp2=.63), Intricacy 

and Pattern-type (F(2.71,251.69)=11.37, 

p<.001**, 95% CI [.04,.18], ηp2=.10), Pattern-

type and Judgment (F(7.56,703.03)=65.43, 

p<.001**, 95% CI [.36,.46], ηp2=.41), as well as 

Intricacy, Pattern-type, and Judgment 

(F(13.92,1294.3)=15.56, p<.001**, 95% CI 

[.10,.17], ηp2=.14). For the Intricacy and 

Judgment interaction, some judgments had 

ratings that decreased with additional intricacy 

(appeal, interesting, natural, relaxing), while others were relatively flat (exciting) or increased 

(complexity) (Figure 4.3A). For the Pattern-type and Intricacy interaction, ratings for the fractal, 

Figure 4.3. Experiment 1 results for the 3 
pattern-types using a unipolar rating scale. 
Results show significant interactions among the 
experiment’s 3 factors: intricacy, pattern type 
(fractal, Average-nonfractal, Large-nonfractal), 
and judgment type (appeal, complexity, exciting, 
interestingness, engaging, relaxing). Participant 
rating (on a scale from 0-1) is plotted as a 
function of (A) intricacy and different judgment 
conditions, (B) intricacy and different pattern 
type, and (C) judgment and pattern type.  
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large non-fractal, and original non-fractal patterns were either relatively flat, decreased at the 

highest level of intricacy, or decreased across levels of intricacy, respectively (Figure 4.3B). 

Finally, for the Judgment by Pattern Type interaction, the differences in ratings among the 3 

pattern types varied across judgment type (Figure 4.3C). The 3-way interaction indicates that the 

Pattern-type by Intricacy interaction varied across Judgment-type, seen more clearly in Figure 

4.4 (leftmost column of graphs). A series of planned ANOVA’s and t-tests follow to better 

explore the interaction between pattern Intricacy and Type across various Judgments and 

whether these perceptual trends can be better explained by subgroups determined by a 2-step 

cluster analysis. 

Appeal: A 2-way 5x3 repeated-measures ANOVA (Intricacy (equal or matched to D-

values of 1.1, 1.3, 1.5, 1.7, 1.9) x Pattern-type (fractal, Average-nonfractal, Large-nonfractal,)) 

was completed to examine the impact of Intricacy and Pattern-type on ratings of image appeal 

(Figure 4.4A). A violation of the assumption of sphericity was indicated by Mauchly’s test for 

Pattern-type (χ2(2)=25.28, p<.001**), Intricacy (χ2(9)=238.57, p<.001**), and the interaction 

between Pattern-type and Intricacy (χ2(35)=394.10, p<.001**), thus degrees of freedom were 

corrected using Greenhouse-Geisser estimates of sphericity (ε=.806, .420 and .443 respectively). 

There were significant main effects of Pattern-type (F(1.63,149.97)=63.64, p<.001**, 95% CI 

[.29,.50], ηp2=.41) and Intricacy (F(1.68,156.39)=113.65, p<.001**, 95% CI [.45,.62], ηp2=.55), 

and a significant interaction between Pattern-type and Intricacy (F(3.54,329.46)=16.48, 

p<.001**, 95% CI [.08,.21], ηp2=.15). Collapsed over pattern-type, average ratings of appeal 

ranged from a high of .60 (SD=.18) for the least intricate patterns to a low of .33 (SD=.19) for the 

most intricate patterns indicating that appeal decreases with additional pattern intricacy. 

Collapsed over intricacy, average ratings of appeal were significantly higher for Large-nonfractal  
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Figure 4.4. Experiment 1 results for the 3 patterns across 5 different judgment conditions (appeal, 
complexity, exciting, interestingness, engaging, relaxing). (A-F left images) Show plots of mean 
ratings as a function of pattern intricacy (displayed as corresponding fractal dimension “D-value”) and 
pattern type (fractal, Average-nonfractal, Large-nonfractal) for the different judgment conditions (error 
bars represent standard error of the mean). (A-F middle and right images) Show plots of mean ratings 
as a function of intricacy and pattern type for each subpopulation identified with cluster analysis (error 
bars represent standard error of the mean). 
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(M=.52; SD=.08) and fractal (M=.50; SD=.12) patterns compared to Average-nonfractal patterns 

(M=.37; SD=.12): Average-nonfractals and fractals [t(93)=-7.69, p<.001**, 95% CI [-.17,-.10], 

d=.79]; Average-nonfractals and Large-nonfractals [t(93)=-13.31, p<.001**, 95% CI [-.17,-.13], 

d=1.37]. These results indicate an overall preference for the fractal and Large-nonfractal 

patterns, both of which contain large-scale structure. The interaction between Pattern-type and 

Intricacy demonstrates decreasing ratings of appeal across intricacy for both the non-fractal 

patterns but a decrease then leveling off of ratings across intricacy for the fractal patterns.  

There were significant differences among the ratings of appeal across the three pattern 

types for individual levels of intricacy: D=1.1 between Average-nonfractals and Large-

nonfractals [t(93)=-5.70, p<.001**, 95% CI [-.17,-.08], d=.59] as well as fractals and Large-

nonfractals [t(93)=-3.40, p=.001*, 95% CI [-.13,-.03], d=.35]; D=1.3 between Average-

nonfractals and fractals [t(93)=-4.05, p<.001**, 95% CI [-.16,-.05], d=.42], Average-nonfractals 

and Large-nonfractals [t(93)=-8.33, p<.001**, 95% CI [-.24,-.14], d=.86], and fractals and 

Large-nonfractals [t(93)=-4.34, p<.001**, 95% CI [-.12,-.05], d=.45];  D=1.5 between Average-

nonfractals and fractals [t(93)=-5.76, p<.001**, 95% CI [-.17,-.08], d=.59], Average-nonfractals 

and Large-nonfractals [t(93)=-12.71, p<.001**, 95% CI [-.22,-.16], d=1.31], and fractals and 

Large-nonfractals [t(93)=-2.96, p=.004*, 95% CI [-.11,-.02], d=.31]; D=1.7 between Average-

nonfractals and fractals [t(93)=-7.26, p<.001**, 95% CI [-.22,-.13], d=.99] and Average-

nonfractals and Large-nonfractals [t(93)=-9.65, p<.001**, 95% CI [-.21,-.14], d=.99]; D=1.9 

between Average-nonfractals and fractals [t(93)=-8.61, p<.001**, 95% CI [-.27,-.17], d=.89], 

Average-nonfractals and Large-nonfractals [t(93)=-4.31, p<.001**, 95% CI [-.09,-.03], d=.44], 

and fractals and Large-nonfractals [t(93)=6.17, p<.001**, 95% CI [.11,.21], d=.64]) (see Table 

4.1 for complete information). 
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Table 4.1: Experiment 1- Paired Samples t-Tests between patterns across Intricacy and Judgment  

Appeal 

 1.1 1.3 1.5 1.7 1.9 

Average nonfractal - 

Fractal 

t = -1.597 

p = .11 

t = -4.054 

p < .001** 

t = -5.763 

p < .001** 

t = -7.264 

p < .001** 

t = -8.606 

p < .001** 

Average nonfractal – 

Large nonfractal 

t = -5.699 

p < .001** 

t = -8.333 

p < .001** 

t = -12.709 

p < .001** 

t = -9.645 

p < .001** 

t = -4.319 

p < .001** 

Fractal –  

Large nonfractal 

t = -3.398 

p < .001** 

t = -4.343 

p < .001** 

t = -2.959 

p = .004* 

t = -7.264 

p < .001** 

t = 6.173 

p < .001** 

Complex 

 1.1 1.3 1.5 1.7 1.9 

Average nonfractal - 

Fractal 

t = 6.499 

p < .001** 

t = 8.582 

p < .001** 

t = 10.137 

p < .001** 

t = 9.168 

p < .001** 

t = 8.638 

p < .001** 

Average nonfractal – 

Large nonfractal 

t = 19.198 

p < .001** 

t = -3.361 

p < .001** 

t = 12.820 

p < .001** 

t = 12.692 

p < .001** 

t = 7.557 

p < .001** 

Fractal –  

Large nonfractal 

t = 8.102 

p < .001** 

t = -10.454 

p < .001** 

t = 2.150 

p = .03* 

t = 1.564 

p = .12 

t = -3.119 

p = .002* 

Exciting 

 1.1 1.3 1.5 1.7 1.9 

Average nonfractal - 

Fractal 

t = 3.369 

p < .001** 

t = 2.186 

p = .03* 

t = 0.326 

p = .75 

t = -1.702 

p = .09 

t = -3.035 

p = .003* 

Average nonfractal – 

Large nonfractal 

t = 4.202 

p < .001** 

t = 1.926 

p = .06 

t = -2.722 

p = .01* 

t = -2.785 

p = .01* 

t = -1.427 

p = .16 

Fractal –  

Large nonfractal 

t = 0.710 

p = .48 

t = -0.409 

p = .68 

t = -3.129 

p = .002* 

t = -1.154 

p = .25 

t = 2.225 

p = .03* 
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Table 4.1. (continued) 

Interesting 

 1.1 1.3 1.5 1.7 1.9 

Average nonfractal - 

Fractal 

t = 0.861 

p = .39 

t = -2.235 

p = .03* 

t = -3.327 

p < .001** 

t = -4.530 

p < .001** 

t = -3.933 

p < .001** 

Average nonfractal – 

Large nonfractal 

t = 2.955 

p = .004* 

t = -0.863 

p = .39 

t = -6.501 

p < .001** 

t = -6.283 

p < .001** 

t = -3.403 

p < .001** 

Fractal –  

Large nonfractal 

t = 2.409 

p = .02* 

t = 1.336 

p = .19 

t = -2.577 

p = .01* 

t = -0.977 

p = .33 

t = 1.567 

p = .12 

Natural 

 1.1 1.3 1.5 1.7 1.9 

Average nonfractal - 

Fractal 

t = -6.675 

p < .001** 

t = -7.801 

p < .001** 

t = -7.908 

p < .001** 

t = -6.637 

p < .001** 

t = -3.942 

p < .001** 

Average nonfractal – 

Large nonfractal 

t = -8.193 

p < .001** 

t = -6.847 

p < .001** 

t = -4.424 

p < .001** 

t = -4.428 

p < .001** 

t = -2.133 

p = .04* 

Fractal –  

Large nonfractal 

t = 0.591 

p = .56 

t = -6.847 

p < .001** 

t = 3.641 

p < .001** 

t = 4.076 

p < .001** 

t = 3.267 

p = .002* 

Relaxing 

 1.1 1.3 1.5 1.7 1.9 

Average nonfractal - 

Fractal 

t = -3.364 

p < .001** 

t = -6.619 

p < .001** 

t = -10.337 

p < .001** 

t = -9.572 

p < .001** 

t = -8.991 

p < .001** 

Average nonfractal – 

Large nonfractal 

t = -11.514 

p < .001** 

t = -13.837 

p < .001** 

t = -11.013 

p < .001** 

t = -9.145 

p < .001** 

t = -5.337 

p < .001** 

Fractal –  

Large nonfractal 

t = -6.216 

p < .001** 

t = -5.151 

p < .001** 

t = 0.936 

p = .035* 

t = 3.182 

p = .002* 

t = 6.085 

p < .001** 

* indicating significance of p<.05, ** indicating significance p<.001. 

 

To account for possible effects of participant subgroups driving the overall observed 
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trends, a two-step cluster analysis was performed (see Robles et al., 2021). In accordance with 

and described in Norušis (2012) hierarchical cluster analyses were first completed using Ward’s 

method to separate individuals into groups using their appeal ratings for each level of pattern 

intricacy. The resulting agglomeration matrix did not indicate a multiple cluster solution, thus 

not prompting a follow up k-means clustering analysis.  

Complexity: A 2-way 5x3 repeated-measures ANOVA (Intricacy (equal or matched to D-

values of 1.1, 1.3, 1.5, 1.7, 1.9) x Pattern-type (fractal, Average-nonfractal, Large-nonfractal)) 

was completed to examine the impact of Intricacy and Pattern-type on pattern complexity 

judgments (Figure 4.4B). Assumptions of the violation of sphericity were indicated by 

Mauchly’s test for Intricacy (χ2(9)=185.69, p<.001**), Pattern-type (χ2(2)=6.46, p=.04*), and the 

interaction between Intricacy and Pattern-type (χ2(35)=238.83, p<.001**), thus degrees of 

freedom were corrected using Greenhouse-Geisser estimates of sphericity (ε=.472, .936 and .511 

respectively). A significant main effect of Intricacy (F(1.89,175.41)=983.37, p<.001**, 95% CI 

[.89,.93], ηp2=.91), Pattern-type (F(1.87,174.19)=183.63, p<.001**, 95% CI [.58,.72], ηp2=.66), 

and interaction between Intricacy and Pattern-type (F(4.09,380.12)=25.88, p<.001**, 95% CI 

[.14,.28], ηp2=.22) were identified. Average complexity ratings (collapsed over Pattern-type) 

ranged from .32 (SD=.27) for the least intricate patterns to .77 (SD=.11) for the most intricate 

patterns, indicating that participant perception of complexity increased with greater amount of 

visual intricacy. Average complexity ratings (collapsed over Intricacy) were highest for Average-

nonfractal (M=.67; SD=.07), middling for fractal (M=.54; SD=.08), and lowest for Large-

nonfractal (M=.49; SD=.08) patterns, indicating highest overall perceived complexity for the 

original-non-fractal patterns, lowest perceived complexity for the Large-nonfractal patterns, with 

fractal patterns in the middle. The significant differences among the ratings of complexity across 
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the three pattern types were as follows: between Average-nonfractals and fractals [t(93)=12.43, 

p<.001**, 95% CI [.11,.16], d=1.28], Average-nonfractals and Large-nonfractals [t(93)=21.40, 

p<.001**, 95% CI [.17,.20], d=2.21], and fractals and Large-nonfractals [t(93)=4.83, p<.001**, 

95% CI [.03,.07], d=.50]. The interaction between Pattern-type and Intricacy demonstrates a 

similar increase in ratings of complexity across intricacy for Average-nonfractal and fractal 

patterns but a steeper increase across intricacy for the Large-nonfractal patterns.  

