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DISSERTATION ABSTRACT 

 

Brittany Elizabeth Carter 

Doctor of Philosophy 

Department of Physics 

June 2023 

Title: Building and Characterizing Graphene Nanomechanical Resonator Networks 

Networks of nanoelectromechanical (NEMS) resonators are useful analogs for a variety of many-

body systems and enable impactful applications in sensing, phononics, and mechanical information 

processing. Two main challenges are currently limiting progress toward realizing practical NEMS networks. 

The first is building a platform of interconnected resonators that is scalable in both size and tunability. The 

second is spatially quantifying the mechanical parameters of each resonator in the network and their coupling. 

In this work, we address these two main challenges with a novel scalable platform to build the network and a 

compatible method to characterize mechanical parameters. Together, this work fills in a vital gap for the 

experimental realization of programmable NEMS networks. 

We first present a novel platform of suspended graphene resonators that hosts strong coupling and is 

scalable in 2D. In this platform, we suspended graphene over pillar arrays, in which large areas of suspended 

graphene act as drumhead resonators and shared membrane between adjacent resonators allows for direct 

coupling through strain. We demonstrate the versatility advantages of our graphene-based resonator network 

by providing evidence of strong coupling through two different tuning methods. We demonstrate the 2D 

scalability potential of this platform with evidence of coupling between three resonators. Finally, we show 

noteworthy coupling dynamics of inter-resonator higher order mode coupling that is enabled by our versatile 

platform. 

We then demonstrate a scalable optical technique to spatially characterize graphene NEMS network. 

In this technique, we read out the fixed-frequency collective response as a single vector. Using just two 

response vectors, we solve for the site-specific elasticity, mass, damping, and coupling parameters of network 

clusters. Compared to multiple regression, our algebraic fully characterizes the network parameters without 

requiring a priori parameter estimates or iterative computation. We apply this technique to single-resonator 

and coupled-pair clusters and find excellent agreement with expected parameter values and spectral response. 

Our approach offers a direct means to accurately characterize both classical and quantum resonator systems. 
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1 Introduction 

1.1 Background of many-body systems  

Coupled resonators are abundant in both nature and technology; existing in many different forms from 

multiple strings vibrating on a guitar to rhythmic applause at a concert hall1. Coupled resonators operate on 

the principle that if there is a medium connecting two or more oscillators, such as the neck of a guitar, then 

the oscillators can exchange energy. When coupling is present, and energy is transferred between 

resonators, specific amplitude and phase patterns emerge between the resonators in the system, commonly 

referred to as collective dynamics.  

Collective dynamics in many-body systems, or networks of interconnected resonators, can give rise to many 

fascinating phenomena when observed over time. For example, coupled resonators with differing natural 

frequencies may spontaneously sync up in phase if there is a weak connection between them, through a 

phenomenon called synchronization23. While collective behavior like synchronization can be captivating to 

observe in nature4, dynamics of many-body networks can have prominent effects on vital systems including 

health5,6 and technology7,8, governing the collective beating of pacemaker cells9 and the operation of the 

national power grid 10,11. To better predict network behavior, research in the field of many-body physics has 

become widespread. 

Understanding the collective behavior of many body systems is also essential for a wide range of fields in 

physics, from quantum mechanics8,12 to astronomy13. While modeling physical systems can give insight into 

the natural world, tunability of each network node and their connectivity would provide a means to 

experimentally realize systems that do not occur naturally. The idea of network programmability has led to 

the pursuit of new computing schemes, including both quantum and classical, that can be used to explore 

and understand problems with high dimensional parameter spaces, necessary for complex computation. 

Therefore, it is not only essential to develop ways to thoroughly understand how energy moves between 

coupled resonator networks14, but to also develop programmable platforms to achieve new technologies 

that utilize the power of collective dynamics. 

1.2 Coupled NEMS resonators as a model system for many-body physics 

One way to enhance understanding of large coupled systems is by implementing physical nanoscale models, 

in which we can set the initial conditions and observe the system as it evolves. There are many options to 

use as the building blocks of these nanoscale models, including LCR circuits15, Josephson junctions7,  and 

semiconductor lasers16. One method that is particularly attractive is to use micro/nanoelectromechanical 
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systems (MEMS/NEMS) as the building blocks17–19 because they are dimensionally small for scalability, 

evolve on fast time scales, couple strongly to their environment, and are low power compared to their 

electrical counterparts20.  

In addition to functioning as a modeling platform, NEMS networks are also attractive for technological 

advancements. For example, the vibrations of atoms in a diatomic crystal lattice can be modeled as a linear 

chain of masses and springs21. This model gives way to the formation of phononic bandgaps, or frequency 

ranges in which phonons cannot propagate through the lattice. This property extends to linear chains of 

coupled NEMS and can be used for applications such as signal filtering22 and phononic shielding23.   

The scope of NEMS networks can be expanded for novel technologies by developing methods to control 

the mechanical parameters of the network; meaning techniques to tune the masses, intrinsic spring 

constants, coupling spring constants, and damping. With the ability to tune these parameters, we also move 

towards exploring new physics that does not occur in nature. This includes the experimental realization of 

dynamic phononic bandgaps24–27, essentially transforming a vibrational insulator to a conductor. 

Additionally, we can create tunable defects27 to dynamically control phonon propagation and 

metamaterials28,29 to achieve counterintuitive material properties, such as thermal rectification30 for 

unidirectional heat flow. With large enough networks and precise enough control, coupled NEMS 

resonators can even be used to achieve alternative computing schemes with mechanical logic31 and 

neuromorphic computation32,33. Multi-level quantum systems can also be simulated with coupled NEMS 

resonators34–36 and NEMS waveguides can be used as energy transducers to connect components of 

quantum circuits in quantum computers37 and networks38.  

While there has been great progress in the development of tuning methods in coupled NEMS resonators, 

scalability of the platforms remains an outstanding challenge. A typical method of achieving strong 

coupling between resonators is through a shared clamping point, which has been investigated in multiple 

systems including GaAs pillars19 and SiN beams39. However, modifying the mechanical coupling strength 

in these systems requires fabricating new devices to alter the clamping lengths, which limits the overall 

tunability. Another common method of tuning the coupling strength that can be achieved dynamically is 

through a parametric drive, in which the coupling strength is dependent on the amplitude of the pump 

modulation. This method has been demonstrated between SiN39,40, Si17, and GaAs beams41. Parametric 

driving, however, has limited scalability because this method requires persistent individual addressing of 

each resonator in the network.  
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Once a scalable platform of coupled resonators has been achieved, it will be essential to develop robust 

characterization methods to read out the current conditions of the network and to inform further 

programming. Typically, the mechanical parameters – masses, spring constants, damping, and driving 

forces – are characterized by fitting amplitude spectra using least squares fitting19,42. While this method is 

effective for determining resonance frequencies and damping, the individual values of masses and spring 

constants are highly dependent on user input guesses and the correlations between these parameters often 

leads to large associated errors43. Additionally, spectra analysis does not give insight into the spatial location 

of the characterized parameters. Spatial information is important for fully understanding the state of the 

network and for determining which nodes may need further tuning. Weak coupling will need to be 

characterized as it is an essential component in phenomena such as synchronization5,18. To reach the full 

potential of using NEMS resonators as large-scale networks, we need to develop a method of characterizing 

and subsequently spatially mapping each mechanical parameter. 

To investigate and employ collective behavior in many-body NEMS systems, it is imperative to 

overcome the current challenges in scalability and characterization of coupled NEMS resonators. To 

build a scalable platform, we need a device design that is optimized for strong coupling, tunability, and 

scalability. We then need to develop a method to characterize all the mechanical parameters of the network 

to diagnose the initial state and determine how to tune each component the system44.  

1.3 Graphene NEMS resonators 

The distinct properties of graphene make suspended graphene resonators an attractive platform for a 

coupled NEMS network. A suspended graphene resonator in a drumhead platform is shown in Figure 1.1.  

Graphene, a single layer of hexagonally bonded carbon atoms, is both the thinnest and strongest material 

known today45,46. The combination of low mass and high strength allows for the out of plane deflection of 

suspended membranes up to about 4% without rupturing47. Static deflection causes an increase in the 

membrane tension, which can tune a drumhead resonance frequency up to several hundred percent42. 

Graphene has a large in-plane elastic modulus46,48, setting the operating frequency of suspended resonators 

in the MHz regime and generating strong non-linearities49, which are essential for achieving higher order 

interactions18,50,51 and quantum applications52. Because graphene is very low mass, it couples strongly to 

the surrounding environment, which has made single graphene resonators ideal for force53, pressure47, and 

mass sensors54. It also has broadband absorption, which has been utilized to create a graphene bolometer55, 

or light sensor, with an RC time-constant that is fast enough to drive the graphene resonators in the MHz 

regime. The fast responsivity of graphene to these environmental couplings also offers multiple tuning 

options56,57. Because fabrication limitations make it nearly impossible to fabrication multiple NEMS 
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resonators of the exact same resonance frequency, the tuning methods and general tunability of graphene 

make it an attractive option for aligning the frequencies of drumheads in large scale arrays. 

Coupled nanomechanical suspended graphene resonators have the potential to overcome the limitations in 

the scalability of size58,59 and tuning. Although mechanical strain coupling has not been well studied 

between graphene resonators60, multiple experiments have demonstrated strain coupling between the modes 

of a single resonator50,51. These studies indicate a high potential that graphene will support inter-resonator 

mechanical strain coupling as well. Graphene resonators also can be persistently tuned with the recent 

development of phototuning42; a tuning method that does not require individual back gates or continuous 

application of heat. Finally, these important properties of graphene exist at room temperature and many 

single graphene resonator experiments have been executed with no cooling42,51,54,55,61,62. Achieving strong 

coupling between graphene resonators at room temperature would be beneficial compared to materials that 

require cryogenic temperatures to achieved strong coupling17,40,41,63.  

1.4 Characterizing graphene NEMS resonators 

To utilize suspended graphene resonators in a large-scale network, it will be critical to develop a compatible 

method of characterizing the mechanical parameters of each resonator node and their interactions. To enable 

scalability of the graphene resonator network in two dimensions, this method must provide the ability to 

map the spatial configuration of the current network state, including strong and weak coupling interactions, 

without requiring a-priori knowledge of the system. To spatially map the network configuration, we can 

use an optical scanning method to readout the amplitude and phase of each resonator node64. In addition to 

providing spatial information of the network parameters, this imaging technique would also illuminate areas 

of weak coupling. Additionally, we can algebraically solve for the mechanical parameters, which can be 

done with less data points than least squares fitting and does not require any a-priori knowledge. Combining 

 

Figure 1.1 Suspended graphene drumhead resonator 

Scanning electron microscope image of suspended graphene drumhead resonator. Image reproduced from co-authored 

manuscript in progress. 
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these two aspects would provide the ability to spatially map an entire network cluster without the need for 

guess solutions or knowledge of the current network configuration, enabling the network to be precisely 

programmed. 

1.5 Outline thesis chapters 

As discussed, a programmable NEMS network could be used to make a significant impact on health and 

technology, as well as to explore new physics. As an important step towards achieving a programmable 

NEMS network, this dissertation addresses the two main challenges that are currently limiting progress. 

First, the challenge of building a scalable platform will be addressed with the demonstration of strong 2D 

coupling between graphene resonators. Second, a novel characterization method will be presented in which 

each mechanical parameter can be determined and spatially mapped to read out the current state of a 

network. 

Chapter II will develop the model used to characterize the suspended graphene platform. We will start by 

discussing an infinite linear chain of masses and springs. We will then discuss subsections of this model in 

detail, namely the single resonator and two coupled resonators. Notable features in spectral data and 

important figures of merit will also be discussed for both subset cases. We will then explore how the 

equation of motion of a 2D membrane resonator maps onto our linear mass and spring model. 

Chapter III will outline the experimental procedures in fabricating and measuring the suspended graphene 

resonators. This chapter includes detailed process flows that are used to fabricate the base structures and 

the technique used for transferring and suspending graphene over nanoscale features. This chapter then 

moves into a discussion of the optical and electrical methods used to measure and drive the motion of the 

suspended graphene resonators. 

Chapter IV is based on currently unpublished work co-authored with David Miller, Uriel Hernandez, Viva 

Horowitz, Andrew Blaikie, and Benjamín Alemán. This chapter presents a novel platform of suspended 

graphene resonators that exhibit strong coupling between resonators.  We discuss data that indicates strong 

coupling between two and three coupled resonators. Additionally, we show inter-resonator coupling of a 

higher order mode. 

Chapter V is based on publicly posted but currently unpublished work co-authored with Viva Horowitz, 

Uriel Hernandez, David Miller, Andrew Blaikie, and Benjamín Alemán. This chapter will discuss an 

algebraic method of spatially characterizing all mechanical parameters in a network. We start by presenting 
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the mathematical framework of this method. We then apply this method to characterize two examples of 

single graphene resonators and then to two examples of coupled graphene resonators.  

Chapter VI will summarize the impacts of this work and the challenges in the field of programmable NEMS 

networks. Future directions that are now possible with this foundation will be suggested. 
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2 Theoretical background 

This chapter introduces a linear mass and spring model that we use to capture the dynamics of 2D suspended 

graphene resonators. We first introduce the infinite model and then look closer at the model subsets of one 

resonator and two coupled resonators. We then explain how the equations of motion of a 2D resonator map 

to a linear mass and spring. This model is essential for both detecting strong coupling in our suspended 

graphene platform, as well as determining the mechanical parameters of each resonator and their 

connectivity in our characterization method. 

2.1 Infinite chain of masses and springs 

We model our graphene NEMS network as a finite chain of masses on springs. To develop a universal 

model that can be truncated to represent finite chains of various lengths, or clusters, we start with an infinite 

model of masses and springs,  Figure 2.1. There are two types of linear springs in the model, the intrinsic 

springs, shown in pink and labeled as 𝑘𝑛 in Figure 2.1,  and the coupling springs, shown in green and 

labeled as 𝑐𝑛 in Figure 2.1. The intrinsic springs dictate the resonance frequency of each individual mass, 

while the coupling springs control the energy flow between masses. The model also includes linear 

damping, 𝑏𝑛, resonator masses, 𝑚𝑛, and driving forces, 𝐹𝑛.  

Based on this model, we define the equations of motion for each resonator, which are shown below for 

three masses 𝑚𝑛, 𝑚𝑛+1, and 𝑚𝑛−1: 

⋮ 

𝑚𝑛−1𝑥̈𝑛−1 + 𝑏𝑛−1𝑥̇𝑛−1 + 𝑘𝑛−1𝑥𝑛−1 + 𝑐𝑛−1(𝑥𝑛−1 − 𝑥𝑛) + 𝑐𝑛−2(𝑥𝑛−1 − 𝑥𝑛−2) = 𝐹𝑛−1 

𝑚𝑛𝑥̈𝑛 + 𝑏𝑛𝑥̇𝑛 + 𝑘𝑛𝑥𝑛 + 𝑐𝑛−1(𝑥𝑛 − 𝑥𝑛−1) + 𝑐𝑛(𝑥𝑛 − 𝑥𝑛+1) = 𝐹𝑛 

𝑚𝑛+1𝑥̈𝑛+1 + 𝑏𝑛+1𝑥̇𝑛+1 + 𝑘𝑛+1𝑥𝑛+1 + 𝑐𝑛(𝑥𝑛+1 − 𝑥𝑛) + 𝑐𝑛+1(𝑥𝑛+1 − 𝑥𝑛+2) = 𝐹𝑛+1 

 

Figure 2.1 Linear mass and spring infinite chain model 

Infinite chain of masses and springs. Dark maroon springs, labeled as 𝑘𝑛, represent intrinsic springs that dictate the 

individual resonance frequency of each mass, blue boxes labeled as 𝑚𝑛. Light tan springs, labeled as 𝑐𝑛, represent 

coupling springs that connect nearest neighbor masses. 
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⋮ 

This system of equations can be organized into the matrix form:  

 𝑴𝑥̈⃗ + 𝑩𝑥̇⃗ + 𝑲𝑥⃗ = 𝐹⃗ ( 2.1 ) 

where the three matrices are 

𝑴 =

(

 
 

⋱ 0 0 0 ⋯
0 𝑚𝑖−1 0 0 0
0 0 𝑚𝑖 0 0
0 0 0 𝑚𝑖+1 0
⋮ 0 0 0 ⋱)

 
 
,      𝐁 =

(

 
 

⋱ 0 0 0 ⋯
0 𝑏𝑖−1 0 0 0
0 0 𝑏𝑖 0 0
0 0 0 𝑏𝑖+1 0
⋮ 0 0 0 ⋱)

 
 
, 

𝐊 =

(

 
 

⋱ −𝑐𝑖−2 0 0 ⋯
−𝑐𝑖−2 𝑘𝑖−1 + 𝑐𝑖−2 + 𝑐𝑖−1 −𝑐𝑖−1 0 0
0 −𝑐𝑖−1 𝑘𝑖 + 𝑐𝑖−1 + 𝑐𝑖 −𝑐𝑖 0
0 0 −𝑐𝑖 𝑘𝑖+1 + 𝑐𝑖 + 𝑐𝑖+1 −𝑐𝑖+1
⋮ 0 0 −𝑐𝑖+1 ⋱ )

 
 

 

2.2 Single resonator 

We can reduce this system of equations to represent smaller clusters of coupled resonators. The equation 

of motion for the simplest cluster – a single uncoupled resonator – can be obtained by setting each 

neighboring coupling spring to zero. This reduction is highlighted in Figure 2.2, with the pink intrinsic 

spring and blue mass isolated from the rest of the gray components with 𝑐0 = 𝑐1 = 0 N/m. With this 

coupling spring condition, we are left with an independent equation of motion that represents a single driven 

damped harmonic oscillator. 

 

Figure 2.2: Single resonator cluster 

Model of single uncoupled resonator. Highlighted maroon spring, labeled as 𝑘, and blue mass, labeled as 𝑚, are the 

two mechanical parameters considered in the single uncoupled resonator model. Black arrow, labeled as 𝐹, represents 

a driving force applied to mass 𝑚. Gray coupling springs labeled as 𝑐0 and 𝑐1 are both equal to zero to isolate the 

driven resonator from neighboring masses. 
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 𝑚𝑥̈ + 𝑏𝑥̇ + 𝑘𝑥 = 𝐹 ( 2.2 ) 

To solve Eq ( 2.2 ), we use a steady-state trial solution of 𝑥(𝑡) = 𝑍(𝜔)𝑒𝑖𝜔𝑡, in which 𝑍(𝜔) = 𝐴(𝜔)𝑒𝑖𝛿(𝜔) 

is the complex amplitude of the driven resonator. The phase 𝛿(𝜔) corresponds to the purely mechanical 

phase difference between the driving force and the response 𝐴(𝜔). If we consider the applied driving force 

to be periodic, 𝐹 = 𝐹0𝑒
𝑖𝜔𝑡, we can apply the steady state trial solution to simplify the differential equation 

of Eq ( 2.2 ) as  

 −𝜔2𝑚𝑍 + 𝑖𝜔𝑏𝑍 + 𝑘𝑍 = 𝐹0 ( 2.3 ) 

By re-writing 𝑍(𝜔) = 𝐴(𝜔)𝑒𝑖𝛿(𝜔) = 𝐴(𝜔)(cos(𝛿(𝜔)) + 𝑖 sin(𝛿(𝜔))), we can split Eq.( 2.3 ) into the real 

and imaginary components. By squaring each component and adding the results, we can solve for the 

amplitude 𝐴(𝜔) as  

 
𝐴(𝜔) =

𝐹𝑜/𝑚

((𝜔0
2 −𝜔2)2 +𝜔2𝑏2)

1
2

 ( 2.4 ) 

By dividing the imaginary component by the real component, we can solve the phase 𝛿(𝜔) as 

 
𝛿(𝜔) = tan−1 (

2𝜔𝑏

𝜔0
2 −𝜔2

) 
( 2.5 ) 

The amplitude and phase as a function of drive frequency 𝜔 are shown in Figure 2.3a. The maximum 

amplitude, or resonance, occurs at a drive frequency of 𝜔𝑟 = 𝜔0√1−
1

2
(
𝑏

2𝜔0
)
2
. For the limit of light 

damping, or very small 𝑏, we can approximate the resonance frequency as 𝜔𝑟 ≈ 𝜔0. When the resonator is 

driven near resonance at 𝜔0, we can observe the characteristic 𝜋/2 phase lag between the driving force and 

the amplitude response, with 𝛿(𝜔0) ≈ 𝜋/2 indicated by the black dashed line in Figure 2.3a. 

