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DISSERTATION ABSTRACT

Nathan Villiger

Doctor of Philosophy

Department of Physics

June 2023

Title: Studies of Evolution in Populations with Long-range Dispersal

Long-range dispersal of offspring is ubiquitous in nature, from seeds that disperse

random distances thanks to being carried by animals, to pollen that gets carried long

distances by the wind, and even viruses that spread around the world with the help of

infected travelers on intercontinental airplane journeys. Long-range dispersal can lead to

founder events throughout a landscape, as the first individual to colonize a new region

benefits from abundant resources and a lack of competition, which can result in that

individual’s genes making a disproportionately large contribution to future generations

near the territory it colonized. Long-range dispersal can drive range expansions when

individuals disperse beyond the bounds of the population’s current range. Range

expansions driven by long-range dispersal can have dramatic consequences, for example as

invasive species take over habitats with no ecological architecture to keep them in check

or pandemics rapidly spread around the world.

Range expansions driven by long-range dispersal accelerate as they progress and

have remarkably different dynamics than the constant-speed expansions carried out

by populations with exclusively short-range dispersal. These jump-driven expansions

can be challenging to model in part because the dynamics are dominated by the rare

longest dispersal events. Recent theoretical advances have enabled predictions about

such quantities as population growth rates and the evolution of neutral diversity during

range expansions driven by power law dispersal kernels. However, these theories rely on

various simplifying assumptions which are not always met by natural populations, and
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their applicability to more complex but realistic population dynamics remains an open

question. Another open question is how to connect theoretical results with real-world

biological populations. This dissertation addresses these open questions by developing

methods of simulating range expansions with more realistic population dynamics and

extracting dispersal parameters from genomic data.

In Chapter II, we use simulations to explore the consequences of departing from

assumptions of the simplified models that led to the aforementioned predictions about

population growth and the evolution of neutral diversity. We show that qualitative trends

are preserved but reveal quantitative signals of the more realistic local dynamics. In

Chapter III, we use simulations to investigate what determines the fate of fitness-affecting

mutations that appear during range expansions driven by long-range dispersal, a situation

for which there is no existing theory. We find that mutation outcomes are independent of

the fitness effect they confer across a wide range of effect sizes. In Chapter IV, we show

that convolutional neural networks can learn dispersal parameters from genomic samples

taken from individuals in populations with long-range dispersal, bringing the growing

body of theoretical work in this field closer to samples that could be taken from actual

biological populations.

This dissertation contains previously published and unpublished coauthored

material.
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CHAPTER I

INTRODUCTION

1.1 Introduction

Long-range dispersal of offspring is ubiquitous in nature and can take many

forms [1]. Plants often release their seeds and pollen to be carried random distances by

the wind [2], such as maple trees which encapsulate their seeds in helicopters that flutter

away to hopefully land in a fertile sunny place. Animals mediate long-range dispersal

of other organisms often by feeding, migration, or some combination of the two [3].

Examples include blackberries, an invasive plant around Eugene whose seeds are spread

by animals eating the berries and excreting the seeds elsewhere [4, 5], and glacier ice

worms, which have been shown to disperse hundreds of miles between glaciated peaks

of the Pacific Northwest likely as the result of hitchhiking with migratory birds [6]. Of

course, humans play a role in long-range dispersal of other organisms, too. A relatively

benign example is human-mediated dispersal of plant seeds e.g. by seeds sticking to

shoes or clothes [7]; a deadly example is the spread of the Covid-19 pandemic, which

was enabled and accelerated by humans carrying the virus on our airplane journeys all

over the world [8].

Long-range dispersal can drive range expansions when individuals are transported

to new territories beyond the bounds of the population’s current range. Range expansions

can proceed at a literally glacial pace as glaciers retreat and open up new habitats (e.g.

for Pacific salmon [9]), or they can be very fast as invasive species rapidly colonize

habitats without any ecological architecture to keep them in check (e.g. cane toads in

Australia [10]). Range expansions are increasingly forced by global warming [11] as the

changing climate makes species’ traditional homelands inhospitable while opening up new

hospitable places, such as in the ecological void left behind by retreating glaciers [9].

Range expansions leave behind genetic signatures in the population that look like

local adaptation but actually arise solely due to the spatial/expansion dynamics [12].
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Figure 1. Spatial genetic patterns left behind by simulated neutral expansions in a 2D
habitat. Simulations began with 100 individuals tightly packed around the origin and
grew to population sizes of one million individuals. Simulations began with a 50/50 mix
of two neutral alleles (colors). a.) Diffusive expansion. Gene surfing around the perimeter
leads to large monoallelic sectors. b.) Expansion with long-range dispersal. Sectors are
broken up into small speckles of one allele or the other by long-range dispersal across the
landscape.

In the absence of long-range dispersal, random genetic drift at the expansion frontier

can cause an allele to “surf” the expansion wave [13, 14] and even reach fixation at the

front of 1D expansions, guaranteeing that only that allele will be present in individuals

who continue the expansion into new territory. In 2D expansions, such as those which

start from a droplet at the center of a Petri dish, surfing events around the perimeter

of the growing colony lead to the formation of large monoallelic sectors that radiate

outwards from the center and persist indefinitely [15, 16, 17, 18], as shown in Fig. 1a.

The permanent nature of fixation or sectors for 1D or 2D expansions, respectively, is the

result of offspring only being able to disperse short distances from their parents; after

the initial homeland has saturated, the only place with available resources is at the edge

of the colony, so offspring born to parents at the edge of the colony are the only ones

fortunate enough to survive and contribute future offspring to future generations. The

large regions of decreased genetic diversity after expansions give the impression of local

adaptation, as if the allele that formed a sector was uniquely suited to take advantage of

unique conditions within that portion of the Petri dish, but they form simply as a result

of drift at the edge of the expanding population.
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Long-range dispersal provides a mechanism by which individuals deep within the

core of expanding populations can still transmit offspring to vacant parts of the landscape

and thus play a role in contributing their genes to future generations. Such long dispersal

events break up the large sectors typical of diffusive expansions into much smaller regions

of space dominated by one allele that are typically seeded by a long-range dispersal event;

see the speckles of one color or the other in Fig. 1b. Range expansions driven by long-

range dispersal accelerate as they progress, leading to much faster growth than the

constant-speed expansions driven by short-range dispersal [19]. These “jump-driven”

expansions can be challenging to model because it’s often the rare longest dispersal

events that drive the dynamics. A key ingredient of any model of a population in a

spatial landscape is the jump kernel, the distribution of distances from which offspring

dispersal distances are randomly drawn. Long-range dispersal is the result of populations

dispersing according to a fat-tailed jump kernel that decays slower than exponentially

with increasing distance. Many species disperse according to fat-tailed jump kernels [20].

There is a growing body of research into populations with power law jump kernels

that decay as J(r) ∼ 1/rµ+1 at long distances. Power law kernels are a good description

of the dispersal of many plant species [20] and are convenient theoretically because one

can continuously traverse from populations that grow diffusively all the way to the well-

mixed limit by adjusting one parameter, the kernel exponent µ. Narrow jump kernels

with µ > d+ 1, where d is the dimensionality of space, lead to diffusive growth as if there

were only short-range dispersal, while µ → 0 creates jump kernels so broad that there is

boundless dispersal across the landscape; population growth approaches the exponential

growth seen in well-mixed environments [21] (µ must be greater than zero to ensure a

normalizable jump kernel). We next briefly describe how we build on previous work to

learn new information about evolution in populations with power law dispersal.
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1.2 Simulating expansions with explicit local dynamics

Ref. [21] used a lattice-based model to derive the analytical forms of how colony

growth depends on the kernel exponent. Refs. [22] and [23] built on that work by

studying how soft sweep patterns and the evolution of neutral diversity, respectively,

depend on the kernel exponent. All three of these studies used lattice-based models which

divided space into a grid of habitats called “demes” and made simplifying assumptions

about spatial interactions like local saturation of demes and migration between demes.

There is a long history of researchers using lattice-based models to study

evolution in spatial landscapes, going all the way back to the early years of the field (e.g.

Ref. [24]). Lattice models are a useful tool because they allow researchers to write down

relationships for quantities like migration between demes or deme-wide mutation rates

while also making simplifying assumptions (e.g. random mating within demes or a local

founder takes all effect) that allow them to focus on macroscopic population dynamics.

Lattice-based models are also common in computational studies of evolution; see e.g.

Refs. [21, 22, 23, 25, 26, 27, 28, 29, 30, 31]. Obviously, nature is not subdivided into neat

grids of habitats, so one may be tempted to increase the spatial resolution of their lattice

to make their model better approximate a continuum; however, doing so can sometimes

make models less able to capture the true population dynamics [32]. In Chapter II, we

leverage recent computational advances [33] to simulate range expansions driven by power

law dispersal on a continuous landscape and explore how the predicted colony growth and

evolution of neutral diversity stand up to realistic simulations that break assumptions

of the simplified models. That work was co-authored by Jayson Paulose and has been

published in the journal G3 [34].

1.3 The fate of adaptive mutations during range expansions

The Covid pandemic was a shocking example of long-range dispersal accelerating

a range expansion as infected passengers carried the virus on airplane journeys all

over the world [8]. Early on, most people who became infected contracted the original
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strain of the virus; however, multiple variants appeared later and sequentially overtook

their predecessors to become the prominent strain of the virus worldwide. The virus

accumulated adaptive mutations that enabled it to infect and/or spread more easily as

it was undergoing a jump-driven range expansion.

While the outcomes for adaptive mutations have been studied in diffusive [35]

and well-mixed [36] expansions, little is known about the fate of such mutations that

appear during range expansions driven by fat-tailed jump kernels [37]. In Chapter III,

we use extensive simulations to study what determines the outcomes of fitness-affecting

mutations that appear during range expansions driven by power law jump kernels; that

work was co-authored by Jayson Paulose.

1.4 Estimating dispersal parameters using neural networks

Machine learning touches many aspects of our everyday lives, performing

varied tasks like automated resume screening of job applicants or suggesting which

shows we should watch next on Netflix. Neural networks are a type of machine

learning model and are useful in part because they can learn from large numbers

input features to predict quantities of interest, such as using the pixel values from an

image to classify what is shown in the photo. They are increasingly used in population

genetics [38, 39, 40, 41, 42, 43, 44] because they can make inferences from raw genomic

data, which can contain thousands of measurements per individual, thus harnessing

all available information without requiring that the data be compressed into summary

statistics before being fed into a model. In Chapter IV, we present preliminary results

using convolutional neural networks to estimate dispersal parameters from genomic

samples of populations with long-range dispersal; this work was done in collaboration

with Chris Smith.

1.5 Continuous-space simulations

A key method throughout this dissertation is continuous-space simulations using

the forwards-time, agent-based simulation software SLiM [33]. It is forwards-time in the

5



sense that simulation time moves forwards and the final state is unknown at runtime,

contrasting with the also common backwards in time simulations that begin with the

evolved population and simulate an ancestry that could have generated the population

in its current state (see e.g. the simulation software msprime [45]). SLiM is agent-based

because it records and manages everything at the level of individuals, without resorting to

any deme-based simplifications. It efficiently handles all biology (reproduction, mutation,

recombination, etc.) and spatial interactions (mate choice, competition, dispersal, etc.)

for all individuals on a continuous landscape, both of which make it an invaluable tool

in the coming chapters. Detailed simulation protocols will be discussed in the following

sections: Section 2.3, Section 2.6.1, Section 3.2.1, Section 3.5.1, and Section 4.3.
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CHAPTER II

THE INFLUENCE OF EXPLICIT LOCAL DYNAMICS ON RANGE EXPANSIONS

DRIVEN BY LONG-RANGE DISPERSAL

This work was published as Villiger and Paulose (2023) [34].

2.1 Introduction

Range expansion—the act of a population expanding into new territory—is

common in biological populations. Range expansions occur naturally and randomly

all the time, often as the result of a species’ natural movement, such as by animals

moving into new territory or maple helicopters carrying seeds away from their parent

tree. Researchers have documented range expansions in a wide variety of organisms,

such as plants [46], birds [47], sea creatures [48, 49], and terrestrial animals [10, 50],

even humans [51]. Range expansions are increasingly forced by global warming as the

changing climate makes traditional habitats inhospitable, while potentially opening up

new hospitable regions [11].

Range expansions leave distinctive signatures in the patterns of genetic diversity

of a population that can mimic the effects of natural selection [12]. Individuals at

the frontier of an expanding population make a large contribution to the subsequent

expansion wave, even if their frontier position was solely due to chance; as a result,

genetic variants they carry can acquire high frequencies in the population in a

phenomenon termed gene surfing [13, 14]. Independent surfing events in separate sections

of the expansion front cause the population to segregate into genetically distinct sectors,

promoting an illusion of local adaptation from purely neutral mutations [15, 17, 16, 18].

Modeling the combined effect of spatial structure and stochasticity on neutral genetic

diversity is key to understanding the biological origins of established genetic patterns,

and to the successful prediction of future genetic diversity in pandemics and ecological

expansions.
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The influence of random chance on genetic diversity during range expansions can

be amplified by long-range dispersal [21]. Many species have evolved ingenious ways of

dispersing offspring over long distances with help from natural forces and from other

organisms [1]. Plants rely on the dispersal of seeds and pollen by wind, waves, and

animals [2]. Glacier ice worms can travel hundreds of miles, likely carried by migratory

birds [6]. Modern pandemics are driven by microorganisms hitchhiking on air travelers

to find new uninfected populations [8]. Even if long-range dispersal events are rare, they

have an outsized influence on the expansion because they enable pioneers to seed satellite

colonies in uninhabited areas. If a pioneer happens to land in a place with abundant

resources and little to no competition, its descendants may flourish. The pioneer’s genes

will then propagate and any genetic variants they carry will reach high frequencies in the

vicinity of the satellite [25, 26, 27, 28, 29] even in the absence of a selective advantage;

random chance alone has caused the pioneer’s genes to become prominent by means of a

founder effect, leading to a suppression of local diversity within satellites. However, long-

range dispersal also favors neutral diversity at larger scales, by ensuring that individuals

well within the expanding population have a chance of contributing to growth. The

evolution of overall diversity during the range expansion is governed by the trade-off

between the two effects, and can depend sensitively on the degree of long-range dispersal

experienced by the population [52, 23].