There were significant differences among the ratings of complexity across the three 

pattern types for individual levels of intricacy: D=1.1 between Average-nonfractals and fractals 

[t(93)=6.50, p<.001**, 95% CI [.08,.15], d=.67], Average-nonfractals and Large-nonfractals 

[t(93)=19.20, p<.001**, 95% CI [.21,.25], d=1.97] as well as fractals and Large-nonfractals 

[t(93)=8.10, p<.001**, 95% CI [.09,.15], d=.84]; D=1.3 between Average-nonfractals and 

fractals [t(93)=8.94, p<.001**, 95% CI [.11,.18], d=.93], Average-nonfractals and Large-

nonfractals [t(93)=21.88, p<.001**, 95% CI [.25,.30], d=2.25], and fractals and Large-

nonfractals [t(93)=8.58, p<.001**, 95% CI [.10,.16], d=.88]; D=1.5 between Average-

nonfractals and fractals [t(93)=10.14, p<.001**, 95% CI [.11,.17], d=1.04], Average-nonfractals 

and Large-nonfractals [t(93)=12.82, p<.001**, 95% CI [.15,.20], d=1.32], and fractals and 

Large-nonfractals [t(93)=2.15, p=.03*, 95% CI [.00,.06], d=.21]; D=1.7 between Average-

nonfractals and fractals [t(93)=9.17, p<.001**, 95% CI [.11,.17], d=.95] and Average-nonfractals 

and Large-nonfractals [t(93)=12.69, p<.001**, 95% CI [.14,.19], d=1.31]; D=1.9 between 

Average-nonfractals and fractals [t(93)=8.64, p<.001**, 95% CI [.10,.17], d=.89], Average-

nonfractals and Large-nonfractals [t(93)=7.56, p<.001**, 95% CI [.06,.10], d=.78], and fractals 

and Large-nonfractals [t(93)=-3.12, p<.001**, 95% CI [-.09,-.02], d=.32]) (Table 4.1). Cluster 

analyses did not indicate a multiple cluster solution. 
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Exciting: A 2-way 5x3 repeated-measures ANOVA (Intricacy (equal or matched to D-

values of 1.1, 1.3, 1.5, 1.7, 1.9) x Pattern-type (fractal, Average-nonfractal, Large-nonfractal)) 

was completed to examine the impact of Intricacy and Pattern-type on ratings of pattern 

excitement (Figure 4.4C). A violation of the assumption of sphericity was indicated by 

Mauchly’s test for Intricacy (χ2(9)=442.0, p<.001**), Pattern-type (χ2(2)=6.67, p=.04*), as well 

as the interaction between these factors (χ2(35)=515.16, p<.001**), thus degrees of freedom 

were corrected using Greenhouse-Geisser estimates of sphericity (ε=.312, .935, and .391 

respectively). A significant main effect of Intricacy (F(1.28,119.41)=3.921, p=.04*, 95% CI 

[0,.12], ηp2=.04) and interaction between Intricacy and Pattern-type (F(3.13,290.98)=10.96, 

p<.001**, 95% CI [04,.17], ηp2=.11) were identified. Collapsed over Pattern-type, the mean 

excitement ratings ranged from a low of .45 (SD=.20) for the least intricate patterns to a high of 

.52 (SD=.15) with moderate-high intricacy. The interaction between Pattern-type and Intricacy 

demonstrates different trends for the different pattern types, with an increase in ratings of 

excitement across intricacy for the fractal patterns, an increase then leveling off of ratings for the 

large nonfractal patterns, and flat or slightly decreasing ratings for the original nonfractal 

patterns.  

There were significant differences among the ratings of excitement across the three 

pattern types for individual levels of intricacy: D=1.1 between  Average-nonfractals and fractals 

[t(93)=3.37, p=.001*, 95% CI [.04,.15], d=.35] and Average-nonfractals and Large-nonfractals 

[t(93)=4.20, p<.001**, 95% CI [.06,.16], d=.43]; D=1.3 between Average-nonfractals and 

fractals [t(93)=2.19, p=.03*, 95% CI [.01,.10], d=.23]; D=1.5 between Average-nonfractals and 

Large-nonfractals [t(93)=-2.72, p=.008*, 95% CI [-.10,-.02], d=.28], and fractals and Large-

nonfractals [t(93)=-3.13, p=.002*, 95% CI [-.11,-.02], d=.32]; D=1.7 between Average-
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nonfractals and Large-nonfractals [t(93)=-2.79, p=.006*, 95% CI [-.11,-.02], d=.29]; D=1.9 

between Average-nonfractals and fractals [t(93)=-3.04, p=.003*, 95% CI [-.16,-.03], d=.42] and 

fractals and Large-nonfractals [t(93)=2.23, p=.03*, 95% CI [.01,.12], d=.23]) (Table 4.1).  

A 2-step cluster analysis identified and separated individuals into two subgroups with 

respect to ratings of pattern excitement (Figure 4.4C). To test whether the trends found above 

varied by subgroup, we performed a mixed ANOVA with 5 levels of pattern Intricacy, 3 levels 

of Pattern-type, and 2 Subgroups. Mauchly’s test indicated a violation of the assumptions of 

sphericity for Intricacy (χ2(9)=260.38, p<.001**), Pattern-type (χ2(2)=7.94, p=.02*), and the 

interaction between Intricacy and Pattern-type (χ2(35)=514.25, p<.001**). Therefore, degrees of 

freedom were corrected using Greenhouse-Geisser estimates of sphericity (ε=.412, .923 and .386 

respectively). The main effect of Intricacy (F(1.65,151.66)=2.66, p=.08, 95% CI [0,.09], ηp2=.03) 

and Pattern-type (F(1.85,169.82)=.91, p=.40, 95% CI [0,.05], ηp2=.01) were not significant, but 

significant interactions were identified between Intricacy and Pattern-type 

(F(3.09,284.14)=11.15, p<.001**, 95% CI [.04,.17], ηp2=.11), Pattern-type and Cluster 

membership (F(1.85,169.82)=47.59, p<.001**, 95% CI [.23,.44], ηp2=.34, Intricacy and Cluster 

membership (F(1.65,151.66)=101.61, p<.001**, 95% CI [.42,.60], ηp2=.53) as well as a three-

way interaction among Intricacy, Pattern-type, and Cluster membership (F(3.09,284.14)=3.26, 

p=.02*, 95% CI [0,.08], ηp2=.03). The larger cluster contains 57% of participants and 

demonstrates increases in excitement ratings with additional pattern intricacy. The smaller 

cluster encompasses 43% of participants and produces a trend in excitement ratings that 

decreases with additional intricacy, steeply for non-fractal patterns and subtly for fractal patterns. 

Although these represent opposing trends in judgments of excitement, each group is exemplified 

by a convergence of peak excitement ratings, respectively at either the lowest or highest levels of 
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pattern intricacy. In addition, the Average-nonfractal patterns show the highest and lowest levels 

of excitement in the larger and smaller subgroups, respectively. 

Interesting: A 2-way 5x3 repeated-measures ANOVA (Intricacy (equal or matched to D-

values of 1.1, 1.3, 1.5, 1.7, 1.9) x Pattern-type (fractal, Average-nonfractal, Large-nonfractal)) 

examined the impact of Intricacy and Pattern-Type on perceived pattern interest (Figure 4.4D). 

A violation of the assumption of sphericity was indicated by Mauchly’s test for Intricacy 

(χ2(9)=307.43, p<.001**), Pattern-type (χ2(2)=11.67, p=.003*), as well as the interaction 

between these two factors (χ2(35)=341.30, p<.001**), thus degrees of freedom were corrected 

using Greenhouse-Geisser estimates of sphericity (ε=.408, .894, and .500 respectively). There 

were significant main effects for Intricacy (F(1.63,151.61)=20.36, p<.001**, 95% CI [.08,.28], 

ηp2=.18) and Pattern-type (F(1.79,166.20)=10.06, p<.001**, 95% CI [.03,.18], ηp2=.10), and an 

interaction between Intricacy and Pattern-type (F(4,372.16)=11.67, p<.001**, 95% CI [.05,.17], 

ηp2=.11). Collapsed over Pattern-type, the mean ratings of interest ranged from a high of .56 

(SD=.55) for the least intricate patterns to a low of .44 (SD=.23) for the most intricate patterns, 

suggesting that participants interest decreases with additional pattern intricacy. Average interest 

ratings (collapsed over Intricacy) were highest for fractal (M=.53; SD=.10) and Large-nonfractal 

(M=.52; SD=.10), and lowest for Average-nonfractal (M=.46; SD=.16), indicating greater overall 

interest for fractal and Large-nonfractal patterns compared to Average-nonfractal patterns: 

Average-nonfractals and fractals [t(93)=-3.59, p<.001**, 95% CI [-.10,-.03], d=.37]; Average-

nonfractals and Large-nonfractals [t(93)=-3.88, p<.001**, 95% CI [-.09,-.03], d=.40]. The 

interaction between Pattern-type and Intricacy demonstrates a decrease in interestingness for 

fractal and Average-nonfractal patterns, with a steeper decrease for the Average-nonfractal 
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patterns, as well as an increase up to mid-intricacy patterns then a decrease for higher intricacy 

patterns for the Large-nonfractal patterns.  

There were significant differences among the ratings of interestingness across the three 

pattern types for individual levels of intricacy: D=1.1 between Average-nonfractals and Large-

nonfractals [t(93)=3.00, p=.004*, 95% CI [.03,.13], d=.30] as well as fractals and Large-

nonfractals [t(93)=2.41, p=.02*, 95% CI [.01,.10], d=.25]; D=1.3 between Average-nonfractals 

and fractals [t(93)=-2.24, p=.03*, 95% CI [-.10,-.01], d=.23]; D=1.5 between Average-

nonfractals and fractals [t(93)=-3.33, p=.001*, 95% CI [-.13,-.03], d=.34], Average-nonfractals 

and Large-nonfractals [t(93)=-6.50, p<.001**, 95% CI [-.18,-.10], d=.67], and fractals and 

Large-nonfractals [t(93)=-2.58, p=.01*, 95% CI [-.10,-.01], d=.27]; D=1.7 between Average-

nonfractals and fractals [t(93)=-4.53, p<.001**, 95% CI [-.16,-.06], d=.47] and Average-

nonfractals and Large-nonfractals [t(93)=-6.23, p<.001**, 95% CI [-.17,-.09], d=.65]; D=1.9 

between Average-nonfractals and fractals [t(93)=-3.93, p<.001**, 95% CI [-.17,-.06], d=.41] and 

Average-nonfractals and Large-nonfractals [t(93)=-3.40, p<.001**, 95% CI [-.12,-.03], d=.35] 

(Table 4.1).  

A 2-step cluster analysis identified and separated individuals into three distinct subgroups 

with respect to ratings of pattern interest (Figure 4.4D). We performed a mixed ANOVA with 5 

levels of pattern Intricacy, 3 levels of Pattern-type, and 3 Subgroups. Mauchly’s test indicated a 

violation of the assumptions of sphericity for Intricacy (χ2(9)=183.16, p<.001**), Pattern-type 

(χ2(2)=13.05, p=.001*), and the interaction between Intricacy and Pattern-type (χ2(35)=268.46, 

p<.001**), thus correcting degrees of freedom with Greenhouse-Geisser estimates of sphericity 

(ε=.546, .881 and .564 respectively). Both main effects of Intricacy (F(2.18,198.72)=25.932, 

p<.001**, 95% CI [.12,.31], ηp2=.22) and Pattern-type (F(1.76,160.36)=10.88, p=.40, 95% CI 
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[.03,.20], ηp2=.11) were significant, as well as interactions between Intricacy and Pattern-type 

(F(4.51,410.56)=13.60, p<.001**, 95% CI [.07,.18], ηp2=.13), Pattern-type and Cluster 

membership (F(3.52,160.36)=32.29, p<.001**, 95% CI [.29,.50], ηp2=.42, Intricacy and Cluster 

membership (F(4.37,198.72)=35.46, p<.001**, 95% CI [.33,.51], ηp2=.44), and a three-way 

interaction among Intricacy, Pattern-type, and Cluster membership (F(9.02,410.56)=9.17, 

p<.001**, 95% CI [.09,.22], ηp2=.17). The first cluster encompassed 38% of participants and 

produces a trend in which ratings decrease with additional intricacy; conversely the third cluster 

contained 30% of participants and a trend in which ratings increase with additional pattern 

intricacy. In addition, the Average-nonfractal patterns show the lowest and highest levels of 

interest in the largest and smallest subgroups, respectively. The second cluster was comprised of 

32% of participants and represented a general decrease in interest for Average-nonfractal 

patterns with additional intricacy, similar to the largest subgroup, alongside higher ratings for the 

other two pattern types at higher levels of intricacy (intricacy levels 1.5 and 1.7 for Average-

nonfractal patterns and 1.3-1.9 for fractal patterns). 

Natural: A 2-way 5x3 repeated-measures ANOVA (Intricacy (equal or matched to D-

values of 1.1, 1.3, 1.5, 1.7, 1.9) x Pattern-type (fractal, Average-nonfractal, Large-nonfractal)) 

assessed the impact of Intricacy and Pattern-type on perceived pattern naturalness (Figure 4.4E). 