A common figure of merit used to quantify the damping of a driven resonator, is the quality factor 𝑄. The 

quality factor is the ratio between the energy stored 𝑊 to the energy lost Δ𝑊 in one oscillation cycle65. 

 
𝑄 = 2𝜋

𝑊

Δ𝑊
 

( 2.6 ) 
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The total energy in the system is defined as 𝑊 =
1

2
𝑚𝑥̇2. For the case of a damped resonator driven at 

resonance, we can calculate the maximum velocity from the steady-state solution, 𝑥̇(𝜔𝑟) =

𝑍(𝜔𝑟)(𝑖𝜔𝑟)𝑒
𝑖𝜔𝑟𝑡. If we assume light damping in the system, the maximum energy can be written as 𝑊 =

1

2
𝑚(𝐴𝜔0)

2. The energy lost over one oscillation cycle can be calculated by considering the dissipative 

component of the net force, 𝐹𝑑𝑖𝑠𝑠 = −𝑏𝑥̇. We can calculate the instantaneous energy loss, or the work done 

by the dissipative force, as Δ𝑊 = 𝐹𝑑𝑖𝑠𝑠𝑥̇𝑑𝑡. The total energy lost in one oscillation cycle can be calculated 

by integrating over the time it takes for the system to complete a single period65. 

 
Δ𝑊 = −∫ 𝐹𝑑𝑖𝑠𝑠 𝑥̇𝑑𝑡 = 𝜋𝑏𝐴

2𝜔0

2𝜋/𝑤0

0

 
( 2.7 ) 

This solution yields the quality factor of a driven damped resonator to be  

 Q =
ω0
(𝑏/𝑚)

 . ( 2.8 ) 

Figure 2.3b shows how the amount of damping in the system will affect the sharpness of the resonance 

amplitude. As damping increases, the quality factor will decrease, and the amplitude curve will become 

 

 

Figure 2.3: Simulated amplitude and phase of single drive damped resonator 

a) Amplitude (upper) and phase (lower) spectrum of driven damped resonator with dashed vertical line marking drive 

frequency of 𝜔0 = √𝑘/𝑚. Simulation for 𝑘 = 50 N/m, 𝑚 = 1 kg, 𝐹 = 100 N, and 𝑏 = (𝜔0/15) kg/s. b) Amplitude 

(upper) and phase (lower) spectra of resonators with varying amounts of damping, with quality factors as 𝑄 = 15 

(𝑏 = 𝜔0/15) in for blue, 𝑄 = 7 (𝑏 = 𝜔0/7) for orange, and 𝑄 = 3 (𝑏 = 𝜔0/3) for green. 



22 

 

wider and shorter. In the case of light damping, the quality factor can be approximated by the ratio of 

resonance frequency to the full width half maximum of an experimentally measured amplitude peak. 

2.3 Two coupled resonators 

We can reduce Eq ( 2.1 ) to represent the next smallest cluster size – two coupled resonators – by again 

setting the outer most coupling springs equal to zero. This reduction is highlighted in Figure 2.4, with the 

two pink intrinsic springs and two blue masses connected by the green coupling spring. This highlighted 

section of the model is isolated from the rest of the gray components with 𝑐0 = 𝑐2 = 0 N/m. To group the 

active components, we will consider the parameters {𝑘1, 𝑚1} to be one resonator and {𝑘2, 𝑚2} to be a 

second resonator, labeled as R1 and R2 respectively in Figure 2.4.  

With this configuration, we are left with two coupled equations of motion. Considering Eq ( 2.1 ), the three 

matrices 𝑴, 𝑩, and 𝑲 can be simplified as 

𝑴 = (
𝑚1 0
0 𝑚2

) , 𝐁 = (
𝑏1 0
0 𝑏2

) , 𝐊 = (
𝑘1 −𝑐1
−𝑐1 𝑘1

) 

Again, we can apply a steady-state trial solution of 𝑥𝑛(𝑡) = 𝑍𝑛(𝜔)𝑒
𝑖𝜔𝑡, in which 𝑥𝑛 represents the position 

of the 𝑛𝑡ℎ resonator and 𝑍𝑛(𝜔) = 𝐴𝑛(𝜔)𝑒
𝑖𝛿𝑛(𝜔). If we consider a periodic driving force applied only to 

R1, we can simplify the coupled differential equations and combine 𝑴, 𝑩, and 𝑲 to write the system of 

equations as 

 

Figure 2.4: Two coupled resonator model 

Model of two coupled resonators. Highlighted dark maroon intrinsic springs, labeled as 𝑘1 and 𝑘2, and blue masses, 

labeled as 𝑚1 and 𝑚2, and light tan coupling spring, labeled as 𝑐1,  are the mechanical parameters considered in the 

coupled resonator model. Upper black bracket labeled as R1 represents the grouping of 𝑘1 and 𝑚1 to be one resonator 

and upper black bracket labeled as R2 represents 𝑘2 and 𝑚2 grouped as a second resonator. Black arrow, labeled as 

𝐹, represents a driving force applied to R1. Gray coupling springs labeled as 𝑐0 and 𝑐2 are both equal to zero to isolate 

the driven resonator from neighboring masses. 
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(
−𝜔2𝑚1 + 𝑖𝜔𝑏1 + 𝑘1 + 𝑐1 −𝑐1

−𝑐1 −𝜔2𝑚2 + 𝑖𝜔𝑏2 + 𝑘2 + 𝑐1
) (
𝑍1
𝑍2
) = (

𝐹0
0
) ( 2.9 ) 

We can solve for the complex amplitudes each resonator, 𝑍1 and 𝑍2, by using Cramer’s rule, in which each 

amplitude is equal to the ratio of the determinants of the coefficient matrix with one row replaced by the 

right-side force vector and the original coefficient matrix. We can then use 𝑍𝑛(𝜔) = 𝐴𝑛(𝜔)𝑒
𝑖𝛿𝑛(𝜔) to solve 

for the amplitude 𝐴𝑛(𝜔) and phase 𝛿𝑛(𝜔) of each resonator. 

There are several key properties revealed by the amplitude and phase behavior of each of the two resonators, 

with the amplitude and phase spectra shown in Figure 2.5a for R1 and Figure 2.5b for R2. In each 

amplitude spectra, Figure 2.5a,b (upper), there are two distinct peaks, as opposed to the single amplitude 

peak observed for the uncoupled resonator, Figure 2.3a. The emergence of two peaks is called normal 

mode splitting and is due to the hybridization the individual resonances of R1 and R2. If we consider the 

system to have no driving or damping, the hybridized mode frequencies can be derived from Eq( 2.9 ) as, 

 
𝜔±
2 = (

1

2
)(𝜔1

2 +𝜔2
2 ± √(𝜔1

2 − 𝜔2
2)2 + 4Γ2𝜔1𝜔2)  

( 2.10 ) 

in which, 𝜔1,2 = √
𝑘1,2+𝑐

𝑚1,2
 and Γ = √

(𝑐/𝑚1)(𝑐/𝑚2)

𝜔1𝜔2
. These two modes are highlighted with gray dashed lines 

in the amplitude and phase spectra of Figure 2.5a,b. 

 

 

Figure 2.5: Simulation of amplitude and phase curves of two coupled resonators 

Simulated model of 𝑘1 = 𝑘2 = 50 N/m, 𝑚1 = 𝑚2 = 1 kg, 𝑏1 = 𝑏2 = 1 kg/s, 𝐹 = 10 N, and 𝑐 = 20 N/m. a) 

Amplitude (upper) and phase (lower) spectra of driven resonator R1. b) Amplitude (upper) and phase (lower) spectra 

of neighboring coupled resonator R2. In both plots, vertical gray dashed lines are set at frequency values of 𝜔− and 

𝜔+. 
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The phase behavior of the two resonators is important for distinguishing the two modes when only 

observing the resonator motion. The phase spectra, Figure 2.5a,b (lower), shows that at the lower frequency 

mode, 𝜔−, each resonator will oscillate with a phase lag of 𝛿 ≈ 𝜋/2, meaning they will oscillate about in 

phase with each other. For the higher frequency mode, 𝜔+, R1 will again oscillate with a phase lag of 𝛿 ≈

𝜋/2, however, R2 will oscillate with a phase lag of 𝛿 ≈ 3𝜋/2, meaning that in the higher frequency mode, 

the two resonators will typically oscillate ~𝜋 out of phase with each other. 

A common figure of merit used to quantify the coupling between two resonators is the coupling strength, 

which is equal to Γ. For the case of symmetric resonators, with identical masses and spring constants, the 

coupling strength can be simplified to Γ = 𝜔+ −𝜔− = Δ𝜔, resulting in Δ𝜔 ∝ 𝑐. This means that the 

distance between the normal mode peaks will increase as the coupling spring constant increases. To 

quantify the coupling strength as “strong coupling”, the distance between the normal mode peaks must be 

resolvable considering the linewidths of each mode, or Γ >
𝑏1

𝑚1
+

𝑏2

𝑚2
. Figure 2.6 shows amplitude spectra 

of R1 in the coupled resonator pair for a range of coupling strengths. We see that the normal mode peaks 

are not resolvable for the case of weak coupling Figure 2.6a, but can be distinguished when the coupling 

strength crosses into the strong coupling regime, Figure 2.6b,c. 

Because Γ = Δ𝜔 only when the two resonators are symmetric, it is typical that the coupling strength is 

experimentally determined by sweeping the spring constant of one of the resonators and finding the 

minimum peak separation, which will occur when 𝜔1 ≈ 𝜔2. Figure 2.7a,b shows how each mode 

frequency is tuned when sweeping the individual spring constant of the driven resonator, 𝑘1. This curve 

 

Figure 2.6: Simulated amplitude spectra for range of coupling strengths 

Simulated amplitude and phase spectra of driven resonator R1 for the same masses, intrinsic spring constants, 

damping, and force as in Figure 2.5. Plotted for the case of a) weak coupling in which Γ/ (
𝑏1

𝑚1
+

𝑏2

𝑚2
) = 0.3 for 𝑐 ≈ 4 

N/m, b) exactly at the threshold of strong coupling, in which Γ/ (
𝑏1

𝑚1
+

𝑏2

𝑚2
) = 1 for 𝑐 ≈ 16 N/m, and finally c) for 

coupling well within the strong coupling regime, in which Γ (
𝑏1

𝑚1
+

𝑏2

𝑚2
) = 2 for 𝑐 ≈ 37 N/m 
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shape is commonly referred to as an avoided crossing, as the modes will get close to each other, such as at 

the point labelled as Γ in Figure 2.7a, but will not cross. 

 

2.4 Single graphene resonators modeled as mass and springs 

In this work, we utilize this linear mass and spring chain, Figure 2.1, as an effective lumped-element model 

to capture the dynamics of 2D graphene drumhead resonators. To outline how each effective parameter of 

the continuum mechanical 2D resonator maps to a physical parameter in the lumped-element model, we 

will compare the continuum mechanics model of a single drumhead resonator to a damped driven mass on 

a spring. We will start by considering the equation of motion for a vibrating plate66 with a mode shape 

defined as 𝑢(𝑟, 𝜃, 𝑡). 

 
𝜌 (

𝜕2𝑢(𝑟, 𝜃, 𝑡)

𝜕𝑡2
) − Γ(

∂𝑢(𝑟, 𝜃, 𝑡)

𝜕𝑡
) + 𝐷∇4𝑢(𝑟, 𝜃, 𝑡) − 𝑇∇2𝑢(𝑟, 𝜃, 𝑡) = 𝐹(𝑟, 𝜃, 𝑡) ( 2.11 ) 

In this equation 𝜌 is the material density, Γ is the damping, 𝑇 is the tension, and 𝐷 is the bending stiffness. 

We can separate the mode shape function into its spatial and temporal components as 𝑢(𝑟, 𝜃, 𝑡) =

∑ ∑ 𝜙𝑛𝑚(𝑟, 𝜃)𝑢𝑛𝑚(𝑡)
∞
𝑚=1

∞
𝑛=1 . If we assume that all vibrations in the plate are due to a single vibrational 

mode, we can focus on a single term of the sum as 𝑢(𝑟, 𝜃, 𝑡) →  𝜙𝑛𝑚(𝑟, 𝜃)𝑢𝑛𝑚(𝑡). From here, we can 

 

 

Figure 2.7: Simulated avoided crossing spectrographs 

Simulated for coupled resonators with 𝑘2 = 50 N/m, 𝑚1 = 𝑚2 = 1 kg, 𝐹 = 10 N, 𝑏1 = 𝑏2 = 0.05 kg/s, and 𝑐 = 1.5 

N/m. a) Normal modes plotted as a function of Δ𝑘 = 𝑘1 − 𝑘2, calculated by sweeping the spring constant 𝑘1 of the 

driven resonator R1. Lower frequency mode 𝜔− is plotted in blue and higher frequency mode 𝜔+ is plotted in orange. 

Approximate minimum value of mode separation Δ𝜔 is denoted by doubled-sided arrow, labeled as Γ. b) Avoided 

crossing spectra plotted with corresponding mode amplitudes for strongly coupled resonators. 



26 

 

recover the equation of motion for a driven damped resonator, as in Eq( 2.2 ), by multiplying Eq( 2.11 ) by 

the mode shape, 𝜙𝑛𝑚(𝑟, 𝜃) and integrating over the area of the circular drumhead65.  

 𝑚𝑒𝑓𝑓𝑢̈𝑛𝑚(𝑡) − 𝛾𝑒𝑓𝑓𝑢̇𝑛𝑚(𝑡) + 𝑘𝑒𝑓𝑓𝑢𝑛𝑚(𝑡) = 𝐹𝑒𝑓𝑓cos (𝜔𝑡) ( 2.12 ) 

𝑚𝑒𝑓𝑓 = 𝜌∫ ∫𝜙𝑛𝑚
2 (𝑟, 𝜃)𝑟𝑑𝑟𝑑𝜃

𝑅

0

2𝜋

0

 

𝑘𝑒𝑓𝑓 = 𝐷∫ ∫𝜙𝑛𝑚∇
4𝜙𝑛𝑚(𝑟, 𝜃)𝑟𝑑𝑟𝑑𝜃

𝑅

0

−

2𝜋

0

𝑇∫ ∫𝜙𝑛𝑚∇
2𝜙𝑛𝑚(𝑟, 𝜃)𝑟𝑑𝑟𝑑𝜃

𝑅

0

2𝜋

0

 

𝛾𝑒𝑓𝑓 = Γ∫ ∫𝜙𝑛𝑚
2 (𝑟, 𝜃)𝑟𝑑𝑟𝑑𝜃

𝑅

0

2𝜋

0

 

𝐹𝑒𝑓𝑓 = ∫ ∫𝑓(𝑟, 𝜃)𝜙𝑛𝑚𝑟𝑑𝑟𝑑𝜃

𝑅

0

2𝜋

0

 

The 2D nature of the drumhead resonators in this work enables complex dynamics, including the existence 

of higher order modes, in which the membrane can experience multiple resonances, each with a specific 

vibrational pattern of amplitude and phase within a single resonator. We can calculate these mode shapes 

by solving the partial differential equation in Eq( 2.11 ) for the case of zero damping and no driving force. 

The resulting mode shape 𝑢(𝑟, 𝜃, 𝑡) can be written in the spatial and temporal components as 66  

 
𝜙𝑛(𝑟, 𝜃)sin (𝜔0𝑡) = (𝐴𝑛𝐽𝑛 (

𝛼𝑟

𝑅
) + 𝐵𝑛𝐼𝑛 (

𝛽𝑟

𝑅
))(cos(𝑛𝜃) + 𝜆𝑛 sin(𝑛𝜃))sin (𝜔0𝑡) 

( 2.13 ) 

𝛼2 =
𝑇𝑅2

2𝐷
((1 +

4𝜔0𝜌𝐷

𝑇2
)
1/2

− 1) 

𝛽2 =
𝑇𝑅2

2𝐷
((1 +

4𝜔0𝜌𝐷

𝑇2
)
1/2

+ 1) 

in which 𝐽𝑛(𝑥) and 𝐼𝑛(𝑥) are the Bessel functions of the first kind and the modified Bessel function 

respectively, 𝑅 is the radius of the plate, and 𝐴𝑛, 𝐵𝑛, 𝜆𝑛 are arbitrary constants. We can simplify this 
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equation further by approximating the vibrating plate as a membrane, in which the tension is much larger 

than the bending stiffness, 𝑅2𝑇 ≫ 𝐷, to write our spatial mode shape term as  

 𝜙𝑛(𝑟, 𝜃) ≈ 𝐴𝐽𝑛 (
𝛼𝑛𝑚𝑟

𝑅
) cos (𝑛𝜃) ( 2.14 ) 

We can use the approximation in Eq( 2.14 ) to plot the spatial mode shapes of a circular membrane. The 

first four lowest energy modes plotted in Figure 2.8. We can see in Figure 2.8a,d, that some modes are 

radially symmetric in amplitude and phase, while others, such as Figure 2.8.b,c, are not. The modes that 

are not radially symmetric are degenerate due to the additional solution set of 𝜙𝑛(𝑟, 𝜃)~ sin(𝑛𝜃) 

supplementing the solution set in Eq( 2.14 ).  

We can model these higher order modes with a lumped-element discrete mass and spring model by 

introducing additional degrees of freedom. For example, the first and second order modes of a 2D drumhead 

can be modeled as two coupled masses on springs, in which the symmetric mode would correspond to the 

lower frequency fundamental drumhead vibration and the antisymmetric mode would correspond to the 

higher frequency out of phase drumhead vibration. 

  

 

Figure 2.8: Mode shapes of vibrating circular plate 

First four mode shapes of vibrating circular plate for a) fundamental (1,0) mode for 𝛼1,0 =  2.404, b) (1,1) mode for 

𝛼1,1 = 3.832, c) (1,2) mode for 𝛼1,2 = 5.135, and d) (2,0) mode for 𝛼2,0 = 5.520. 
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3 Experimental methods 

In this chapter, we review the experimental methods used in this work. We explain in detail the procedure 

used to fabricate the base structure of our devices and our technique for graphene suspension, which 

together results in a new platform to host strong coupling between resonators. We then explain our 

measurement technique that is used to drive and measure the motion of the resonators, which is essential 

for detecting coupling and for spatially characterizing the mechanical parameters of the network. 

3.1 Fabrication of device platforms 

We fabricated the suspended graphene resonator devices using standard nanofabrication processes to 

pattern the base substrate, followed by a wet transfer method of the graphene. We began our process with 

degeneratively doped conductive silicon (Si) wafers with 1-2 μm of commercially grown wet silicon oxide 

(SiO2), shown in the first block diagram of Figure 3.1a. 

The first step in our process was to make a via on the sample, or a small hole through the SiO2 that allows 

for an electrical connection to the doped silicon wafer, Figure 3.1a. We began this process by cleaning the 

Si/SiO2 substrates with acetone sonication, followed by isopropyl alcohol, and finally rinsing with 

 

Figure 3.1: Substrate fabrication process flows 

a) Process flow for photolithography, specifically for fabricating vias. Start with SiO2 on Si and (1) spin on AZ1512 

photoresist. (2) Expose the resist with a laser to pattern and develop to remove exposed regions of resist. (3) REI to 

etch exposed SiO2. (4) Deposit Ti/Pt or Ti/Au electrode and finally (5) lift off remaining AZ1512 resist. b) Process 

flow for masked electron beam lithography. Start with sample that has vias and spin on PMMA resist. (1) Expose the 

resist with electron beam and develop to remove exposed regions of resist. (2) Deposit Cr layer and (3) liftoff PMMA 

such that only the Cr mask remains on the sample. (4) REI to etch exposed regions of SiO2. (5) Etch Cr layer. 
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deionized water. To prepare the surface of the substrate to be hydrophobic for better photoresist adhesion, 

the samples were dehydrated on a hotplate at 400°C for 30 minutes and afterwards exposed to 

hexamethyldisilazane (HMDS) for 20 minutes. We used a spin coater to disperse an even layer of 

photoresist (MicroChem AZ1512) on the substrate, with a spin speed of 4000 rpm for a resulting 

photoresist thickness of ~1.2 μm, step (1) in Figure 3.1a. Any remaining solvent was evaporated from the 

photoresist with a soft bake on a hot plate for two minutes at 105°C. We then applied a second layer of 

photoresist and repeated the soft bake. This extra thick layer of photoresist would reduce the likelihood of 

etching pin holes through the SiO2, which could later lead to electrical shorting of the sample. Although we 

typically avoid thick layers of resist for lithography, as it will limit the pattern resolution, because the vias 

were millimeters in size, resolution was not a limiting factor in this process flow. We patterned the 

photoresist with a 405 nm laser in a Microtech direct write laser lithography system. The pattern was 

developed (MicroChem AZ300 developer) for one minute and the photoresist was further solidified with a 

hard bake at 100°C for one minute, step (2) in Figure 3.1a. We etched the exposed SiO2 in a 5:1 

hydrofluoric acid (49% concentration in water) buffered with ammonium fluoride, at an etch rate of about 

100 nm/min67, to open a via to the bare silicon, step (3) in Figure 3.1a. We then deposited an electrode of 

10 nm of titanium and 40 nm of platinum that directly contacted the silicon substrate with a physical vapor 

deposition system (Angstrom Instruments E-Beam/Thermal Deposition), step (4) in Figure 3.1a. Finally, 

we soaked the sample in acetone for 10 minutes to liftoff the remaining photoresist, resulting in a metal 

electrode that directly contacted the silicon substrate from the top of the sample, step (5) Figure 3.1a. 