Modeling the general characteristics of range expansions requires two minimal

ingredients: a probability distribution of dispersal distances J(r), also called the jump

kernel, from which dispersal events are randomly drawn; and a method of local density

regulation to model the existence of a finite carrying capacity. When long-range jumps

are present, the tail of the jump kernel, i.e. its behavior at long distances, critically

influences the fate of the population at long times. Fundamental differences from short-

range dispersal are observed when the jump kernel is “fat-tailed”; i.e. it decays slower

than exponentially with increasing distance. Fat-tailed jump kernels lead to expansions
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that accelerate as they progress, unlike the constant-speed expansions that occur when

dispersal is exclusively short-range [19].

A commonly used fat-tailed kernel is the power-law jump kernel J(r) ∼ 1/rµ+1.

Besides providing a good description of the dispersal behavior of many species [20],

power-law kernels are a useful tool for analyzing and classifying the breadth of potential

population outcomes due to long-range dispersal [21]. The exponent µ is a key factor

governing the long-time characteristics of the growth and the dispersal patterns, whereas

other details of J(r) such as its short-distance functional behavior are less relevant [21].

A broad range of expansion behaviors is encompassed by varying the kernel exponent

(limited to µ > 0 to ensure a normalizable distance distribution). At high µ, the jump

kernel decays quickly with increasing distance, and a colony expands at a constant rate

as if there were exclusively short-range dispersal. As µ → 0, spatial structure becomes

irrelevant and a colony grows as if it were in a well-mixed liquid environment. The

intermediate range of kernel values connects these two extremes in a tunable manner.

Recent work has catalogued the distinctive features of population growth

dynamics [21] and spatial genomic patterns [23] that can be achieved upon varying the

kernel exponent in range expansions driven by power-law growth kernels (a detailed

summary is provided in Section 2.2). These studies have identified a critical value

of the kernel exponent µ below which the population grows nearly as fast as a well-

mixed population, and a significant fraction of the neutral variation in the originating

population is preserved for arbitrary long times due to serial reintroduction of variants

from the core of the expanding population. For kernel exponents close to but above the

critical threshold, population growth is slowed down dramatically and neutral diversity

is steadily eroded. However, at even higher values of µ, the behavior approaches that of

short-ranged jump kernels, where the population advances as a front moving outward

at constant speed. In this situation, a small fraction of the diversity in the originating

population persists due to the formation of sectors [15, 53].
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Less well understood is the influence of the second key feature of spatial

population models: the density regulation mechanism. Modeling growing populations

in a spatial continuum presents challenges to both the forward-in-time [54] and backward-

in-time [55, 56] approaches, due to the necessity of systematically imposing a local region

of influence within which each individual can impact the growth of its neighbors. Local

density regulation is commonly implemented by dividing up space into a regular grid

of well-mixed subpopulations called demes, each of which has a fixed carrying capacity.

Migration events, drawn from the jump kernel, transport individuals across demes. Deme-

based models and their variants are widely used in population genetics [57], including for

the study of range expansions [12, 53]. However, models that rely on a lattice of demes

have their limitations. By design, they do not capture spatial structure and stochasticity

at scales smaller than the effective deme size. Imposing an artificial grid of demes also

introduces artifacts to the population structure, which can in some instances get worse

upon increasing the grid resolution to better approximate a continuum [32].

Additionally, using deme-based models forces researchers to make decisions

about the specifics of deme saturation and population management. The following

selection of recent work exemplifies various possible strategies. Some may choose to

have demes that instantaneously change from being empty to full upon the arrival of

the first migrant [21, 23], while others may let the deme population grow logistically at a

predetermined rate [30, 31] or let the growth be determined by random migration events

that bring in individuals from other demes [58]. Death can occur in various ways, such

as by attempting to disperse into an already full deme [21, 23] or by being randomly

resampled out of an overfull deme’s population [58]. If the density regulation unit is

the deme population as a whole rather than the individuals in the deme, death may not

explicitly occur to any individuals, but the deme population size changes from one time

step to the next [30, 31]. Since most computational studies involving long-range dispersal,

including the quoted prior results [25, 26, 27, 28, 29, 21, 22, 23, 30, 31], have relied on
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deme-based approximations, the applicability of their conclusions to continuum-space

population growth remains an open question.

The aforementioned results on the population dynamics and neutral evolution

of range expansions driven by power-law kernels [21, 23] were derived using a lattice of

demes with an additional simplifying assumption: upon arrival at an empty deme, the

pioneer immediately saturates the deme, excluding any other migrants from establishing

themselves. Not only does this assumption exclude any effects of local dynamics on

population growth, it also enforces a local founder takes all effect where only one migrant

is allowed to contribute to the genetic makeup of a density regulation region. Instant

local saturation is justified when long-range jumps are rare and most offspring land

within a short distance of their parents; then, the local logistic growth within a deme

occurs extremely fast compared to the typical time to arrival of another migrant from

a different deme, and can be treated as instantaneous. However, the instant saturation

and founder-takes-all assumptions can be invalid when the time scales of local and long-

range dispersal are comparable, in which case a local region might receive and send out

several migrants while it is being saturated. The influence of the breakdown of fast local

saturation on the population dynamics and the spatial genomic structures left behind by

long-range dispersal is unknown.

In this work, we address these gaps in our knowledge of range expansions driven

by long-range dispersal by performing and analyzing continuum space, individual-based

simulations of range expansions driven by power-law kernels. Our simulations were

implemented in the population genetics program SLiM [33], and do not use a grid of

demes or assume instant saturation of the local carrying capacity by the first arrival.

Instead, individuals occupy positions in continuum space and their survival depends

on the number of other individuals present within a defined region of influence at the

time of their birth. When possible, we compared the outputs to the predictions from

models based on lattices of demes of the population growth rate [21] and the evolution of
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neutral genetic diversity [23]—we term these prior models “lattice-based” predictions. We

found that our results often agreed with the lattice-based predictions, giving conditional

support to prior results based on models that only focus on the founders. However, when

individuals can share resources with many others, we found that focusing exclusively on

the founders misses important dynamics between coexisting or competing alleles. In those

cases, it becomes necessary to also consider individuals who arrive after the pioneer. We

identify parameter regimes where using the lattice-based models is justified, and show

that they depend on the specific kernel exponent.

2.2 Background

We first summarize prior results [21, 23] on range expansion dynamics for

populations experiencing long-range dispersal with fat-tailed kernels, which were obtained

using lattice models conforming to the founder-takes-all assumption at the deme level.

Ref. [21] used a lattice model to quantify how a colony expands into unoccupied space

when offspring are dispersed according to a power law jump kernel that decays according

to J(r) ∼ 1/rµ+1. The authors showed that the power-law tail captures the qualitative

features of the long-term population growth, and that the short-range behavior of the

jump kernel has a negligible impact on the long term population growth. The model

of Ref. [21] (hereafter “the lattice model”) divides d-dimensional space into a lattice of

habitats or “demes”. Occupied demes generate offspring according to a Poisson process;

offspring attempt to migrate to a new deme randomly chosen by drawing a dispersal

distance from J(r) and a random direction relative to the originating deme. Instant

local saturation is assumed and is enforced in the model by allowing only two states to

each deme: occupied, or empty. A migration attempt to an empty deme is successful,

and immediately turns the state of that deme to occupied. A migration attempt to an

occupied deme is unsuccessful, and the offspring dies. These assumptions guarantee a

founder-takes-all effect at the local level. Henceforth, when we refer to the lattice model,

it is implied that instant local saturation and local founder-takes-all are enforced. Much
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of our current understanding of jump-driven range expansions derives from the lattice

model, as summarized below.

2.2.1 Population growth and time-doubling hierarchy. Analysis

of the lattice model [21] showed that at all times t, a core region of the colony can be

identified that is centered at the originating population of the range expansion and within

which most demes are occupied. The size of this core region is proportional to the total

population size M(t) of occupied demes in the expansion. The long-time asymptotic

behavior of the radius of the core region ℓ(t) ∝ [M(t)]1/d depends on the “heaviness” of

the tail of the jump kernel, which is set by the kernel exponent µ. There are two distinct

growth possibilities, separated by the value µ = d + 1: the colony expands at a constant

rate for µ > d + 1 and it expands faster than linearly when µ < d + 1 [21]. The faster-

than-linear growth regime is driven by long jumps whose characteristic size continues to

increase as the core expands: this “jump-driven” growth regime, in which pioneers have a

large impact on growth, will be the focus of this paper. Within the jump-driven regime, a

second special value µ = d separates two distinct asymptotic behaviors of the core growth

at long times (t → ∞): when d < µ < d + 1, the core grows asymptotically as a power

law which is faster-than-linear in time (ℓ(t) ∝ t
1

µ−d ), in contrast to stretched-exponential

growth when µ < d (ℓ(t) ∝ exp(Bµt
η), where Bµ and η themselves depend on µ and d).

A key result of Ref. [21] was that expansions in the jump-driven regime are

governed by a hierarchical time-doubling structure, as depicted in Fig. 2. The core

of the colony expands by “absorbing” satellite colonies that were seeded at an earlier

time by a rare but consequential long jump. A typical satellite being absorbed into

the core at time t was seeded approximately at time t/2 by an offspring who dispersed

roughly a distance ℓ(t) from its parent in the core of the colony. Mathematically, this self-

consistency condition can be expressed as

ℓ(t)d+µ ∼ tℓ(t/2)2d, (2.1)

13



Space

T/2

T

Ti
m

e

(T) (T/2)

Figure 2. Schematic diagram of the time doubling hierarchy discovered by Ref. [21].
Shaded parts of the plot represent regions of space that are occupied at a given time.
The core of the colony (central funnel) grows by absorbing satellites that were seeded
at an earlier time by long-range dispersal. A typical satellite being absorbed into the
core at time T (smaller funnel at right) was seeded at time of order T/2 by an offspring
who dispersed a distance of roughly ℓ(T ) from its parent in the core of the colony; it has
grown to a size of order ℓ(T/2) when it merges with, and becomes part of, the core.

where the tilde signifies agreement of the leading functional dependence of either side of

the relation on the time variable, without including time-independent prefactors or terms

whose fractional contributions vanish at long times. The time-doubling hierarchy and

Eq. (2.1) form the basis for deriving the asymptotic functional forms of ℓ(t) summarized

above; unlike those asymptotic forms that are valid only at very long times t → ∞,

the self-consistency condition holds as long as the population is large enough that an

appreciable number of long-range jumps have occurred [21]. Equation (2.1) forms a basis

for more accurate functional forms of the outbreak growth dynamics [21], and also leads

to quantitative insights into the evolution of genetic diversity when multiple variants are

present in a population experiencing long-range dispersal [22, 23]. Note that the time-

doubling hierarchy only relies on the assumption of instant local saturation, and does not

require that space be discretized into a regular lattice of demes.

2.2.2 Persistence of initial neutral variation. A striking consequence of

range expansions is that the combination of stochasticity and spatial structure can leave

behind patterns of neutral genetic variation that are typically associated with selection,
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Figure 3. Snapshots of simulated range expansions at different population sizes M . These
simulations began with 100 individuals equally split between two neutral alleles, labeled
as either purple or yellow in these plots. a-c.) Diversity is preserved by the formation of
monoallelic sectors for µ > d + 1. d-f.) The small number of satellite outbreaks act as
bottlenecks, eroding diversity for d < µ < d + 1. g-i.) Long-range jumps transport alleles
from the core to the exterior of the colony, preserving diversity for µ < d. Additional
parameters are K = 10 and p = 0.
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such as sweep-like enrichment of individual alleles [13], diversity gradients [14], and

segregation of variants into distinct regions [15]. Simplified models of neutral evolution in

spatially structured populations enable us to understand such patterns and to distinguish

them from the outcomes of selective events. One aspect of neutral variation that is

closely tied to the mode of dispersal is the persistence of initial genetic diversity in the

originating population during its expansion into new territory [25, 52]. When dispersal is

exclusively short-ranged, only individuals near the edge of the range expansion contribute

to future variation; in the absence of new mutations, much of the initial diversity can be

lost over time due to successive founder events at the edge. Long-range dispersal enables

regions far within the population to contribute to the expansion, which maintains their

alleles in the growing population and favors diversity. However, founder effects are not

eliminated: each long-range jump seeds a satellite outbreak in which all offspring share

the allelic identity of the seeding pioneer, acting as a genetic bottleneck which eliminates

diversity locally in the absence of mutations. The fate of the initial neutral variation as

the expansion progresses is determined by the balance between these contrasting effects.

The evolution of initial neutral diversity in jump-driven range expansions was

analyzed in Ref. [23], using a lattice model in which neutral variation was introduced in

the starting population, and no new mutations appeared during the expansions. The

existence of the time-doubling hierarchy, Eq. (2.1), was used to identify an effective

population of homogeneous satellites whose evolution captures the balance between

diversification and coarsening for a given jump kernel exponent. As with the behavior of

the core radius growth, the amount of initial diversity preserved after a range expansion

was shown to suffer different fates depending on the value of the kernel exponent relative

to the spatial dimension. When µ < d, the diversifying influence of long jumps dominates;

note the large number of satellites well separated from the core in Fig. 3g–i. The seeding

of many satellites by long-range dispersal events from the core enables the population

to preserve a finite amount of its initial heterozygosity at long times. By contrast,
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when d < µ < d + 1, the local coarsening of diversity due to bottlenecks becomes

more significant; note the small number of large monoclonal satellites in Fig. 3d–f. The

heterozygosity decays inexorably towards zero as the range expansion progresses, albeit

at a slow rate. As µ approaches d, the heterozygosity approaches a finite value but the

convergence to this value becomes extremely slow and cannot be observed over practical

simulation times. Notably, for µ > d+1, some diversity is also preserved at long times due

to the formation of sectors in outward range expansions, as shown in Fig. 3a–c [15, 53].