Mauchly’s test indicated a violation of the assumption of sphericity for Intricacy (χ2(9)=405.23, 

p<.001**) and the interaction between Intricacy and Pattern-type (χ2(35)=498.31, p<.001**), 

thus degrees of freedom were corrected using Greenhouse-Geisser estimates of sphericity 

(ε=.329 and .302 respectively). There were significant main effects of pattern Intricacy 

(F(1.31,122.25)=36.43, p<.001**, 95% CI [.15,.40], ηp2=.28) and Pattern-type (F(2,186)=61.73, 

p<.001**, 95% CI [.29,.48], ηp2=.40), and a significant interaction between these factors 
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(F(2.42,224.87)=3.46, p=.03*, 95% CI [0,.45], ηp2=.04). Collapsed over Pattern-type, the mean 

ratings of naturalness decreased with additional pattern intricacy from a mean of .56 (SD=.19) 

for the least intricate patterns to a mean of .39 (SD=.23) for most intricate patterns, suggesting 

that participants’ perception of naturalness decreases with additional pattern intricacy. Average 

naturalness ratings (collapsed over Intricacy) were highest for fractal (M=.54; SD=.09), middling 

for Large-nonfractal (M=.48; SD=.10), and lowest for Average-nonfractal (M=.38; SD=.14), 

indicating the greatest, middling, and least overall perception of naturalness for fractal, Large-

nonfractal, and Average-nonfractal patterns, respectively. The significant differences among the 

ratings of naturalness across the three pattern types were as follows: between Average-

nonfractals and fractals [t(93)=-9.85, p<.001**, 95% CI [-.19,-.13], d=1.02], Average-

nonfractals and Large-nonfractals [t(93)=-7.21, p<.001**, 95% CI [-.13,-.07], d=.74], and 

fractals and Large-nonfractals [t(93)=4.35, p<.001**, 95% CI [.03,.08], d=.45]. The interaction 

between Pattern-type and Intricacy demonstrates a similar decrease in perceived naturalness for 

fractal and Average-nonfractal patterns, with overall higher ratings of naturalness for the fractal 

patterns, as well as a steeper decrease in ratings for the Large-nonfractal patterns.  

There were significant differences among the ratings of naturalness across the three 

pattern types for individual levels of intricacy: D=1.1 between Average-nonfractals and fractals 

[t(93)=-6.68, p<.001**, 95% CI [-.22,-.12], d=.69] and Average-nonfractals and Large-

nonfractals [t(93)=-8.19, p<.001**, 95% CI [-.19,-.12], d=.84]; D=1.3 between Average-

nonfractals and fractals [t(93)=-7.80, p<.001**, 95% CI [-.21,-.12], d=.80] and Average-

nonfractals and Large-nonfractals [t(93)=-6.85, p<.001**, 95% CI [-.19,-.11], d=.67]; D=1.5 

between Average-nonfractals and fractals [t(93)=-7.91, p<.001**, 95% CI [-.19,-.12], d=.82], 

Average-nonfractals and Large-nonfractals [t(93)=-4.42, p<.001**, 95% CI [-.12,-.07], d=.45], 
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and fractals and Large-nonfractals [t(93)=3.64, p<.001**, 95% CI [.03,.11], d=.37]; D=1.7 

between Average-nonfractals and fractals [t(93)=-6.64, p<.001**, 95% CI [-.21,-.12], d=.68], 

Average-nonfractals and Large-nonfractals [t(93)=-4.43, p<.001**, 95% CI [-.12,-.05], d=.46], 

and fractals and Large-nonfractals [t(93)=4.08, p<.001**, 95% CI [.04,.12], d=.42]; D=1.9 

between Average-nonfractals and fractals [t(93)=-3.94, p<.001**, 95% CI [-.20,-.07], d=.41], 

Average-nonfractals and Large-nonfractals [t(93)=-2.13, p=.04*, 95% CI [-.07,0], d=.22], and 

fractals and Large-nonfractals [t(93)=3.27, p=.002*, 95% CI [.04,.16], d=.34]) (Table 4.1). No 

significant subgroups were identified for participant ratings of pattern naturalness. 

Relaxing: A 2-way 5x3 repeated-measures ANOVA (Intricacy (equal or matched to D-

values of 1.1, 1.3, 1.5, 1.7, 1.9) x Pattern-type (fractal, Average-nonfractal, Large-nonfractal)) 

assessed the impact of Intricacy and Pattern-type on perceived relaxation (Figure 4.4F). 

Mauchly’s test indicated a violation of the assumption of sphericity for Intricacy (χ2(9)=320.05, 

p<.001**), Pattern-type (χ2(2)=21.91, p<.001**), and interaction between these effects 

(χ2(35)=347.04, p<.001**), thus degrees of freedom were corrected using Greenhouse-Geisser 

estimates of sphericity (ε=.356, .825, and .446 respectively). There were significant main effects 

of pattern Intricacy (F(1.43,132.49)=207.80, p<.001**, 95% CI [.60,.75], ηp2=.69) and Pattern-

type (F(1.65,153.48)=108.21, p<.001**, 95% CI [.48,.65], ηp2=.54) as well as an interaction 

between these factors (F(3.56,331.48)=26.94, p<.001**, 95% CI [.14,.29], ηp2=.23). Collapsed 

across Pattern-type, average ratings of pattern relaxation ranged from a high of .61 (SD=.16) for 

the simplest patterns to a low of .28 (SD=.16) for the highest intricacy patterns, suggesting that 

participants perceived patterns as less relaxing with increasing intricacy. Collapsed over 

intricacy, average ratings of relaxation were higher for fractal (M=.48; SD=.11) and Large-

nonfractal (M=.48; SD=.09) patterns compared to Average-nonfractal patterns (M=.31; SD=.09), 
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indicating an overall greater relaxation response for the fractal and Large-nonfractal patterns, 

both of which contain large-scale structure: Average-nonfractals and fractals [t(93)=-11.28, 

p<.001**, 95% CI [-.19,-.14], d=1.16]; Average-nonfractals and Large-nonfractals [t(93)=-

17.23, p<.001**, 95% CI [-.18,-.15], d=1.78]. The interaction between Pattern-type and Intricacy 

demonstrates decreasing ratings of relaxation across intricacy for both the non-fractal patterns 

but a decrease then leveling off of ratings across intricacy for the fractal patterns.  

There were significant differences among the ratings of relaxation across the three pattern 

types for individual levels of intricacy: D=1.1 between Average-nonfractals and fractals [t(93)=-

3.36, p=.001*, 95% CI [-.12,-.03], d=.35], Average-nonfractals and Large-nonfractals [t(93)=-

11.51, p<.001**, 95% CI [-.25,-.18], d=1.19], and fractals and Large-nonfractals [t(93)=-6.22, 

p<.001**, 95% CI [-.18,-.10], d=.64]; D=1.3 between Average-nonfractals and fractals [t(93)=-

6.62, p<.001**, 95% CI [-.18,-.10], d=.68], Average-nonfractals and Large-nonfractals [t(93)=-

13.84, p<.001**, 95% CI [-.27,-.20], d=1.42], and fractals and Large-nonfractals [t(93)=-5.15, 

p<.001**, 95% CI [-.13,-.06], d=.53]; D=1.5 between Average-nonfractals and fractals [t(93)=-

10.34, p<.001**, 95% CI [-.22,-.15], d=1.07] and Average-nonfractals and Large-nonfractals 

[t(93)=-11.01, p<.001**, 95% CI [-.20,-.14], d=1.14]; D=1.7 between Average-nonfractals and 

fractals [t(93)=-9.57, p<.001**, 95% CI [-.25,-.16], d=.99], Average-nonfractals and Large-

nonfractals [t(93)=-9.15, p<.001**, 95% CI [-.17,-.11], d=.95], and fractals and Large-

nonfractals [t(93)=3.18, p=.002*, 95% CI [.02,.10], d=.33]; D=1.9 between Average-nonfractals 

and fractals [t(93)=-8.99, p<.001**, 95% CI [-.28,-.18], d=.93], Average-nonfractals and Large-

nonfractals [t(93)=-5.34, p<.001**, 95% CI [-.09,-.04], d=.55], and fractals and Large-

nonfractals [t(93)=6.09, p<.001**, 95% CI [.11,.21], d=.63]) (Table 4.1).  
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A 2-step cluster analysis identified and separated individuals into two subgroups with 

respect to ratings of pattern relaxation. We performed a mixed ANOVA with 5 levels of pattern 

Intricacy, 3 levels of Pattern-type, and 2 Subgroups. Mauchly’s test indicated a violation of the 

assumptions of sphericity for Intricacy (χ2(9)=192.34, p< .001**), Pattern-type (χ2(2)=17.04, p< 

.001**), and the interaction between these factors (χ2(35)=287.06, p<.001**). Therefore, degrees 

of freedom were corrected using Greenhouse-Geisser estimates of sphericity (ε=.459, .854, and 

.516 respectively). There were significant main effects for Intricacy (F(1.84,168.94)=271.89, 

p<.001**, 95% CI [.68,.79], ηp2=.75) and Pattern-type (F(1.71,157.16)=122.57, p<.001**, 95% 

CI [.47,.64], ηp2=.57), as well as significant interactions between Intricacy and Pattern-type 

(F(4.13,379.78)=35.28, p<.001**, 95% CI [.20,.34], ηp2=.28), Intricacy and Clusters 

(F(1.84,168.94)=68.06, p<.001**, 95% CI [.31,.51], ηp2=.43),  Pattern-type and Cluster 

membership (F(1.71,157.16)=13.71, p<.001**, 95% CI [.04,.22], ηp2=.13), and a three-way 

interaction between Intricacy, Pattern-type, and Clusters (F(4.13,379.78)=11.99, p<.001**, 95% 

CI [.06,.17], ηp2=.12). The largest cluster encompassed 62% of participants whereas the smaller 

cluster contained the remaining 38% of individuals. Across both clusters, perceptions of 

relaxation swiftly decrease with additional intricacy for Average-nonfractal and Large-nonfractal 

patterns. The difference between these clusters is driven by contradictory trends in relaxation 

ratings for fractal stimuli, with participants in the smaller cluster perceiving higher intricacy 

fractals as more relaxing whereas those in the larger cluster rate lower intricacy fractals as more 

relaxing (Figure 4.4F). 

Discussion 

Experiment 1 explored how a variety of psychological effects are altered by variation in 

underlying pattern structure. Overall, results indicate that with regards to increasing pattern 
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intricacy, viewer perceptions of pattern complexity increase, whereas perceptions of pattern 

appeal, interestingness, naturalness, and relaxation decrease. Furthermore, perceptions of pattern 

excitement remain more moderate regardless of pattern intricacy. With regard to complexity, the 

highest overall perceived complexity was for the original-non-fractal patterns, the middle was for 

the fractal patterns, and the lowest was for the Large-nonfractal patterns. For the naturalness 

judgments, the highest overall perceived naturalness was for the fractal patterns, the middle was 

for the Large-nonfractal patterns, and the lowest was for the original-non-fractal patterns. In 

addition, there were overall higher ratings of appeal, relaxation, and interestingness for fractal 

and Large-nonfractal compared to the matched Average-nonfractal patterns. For appeal and 

relaxation judgments, Large-nonfractal compared to fractal patterns show a steeper drop off in 

ratings across levels of intricacy. For interesting judgments, peak ratings for Large-nonfractal 

patterns are for the mid-level of intricacy, ratings for fractal patterns are relatively flat, and 

ratings for original-non fractals decrease with intricacy. These results show a distinctive pattern 

of perceptual responses to the 3 pattern types. 

Viewer ratings of pattern excitement and relaxation were shown to be more completely 

explained through the comparison of 2 subgroups present in the data. The larger subgroups 

demonstrated lower ratings for relaxation and higher ratings of excitement with the presence of 

additional pattern intricacy. The smaller subgroups demonstrate decreasing ratings across 

intricacy for both non-fractal patterns but a decrease then leveling off of excitement ratings and a 

flat then increasing relaxation rating across intricacy for the fractal patterns. Ratings of pattern 

interestingness were more completely explained through the comparison of 3 subgroups. The 

largest group demonstrates decreasing ratings with additional intricacy, the smallest subgroup 

demonstrates the opposite trend, and the middle subgroup demonstrates a more complicated 
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trend in responses. Comprising just over a third of viewers, this group demonstrates an 

agreement with the largest subgroups’ assessment of Average-nonfractal patterns (i.e., 

decreasing ratings across levels of intricacy), but shows relaxation ratings peaking with 

moderate-to-high levels of intricacy for the Large-nonfractal and fractal patterns. Presented 

fractal trends in complexity, naturalness, and relaxation ratings reinforce previously established 

findings (Robles et al., 2021), however, ratings of fractal appeal noticeable deviate from prior 

findings (Bies et al., 2016; Abboushi et al., 2019; Robles et al., 2020; Robles et al., 2021) by 

peaking with lowest pattern intricacy and decreasing steadily through moderate-high complexity 

at which point appeal ratings increase for highest complexity. This deviation is suspected to be a 

product of context effects created through the mixed presentation of the three pattern types, such 

that the overall discrepancy between in pattern complexity between fractal and nonfractal 

patterns shifts perceptual tolerance towards the simplest patterns. 

 

Experiment 2 – Impact of the incorporation of Euclidean structure on fractal 

pattern perception 

Materials and Methods 

Stimuli: 

To understand how the integration of Euclidean surroundings alters trends in fractal 

perception, Experiment 2 utilizes a new series of fractal images generated in the same manner as 

described in Experiment 1. Viewer ratings are compared across trials with stimuli presented in 

isolation on the computer screen or trials where stimuli are surrounded by a frame composed of 

one large outer square connected to the pattern through lines connecting the corners of the fractal 
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pattern and the frame (Figure 4.5). Stimuli consisted of a total of 40 patterns, with 8 examples 

each of 5 D-values (D=1.1, 1.3, 1.5, 1.7. 1.9).  

Participants:  

To identify unique changes in 

perceptual trends due to combining fractal and 

Euclidean structure, 60 participants were 

recruited via Prolific (http://www.prolific.co/), 

[November, 2022] with the majority of 

participants (26) residing in the United 

Kingdom (32 females, age ranging between 

18-75 years old, mean age 35 years old). 

Informed consent was acquired following a protocol approved by the Institutional Review Board 

at the University of Oregon and all participants were compensated with $10 for their time.  

Visual Displays: 

Experiment 2 was also programmed in PsychoPy3 but presented using the online research 

study platform of Pavlovia (Peirce et al., 2019). Participants completed the experiment using 

their personal computers with program stimuli scaled to the individual computer’s respective 

full-screen dimensions. 