After fabricating the via contact, we conducted a second lithography process to pattern and etch the SiO2 

with the desired resonator geometries. If these geometries had feature sizes all larger than 1 μm, we would 

repeat the photolithography procedure outlined above to pattern the substrate, this time using a single layer 

of photoresist, as opposed to the two layers used for the vias. However, for feature sizes smaller than 1 μm, 

we typically used electron beam lithography to increase the pattern resolution to sub-optical wavelengths. 

For electron beam lithography, we followed the cleaning and dehydrating procedure as outline above and 

then applied PMMA A4 resist (MicroChem) with a film thickness of ~200 nm, shown in the first block 

diagram in Figure 3.1b. The samples were then placed on a hotplate for a soft bake at 180°C to evaporate 

any remaining solvent from the resist. We patterned the resist using a Zeiss scanning electron microscope 

(SEM), adapted for direct write electron beam lithography. The pattern was developed in a 1: 3 solution of 

methyl isobutyl ketone (MIBK) and IPA for 60 seconds, step (1) in Figure 3.1b. The sample was then 

placed on a hotplate at 100°C for one minute to harden and ensure good adhesion of the remaining resist. 

From here, we either used the resist as a mask and skipped straight to etch the etch step, or we deposited 

chromium (Cr) to form a negative mask to etch the regions that were not exposed during lithography, with 
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the Cr mask procedure outlined in Figure 3.1b. For the Cr mask, we deposited a thin layer (~20 nm) using 

thermal physical vapor deposition, step (2) in Figure 3.1b. We then soaked the sample in Remover PG 

(MicroChem) on a hotplate at 50°C for one hour to gently liftoff the resist, step (3) in Figure 3.1b. Before 

removing the sample from the Remover PG, we sonicated the solution to ensure complete resist removal, 

resulting in a negative Cr mask. To etch the smaller pattern features, we used a dry reactive ion etch (RIE), 

rather than an isotropic wet etch. We would typically etch 500 –  1000 nm of the SiO2 using CHF3 and Ar 

in an inductively coupled plasma instrument (Oxford Instruments PlasmaPro 80 ICP RIE) at a rate of ~50 

nm/min, step (4) in Figure 3.1b. During this step, it was important not to etch all the way through the SiO2 

to avoid electrically shorting the sample in the event of collapsed graphene. Finally, we removed the Cr 

mask with a wet etch, resulting in a sample with both a via and SiO2 structures for suspending graphene, 

step (5) in Figure 3.1b.  

Finally, we patterned electrodes on top of the SiO2 that would electrically contact the graphene. To pattern 

the top electrodes, we repeated the photolithography process outlined above with a single layer of 

photoresist. After developing the pattern, we deposited 10 nm of Ti followed by a 40 nm of Pt. Finally, we 

removed the remaining photoresist by soaking the samples in acetone for 1 − 3 hours. An image of a final 

device is shown in Figure 3.2a. 

 

Figure 3.2: Images of completed fabricated sample 

a) Camera photograph of sample showing the platinum Graphene Electrode deposited on SiO2. The etched Via 

deposited onto the Si substrate. b) SEM image of suspended graphene device that would be within the Graphene 

Electrode grid. Overlapping square outline is etched SiO2 and graphene is suspended over the trench, which can be 

seen in the fine continuous grain lines over the area. Graphene extends to sit directly on the non-etched SiO2 outside 

of the overlapping square region. Scale bar is 5 μm. 
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3.2 Wet transfer method of graphene 

We used a wet transfer method to suspended graphene over the etched SiO2 features. We started our transfer 

with commercially grown graphene on copper foil (ACS Material), shown as the first block diagram in 

Figure 3.3. To begin the process, we applied a layer of PMMA A11 resist (~800 nm) onto one side of the 

graphene/copper sheet to support to the graphene layer during the transfer, step (1) in Figure 3.3. After 

applying the resist, we dried the sheets in air for 10 − 15 min before carefully floating the 

PMMA/graphene/copper sheet copper side down in a solution of 40 mg/mL ammonium persulfate to etch 

the copper, step (2) in Figure 3.3. Once the copper foil was completely etched, usually after 1 − 2 hours, 

we transferred the PMMA/graphene sheet to float in three successive water baths to dilute any remaining 

ammonium persulfate. While the PMMA/graphene sheet was in the final water bath, we prepared the 

Si/SiO2 substrate for the transfer. We soaked the substrate in a of 3: 1 Pirahna solution of sulfuric acid and 

hydrogen peroxide for 4 − 5 minutes to clean the surface and make it hydrophilic for better adhesion. We 

then used the substrate to scoop the PMMA/graphene sheet directly from the surface of the final water bath, 

step (3) in  Figure 3.3, and dried it overnight in air to minimize any liquid trapped between the graphene 

and SiO2. The sample was then baked for 5 minutes at 105°C to soften the PMMA and allow the graphene 

to adhere better to the surface of the sample. We removed the PMMA layer by soaking the sample in 

Remover PG for 5 − 6 hours, step (4) in Figure 3.3. To minimize tensions in the graphene that occur when 

drying, we used a critical point dryer (Tousimis Autosamdri) to transfer the sample from solution into air. 

The final sample consisted of graphene adhered to the SiO2 substrate, suspended over the lithography 

defined and etched geometries, shown in Figure 3.2b. 

 

Figure 3.3: Graphene transfer process flow 

Starting with graphene on copper foil, (1) spin PMMA resist over the graphene. (2) Etch the copper foil such that only 

the PMMA/graphene layer remains and then float in water bath. (3) Scope the PMMA/graphene layer from water bath 

with substrate and allow to dry. (4) Etch PMMA with PG remover and critical point dry to leave only graphene 

suspended across the substrate. 
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3.3 Actuation and tuning of graphene resonators 

We utilize two methods of actuating the out of plane motion of the suspended graphene resonators, both of 

which can also be used to tune the tension of the graphene, thereby tuning the resonance frequency of the 

suspended resonator. The first method shown in Figure 3.4, is to electrically drive and tune the resonator 

and the second is to thermally drive and tune the resonator. In this work, we use a combination of both 

methods. 

We can electrically tune and drive the out of plane motion of the resonators by applying a DC offset with 

an alternating bias across the silicon substrate and the suspended graphene, shown in Figure 3.4a. The 

amplitude and frequency of the alternating bias will control the drive of the resonator and the DC offset 

will govern the tension or tuning of the resonator.  The equivalent circuit diagram of this set-up is shown 

in Figure 3.4b. The graphene and the substrate form a parallel plate capacitor with a vacuum and SiO2 layer 

as dielectrics stacked in series, for which we can write the capacitance as, 

 
𝐶 = (

1

𝐶𝑣𝑎𝑐
+

1

𝐶𝑆𝑖𝑂2
)

−1

= 𝐴𝜖0 (𝑑𝑣𝑎𝑐 +
𝑑𝑆𝑖𝑂2
𝜅𝑆𝑖𝑂2

)

−1

 
( 3.1 ) 

In which 𝐴 is the area of the parallel plates, 𝜖0 is the permittivity of free space, 𝜅𝑆𝑖𝑂2  is the dielectric 

constant of SiO2, and 𝑑𝑣𝑎𝑐 and 𝑑𝑆𝑖𝑂2  are the thicknesses of each dielectric layer. When the capacitor is 

charged, there will be a force between the plates described by 

 
𝐹𝐶 = −

𝜕𝑈

𝜕𝑥
= −

1

2

𝜕

𝜕𝑥
(𝐶𝑉2)   

( 3.2 ) 

If we consider an alternating voltage source with a DC offset, 𝑉 = 𝑉𝐷𝐶 + 𝑉𝐴𝐶𝑒
𝑖𝜔𝑡, the capacitive force can 

be written as  

 

Figure 3.4: Electrical actuating of suspended graphene and equivalent circuit 

a) Block diagram showing applied alternating bias to gold electrode contacting the graphene and to the doped silicon. 

b) Equivalent circuit diagram showing applied bias with resistive graphene and silicon wires leading to parallel plate 

capacitor with a two layered dielectric. 
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𝐹𝑐 = −

1

2
(𝑉𝐷𝐶

2 + 2𝑉𝐷𝐶𝑉𝐴𝐶𝑒
𝑖𝜔𝑡 + 𝑉𝐴𝐶

2 𝑒2𝑖𝜔𝑡) (
𝜕𝐶

𝜕𝑥
)  

( 3.3 ) 

In Eq( 3.3 ), there are three terms that contribute to the capacitive force. The first term, −
1

2
𝑉𝐷𝐶
2 (

𝜕𝐶

𝜕𝑥
), applies 

a constant force to the graphene. The second term, −𝑉𝐷𝐶𝑉𝐴𝐶𝑒
𝑖𝜔𝑡 (

𝜕𝐶

𝜕𝑥
), applies an alternating force at the 

drive frequency 𝜔. The third term, −
1

2
𝑉𝐴𝐶
2 𝑒2𝑖𝜔𝑡 (

𝜕𝐶

𝜕𝑥
), will apply a force to the graphene at twice the drive 

frequency, which will not be detected by our experimental measurement scheme. 

This capacitive force will pull the graphene towards the substrate and increase the tension in the membrane. 

For a circular drumhead, the resonance frequency will depend on 𝑉𝐷𝐶 according to68 

 
𝜔0
2(𝑉𝐷𝐶) = (

𝛼

𝑅
)
2

(
𝜎0
𝜌
) −

𝜖0𝑉𝐷𝐶
2

𝜌𝑑3
+
𝛽𝐸ℎ𝜖0

2𝑉𝐷𝐶
4

𝜌𝑑4𝑇2
   

( 3.4 ) 

In which 𝑅 is the resonator radius, 𝑇 is the tension, 𝐸ℎ is the 2D elastic modulus, 𝑑 is the distance between 

the membrane and the back gate, and 𝛼 and 𝛽 are dimensionless constants. The strength of the 𝑉𝐷𝐶
2  term 

can be larger than the 𝑉𝐷𝐶
4  term for applied DC voltages less than 8 V. In smaller resonators we find that 

the 𝑉𝐷𝐶
4  term is mostly dominate and the effects from capacitive softening are not prominent in the measured 

spectrograph of 𝜔0(𝑉𝐷𝐶), shown in Figure 3.5. We also note in some cases, the amplitude spectrograph is 

not exactly centered on the 𝑉𝐷𝐶 = 0 V, which is due to contaminants in the graphene membrane that shift 

the charge neutrality point42. 

We can also thermally tune and drive the resonators by focusing a pump laser onto the membrane with a 

DC offset and modulating the power. For a constant DC offset power, typically 𝑃0~50 μW, the resonance 

frequency Δ𝜔0 will shift with the change in membrane temperature Δ𝑇 as55 

 
Δ𝜔0 =

𝛼𝑌𝜔0
2𝜎0(1 − 𝜈)

Δ𝑇 ( 3.5 ) 

in which 𝛼 is the thermal expansion coefficient, 𝜈 is the Piosson ratio, 𝜎0 is the initial stress, and 𝑌 is the 

elastic modulus. If we instead we modulate the applied power with a frequency of 𝜔 as 

 𝑃 = 𝑃0(1 + cos(𝜔𝑡)) ( 3.6 ) 
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we can modulate temperature of the membrane and thereby the tension. This causes an out of plane force 

on the membrane that is likely due to photothermal effects69,70. Because the thermal time constant of 

graphene has been measured to be of order nanoseconds71, this method can be used to drive the out of plane 

motion of graphene resonators in the MHz regime near resonance. 

3.4 Interference measurement of amplitude and phase and SIM 

To read-out the motion of the graphene resonators, we use an optical Fabry-Perot interferometer. In a Fabry-

Perot interferometer, the interference signal is measured between an incident beam partially reflected by a 

semi-transparent mirror, or the suspended graphene, and by a reference mirror below, or the Si/SiO2 

substrate. As the graphene vibrates, the intensity of the interference signal will modulate due to the change 

in cavity length, or spatial distance between the suspended membrane and the substrate, indicating the 

amplitude of oscillation72.  

Because we cannot independently move the reference mirror, or the substrate, of the Fabry-Perot 

interferometer, further calibrations are required to translate the interference signal to an exact distance73. 

However, for this work the exact amplitude is not needed and we instead report amplitude as a voltage 

corresponding to the interference signal intensity. It is important to note, however, that with an 

interferometer measurement, we will observe the intensity of the measured reflected signal drop 

significantly when the distance between the graphene and the substrate are an odd integer multiple of the 

 

Figure 3.5: Tuning response of graphene resonator to applied electrical DC bias 

Spectrograph of circular suspended graphene resonator with applied DC bias from −15 V to 15 V and drive frequency 

on y axis to show amplitude response of resonator. Fundamental mode is shown to tune from about 15 MHz at 0 V to 

18 MHz at ±15 V. A second curve can be observed near 22 MHz, which corresponds to the second order mode of 

the driven resonator. 
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incident beam wavelength. This can be observed in  Figure 3.5, as the graphene is tensioned with an applied 

DC bias and the cavity length is varied. 

We implement the Fabry-Perot interferometer with a lab-built optical benchtop set-up. The laser in our 

interferometer, or the probe laser, is a 633 nm HeNe laser (ThorLabs S015B), which is shown in red in the 

optical schematic in Figure 3.6. The probe laser first travels through a half wave plate (𝜆/2) and is then 

reflected by a polarizing beam splitter (PBS). By adjusting the angle of the half waveplate, we can vary the 

power of the beam reflected by the PBS. The probe is then circularly polarized with a quarter waveplate 

(𝜆/4), such that upon back reflection, the linear polarization will be rotated 90° and can be coupled out of 

the original beam path through the PBS. The probe then passes through a lens pair to ensure the deflected 

beam remains centered on the objective. The beam is then focused onto the sample in a vacuum chamber 

with a spot size of ~1 μm through a 40x objective lens (Nikon CFI Plan Flour ELWD 40x/0.6). All 

measurements in this work were taken at room temperature under vacuum at ~10−7 torr. The sample 

vacuum chamber is on a 3D motorized stage to focus and spatially align the sample. The probe is then 

partially reflected by the graphene and partially by the substrate, as described above for a Fabry-Perot 

interferometer. The reflected beam passes back through the quarter waveplate, and the resulting linear 

polarization allows for the beam to be transmitted through PBS and detected by an avalanche photodetector 

(ThorLabs PDS 10A Si Amplified Detector). 

We used a lock-in amplifier (Zurich Instruments HF2) to extract resonator amplitude from the noisy current 

signal generated by the avalanche photodetector (APD). The lock-in amplifier mixes the input signal with 

a reference signal and extracts only the portion of the input that oscillates at the reference frequency. This 

reference frequency was also sent to the drive mechanism of the resonator, either electrically straight to the 

sample or to an RF generator to modulate the intensity of the pump laser. To drive a resonator electrically, 

we wire bonded the sample to a PCB board that was electrically connected to the lock in amplifier in the 

sample vacuum chamber. To drive a resonator optically, we modulated the pump laser intensity, shown in 

blue in the optical schematic in Figure 3.6, by using the lock-in reference signal to drive an acoustic optical 

modulator (AOM) (AA Opto Electronic MT350-A0.12-VIS). The pump laser, a 445 nm diode laser, was 

coupled into the probe laser beam path with a dichroic mirror (DCM). With the lock-in reference signal 

used to drive the resonator, we can also extract the relative phase between the drive and the resonator 

amplitude. 
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Along the probe laser path, we incorporated a pair of fast-scanning mirrors (ThorLabs GCM012), which is 

shown in the top left of Figure 3.6. This pair of fast-scanning mirrors (FSM) provided a means to spatially 

image the amplitude and phase of an area of the membrane, through a technique we refer to as scanning 

interference microscopy (SIM). SIM has previously been used to spatially image the amplitude and phase 

of driven MEMS and NEMS resonators, which has been especially important for visualizing higher order 

modes64,74. SIM is essential in our work to measure the amplitude and phase of coupled resonator clusters. 

3.5 Phase lag in measurements 

In the experimental measurement of the phase, there will be a lag caused by time delays of the optical and 

electronic signal transmission/transduction from the lock-in reference output to the input, shown in Figure 

3.7a. The time-delay phase shift on the pump, 𝜏𝑓𝑜𝑟𝑐𝑒, is the sum of delays due to the AOM controller, the 

AOM, and the free-space optical path and transmission cables up to the sample. The total time delay at the 

 

Figure 3.6: Optical pump/probe measurement schematic 

Optical drive and measurement scheme. Pump laser path shown in blue starting at the 445 nm laser. Pump is modulated 

by an acoustic optical modulator (AOM), controlled by a lock-in amplifier, and coupled into the beam path with a 

dichroic mirror (DCM). The pump then travels through a lens pair, with focal lengths of 𝑓1 and 𝑓2, and is then focused 

on the sample with a 40x objective lens. The reflected pump signal is coupled back out of the optical path at the DCM. 

The probe laser path is shown in red starting at the 633 nm laser. The travels through a half wave plate (𝜆/2) and is 

then reflected by a polarizing beam splitter (PBS). The probe is then circularly polarized with a quarter waveplate 

(𝜆/4) and is reflected by a pair of fast scanning mirrors (FSM). The probe is coupled into the beam path with the DCM 

and passes through the lens pair onto the sample. The reflected probe then passes back through the quarter waveplate 

and is transmitted by the PBS into an avalanche photodetector (APD). The electronic signal from the APD is detected 

by the lock-in amplifier. 
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lock-in input, 𝜏 = 𝜏𝑓𝑜𝑟𝑐𝑒 + 𝜏𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 , includes delays due to the photodetector, an “on-chip” thermal lag64 

and the free-space optical path and transmission cables from the device to the lock-in. There is also a 

constant phase lag due to the phase offset of the lock-in and a 𝜋 phase lag that may arise depending on 

whether the membrane moves away from or toward the focusing objective71. These time delays and offsets 

will result in a frequency-dependent phase shift according to 

 Δ(𝜔) = 𝜙0 − 𝜔𝜏 ( 3.7 ) 

Where 𝜏 is the total frequency dependent time delay and 𝜙0 is the total constant phase offset. The result of 

this phase lag is evident in the phase data as a linear offset, shown in Figure 3.7b. 

  

 

Figure 3.7: Experimental phase lag 

a) Diagram of the experimental time delay phase shift. The time delay on the force, 𝜏𝑓𝑜𝑟𝑐𝑒, includes delays due to 

transmission cables, shown as black dashed lines, the AOM controller, the AOM, and the free-space optical path 

before the device under test (DUT), shown as yellow dashed lines. The phase shift on the response, 𝜏𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒, includes 

delays due to free-space optical path after the DUT, the APD, and transmission cables. b) Phase spectrum showing 

linear offset. Measured data shown as grey data points and linear fit to upper portion of plot shown as solid black line. 
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4 Novel platform for coupled NEMS resonator networks 

In this chapter, we present our novel platform of coupled suspended graphene resonators. We show 

evidence of strong coupling between two and three resonators and higher order mode coupling between 

two spatially distinct resonators. This platform is the first to our knowledge to host strain induced strong 

coupling between 2D graphene drumhead resonators and fulfills the need of a scalable platform for NEMS 

resonator networks. 

4.1 Introduction 

Networks of coupled NEMS resonators have attracted recent attention for the promise of mechanical 

computing31–33 applications and for studying fundamental physics, including metamaterial24–26,28 and 

collective dynamics17,18. To continue to scale the size and prospects of coupled NEMS resonator networks, 

we need to develop robust platforms that host strong coupling and are scalable in size and tunability. 