Jump kernels of intermediate breadth (d < µ < d + 1) therefore support lower neutral

diversity than broader (µ ≤ d) and narrower (µ ≥ d+ 1) kernels.

In summary, Ref. [23] established that long-range dispersal can preserve some of

the genetic diversity from the originating population at long times, but only for jump

kernels broader than a dimension-dependent threshold. Narrower kernels cause diversity

to erode over the course of the expansion due to successive founder events, which can

erase even the limited heterozygosity preserved due to the formation of sectors in range

expansions with exclusively short-ranged dispersal. However, these features were observed

in lattice models which assumed instant local dynamics and founder-takes-all at the

deme level; the influence of slow local saturation on the evolution of heterozygosity could

not be gauged. In this study, we aim to establish whether insights derived from lattice

models of range expansions still apply in a continuous-space model for which the lattice

model assumptions can be violated to a controllable degree, and to quantify the effect of

explicit local dynamics on neutral genetic variation as the expansion progresses. We next

introduce our simulation model which we use to investigate these questions.

2.3 Methods

In order to study jump-driven range expansions which rely on neither a lattice

nor the assumption of instant local dynamics, we used the evolutionary simulation

software SLiM [33] to simulate range expansions on a 2D continuous landscape without

restricting ourselves to a lattice of demes. Individuals produce offspring at a constant
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Figure 4. An outline of the simulation procedure. a.) A snapshot of a population during
a range expansion. The dots represent individuals in the population. Suppose the local
carrying capacity is 5. An individual born at position A would only count three others
in its local region (dashed circle centered at A), so it would survive. An individual born
at position B would count seven others within its local region. That is too many for the
individual to successfully compete against, so it would die. b.) An example jump kernel.
There is a probability p of dispersing within the “local” (shaded) region, that is, within
distance rb. The jump kernel decays according to the power law J(r) ∼ 1/rµ+1 beyond
the local region.

rate, and offspring attempt to establish themselves by dispersing in a random direction

with dispersal distances drawn from a jump kernel incorporating short-ranged and

long-ranged dispersal which we define below (Eq. (2.3)). To focus on the effects of the

spreading process and enable direct comparison with previous work (see Section 2.2), our

model includes two simplifying assumptions. First, each individual has an allelic identity

which is passed on exactly to offspring with no possibility of new mutations; this enables

us to evaluate the persistence of initial neutral variation purely due to dispersal and

spatial structure during spreading. Second, once offspring are successfully established,

they do not move, die, or renew themselves. This assumption allows us to hone in on the

dynamics of establishment and expansion, without confounding effects or computational

expense from reshuffling and replenishment of regions that have already been saturated.

Immortality and immobility post-establishment provide a reasonable approximation for

trees that produce massive numbers of seeds over scores of growing seasons, or perennial

plants that replenish themselves in place once established. Even in populations for
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which these assumptions do not hold, the patterns left behind by the initial expansion

can still be representative of long-time trends despite the subsequent gene flow due to

replenishment and reshuffling of individuals [16, 18].

In the absence of demes with a fixed carrying capacity, a different mechanism to

regulate population growth is needed. We assume that the environment has uniformly-

distributed resources which can support a uniform carrying capacity per unit area,

quantified by a maximum population density ρ. We introduce an interaction distance rb

which demarcates a disc-shaped region within which an individual competes with others

for resources (Fig. 4a). The population density and interaction distance can be combined

to define a local carrying capacity K via

K = ρπr2b. (2.2)

When an individual is born, it undertakes a random dispersal event and counts the

number of individuals within the interaction region surrounding its new location. If

there are at least K other individuals in the interaction region, the duplication event is

unsuccessful and the new individual dies. If there are fewer than K other individuals, the

new individual establishes successfully in its new location and survives for the remainder

of the simulation.

The local interaction region in our continuous-space simulation resembles the

geographic subdivision unit (the deme) used in lattice-based models. The concept

of instantaneous local saturation, or a local founder-takes-all effect, would therefore

correspond to an individual quickly filling its interaction region with its offspring before

it (or its descendants) attempted any long-range dispersal events. In order to smoothly

depart from the assumptions of the lattice model, it would be useful to control the

fraction of dispersal events which are “local”, i.e. within the interaction region, as

opposed to long-range. To do so, we used a two-part jump kernel that allows us to

explicitly specify the probabilities of local versus long-range dispersal, as sketched in
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Fig. 4b. In full, the jump kernel is as follows:

J(r) =


p/rb r ≤ rb

(1− p)

r−µ
b

µr−(µ+1) r > rb

(2.3)

where p is the probability of dispersing within the local region. The short-range part of

the jump kernel is chosen to be featureless, with the only notable property being that the

integrated probability
∫ rb
0 J(r) dr = p. The long-range part of the jump kernel matches

the power-law kernel used in the prior works discussed [21, 22, 23] and the prefactor

ensures the normalization
∫∞
rb

J(r) dr = 1 − p. Jump distances are randomly drawn from

this distribution using inverse transform sampling (detailed procedure in Section 2.6.1).

A few comments about our choice of jump kernel, Eq. (2.3), are in order. Our

aim is not to exactly reproduce a biologically measured jump distribution at all lengths,

but rather to capture the two main features of interest in a simplified kernel—a tunable

balance between short- and long-range dispersal determined by the parameter p, and

a fat-tailed kernel with a specified power-law falloff controlled by the exponent µ.

For simplicity, we chose the short-range part of the jump kernel to be constant with

distance r; other forms are expected to lead to similar results provided the integrated

probability of jump lengths between 0 and rb evaluates to p. The chosen form also

implicitly assumes that the same length scale rb governs the interaction distance for

the density regulation and the dispersal behavior. We could have built a model with an

additional length parameter dictating the spatial features of the dispersal kernel, but at

the cost of added complexity and a larger parameter space. Our simplified choice allows

us to dial in a specific balance between local and long-range dispersal by adjusting the

parameter p alone, which enables direct comparisons of different simulations where the

kernel exponent, local carrying capacity, and size of the density regulation region are kept

unchanged. Since the exact shape of the jump kernel at short distances is not biologically

realistic (for instance, it has a discontinuity at r = rb), we do not use our model to draw
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any conclusions about the spatial distribution of individuals on scales smaller than the

interaction distance.

We now specify appropriate units for length and time in our simulations. Since

the individuals and the environment are both featureless, and the same length scale

rb governs both the density regulation and the dispersal, the interaction distance is

the natural length unit in our model. In our simulations, we set rb to one, so that all

distances reported from simulations are in units of rb. Time units are chosen such that

each individual generates offspring via a Poisson process with a duplication rate of one;

i.e. time is reported in units of the average generation time for an individual. Note that

not all offspring survive, because of the density regulation mechanism.

Once the length and time units have been fixed, the consequential parameters

are the kernel exponent µ, the probability of local dispersal p, and the local carrying

capacity K (which determines the local density ρ via Eq. (2.2)). Simulations begin with

10K individuals whose x and y positions are random draws from a Gaussian distribution

with mean zero and standard deviation 2rb. Everyone in the population gets a chance

to produce offspring every time step, which disperse according to the jump kernel

with relevant p and µ and then either survive or don’t depending on the population

density where they happen to land. Simulations end once the population size exceeds

a predetermined threshold, usually four orders of magnitude larger than the initial

population size. See Section 2.6.1 for more details on the simulation procedure.

We next identify characteristic time scales in the problem which will enable

us to choose parameters which violate the instant local dynamics and local founder-

takes-all assumptions. (For an expanded discussion with potential improvements,

see Section 2.6.2). First let us consider the characteristic saturation time scale for a

single interaction region (which takes the place of a deme in our model). While the

full saturation dynamics is complicated because of the influence of offspring from

nearby interaction regions, we can make a simplified estimate of the saturation time by
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considering only the descendants of the pioneer individual which undergo local dispersal.

Assuming that all these descendants land in the same interaction region, we have an

effective division rate of p (in our units) for the local population. In this simplified

model, the interaction region fills up according to a logistic function with growth rate

p, for which the saturation dynamics are set by the characteristic time scale τs ≡ 1/p.

(The actual saturation time for a deme with a discrete population has an additional

logarithmic dependence on the carrying capacity, see Section 2.6.3; we ignore this weaker

dependence compared to the dominant 1/p dependence in the present discussion of

characteristic time scales.) The saturation time scale must be compared to the typical

time for the interaction region to send out long-range jumps. The highest possible rate

occurs when the region has saturated to population K and sends out long-range jumps at

a rate K(1 − p). Therefore, we identify τj ≡ 1/(K(1 − p)) as the characteristic time scale

separating long-range jumps out of an interaction region. Note that the local saturation

time scale is independent of K, whereas the rate of long-range jumps out of an interaction

region does depend on K.

The instantaneous local dynamics assumed in the lattice model is approached

when the local saturation time is much smaller than the typical time between long-range

jumps; i.e. τs ≪ τj. Using the above estimates for the characteristic times, we find the

criterion

p

1− p
≫ K (2.4)

for fast local dynamics. This criterion is always satisfied as p → 1. When K is large,

p must be at least 1 − 1/K for Eq. (2.4) to be satisfied: for appreciable local carrying

capacities, the fraction of local dispersal events must be very close to one for the criterion

to hold. If an individual competes with a large number of other individuals in its

neighborhood for resources, Eq. (2.4) is satisfied only if the vast majority of dispersal

events are local and long-range jumps are exceedingly rare. Our estimate emphasizes
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the need for simulations with explicit local dynamics to investigate the broad range of

parameters where the lattice model assumptions do not hold during jump-driven range

expansions.

The criterion τs ≪ τj ensures that new migrants originate from fully saturated

regions. To satisfy the second assumption of the lattice model—the local founder-takes-

all effect—we additionally require that the characteristic time between the arrival of

the first migrant and a potential second migrant by long-range dispersal, which we call

τ2, is much larger than the local saturation time scale τs. Unlike τs and τj, however,

we do not have direct control over τ2; the latter time scale will depend not only on the

model parameters but also on the location of the region being colonized. For example,

the expected time to second arrival will be different for a region near the core of a

colony compared with a region far from the core that was recently seeded by long-range

dispersal. Nevertheless, we expect that τ2 is closely related to the time scale τj associated

with sequential long-range jumps out of any given region: if long-range dispersal from all

regions is exceedingly rare (τj is large), it will take a very long time for a second migrant

to arrive into a newly colonized region (τ2 is large as well). Therefore, we use the same

criterion, Eq. (2.4), to gauge whether both assumptions underlying the lattice model

are satisfied in our continuum model. In the next section, we directly verify that our

simulation results include regimes which violate the assumptions of instantaneous local

saturation (Section 2.4.1) and local founder-takes-all (Section 2.4.2), thereby departing

strongly from the prior lattice models.

In summary, to violate the lattice model assumptions we require local dispersal

probability values comparable to or lower than 1 − 1/K. If we evenly sample values of

p between zero and one, we find that the lattice model assumptions are violated at most

parameter values. For instance, if we set the carrying capacity to K = 10, the criterion

is violated for p values up to around 0.9; when K = 100, the criterion is satisfied only

for p > 0.99. In our simulations, we choose values of carrying capacity K between 10
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Figure 5. Saturation dynamics of interaction regions around pioneers. a.) and b.) show
the population growth within the interaction region of pioneers (individuals which land
in an empty region) as a function of time from establishment of the pioneer, averaged
across many pioneers for different values of p (colors). a., K = 10 and µ = 1.5; b.,
K = 100 and three different kernel exponents (dashes). Each curve in panels (a.) and (b.)
is the average of the local saturation around approximately 60 pioneers gathered across
multiple simulations. c.) Saturation time of interaction regions, defined as the time taken
for the fitted logistic growth function describing the population within an interaction
region to reach one less than the saturating population (see Section 2.6.3 for details), for
µ = 1.5. We fit the logistic growth function to the local saturation data of approximately
60 interaction regions around pioneers and then computed the saturation time for each
region based on the fitted growth rate and carrying capacity. The points in the plot are
averages and the error bars are the standard deviations of the computed saturation times
of individual interaction regions at each set of parameters.

and 100, and local dispersal probabilities in the range 0 ≤ p ≤ 0.997. We expect the

lattice model assumptions to be violated over most of these parameter values, except at

the upper range of values of p.

2.4 Results

2.4.1 Local dynamics are consistent with logistic growth. We

first analyze the effect of modifying the local dispersal probability p on the population

dynamics within interaction regions. Consider the fate of the interaction region

surrounding a pioneer that has landed in an empty part of the range. If all local dispersal

events experienced by the pioneer and its offspring landed within the pioneer’s interaction

region, we would expect exponential growth of the local population with rate p until the

carrying capacity K is reached. In practice, the interaction regions of the offspring only

partially overlap with that of the pioneer, so the population growth levels off smoothly
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upon approaching the maximum value. When saturation curves across many interaction

regions are averaged for a given set of parameters, the average curve takes on the form of

a logistic function as shown in Fig. 5a–b. Upon varying p and µ independently, we find

that the saturation proceeds faster as p is increased whereas it is not strongly affected by

the kernel exponent (Fig. 5b).

We use the logistic growth rate, extracted from a two parameter fit to the average

growth curves (see Section 2.6.3 for details), to quantify the local saturation dynamics.