Design and Procedure:  

Similar to the procedure in Experiment 1, participants rated fractal patterns on 6 different 

factors (complex, appealing, natural, interesting, relaxing, exciting). Experiment 2 consisted of 

12 randomized rating blocks with 20 fractal images ranging in intricacy (D= 1.1, 1.3, 1.5, 1.7, 

Figure 4.5. Experiment 2 stimulus presented 
with simple Euclidean surrounding structure 
reminiscent of a frame or wall of an interior 
humanmade space.  
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1.9), for a total of 40 unique images. Half of the blocks contained fractal images surrounded with 

a Euclidean frame and the remaining blocks presented images in isolation. Each block consisted 

of a singular judgment type and an on-screen slider located beneath each image was used to 

record self-report ratings for each pattern. The rating task was completed in the manner as 

described in Experiment 1.  

Results 

Data from 40 participants were retained from the 60 individuals who participated in the 

experiment. Data were excluded due to a) failure to complete the study (8), b) failure to follow 

instructions (8), or c) if in at least 3 blocks participants recorded the same rating for greater than 

four consecutive trials (4).  

Pattern Rating Task:   

Similar to Experiment1, a 3-way repeated-measures 2x5x6 ANOVA (Context 

(Euclidean-frame, no-frame) x Intricacy (D-values of 1.1, 1.3, 1.5, 1.7, 1.9) x Judgment 

(complexity, exciting, appeal, interesting, natural, relaxing)) was performed on rating data for the 

fractal patterns. Mauchly’s test indicated a violation of the assumption of sphericity for Intricacy 

(χ2(9)=225.58, p< .001**), Judgment (χ2(14)=47.17, p<.001**), the interactions between Context 

and Intricacy (χ2(9)=61.41, p<.001**), Intricacy and Judgment (χ2(209)=858.36, p<.001**), 

Context and Judgment (χ2(14)=29.39, p<.001**), and the three-way interaction between Context, 

Intricacy, and Judgment (χ2(209)=426.35, p<.001**). Therefore, degrees of freedom were 

corrected using Greenhouse-Geisser estimates of sphericity (ε=.295, .612, .510, .213, .750, and 

.420 respectively). Indicated by a double asterisk for significance of p<.001 and single asterisk 

for significance of p<.05, are a significant main effect of Judgment (F(3.06,119.43)=9.29, 

p<.001**, 95% CI [.07,.30], ηp2=.19) and a significant interaction between Intricacy and 



 

142 

 

Judgment (F(4.27,166.50)=38.24, p<.001**, 95% CI [.38,.57], ηp2=.50). Coinciding with 

findings from Experiment1, the Intricacy and Judgment interaction is demonstrated through 

ratings that decreased in the presence of additional intricacy (appeal, interesting, natural, 

relaxing), while others were relatively flat (exciting) or increased (complexity) (Figure 4.6). A 

series of planned ANOVA’s and t-tests follow to determine whether observed perceptual trends 

can be better explained by subgroups determined by a 2-step cluster analysis.  

Appeal: A 2-way 2x5 repeated-

measures ANOVA (Context (Euclidean-

frame, no-frame) x Intricacy (D-values of 

1.1, 1.3, 1.5, 1.7, 1.9)) was completed to 

examine the impact of surrounding context 

and pattern intricacy on ratings of image 

appeal (Figure 4.7A). A violation of the 

assumption of sphericity was indicated by 

Mauchly’s test for Intricacy (χ2(9)=209.34, 

p<.001**) and the interaction between 

Context and Intricacy (χ2(9)=63.53, 

p<.001**), thus correcting degrees of freedom using Greenhouse-Geisser estimates of sphericity 

(ε=.295 and .518 respectively). A significant main effect was identified for Intricacy 

(F(1.18,46)=8.74, p=.003*, 95% CI [.02,.36], ηp2=.18). Average ratings of appeal ranged from a 

high of .55 (SD=.24) for the least intricate patterns to a low of .36 (SD=.27) for the most intricate 

patterns suggesting that appeal decreases with additional pattern intricacy. Paired sample t-tests 

revealed no significant differences in appeal between patterns that vary in surrounding context. 

Figure 4.6. Experiment 2 results for unipolar ratings of 
fractal patterns varying in surrounding context. Results 
show a significant interaction among two of the 
experiment’s factors: pattern intricacy (presented in 
fractal dimension “D-value”) and judgment type (appeal, 
complexity, exciting, interestingness, naturalness, 
relaxing). Participant rating (on a scale from 0-1) is 
plotted as a function of D-value and different judgment 
conditions. 
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Figure 4.5. Experiment 2 results for fractal patterns with variation in surrounding context (Euclidean-frame, 
no-frame) for 6 different judgment conditions (appeal, complexity, exciting, interestingness, naturalness, 
relaxing). (A-F left images) Show plots of mean ratings as a function of fractal dimension (D-value) and 2 
context conditions (Euclidean-frame, no-frame) for the different judgment conditions (error bars represent 
standard error of the mean). (A-F middle and right images) Show plots of mean ratings as a function of 
fractal dimension (D-value) and 2 context conditions (Euclidean-frame, no-frame) for each subpopulation 
identified with cluster analysis (error bars represent standard error of the mean). 
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In accordance with the subgroup analysis used in Experiment1, a two-step cluster 

analysis was performed to determine the impact of possible subgroups on overall trends (first 

using hierarchical cluster analyses with Ward’s method to separate individuals into groups then 

follow up with k-means clustering analysis for the number of indicated groups). This 2-step 

clustering method indicated the presence of two clusters in the data. We performed a mixed 

ANOVA with 5 levels of pattern Intricacy, 2 levels of Context, and 2 Subgroups. Mauchly’s test 

indicated a violation of the assumptions of sphericity for Intricacy (χ2(9)=89.53, p<.001**) and 

the interaction between Intricacy and Context (χ2(9)=64.19, p<.001**). Therefore, degrees of 

freedom were corrected using Greenhouse-Geisser estimates of sphericity (ε=.418 and .499 

respectively). Despite the main effect of context not being significant (F(1,38)=.01, p=.93, 95% 

CI [0,.01], ηp2=.00), Intricacy (F(1.67,63.48)=5.54, p=.009*, 95% CI [.01,.27], ηp2=.13) and the 

interaction between Intricacy and Subgroup (F(1.67,63.48)=84.15, p<.001**, 95% CI [.55,.76], 

ηp2=.69) were significant. The larger subgroup (65% of participants) demonstrates ratings that 

steeply decrease with additional pattern intricacy, while smaller subgroup (35% of participants) 

produces a trend in ratings that increase with increasing intricacy. These findings support 

previous individual differences research identifying opposing trends in judgments of pattern 

appeal (Robles et al., 2021; Spehar et al., 2016; Street et al., 2016).  

Complexity: A 2-way 2x5 repeated-measures ANOVA (Context (Euclidean-frame, no-

frame) x Intricacy (D-values of 1.1, 1.3, 1.5, 1.7, 1.9)) was completed to examine the impact of 

surrounding Context and pattern Intricacy on complexity judgments (Figure 4.7B). Assumptions 

of the violation of sphericity were indicated by Mauchly’s test for Intricacy (χ2(9)=65.71, 

p<.001**) and the interaction between Intricacy and Context (χ2(9)=79.83, p<.001**), thus 

degrees of freedom were corrected using Greenhouse-Geisser estimates of sphericity (ε=.522 and 
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.452 respectively). The only significant effect was identified for Intricacy 

(F(2.09,81.45)=226.48, p<.001**, 95% CI [.79,.89], ηp2=.85). Average complexity ratings 

ranged from .27 (SD=.14) for the least intricate patterns to .83 (SD=.15) for the most intricate 

patterns, indicating that perceptions of complexity increased with greater amount of visual 

intricacy. Paired samples t-tests revealed significant differences in perceived complexity between 

patterns at a D-value=1.1[t(39)=2.51, p=.02*, 95% CI [.01,.12], d=.37] (Table 4.2), with patterns 

that are surrounded by a Euclidean frame being rated as more complex (M=.30, SD=.15) than 

those without (M=.24, SD=.13). Cluster analyses did not indicate a multiple cluster solution.   

 

Table 4.2: Experiment 2- Paired Samples t-Tests between patterns across Intricacy and Judgment 

 1.1 1.3 1.5 1.7 1.9 

Appeal: 

Euclidean frame – no frame 

t = -.73 

p = .47 

t = .11 

p = .91 

t = -.60 

p = .55 

t = .74 

p = .46 

t = .62 

p = .54 

Complex: 

Euclidean frame – no frame 

t = 2.35 

p = .02* 

t = 1.68 

p = .10 

t = =1.22 

p = .23 

t = .62 

p = .54 

t = -1.24 

p = .22 

Exciting: 

Euclidean frame – no frame 

t = 1.99 

p = .05 

t = 1.32 

p = .19 

t = .29 

p = .78 

t = -1.33 

p = .19 

t = -2.03 

p = .05 

Interesting: 

Euclidean frame – no frame 

t = 1.59 

p = .12 

t = 1.32 

p = .20 

t = 2.51 

p = .02* 

t = 1.97 

p = .06 

t = 1.54 

p = .13 

Natural: 

Euclidean frame – no frame 

t = .55 

p = .58 

t = 1.18 

p = .25 

t = .97 

p = .34 

t = .13 

p = .89 

t = .12 

p = .91 

Relaxing: 

Euclidean frame – no frame 

t = .81 

p = .42 

t = .08 

p = .93 

t = 1.77 

p = .08 

t = -.50 

p = .62 

t = -1.0 

p = .33 

* indicating significance of p<.05, ** indicating significance p<.001. 
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Exciting: A 2-way 2x5 repeated-measures ANOVA (Context (Euclidean-frame, no-

frame) x Intricacy (D-values of 1.1, 1.3, 1.5, 1.7, 1.9)) was completed to examine the impact of 

Context and Intricacy on ratings of pattern excitement (Figure 4.7C). A violation of the 

assumption of sphericity was indicated by Mauchly’s test for Intricacy (χ2(9)=195.39, p<.001) 

and the interaction between Intricacy and Context (χ2(9)=85.67, p<.001**), thus degrees of 

freedom were corrected using Greenhouse-Geisser estimates of sphericity (ε=.308 and .437 

respectively). No significant main effects were identified (Intricacy (F(1.23,48.07)=.57, p=.57, 

95% CI [0,.13], ηp2=.01); Context (1,39)=.01, p=.77, 95% CI [0,.01], ηp2=.01). Paired samples t-

tests revealed no significant differences in perceived excitement for patterns with or without 

surrounding context (Table 4.2).  

A 2-step cluster analysis identified and separated individuals into two subgroups with 

respect to ratings of pattern excitement (Figure 4.7C). A mixed ANOVA was performed with 5 

levels of pattern Intricacy, 2 levels of Context, and 2 Subgroups. Mauchly’s test indicated a 

violation of the assumptions of sphericity for Intricacy (χ2(9)=67.62, p<.001**) and the 

interaction between Intricacy and Pattern-type (χ2(9)=84.43, p<.001**). Therefore, degrees of 

freedom were corrected using Greenhouse-Geisser estimates of sphericity (ε= .524 and .435 

respectively). The main effects of Intricacy (F(2.10,79.59)=.57, p=.57, 95% CI [0,.08], ηp2=.02) 

and Context (F(1,38)=.09, p=.77, 95% CI [0,.09], ηp2=.00) were not significant. The only 

significant interaction was identified between Intricacy and Subgroup (F(2.10,79.59)=93.12, 

p<.001**, 95% CI [.59,.77], ηp2=.71). The remaining interactions (Intricacy and Context 

(F(1.74,66.11)=2.94, p=.07, 95% CI [0,.20], ηp2=.07), Context and Subgroup (F(1,38)=3.51, 

p=.07, 95% CI [0,.27], ηp2=.09), Intricacy, Context, and Subgroup (F(1.74,66.11)=1.44, p=.24, 

95% CI [0,.14], ηp2=.04)) were not significant. The larger subgroup (60% of participants) 
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produced an increasing trend in ratings with additional pattern intricacy, whereas conversely, the 

smaller subgroup (40% of participants) produced a decreasing trend with additional intricacy. 

Interesting: A 2-way 2x5 repeated-measures ANOVA (Context (Euclidean-frame, no-

frame) x Intricacy (D-values of 1.1, 1.3, 1.5, 1.7, 1.9)) examined the impact of Intricacy and 

Context on perceived pattern interest (Figure 4.7D). A violation of the assumption of sphericity 

was indicated by Mauchly’s test for Intricacy (χ2(9)=217.02, p<.001**) and the interaction 

between Context and Intricacy (χ2(9)=34.41, p<.001**), thus degrees of freedom were corrected 

using Greenhouse-Geisser estimates of sphericity (ε=.297 and .645 respectively). The sole 

significant effect was found for Context (F(1,39)=10.64, p=.002*, 95% CI [.03,.41], ηp2=.21). 

There were no significant effects for Intricacy (F(1.12,46.33)=1.15, p=.30, 95% CI [0,.16], 

ηp2=.03) or the interaction between Intricacy and Context (F(2.58,100.68)=.27, p=.82, 95% CI 

[0,.04], ηp2=.01). Paired sample t-tests revealed a significant difference in perceived excitement 

for patterns that varied in context and possessed a D-value=1.5 [t(39)=2.51, p=.02*, 95% CI 

[.01,.12], d=.40] (Table 4.2). Overall, patterns surrounded by additional Euclidean context were 

rated more interesting than those without. 