Suspended graphene resonators offer many critical properties46,48 that could be essential for achieving large 

2D tunable arrays58, such as intrinsic nonlinearities68 that enable network dynamics24,50,51,75 and multiple 

forms of energy transduction76 for tuning options that have been demonstrated to scale resonance 

frequencies up to several hundred percent42,77. The persistent option of phototuning42 has also recently been 

demonstrated, which opens the possibility for scalable tuning of large-scale graphene networks.  

Many coupling schemes have been demonstrated to host tunable strong coupling between resonators by 

means of parametric34,41 and electromechanical35,63 coupling. However, these methods are limited in 

scalability because they are not persistent and often require individually addressing each resonator, which 

limits the dimension of scalability in these platforms. One coupling means that is persistent and scalable in 

2D is direct mechanical strain coupling though a shared clamping point19,39,78, bridge17, or substrate63. 

Mechanical strain coupling has been demonstrated between spatially distinct graphene nanoribbons36,60 but 

has been limited to a 1D linear chain. Direct strain coupling has been utilized to achieve a 2D network of 

coupled pillars79, hinting that strain coupling may enable other material platforms to scale in 2D as well. 

In this work, we present a 2D platform75 that hosts persistent strain coupling between suspended graphene 

resonators. We show evidence of strong coupling between two and three resonators of varying sizes and 

locations, establishing the viability of the platform for diverse array-based resonator applications. 

Additionally, this platform accommodates rich dynamics with inter-resonator coupling of higher order 

modes, which we observed between the second order mode of a driven resonator and the fundamental mode 

of its neighbor. With this platform, we demonstrate a means in which the unique properties of 2D suspended 

graphene resonators can be accessed for a broad range of large-scale network applications. 
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4.2 Methods 

To optimize the strain coupling between nearest neighbor suspended graphene resonators, we designed a 

pillar array substrate75,80–82 as the base structure for the network.  Throughout the arrays, we intermittently 

omitted specific pillars, such that the voids of missing pillars would form areas of larger suspended 

graphene to create resonators of different sizes and resonator pairs. The shared membrane between pillars 

provided a mechanism for mechanical strain coupling between spatially distinct resonators.  

We chose pillar radii and pitch by using finite element analysis (FEA) to determine the eigenfrequencies of 

the symmetric (Figure 4.1a) and antisymmetric (Figure 4.1b) modes of resonator pairs. With the estimated 

eigenfrequencies, we could predict pillar parameters that would lead to strong coupling between 

neighboring resonators using the condition83 

 
𝑄 (

Δ𝜔

2𝜔0
) > 1 

( 4.1 ) 

For which Δ𝜔 is the frequency difference between the first and second hybridized modes, 𝜔0 is the average 

of the two frequencies, and 𝑄 is the quality factor. In this calculation, we conservatively estimate the quality 

factor to be 𝑄 = 100 based on previously measured suspended graphene devices42,55,64,84,85. We selected a 

range of pillar radii (0.25 − 0.75 μm) and pitches (1 − 3.75 μm) for the arrays to be both spread-out 

enough to host strong coupling and dense enough to allow for successful graphene suspension. We were 

able to suspend the transferred graphene almost fully on the denser arrays, as in Figure 4.1c. Although 

overall we obtained higher yield on arrays with larger 𝑟/𝑎 ratios, we also observed certain areas of the 

 

Figure 4.1: Design and fabrication of suspended graphene resonators 

FEA simulations of a) symmetric and b) antisymmetric coupled resonator modes for pillar radius of 0.5 μm and pitch 

of 3 μm. c) SEM of suspended graphene resonators with pillar pitch of 1 μm and radius of 0.25 μm. Scale bar is 

10 μm. 
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sample transfer better than others. As an example, Figure 4.2a shows an array with the same dimensions 

as in Figure 4.1c but located in a difference area of the sample and only partially covered with suspended 

graphene. The largest pitch with suspended graphene devices was 3.75 μm, shown in Figure 4.2b, and the 

largest 𝑟/𝑎 ratio was 0.5/3, shown in Figure 4.2c.  

We used an optical pump/probe method to drive and measure the coupled graphene resonators and 

employed two methods of tuning to demonstrate the versatility in programming options for this platform. 

The pump used in our optical pump/probe method was a 445 nm laser modulated with an acousto-optic 

modulator (AOM) to thermally tension the graphene and drive out of plane motion. The probe was a 633 

nm laser, in which the reflected interference signal was measured via lock in detection to extract the 

corresponding amplitude and phase of an oscillating resonator. Our optical set up also enabled scanning 

interference microscopy64 (SIM) with fast scanning mirrors to raster the probe and collect spatial images of 

local areas of amplitude and phase.  

We demonstrated the versatility of tuning options of our suspended graphene platform by employing two 

types of tuning methods. Our first tuning method was to optically tune the driven resonator only. For this 

individual tuning, we applied a DC offset to the modulated pump laser to thermally adjust the average 

tension of the driven graphene resonator. Our second tuning method was to electrically bias the entire 

sample and universally tune the tension of the suspended graphene, thereby tuning the resonance frequency 

of all resonators on the substrate. For this method of universal tuning, we applied a DC bias across the 

graphene and the doped Si sample below76. 

 

Figure 4.2: SEM images of suspended graphene on pillar arrays 

a) Partial suspension of graphene over array with pillar radius of 0.25 μm and pillar pitch of 1 μm. b) Suspended 

graphene over array with pillar radius of 0.75 μm and pillar pitch of 3.75 μm. c) Suspended graphene over array with 

pillar radius of 0.5 μm and pillar pitch of 3 μm. All scalebars are 9 μm. 
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4.3 Results 

To measure the coupling strength between two neighboring resonators, we employed our optical tuning 

method to acquire avoided crossing spectra. We started by aligning both the pump and probe lasers over 

the resonator region highlighted as R1 in Figure 4.3a. To determine the connectivity of this resonator, we 

measured a spectrograph of the out of plane amplitude of R1 by sweeping the drive frequency and the DC 

offset of the pump laser. In the resulting spectrograph, shown in Figure 4.3b, we observed an avoided 

crossing of a lower frequency mode, 𝜔−, and a higher frequency mode, 𝜔+, at a power offset of 2.8 V. This 

avoided crossing behavior implied that R1 was coupled with at least one neighboring resonator.  

To confirm that the source of the avoided crossing was mechanical, and to locate the coupled neighboring 

resonators, we took SIM images at both 𝜔− and 𝜔+ with a pump DC offset near the avoided crossing 

minimum to optimize each amplitude. To analyze the amplitude and phase behavior of R1 and R2 in each 

mode, we took a line cut of each SIM image through the center of the resonator pair. All errors are calculated 

standard error from the linecut data. In the 𝜔− mode, we observed two distinct amplitude peaks, Figure 

4.3d, that corresponded to the locations of R1 and R2, highlighted in Figure 4.3a. Furthermore, we 

observed that these two regions oscillated near in phase (R1 = 1.47 ± 0.03 rad and R2 = 1.00 ± 0.04 rad), 

Figure 4.3e, which is expected for the lower frequency mode of two coupled resonators. In the 𝜔+ mode, 

we again observed two distinct amplitude peaks, Figure 4.3f, which corresponded to the same R1 and R2 

locations. The two regions oscillated ~𝜋 out of phase (R1 = 2.47 ± 0.03 rad and R2 = −0.51 ± 0.03 rad), 

Figure 4.3g, as expected for the higher frequency mode of two coupled resonators.  

 

Figure 4.3: Strong coupling between two suspended graphene resonators 

a) SEM image of two neighboring coupled resonators, R1 and R2. Scale bar is 6 μm. Avoided crossing with R1 driven 

for b) amplitude of R1 and c) amplitude of R2. SIM images of d) amplitude and e) phase for R1 driven at 𝜔−/2𝜋 =
15.45 MHz. SIM images of f) amplitude and g) phase for R1 driven at 𝜔+/2𝜋 = 16.21 MHz. All SIM scale bars are 

5 μm.   
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To verify the coupling between R1 and R2, we measured a corresponding spectrograph of R2 by using the 

SIM spatial maps to reposition the probe laser over the R2 resonator, while leaving the pump laser stationary 

to drive R1. In the resulting R2 spectrograph, shown in Figure 4.3c, we again observed a lower and higher 

frequency mode that did not cross, with a minimum mode separation occurring at 2.9 V. This frequency 

was slightly higher than that for the R1 resonator, which may be due to heating and cooling affects 

associated with repositioning the probe laser.  We also note that the avoided crossing curve shapes and 

amplitudes were less typical than observed in the R1 spectrograph, which may also be due to the probe 

repositioning. From the SIM spatial maps and the correlated avoided crossing curves, we conclude that the 

R1 and R2 resonators are coupled. 

To determine the coupling strength, we calculated the minimum mode separation between 𝜔− and 𝜔+ as 

 𝑔 = 𝜔+ − 𝜔− = Δ𝜔 ( 4.2 ) 

Based on the R1 avoided crossing spectrograph, we calculated a coupling strength of 𝑔/2𝜋 ≈ 400 kHz. 

Because this coupling strength exceeds the linewidths of the two modes (~150 kHz), we conclude this 

resonator pair is strongly coupled. 

We measured strong coupling between an additional set of two resonators of different sizes using our 

universal tuning method. We first positioned the pump and probe laser over R1, highlighted in Figure 4.4a. 

To determine the connectivity of R1, we measured an amplitude spectrograph by sweeping the drive 

frequency and the universal DC bias, applied across the graphene and the Si substrate. In the resulting 

spectrograph, shown in Figure 4.4b, we observed an avoided crossing of two modes, 𝜔− and 𝜔+, at 6.4 V, 

implying that R1 was strongly coupled to at least one neighboring resonator. In this avoided crossing, we 

also observed that the 𝜔− mode tuned very little after the avoided crossing minimum. This behavior could 

be evidence of phototuning42, as we may be redistributing charge in the contaminated graphene membrane86 

by applying a gate voltage while exposing the region to the high-powered pump laser.  

To confirm mechanical strain coupling between R1 and any neighboring resonators, and to determine the 

coupled cluster configuration, we took SIM images at 𝜔− and 𝜔+ with zero applied voltage to optimize the 

amplitude of each mode. In the 𝜔− mode, we observed two distinct amplitude peaks, Figure 4.4d, that 

corresponded to the regions highlighted as R1 and R2 in Figure 4.4a. The R1 and R2 resonator regions 

differed significantly in size with 𝐴𝑟𝑒𝑎𝑅1 ≈ 4 × 𝐴𝑟𝑒𝑎𝑅2. Because the frequency of the fundamental mode 

is typically higher for smaller area resonators (𝜔0 ∝ 1/𝐿 for a square membrane, see Appendix A for 

experimental data, it is possible that with additional tensioning from the pump laser on R1, the resonance 
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frequency increased enough to match that of R2, resulting in coupling of the two regions. For the 𝜔− mode, 

R1 and R2 oscillated near in phase (R1 = 1.79 ± 0.07 rad and R2= 2.26 ± 0.02 rad), Figure 4.4e. In the 

𝜔+ mode, we observed two distinct regions of amplitude, Figure 4.4f, that corresponded to the same R1 

and R2 regions and oscillated ~𝜋 out of phase (R1= 1.53 ± 0.05 rad and R2= −1.82 ± 0.04 rad), Figure 

4.4g. Based on the amplitude and phase behavior of R1 and R2 in each mode, we conclude that the two 

resonators are coupled.   

We confirmed the coupling by measuring a corresponding spectrograph of R2, Figure 4.4c, which 

displayed an avoided crossing between 6.4 V and 7.0 V, near to that of R1 with a slight difference likely 

due to the probe repositioning.  Based on the R1 avoided crossing curve, we calculated the coupling strength 

between R1 and R2 to be 𝑔/2𝜋 ≈ 200 kHz. With estimated linewidths of ~120 kHz at the avoided crossing 

minimum, we conclude this resonator pair is strongly coupled. 

 

Figure 4.4: Strong coupling between additional set of two resonators 

a) SEM image of neighboring coupled resonators, R1 and R2. Scale bar is 6 μm. DC bias gate sweep avoided crossings 

with R1 driven for b) amplitude of R1 and c) amplitude of R2. SIM images of d) amplitude and e) phase for R1 driven 

at 𝜔−/2𝜋 = 15.16 MHz. SIM images of f) amplitude and g) phase for R1 driven at 𝜔+/2𝜋 = 15.51 MHz. All SIM 

scale bars are 5 μm. 
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Our pillar platform offers a high potential for 2D scalability, which we demonstrate with evidence of 

coupling between three adjacent resonators. With the pump and probe lasers aligned over R2, highlighted 

in Figure 4.5a, we swept the drive frequency to locate resonance.  In the resulting amplitude curve, shown 

in Figure 4.5b upper, we observed two closely spaced but distinct peaks. To determine whether these two 

peaks signified hybridized modes, we took SIM spatial images of the amplitude and phase at 𝜔− and 𝜔+. 

In the 𝜔− mode, we observed three distinct amplitude peaks, Figure 4.5c, that were all oscillating near in 

phase (R1 = 0.23 ± 0.13 rad, R2 = 0.20 ± 0.03 rad, and R3 = 0.41 ± 0.04 rad), Figure 4.5d,  implying 

coupling between a total of three resonators. Again, the observed oscillating regions, highlighted as R1, R2, 

and R3 in Figure 4.5a, differed in size with the largest resonator, R2, subject to additional tensioning from 

the applied pump laser. In the 𝜔+ mode, we observed three distinct amplitude peaks, Figure 4.5e, in the 

same R1, R2, and R3 regions.  However, the two neighboring resonators, R1 and R3, oscillated out of phase 

with driven R2 resonator (R1 = −0.23 ± 0.17 rad, R2 = 2.08 ± 0.02 rad, and R3 = −0.62 ± 0.18 rad), 

Figure 4.5f. 

Typically, we expect three strongly coupled resonators to have three hybridized modes based on the 

eigenvectors of a linear chain of masses and springs. Therefore, because we only observed two modes in 

the spectra of the coupled system in Figure 4.5, it is possible that there is weak coupling present in the 

system, or mode splitting that is unresolvable in the spectra83. However, by modeling the three drumhead 

resonators as a linear chain of masses and springs with an applied drive force, we find that it is possible for 

only two hybridized modes to emerge, even when all three resonators are strongly coupled.  

 

Figure 4.5: Coupling between three resonators 

a) SEM image of three coupled resonators, R1, R2, and R3. Scale bar is 5 μm. b) Spectra of R1 (upper), R2 (middle), 

and R3 (lower). SIM images of c) amplitude and d) phase with R2 driven at 𝜔1/2𝜋 = 20.99 MHz. SIM images e) 

amplitude and f) phase with R2 driven at 𝜔2/2𝜋 = 21.45 MHz. All SIM scale bars are 5 μm. 
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In our linear mass and spring model, each mass had an intrinsic spring and was connected to the nearest 

neighbor mass through a coupling spring. We set all masses and spring constants to be equal and we set the 

damping to be one order of magnitude less than the individual resonance frequencies 𝜔0 = √𝑘/𝑚. We 

found that when the drive force was applied to one of the edge masses, the eigenvector behavior of three 

coupled masses emerged; three hybridized modes in which all masses oscillated in phase for the first mode, 

the outer masses oscillated in phase and the center mass was stationary for the second mode, and finally the 

outer masses oscillated in phase and the center mass oscillated out of phase for the third mode. Simulated 

amplitude and phase spectra are shown for the outer masses in Figure 4.6a,c  and for the middle mass in 

Figure 4.6b. 

With the same parameter values, we repeated this simulation for the drive force applied to the middle mass, 

as was the case for the coupled system in Figure 4.5. In this simulation, we observed only two hybridized 

modes, in which all masses oscillated in phase for the first mode, and the outer masses oscillated in phase 

while the middle mass oscillated out of phase for the second mode. This mode behavior persisted provided 

that the outer two resonators were symmetric in mass and intrinsic spring constant. Simulated amplitude 

and phase spectra are shown for the outer masses in Figure 4.6d,f  and for the middle mass in Figure 4.6e. 

This matches the behavior observed in the three measured graphene drumhead resonators in Figure 4.5. 

 

Figure 4.6: Simulated spectra from three coupled resonator model 

Simulated amplitude (upper) and phase (lower) spectra for three mass model with 𝑘1 = 𝑘2 = 𝑘3 = 1 N/m, 𝑚1 =
𝑚2 = 𝑚3 = 1 kg, 𝑐1 = 𝑐2 = 1 N/m, 𝑔1 = 𝑔2 = 𝑔3 = 0.1 kg/s, and 𝐹 = 1 N. Plotted for the case of the drive force 

applied to the middle mass for a) driven edge mass, b) middle mass, and c) last edge mass. Simulated amplitude 

(upper) and phase (lower) spectra for three mass model for the case of the drive force applied to one of the edge masses 

for d) first edge mass, e) driven middle mass, and f) last edge mass. 
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We therefore conclude that although only two modes were detected, it is possible that the three measured 

graphene resonators were strongly coupled.  

To confirm this coupling, we measured an amplitude spectrum of R1, shown in Figure 4.5b (middle), and 

R3, shown in Figure 4.5b (lower). In all three amplitude spectra, we observe two peaks at about the same 

𝜔− and 𝜔+ frequencies. We therefore conclude that this cluster of three resonators – R1, R2, and R3 – are 

weakly to strongly coupled. 

Our pillar platform offers unique 2D coupling dynamics between resonators including the inter-resonator 

coupling of higher order modes. We detected higher order mode coupling by first measuring the amplitude 

spectrum of R1, highlighted in Figure 4.7a. In the spectrum, shown in Figure 4.7c (upper), we measured 

a single peak, 𝜔0, close to 14 MHz, and two closely paced peaks, 𝜔− and 𝜔+, near 17 MHz, implying that 

coupling may occur at a higher order mode of R1.  

To better visualize the spatial dynamics and investigate the possibility of higher order mode coupling, we 

took SIM images at drive frequencies of 𝜔0, 𝜔−, and 𝜔+. In the 𝜔0 mode, we observed a region of high 

amplitude (~10−4 V) with near constant phase, Figure 4.7d,e, corresponding to the R1 region highlighted 

in Figure 4.7a,b, which we interpret to be the fundamental mode of R1. In the 𝜔− mode, we observed three 

 

Figure 4.7: Inter-resonator higher order mode coupling 

a) SEM image of two coupled resonators, R1 and R2. Scale bar is 4.5 μm. b) Dot array rotated at the same angle as 

SIM images. R1 labeled with blue shading and blue solid line to represent higher order mode boundary. R2 labeled 

with maroon shading. c) amplitude spectrum of R1 plotted with blue data points (upper) and amplitude of R2 plotted 

with maroon data points (lower). Amplitude peaks labeled as 𝜔0, 𝜔−, and 𝜔+ in R1 spectrum. SIM images of d) 

amplitude and e) phase with R1 driven at 𝜔0/2𝜋 = 13.85 MHz. SIM images of f) amplitude and g) phase with R1 

driven at 𝜔−/2𝜋 = 16.74 MHz. SIM images of h) amplitude and i) phase with R1 driven at 𝜔+/2𝜋 = 16.97 MHz. 

All SIM scale bars are 8 μm. 
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distinct regions of amplitude, Figure 4.7f. Two of the peak amplitude regions occurred within the R1 

boundary, with the resonator boundary shown as a dotted line in Figure 4.7b and the mode boundary shown 

as a solid line. The phase between the two amplitude peaks within the R1 region, Figure 4.7g, differed by 

~𝜋 (left half = 0.30 ± 0.10 rad and right half = −2.46 ± 0.07 rad), as expected for the second order mode 

of a 2D graphene drumhead resonator64. The third amplitude peak corresponded to the region highlighted 

as R2 in Figure 4.7a,b. R2 oscillated near in phase with the left half of the R1 resonator (R2 = 0.45 ± 0.38 

rad), Figure 4.7g. This phase pattern creates the least amount of curvature in the membrane for the case of 

coupling a fundamental mode to a second order mode and is therefore expected to correspond to the lower 

energy state. 

In the 𝜔+ mode, we again observed three distinct amplitude peaks, Figure 4.7h. However, in this mode R2 

oscillated out of phase, Figure 4.7i, with the left half of the R1 resonator and near in phase with the right 

half (R2 = 1.96 ± 0.37 rad, left half of R1 −0.93 ± 0.07 rad, and right half of R1 = 2.49 ± 0.18 rad). 

This phase pattern creates more curvature in the membrane and is therefore expected to result in a higher 

energy state that is excited at a higher frequency. Higher order mode coupling between these two resonators 

may be possible due to the differing sizes of R1 and R2.  