As expected, we find that the growth rate is largely independent of carrying capacity and

is determined by the local probability p (Fig. 13). The growth rate remains nonzero as

p → 0, due to multi-step colonization: although no direct offspring of the pioneer can

land in its own interaction region, the descendants of these offspring can land within

the interaction region of the pioneer which eventually gets filled. Multi-step effects are

also responsible for generating saturation curves whose final population values do not

exactly equal the carrying capacity K (plateaus at large t in Fig. 5a–b), as outlined in

Section 2.6.3. The true saturation value of the population within an interaction region

can be extracted from the logistic fit and is denoted as K ′.

Although the logistic growth rate is set by the local dispersal probability and not

the carrying capacity, the typical time taken to fill the interaction region of a pioneer

depends on both quantities. Since the logistic growth function is continuous and strictly

reaches K ′ only as t → ∞, we define the time taken to reach a local population of K ′ − 1

as the saturation time for an interaction region. We find that the saturation time falls

with increasing local dispersal levels, and rises with increasing local carrying capacity, as

shown in Fig. 5c. The interaction region around a pioneer that seeds a distant satellite

takes longer to fill up at low local dispersal rates and/or at high carrying capacities.

Notably, the saturation time falls linearly with p, but has a slow (roughly logarithmic)

functional dependence on the carrying capacity.
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Figure 6. Influence of slow local dynamics on local diversity. Each symbol represents a
triplet of parameter values (K, p, µ) and its color shows the average heterozygosity within
the interaction regions around several pioneers who seeded distant satellites, normalized
against the heterozygosity at which a fully occupied interaction region is expected to
have one individual with an allele different from everyone else in the region. Interaction
regions are expected to be homogeneous at parameter combinations where the average
normalized heterozygosity is less than one (blue points). They are expected to have more
than one allele where the average normalized heterozygosity is greater than one (red
points), indicating that other individuals typically disperse into and establish themselves
within a pioneer’s interaction region before it fills up with descendants of the pioneer.
The values reported come from the averages across about 50 interaction regions gathered
from multiple simulations at each set of parameters.
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2.4.2 Slow local saturation invalidates founder-takes-all assumption

within interaction regions. Slow saturation of the pioneer’s local region increases

the chance that other individuals who are not descendants of the original pioneer will

disperse into the region and establish themselves before the region is full. If an individual

who arrives later has a different allele than the original pioneer, there will be multiple

alleles within the region, which introduces genetic diversity within interaction regions in

stark contrast to the homogeneous demes imposed by the lattice model. This creates a

measurable signal that local saturation times are now comparable to or slower than the

typical time gap between the arrivals of first and second migrants by long-range dispersal,

τ2.

To quantify the deviation of local population structure from the local founder-

takes-all assumption as the saturation time is increased, we introduced neutral genetic

variation in the initial population. Every individual in the initial population was assigned

a unique allele, which did not affect the dispersal or reproduction dynamics but was

passed on to offspring. The establishment of multiple alleles in the same interaction

region was detected by computing the local heterozygosities in the interaction region

of isolated pioneers. The heterozygosity, H, is the probability that any two randomly

selected individuals will have different alleles. Upon counting the fraction fi of individuals

with each neutral allele i in an interaction region, the heterozygosity of that region is

computed as

H = 1−
∑
i

f2
i .

A nonzero heterozygosity indicates that more than one allele is present in the region;

the larger the heterozygosity, the more evenly distributed the different alleles are in

frequency, corresponding to a region in which no single allele dominates.

We averaged the local heterozygosity within the interaction regions of many

independent pioneers to obtain a characteristic measurement of the local diversity for
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each parameter value. The averaged heterozygosities are normalized against the value at

which one expects a fully occupied interaction region to have exactly one individual with

a different allele than the pioneer: HN ≡ 2(1/K)(1 − 1/K). With this definition, the

normalized average heterozygosity ⟨H⟩/HN has the following interpretation: normalized

average heterozygosities less than one indicate that interaction regions typically have

a single allele, whereas values greater than one indicate the expected presence of more

than one allele signaling a deviation from the founder “taking all” at the level of the

interaction region.

We find that the local heterozygosity is high at low local dispersal rates and

high carrying capacities (Fig. 6), consistent with our expectations from the slow

saturation dynamics in this part of parameter space. At the smallest carrying capacity

(K = 10), heterozygosity levels are low across nearly all jump kernels: local saturation

occurs fast enough that interaction regions are filled by descendants of the pioneer

individual that first arrived in the vicinity. This situation most closely parallels the

lattice models. As the carrying capacity is increased, however, we observe appreciable

levels of heterozygosity at low levels of local dispersal where the saturation dynamics of

regulation regions is slowest (Fig. 5c). As the local dispersal rate increases, a smooth

crossover occurs from high to low heterozygosity. The value of p at which this crossover

occurs is larger for broader jump kernels (lower µ): longer dispersal events favor mixing

of alleles. We expect these trends to continue for carrying capacities on either side of the

range we show here. For lower carrying capacities, local diversity would become lower

everywhere. For higher carrying capacities, the boundary between pioneer-dominated

and not pioneer-dominated (blue points and red points, respectively) would continue to

move to the right. The region of parameter space where founders typically “take all” will

continue to shrink as carrying capacity increases.

In summary, measurements of local heterozygosity (Fig. 6) indicate a breakdown

of founder takes all over wide swaths of parameter space, especially for high carrying
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Figure 7. Average growth curves for different µ and p at K = 10. These are averages of
growth curves from 241 individual simulations at each set of parameters. Average curves
at K = 100 are shown in Fig. 12. The dashed line corresponds to simulations with only
local dispersal; the resulting growth at long times is consistent with a linear relationship
(gray line in the upper right of each panel).

capacities and broad jump kernels. While local interaction regions remain largely

monoallelic when long-range dispersal is very rare (p ≳ 0.9), we find evidence that

multiple incursions into the same region leave a persistent contribution to the local

genetic makeup within interaction regions when long-range and local dispersal rates

are of similar order. We next investigate the extent to which these local deviations from

founder takes all impact global features of the population expansion, and in particular

whether they lead to departures from the population-level behavior of jump-driven range

expansions predicted using lattice-based models in Refs. [21, 23].

2.4.3 Increased long-range dispersal favors faster population growth.

The salient feature of the global population growth under jump-driven expansions is

their dramatic speedup compared to expansions that only involve short-range jumps:

the typical radial extent of the core region ℓ(t) grows faster-than-linearly with time when

µ < d + 1. This boost occurs because offspring attempting short-range jumps will land

close to their parents and siblings, and are more likely to be unsuccessful due to a lack

of local carrying capacity. By contrast, long-range jumps tend to transport offspring to

empty areas where they establish and proliferate successfully. Therefore, lower values of
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the local dispersal probability p are expected to favor faster population growth overall,

even though the local saturation is slower.

We measured the population growth with time, M(t), for many independent

range expansions at each parameter value. To connect with the results from lattice-based

models described in Section 2.2.1, we need an estimate of the core region within which

the population has reached saturation. When growth is driven by long-range jumps, there

is no sharp boundary between occupied and empty regions even in the lattice model.

Rather, the local density is close to ρ out to some distance from the origin, beyond which

it crosses over to a power-law decline in density determined by the value of µ [21, 22].

This smoothly varying occupancy profile leaves some ambiguity in precisely defining the

core region. We follow Ref. [22] in using the mass-equivalent radius of the population as

our best estimate of the core radius from our simulation data:

ℓ(t) ≡

√
M(t)

πρ
, (2.5)

which provides the required scaling M(t) ∼ [ℓ(t)]d [21]. This definition assumes that

the bulk of the population is present in regions where the population has reached its

maximum density locally. We averaged ℓ(t) trajectories across different instances at each

set of parameters to get a growth curve characterizing the average growth in extent of the

population.

We found that the acceleration of range expansion due to long-range dispersal is

preserved in the continuum model, as shown by the growth curves in Fig. 7. We focus on

the behavior at long times beyond the saturation time scale of a single interaction region

(which is of order 10 for K = 10, see Fig. 5c). When all dispersal is short-range (p = 1),

the average colony size approaches a linear relationship at long times (dashed curves;

linear fit shown with solid curves at upper right), signifying the expected constant-speed

outward advance of the population front [53]. Small levels of long-range dispersal (solid

curves) are sufficient for the size to grow faster than linearly with time, as evidenced by
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a steeper slope on log-log axes compared to the dashed curves. The growth at long times

appears to be faster than any power law (i.e. faster than linear on log-log axes) for all

values of p at µ = 1.5 and µ = 2.0 (Fig. 7a–b), in line with expectations from the lattice

model. Growth approaches a power law in time with exponent greater than one at the

the two largest p values for µ = 2.5, but is faster than power-law for the smaller values

of p over the population sizes simulated. In all cases, decreasing the probability of short-

range dispersal speeds up the colony expansion, as expected: long-range jumps are far

more likely to land in empty regions and succeed, compared to local jumps.

Many consequential features of the expansion, however, are determined not by

the absolute growth of the population size with time but by the functional form of the

growth. For instance, the qualitative differences in global diversity among different kernel

ranges (Section 2.2.2) are owed to the different functional forms of ℓ(t) observed in the

lattice model (see Section 2.2 for a summary). It would be useful to quantify whether

and how the local dispersal rate influences the functional form of the population growth

curves. A direct comparison of the growth curves to the asymptotic forms derived using

the lattice model is not expected to succeed, because the growth curves can take a long

time to reach their asymptotic forms, especially for values of µ near the space dimension

d = 2 [21]. This feature of jump-driven growth is apparent in Fig. 7c, in which the

measured growth curves for µ = 2.5 are nonlinear on logarithmic axes and deviate from

the asymptotic power-law form even at long times. Instead, we use the self-consistency

condition from Ref. [21], Eq. (2.1), which is expected to hold for times beyond the local

saturation time scale but well before the time at which the asymptotic regime is reached

in the lattice model. If the entire population in our continuum model were contained in

regions that have reached local saturation at all times, then the hierarchy depicted in

Fig. 2 would translate to the continuum model as well, and we would expect Eq. (2.1) to

be satisfied exactly. This would enable us to predict future population growth given only

the current population size and the exponent that characterizes the jump kernel. The

31



1026 × 101 2 × 102

colony size (t)

108

109

At
(t/

2)
2d

p = 0.99
p = 0.00
(t)d +

K = 10
K = 100

Figure 8. Quantitative test of the hierarchical time-doubling structure. Plots show the
RHS of the consistency condition (Eq. (2.1)) versus the colony size ℓ(t) for µ = 2. Data
are from the average of about 200 growth curves at each set of parameters, and only
include the second half of the simulation to exclude expected deviations at short times
(see Section 2.6.4 for details). The scaling factor A was adjusted manually to overlay data
from different p values for ease of comparison of the apparent power-law exponent (slope
of curves on log-log scale). Analogous plots at µ = 1.5 and µ = 2.5 are shown in Fig. 15.

size of deviations from the exact relation could be used to quantify differences in satellite

structure between the continuum model and the lattice model.

To test the validity of the consistency condition and its ability to predict

population growth, we measured the relationship between the colony size ℓ(t) at time t

and the quantity tℓ(t/2)2d in our simulations. For t values larger than the local saturation

time (order 20 or less for all parameters, Fig. 5c), we found that the simulated growth

curves are consistent with a power-law relationship between the two quantities across

the entire range of local dispersal probability values tested. Data for two representative

values of p and two local carrying capacities are shown in Fig. 8; additional curves are

shown in Fig. 15. For parameter values which best approximate the assumption of

instantaneous filling of density regulation regions (local dispersal probability close to one

and low carrying capacity), the power-law exponent quantifying the relationship between

ℓ(t) and tℓ(t/2)2d also matches the expected exponent of d + µ (compare green discs to

dashed line in Fig. 8). By contrast, the relationship no longer quantitatively matches the

consistency condition when local saturation is slowed down by low values of p or high
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Figure 9. Inferring kernel exponents using the consistency condition. Symbols show the
kernel exponent µi inferred for the power law relationship between measured ℓ(t) and
tℓ(t/2)2d (i.e. the slope in Fig. 8) from many individual simulations. Panels are labeled
by the true kernel exponent µ used in simulations. The dashed line indicates µi = µ.
Each point represents the mean of the individual inferences from roughly 200 independent
simulations and the error bars are the 95% confidence interval of the distribution of
bootstrapped mean inferred kernel exponents.

values of K. Instead, the population size at time t is larger than that predicted by the

population at time t/2 according to Eq. (2.1) (square symbols and orange discs in Fig. 8).

The functional form of the growth curve appears to be faster than would be expected

from the time doubling hierarchy, so using Eq. (2.1) leads to an underestimate of the

colony size at time t given its size at time t/2. Note that Fig. 8 is plotted on logarithmic

axes, so the visibly slight difference between the slopes of sets of symbols and dashed

lines corresponds to different power law relationships between ℓ(t) and tℓ(t/2)2d in our

continuum expansions than what is predicted by the time doubling hierarchy derived

using lattice models that assume instant saturation of local regions.

To quantify the extent of the deviation from the lattice-model behavior, we fit

measurements of the quantity tℓ(t/2)2d to the form Bℓ(t)ν to extract the power-law

exponent ν (see Section 2.6.4 for details). This exponent was used to infer a kernel

exponent µi ≡ ν − d from data such as those shown in Fig. 8, which can be compared

to the true kernel exponent µ. To cover the two distinct jump-driven growth regimes and

the marginal value µ = d separating them (as referenced in Section 2.2), we estimate

the kernel exponent from growth curves of populations whose jump kernels decay with µ
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equal to 1.5, 2.0, and 2.5. We find that the inferred kernel exponent is close to the true

exponent when the local dispersal probability approaches one across all jump kernels and

carrying capacities tested (Fig. 9). This observation is consistent with our expectation

that the limit p → 1 best approximates the lattice model assumptions. However, the

inferred kernel exponent is systematically lower than the true value for much of the range

0 < p < 1, reflecting the shallower-than-expected slopes at low local dispersal in Fig. 8.