A 2-step cluster analysis identified and separated individuals into two distinct subgroups 

with respect to ratings of pattern interest (Figure 4.7D). We performed a mixed ANOVA with 5 

levels of pattern Intricacy, 3 levels of Context, and 2 Subgroups. Mauchly’s test indicated a 

violation of the assumptions of sphericity for Intricacy (χ2(9)=94.51, p<.001**) and the 

interaction between Intricacy and Pattern-type (χ2(9)=34.83, p<.001**), thus correcting degrees 

of freedom with Greenhouse-Geisser estimates of sphericity (ε=.435 and .635 respectively). The 

main effect of Context (F(1,38)=10.66, p=.002*, 95% CI [.03,.42], ηp2=.22) and interaction 

between Intricacy and Subgroup (F(1.74,66.18)=82.19, p<.001**, 95% CI [.54,.76], ηp2=.68) 
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were significant. However Intricacy (F(1.74,66.18)=.58, p=.54, 95% CI [0,.10], ηp2=.02) and 

interactions between Intricacy and Context (F(2.54,96.45)=.25, p=.83, 95% CI [0,.04], ηp2=.01), 

Context and Subgroup (F(1,38)=.23, p=.63, 95% CI [0,.13], ηp2=.01) and three-way interaction 

between Intricacy, Context, and Subgroup (F(2.54,96.45)=.69, p=.54, 95% CI [0,.08], ηp2=.02) 

were not. The larger subgroup (57% of participants) demonstrates a general decrease in interest 

for patterns of additional intricacy whereas the smaller subgroup (43% of participants) produces 

a trend that linearly increases with additional intricacy. 

Natural: A 2-way 2x5 repeated-measures ANOVA (Context (Euclidean-frame, no-

frame) x Intricacy (D-values of 1.1, 1.3, 1.5, 1.7, 1.9)) assessed the impact of Intricacy and 

Context on perceived pattern naturalness (Figure 4.6E). Mauchly’s test indicated a violation of 

the assumption of sphericity for Intricacy (χ2(9)=160.51, p<.001**) and the interaction between 

Intricacy and Context (χ2(9)=20.34, p<.001**), thus degrees of freedom were corrected using 

Greenhouse-Geisser estimates of sphericity (ε=.326 and .804 respectively). The main effect of 

pattern Intricacy (F(11.01,50.90)=33.36, p<.001**, 95% CI [.77,.89], ηp2=.46) was significant, 

whereas Context (F(1,39)=.94, p=.34, 95% CI [0,.17], ηp2=.02) and the interaction between 

Intricacy and Context (F(3.22,125.49)=.32, p=.83, 95% CI [0,.04], ηp2=.01) were not. Overall 

trends demonstrate decreased perceptions of naturalness for patterns of greater intricacy with 

average ratings of .63 (SD=.25) for patterns with D-value=1.1 and .28 (SD=.22) for D-value=1.9, 

with no significant differences between patterns varying in Context at the 5 levels of intricacy. 

A 2-step cluster analysis identified and separated individuals into two subgroups with 

respect to ratings of pattern naturalness. We performed a mixed ANOVA with 5 levels of pattern 

Intricacy, 3 levels of Context, and 2 Subgroups. Mauchly’s test indicated a violation of the 

assumptions of sphericity for Intricacy (χ2(9)=85.38, p<.001**) and the interaction of Intricacy 
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and Context (χ2(9)=19.82, p<.001**). Thus, correcting degrees of freedom using Greenhouse-

Geisser estimates of sphericity (ε=.433 and .804 respectively). The main effect of Intricacy 

(F(1.73,65.85)=4.71, p=.02*, 95% CI [0,.25], ηp2=.11) and the interaction of Intricacy and 

Subgroup (F(1.73,65.85)=41.40, p<.001**, 95% CI [.34,.63], ηp2=.52) were found to be 

significant while Context (F(1,38)=.54, p=.47, 95% CI [0,.15], ηp2=.01), interactions between 

Intricacy and Context (F(3.22,122.23)=.34, p=.81, 95% CI [0,.04], ηp2=.01), Context and 

Subgroup (F(1,38)=0, p=.99, 95% CI [0,0], ηp2=.00), and Intricacy, Context, and Subgroup 

(F(3.22,122.23)=.22, p=.89, 95% CI [0,.03], ηp2=.01) were not significant. Ratings from the large 

subgroup (72% of individuals) indicated a steep decrease in perceptions of pattern naturalness 

with additional intricacy, whereas those of the small subgroup (18% of participants) indicated a 

more subtle increase in perceptions of pattern naturalness with additional intricacy. 

Relaxing: A 2-way 2x5 repeated-measures ANOVA (Context (Euclidean-frame, no-

frame) x Intricacy (D-values of 1.1, 1.3, 1.5, 1.7, 1.9)) addressed the impact of Intricacy and 

Context on perceived pattern relaxation (Figure 4.7F). Mauchly’s test indicated a violation of 

the assumption of sphericity for Intricacy (χ2(9)=146.61, p<.001**), Pattern-type (χ2(2)=21.91, 

p<.001**), and interaction between these effects (χ2(9)=36.76, p<.001**), thus degrees of 

freedom were corrected using Greenhouse-Geisser estimates of sphericity (ε=.343 and .653 

respectively). The only significant effect identified was that of pattern Intricacy 

(F(1.37,53.48)=27.66, p<.001**, 95% CI [.21,.56], ηp2=.42). Effects of Context (F(1,39)=.23, 

p=.63, 95% CI [0,.12], ηp2=.01) and the interaction between Intricacy and Context 

(F(2.61,101.93)=1.01, p=.26, 95% CI [0,.09], ηp2=.03) were not significant, (see Table 4.2). 

Collapsed across Context, average ratings of pattern relaxation ranged from a high of .58 

(SD=.24) for patterns with a D-value=1.1 to a low of .25 (SD=.21) with patterns possessing a D-
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value=1.9, suggesting that participants perceived patterns as less relaxing with increasing 

intricacy. 

A 2-step cluster analysis identified and separated individuals into two subgroups with 

respect to ratings of pattern relaxation. We performed a mixed ANOVA with 5 levels of pattern 

Intricacy, 3 levels of Context, and 2 Subgroups. Mauchly’s test indicated a violation of the 

assumptions of sphericity for Intricacy (χ2(9)=97.31, p<.001**) and the interaction of Intricacy 

and Context (χ2(9)=36.31, p<.001**). Therefore, degrees of freedom were corrected using 

Greenhouse-Geisser estimates of sphericity (ε=.413 and .655 respectively). Significant effects 

were identified for Intricacy (F(1.65,62.81)=23.52, p<.001**, 95% CI [.19,.52], ηp2=.38) and the 

interaction between Intricacy and Subgroup (F(1.65,62.81)=22.48, p<.001**, 95% CI [.18,.51], 

ηp2=.37). The effects of Context (F(1,38)=.22 p=.64, 95% CI [0,.13], ηp2=.01), and interactions 

between Intricacy and Context (F(2.61,99.61)=.43, p=.70, 95% CI [0,.63], ηp2=.01), Context and 

Context, and Subgroup (F(2.61,99.61)=2.70, p=.06, 95% CI [0,.16], ηp2=.07) were not 

significant. The difference between the subgroups is driven by contradictory response patterns in 

relaxation ratings for fractal patterns, with participants in the larger subgroup (65% of 

participants) perceiving lower intricacy fractals as highly relaxing, with ratings of relaxation 

steeply decreasing with the presence of additional intricacy. In contrast, those in the smaller 

subgroup (35% of participants) remain more moderate in their ratings of pattern relaxation across 

pattern intricacy (Figure 4.7F). 

Discussion 

Experiment 2 maintains the same methodological structure and perceptual decisions as 

described in Experiment 1 but employs only fractal patterns either presented alone or in the 

presence of a surrounding Euclidean frame (referred to as Euclidean context). In alignment with 
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findings from Experiment 1, judgments of complexity increased with additional D-value whereas 

ratings of appeal, naturalness, and relaxation decreased. Similarly, perceptions of pattern interest 

and excitement remained more moderate regardless of pattern intricacy with interest and 

excitement showing slightly negative or positive relationships with D-value, respectively. 

Overall, perceptual judgments of patterns were not shown to vary based on the presence of 

surrounding context. There were 2 subgroups in all judgment conditions aside from pattern 

complexity. In 4 judgments (pattern appeal, excitement, interestingness, and naturalness) the 

smaller subgroup trend is in the opposite direction of that of the larger subgroup, while for 

ratings of pattern relaxation the smaller subgroup deviates from the overall trend with moderate 

ratings of relaxation across all levels of complexity.  

 

General Discussion 

Since modern society’s shift away from the previously agrarian lifestyle, humans have 

begun spending the majority of their time indoors resulting in a new series of health 

consequences propelled by the additional exertion of energy required to process non-natural 

spatial frequencies (O’Hare & Hibbord, 2011; Ogawa & Motoyoshi, 2020; Hagerhall et al., 

2008, Pennacchio & Wikins, 2015; Le et al., 2017). In an effort to minimize the higher rates of 

visual strain, headaches, and general stress associated with Euclidean surroundings, research has 

sought to integrate natural arrangements into human-made spaces through the inclusion of fractal 

displays (Taylor & Sprott, 2008; Abboushi et al., 2019; Smith et al., 2020; Robles et al., 2021). 

Driven by the apparent ease with which the visual system is able to process these patterns 

(Taylor et al., 2018; Taylor & Spehar, 2016; Hagerhall et al., 2008), introduction of fractal 

designs into already existing structures can alter viewer perceptions of the space without 
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impacting the function of the space as a whole (Hagerhall et al., 2015; Taylor et al., 2005). To 

better inform selection of effective installments, it is critical to understand how pattern 

characteristics alter viewer perception both in isolation and in non-natural spaces. 

Across two experiments, the current study serves as the first research to isolate the unique 

contribution of fractal structure on visual perception as a whole and provides findings as to how 

these perceptions act in the presence of the simplest prototypical Euclidean context. Both studies 

demonstrate similar trends in viewer experience of visual patterns despite variations in intricacy, 

underlying structure, and context. Experiment 1 used 3 different types of stimuli (fractal, 

Average-nonfractal, Large-nonfractal) to demonstrate how variations in pattern structure 

produces shifts in viewer perception driven by the pattern’s intricacy. Perceptions of pattern 

complexity provide insight into driving factors behind the 5 additional judgments. Although two 

patterns shared a lack of fractal structure and statistical intricacy, they are viewed as significantly 

different in complexity, with the Average-nonfractal pattern being perceived as the most 

complex at every level of generated intricacy compared to the Large-nonfractal pattern being 

typically seen as lowest in complexity, and fractal patterns falling somewhere between. The 

mixed presentation of these patterns, which are broadly different in complexity, likely factors 

into the remaining observed trends. Akin to how the presence of symmetry and exactness of 

pattern repetition found in “exact” fractal patterns can increase a viewer’s tolerance of pattern 

intricacy (Robles et al., 2020; Bies et al., 2016), the presence of overwhelming complexity in 

Average-nonfractals has the capability to cement viewer inclination towards simplicity.  

The results from Experiment 1 suggest that overall 1) there are greater positive responses 

(higher ratings of appeal, relaxation, and interestingness) to fractal compared to size-matched 

non-fractal control stimuli (i.e., the Average-nonfractal patterns), 2) these positive responses 
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occur when large-scale structure is present (i.e., for fractal and Large-nonfractal patterns), and 3) 

removing fractal structure while retaining mean size information (Average-nonfractal patterns) 

not only increases the perception of complexity but simultaneously reduces the perceived 

naturalness of the patterns. The finding of generally positive responses to fractal and Large-

nonfractal patterns points to the important role of large-scale structure that is present in both of 

these pattern types. There are also interesting differences in perceptual responses between these 

pattern types. The fractal compared to the Large-nonfractal patterns are perceived as both more 

complex and more natural. Interest peaks at lower levels of intricacy for the fractal patterns and 

mid-level intricacy for the Large-nonfractal patterns, while excitement peaks at the highest levels 

of intricacy for the fractal patterns and mid-level intricacy for the Large-nonfractal patterns. 

Finally, perceived pattern appeal and relaxation for the Large-nonfractal compared to fractal 

patterns starts higher, but drops off more rapidly with increasing intricacy. Fractals are perceived 

as distinctly different than nonfractal arrangements, exemplified in ratings of higher intricacy 

patterns where fractals are consistently associated with greater appeal, naturalness, relaxation, 

and excitement than even Large-nonfractal arrangements despite similarities in perceived 

complexity and interestingness. These differences among the perceptions of fractal and matched 

non-fractal patterns provide strong evidence for human sensitivity to fractal structure that 

characterizes natural objects and environments. 

Whereas Experiment 1 serves to establish the role of complexity and pattern structure to 

predictions of viewer experience, Experiment 2 functions to apply these considerations more 

directly to the fundamental task of incorporating fractal patterns into Euclidean space (i.e., the 

built environment). Although fractal patterns may produce stable trends when presented in 

isolation on a screen with the monitor bezel serving as the only image boundary, it is imperative 
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to confirm their expected effects when they are embedded in contrasting unnatural human-made 

design. By comparing fractal perceptions with and without the incorporation of a rudimentary 

Euclidean context (i.e., a Euclidean frame), results reinforce the perceptual trends established in 

Experiment 1 irrespective of the inclusion of Euclidean context. Specifically, perceptions of 

pattern appeal, interestingness, naturalness, and relaxation decrease with increasing D-value, 

while ratings of complexity increase, and those of interest remain more moderate across all 

levels of intricacy. Driven by the imposed pattern boundary created by the Euclidean frame, the 

effects of nonfractal structure produce experiences of greater interest, and unchanging judgments 

of excitement across intricacy compared to context-free fractals in which ratings of excitement 

increase with increases in intricacy. Thus, despite robust perceptions of patterns across 

perturbations of structure and surrounding context, selection of optimal patterns for occupant 

wellbeing must account for the interaction of general pattern complexity with regards to its 

intended environment.  

Viewer subgroupings have a significant impact on overall trends, further substantiating 

previous findings of individual differences in preference for fractal intricacy (Robles et al., 2021; 

Bies et al., 2016; Spehar et al. 2016; Street, 2016). Opposing subpopulation trends are found for 

all perceptual ratings aside from complexity which serves to inform design choices by 

emphasizing the consideration of perceived installment intricacy (quantified with D-value in the 

case of fractal patterns) to align with the highest rates of desired experience for the greatest 

number of viewers.  