To confirm this coupling, we measured an amplitude spectrum of R2, shown in Figure 4.7c (lower). In this 

spectrum, we observed a small peak (~4 × 10−5 V) near the fundamental mode of R1 and two much larger 

peaks (~9 × 10−4 V) around 𝜔− and 𝜔+, with slight shifts due to heating. Due to this amplitude difference, 

and the homogeneous phase behavior observed in both the 𝜔− and 𝜔+ modes, we consider that the small 

peak near the fundamental mode of R1 does not correspond to a resonance of R2. We therefore conclude 

that the mode splitting observed in the spectra around 17 MHz is due to coupling between the second order 

mode of the driven resonator R1 and the fundamental mode of R2. 

4.4 Discussion 

In conclusion, we present evidence of strong coupling between sets of two resonators, thereby establishing 

this graphene network as a platform for coupled NEMS resonators. The additional evidence of coupling 

between three resonators indicates the 2D scalability potential of this platform.  

We demonstrate the tunability of this platform by tensioning the resonators both thermally and electrically 

to collect avoided crossing spectrographs. The coupling observed between resonators asymmetric in size 

may be advantageous for tuning neighboring coupled resonators at different rates under a universally 

applied back gate. This graphene platform also has the potential for scalable phototuning42, which would 

enable persistent and individual tensioning of suspended graphene regions without the need for individual 

back gates. Additionally, because we utilize mechanical strain coupling, if the shared membrane between 
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neighboring resonators were to be tensioned, with any of the discussed methods, we could tune the coupling 

strength between resonators. Tunable coupling is an essential component for programmable network 

applications. 

The additional evidence of inter-resonator higher order mode coupling highlights the possibility of rich 

dynamics that are an asset unique to this graphene platform. Coupling between higher order modes of 

spatially separate resonators can be utilized as means of achieving distinct coupling configurations through 

a single driven resonator. It could also be utilized as a means of achieving coupling between resonators of 

different sizes without additional thermal tensioning for the use of asymmetric tuning with a universal back 

gate. 

Although we focused our analysis on strong coupling that led to detectable mode splitting, in the SIM 

spatial maps we observe additional oscillating regions revealing areas of weak coupling. Weak coupling is 

an important aspect to consider when designing a NEMS resonator network as it can be essential for 

realizing many oscillator-based phenomena, such as synchronization and exotic states18, or can highlight 

areas of energy leakage in a desired isolated cluster. Although weak coupling is often difficult to measure, 

as it is not detectable in spectra83, our SIM spatial imaging technique illuminates weakly coupled regions, 

allowing us to include weak coupling when modeling detected coupling configurations. 

4.5 Conclusion 

In conclusion, we have presented evidence of coupling between multiple sets of two resonators, three 

resonators, and inter-resonator coupling a higher order mode. This 2D suspended graphene platform thus 

enables rich coupling dynamics through persistent strain coupling with potential for high tunability and 

scalability due to the unique properties of suspended graphene resonators. With this platform, we can 

achieve large-scale arrays with persistent coupling for applications such as computing schemes31–33, 

experimentation of tunable metamaterial24,25,27,87, and physical simulation of natural and artificial 

networks5,10.  
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5 Characterization of coupled NEMS resonator networks 

In this chapter, we present our characterization technique for spatially mapping all the physical parameters 

of a coupled resonator network. We apply this technique to characterize single suspended graphene 

resonators and coupled suspended graphene resonator pairs. With this scalable characterization method, we 

provide an essential tool for diagnosing the current state of a network. Because a spatial map provides 

information of both where to tune the network and by how much, this characterization method is an 

important step towards experimentally realizing programmable NEMS resonator networks.  

5.1 Introduction 

Interacting many-body systems are abundant in nature at a variety of length scales, from atomic solids to 

celestial bodies, and comprise a growing number of diverse synthetic systems such as solid-state and optical 

qubit arrays 8, photonic/phononic crystals88,89, and neural networks90. Thus, synthetic many-body systems 

are central to numerous hot-topic applications ranging from neuromorphic and quantum computing91,92  to 

strongly correlated phases93 and metamaterials94. Consequently, there is a vibrant effort to understand, 

control, and engineer the collective behavior of these interacting systems. A compelling experimental 

analog for these assemblies is the programmable network of nanoelectromechanical (NEMS)95 resonators. 

In addition to serving as a testbed, a programmable NEMS network would also unlock powerful 

applications such as reconfigurable phononic crystals and waveguides24,28, tunable thermal transport 26, and 

mechanics-based circuits18, computing and simulation32,95. Recent advancements towards realizing NEMS 

networks include demonstrations of collective phenomena in small-scale modular assemblies18 and 

lattices26,95 and the development of scalable tools to tune the resonance frequency of individual resonators42 

and the coupling between pairs60. 

A fundamental obstacle in the advancement of NEMS networks, and other network platforms, is the lack 

of tools to accurately characterize and spatially resolve the parameters of each network building block and 

their interactions. NEMS characterization is traditionally performed by analyzing resonance peaks in 

displacement spectra. For example, amplitude spectra near resonance can be used to quantify the dissipation 

and eigenfrequency of single resonators42 and to ascertain coupling strengths between resonators41. 

However, as the size of the network is expanded—even modestly—it becomes increasingly challenging to 

deduce the spatial configuration of a coupled network from spectra alone 40, thereby frustrating efforts to 

characterize and tune specific resonators. Moreover, weak coupling—an essential feature of many 

collective phenomena5,18,96—is challenging to detect spectroscopically because of its small signal and 

indistinguishable mode splitting83, while spurious non-mechanical spectral features often confound 

characterization attempts18. In addition, network parameters inferred from spectral data using traditional 
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analysis approaches (e.g. non-linear least square) require a priori knowledge of the network parameters as 

input guesses to achieve reasonable model predictions. Even so, correlations and local least-squares minima 

often lead to large uncertainties in the output parameters43.  

Here we demonstrate a site-specific method to quantify the parameters – elasticity, mass, damping, and 

coupling – in a nanomechanical network that overcomes the limitations of current approaches. In our 

method, which we call NetMAP (Network Mapping and Analysis of Parameters), we first employ optical 

scanning interference microscopy26,51,64,97 (SIM) to spatially image the amplitude and phase response of 

hybridized vibrational modes in a network of nanomechanical graphene drumhead resonators. The resulting 

SIM images provide the spatial address of each resonator in the network, which we use to measure fixed-

frequency response vectors. Using just two vectors, we solve the network’s reciprocal-space equations of 

motion to determine all the mechanical parameters of the network without any a priori knowledge. The 

algebraic analysis method of NetMAP can characterize any resonator network, regardless of the underlying 

physical domain. Moreover, the combination of our graphene resonator arrays, NetMAP, and existing 

methods to tune resonators42 establishes a viable platform for programmable nanomechanical networks. 

5.2 Mathematical background 

In our approach, we model the resonator network as a linear chain of masses and springs, depicted in Figure 

5.1a. The system of equations describing this model can be organized into matrix form, as described 

previously in Eq.( 2.1 ), and rewritten below as 

 𝑴𝑥̈⃗ + 𝐁𝑥̇⃗ + 𝑲𝑥⃗ = 𝐹⃗ ( 5.1 ) 

where 𝑴, 𝑩, and 𝑲, are the mass, damping, and elasticity matrices, respectively. Using 𝑥𝑛(𝑡) =

|𝑍𝑛(𝜔)|𝑒
𝑖(𝜔𝑡−𝜙𝑛(𝜔)) as the response of the 𝑛𝑡ℎ  resonator, we can write Eq( 5.1 ) in steady-state form: 

 𝓜(𝜔)𝑍(𝜔) = 𝐹⃗ ( 5.2 ) 

Here 𝜔 is the drive frequency of 𝐹⃗, 𝓜(ω) ≡ −𝜔2𝑴+ 𝑖𝜔𝑩+ 𝑲, and 𝑍(𝜔) is a vector of the complex 

responses of each resonator in the network, 𝑍𝑛(𝜔). Our approach determines 𝑴, 𝑩, and 𝑲 by measuring 

the response vector 𝑍(𝜔). For finite clusters of size 𝑁, 𝓜(ω) has 4𝑁 unknown parameters; 𝑁 masses, 𝑁 

damping constants, 𝑁 intrinsic springs, 𝑁 − 1 coupling springs, and 1 force (assuming one driven 

resonator). For each measurement of 𝑍(𝜔), Eq.( 5.2 ) provides 2𝑁 equations due to the real and imaginary 
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part of each equation of motion. Thus, to determine the unknown parameters of 𝑴, 𝑩, and 𝑲, 𝑍(𝜔) must 

be measured at a minimum of two drive frequencies, 𝜔𝑎 and 𝜔𝑏. When a resonator’s motion is undetectable, 

the number of linear equations is reduced; if the undetectable resonator is in the interior of the cluster, six 

equations are lost, while if at the edge of the cluster four equations are lost. Therefore, it is important to 

ensure that all resonators have a measurable amplitude at the two driving frequencies, or to otherwise 

include measurements at additional driving frequencies. 

We combine and reorganize the equations corresponding to 𝑍(𝜔𝑎) and 𝑍(𝜔𝑏) in Eq.( 5.2 ) to obtain 

 𝓩𝑝 = 0⃗⃗ ( 5.3 ) 

where 𝓩 is a 4𝑁 × 4𝑁 real-valued matrix of known coefficients determined by 𝜔𝑎, 𝜔𝑏, 𝑍(𝜔𝑎), and 𝑍(𝜔𝑏). 

The parameters vector—𝑝—is an 4𝑁-dimensional vector comprised of all the unknown elements of 𝑴, 𝑩, 

𝑲, and 𝐹⃗. 

To solve Eq.( 5.3 ) for 𝑝, we determine the null space of 𝓩 via singular value decomposition (SVD). We 

use the NumPy SVD package in Python, which outputs normalized values of 𝑝 that can be used to calculate 

any ratio of interest (e.g. the quality factor, coupling strength, etc.) and to plot the predicted 𝑍(𝜔) to validate 

against measurement. The normalized values in 𝑝 can be un-normalized by separately determining one 

parameter. We can also use SVD to solve an overdetermined system of equations if measurements are taken 

at additional drive frequencies. 

5.3 Methods 

We demonstrate NetMAP on network clusters of graphene resonators suspended over pillar arrays. We 

created the arrays by patterning SiO2/Si substrates using e-beam lithography followed by a dry reactive ion 

etch (CHF4), resulting in SiO2 pillars ~ 600 nm in height. We then suspended commercially grown CVD 

graphene over the pillar arrays using a wet transfer method82, resulting in an array of interconnected, 

suspended graphene resonators, shown in one configuration in Figure 5.1b. Additionally, we omit pillars 

throughout the array to create larger-size resonators and resonator pairs (Figure 5.1e,c). The lateral size of 

the membrane resonators varies from 3 − 6 µm. The resonators are directly connected by suspended 
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graphene, which provides a mechanism for elastic coupling represented by the coupling spring constants, 

𝑐𝑛, in Figure 5.1a. 

With the goal of determining 𝑝 for a local cluster of suspended graphene resonators, we must first construct 

the matrix 𝓩, which we achieve in three steps (Figure 5.1d): (1) Determine the drive frequency 𝜔 that 

provides large signal-to-noise ratio (SNR) for |𝑍𝑛(𝜔)|, (2) quantify the size and spatial configuration of 

the cluster, and (3) measure 𝑍(𝜔𝑎), 𝑍(𝜔𝑏) and use 𝜔𝑎 , 𝜔𝑏, 𝑍(𝜔𝑎),  𝑍(𝜔𝑏) to construct 𝓩. 

 

Figure 5.1: Suspended graphene platform and measurement scheme 

a) Linear mass and spring model showing intrinsic springs (𝑘𝑛), coupling springs (𝑐𝑛), and masses (𝑚𝑛). b) SEM 

image of graphene suspended over pillars. Suspended regions between pillars are depicted as a linear chain of masses. 

Scale bar is 3 𝜇𝑚. c) Cross section view of suspended graphene device showing Si base with SiO
2
 pillars and 

suspended graphene. The depicted pump and probe lasers are aligned to drive the right-side resonator and measure 

the motion of the left-side resonator. d) Steps for measuring 𝑍(𝜔𝑖) showing (1) an amplitude spectrum of the 𝑛𝑡ℎ 

resonator, (2) spatial images of a cluster of two resonators, and (3) the complex response vector of the cluster when 

driven at 𝜔𝑖. e) Schematic of optical set up showing 445 nm pump laser modulated with an AOM and coupled into 

the optical path with a dichroic mirror (DCM). The 633 nm probe laser is deflected by a polarizing beam splitter (PBS) 

and polarized by a quarter waveplate (𝜆/4). The probe position is controlled with a fast-scanning mirror (FSM). The 

reflected probe passes back through the PBS, and the interference signal is detected by an avalanche photodiode (APD) 

and resolved by a lock-in amplifier. Both the pump and probe lasers are focused onto the sample through a 40x 

objective lens and the sample is under vacuum at 10−6 torr. f) Top-down optical image of the sample under vacuum, 

with pillars seen as small orange dots. Here, the pump (blue) and probe (red) beams are focused onto neighboring 

resonator regions of suspended graphene, with a scalebar of 6 μm. 
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The first step is to determine which drive frequencies 𝜔 provide a large response signal |𝑍𝑛(𝜔)|, which we 

achieve by measuring amplitude and phase spectra of the 𝑛𝑡ℎ  resonator and searching for resonance peaks 

(Figure 5.1d, Step 1). To measure the spectra, we position a focused optical pump (445 nm) and probe 

(633 nm) on the 𝑛𝑡ℎ resonator. While modulating the pump with an AOM, we measure the corresponding 

amplitude and phase via interferometry and lock-in amplification (see Figure 5.1c,e,f). All measurements 

are taken in vacuum (∼ 10−7 𝑡𝑜𝑟𝑟) at room temperature. From the resulting spectra, we locate resonance 

peaks to determine a range of frequencies that provide a large |𝑍𝑛(𝜔)|. To further increase the signal 

|𝑍𝑛(𝜔)|, we increase the amplitude of the pump laser until |𝑍𝑛(𝜔)| is just below the limit of the linear 

regime. For all further measurements and steps, we fix the coordinates of the pump at this initial position.  

Second, we quantify the size 𝑁 and spatial configuration of the cluster by obtaining images of the 

mechanical motion of the area surrounding the driven resonator via scanning interferometric microscopy 

(SIM)64. For SIM, we modulate the fixed pump at a value of 𝜔, chosen to correspond to a large signal in 

the measured amplitude spectrum. We then raster the probe across the sample while recording both 

amplitude and phase, resulting in two-dimensional spatial images |𝑍(𝜔, 𝑥, 𝑦)| and 𝜙(𝜔, 𝑥, 𝑦) (Figure 5.1d, 

Step 2). SIM images are taken over a large enough area to characterize the local vicinity of the driven 

resonator, typically about 20 μm × 20 μm in size. To quantify 𝑁, we use |𝑍(𝜔, 𝑥, 𝑦)| and 𝜙(𝜔, 𝑥, 𝑦) to 

count the number of resonators in the cluster, corresponding to the number of regions that have local 

amplitude maxima and constant phase. To confirm 𝑁 and map the spatial configuration of the cluster, we 

cross-correlate |𝑍(𝜔, 𝑥, 𝑦)| with an optical brightfield (Figure 5.1f) and SEM (Figure 5.1b) image to match 

peak amplitudes with specific areas of the suspended membrane. Our home-built SIM software allows for 

easy point-and-click positioning of the probe, which we use to collect spectra (step one) for each resonator 

in the cluster. With a full set of spectra, we determine which frequencies 𝜔 result in a largest overall 

response signal. Moreover, we use the point-and-click positioning feature to finely tune the 𝑥-𝑦 probe 

coordinates over each resonator to further maximize the signal. 

The third and final step is to measure the components of 𝓩 − constructed with 𝜔𝑎 , 𝜔𝑏 , 𝑍(𝜔𝑎), 𝑍(𝜔𝑏). To 

obtain the first set (𝜔𝑎 , 𝑍(𝜔𝑎)), we position the probe on the 𝑛𝑡ℎ resonator, but rather than fixing 𝜔𝑎 and 

measuring 𝑍𝑛(𝜔𝑎), we use a phase-locked loop (PLL) to monitor the time series of frequency and 

amplitude, Ω𝑛(𝜔𝑎) and 𝐴𝑛(𝜔𝑎), for a fixed phase input of 𝜙𝑛(𝜔𝑎). The phase input is determined by the 

value of the phase spectrum at the target 𝜔𝑎. We record each time series until the amplitude SNR reaches 

a predetermined value of ~103, typically resulting in ~104 discrete measurements. We define the SNR as 

the ratio of the mean of the series to the standard error (|𝐴̅|/𝜎𝐴̅). Although the best choice of a target 𝜔𝑎 

for high SNR would be at the peak resonance, we chose frequencies slightly off resonance to reduce error 



54 

 

from frequency-dependent linear phase lags intrinsic to the optical set up, discussed in Section 3.5. 

Additionally, the phase must be corrected for this lag prior to calculating 𝑍𝑛(𝜔𝑎). We correct the phase by 

linearly fitting a region of the phase spectrum far off resonance to determine an intercept, 𝜙0, and the time 

delay slope, 𝜏. We then subtract the quantity  𝜙0 − 𝜔𝑖𝜏 from the PLL input phase and calculate a phase 

error based on the uncertainty in the fitted linear section98.  

 

𝜎𝜙 = √
1

𝑁 − 2
∑ (𝜙𝑖 − 𝜙0 − 𝜏𝜔𝑖)2

𝑁

𝑖=1
 

( 5.4 ) 

After repeating this PLL measurement for all 𝑁 resonators in the cluster, we calculate (𝜔𝑎 , 𝑍(𝜔𝑎)) as 𝜔𝑎 =

∑
Ω̅𝑛(𝜔𝑎)

𝑁
𝑁
𝑛=1  and 𝑍(𝜔𝑎) = {𝐴1𝑒

𝑖𝜙1(𝜔𝑎), … , 𝐴𝑁𝑒
𝑖𝜙𝑁(𝜔𝑎)}, in which we use the corrected phase values, 

𝜙𝑛(𝜔𝑎), and the time series averages, Ω̅𝑛(𝜔𝑎) and 𝐴𝑛(𝜔𝑎). We repeat this procedure to calculate 

(𝜔𝑏 , 𝑍(𝜔𝑏)), completing all the measurements needed to calculate the components of 𝓩. 

5.4 Results for resonator clusters of size 𝑁 = 1 
 

As a first application of NetMAP, we determined the mechanical parameters of the simplest network cluster 

of size 𝑁 = 1, corresponding to a single, uncoupled resonator. We first position the pump and probe over 

the resonator region highlighted in Figure 5.2a and acquire amplitude and phase spectra. The resulting 

spectra revealed a single peak in the amplitude, shown as grey data points in Figure 5.2f (upper), that 

corresponded to a corrected phase of 𝜋/2 (Figure 5.2f (lower), grey), consistent with a single, uncoupled 

resonator. To confirm the size of this cluster was 𝑁 = 1, we took a SIM scan at 18.81 𝑀𝐻𝑧, resulting in 

the amplitude and phase spatial maps shown in Figure 5.2. In the amplitude map, we observed an amplitude 

maximum (~10−4 mV) within one localized ~6 × 6 𝜇𝑚2 region of the suspended graphene, which 

matched the size and location of the region highlighted in Figure 5.2a. The spatial undulations in the 

amplitude and phase near the edge of the resonator region are likely due to interactions with the pillars. 