The inferred exponent grows slowly with the local dispersal probability up to p ≈ 0.9, and

then rises sharply toward the true value as p → 1. This suggests that there could be some

functional change to the structure of colony expansion as the parameter changes to nearly

all short-range dispersal, while anything less than nearly all short-range dispersal seems

to behave similarly regardless of p. The deviations also systematically differ depending on

the local carrying capacity, with inferred exponents at K = 100 consistently lower than

than those at K = 10.

We have not isolated the mechanism leading to an inferred kernel exponent

µi that deviates from the true kernel exponent µ. The fact that µi < µ implies that

the time-doubling hierarchy from the lattice model, quantified in Eq. (2.1), does not

hold exactly over much of the range of p values. Furthermore, it shows again that the

functional form of the population growth with time is faster in the continuum model than

the lattice model. However, this observation by itself does not provide information about

how the hierarchy breaks down in the continuum model, or whether a modified version of

Eq. (2.1) might be found for continuum space models.

We can nevertheless identify the likely sources of the discrepancy between the

continuum and lattice models based on our knowledge of the local and global dynamics.

The hierarchy in the lattice model was derived under the assumption that satellites

which drive the expansion originate in a core region that has reached its saturation

density nearly everywhere, and whose size scales as [M(t)]1/d. In our simulations, local

regions take some finite amount of time to fill up, but they can begin sending out long
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range migrants as soon as they are seeded. An appreciable fraction of satellites may

be seeded by individuals dispersing from regions with local densities between zero and

ρ; furthermore, the local density could itself vary significantly through the population.

These deviations become more prevalent for larger carrying capacities (Fig. 5c), which

would suggest larger deviations at higher values of K consistent with the behavior of the

inferred kernel exponents in Fig. 9.

Altogether, measurements in the continuous-space model reveal small but

consistent deviations in the population growth curves from the time-doubling hierarchy

predicted in the lattice model. Our simulations indicate that slow local dynamics

introduce corrections to the time-doubling hierarchy over a large range of values of the

local dispersal probability, consistent with our estimates of the parameter regimes for

which the lattice model assumptions break down (Section 2.3). Next, we numerically

investigate the impact of these corrections on the dynamics of global diversity, for which

the hierarchy of satellite sizes determined the long-time behavior in the lattice model as

summarized in Section 2.2.2.

2.4.4 Increased local diversity boosts global heterozygosity but

does not overcome long-term trends. Finally, we investigated the consequences

of the enhanced local diversity generated by slow local dynamics (Section 2.4.2 and

Fig. 6) on the fate of the initial neutral diversity. Recall the predicted evolution of

heterozygosity in prior models assuming fast local saturation and local founder-takes-

all effects (summarized in Section 2.2.2): initial variation decayed steadily towards zero

for jump kernels with 2 < µ < 3 in two dimensions, but some proportion of the

initial diversity was preserved for broader (µ < 2) or narrower (µ > 3) kernels. We

simulated range expansions where the initial population had equal proportions of two

fitness-equivalent alleles (initial global heterozygosity HG = 0.5) and measured the

evolution of global heterozygosity. While the outcome of a single simulation is stochastic,

we estimated the expected value of the hetorozygosity as a function of population size
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Figure 10. Evolution of global heterozygosity for different kernels and local dispersal
rates. a.) Average global heterozygosity as a function of the growing population size
for different jump kernels, with K = 10 and p = 0.5. At these parameters, each
interaction region is dominated by a single allele (Fig. 6). b.) Same as a for K = 100
and p = 0; at these parameters interaction regions tend to harbor multiple alleles. c.)
Global heterozygosity curves for µ = 2.5 and different local dynamics traversing the
spectrum from monoallelic to multiallelic local interaction regions (blue points to red
points in Fig. 6). The K = 10 data is the same as in panel (a.) but has been truncated
for this plot. Data as a function of relative population size were generated by by binning
the population sizes from all available simulations and then computing the within-bin
⟨HG⟩; see Section 2.6.5 for details. Shading reports the standard error of the mean within
each bin in all panels, as an estimate of the uncertainty in our estimate of the ensemble
average. Data come from about 200 independent simulations for µ ≤ 2 in panel (a.) and
about 400 simulations for µ = 2.5 in panel (a.) and all of panels (b.) and (c.). The curve
for µ = 4 in panel (a.) comes from just 24 runs since simulations with µ > d + 1 take
much longer and the sectoring mechanism for preserving diversity is well understood (see
Fig. 3a–c).

by averaging the outcomes of many independent runs at each set of parameters. Recall

that no new mutations appear during the expansions; here we study the long term fate

of any pre-existing diversity present in the initial population rather than the emergence

of some balance between the loss of diversity (e.g. due to drift) and the promotion of

diversity due to new mutations. Although we used a specific initial heterozygosity in

our simulations, we expect the observed trends in the proportion of initial diversity over

time to hold for other values of initial global heterozygosity as well. This proportion

is obtained from our simulation data (Fig. 10) by dividing the reported heterozygosity

values by 0.5.
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We first considered a set of parameters (K = 10, p = 0.5) for which each

interaction region is dominated by the offspring of the seed individual (Fig. 10a). This

situation approximates the local founder-takes-all mechanism of the lattice models,

but does not replicate it exactly as multiple incursions into interaction regions are not

strictly excluded. Despite the deviations, we find that the evolution of global diversity

in the continuum simulations is consistent with expectations from the lattice model

when different kernel exponents are compared. (See Section 2.6.6 for a quantitative

comparison.) Average population heterozygosity has settled to a constant proportion

of its initial value for µ = 1, and appears to be approaching a constant value as well

for µ = 1.5. The slow decay of heterozygosity for µ = 2 is expected; the population

may have to grow by several more orders of magnitude before converging to a constant

heterozygosity [23]. At µ = 2.5, the heterozygosity decays steadily with no sign of

convergence to a finite value, as predicted for lattice models in the range d < µ < d + 1.

At µ = 4, a constant heterozygosity is attained at large population sizes due to the

formation of persistent sectors with distinct allelic identities (Fig. 3a–c). In each of

the growth regimes separated by the critical kernel exponent values of d and d + 1

(2 and 3 respectively in our two-dimensional expansions), the behavior of the global

heterozygosity follows the qualitative patterns derived in the lattice model. In spite of

the small quantitative differences in the hierarchical structure of satellites merging with

the core (Fig. 9), the overall differences in structure which determine the balance between

diversification and coarsening in jump-driven expansions are maintained deep within the

different growth regimes.

Next, we considered parameters K = 100, p = 0 for which the local founder-

takes-all assumption is violated across all kernels tested according to local heterozygosity

measurements. We found that the increased local diversity at these values (as indicated

by colors in Fig. 6c) contributes to higher global heterozygosities compared to the fast

saturation region, as seen in Fig. 10b when compared to Fig. 10a and Fig. 17. For
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instance, at µ = 2.5 the heterozygosity has decayed by around 8% of its initial value

when M/M0 = 104 in Fig. 10b, in contrast to a reduction by over 20% in Fig. 10a. The

same trend is observed at all kernel exponents: The mix of allelic identities within each

interaction region under slower local dynamics provides a reservoir of genetic diversity

that allows populations to retain much more diversity than possible under the monoallelic

regions imposed by fast local saturation. Nevertheless, the qualitative trends in diversity

as the kernel exponent is varied continue to track the expectation for lattice models. In

particular, the global heterozygosity steadily decays towards zero for µ = 2.5, albeit at a

slower rate compared to the K = 10 simulations.

A steady decay in heterozygosity is also observed for other values of the local

dispersal probability for the same kernel exponent µ = 2.5, see Fig. 10c. Slowing down

local dynamics by increasing K and reducing p raises the value of heterozygosity at each

population size, but does not prevent the steady decay as a function of M/M0. These

results show that at long times, the diversity-reducing effect of bottlenecks outweighs

the local mixing due to slow saturation dynamics for µ = 2.5. We expect that continual

heterozygosity loss will be experienced for other kernels in the range d < µ < d + 1 as

well, although the rate of decay will be very slow for kernels close to the critical value of

µ = d, and for kernels with slower local dynamics (i.e. large carrying capacity and low

local dispersal probability). In this regard, the high local heterozygosities observed for

kernels with µ > 2 and low p values in Fig. 6 are transients which we expect to decay to

lower values if the expansions are allowed to run longer.

2.5 Discussion

Range expansions in populations experiencing long-range dispersal can be

dominated by the pioneers who travel long distances and seed satellite colonies. Lattice

models that assume that these pioneers quickly saturate the carrying capacity within

their local interaction region have provided many insights into the dynamics and

population structure of such range expansions [21, 23]. However, real populations operate
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in continuous space and with local population dynamics which play out concurrently

with the global dynamics driven by long jumps. In particular, the limits on the rates of

long-range dispersal for lattice models to be accurate become increasingly strict as the

local carrying capacity increases (Eq. (2.4)). We have introduced a continuous-space

simulation of range expansions which departs from the gridlike spatial structure and

instantaneous local dynamics implied in lattice models, enabling us to quantitatively

investigate population growth and neutral diversity in parameter regimes where the

lattice models are not expected to be valid.

We found that introducing explicit local dynamics is associated with slow local

saturation at low local dispersal rates and especially at high local carrying capacities

(Fig. 5). By contrast, the global population growth occurs faster when local dispersal

rates are low, because of the increase in long-range jumps that seed satellite populations

in unoccupied regions (Fig. 7). The functional forms of the population growth curves

show similarities with those from lattice-based models (Fig. 8), but with small yet

quantifiable differences (Fig. 9). We suspect that these differences arise due to a violation

of a central assumption of the lattice model: that satellites are seeded by long-range

migrants who disperse from fully occupied source regions. In our continuum model,

satellites can begin sending out long-range migrants as soon as they are seeded, which

can occur several generations before they saturate at high carrying capacities and low

local dispersal rates. In future work, we aim to incorporate this feature into the model of

hierarchical population growth sketched in Fig. 2, which would improve the accuracy

of theoretical predictions for jump-driven range expansions in situations where local

interaction regions are not immediately saturated upon the arrival of a new migrant.

We investigated the effects of departing from instantaneous local saturation on

both local and global measurements of neutral diversity. Interrogating the populations

within individual interaction regions originally seeded by a long-range dispersal event

reveals that multiple lineages, rather than just descendants of the pioneer, become likely
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as local saturation becomes slower (Fig. 6): our continuum model violates the assumption

of a strictly enforced local founder-takes-all effect. Having multiple lineages within

interaction regions provides a reservoir of genetic diversity that also enables greater

global heterozygosity outside the regime where local founder-takes-all applies: generically,

expansions with slower local dynamics exhibit higher global diversity at every stage in

the expansion (Fig. 10). Nevertheless, the enhancement in local diversity is not sufficient

to overcome long-time trends in global diversity, which continue to be determined by the

kernel exponent as was shown in the lattice model [23]. In particular, when µ < 2 the

global heterozygosity settles to a stable value after an initial period of decay, whereas for

2 < µ < 3 the heterozygosity decays steadily as the range expansion progresses albeit

at a slow rate. The decay is a consequence of the repeated coarsening of diversity due to

bottlenecks as pioneers expand into their newly occupied surroundings (Fig. 3d–f). Our

results show that this coarsening is slowed down by the increased local diversity when the

local founder-takes-all assumption is violated, but it is not completely mitigated and the

qualitative long-term trends in global diversity are similar to those predicted using the

lattice model. This qualitative agreement with lattice-based predictions is a non-trivial

result in light of recent research [32] showing that models based on a discretization of

space can leave surprising artifacts in measures of population genetic variation.

Our method of discovering local diversity outside the local founder-takes-all

regime was unable to detect if descendants of an individual other than the pioneer were

within a local region if they happened to have the same allele as the pioneer by chance.

Such information would be useful to investigate genealogical structure beyond the fate of

the initial neutral diversity in the population, for example to determine if the pioneer is

the most recent common ancestor of everyone else in the interaction region or to study

the accumulation of additional neutral mutations during the expansion. A tool like tree

sequences [59] could readily be incorporated into our computational model to study such

questions, which are a promising target of future work. Understanding the competing
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effects of local and long-range dynamics on genealogies in our forward-in-time simulations

could also aid the construction of backward-in-time models that incorporate long-range

dispersal [60, 61].

Another promising future direction would be to incorporate ongoing local

competition among all individuals in the population. In this work, we assumed that

established individuals never move or die, modeling populations such as trees which

release large numbers of seeds annually and where young saplings stand little chance of

outcompeting mature trees around them. However, there are many species of perennial

plants, for example, where younger individuals can successfully compete against older

individuals in their surroundings. Incorporating population renewal and density-

dependent competition in simulations could provide new insights into how these species

evolve during range expansions. We suspect that such competition should accelerate the

decay of diversity relative to our results for 2 < µ < 3 (Fig. 10). Local competition can

completely remove alleles from the population, whereas in our model the “losing” allele is

surrounded but not lost, and retains a nonzero probability of dispersing an offspring to a

faraway vacant habitat.

This work provides a better understanding of the range of validity and the

limitations of models of long-range dispersal which rely on instantaneous saturation of

local interaction regions and divide continuous space into a lattice. We have confirmed

that the conclusions of the lattice model are upheld in populations where pioneers

who disperse long distances quickly saturate their immediate surroundings with their

descendants; namely in populations with low local carrying capacities and high local

dispersal probabilities. Even when the local founder-takes-all condition is violated,

we have shown that qualitative trends in population growth and in the evolution of

neutral diversity mirror those in the lattice model, albeit with measurable quantitative

differences. Heuristics such as the time-doubling hierarchy of Ref. [21] (Fig. 2) and the

effective population of satellites identified in Ref. [23] remain useful to understand the
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qualitative behavior of expansions under long-range dispersal in non-lattice models.