Lastly, the similarity of the general trends reported between the two studies highlights the 

seemingly universal nature of fractal perception. While not immense, the expansion in 

participant age, ethnicity, national origin, natural surroundings, as well as presentation format (in 
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lab or on-line survey) did not seem to impact shared perceptions. This result suggests that 

perceptions of fractal patterns are unlikely to be altered by experiences of more diverse biomes 

and thus promotes the application of natural patterns in a broad range of locations. Although this 

study recruits from both a convenient population as well as a broader group of cultures and 

countries, our findings are still limited due to an overarching homogeneity of “WEIRD” 

participant samples. Holistically, findings from Experiment 1 emphasizes the significance of 

pattern complexity and structure on fractal perception whereas Experiment 2 reinforces the 

importance of considering Gestalt aspects of complexity when incorporating fractal patterns into 

surrounding occupant space. The current study serves to provide a foundational understanding of 

how pattern structure impacts integration with built environments and encourages future work to 

explore how responses to fractal structure interact with more prominent Euclidean context 

(through more extended 2D displays, extension to 3D using Virtual Reality technology, as well 

as with physical installations) and can be optimized for specific categories of locations and 

products to maximize occupant benefit. 
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CHAPTER V 

MEMORY FOR THE FOREST AND THE TREES: THE IMPACT OF FRACTAL 

STRUCTURE ON MEMORY 

From Robles, K. E., Gonzales-Hess, N., Taylor, R. P., & Sereno, M. E. (2023). Memory for the 
forest and the trees: The impact of fractal structure on memory. Journal of Experimental 

Psychology: Human Perception and Performance. (Manuscript under revision). 
 

Even with brief presentations, viewer memory for natural scenes and objects is highly 

accurate (Shepard, 1967; Standing et al., 1970; Standing, 1973, Konkel et al., 2010). Global 

image features (Olivia & Torralba, 2006) and environmental regularity present in stimuli are 

readily processed by the visual system to enable holistic scene comprehension and ease of later 

recall (Greene & Olivia, 2009). Scene memory is further facilitated by successful encoding of 

discrete visual features in a meaningful and deep manner, suggesting that visual working 

memory for realistic environments relies more heavily upon higher-level processing as opposed 

to solely the encoding of low-level features (Brady & Stormer, 2022). Memory performance is 

shown to be hindered with additional overlap in shared conceptual and visual features (Huebner 

& Gegenfurtner, 2012), specifically resulting in increased occurrence of false memories when 

tested on image parts (Dechterenko & Lukavsky, 2022). Unlike meaningful realistic natural 

scenes, stimuli which are more ambiguous or “meaningless” additionally lack the benefit of clear 

semantic labeling and thus results in poorer viewer recall performance overall (Hegde & Kersten, 

2010). Visual long-term memory (VLTM) for whole items as well as memory for local visual 

properties are severely hindered when semantic information is removed from target objects 

(Shoval et al., 2022). Furthermore, even changes in surrounding spatial frequencies have the 

ability to impact accurate pattern perception of adjacent targets and impede memory accuracy 

across various trials (Huang & Sekuler, 2010). 
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Fractal patterns are composed of natural arrangements that repeat across rough-to-fine 

scaling (Mandelbrot,1982). Natural fractal patterns repeat their base “seed” configuration across 

scales in a statistical manner which introduces a seemingly random appearance to the pattern 

(Taylor et al., 2005; Taylor & Sprott, 2008; Taylor et al., 2011; Hagerhall et al., 2015) in 

comparison to exact fractals which repeat exactly across scale and often possess symmetry (Bies 

et al., 2016; Robles et al., 2020). Overlapping composite fractal arrangements combine to form 

the natural structures and landscapes most commonly viewed around the world (Mandelbrot, 

1982; Spehar et al., 2003; Taylor et al., 2018; Hagerhall et al., 2008). Despite the seemingly 

arbitrary quality of whole fractal patterns, local features often elicit pareidolia (Rogowitz & 

Voss, 1990; Rezaei et al., 2020; Taylor et al., 2017b) for natural items. Object naming is found to 

be greater when fractals possess low-to-moderate complexity and coincide with heightened 

perceptions of aesthetic appeal (Spehar et al., 2003). Furthermore, the discrete objects identified 

within fractal displays provide semantic labeling for these otherwise meaningless patterns.   

Fractal Fluency Theory proposes that the self-similar arrangement of fractal patterns 

allows for more effortless processing since the visual system can extrapolate the comprehension 

of local regions to the global pattern without further energy (Falk & Balling, 2010; Taylor et al., 

2018; Hagerhall et al., 2008). Beyond increased aesthetic appeal and pareidolia, natural fractal 

organization has been found to support broader cognitive effects, impacting both psychological 

states as well as performance (Juliani et al., 2016; Taylor et al., 2018; Abboushi et al., 2019; Roe 

et al., 2020; Spehar & Stevanov, 2021). Specifically, exposure to low-to-moderate complexity 

fractal patterns has been shown to have restorative effects on viewer attention encouraging 

greater time spent on cognitively taxing procedures (Hagerhall et al., 2015) and improvements in 

landscape comprehension for navigational abilities (Juliani et al., 2016, Ferreria et al., 2012). 
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Increased ease of fractal processing may allow for these patterns to be sufficiently understood 

without exhausting limited working memory capacity, enabling these resources to be allocated to 

other cognitive tasks thus coinciding with improved memory abilities.  

The current study examines the influence of pattern structure on observer memory, and 

specifically answers if memory performance can be added to the list of cognitive abilities 

explained by Fractal Fluency Theory (Taylor & Spehar, 2016; Taylor et al., 2018). Recognition 

and source memory are probed across variations in internal pattern factors (pattern complexity 

and underlying structure) to quantify the unique impact of statistical configuration on pattern 

distinctiveness. This series of experiments seeks to define the unique effects of fractal 

arrangement on general pattern memorability. Moreover, results will further the understanding of 

how seemingly random images are processed by the visual system in an effortless manner that 

allows efficient general pattern comprehension without de-emphasizing the differentiating 

features that make each pattern unique.   

Experiment 1 – Recognition memory for global fractal patterns 

Materials and Methods 

Stimuli: 

Experiment 1 utilized stimuli consisting of fractal patterns and matched non-fractal 

counterparts to determine how underlying pattern structure alters memory performance for visual 

patterns. Fractal images are initially generated using the midpoint displacement method to 

produce a series of unique black-white fractal patterns (see Bies et al., 2016 for generation 

specifics). These images are generated with varying pattern complexities or “D-values” ranging 

from simple to complex (1.1, 1.3, 1.5, 1.7, 1.9) (Figure 5.1A, left to right). For every fractal 

pattern the average region size is calculated. The non-fractal control stimuli were created by 
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generating normally distributed white noise, which was then Fourier transformed and band-pass 

filtered to match the average region size of a given fractal stimulus. The control stimuli are 

matched to the 5 levels of fractal dimension in 2 ways: 1) by equating mean region size (mean # 

of contiguous white or black pixels >3 pixels in a given fractal stimulus; “Average” control; see 

Figure 5.1B), and 2) by capturing larger scale structure by matching the upper mean (the mean 

of all above-average region sizes in a given image; “Large” scale control; see Figure 5.1C). 

These procedures transform the original fractal images into two distinct sets of stimuli matched 

for complexity and general quality of pattern arrangement but lacking fundamental fractal 

structure.  

 

Figure 5.1. Example stimuli used in the Experiments. From left to right, stimuli statistically vary across 5 levels of 
visual complexity from simplest (far left) to most complex (far right). (A) Fractals: fractal patterns with a fractal 
dimension (D) = 1.1, 1.3, 1.5, 1.7, and 1.9. (B) Average-nonfractals: non-fractal patterns with region sizes averaged 
to match the average region size of the original fractal pattern. (C) Large-nonfractals: non-fractal patterns with 
region sizes averaged to match the large-scale region size of the original fractal pattern. 
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Participants: 

To assess how underlying pattern structure and arrangement impacts memory 

performance, 90 undergraduate Psychology students (69 females, age ranging between 18-32 

years old, mean age 23 years old) were recruited from the University of Oregon through the 

SONA participant pool system. Prior to participation, informed consent was acquired following a 

protocol approved by the Institutional Review Board at the University of Oregon and 

demographic information was collected. All participants were compensated with class credit for 

their involvement.  

Visual Displays: 

Experiment 1 was generated in PsychoPy3 (Peirce et al., 2019) and presented on a 2013 

iMac computer with 27-inch monitor (screen resolution of 2,560 X 1440 pixels and 60Hz refresh 

rate). Participants were seated roughly 28 inches from the screen; thus viewing stimuli as 

approximately 13.8 degrees of visual angle across (720 x 720 pixels).  

Design and Procedure:  

Participants completed a memory task three times, each consisting of an encoding block 

followed by a recognition test. In the encoding block participants were instructed to memorize a 

series of images shown in the center of the screen for 5 seconds with each item preceded by a 

fixation cross. Stimuli in each encoding block consisted of one stimulus type (fractal, original 

non-fractal averaged, large non-fractal large region averaged) with patterns ranging across 5 

levels of complexity (matched to a D-value 1.1, 1.3, 1.5, 1.7, 1.9) giving rise to 20 unique 

patterns per block (20 unique seeds, 4 per D-value). This block was immediately followed by a 

memory test requiring participants to decide whether a presented image was considered “old” 
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(present in the previous encoding block) or “new” (absent from the previous encoding block). 

Across 20 recall trials participants were instructed to press the “z” key for “old” images and the 

“m” key for “new images”, both of which were labeled on the keyboard to ensure participants 

understood instructions. Recall trials lasted until participants pressed one of the two keys, and 

order of stimuli presentation was randomized. Within each block, participants were randomly 

presented with an attention check trial that instructed them to press a specific key to indicate they 

were fully attending to the task. Following the completion of the session, participants were 

debriefed according to protocol approved by the Institutional Review Board at the University of 

Oregon and compensated with class credit. 

Transparency and Openness:  

Sample size was predetermined by G*Power prior to data collection in 2022. Data 

exclusion criteria are listed at the start of the results section. Data and research materials are 

available at https://doi.org/10.7910/DVN/85ED7M. Data were analyzed using IBM SPSS 

Statistics for Macintosh (Version 29.0). This study’s design and its analyses were not pre-

registered.  

Results 

Data from 70 participants were retained from the 90 individuals who participated in the 

experiment. Data were excluded due to a) failure to complete the study (1), b) failure of 3 or 

more attention checks (6), or c) failure to follow instructions indicated by greater than 4 

consecutive trials with the same response occurring in multiple blocks (13). 

Pattern Recognition Task:  

A 2-way 3x5 repeated measures ANOVA (Pattern-type (fractal, original-nonfractal, 

large-nonfractal) x Complexity (equal or matched to D-values of 1.1, 1.3, 1.5, 1.7, 1.9)) was 
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performed using IBM SPSS Statistics for Macintosh (Version 29.0) on corrected recognition 

scores (hit rate – false alarm rate) from an image recognition test. Mauchly’s test indicated a 

violation of the assumption of sphericity for the interaction between Pattern-type and Complexity 

(χ2(35)=50.59, p<.043*). Therefore, degrees of freedom were corrected using Greenhouse-

Geisser estimates of sphericity (ε=.847). Pattern recognition is highest for fractal images 

(M=57.43%, SD=14.72%) compared to the average-nonfractal (M=38.43%, SD=16.07%) 

and large-nonfractal patterns (M=49.36%, SD=16.04%) (Figure 5.2A): fractals and average- 

nonfractals [t(69)=7.55, p<.001**, 95% CI [13.98,24.02], d=.90]; fractals and large-nonfractals 

[t(69)=3.57, p<.001**, 95% CI [3.56,12.58], d=.43], and average-nonfractals and large-

nonfractals [t(69)=-4.58, p<.001**, 95% CI [-15.69,-6.17], d=1.37]. The interaction between 

pattern-type and complexity demonstrates that while recognition rates for non-fractal patterns 

steeply decrease across levels of complexity, rates for fractal patterns decrease then remain stable 

for the mid-to-highest levels of pattern complexity (see Figure 5.2C and Table 5.1). Specifically, 

t-Tests indicate that large-nonfractal patterns have greater accuracy than fractal and average-

nonfractals at complexity level 1.1; there are no differences in accuracy among the patterns for 

complexity level 1.3; both fractals and large-nonfractals show higher accuracy than average-

nonfractals for complexity level 1.5; and fractals have greater accuracy than both large- and 

average-nonfractals at complexity levels 1.7 and 1.9 (Table 5.1). 

 A regression model was created to predict average participant accuracy on recognition 

trials by including the effects of pattern factors (complexity and pattern type) as well as viewer 

factors (reaction times and rating confidence). Overall, this model significantly predicts 

individual recognition accuracy (F(4,1045)=85.87, p<.001**, 95% CI [.20,.29], ηp2=.25), and 

accounts for 25% of variance in individual scores (Table 5.2). All pattern factors included in the  



 

169 

 

  

Figure 5.2. Experiment 1 results for pattern 
recognition. Results show significant main effects of 
pattern-type (fractal, average-nonfractal, large-
nonfractal), pattern complexity (equal or matched to 
D=1.1, 1.3, 1.5, 1.7, 1.9) and a significant interaction 
between pattern complexity and pattern type. 
Participant accuracy (on a scale from 0-100%) is 
plotted as a function of (A) pattern type, (B) pattern 
complexity, and (C) pattern type and complexity. 
Error bars represent ±1 SEM. 
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model (Complexity (β=-61.06, p<.001**), Pattern type (β=5.14, p<.001**)) as well as viewer 

factors (Reaction time (β=2.45, p=.001**), Confidence (β=16.04, p<.017*)) serve as significant 

predictors of performance.  

 Table 5.1. Experiment 1 – Paired Samples t-Tests across the 3 pattern types for each D-value. 

Note: *p < .05; **p < .01. 
 

Table 5.2. Experiment 1- Linear Regression 
Outcome 
Variable 

Predictors β t P 95% CI for β 

 
Accuracy 

Complexity -61.06 -16.21 <.001** (-68.45, -53.67) 
Pattern 5.14 4.04 <.001** (2.64, 7.64) 

Reaction Time 2.45 5.35 <.001** (1.55, 3.35) 
Confidence 16.04 2.40 .017* (2.93, 29.15) 

Note: N = 70; *p < .05; **p < .01. 
 