Outside of the resonator region, the amplitude decreases by more than two orders of magnitude (~10−6 

mV). Moreover, the resonator region has nearly constant phase (𝑆𝑇𝐷 = 0.07 rad), implying it moves in 

unison, as expected for the fundamental mode of a single resonator. Away from the resonator, the phase is 

noisier (𝐹0 ∼ 74, 𝑝~10
−11), with an increase in the standard deviation by over an order of magnitude 

(𝑆𝑇𝐷 = 0.6 rad). Lastly, as seen in the line scans (Figure 5.2b,c), the amplitude has one solitary lobe with 

constant phase. Altogether, we conclude that this local cluster consists of a single, uncoupled resonator. 
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Given our single-resonator cluster, we next obtained 𝜔𝑎 , 𝜔𝑏 , 𝑍(𝜔𝑎) and 𝑍(𝜔𝑏), needed to compute 𝓩. We 

chose 𝜔𝑎 and 𝜔𝑏 to be on each side of the resonance peak, corresponding to corrected phase values of 

𝜙1(𝜔𝑎) = −0.33 ± 0.12 rad and 𝜙1(𝜔𝑏) = −2.78 ± 0.12 rad. We completed the PLL measurement when 

the amplitude SNR reached > 5000. The PLL time series of amplitude and frequency are shown as 2D 

boxplots for a phase lock of 𝜙1(𝜔𝑎) in Figure 2d and for 𝜙1(𝜔𝑏) in Figure 5.2e. The mean values of 

amplitude, 𝐴1(𝜔𝑎) and 𝐴1(𝜔𝑏), and frequency, 𝛺1(𝜔𝑎)/2𝜋 and 𝛺1(𝜔𝑏)/2𝜋 , are plotted as diamond 

points in Figure 5.2f (upper), with the color of each point corresponding to the box-and-whisker plots 

(Figure 5.2d,e). Errors are calculated standard error. The corrected phase values, 𝜙1(𝜔𝑎) and 𝜙1(𝜔𝑏), and 

mean values of frequency, 𝛺1(𝜔𝑎)/2𝜋  and 𝛺1(𝜔𝑏)/2𝜋 , are plotted as diamond points in Figure 5.2f 

 

Figure 5.2: NetMAP analysis of first N = 1 cluster 

a) SEM of driven uncoupled resonator, with pillar radii of 0.5 μm and pillar pitch 2 μm. Scale bar is 4 μm. b) 

Amplitude and c) phase spatial maps at a drive frequency of 18.81 MHz, scale bars are 5 μm. Phase spatial map shows 

uncorrected wrapped phase values. Black triangles on the bottom axis indicate the location of the vertical line scan on 

the left-side axis. 2D boxplot of PLL measurement distribution of frequency and amplitude for d) phase lock of 

𝜙1(𝜔𝑎) = 1.84 rad and e) phase lock of 𝜙2(𝜔𝑏) = −1.28 rad. 2D boxplots shows median, upper, and lower quartile 

ranges with whiskers that extend to include 1.5 IQR. Plotted circles represent datapoints that were outliers in both 

frequency and amplitude. f) Amplitude and corrected phase spectra of driven resonator. The diamond points in the 

amplitude spectrum (upper) correspond to the mean PLL measurements of amplitude (𝐴1(𝜔𝑎) = 0.09827 ± 0.00002 

mV and 𝐴1(𝜔𝑏) = 0.10758 ± 0.00002 mV) and frequency (𝛺1(𝜔𝑎)/2𝜋 = 19.2337 ± 0.00003 MHz and 

𝛺1(𝜔𝑏)/2𝜋 = 19.3876 ± 0.00004 MHz), where the uncertainties are standard error. The diamond points in the 

phase spectrum (lower) correspond to the locked phase values, 𝜙1(𝜔𝑎) and 𝜙1(𝜔𝑏), and the mean frequency values, 

𝛺1(𝜔𝑎)/2𝜋  and 𝛺1(𝜔𝑏)/2𝜋 . The black dotted line represents |𝑍1(𝜔)| and 𝜙1(𝜔) generated from the normalized 𝑝⃗. 
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(lower). Using these measurements, we obtain 𝜔𝑎 = 𝛺1(𝜔𝑎), 𝜔𝑏 = 𝛺1(𝜔𝑏),  𝑍(𝜔𝑎) = {𝐴1(𝜔𝑎)𝑒
𝑖𝜙1(𝜔𝑎)}, 

and 𝑍(𝜔𝑏) = {𝐴1(𝜔𝑏)𝑒
𝑖𝜙1(𝜔𝑏)}. 

To solve for the parameters vector, 𝑝, we populate matrix 𝓩 with coefficients of the experimentally 

measured 𝜔𝑎 , 𝜔𝑏 , 𝑍(𝜔𝑎) and 𝑍(𝜔𝑏). For a single-resonator cluster, the reduced system of equations, 𝓩𝑝 =

0⃗⃗, is 

 

(

 
 

−𝜔𝑎
2𝑅𝑒[𝑍1(𝜔𝑎)] −𝜔𝑎𝐼𝑚[𝑍1(𝜔𝑎)]

−𝜔𝑎
2𝐼𝑚[𝑍1(𝜔𝑎)] 𝜔𝑎𝑅𝑒[𝑍1(𝜔𝑎)]

𝑅𝑒[𝑍1(𝜔𝑎)] −1

𝐼𝑚[𝑍1(𝜔𝑎)] 0

−𝜔𝑏
2𝑅𝑒[𝑍1(𝜔𝑏)] −𝜔𝑏𝐼𝑚[𝑍1(𝜔𝑏)]

−𝜔𝑏
2𝐼𝑚[𝑍1(𝜔𝑏)] 𝜔𝑏𝑅𝑒[𝑍1(𝜔𝑏)]

𝑅𝑒[𝑍1(𝜔𝑏)] −1

𝐼𝑚[𝑍1(𝜔𝑏)] 0 )

 
 
(

𝑚
𝑏
𝑘
𝑓

) = (

0
0
0
0

) 
( 5.5 ) 

 

Given 𝑁 = 1, 𝑝 has four unknowns: 𝑚, 𝑏, 𝑘, and 𝑓. We applied SVD to solve Eq( 5.5 ) for 𝑝, with the 

normalized values of 𝑝 and associated errors listed in Table 5.1. We propagated the errors in 𝑝 by sampling 

from Gaussian mean distributions of the two phases, mean drive frequencies, and mean amplitudes to 

generate hundreds of variations of 𝓩. We then used SVD to solve for 𝑝⃗ corresponding to each 𝓩, resulting 

in distributions of each output parameter, see Appendix B for error distribution discussion. 

Mechanical Parameter NetMAP Unity LS 

𝑘 [N/m] 1  1 

𝑚 [10−17 kg] 6.790 ±  0.002 6.785 

𝑏 [10−11kg/s] 2.388 ±  0.643 2.283 

𝐹 [10−7 au] 8.713 ±  0.286 8.107 

Amplitude 𝑅2 0.98 0.97 

Phase 𝑅2 0.97 0.99 

Table 5.1: First set of normalized values of  𝑝⃗ from NetMAP and Unity LS for 𝑁 = 1 Cluster 

To assess how accurately the resulting 𝑝 characterized the single resonator, we compared the normalized 

values to expected values. The spring constant of suspended multi-layer graphene48 is ~1 − 5 N/m, so 

normalizing 𝑝 by 𝑘1 = 1 N/m provides order-of-magnitude estimates of all other parameters. We can 

estimate the mass of the resonator by using the area density of pristine graphene (𝜌 = 0.75 mg/m2) and 

an approximated area based on the suspended region highlighted in Figure 5.2a, which gives a mass of 

2.7 × 10−17 kg. While this mass estimate is lower than the value in Table 5.1, graphene contamination can 

increase the mass99,55 by ~10 ×, putting the predicted 𝑚 within the expected range. In addition, we 

estimated the damping of the resonator by fitting the amplitude spectra to find the full width half max 

(𝐹𝑊𝐻𝑀) and the center frequency (𝜔0). Using the fitted values, along with an estimation of 𝑘 = 1 N/m, 
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we estimate the damping to be 𝑏 = 1.92 × 10−11 kg/s, which agrees with the value in Table 5.1. Additional 

details of these order-of-magnitude estimates can be found in Appendix C. 

To evaluate the predictive power of the NetMAP results, we used 𝑝 to calculate |𝑍1(𝜔)| and 𝜙1(𝜔) and 

compared the results to the experimental spectra. The 𝑝-calculated |𝑍1(𝜔)| and 𝜙1(𝜔) are shown as black 

dashed lines overlayed on the spectra (Figure 5.2f) and the resulting 𝑅2 values are listed in Table 5.1. We 

see that, despite building the analytical spectra from just two data points, the prediction agrees well with 

the data, accounting for a minimum of 97% of variation. Therefore, the normalized 𝑝 can predict the cluster 

response exceptionally well across the tested frequency range.  

As an additional validation, we compared the NetMAP 𝑝 to that obtained from non-linear least-squares 

fitting with order of magnitude initial guesses (Unity LS), which is perhaps the most common means of 

characterizing resonant systems. The fit parameter estimates obtained using Lmfit in Python are listed in 

Table 5.1, see Appendix C for more Unity LS details. To compare the predicted 𝑝 from each method, we 

employ a two-tailed t-test with the Unity LS parameters as reference. We find the damping 𝑏 (𝑝 = 0.87) 

agrees between both approaches but the mass 𝑚 (𝑝 = 0.004) and force 𝐹 (𝑝 = 0.03) do not agree. 

However, the mass from Unity LS still falls within the expected range and the force only differs by 7%. 

We also find that the 𝑝 from Unity LS had similar predictive power when compared with the experimental 

spectra (see Table 5.1). Thus, we conclude that both methods are comparable for characterizing this system 

of a single resonator cluster.  

To further demonstrate NetMAP, we characterized an additional cluster of size 𝑁 = 1. We characterized 

the cluster by aligning the pump and probe over the resonator highlighted in Figure 5.3a and acquired 

amplitude and phase spectra. The resulting spectra had a single peak in the amplitude, gray data points in 

Figure 5.3f (upper), and a corresponding phase that crossed through 𝜋/2 at resonance, gray data points in 

Figure 5.3f (lower), consistent with a single, uncoupled resonator. To confirm the cluster size of 𝑁 = 1, 

we took a SIM scan at 𝑓 = 17.64 MHz, with the resulting amplitude spatial map shown in Figure 5.3b and 

phase in Figure 5.3c. In this scan we observed a single region of peak amplitude that had a constant phase, 
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indicating that the cluster consisted of a single, uncoupled resonator. This region also corresponded in size 

and location to the driven resonator highlighted in Figure 5.3a. 

We next measured 𝜔𝑎 , 𝜔𝑏 , 𝑍(𝜔𝑎) and 𝑍(𝜔𝑏), with target values of 𝜔𝑎 and 𝜔𝑏 to be on either side of the 

resonance peak, Figure 5.3f (upper). We used the corrected phase spectra, Figure 5.3f (lower), to map the 

chosen values of 𝜔𝑎 and 𝜔𝑏 to phase values for the PLL. The measured PLL time series of amplitude, 

𝐴(𝜔𝑎,𝑏), and frequency, Ω(𝜔𝑎,𝑏)/2𝜋, are shown as 2D boxplots in Figure 5.3d,e. Using the mean values 

of amplitude, 𝐴(𝜔𝑎) and 𝐴(𝜔𝑏), and frequency, Ω(𝜔𝑎) and Ω(𝜔𝑏), we obtain 𝜔𝑎 = Ω(𝜔𝑎), 𝜔𝑏 = Ω(𝜔𝑏), 

𝑍(𝜔𝑎) = {𝐴(𝜔𝑎)𝑒
𝑖𝜙(𝜔𝑎)}, and 𝑍(𝜔𝑏) = {𝐴(𝜔𝑏)𝑒

𝑖𝜙(𝜔𝑏)}. 

We then populated the matrix 𝓩 with coefficients of the experimentally measured 𝜔𝑎 , 𝜔𝑏 , 𝑍(𝜔𝑎) and 𝑍(𝜔𝑏) 

and solved for the parameters vector 𝑝. The resulting values are normalized to 𝑘 are listed in Table 5.1.  

We found that each predicted parameter in 𝑝 was consistent with the expected ranges discussed for the 

previous 𝑁 = 1 cluster. Moreover, by comparing the analytical 𝑍1(𝜔) and 𝑍2(𝜔) generated from 𝑝 to 

 

Figure 5.3: NetMAP analysis of second 𝑁 = 1 cluster 

a) SEM of driven uncoupled resonator, with pillar radii of 0.5 μm and pillar pitch 2 μm.    Scale bar is 4 μm. b) 

Amplitude and c) phase spatial maps at a drive frequency of 17.64 MHz, scale bars are 5 μm. Phase spatial map shows 

uncorrected wrapped phase values. Black triangles on the bottom axis indicate the location of the vertical line scan on 

the left-side axis. 2D boxplot of PLL measurement distribution of frequency and amplitude for corrected phase lock 

values of d) 𝜙1(𝜔𝑎) = −0.30 rad and e) 𝜙2(𝜔𝑏) = −2.79 rad. 2D boxplots shows median, upper, and lower quartile 

ranges with whiskers that extend to include 1.5 IQR. Plotted circles represent datapoints that were outliers in both 

frequency and amplitude. f) Amplitude and corrected phase spectra of driven resonator. The diamond points in the 

amplitude spectrum (upper) correspond to the mean PLL measurements of amplitude (𝐴1(𝜔𝑎) = 0.03684 ± 0.00001 

mV and 𝐴1(𝜔𝑏) = 0.03146 ± 0.00001 mV) and frequency (𝛺1(𝜔𝑎) = 17.98422 ± 0.00005 MHz and 𝛺1(𝜔𝑏) =
18.26637 ± 0.00007 MHz). The diamond points in the phase spectrum (lower) correspond to the locked phase values, 

𝜙1(𝜔𝑎) and 𝜙1(𝜔𝑏), and the mean frequency values, 𝛺1(𝜔𝑎) and 𝛺1(𝜔𝑏). The black dotted line represents |𝑍1(𝜔)| 
and 𝜙1(𝜔) generated from the normalized 𝑝⃗. 
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experimental spectra, we found that the model can account for 95% of the variation in the data, with 𝑅2 

values listed in Table 5.2. We also compared the results from NetMAP to those from Unity LS and found 

that 𝑚 (𝑝 = 0.35), 𝑏 (𝑝 = 0.91), and 𝐹 (𝑝 = 0.41) all agree. We therefore conclude that NetMAP is 

proficient in characterizing the local cluster. 

Mechanical Parameter NetMAP Unity LS 

𝑘 [N/m] 1 1 

𝑚 × 10−17 [kg] 7.718 ± 0.010 7.709 

𝑏 × 10−11[kg/s] 4.595 ± 2.814 4.293 

𝐹 × 10−7 [N] 5.581 ± 0.527 6.017 

Amplitude 𝑅2 0.94 0.95 

Phase 𝑅2 0.97 0.97 

Table 5.2: Results for additional 𝑁 = 1 cluster from NetMAP and Unity LS 

5.5 Results for resonator clusters of size 𝑁 = 2 

We next tested NetMAP on a system with more degrees of freedom, on a cluster size of 𝑁 = 2. To begin, 

we positioned the pump and probe over the resonator region highlighted as R1 in Figure 5.4a and acquired 

amplitude and phase spectra. The resulting amplitude spectrum (Figure 5.4f (upper), grey data points) 

revealed two closely spaced peaks, each corresponding to a corrected phase of ~𝜋/2 (Figure 5.4f (lower), 

grey), indicative of the two hybridized modes of a pair of coupled resonators83. To test if the spectral 

features correspond to a resonator pair, we took a SIM scan across the region at a frequency below the first 

peak (𝑓1 = 21.51 𝑀𝐻𝑧). The resulting spatial maps (Figure 5.4b,c) show two distinct high-intensity 

amplitude regions with nearly constant phase, as highlighted in the line profiles (Figure 5.4f). The first 

high-amplitude region was centered in a 6 × 6 𝜇𝑚2 region, which matched the size and location of the 

driven resonator R1 shown in Figure 5.4a. The second region matched the size and location of a 3 × 3 𝜇𝑚2 

membrane highlighted as R2 in Figure 5.4a. The mean phases of R1 and R2 differed by 0.12 rad, or ~6.9°, 

(𝑝~0.001), indicating they move in near unison, in accord with expectations for the symmetric mode of a 

coupled pair64. We search for the asymmetric mode with an additional SIM scan at a frequency above the 

second spectral peak (𝑓2 = 22.55 𝑀𝐻𝑧). In the resulting amplitude map and cross-section (Figure 5.4d), 

we see two regions with high amplitude situated at the same locations as R1 and R2 in Figure 5.4a,b. The 

phase map and profile (Figure 5.4e) reveal the phase in each region is relatively uniform, but the regions 
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differ from each other by ~𝜋 rad, as expected for the asymmetric mode. From the spectra and SIM data, 

we conclude that the R1 and R2 resonators form a coupled pair.  

To measure 𝜔𝑎 , 𝜔𝑏 , 𝑍(𝜔𝑎) and 𝑍(𝜔𝑏) for the coupled pair, we first aligned the probe over R2 and took 

spectra (Figure 5.4i). Using the R1 and R2 spectra, we chose a target value of 𝜔𝑎 below the symmetric 

mode peak and 𝜔𝑏 above the antisymmetric mode peak. We then positioned the probe over R1 and acquired 

two PLL time-series measurements at corrected phase values of 𝜙1(𝜔𝑎) and 𝜙1(𝜔𝑏). We completed each 

PLL measurement when the amplitude SNR reached ~ 3000. The R1 PLL data are shown as 2D boxplots 

 

Figure 5.4: NetMAP analysis of first 𝑁 = 2 cluster 

a) SEM of driven resonator, R1, and neighboring coupled resonator, R2. Pillar radii are 0.75 μm and pillar pitch is 

3 μm, scale bar is 6 μm. b) Amplitude and c) phase spatial maps taken at a drive frequency of 𝑓1 = 21.51 MHz, scale 

bars are 5 μm. d) Amplitude and e) phase spatial maps taken at a drive frequency of 𝑓2 = 23.36 MHz, scale bars are 

5 μm. c) and e) phase spatial maps show uncorrected wrapped phase values. Black triangles on the bottom axes 

indicate the location of the vertical line scan on the left-side axis. 2D boxplots of PLL measurement distributions of 

frequency and amplitude for a phase lock of f) 𝜙1(𝜔𝑎) = −0.47 ± 0.06 rad, g) 𝜙1(𝜔𝑏) = −2.59 ± 0.06 rad, 

h) 𝜙2(𝜔𝑎) = −0.51 ± 0.2 rad, and i) 𝜙2(𝜔𝑏) − 5.61 ± 0.2. j) Amplitude (upper) and corrected phase (lower) of R1. 

Diamond points in the amplitude plot correspond to PLL measurements of amplitude (𝐴1(𝜔𝑎) = 0.16368 ± 0.00005 

mV and 𝐴1(𝜔𝑏) = 0.08560 ± 0.00003 mV) , and frequency (𝛺1(𝜔𝑎)/2𝜋 = 22.1208 ± 0.00008 MHz and 

𝛺1(𝜔𝑏)/2𝜋 = 23.3554 ± 0.0001 MHz). Diamond points in the phase plot correspond to the phase lock values, 

𝜙1(𝜔𝑎) and 𝜙1(𝜔𝑏), and the mean frequency values, 𝛺1(𝜔𝑎)/2𝜋  and 𝛺1(𝜔𝑏)/2𝜋 . The black dotted lines represent 

|𝑍1(𝜔)| and 𝜙1(𝜔) generated from the normalized 𝑝⃗. k) Amplitude (upper) and corrected phase (lower) of R2. 

Diamond points in the amplitude plot (upper) correspond to PLL measurements of amplitude (𝐴2(𝜔𝑎) = 0.10146 ±

0.00003 mV and 𝐴2(𝜔𝑏) = 0.06420 ± 0.00002 mV) , and frequency (𝛺2(𝜔𝑎)/2𝜋 = 22.14721 ± 0.00007 MHz 

and 𝛺2(𝜔𝑏)/2𝜋 = 23.4029 ± 0.0001 MHz). Diamond points in the phase plot (lower) correspond to the phase lock 

values, 𝜙2(𝜔𝑎) and 𝜙2(𝜔𝑏), and the mean frequency values, 𝛺2(𝜔𝑎)/2𝜋  and 𝛺2(𝜔𝑏)/2𝜋 . The black dotted lines 

represent |𝑍2(𝜔)| and 𝜙2(𝜔) generated from the normalized 𝑝⃗. 
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for phase lock values of 𝜙1(𝜔𝑎) in Figure 5.4f and 𝜙1(𝜔𝑏) in Figure 5.4g. The mean values of amplitude, 

(𝐴1(𝜔𝑎) and 𝐴1(𝜔𝑏)), and frequency (𝛺1(𝜔𝑎)/2𝜋  and 𝛺1(𝜔𝑏)/2𝜋 ), are plotted as diamond points in 

Figure 5.4j (upper), with the color of each point corresponding to the 2D boxplots (Figure 5.4f,g). The 

corrected phase values, 𝜙1(𝜔𝑎) and 𝜙1(𝜔𝑏), and mean values of frequency, 𝛺1(𝜔𝑎)/2𝜋 and 𝛺1(𝜔𝑏)/2𝜋 

, are plotted as diamond points in Figure 5.4j (lower). We repeated PLL measurements for the second 

resonator by placing the probe over R2, the pump fixed over R1, with corrected phase values of 𝜙2(𝜔𝑎) 

and 𝜙2(𝜔𝑏). The R2 PLL results are shown as 2D boxplots for phase lock values of 𝜙2(𝜔𝑎) in Figure 

5.4h, and 𝜙2(𝜔𝑏) in Figure 5.4i.The mean values of amplitude, 𝐴2(𝜔𝑎) and 𝐴2(𝜔𝑏), and frequency, 

𝛺2(𝜔𝑎)/2𝜋  and 𝛺2(𝜔𝑏)/2𝜋 , are plotted as diamond points in Figure 5.4k (upper), with the color of each 

point corresponding to the 2D boxplots (Figure 5.4h,i). The corrected phase values, 𝜙2(𝜔𝑎) and 𝜙2(𝜔𝑎), 

and mean values of frequency, 𝛺2(𝜔𝑎)/2𝜋  and 𝛺2(𝜔𝑏 , 𝑡)/2𝜋 , are plotted as diamond points in Figure 

5.4k (lower). We used these measurements to calculate 𝜔𝑎 = (
1

2
) (𝛺1(𝜔𝑎) + 𝛺2(𝜔𝑎)) and 𝑍(𝜔𝑎) =

{𝐴1(𝜔𝑎)𝑒
𝑖𝜙1(𝜔𝑎), 𝐴2(𝜔𝑎)𝑒

𝑖𝜙2(𝜔𝑎)}, and similarly to calculate 𝜔𝑏 and 𝑍(𝜔𝑏). 