Researchers could employ hybrid discrete/continuous research strategies: identify regimes

of interest using the heuristics of the lattice model, and then test and refine these

predictions in more realistic continuum simulations.

Our results are relevant to understanding and modeling the dynamics of range

expansions in true biological populations, including invasive species, populations fleeing

climate catastrophes, and spreading viruses. We now have a better understanding of

when the first individual to arrive in a region of space effectively determines the genetic

outcome of all others who will later inhabit the same immediate area. Experimenters

could estimate the size of the interaction region, the local carrying capacity, and the

local dispersal probability in populations of organisms in the lab or in nature. Estimates

of those quantities could allow researchers to predict whether or not the founders will

“take all” when the population expands its range outwards into new territory, leading to

insights about how the population will evolve.

Data availability

Simulation code and the code and data necessary to generate figures are available

in the following GitHub repository: https://github.com/paulose-group/explicit-local-

dynamics
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2.6 Appendices

2.6.1 Simulation details. Simulations begin with 10K individuals who are

given random positions near the origin. Their x and y positions are random draws from

a normal distribution with a standard deviation of 2rb. Typically about 80% of those

individuals survive the density regulation in the first time step. The spatial landscape is

large, so the periodic boundary conditions have no effect.

Offspring are produced by cloning without the possibility of mutations, so

offspring have the same allele as their parent. Dispersal distances are drawn using inverse

transform sampling. Recall, the jump kernel is

J(r) =


p/rb r ≤ rb

(1− p)

r−µ
b

µr−(µ+1) r > rb

(2.6)

where rb is the boundary between local and long-range and p is the probability of

dispersing within the local region.

We begin the sampling procedure by drawing a random number X from the

uniform distribution between 0 and 1. That number X is taken to be the the probability

of drawing a dispersal distance less than or equal to some distance x (i.e. the integral of

the jump kernel from 0 to x). Solving for x gives us our dispersal distance.

If X ≤ p, the offspring disperses locally, so we only need to consider the first term

of the jump kernel.

X =

∫ x

0
p/rb dr =

px

rb
→ x =

Xrb
p

If X > p, the offspring disperses a long distance, so we have

X = p+
(1− p)µ

r−µ
b

∫ x

rb

r−(µ+1)dr

which leads to

x =

(
(1− p)rµb
1−X

)1/µ
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Figure 11. Space doesn’t quite fill up to the local maximum population density ρ.
The two panels are snapshots from simulations that grew to roughly fifty thousand
individuals. The blue points are individuals, and the color of the small yellow and
green dots represents how many individuals are within a distance of rb of that point.
Yellow points represent saturated regions; an individual born there would count at
least K within its density regulation region. Non-yellow points look hospitable, and
one individual born there would count less than K within its density regulation region,
but individuals can’t fill those spaces since typically everyone produces an offspring every
generation and the newborns “destructively interfere”.

The dispersal direction is chosen at random from the uniform distribution between 0 and

2π.

All individuals in the population get a chance to produce offspring each time

step. Offspring generation is the first thing that happens each time step; the number

of offspring for each individual is a random draw from the Poisson distribution with

mean 1. Then all newborns simultaneously count how many other individuals are within

their density regulation regions. This means newborns will count other newborns if they

happen to land near each other by chance. It also means that space often doesn’t quite

fill up to the population density ρ = K/(πr2b) (as defined in section 2.3). Fig. 11 shows

how regions of space may appear habitable, and indeed would be if one single offspring

were generated and counted its neighbors at a time, but do not saturate since everyone in

the population typically produces an offspring every generation and all newborns count

their neighbors simultaneously. All individuals produce one offspring per generation on

average, so a region saturated to K individuals is expected to have roughly K newborn

individuals attempting to establish within that same region every generation. Our
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Figure 12. Average growth curves for different µ and p at K = 100. Average curves for
K = 10 are shown in Fig. 7. These are averages of about 140 growth curves at each set of
parameters.

density regulation mechanism mimics the biological scenario where none of those newborn

individuals are able to get enough resources to survive since there are so many competing

for what little is left, a situation termed “scramble competition” in ecology [62]. The

typical population that is actually attained in a local density region, which we term K ′,

is estimated using a fit to a logistic growth curve (see Section 2.6.3 below), and deviates

by at most 20% from K (Fig. 13). Alternative choices for the density regulation step,

such as randomly choosing a subset of newborns to survive so that local density regions

can saturate up to the target value K (the “contest competition” scenario), could also be

implemented, but at the cost of additional computational resources which would affect

the maximum population sizes and growth times that could be simulated.

We typically let the populations grow by about four orders of magnitude, so

simulations were ended once the populations exceeded 106 or 107 individuals for K

equal to 10 or 100, respectively. This allowed core radii to grow by about two orders of

magnitude, as shown in the average growth curves at K = 10 in Fig. 7 and at K = 100 in

Fig. 12. The solid line indicating the linear relationship between ⟨ℓ(t)⟩ and t at p = 1 in

Fig. 7 was generated by fitting a line to the average growth curve from generations 100 to

1000 using NumPy’s polyfit() function.
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2.6.2 Time scales. The assumption of instant local saturation in the

lattice models relied on a separation of time scales between local and global dynamics:

it is valid provided the time scale for saturation of local regions τs = 1/α is small

compared to the typical time between long-range dispersal attempts from each “deme”

or interaction region, which we call τj. In our tunable model, our time units are set such

that the characteristic time between reproduction attempts is one. The rate of divisions

that land within the interaction region is p, which sets the time scale of the logistic

growth. Therefore, the characteristic saturation time of local regions is α = p, and as

a zeroth-order estimate we have τs ≈ 1/p. This form is only useful for p close to one,

because it ignores the effect of secondary events which land in the interaction region.

As a result, the true dependence of α on p is weaker: α grows from 0.4 to 1 as p varies

from zero to one (Fig. 13a). Therefore τs varies weakly from roughly 2.5 to one over the

range of p values. For a more accurate estimate, we can use the phenomenological form

α ≈ (1 + p)/2 ⇒ τs ≈ 2/(1 + p) which does not diverge as p → 0.

When regions have reached local saturation, the rate at which each interaction

region sends out long-range jumps is K(1 − p). If we assume that the expansion is driven

by jumps out of regions that have reached saturation, we have τj = 1/(K(1 − p)).

Therefore, the condition τj ≫ τs reduces to

1

K(1− p)
≫ 1

p
,

or

K ≪ p

1− p
.

According to this criterion, most of our simulations explicitly do not satisfy the

separation of time scales assumed in the lattice model.

2.6.3 Logistic growth description of population dynamics within

interaction regions. We started the logistic growth measurements by searching for

sufficiently isolated individuals. To find individuals worthy of tracking, we searched
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Figure 13. Fitted logistic growth parameters. a.) The growth rate increases with
increasing short-range dispersal as expected. It does not depend on the carrying capacity
because the growth rate is determined by the early growth of the population before the
density regulation restricts population growth. b.) The fitted local carrying capacity
increases slightly with increasing short-range dispersal. Regions often don’t saturate
all the way to K as discussed above and shown in Fig. 11. We fit the logistic growth
function to the saturation data of about 60 interaction regions across multiple simulations
at each set of parameters. The points are averages and the error bars are standard
deviations of the individual fits. This data comes from expansions with µ = 1.5 and is
what formed the saturation times reported in Fig. 5c.

at the end of every generation for individuals who had no one else within a distance

of 10rb. Those individuals must have dispersed a long distance. We searched at the

end of every generation until we found at least a predetermined minimum number of

isolated individuals at the same time. We required several at the same time purely for

convenience on the data processing side; these measurements could just as well have been

gathered one at a time as we found the isolated individuals. Nevertheless, once we found

the isolated individuals, we recorded the number within their interaction regions every

generation until the end of the simulation. The local saturation data was then used to fit

for logistic growth parameters. We fit to the logistic function of the form

N(t) =
K ′

1 +
(
K′−N0

N0

)
e−αt

(2.7)

where N(t) is the population at time t, K ′ is the local carrying capacity, α is the growth

rate, and the initial population is N0 = 1. We used SciPy’s curve fit() function to make

the fits and obtain K ′ and α. We performed the fits on all individual interaction regions
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around the initially isolated individuals that we found that filled up to at least 60% of the

local carrying capacity K. Average values and standard deviations are shown in Fig. 13.

We computed the saturation time for an interaction region by setting the

population size in Eq. (2.7) equal to K ′ − 1 and then solving for t, which leads to

tsat =
1

α
log
(
(K ′ − 1)2

)
(2.8)

In addition to the dominant dependence ∼ 1/α, where α is itself proportional to p (see

Section 2.6.2), we find a logarithmic dependence of the saturation time on the local

carrying capacity, which arises from the discrete nature of the local population within a

deme. We computed the saturation time for every individual interaction region for which

we fit the logistic growth function, using values of α and K ′ from the fits to the logistic

function. We report averages and standard deviations at µ = 1.5 in Fig. 5c.

For the local heterozygosity measurements, every individual in the initial

population had a unique allele. We tracked the heterozygosity in the interaction regions

of the same individuals for whom we measured logistic growth as described above (i.e.

initially isolated individuals). The heterozygosities reported in Fig. 6 are averages of

heterozygosities measured across typically about 50 separate interaction regions in the

final generation of simulations and gathered from initially isolated individuals in multiple

different simulations.

2.6.4 Quantitative assessment of time-doubling hierarchy. We

assessed the validity of simulation run times using the consistency condition ℓ(t)d+µ ∼

tℓ(t/2)2d (eq. 2.1). The consistency condition is only valid after enough time has elapsed

for long dispersal distances to be the driving factor behind a colony’s growth [21]. It is

necessary to avoid the early times when applying the consistency condition, such as when

estimating the kernel exponent as in Fig. 9. Colony growth remains self-consistent once

the consistency condition becomes valid. For simulations that ran for T time steps, the

values of t we used when applying the consistency condition ran from T/2 to T , so the
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Figure 14. We show tℓ(t/2)2d plotted against ℓ(t) from average growth curves at all sets
of parameters that went into figure 8. The dots are points from all even-numbered time
steps. Simulations with high values of p require many more time steps to reach a given
population size than those with low values of p. We use only the points after the red × in
figure 8 and for inferring the kernel exponent as in figure 9. For simulations to be “long
enough,” we needed at least a handful of points once the growth became self-consistent
(i.e. linear on these plots). Using average growth curves from expansions at intermediate
probabilities of local dispersal result in plots somewhere between these two extremes:
more data points in the linear sections than the p = 0 case but not as many as in the
p = 0.99 case.

values of t/2 ran from T/4 to T/2. The first data point we used with the consistency

condition is marked with a red × in Fig. 14. We need at least a handful of data points

after the first one to check for agreement with the consistency condition and to estimate

the kernel exponent. Our run times were just enough at the lowest probabilities of local

dispersal and gave us many useful data points at high local dispersal. We compared our

data at µ = 2 against Eq. (2.1) in Fig. 8; analogous plots at µ = 1.5 and 2.5 are shown in

Fig. 15.

The expansions at high local dispersal require many more time steps to reach

the predetermined population threshold necessary to end simulations than those at low
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Figure 15. Analogous to Fig. 8.

local dispersal. Expansions at high local dispersal take longer and grow slower than those

at low local dispersal since offspring are much more likely to land near their parent in

regions that may already be saturated, which means the times t and sizes ℓ(t/2) used

here are higher at high local dispersal. A scaling factor of A ≈ 20 was needed to raise the

points at low local dispersal to the level of those at high local dispersal. Bringing them

together highlights the difference in power laws (slopes) between the sets of points at each

value of K.

We found the inferred kernel exponent µi from the growth curves by fitting

Bℓ(t)ν to the quantity tℓ(t/2)2d using SciPy’s curve fit() function. We obtained values

for both the prefactor B and the exponent ν, but only the exponent was of any interest

for estimating the kernel exponent from the growth curves. We estimated the kernel

exponent by performing this fit using data from only a later subset of the time steps

as discussed in the previous paragraph. We then compute the inferred exponent as

µi ≡ ν − d. We computed µi using all available growth curves (typically about 200 at any

given set of parameters) to get the averages and confidence intervals reported in Fig. 9.

The exact value of µi somewhat depends on the fit method. For comparison, we

repeated the process of extracting µi by finding the best fit line to the relevant data in

log-log space, where the exponent could be found from the inferred slope. These two

values would exactly match if we had infinitely long simulations that had perfectly

converged to constant power laws, but in practice that is not the case. There is often a
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Figure 16. Example comparison between inferring kernel exponents by directly fitting
power laws in linear space and fitting for the slope in log-log space. This example data
comes from growth curves with K = 100 and µ = 1.5 (same data as the orange points
in the left panel of Fig. 9); analogous plots look similar at other pairs of parameters.
Each point represents the mean of the individual inferences from roughly 50 independent
simulations below p = 0.5 and roughly 150 simulations above p = 0.5. The error bars
are the 95% confidence interval of the distribution of bootstrapped mean inferred kernel
exponents.

slight difference between the average values of µi from the two procedures, as shown at

the example parameters in Fig. 16. However, we take the generally overlapping error bars

as a signal that it’s safe to proceed with our inferred values. This sort of comparison

could be used as a test of whether or not population growth has converged to the

expected time-doubling hierarchy: consistent gaps between error bars are a warning

that simulations may not be long enough. This test led us to run longer simulations

to generate the data shown at p ≤ 0.5 in Fig. 16 and the corresponding data points

in Fig. 9. The longer simulations ran until they reached population sizes of 30 million

individuals, triple the size of our usual cutoff for simulations with K = 100.