Discussion 

Experiment 1 investigated viewer recognition memory for visual black and white 

patterns. To determine the impact of image complexity and underlying pattern arrangement on 

memory performance, accuracy scores were compared across five levels of visual complexity 
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and three pattern types. A regression analysis indicated that trial reaction times and rating of 

decision confidence positively coincide with viewer accuracy (Table 5.2). Overall, recognition 

memory was highest for fractal images, followed by large-nonfractal and average-nonfractal 

images (Figure 5.2A) and demonstrates an inverse relationship with image complexity (Figure 

5.2B). Despite highest accuracy coinciding with large-nonfractal images of lowest complexity 

(equivalent to a fractal D-value of 1.1), accuracy for this category as well as the average-

nonfractal condition steeply declined with increasing complexity (Figure 5.2C; Table 5.1). In 

contrast, recognition accuracy for fractal images remained less affected even at higher levels of 

visual complexity. Findings from Experiment 1 suggest that the self-similar nature of fractal 

patterns facilitates pattern recognition at mid-to-high levels of complexity. The slightly higher 

performance of large-nonfractal patterns at the lowest level of complexity underscores the 

importance of large-scale structure, also present in natural fractal patterns, for pattern 

recognition. 

Experiment 2 – Spatial memory for local fractal patterns 

Materials and Methods 

Stimuli: 

To probe how pattern structure impacts memory performance for local pattern elements, 

Experiment 2 employs a new series of fractal images generated in the same manner as described 

in Experiment 1. Participants are presented with three types of black-white patterns (fractal, non-

fractal averaged, non-fractal large region averaged) at 5 levels of visual complexity (relating to 

D-values of 1.1, 1.3, 1.5, 1.7, and 1.9). In encoding trials participants view the entire image in 

the center of the screen for 5 seconds, whereas in recall trials participants are presented with a 

quadrant of this original image (either the top-left, top-right, bottom-left, or bottom-right) 
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(Figure 5.3). Stimuli consisted of a total of 120 patterns with 4 examples each pattern type 

presented per block, and each block consisting of one of 5 D-values (D=1.1, 1.3, 1.5, 1.7, 1.9).  

Participants:  

To identify unique changes in 

perceptual trends due to incorporating fractal 

and Euclidean structure, 80 participants were 

recruited via Prolific (www.prolific.co) 

[November, 2022] with the majority (42) of 

participants residing in the United Kingdom 

(45 females, age ranging between 18-75 years 

old, mean age 37 years old). Informed consent 

was acquired in accordance with protocol approved by the Institutional Review Board at the 

University of Oregon and all participants were compensated with $10 for their time.  

Visual Displays: 

Experiment 2 was also programmed in PsychoPy3 but presented through the online 

research study platform of Pavlovia (Peirce et al., 2019). This experiment was completed on 

participants’ personal computers with program stimuli being scaled to the individual computer’s 

respective full-screen dimensions. 

Design and Procedure:  

Participants completed 10 randomized blocks in which they were tasked to memorize 

black and white images, each one presented for 5 seconds and then immediately followed by a 

recall task about the original location of a subsection of the overall pattern. Every block 

Figure 5.3. Example trial from Experiment 2. Using 
the same three types of patterns used presented in 
Experiment 1, Experiment 2 first displays a whole 
image for 5 seconds. Following a 1 second blank 
screen, a region of the initial pattern is displayed in 
the center of the screen and the viewer must indicate 
the source location of this test region (either the top-
left, top-right, bottom-left, or bottom-right). 
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contained patterns with only one level of complexity equivalent to D-values of 1.1, 1.3, 1.5, 1.7, 

and 1.9, with each level of complexity encountered twice. The stimulus set within each block 

consisted of 12 items comprised of 4 unique seed patterns transformed into 3 types of patterns 

(fractal, average non-fractal, and large non-fractal). After memorizing the initial pattern for 5 

seconds, the stimulus disappears and is followed 1 second later by a new stimulus in the middle 

of the screen that is comprised of a quadrant from the original pattern (either the top-left, top-

right, bottom-left, or bottom-right region). Participants are instructed to indicate the original 

position of the test stimulus with a corresponding button press. The test stimulus remains on the 

screen until the participant makes their selection. Participants were randomly presented with an 

attention check per block in which they were instructed to press a specific key to indicate that 

they were giving the task their full attention. Upon completion of the experiment, participants 

were debriefed according to the protocols approved by the Institutional Review Board at the 

University of Oregon. 

Transparency and Openness:  

Similar to experiment 1, sample size for experiment 2 was predetermined by G*Power 

prior to data collection in 2022 and data exclusion criteria is listed at the start of the results 

section. Data and research materials are available at https://doi.org/10.7910/DVN/85ED7M, and 

all data were analyzed using IBM SPSS Statistics for Macintosh (Version 29.0). This study’s 

design and its analyses were not-preregistered.  

Results 

Data from 50 participants were retained from the 80 individuals who participated in the 

experiment. Data were excluded due to a) failure to complete the study (7), b) failure of 3 or 
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more attention checks (4), or c) failure to follow instructions (19) indicated by the same exact 

response being given for greater than 4 consecutive trials in more than 2 blocks. 

Feature Source Memory Task:  

Accuracy of the source task (recorded through key responses corresponding to one of the 

four possible source locations) was assessed through a 2-way repeated measures 5x3 ANOVA 

(Complexity represented by corresponding fractal dimension or “D-value” (1.1, 1.3, 1.5, 1.7, 

1.9)) x Pattern (fractal, average-nonfractal, large-nonfractal). Mauchly’s test indicated no 

violation of the assumption of sphericity for the two within-subjects variables or the interaction 

between variables. A significant main effect was detected for Complexity (F(4,196)=16.74, 

p<.001**, 95% CI [.14,.34], ηp2=.26) and Pattern (F(2,98)=32.08, p<.001**, 95% CI [.24,.51], 

ηp2=.40), and a significant interaction between these variables (F(8,392)=2.44, p=.014*, 95% CI 

[.00,.08], ηp2=.05) (Figure 5.4). Feature source accuracy is highest for fractal images (M=66.1%, 

SD=10.39) compared to the average-nonfractal (M=51.45%, SD=12.57%) and large-nonfractal 

patterns (M=58.45%, SD=12.65%) (Figure 5.4A): fractals and average-nonfractals [t(49)=7.66, 

p<.001**, 95% CI [10.81,18.49], d=1.08]; fractals and large-nonfractals [t(49)=3.81, p<.001**, 

95% CI [3.61,11.69], d=.54], and average-nonfractals and large-nonfractals [t(49)=-4.58, 

p<.001**, 95% CI [-10.08,-3.93], d=.65]. Overall accuracy decreases with additional pattern 

complexity from a mean of 63.92% (SD=12.01%) for the least complex patterns to 49.50%  

(SD=13.33%) for the most complex patterns (Figure 5.4B). The interaction between complexity 

and pattern type reveals that viewer accuracy steadily decreases for average-nonfractal patterns, 

peaks with moderate complexity for large-nonfractal patterns, and decreases with a slight dip at  

mid-range complexity for fractal patterns (Figure 5.4C). Specifically, t-Tests indicate that fractal 

patterns have greater accuracy than the matched average-nonfractal patterns at all levels of 
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Figure 5.4. Experiment 2 results for source 
recognition memory. Results show significant main 
effects of pattern-type (fractal, average-nonfractal, 
large-nonfractal), pattern complexity (equal or 
matched to D=1.1, 1.3, 1.5, 1.7, 1.9) and a 
significant interaction between pattern complexity 
and pattern type. Participant accuracy (on a scale 
from 0-100%) is plotted as a function of (A) 
pattern type, (B) pattern complexity, and (C) 
pattern type and complexity. Error bars represent 
±1 SEM.   
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complexity, and greater accuracy than the large-non fractals at the lowest (D=1.1 and 1.3) and 

mid-to-high (D=1.7) levels of complexity. Large-nonfractals have greater accuracy than the 

average-nonfractals at mid-to-high levels of complexity (see Table 5.3). 

A linear regression analysis was carried out to quantify the impact of stimulus factors 

(complexity and pattern type) and viewer response factors (rating reaction time and viewer 

confidence) on source memory performance for pattern features (Table 5.4). Overall, this model 

significantly predicts individual source memory accuracy (F(4,745)=23.21, p<.001**, 95% CI 

[.07,.15], ηp2=.11), and accounts for 11% of the variance in individual scores. Both pattern 

factors included in the model (Complexity (β=-16.42, p<.001**), Pattern type (β=3.36, 

p<.001**)) as well as viewer confidence (β=3.82, p<.001**) serve as significant predictors of 

performance.  

Discussion 

 Experiment 2 further probes the impact of pattern complexity and arrangement on viewer 

memory abilities by assessing source memory for features found within the original stimulus 

patterns. Like Experiment 1, overall accuracy is higher for fractal stimuli compared to both sets 

of non-fractal control stimuli (Figure 5.4A) and decreases with additional pattern complexity 

(Figure 5.4B). Furthermore, source memory for fractal patterns remains higher than the size-

matched average-nonfractal arrangements across all levels of pattern complexity and higher or 

equivalent to large-nonfractal arrangements across levels of pattern complexity (Figure 5.4C). 

The higher recognition accuracy for large-nonfractal compared to average-nonfractal patterns 

points to the importance of large-scale structure for source recognition memory. Viewer 

confidence ratings once again predict memory accuracy. However, viewer response time for 

deciding source location is not a significant predictor of judgment accuracy. Findings from 
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Experiment 2 suggest that the self-similar nature of fractal patterns is generally more distinctive 

than non-fractal images across image complexity, thus facilitating source memory. 

Table 5.3. Experiment 2 – Paired Samples t-Tests across the 3 pattern types for each D-value. 

Note: *p < .05; **p < .01. 

Table 5.4. Experiment 2- Linear Regression 

Outcome 
Variable 

Predictors β t P 95% CI for β 

 
Accuracy 

Complexity -16.42 -6.64 <.001** (-21.27, -11.56) 
Pattern 3.36 3.94 <.001** (1.69, 5.03) 

Reaction Time .10 .30 .77 (-.58, .78) 
Confidence 3.82 5.00 <.001** (2.31, 5.33) 

Note: N = 50; *p < .05; **p < .01. 

 

General Discussion 

Coinciding with the greatest prevalence in nature (Mandelbrot, 1982; Spehar et al., 2003; 

Taylor et al., 2018; Hagerhall et al., 2008), low-to-moderate complexity fractal patterns seem to 
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facilitate performance on a variety of cognitive tasks in viewers (Juliani et al., 2016; Taylor et 

al., 2018; Abboushi et al., 2019; Roe et al., 2020; Spehar and Stevanov, 2021).  Along with 

increased aesthetic and naturalistic experiences (Robles et al., 2021; Hagerhall et al., 2015), 

performance peaking at this level of visual complexity lends support to Fractal Fluency theory’s 

tenant that the self-similar structure of fractal patterns in this range of complexity is more 

efficiently processed by the visual system (Taylor & Spehar, 2016; Taylor et al., 2017a). 

Determining the extent to which Fractal Fluency Theory can apply to memory performance 

provides additional insight into how self-similar repetition impacts viewer processing.  

Across two experiments, the current study serves to examine how memory accuracy 

varies with stimulus complexity and structure, particularly focusing on how patterns are 

processed holistically in a manner similar to scenes that allows for efficient global pattern 

comprehension without discounting the distinctiveness of local features unique to each image. 

Unlike previous measures of performance for fractal patterns, the experiments completed here 

not only examine performance across fractal complexity but also, for the first time, compare 

responses across fractal and matched non-fractal control stimuli in order to quantify the overall 

impact of fractal structure on performance. Despite measuring two separate forms of memory 

performance, both experiments demonstrate similar trends in viewer accuracy across pattern 

complexity and underlying fractal or non-fractal arrangement. Experiment 1 measured 

recognition memory for whole patterns that varied in both complexity and pattern type (fractal, 

average-nonfractal, large-nonfractal) to determine if pattern complexity and the presence of 

fractal structure alter the perceived distinctiveness of the entire image. At the lowest levels of 

complexity, pattern features are more distinct and thus more memorable. With increased 

complexity, the overall large-scale structure is still apparent in fractal patterns but lost in non-
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fractal patterns, thus masking the distinctive qualities of the individual non-fractal patterns 

resulting in lower memory performance. This maintenance of structure present across levels of 

complexity lends further support for fractal processing fluency being a driver of improved 

memory performance (Taylor & Spehar, 2016; Taylor et al., 2018). 

Whereas Experiment 1 establishes the importance of visual complexity and pattern 

arrangement (fractal or non-fractal) on fundamental pattern comprehension and detection of 

pattern uniqueness, Experiment 2 probes how this relationship applies to memory for pattern 

features as opposed to entire images. Although fractal arrangement may facilitate comprehension 

of the entire pattern, determined by its large-scale structure, it is equally important to consider 

how this structure impacts distinctiveness of local features. Upon assessing source memory for 

pattern regions with and without fractal structure, results are found to reinforce the impact of 

visual complexity on overall pattern distinctiveness established in Experiment 1. The self-similar 

nature of fractal patterns is not found to limit feature memory. Specifically, source memory for 

fractal patterns remains higher than the size-matched average-nonfractal arrangements across all 

levels of pattern complexity and higher or equivalent to large-nonfractal arrangements across 

levels of pattern complexity.  Surprisingly, source memory is significantly higher for fractal 

compared to both types of non-fractal patterns at the lowest levels of visual complexity, where 

pattern features are most distinct regardless of structure. Thus, the overall ease of pattern 

comprehension impacts memory for whole images as well as internal features.  