To solve for the parameters vector, 𝑝, we populate 𝓩 with coefficients of the experimentally measured 

values of 𝜔𝑎, 𝜔𝑏, 𝑍(𝜔𝑎), and 𝑍(𝜔𝑏). For a cluster size for 𝑁 = 2, 𝑝 has eight unknown components, 𝑝 =

{𝑚1, 𝑚2, 𝑏1, 𝑏2, 𝑘1, 𝑘2, 𝑐1, 𝐹} and 𝓩 is an 8 × 8 matrix. We applied SVD to solve Eq ( 5.3 ) for 𝑝, with values 

normalized by 𝑘1 listed in Table 5.3. Errors are calculated as described above for the 𝑁 = 1 cluster (see 

Appendix B for error distributions and discussion). With the 𝑘1 normalization, the intrinsic spring 𝑘2 is 

also within the expected range of 1 − 5 N/m. If we assume R1 and R2 to have equal masses and intrinsic 

springs, we estimate 𝑐1 = 0.05 N/m (see Appendix C for estimation discussion), which agrees with the 

value 𝑐1 from Table 5.3. The damping constants 𝑏1 and 𝑏2 agree within error with the damping predicted 

above for the 𝑁 = 1 case, which we expect considering that both clusters are on the same sample and tested 

under the same vacuum100. In addition, based on the areas of R1 and R2 and the area density of pristine 

graphene (𝜌 = 0.75 mg/m2), we predict the mass of each resonator to be 𝑚1 = 2.7 × 10
−17 kg and 𝑚2 =

6.75 × 10−18 kg. Accounting for contamination, both 𝑚1 and 𝑚2 estimates in Table 5.3 are plausible. We 

note that while the area of R1 is larger than that of R2, the NetMAP prediction of 𝑚1 < 𝑚2 may account 

for the effective mass of each resonator or may be due to differences in local temperatures due to the optical 

probe position and PLL-related error.  
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Mechanical Parameter NetMAP Unity L-S 

𝑘1 [N/m] 1 ±  0.074 1 

𝑘2 [N/m] 1.784 ±  0.044 1.655 

𝑐1 [N/m] 0.069 ±  0.002 0.057 

𝑚1[10
−17 kg] 5.263 ±  0.365 5.289 

𝑚2 [10
−17 kg] 8.975 ±  0.219 8.165 

𝑏1 [10
−11 kg/s] 1.424 ±  1.667 1.530 

𝑏2 [10
−11 kg/s] 5.405 ±  4.625 4.846 

𝐹 [10−6 au] 1.501 ±  0.651 1.358 

R1 Amplitude 𝑅2 0.73 0.89 

R1 Phase 𝑅2 0.83 0.99 

R2 Amplitude 𝑅2 0.85 0.85 

R2 Phase 𝑅2 0.996 0.996 

Table 5.3: Normalized values of  𝑝⃗ from NetMAP and Unity LS for 𝑁 = 2 cluster 

To evaluate the predictive power of 𝑝, we compared the analytical 𝑍1(𝜔) and 𝑍2(𝜔) generated from 𝑝 to 

experimental spectra using 𝑅2. The analytical responses are shown as black dashed lines overlayed on the 

spectra in Figure 5.4j,k and the resulting 𝑅2 values are listed in Table 5.3. Because the 𝑝-calculated 

responses in the model account for at least 70% of variability in all the experimental spectra (all 𝑅2 values 

are greater that 0.7), we conclude that the 𝑝-calculated responses can accurately predict the experimental 

spectral response of the cluster over the tested range.  

To further evaluate the utility of our approach, we benchmark the NetMAP predicted 𝑝 against results from 

Unity LS, see Table 5.3. Although our approach does not require a priori information and only uses two 

vector data points, as opposed to LS which uses thousands of spectral points and requires initial guesses, 

the two approaches agree but only with precise order-unity a priori parameter estimates for LS. Using 

order-unity guesses informed by the NetMAP 𝑝 (e.g. 𝑚1 = 𝑚2 = 10
−17 kg) and omitting LS error (see 

SI), the two approaches agree on the vales  𝑚1(𝑝 = 0.94), 𝑏1 (𝑝 = 0.95), 𝑏2 (𝑝 = 0.90), and 𝐹 

(𝑝 = 0.83). Although the values disagree for 𝑘2 (𝑝 = 0.003), 𝑐1 (𝑝 = 0, 𝑡0 = 7), and 𝑚2 (𝑝 = 0.0002), 

each value predicted by LS was still within the expected range discussed above and only differed from the 

NetMAP 𝑝 by at most 8 − 21%. We also found that LS resulted in some higher 𝑅2 values, although this is 

to be expected considering NetMAP does not utilize the full spectra.  

The agreement between NetMAP and unity LS is sensitive to the LS input guess solutions. For example, 

by increasing the input guesses for mass only (e.g. 𝑚1 = 𝑚2 = 10
−16 kg), LS yields a predicted 𝑘2 about 

1000 × lower than the expected 1 − 5 N/m and a predicted 𝑚2 about 10 × less than expected for pristine 

graphene (see Appendix C for LS results), as well as poor fits with some 𝑅2 < 0. This result highlights the 

susceptibility of LS to correlation errors because while individually 𝑘2 and 𝑚2 are far from the expected 
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values, the ratio of √
𝑘2

𝑚2
 gives an expected resonance frequency of ~16 MHz, within 7 MHz of the observed 

amplitude peaks. These correlated values, which are prevalent in our model, result in many possible 

solutions for least squares fitting, making this method reliant on the input guess solutions to find the residual 

minimum that is closest to the actual values. Combining NetMAP with LS fitting by inputting 𝑝 as guess 

solutions may be an effective strategy to fit parameter values as close to the actual values as possible. Given 

that our approach is not sensitive to input guesses, NetMAP provides a robust means to obtain physically 

accurate network parameters without any a priori knowledge of those parameters.  

We characterized an additional 𝑁 = 2 cluster by again aligning the pump and probe over the region 

highlighted as R1 in Figure 5.5a and taking amplitude and phase spectra. The amplitude spectrum, gray 

data points in Figure 5.5j, revealed two peaks that corresponded to phase changes that pass through ~𝜋/2 

on resonance. To test whether these peaks correspond to the hybridized modes of a coupled pair, we took 

an SIM scan at 𝑓 = 15.45 MHz, Figure 5.5b,c, and another at 𝑓 = 16.21 MHz, Figure 5.5d,e. In the first 

scan, we saw two distinct high intensity area regions with nearly constant phase across each individual 

resonator. The first 6 × 6 μm region matched the size and location of the driven resonator, R1 highlighted 

in Figure 5.5a. The neighboring 6 × 6 μm region matched the size and location of the resonator to the right 

of R1, labelled as R2 in Figure 5.5a. Although we noticed smaller neighboring regions of amplitude 

maxima and constant phase, because we only observe two peaks in the amplitude spectra, we approximate 

other membrane motion to be due to weak coupling. We therefore approximate this system to be an 𝑁 = 2 

cluster. 

To measure 𝜔𝑎 , 𝜔𝑏 , 𝑍(𝜔𝑎) and 𝑍(𝜔𝑏), we chose a target value of 𝜔𝑎 below the symmetric mode peak and 

𝜔𝑏 above the antisymmetric mode peak, shown for R1 in Figure 5.5j (upper) and for R2 in Figure 5.5k 

(upper). We used the corrected R1 phase spectra, Figure 5.5j (lower), to map the chosen 𝜔𝑎 and 𝜔𝑏 to 

phase values of 𝜙1(𝜔𝑎) and 𝜙1(𝜔𝑏). Because the R2 phase spectrum off resonance was too noisy to 

accurately fit to a linear model, we corrected the R2 phase values with the R1 fit values of 𝜙0 and 𝜏.  With 

the probe positioned over R1, we acquired PLL time-series measurements for the two phase values, shown 

as 2D boxplots in Figure 5.5f,g. We repeated these PLL measurements for the second resonator by using 

the corrected R2 phase spectra, Figure 5.5k (lower), to map 𝜔𝑎 and 𝜔𝑏 to phase values of 𝜙2(𝜔𝑎) and 

𝜙2(𝜔𝑏). We positioned the probe over R2, fixed the pump over R1, and acquired PLL time-series 

measurements for each phase, shown as 2D boxplots Figure 5.5h,i.  We then used the PLL measurements 
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to calculate 𝜔𝑎 = (
1

2
) (𝛺1(𝜔𝑎) + 𝛺2(𝜔𝑎)), 𝑍(𝜔𝑎) = {𝐴1(𝜔𝑎)𝑒

𝑖𝜙1(𝜔𝑎), 𝐴2(𝜔𝑎)𝑒
𝑖𝜙2(𝜔𝑎)},  𝜔𝑏 =

(
1

2
) (𝛺1(𝜔𝑏) + 𝛺2(𝜔𝑏)), and 𝑍(𝜔𝑏) = {𝐴1(𝜔𝑏)𝑒

𝑖𝜙1(𝜔𝑏) , 𝐴2(𝜔𝑏)𝑒
𝑖𝜙2(𝜔𝑏)}. 

Using the calculated values of 𝜔𝑎, 𝜔𝑏, 𝑍(𝜔𝑎), and 𝑍(𝜔𝑏), we populated the matrix 𝓩 and solved for the 

parameters vector 𝑝. We applied SVD to solve 𝓩𝑝 = 0⃗⃗ for the eight unknown components of 𝑝,  which are 

normalized by 𝑘1 and listed in Table 5.4. We find that the values of 𝑘2, 𝑐1, 𝑚1, 𝑚2, 𝑏1, and 𝑏2 are all within 

 

Figure 5.5: NetMAP analysis of second 𝑁 = 2 cluster 

a) SEM of driven resonator, R1, and neighboring coupled resonator, R2. Pillar radii are 0.5 μm and pillar pitch is 

3 μm, scale bar is 6 μm. b) Amplitude and c) phase spatial maps taken at a drive frequency of 𝑓1 = 15.45 MHz, scale 

bars are 5 μm. d) Amplitude and e) phase spatial maps taken at a drive frequency of 𝑓2 = 16.21 MHz, scale bars are 

5 μm. c) and e) phase spatial maps show uncorrected wrapped phase values. Black triangles on the left-side axes 

indicate the location of the vertical line scan on the left-side axis. 2D boxplots of PLL measurement distributions  of 

frequency and amplitude for a phase lock of  f) 𝜙1(𝜔𝑎) = −0.41 ± 0.15 rad, g) 𝜙1(𝜔𝑏) = −2.79 ± 0.15 rad, 

h) 𝜙2(𝜔𝑎) = −0.93 ± 0.81 rad, and i) 𝜙2(𝜔𝑏) = −5.85 ± 0.81. j) Amplitude (upper) and corrected phase (lower) 

of R1. Diamond points in the amplitude plot correspond to PLL measurements of amplitude (𝐴1(𝜔𝑎) = 0.021010 ±

0.000007 mV and 𝐴1(𝜔𝑏) = 0.060903 ± 0.000020 mV) , and frequency (𝛺1(𝜔𝑎) = 15.56192 ± 0.00009 MHz 

and 𝛺1(𝜔𝑏) = 16.21389 ± 0.0004 MHz). Diamond points in the phase plot correspond to the phase lock values, 

𝜙1(𝜔𝑎)  and 𝜙1(𝜔𝑏), and the mean frequency values, 𝛺1(𝜔𝑎) and 𝛺1(𝜔𝑏). The black dotted lines represent |𝑍1(𝜔)| 
and 𝜙1(𝜔) generated from the normalized 𝑝⃗. k) Amplitude (upper) and corrected phase (lower) of R2. Diamond points 

in the amplitude plot (upper) correspond to PLL measurements of amplitude (𝐴2(𝜔𝑎) = 0.025206 ± 0.000008 mV 

and 𝐴2(𝜔𝑏) = 0.020166 ± 0.000007 mV) , and frequency (𝛺2(𝜔𝑎) = 15.58158 ± 0.00007 MHz and 𝛺2(𝜔𝑏) =
16.21161 ± 0.00004  MHz). Diamond points in the phase plot (lower) correspond to the phase lock values, 𝜙2(𝜔𝑎)  

and 𝜙2(𝜔𝑏), and the mean frequency values, 𝛺2(𝜔𝑎) and 𝛺2(𝜔𝑏). The black dotted lines represent |𝑍2(𝜔)| and 

𝜙2(𝜔) generated from the normalized 𝑝⃗. 
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the expected ranges discussed in the main text. Moreover, we observe that this set of parameters has 

predictive power over the experimentally measured spectral range, with R1 and R2 amplitude 𝑅2 values 

≥ 0.77 and the phase 𝑅2 values ≥ 0.92 (See Table 5.4).  

Mechanical Parameter NetMAP Unity LS 

𝑘1 [N/m] 1 ±  0.163 1 

𝑘2 [N/m] 0.923 ±  0.299 0.664 

𝑐1 [N/m] 0.021 ±  0.006 0.021 

𝑚1 × 10
−17[kg] 10.035 ±  1.544 10.039 

𝑚2  × 10
−17[kg] 9.695 ±  3.134 7.032 

𝑏1  × 10
−11 [kg/s] 4.336 ±  4.00 4.476 

𝑏2  × 10
−11 [kg/s] 7.396 ±  5.546 4.311 

𝐹 × 10−6 [N] 0.883 ±  0.355 0.910 

R1 Amplitude 𝑅2 0.88 0.90 

R1 Phase 𝑅2 0.97 0.98 

R2 Amplitude 𝑅2 0.77 0.35 

R2 Phase 𝑅2 0.92 0.93 

Table 5.4: Normalized values of  𝑝⃗ from NetMAP and Unity LS for second 𝑁 = 2 cluster 

We benchmarked NetMAP results against those form least squares fitting and found that all values agree 

within error for 𝑘2 (𝑝 = 0.38), 𝑐1(𝑝 = 0.99), 𝑚1 (𝑝 = 0.998), 𝑚2 (𝑝 = 0.40), 𝑏1 (𝑝 = 0.97), 𝑏2 (𝑝 =

0.58), and 𝐹 (𝑝 = 0.94). However, the predicted power of the Unity LS is poor for the R2 amplitude, as 

the model only accounts for 35% of variation in the experimental data (See Table 5.4). However, the 

method that had the best predictive power over the tested experimental range, was when we used LS to fit 

the vector weights corresponding to the two smallest singular values, with R1 and R2 amplitude and phase 

𝑅2 values all ≥ 0.92. 

5.6 Discussion 

Thus far, we have reported solutions to 𝓩𝑝 = 0⃗⃗ that belong to a one-dimensional (1D) null-space. However, 

the null-space can be higher dimensional, and considering the full null-space basis may result in a 𝑝 that is 

more physically accurate. In practice, we characterize the null-space dimension by the number of singular 

values 𝜆 such that 𝜆 ≪ 1. For the 𝑁 = 1 clusters (Figure 5.2 and Figure 5.3), we had only one candidate 

singular value (𝜆~10−9), so the null-space was 1D. However, the 𝑁 = 2 clusters (Figure 5.4 and Figure 

5.5) has three potential singular values (for the first 𝑁 = 2 cluster – 𝜆1~10
−4, 𝜆2~10

−6, and 𝜆3~10
−8), 

so the null-space could be up to 3D, leading to multiple effective parameter combinations that could 

reconstruct the measured complex amplitudes, e.g. 𝑝 = 𝛼1𝑝1 + 𝛼2𝑝2 + 𝛼3𝑝3. In the case of a higher-

dimension null-space, we can obtain 𝑝 by specifying additional constraints, such as the estimated masses 

of each resonator. Alternatively, we could avoid providing a priori information about the network 
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parameters by LS fitting to full spectra to solve for the weights of each vector (i.e. 𝛼𝑖) for a facile means to 

account for higher-dimensional null-spaces without requiring additional knowledge of network parameters, 

see Appendix C for 𝛼𝑖  LS applied to first 𝑁 = 2 cluster. 

The combination of SIM and algebraic solving in the NetMAP approach provides a means to spatially map 

and quantify the mechanical elements of a resonator network, and as such is a powerful and vital tool for 

programming resonator networks for future applications. 

The spatial information provided by SIM is essential for NetMAP because it provides the size and resonator 

configuration needed to model the cluster. Since weak coupling is difficult or impossible to detect using 

the spectra alone83—e.g. when spectral peaks cannot be resolved because of dissipative broadening—

spectroscopy cannot reliably be used to determine model size. Considering this shortfall, SIM is a uniquely 

useful tool because it detects all resonators with motion in the cluster, regardless of the coupling strength, 

and therefore quantifies the model size. However, to uniquely define 𝓩 and thereby solve 𝑝, NetMAP 

requires knowledge of both the cluster size and the exact lateral positions of each resonator in the cluster, 

including the driven resonator. Spectroscopy alone does not provide spatially resolved information as it 

cannot be used to distinguish which resonators out of many participate in the hybridized modes. An 

additional valuable feature of SIM is that it provides the spatial coordinates of all resonators and the force, 

and thus enables the algebraic characterization method. Moreover, although we have constructed 𝓩 with 

PLL measurements, it is possible to build 𝓩 directly from SIM amplitude and phase images, where 𝑍𝑖(𝜔) 

is calculated from spatial averaging over a given resonator. This fully SIM-based route eliminates the need 

for PLL measurements and isn’t susceptible to PLL drift noise but reduces the SNR for the same 

measurement time. 

To program a cluster or entire network of nanomechanical resonators (see Figure 5.1a), it is imperative to 

know the properties of each resonator node (i.e. 𝑘𝑛, 𝑚𝑛, 𝑏𝑛, 𝑐𝑛) in its most recent state. As a concrete 

example, to program a network as a phononic crystal26,25 the node resonance frequencies (𝜔𝑛 ≡ √𝑘𝑛/𝑚𝑛 ) 

and coupling (𝑐𝑛) must be finely tuned. But to adjust 𝜔𝑛 to a desire value, the current values of 𝑘𝑛 and 𝑚𝑛 

for each resonator must be known before they can be appropriately tuned. This knowledge is especially 

important when the tuning method is irreversible, such as the additive or subtractive tuning of resonator 

mass101. Although 𝜔𝑛 can be determined with least squares fitting, correlations in the model make it difficult 

to decouple the individual values of 𝑘𝑛 and 𝑚𝑛, and, as discussed above, fitting does not provide spatial 

information, further obfuscating the node properties. The phononic crystal must also have precisely tuned 

coupling between resonators. Typically, the coupling strength of simple 𝑁 = 2 systems is inferred from 

avoided-crossing signatures in gate-tuned spectrographs19,63. However, for larger systems (i.e. 𝑁 ≥ 3) this 
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approach does not directly provide the coupling constants 𝑐𝑛 and cannot indicate the corresponding spatial 

location of the spring analogs. In contrast, NetMAP directly quantifies normalized physical parameters of 

each node, including 𝑘𝑛, 𝑚𝑛, and 𝑐𝑛, and characterizes the spatial ordering. The normalized values of 𝑝 

can be unnormalized by taking a separate measurement of a single parameter, such as measuring 𝑘𝑛 with 

AFM48. Therefore, by spatially resolving the network parameters, NetMAP will enable the programming 

of our network platform for on-demand tailored phononic crystals, engineered defects27 , or control of wave 

propagation25. 