2.6.5 Reporting the evolution of global heterozygosity. There are

multiple reasonable ways to compute and display the global heterozygosity as a function

of the growing population size as in Fig. 10 and Fig. 17; here we discuss some options

and justify our choice. The true independent variable in our simulations is time. Every

time step consists of offspring generation and dispersal followed by density regulation

as discussed in Section 2.3 and Section 2.6.1. Population size and heterozygosity are
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recorded at the end of each time step, after individuals have been removed from the

population if their birthplaces are too densely occupied. This suggests that the “ground

truth” for reporting the evolution of global heterozygosity might be plots of ⟨HG⟩ versus

time, where averages and standard errors are computed with all available data at a given

time step.

However, for generalizing results or comparing with the results of Ref. [23], it

would be useful to compute ⟨HG⟩ as a function of the population size. One method of

doing this would be to compute the averages ⟨HG⟩ and ⟨M/M0⟩ each time step. This

method ignores what can be significant variation in population growth rates between

individual simulations and generates points whose horizontal and vertical coordinates in

the plots of Fig. 10 are both functions of time.

We sought to compute ⟨HG⟩ directly as a function of population size by

generating binned population sizes and computing the average heterozygosity from

all available simulation time steps where the population size was within a given bin.

This means that a single simulation can contribute to a given data point on the ⟨HG⟩

versus M/M0 curve multiple times or not at all depending on how many time steps the

population size was within that bin in that simulation. We used the R function cut()

to place population sizes within 20 bins of equivalent width in logarithmic space, thus

generating equally spaced data points for Fig. 10 and Fig. 17.

We use the standard error of the mean to estimate our uncertainty in ⟨HG⟩. A

consequence of the binning procedure is that standard errors of the mean heterozygosity

get vanishingly small in Fig. 10 and Fig. 17, despite the fact that the heterozygosity

trajectory can vary quite a bit between individual simulations. The bins in those figures

often consist of multiple data points from each simulation, especially for the bins at larger

population sizes. Even though we generally have 200-400 independent simulations at

each parameter combination shown in those figures, the points in the figures are often

averages of thousands of data points that fall within each bin, resulting in nearly invisible
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Figure 17. Direct comparison of heterozygosity evolution in the continuum simulations
with fast local dynamics (K = 10, p = 0.5; solid lines and shading are same as in
Fig. 10a) to that of the lattice-based simulations reported in Ref. [23] (dashed lines).
In both cases, the initial population had a 50/50 mix of two alleles (initial heterozygosity
of 0.5). Kernel exponents match at all values except µ = 2.5 (continuum), for which the
same color refers to µ = 2.4 (lattice).

uncertainty bands since the standard error of the mean is s/
√
N where s is the sample

standard deviation and N is the number of samples. Such a large number of samples

within each bin gives us a small uncertainty in our estimate of the average ⟨HG⟩.

2.6.6 Direct comparison to lattice model. We used data for lattice-

based simulations from Ref. [23] to compare results between continuum simulations at

parameter values K = 10, p = 0.5 where the averaged normal heterozygosity is less

than one (see Fig. 6), approximating local founder-takes-all, and lattice-based simulations

where founder-takes-all is imposed at the deme level. The initial conditions in the two

types of simulations were not exactly matched: both began with a 50/50 mix of two

alleles, but the continuum simulations began with typically about 80 individuals near the

origin (Section 2.6.1) while the lattice-based simulations began with 111 occupied demes

packed in a disc around the origin. Note that a deme is roughly a discrete analogue of

an interaction region, so the continuum simulations’ 8̃0 individuals correspond to roughly

80/K = 8 occupied demes. Another discrepancy is that Ref. [23] did not generate data at

µ = 2.5, so we include their data from µ = 2.4 as a comparison with our µ = 2.5 data.
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We observe that the difference in initial conditions leads to different dynamics

at early times/small population sizes. In the continuum simulations, most of the early

dynamics involves local events which mix and even out the starting population near the

origin, and significant changes in heterozygosity only kick in when the population has

reached ten times its initial size. By contrast, the lattice simulations only included long-

range jumps, and the heterozygosity begins to fall earlier. This discrepancy leads to early

differences in the observed heterozygosities between the two sets of models. However,

the later trends, especially the contrast between a quick saturation of heterozygosity to a

constant value at µ = 1 as opposed to a persistent decay for µ = 2.5 and a decay followed

by a delayed saturation for µ = 4.0, are successfully captured by the lattice model. The

quantitative discrepancy between the lattice and continuum values of ⟨HG⟩ is largest at

µ = d = 2, which is a special point for the underlying dynamics that leads to extremely

slow changes in the heterozygosity [21, 23]; we hypothesize that the small discrepancy in

the initial conditions persists the longest at this special kernel exponent.

We also observe that the continuum ⟨HG⟩ at large population sizes is higher

than that from lattice-based simulations for all jump-driven kernels (µ < 3). This is

consistent with the observation that while local heterozygosity is small in the continuum

simulations, it is not zero for the chosen parameter values of K = 10, p = 0.5 (left

panel in Fig. 6) and the slight deviations from local founder takes all promote higher

heterozygosity compared to the strict founder-takes-all assumption of the lattice model.
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CHAPTER III

THE FATE OF ADAPTIVE MUTATIONS IN RANGE EXPANSIONS DRIVEN BY

LONG-RANGE DISPERSAL

This chapter was co-authored with Jayson Paulose.

3.1 Introduction

Range expansions are ubiquitous in biological populations [1]. They occur

naturally in various ecosystems, such as when plant seeds are transported random

distances by wind or animals [2]. They may be enabled by climate shifts, such as glacial

retreat opening up new habitat [9], or forced by global warming as previously habitable

places become inhospitable [11]. Humans mediate range expansions in many ways, such

as by introducing what will become invasive plants by seeds sticking to the soles of our

boots when we go places [7], inadvertently transmitting white-nose syndrome between

bats in different caves [63], or carrying the SARS-CoV-2 virus with us when we travel on

airplane journeys all over the world [8].

Range expansions can leave behind genomic signatures that may look like

local adaptation but actually arise due to recurrent founder events at the expansion

frontier [12]. Variants that appear near the edge of a growing colony can “surf” along

the outward growth and reach high frequencies in the newly colonized area [13, 14].

Colonies growing in 2D as on a Petri dish stochastically segregate into monoallelic

sectors due to drift and founder events leading to fixation of different alleles in different

sections of the colony’s perimeter [15, 16, 17, 18], see Fig. 18a. Genomic regions linked

to neutral surfing variants may exhibit decreased diversity solely due to the expansion

dynamics [64], although the decreased diversity mimics what can be observed following

positive selection [12] and population contractions [65].

Mutations that affect an individual’s fitness may appear during a range expansion.

The effect conferred by a mutation can be anywhere along the continuum from lethal or

strongly deleterious all the way to strongly beneficial. Much work has gone into studying

55



Figure 18. Spatial genetic patterns left behind by simulated diffusive expansions in a
2D habitat. a.) Neutral variation. The population started with 100 individuals who
were a 50/50 mix between two neutral alleles (colors) and grew to just over one million
individuals. b.) Selective variation. The population again began with 100 individuals,
but this time one individual at the top of the initial colony had an advantageous
mutation. The mutation allows the mutant sector (yellow) to grow faster than the
wildtype sector (purple). This population grew to about 6.3 million individuals, just
enough to capture the mutant sector enclosing the wildtypes.

and quantifying the distribution of fitness effects of new mutations; see, for example,

Ref. [66] and references therein. Mutations that appear in expanding populations may

thrive if they are fortunate enough to appear in an individual near the expansion frontier.

Even deleterious alleles are capable of surfing and taking over the front in 1D expansions,

particularly in populations emerging from a bottleneck [67]. They can also establish

sectors in 2D expansions, although sectors established by less fit alleles are transients

and will eventually be closed/terminated by the invasion of their fitter neighbors as the

expansion proceeds [35]. Sectors are often readily visible when there are a small number

of unique alleles, but even genomically realistic simulation studies show that recurrent

founder events at the expansion frontier leads to gradually decreasing fitness due to an

accumulation of deleterious mutations that are able to surf the wave of expansion [68].

“Fitness” as used here refers to monoallelic sector or colony expansion velocities; a fitter

allele will expand faster and win the race outwards in search of habitat or resources.

The faster growth of fitter alleles enables them to take over the expansion frontier in

1D expansions that begin from a linear inoculant and in 2D expansions that begin from

a droplet, where in both cases the initial population consists of a mixture of two alleles
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with a fitness difference between them [35]; see the mutant sector enclosing the wildtype

sector in Fig. 18b.

Fitness differences between alleles are often measured using their growth rates in

well-mixed liquid environments. Strains are allowed to grow for several generations, either

in separate environments or in a single test tube together if it’s a competition experiment,

and then the relative fitness is estimated as

swm = g1/g2 − 1 (3.1)

where g1 and g2 are the growth rates of the two alleles. Well-mixed environments

mean spatial structure is nonexistent and the population grows exponentially until it

approaches the global carrying capacity; exponential growth has been shown to make

selection more effective in terms of fixation probabilities of beneficial alleles [36]. In

this case, an allele being “beneficial” simply means that it confers the ability to produce

offspring more quickly.

However, the measurement and indeed definition of “fitness” can be context-

specific. In spatially structured environments such as Petri dishes, where the population

grows outwards diffusively in pursuit of nutrients, an allele’s ability to spread across

the landscape is of the utmost importance. It has recently been shown that spatially

structured landscapes accelerate selection by founder events causing boundless outward

propagation of one allele while cutting off the possibility of outward growth for the other

for diffusively-growing populations such as yeast on a Petri dish [69]. Spatial assays of

relative fitness [35] take advantage of the more rapid expansion of beneficial alleles to

quantify the advantage enjoyed by those which are able to win the outward race for

nutrients; one such measurement considers the opening angle of mutant sectors such as

the faster-growing (fitter) yellow sector in Fig. 18b. See Ref. [69] for a detailed overview

of different dynamics at the extremes of spatial structuredness.
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Between the extremes of diffusively spreading populations (as on a Petri dish) and

exponentially growing populations (as in a well-mixed liquid environment) lie populations

that are capable of long-range dispersal across their environment. Offspring dispersal

is a stochastic event; a probability distribution called the jump kernel quantifies how

far offspring typically disperse from their parent’s position, so any individual offspring’s

dispersal distance can be thought of as a random draw from the jump kernel. Long-range

dispersal is common in nature; in particular, Ref. [20] showed that fat-tailed jump kernels

that decay slower than exponentially with increasing distance are a good description for

the dispersal of many plant species. Long-range dispersal can lead to “patchiness” in the

spatial distribution of genotypes that mimics local adaptation but is really just the result

of random dispersal events across the landscape, such as in the case of soft sweeps in

populations with long-range dispersal [22].

The influence of random chance is increased in populations capable of long-range

dispersal since founder events can occur throughout the landscape even at long distances

from the densely occupied core, whereas the aforementioned gene surfing and genetic

sectors are limited to form exclusively at the edge of colonies that expand diffusively.

This can give rise to “survival of the luckiest” evolutionary dynamics instead of the

naive picture of “survival of the fittest”: an allele that disperses an offspring into vacant

territory far beyond the core may be able to carve out a niche for itself and increase its

frequency, even if it is deleterious.

The survival of mutations in expanding populations has been studied for

populations that grow diffusively [35] and exponentially [36], but there is an outstanding

need to study the outcomes of mutations that appear during invasions driven by long-

range dispersal [37]. Range expansions driven by fat-tailed jump kernels are challenging

to study because the growth is driven by rare long dispersal events; however, recent

theoretical work has enabled quantitative predictions about the evolution of neutral

diversity [23] and soft sweep patterns [22] in populations with long-range dispersal.
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That work builds on Ref. [21], who determined the analytical forms of colony growth

when dispersal distances are drawn from a power law jump kernel that decays as

J(r) ∼ 1/rµ+1, where the kernel exponent µ sets the “heaviness” of the tail of the jump

kernel. Low values of µ lead to broad jump kernels and frequent long-range dispersal

events, while higher values of µ create narrower jump kernels and shorter dispersal on

average. Power law kernels are common in nature [20], and this form is useful because

one can continuously traverse from diffusive colony growth when µ > d + 1 (where d is

the spatial dimension) all the way to the well-mixed extreme as µ → 0 by only adjusting

the kernel exponent µ. Colony growth is fastest at low kernel exponents because offspring

are more likely to disperse a long distance and land in unoccupied territory away from

the core of the growing population. µ < d + 1 is the jump-driven growth regime,

where long distance dispersal events drive colony growth. A second division separates

different asymptotic functional forms of colony growth within the jump-driven growth

regime: colony growth approaches stretched exponentials at long times for µ < d, while it

approaches faster than linear power laws for d < µ < d+ 1.

There is also an outstanding need to study the outcomes of mutations that appear

in quickly-growing populations where individuals can live for multiple generations.

Ref. [36] studied the fixation probability of new mutations in exponentially growing

populations (among other demographic scenarios), but their non-overlapping generations

limit the speed at which low-frequency mutations can accelerate away from loss. Many

types of organisms can survive for multiple years, such as perennial plants. If individual

survival is determined by some type of density-dependent competition, long-range

dispersal could transport a new or low-frequency mutation to vacant territory that

virtually eliminates the possibility of loss at a time when the mutation would otherwise

be at greatest risk of being lost.

We seek to address these knowledge gaps by studying the outcomes of fitness-

affecting mutations that appear during range expansions driven by long-range dispersal.
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We measure mutation outcomes in terms of survival rates, i.e. the probability that a

mutation that appears during an expansion will still be present in the population much

later. We also investigate how quickly new mutations are lost and explore the final

frequencies of mutations that remain to form a lasting part of the population.