The overlapping findings reported between the two studies lends further support to the 

applicability of Fractal Fluency Theory to broad cognitive performance. The proposed 

effortlessness of visual processing for fractals likely drives improved whole-pattern and feature 

comprehension resulting in improved memory for these compositions. These results have 
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implications for our abilities to recognize patterns in natural scenes, which have abundant fractal 

structure. The current study’s consistent results found between typical participant samples (a 

convenience sample of college students) from the first experiment as well as a more diverse 

range of participants and viewing conditions from the second experiment (broader participant 

age, ethnicity, natural surroundings, as well as survey experience) supports the robust nature of 

fractal perception, suggesting that improved cognitive performance associated with fractals can 

be applied to wider populations. Despite recruiting from both a convenience population as well 

as a broader group of cultures and countries, findings are currently limited due to the 

homogeneity of “WEIRD” participant samples. Holistically, findings from Experiment 1 

emphasize how the success of whole pattern recognition is established by visual complexity 

moderating whole pattern distinctiveness whereas Experiment 2 reinforces the importance of 

pattern comprehension for accurate feature source memory. The current study serves to expand 

the consideration of Fractal Fluency effects to the field of memory and encourages future work 

to explore how the connection between fractal patterns and improved memory abilities can be 

applied to humanmade environments.  
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CHAPTER VI 

GENERAL DISCUSSION 

 
The human visual system is adept at processing the self-similar patterns which organize 

the natural world (Mandelbrot, 1982; Falk & Balling, 2010; Taylor et al., 2021; Brielmann et al., 

2022). Though this fractal processing fluency has been implicated in occurrences of highly 

aesthetic experiences (Viengkham & Spehar, 2018; Taylor et al., 2011; Taylor, 2003; Taylor et 

al., 2007; Rawls et al., 2021; Lukman et al., 2007; Graham & Field, 2008; Forsythe et al., 2017; 

Beauvois, 2007) and improved cognitive performance (Juliani et al., 2016; Burtan et al., 2021; 

Taylor et al., 2017; Ferreira et al., 2012) it is unclear whether these effects are present in a wider 

variety of contextual conditions. Variation in viewing conditions (Aboushi et al., 2019; Sereno et 

al, 2020) as well as viewer specific individual differences (Pyankova, 2019) have the capacity to 

categorically alter visual perception. Natural fractal patterns do not exist in isolation; requiring 

the visual system to accommodate adjacent nonnatural elements that require greater processing 

effort (Billington et al., 2008; Rezaei et al., 2020). Viewer experience is a derived from not only 

a culmination of local and global pattern features, but also familiarity with visual complexities 

(Roder et al., 2000) and the integration of surrounding contextual information (Billington et al., 

2008). Thus, the present dissertation aimed to define how visual pattern perception is impacted 

by 1) viewer individual differences and the inclusion of 2) additional design elements, 3) fractal, 

and Euclidean structure. Subsequently applying findings to 4) probe how fractal pattern 

perception relates to visual memory. 

Impact of Development and Individual Differences on Fractal Perception 

Fractal structure is omnipresent in natural environments worldwide (Taylor et al., 2005;  
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Hagerhall et al., 2015; Taylor et al., 2011; Bies et al., 2016; Taylor & Sprott, 2008). Thus, the 

first goal of the dissertation was to address how perception of these unavoidable patterns is 

impacted by individual viewer variations. Chapter 2 first explored how years of fractal exposure 

related to degree of fractal preference. Prior studies have established a robust quadratic trend in 

fractal preference in which preference peaks with low-moderate complexity when patterns are 

statistically repeated across scale (Bies et al., 2016; Spehar et al., 2016; Street et al., 2016; 

Pyankova et al., 2019) and linear trend peaking with high complexity with exact repetition (Bies 

et al., 2016; Hagerhall et al., 2015; Friedenberg et al., 2021). However, these findings have only 

been observed in adult samples which possess decades of experience processing fractal patterns, 

inspiring this study to compare adult fractal preference to a sample with significantly less 

familiarity, children ranging from 3-10 years old. Furthermore, this study sought to explain 

whether common variations in perceptual tendencies were driving observed variations in fractal 

preferences. Findings from Chapter 2 suggest a shared general fractal preference that is 

established before 3 years of age and is unaffected by biological sex or perceptual bias. These 

findings are the first to compare fractal preference across fractal pattern type (exact and 

statistical) and a wide span of development and determine that preference for the most common 

natural spatial structure is uncoupled from years of experience interacting with fractals. Instead, 

fractal preference appears to be related to possibly more innate tuning of the human visual 

system, set to efficiently process patterns prevalent in nature (Spehar et al., 2003; Taylor et al., 

2018; Hagerhall et al., 2008).  

Pattern Perception with Integration of Additional Structure 

The second goal of this dissertation was to test whether trends in fractal perception could 

withstand integration of additional pattern structure, including elements of aesthetic design. Prior 
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research has demonstrated the potential of injecting natural spatial structure into artificial 

environments through fractal installation to mitigate occupant visual strain (Penacchio & 

Wilkins, 2015; O’Hare & Hibbard, 2011; Ogawa & Motoyoshi, 2020). However, for fractals to 

have a chance at improving occupant well-being, installations must be able to be broadly 

incorporated into already built spaces without limiting the function or aesthetics of a space. Thus 

to promote their practicality, fractal design needs to accommodate the Euclidean structural 

elements of its surroundings in addition to variation in artistic choices (Smith et al., 2020). Using 

nature inspired fractal designs already manufactured and installed as carpet products, Chapter 3 

assesses the unique impact of Euclidean arrangement and local design elements across a wide set 

of viewer experiences. Through a series of empirical studies that span multiple countries and 

rating methodologies, findings demonstrate that fractal pattern complexity impacts viewer 

experience regardless of variations in pattern design. Furthermore, complexity appears to 

moderate experience by altering levels of viewer interest and physiological arousal. Importantly, 

Chapter 3 identified significant subgroups in perceptual trends, confirming prior research 

regarding consistent subpopulations (Street et al., 2016; Spehar et al., 2016; Bies et al., 2016) 

and emphasizing the importance of implementing fractal designs that can evoke a desired 

experience for the majority of occupants. Notably, robust conclusions from this chapter indicate 

that through control of local and global elements of fractal design, aesthetic modifications can be 

applied to the manufacturing and installation of versatile nature inspired designs that encourage 

tailored occupant experiences.  

Unique Contribution of Fractal Arrangement within Euclidean Space 

Building upon findings from Chapter 3, Chapter 4 further examines the utility of fractal 

design and impact of pattern integration on visual perception. This third goal of the dissertation 
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was to explicitly determine the effect of blending Euclidean and fractal arrangements on 

perception and define the fundamental contribution of fractal structure to viewer perception. 

Incorporation of fractals into surrounding Euclidean space has been implemented in both small 

(Taylor & Sprott, 2008) and large installations (Abboushi et al., 2019; Roe et al., 2020), with 

results suggesting benefits to occupant mood. To validate prior findings that fractal statistics are 

the driving factor in viewer mood ratings and define how perception is altered by embedding 

fractal patterns into Euclidean space, Chapter 4 compared ratings of fractal and mathematically 

matched nonfractal patterns. This study is the first to use truly comparable nonfractal stimuli that 

maintain general arrangement, complexity, and local region size but remove basic fractal order. 

This chapter first determined differences in perceptual trends with and without fractal underlying 

structure, then directly reassessed the same perceptual judgments for fractals in the present of a 

surrounding Euclidean frame, producing a Euclidean boundary reminiscent of a prototypical 

surrounding room. Perceived pattern complexity is shown to serve as a main driving factor of 

visual experience in the majority of viewers regardless of structure, and consistent participant 

subgroups are detected that resemble those found in previous work (Street et al., 2016; Spehar et 

al., 2016; Bies et al., 2016), thus further confirming findings from Chapter 3. Interestingly, 

compared to nonfactal images, the presence of fractal structure produces on average more 

positive viewer judgments. When Euclidean structure encloses fractal images it establishes 

discrete pattern boundaries that impact viewer interest and excitement, while not altering 

remaining perceptions. Taken together these results support the general connection between 

viewing fractals and positive feelings and emphasize the importance of selecting patterns with 

perceived complexities that support the space’s desired experience. 
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Relevance of Fractal Fluency Theory to Viewer Memory Performance  

Whereas the first three goals of this dissertation serve to fill critical gaps in our 

understanding of how viewers perceive fractal designs and how fractal incorporation can 

optimize humanmade space, the final goal of this work is to connect perception to performance. 

Chapter 5 applies Fractal Fluency Theory to memory accuracy to test whether fractal statistics 

facilitates visual recognition. Fractal Fluency underlies findings of improved navigational 

performance (Juliani et al., 2016) and object identification (Spehar et al., 2003) coinciding with 

low-to-moderate fractal patterns, suggesting a likely connection between fractal comprehension 

and pattern memory. With a global structure reflecting the repetition of local elements across 

scaling, fractals evoke qualities of natural scenes. Despite the visual system’s expertise in 

processing pattern regularities (Greene & Olivia, 2009) ambiguous forms often limit memory 

accuracy (Huebner & Gegenfurtner, 2012; Hegde & Kersten, 2010), creating a question as to 

how fractal patterns may influence memory performance. To determine how the visual system 

handles fractal arrangements, two experiments were conducted using fractal and matched 

nonfractal patterns. A recognition task was used to assess sensitivity for global patterns whereas 

a source recall task was employed to measure memory for local pattern elements. Global fractal 

arrangements were found to be more recognizable and possessed local features which were better 

encoded than their nonfractal counterparts. This relationship was particularly apparent at high 

levels of stimulus complexity, where pattern discrimination is most difficult. Together findings 

from this chapter further underscore the influence of perceived pattern complexity on visual 

processing and illuminate the ability of fractal organization to mitigate perceptual difficulties 

associated with ambiguous stimuli. Chapter 5 serves to explore how the visual system processes 



 

191 

 

local and global fractal structure to aid pattern comprehension and points to possible underlying 

memory facilitation involved in the fractal task performance.  

Broader Implications 

The current dissertation furthers our understanding of how the visual system handles fractal 

structure and provides compelling evidence for the utility of fractal installments in humanmade 

spaces. Understanding how visual perception is altered by natural spatial structure is a notable 

yet rather under examined area of research. Thus far, studies have demonstrated a link between 

artificial environments and visual strain resulting in higher incidences of occupant stress 

(Penacchio & Wilkins, 2015; O’Hare & Hibbard, 2011; Ogawa & Motoyoshi, 2020). Fractals 

provide a versatile option for injecting natural order into already existing spaces (Smith et al., 

2020; Roe et al., 2020; Abboushi et al., 2019; Taylor & Sprott, 2008). Understanding how fractal 

fluency influences perception will allow the successful prediction of viewer experiences across 

various settings, granting the opportunity to tailor a space to optimize its function while 

considering occupant needs. Recent research has even begun to probe the connection between 

fractal perception and enhanced cognitive performance (Juliani et al., 2016; Burtan et al., 2021; 

Taylor et al., 2017; Ferreira et al., 2012). The current dissertation adds to this literature by 

defining the impact of fractal statistics on viewer perception, and additionally probing its 

ubiquitous effects despite perturbations to pattern design. Findings from the current body of 

work emphasize the potential of fractal design to regulate occupant experience, encouraging 

future opportunities for direct assessment of fractal effects on viewer wellbeing and behavior.  

Limitations & Future Directions 

The dissertation explored how fractal patterns are fluently processed by the human visual 

system to impact perception. Familiarity with statistical complexities may contribute to 
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differences in pattern comprehension (Hadad, 2018; Roder et al., 2000), and thus variations in 

perception. Although the current dissertation provides evidence that adult-like fractal perception 

is established by 3-years of age (Robles et al., 2020), the effects of earlier experience with 

fractals and visual complexities cannot be ruled out. Furthermore, findings from subsequent 

chapters also reaffirms the presence of perceptual subgroups in sampled populations found in 

previous fractal studies (Street et al., 2016; Spehar et al., 2016; Bies et al., 2016). The sometimes 

contradicting trends in viewer experiences cannot be explained by Fractal Fluency Theory, 

limiting the generalizability of findings despite its presence in only a smaller percentage of 

individuals, suggesting that these perceptual variations may better be explained by unexamined 

cultural factors (Hagerhall et al., 2018), sensitivity (Spehar et al., 2016; Spehar et al., 2015), or 

partiality towards a given complexity (Güçlütürk et al., 2016). The stability of subgroup trends 

underscores the importance for future studies to expand past the use of largely homogenous 

participant samples which overwhelmingly share the same W.E.I.R.D. demographics, in order to 

assess the true generalizability and utility of fractal biophilic design. 

The present dissertation has shown the robust connection between controlled 

modifications to fractal patterns and viewer perception but stops just shy of observing a causal 

impact of fractal design on viewer perception. Generation of matched nonfractal images provides 

a major methodological improvement to the isolation of fractal effects, encouraging future 

generation of more precise nonfractal stimuli that match spatial frequencies and general shape of 

fractal regions in addition to region size. Although the current findings definitively support prior 

assertions that visual complexity (Bies et al., 2016; Hagerhall et al., 2016; Güçlütürk et al., 2016) 

and pattern composition (Aboushi et al., 2019; Sereno et al, 2020) are key factors driving visual 

experiences, it is critical to directly test the application of fractal exposure to manipulate viewer 
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mood and behavior. This collection of findings serves to promote the next logical step of explicit 

assessment of viewer perception and performance prior to and following fractal exposure. Even 

once this key relationship is established numerous factors must still be investigated (including 

pattern size, location, medium, and duration of exposure) for implementation of fractal design to 

truly tailor occupant experiences whether they be in virtual reality or physical space. Despite the 

need for further exploration, this dissertation provides an optimistic outlook on the utility of 

fractal design to exploit natural visual tuning to promote well-being. 

General Conclusion 

The present dissertation serves as a major advancement in the study of fractals, 

particularly by expanding beyond typical fractal aesthetics research to demonstrate robust shared 

experiences of fractal patterns across varying contexts. Moreover, it is shown that viewer 

experience can be predicted by aspects of pattern composition. Crucially, this information can be 

directly applied to decisions of occupant centered design to facilitate the effectiveness of 

humanmade spaces. Combined, findings from this body of work further our fundamental 

understanding of how the visual system integrates target features as well as arrangements to 

facilitate pattern comprehension and emphasizes the vast potential of embracing fractal designs 

to optimize viewer experiences, performance, and wellbeing. 
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