While we have limited our use of NetMAP to cluster sizes of 𝑁 = 1 and 𝑁 = 2, it can also be used to 

efficiently map larger clusters and entire networks. For a given cluster of size 𝑁, the edge coupling spring 

constants vanish (𝑐𝑛−1~0 and 𝑐𝑛+𝑁+1~0), leaving 4𝑁 unknown parameters in 𝑝. Regardless of 𝑁, 

NetMAP requires a minimum of two response measurements (at 𝜔𝑎 and 𝜔𝑏) per resonator to assemble 𝓩, 

which will be a 4𝑁 × 4𝑁 matrix. Given the dimensions of 𝓩, the number of SVD-specific operations102 

needed to obtain 𝑝 will scale efficiently with polynomial time, 𝑂(𝑁3). After using NetMAP to characterize 

each cluster, we can assemble a map of the entire network composed of neighboring clusters separated by 

coupling springs of 𝑐𝑛 = 0. With a full picture of the network, we can modify the edge 𝑐𝑛 values to form 

larger clusters or link clusters into a single, fully interconnected network. 

We used NetMAP to characterize one-dimensional suspended graphene resonator networks, but the 

technique can be applied to higher-dimensional systems and a variety of resonator network analogs. this 

technique readily scales to networks in two and three dimensions and with more complex coupling beyond 

nearest-neighbor that we assume in our model. In these cases, depending on the exact geometry of the 

cluster, it is likely that that more than two complex response vectors must be measured to solve for the 

unknown parameters. Provided it is possible to obtain spatially resolved amplitude and phase responses for 

a cluster, as we do here with SIM, our algebraic characterization method can be applied to a range of steady-

state linear resonator platforms, such as alternative geometries of MEMS/NEMS arrays28,79 , optical 

lattices93, LRC-based electronic circuits, and biological networks. A modified version of NetMAP will also 

be relevant to quantum analogs, such as chains of trapped ions8, 2D superconducting qubit arrays91 and 

could be useful for programming the initial state for quantum computational tasks. 

5.7 Conclusion 
 

In conclusion, we use NetMAP to spatially map and quantify all the physical parameters in local suspended 

graphene resonator clusters of sizes 𝑁 = 1 and 𝑁 = 2. By combining spatially resolved measurements of 

the resonator building blocks and an algebraic solution of the network equations of motion, NetMAP 
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provides a novel means of characterization that overcomes the weaknesses of current spectroscopic 

techniques, thereby enabling a programmable resonator network. Programmable NEMS networks will 

enable applications such as modeling natural systems, realizing mechanical computing schemes32,31,35,103, 

integrating into quantum information circuits52, and exploring new physics such as phononic metamaterials 

and exotic states28,18,25. 

 

 

  



69 

 

6 Conclusion  
 

6.1 Remarks regarding future directions 

In this work, we show the viability of suspended graphene to enable rich coupling dynamics and 

demonstrate a compatible analysis tool that will enable precise tuning of each network parameter. Future 

work towards realizing programmable nanomechanical networks will be to expand the size of the networks 

and to demonstrate scalable tuning. Our graphene platform provides access to a tuning method that will be 

essential to achieving these next steps. With phototuning, we can precisely align the resonance frequencies 

of a local network cluster to host coupling between a large cluster of resonators. We can then use 

phototuning to increase the tension of the suspended membrane connecting two adjacent resonators to 

adjust the coupling strength between nodes. This scalable and persistent tuning method would open the 

door to reconfigurable phononic circuits with components that can be tuned in situ, like the transistor. 

In addition to providing a network platform, our novel pillar structure, discussed in Chapter IV, can also be 

used as a method to suspend large areas of graphene. Graphene suspended over a pillar array can be released 

to form a large resonator or multiple resonators with specific configurations. While we have preliminarily 

experimented with using a focused ion beam (FIB) to cut and release the graphene from the pillars, further 

work is required to explore the dimensions that can be obtained with this method.   

Our NetMAP network analysis method, presented in Chapter V, fills a key gap of spatially mapping the 

active nodes of a NEMS network and the corresponding physical parameters. The next question to be 

answered with this work is that of accuracy, which is already underway through a design of experiment 

(DOE) approach applied to a simulated mass and spring model. Although we apply NetMAP only to analyze 

our graphene NEMS network, this method can be applied to analyze any network, provided there is a means 

of spatially measuring the amplitude and phase of each node. Further work may expand the scope of 

NetMAP with characterization of additional network platforms, including networks of electrical 

components or chains of trapped ions. 

6.2 Resolution 

This work lays the foundation for achieving programmable nanomechanical 2D networks. We began 

Chapter II by discussing a linear mass and spring model commonly used to capture the dynamics of NEMS 

resonators, which is a necessary component of characterizing our suspended graphene network platform. 

In Chapter III, we outlined the experimental fabrication and measurement techniques used in this work to 

create our suspended graphene platform and measure the network oscillations. We then presented our novel 
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device platform in Chapter IV, that enables rich coupling dynamics between distinct suspended graphene 

resonators. Finally, in Chapter V, we examined a network characterization method applied to spatially map 

the mechanical parameters of suspended graphene networks.  

Overall, this work paves the way for graphene resonators to be a competitive contender in the pursuit of 

NEMS resonator networks. Our pillar platform, discussed in Chapter IV, is the first to our knowledge to 

enable coupling between 2D suspended graphene resonators, filling a key gap of achieving a persistently 

coupled network that is scalable in size in two dimensions. Together with our NetMAP characterization 

method, we offer the foundation to build and characterize the previously unattainable 2D network of 

graphene resonators. This foundation directly enables near-term access to exciting applications, such as 

mechanical computing, reconfigurable waveguides, and tunable metamaterial, and provides model platform 

that can be used to simulate many-body systems impacting a range of fields including quantum mechanics, 

astronomy, biology, sociology, economics.   
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APPENDIX A 
RESONANCE FREQUENCY DEPENDENCE ON DRUMHEAD SIZE 

In Figure A.1, we show a box and whisker plot of the resonance frequency of 107 individual circular 

graphene resonators. We observe a decreasing trend in the resonance frequency from drumheads with 

diameters of 4.4 𝜇m to 9.4 𝜇m, whereas drumheads with diameters from 9.4 𝜇m to 16.6 𝜇m have resonance 

frequencies that are indistinguishable (based on Tukey-Kramer HSD comparison of means). This data set 

is part of a larger study of dissipation dilution in graphene NEMS resonators. Through this large-scale 

study, we develop a technique to increase the quality factor of graphene drumheads to greater than 𝑄 >

105.  

 

  

 

Figure A.1: Resonance frequencies of drumhead resonators 

Box and whisker plot of resonance frequency of drumhead resonators of diameters ranging from 4.4 μm to 16.6 μm. 

Each boxplot is labeled with the number of resonators in each distribution as 𝑛. Data reproduced from co-authored 

manuscript in progress. 
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APPENDIX B 
ERROR DISTRIBUTIONS OF NetMAP PARAMETERS 

To assess the precision of NetMAP, we solve for 𝑝 with a distribution of 𝓩 matrices and calculate the 

standard deviation of each output parameter. For the single resonator cluster, we randomly sampled 𝜔𝑖 and 

𝑍1(𝜔𝑖), for (𝑖 = 𝑎, 𝑏), from normal distributions with a standard deviation equal to the standard error of 

the PLL time series Ω1(𝜔𝑖 , 𝑡) and |𝑍1(𝜔𝑖 , 𝑡)|. We randomly sampled 𝜙1(𝜔𝑖) from a normal distribution 

with the standard deviation equal to the uncertainty calculated in equation Eq( 5.4 ). We then used these 

randomly sampled values to populate 𝓩 and applied SVD to solve for 𝑝. We repeated this procedure 𝑛 =

1000 times to obtain distributions of each output parameter (𝑚, 𝑏, 𝐹). For the 𝑁 = 1 cluster, the SVD 

solver always normalized to the spring constant 𝑘, so this method did not provide an error for the spring 

constant. We then removed all solutions that were unphysical or deficient, i.e solutions in which the output 

parameters did not have a homogenous sign or the 𝑅2 values were negative, and were left with distributions 

of 𝑛 = 859 for each output parameters, with the results shown in Figure B.1a-c. We quote the standard 

deviation of each distribution as the error on the parameter value in Table 5.1 of the main text. To assess 

the predictive power of each output parameter set, we used each output 𝑝 to calculate 𝑍𝑛⃗⃗ ⃗⃗ ⃗(𝜔) and compared 

the result to the experimental spectra of amplitude and phase to calculate distributions of the 𝑅2 values, 

shown in Figure B.1d. 
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We repeated this procedure to calculate the errors for the output parameters of the 𝑁 = 2 cluster. We 

produced a normal distribution to randomly sample 𝜔𝑖 with a standard deviation equal to standard errors 

of the R1 and R2 frequency time series, Ω1(𝜔𝑖 , 𝑡) and Ω2(𝜔𝑖 , 𝑡), added in quadrature. We randomly 

sampled the amplitudes and phases for each resonator, 𝑍1(𝜔𝑖) and 𝑍2(𝜔𝑖), using the same procedure 

described for the 𝑁 = 1 cluster above. We then use these randomly sampled values to populate 𝓩, used 

SVD to solve for 𝑝, and repeated the procedure 𝑛 = 5000 times. We then removed all non-physical 

solutions, resulting in distributions of 𝑛 = 253 shown for each parameter (𝑚1, 𝑚2, 𝑏1, 𝑏2, 𝑘1, 𝑘2, 𝑘12, 𝐹)  in 

Figure B.1e-i. We again assessed the predictive power of each output 𝑝 by comparing calculated 𝑍𝑛⃗⃗ ⃗⃗ ⃗(𝜔) 

and to the experimental spectra of the R1 and R2 amplitude and phase to obtain distributions of 𝑅2 values, 

shown in Figure B.1j. 

 

Figure B.1: NetMAP parameter errors for 𝑁 = 1 cluster 

Error distributions as box and whisker plots showing median, upper, and lower quartile ranges with whiskers that 

extend to include 1.5 IQR. Quoted errors are standard deviations. Error distributions for 𝑁 = 1 cluster parameters 

shown as light blue boxes with a) 𝑚 = (6.790 ± 0.001) × 10−17 kg , b) 𝑏1 = (2.4 ± 0.6) × 10
−11 kg/s, c) 𝐹 =

(8.7 ± 0.3) × 10−6 N. d) 𝑁 = 1 cluster distributions of 𝑅2 values for amplitude (𝑅2 = 0.94 ± 0.08) and phase (𝑅2 =

0.968 ± 0.001). Error distributions for 𝑁 = 2 cluster with R1 distributions shown as light blue boxes and R2 

distributions shown as maroon boxes for e) 𝑚1 = (5.2 ± 0.4) × 10
−17 kg and 𝑚2 = (8.5 ± 0.2) × 10

−17 kg, f) 𝑏1 =
(2.4 ± 1.9) × 10−11 kg/s and 𝑏2 = (6.7 ± 4.5) × 10

−11 kg/s, g) 𝑘1 = 1.00 ± 0.08 N/m and 𝑘2 = 1.69 ± 0.05 N/m. 

Error distributions for 𝑁 = 2 cluster of h) c1 = 0.065 ± 0.002 N/m and i) 𝐹 = (1.9 ± 0.7) × 10−6 N. j) 𝑁 = 2 

cluster distributions of 𝑅2 values with R1 distributions shown as light blue boxes for amplitude (𝑅2 = 0.51 ± 0.20) 

and phase (𝑅2 = 0.75 ± 0.08). R2 distributions are shown as maroon boxes for amplitude (𝑅2 = 0.51 ± 0.25) and 

phase (𝑅2 = 0.988 ± 0.008). 
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APPENDIX C 
SUPPLEMENTARY INFORMATION REGARDING NetMAP EVALUATION 

To evaluate the stability of the PLL measurements over time, we replot the data that is displayed as 2D 

boxplots in Figure 5.2d,e as a function of data point number. The PLL measurements of amplitude (upper) 

and frequency (lower) are plotted for phase lock values of 𝜙1(𝜔𝑎), Figure C.1a, and 𝜙1(𝜔𝑏), Figure C.1b. 

We observe that the frequency does not drift significantly in either PLL measurement.  We do observe a 

slight increase in amplitude in the 𝜙1(𝜔𝑏) PLL measurement, Figure C.1b (upper), which could be due to 

a shift up in the resonance frequency due to heating. 

In the main text, we evaluate the accuracy of the NETMAP calculated 𝑝 by comparing each calculated 

value to expected values. To estimate the expected value of the damping, 𝑏, we fit the amplitude spectra to 

a built-in Lmfit model, DampedOscillatorModel, which has three fit parameters: 𝐴, 𝜔0 , and 𝜎. Because 

there are low correlations between each parameter, the resulting values have low error. From the model 

equation and fit parameters 𝜎 and 𝜔0, we estimate the damping based on  

2𝜎𝜔0 =
𝑏

𝑚
 

We divide both sides by 𝜔0
2 =

𝑘

𝑚
, where 𝜔0 is the fitted center frequency. 

𝑏 =
2𝑘𝜎

𝜔0
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With fitted values of 𝜔0 = 2𝜋 × (19.32 MHz) and 𝜎 =  1.16 × 10−3, along with the approximated value 

of 𝑘 = 1 N/m, we estimate the damping to be 𝑏 = 1.92 × 10−11 kg/s. 

To further validate NETMAP, we compare the NETMAP output parameters to those from least-squares 

fitting with unity order of magnitude guesses, Unity LS. The fit result of Unity LS, listed in Table 5.1 in 

the main text, is shown in Figure C.1c as a solid black line overlayed on the experimental spectra. To 

compare each output parameter from NetMAP and LS, we perform a two tailed t-test, using the LS values 

as reference because the LS errors for each parameter value were large (up to 3000%). We suspect these 

large errors are due to the high correlations of multiple parameter pairs in our model. We also compared 

values by using a percent difference, which we calculate by taking the absolute value of the difference 

between the two values to be compared and dividing by the smaller of the two values for an upper bound 

estimate.  

 

Figure C.1: Additional figures for 𝑁 = 1 cluster 

PLL measurements of amplitude and frequency plotted by data point number for corrected phase lock values of a) 

𝜙1(𝜔𝑎) = −0.33 rad shown in light blue and b) 𝜙1(𝜔𝑏) = −2.78 rad shown in dark blue. c) least square fit result 

shown as solid black line over spectra data of amplitude (upper) and phase (lower) shown as gray data points. 
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To observe the stability of the PLL measurements over time, we replot the data that is displayed as 2D 

boxplots in Figure 5.4f-i, as a function of data point number. The R1 PLL measurements are shown for 

phase lock values of 𝜙1(𝜔𝑎), Figure C.2a, and 𝜙1(𝜔𝑏), Figure C.2b. The R2 PLL measurements are 

shown for phase lock values of 𝜙2(𝜔𝑎), Figure C.2c, and 𝜙2(𝜔𝑏), Figure C.2d. With this representation, 

we see that the frequency is mostly stable for the 𝜙1(𝜔𝑎), 𝜙1(𝜔𝑏), and 𝜙2(𝜔𝑎) phase locks. However, we 

do see an increasing trend for the 𝜙2(𝜔𝑏) phase lock, which implies that these data are likely affected by 

the experimental phase lag during the PLL measurement and may account for error in the calculation of 𝑝. 

In the main text, we evaluate the accuracy of the NETMAP calculated 𝑝 by comparing each calculated 

value to expected values. To estimate the expected value of the coupling strength, we start with the 

equation83 

Δω = √
(𝑐/𝑚1)(𝑐/𝑚2)

𝜔1𝜔2
 

In this equation, 𝜔1 = √
𝑘1+𝑐

𝑚1
, 𝜔2 = √

𝑘2+𝑐

𝑚2
 , and Δ𝜔 is approximated to be the difference between the 

antisymmetric mode frequency and the symmetric mode frequency,  Δω = 𝜔𝐴 − 𝜔𝑆. We simplify this 

equation by assuming the two resonators have equal mass, 𝑚, and equal intrinsic spring constants, 𝑘. We 

then normalize by the eigenfrequency of the uncoupled resonators, 𝜔0 = √
𝑘

𝑚
. 

 

Figure C.2: Additional figures for 𝑁 = 2 cluster 

PLL measurements of amplitude and frequency plotted by data point number for corrected phase lock values of a) 

𝜙1(𝜔𝑎) = −0.47 rad shown in light blue, b) 𝜙1(𝜔𝑏) = −2.59 rad shown in dark blue, c) 𝜙2(𝜔𝑎) = −0.51 rad shown 

in orange, d) 𝜙2(𝜔𝑏) = −5.61 rad shown in maroon. Least squares fit results shown as black solid lines over e) R1 

amplitude (upper) and phase (lower) shown as gray data points and f) R1 amplitude (upper) and phase (lower) shown 

as light orange data points. 
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Δω

𝜔0
= 𝑐√

1

𝑘(𝑘 + 𝑐)
 

We can then solve for 𝑐, in which we define Ω =
Δ𝜔

𝜔0
, 

𝑐 =
1

2
(𝑘Ω2 ± √(𝑘Ω2)2 + (2𝑘Ω)2) 

We used the SciPy find_peaks function in Python to estimate Δ𝜔 = 1.1 MHz and 𝜔0 = 𝜔𝑆 +
Δ𝜔

2
=

22.8 MHz. Using these values and approximating 𝑘 = 1 N/m, we obtain an estimate of 𝑐 = 0.05 N/m.  

To further validate NETMAP, we compare the NETMAP output parameters to those from Unity LS. The 

fit result of Unity LS, used for comparison in the main text, is shown as a solid black line overlayed on the 

experimental spectra, gray or light orange data points, in Figure C.2e,f.  

To highlight the sensitivity of LS to input guesses, we also performed LS with increasing our input guess 

of the two masses from 𝑚1 = 𝑚2 = 10
−17 kg to 10−16 kg. For this fit, we saw order of magnitude or more 

differences in the output values of 𝑘2, 𝑐1, 𝑚2, 𝑏2, and 𝐹 that do not fall within the expected ranges discussed 

in the main text, see Table C.1. While individually 𝑘2 and 𝑚2 are far from the expected values, the ratio 

of √
𝑘2

𝑚2
 gives an expected resonance frequency of ~16 MHz, within 7 MHz of the observed amplitude 

peaks. These correlated quantities, which are prevalent in our model, result in many possible solutions for 

least squares fitting, making this method reliant on the input guess solutions to find the residual minimum 

that is closest to the actual values. Combining NetMAP with LS fitting by inputting 𝑝 as guess solutions 

(see SI for resulting 𝑝 and 𝑅2 values) may be an effective strategy to fit parameter values as close to the 

actual values as possible. 

As a final comparison, we used LS to fit the vector weights of the two smallest singular values. In practice, 

we characterize the null-space dimension by the number of singular values 𝜆 such that 𝜆 ≪ 1. For the 𝑁 =

1 cluster, (Figure 5.2), we had only one singular value (𝜆~10−9), so the null-space was 1D. However, the 

𝑁 = 2 cluster (Figure 5.4) had three potential singular values (𝜆1~10
−4, 𝜆2~10

−6, and 𝜆3~10
−8). We 

applied the 𝛼𝑖  LS approach to the two smallest singular values of the 𝑁 = 2 system and found that all output 

values still fall within the expected ranges and the corresponding 𝑅2 did not change significantly, see Table 

C.1. 



78 

 

 

Mechanical Parameter LS with guess of 

𝒎𝟏 = 𝒎𝟐 = 𝟏𝟎
−𝟏𝟔kg 

 𝜶𝒊 LS 

𝑘1 [N/m] 1 1 

𝑘2 [N/m] 0.004 1.686 

𝑐1 [N/m] 0.004 0.065 

𝑚1 × 10
−17[kg] 5.022 5.247 

𝑚2  × 10
−17[kg] 0.038 8.481 

𝑏1  × 10
−11 [kg/s] 1.452 2.250 

𝑏2  × 10
−11 [kg/s] 0.022 5.149 

𝐹 × 10−6 [N] 0.112 1.790 

R1 Amplitude 𝑅2 −0.27 0.79 

R1 Phase 𝑅2 0.99 0.84 

R2 Amplitude 𝑅2 0.78 0.67 

R2 Phase 𝑅2 0.996 0.995 

Table C.1: LS with alternate guess solutions and LS to solve for vector weights for 𝑁 = 2 cluster 
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