3.2 Methods

3.2.1 Simulation methods. We simulated range expansions in an isotropic

2D landscape using SLiM [33]. The spatial landscape is continuous and does not impose

any local deme structure. Simulations begin with 100 individuals randomly placed within

a small circle around the origin. Density-dependent competition models the struggle for

resources experienced by natural populations. We define the carrying capacity density ρK

and the competitive interaction length scale ri, which combine to form the local carrying

capacity as K = ρKπr2i . We then define how individuals compete with one another:

spatial competition is quantified using a Gaussian kernel with standard deviation ri that

extends out to distance 3ri. The competition strength exerted between a nearby pair of

individuals is

c(d12) = exp
[
−d212/

(
2r2i
)]

(3.2)

where d12 is the distance between them. We ignore competition between individuals

separated by more than 3ri because the Gaussian function values become negligible. The

competition is reciprocal, so all pairs of individuals exert equivalent competition strengths

on one another.

While K is the local carrying capacity parameter we feed into simulations, that

number only captures the saturated population of a region with radius equal to the

competition length scale ri; in that sense it can be seen as a carrying capacity population

scale. Individuals are aware of each other and compete with everyone within three

length units ri of their position; therefore the true number of competitors with which

an individual can share a saturated region is ρKπ (3ri)
2 = 9K ≡ K ′. The plots and
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relevant interpretations in Section 3.3 will be in terms of K since that is the parameter

we set and the joint parameter N∗/K (defined below) takes nice values, but we focus on

K ′ as the true local carrying capacity in analyses which depend on the actual number of

competitors one may face.

The Gaussian interaction function causes nearby individuals to compete more

fiercely with each other than distant individuals. Each time step, everyone in the

population measures the population density ρ in their immediate surroundings by

summing up the competition strengths exerted by everyone within distance 3ri and

then dividing that total competition strength by the integral of the Gaussian interaction

function over the entire interaction region to get a density in units of number per area

(see Section 3.5.1 for further discussion). Their probability of surviving to the next time

step is ρK/ρ or 1, whichever is lower, meaning individuals in not-full regions definitely

survive and individuals in full regions may die.

All individuals in the population get a chance to produce offspring by cloning at

the start of each time step. The numbers of offspring produced by each individual are

random draws from Poisson distributions. Wildtypes produce one offspring per time step

on average; mutants produce 1 + s, where s is the fitness effect of the mutation. Offspring

disperse a random distance and direction from their parents. Dispersal distances are

drawn from the following jump kernel:

J(r) =


A/ri r ≤ ri

(A/ri)(r/ri)
−(µ+1) r > ri

(3.3)

where the normalization constant is A = µ
µ+1 . Note that A equals the total probability

of drawing a dispersal distance less than or equal to ri, so it sets the balance between

local and long-range dispersal attempts. Using power law jump kernels means that

our colonies will grow according to the forms discovered by Ref. [21] and connects this

work to the growing body of knowledge about evolution in populations with long-range
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dispersal driven by such kernels [22, 23]. The dispersal direction is a random draw from

the uniform distribution between zero and 2π. This jump kernel assumes that dispersal

distances occur on the same length scale that governs spatial competition, with uniform

probability of drawing disprsal distances anywhere between zero and the length scale

ri and decreasing probability of dispersing further away. Combining the two length

scales also serves to simplify our parameter space by eliminating the need to introduce

a separate length scale for dispersal.

A mutation with fitness effect s is introduced in a newborn individual at the end

of the first time step when the population exceeds N∗ individuals. Choosing the first

individual to have the mutation at the end of this time step guarantees that individual at

least one opportunity to produce offspring. The order of operations within any time step

is as follows. The first step is offspring generation and dispersal. Then, everyone in the

population measures the local population density in their immediate surroundings. After

that, individuals survive or die probabilistically depending on the population density they

measured in the previous step. All individuals simultaneously carry out the actions of

each of the previous substeps. Finally, we check to see if the mutation has been lost or if

the population has reached a predetermined cutoff size and terminate the simulation if

either condition is true.

Density-dependent competition leads to a significant proportion of the population

being replaced every time step, particularly in the densely occupied core of the colony.

Since everyone produces an offspring each time step on average, a region that begins

a time step saturated to K individuals has roughly K additional new offspring that

attempt to establish within the region during the offspring generation process. Everyone

will measure densities of approximately 2ρK , leading to roughly a 50/50 chance of

surviving to the next time step. The median ages at the end of simulations are always

zero or one, but the distribution of ages has a long tail (maximum usually just over 20)

since long-range dispersal can transport offspring to faraway vacant habitat where they
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are guaranteed to survive for several time steps (∼10) before their region saturates and

they may be squeezed out and unable to compete for resources.

Simulations end when the mutation is lost or when the population reaches a

predetermined cutoff size, typically 107 individuals. This cutoff size allows us to record

five orders of magnitude of population growth, and is far enough above our values of

N∗ that there was ample time to get statistics on whether or not the mutation will be a

lasting contributor to the expanding population. We report the results of 100 simulations

at each individual set of parameters discussed here. We focus on µ < 3 in order to

explore the dynamics and mutation outcomes in jump-driven expansions, extending

beyond what is currently known about beneficial mutations that appear in diffusive

expansions [35]. We simulate neutral mutations and mutations with fitness effects at

various orders of magnitude spanning from strongly deleterious to strongly beneficial. We

sample such a variety of fitness effects in order to gain intuition about mutation outcomes

throughout the space of possible advantages, from the common nearly neutral ones all

the way out to rarely touched but still relevant extremes. We use K = 100 throughout

this work, as that allows us considerable options for varying N∗/K without quite being

computationally prohibitive. We restrict the parameters shown in the plots of Section 3.3

to focus attention on the salient takeaway from each figure.

3.2.2 Expectations. The small and initially compact population at the

start of the range expansion is a bottleneck. It has been shown that proximity to a

bottleneck can be a key factor determining the long-term fate of new mutations [67]. For

this work, it is most convenient to measure proximity to the bottleneck in terms of N∗,

the population size when the mutation appears. However, N∗ alone does not take into

account if a newborn individual should expect to have to fight for resources. We combine

N∗ with the local carrying capacity K to form the dimensionless mutation introduction

time N∗/K as a unitless measure of how densely or sparsely occupied the landscape is

expected to be. “Early-appearing” mutations occur at low values of N∗/K (order one or
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Figure 19. Empirical cumulative distribution functions (ECDFs) of the local population
densities surrounding all newborn individuals in the first time step when the population
size exceeds N∗. The initial mutant is a random sample from these newborns. We
generated this data by running as few simulations as necessary to sample at least 10000
newborns. We got just over 10000 samples for N∗/K ≤ 100 and roughly 50000 samples
for the higher values. This required 1-6 simulations for the highest four values of N∗/K
and about 50 simulations for N∗/K = 3.

lower), when the homeland has few individuals and individuals are unlikely to be killed

by density-dependent competition. The mutations appear in a population that’s growing

outwards with nothing but vacant habitat beyond. “Late-appearing” mutations occur at

high values of N∗/K (N∗/K ≫ 1), when there are already many individuals competing

for resources. The worst case scenario for a new mutation is to appear in the densely

occupied core of the colony, where the existing population is largely replaced every time

step and the life expectancy is short.

We can interrogate the population densities around newborns at time steps

when the mutation is introduced as a crude measure to understand the landscapes

that mutations are typically born into. This is the observable outcome that we hope

to quantify with the ratio N∗/K. As shown in Fig. 19, initial mutants at low N∗/K

in populations with broad jump kernels are likely to be born into sparsely inhabited

areas, whereas later initial mutants become more likely to appear in saturated areas,

particularly for narrower jump kernels.

We use the worst case scenario to form the lower bound on expected outcomes.

Recall that the pre-existing population is largely replaced every time step in saturated
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regions. The population size remains fixed at approximately K ′ individuals within

the region, resulting in local dynamics that resemble the Moran model [70]. Unlucky

mutations that appear in saturated regions must survive Moran-like local dynamics in

their immediate vicinity if they wish to be a lasting part of the population. We estimate

the mutation fixation probability using the Moran model following the logic that the

mutation must fix locally somewhere in order to remain in the population indefinitely.

The eventual fixation probability of a mutation that starts as one copy in a constant-sized

population of K ′ individuals is given by

P =
1− (1 + s)−1

1− (1 + s)−K′ (3.4)

where 1 + s is the fitness of mutants relative to wildtypes. We expect that the survival

probability of a new mutation will be at least this fixation probability. See the fixation

probabilities in Table 1.

The Moran model gives us a shorthand for establishing expectations about

whether random genetic drift or selection should be the stronger force determining the

outcome of mutations that appear in saturated areas. Random genetic drift is expected

to dominate when |K ′s| ≪ 1, where nonzero values of s are negligible and the fixation

probability is approximately P ≈ 1/(K ′). On the other hand, selection should be the

more important factor when |K ′s| ≫ 1, where the fixation probability for beneficial

mutations goes to P ≈ s. Values of K ′s are included in Table 1; we expect to see

signs of selection continually getting stronger at the increasingly large values of |K ′s|

we’ve chosen. What remains to be seen is how the interplay of long-range dispersal and

spatial structure affects the expected effectiveness of selection. Recent investigations into

populations at the extremes of spatial structure [69] suggest that selective mutations will

have better outcomes in populations with more spatial structure resulting from narrower

jump kernels, but where and how and how quickly that transition occurs is unknown.
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s K ′s Moran Moran wt takeback OW

-0.5 -450.0 1.18e-271 5.00e-01 NA
-0.2 -180.0 1.51e-88 2.00e-01 NA
-0.1 -90.0 7.31e-43 1.00e-01 NA
-0.05 -45.0 4.70e-22 5.00e-02 NA
-0.02 -18.0 2.59e-10 2.00e-02 NA
-0.01 -9.0 1.19e-06 1.00e-02 NA
-0.002 -1.8 3.96e-04 2.40e-03 NA
0.0 0.0 1.11e-03 1.11e-03 0.60
0.002 1.8 2.39e-03 3.97e-04 0.60
0.01 9.0 9.90e-03 1.29e-06 0.61
0.02 18.0 1.96e-02 3.64e-10 0.62
0.05 45.0 4.76e-02 4.25e-21 0.64
0.1 90.0 9.09e-02 5.58e-39 0.68
0.2 180.0 1.67e-01 1.09e-72 0.74
0.5 450.0 3.33e-01 1.65e-159 0.86

Table 1. Fixation probabilities at all values of s and corresponding K ′s for two different
models. Moran gives the Moran model fixation probability for a mutation with a
single copy among a population of K ′ individuals, while Moran wt takeback gives the
Moran model probability of a single wildtype eventually fixing among a population
of K ′ individuals that are otherwise all mutants. OW is Otto and Whitlock’s survival
probability for mutations in exponentially growing populations, computed as the solution
to Eq. (3.5).
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The Moran model comes in handy again as a way of showing the importance of

mutant establishment and local fixation. We can use it to quantify the inverse of the

previous paragraphs: how likely are wildtypes to retake a region where the mutation has

fixed? Now the relative fitness in Eq. (3.4) is the fitness of wildtypes relative to mutants,

(1 + s)−1. It’s unlikely for wildtypes to take back a single region where the mutation

has fixed for all but the most deleterious mutations. A mutation with a solid foothold

in the population may quickly establish in mutiple areas. A single wildtype takeback

is unlikely, but the probability of multiple separate wildtype takebacks is vanishingly

small, highlighting the lasting importance of rapid establishment and growth of nascent

mutations. The probability of wildtypes taking back a mutant region is included in

Table 1.

An upper bound on expected outcomes is harder to establish. The closest

theoretical work has been done by Ref. [36], who computed fixation probabilities in

exponentially growing populations with non-overlapping generations. Their definition

of fixation of an allele was the allele having descendants in the population after a very

large amount of time has passed, analogous to our use of survival/survival rate verbiage

since any mutants present at the end of our simulations must be descendants of the

initial mutant. They extended the branching process approach of Ref. [71] to estimate

the survival probability as the solution of

1− P = exp [−(1 + s)(1 + r)P ] (3.5)

where r is the exponential growth rate and s is assumed to be positive. We will compare

our results against their survival probabilities since they offer a benchmark outcome at

the well-mixed extreme, but keep in mind that their survival probability does not exactly

apply to our simulations due to the different life expectancies/generation structures.

Another key difference is that Eq. (3.5) comes from a well-mixed model that does not

incorporate space, whereas the spatial landscape is an important player in our range
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Figure 20. Observed survival rates versus mutation advantage s at three values of N∗/K.
Points mark the observed proportion of simulations where the mutation was present in
the population at the end of simulations, and error bars are the 95% bootstrap confidence
interval over 100 replicate simulations at each parameter set. Note that x axes are scaled
logarithmically on either side of s = 0. Kernel exponents are arranged in descending order
as you move from left to right so that long-range dispersal increases as you move to the
right.

expansions. Population growth approaches the well-mixed extreme as µ → 0, but such

broad jump kernels lead to boundless dispersal across the landscape and unrestricted

growth as offspring are always able to disperse to locations devoid of competition. The

closest comparison we make here is for fast expansions with µ = 1, where we estimate the

survival probabilities reported in Table 1 by fitting for an effective growth rate using data

from the first few generations of population growth (see Section 3.5.3 for further details).

Non-overlapping generations limit the speed at which low-frequency mutations

can accelerate away from loss, whereas individuals can live for many generations in

our simulations if they happen to be born in a sparsely inhabited area. Long life

expectancies for newborns in relatively vacant habitat can dramatically improve the

survival probability of a new mutation if it is fortunate enough to appear there, since

it is protected against loss when its frequency is low and it would otherwise be at great

risk. We expect to see the greatest survival rates for mutations that appear early in

expansions driven by broad jump kernels with low exponents µ. Those survival rates

may even surpass what was predicted by the spaceless model of Ref. [36].

3.3 Results

68



3.3.1 The value of s often does not affect survival rates. The first

question of interest is whether or not a mutation that appears during a range expansion

will remain to form a lasting part of the population. We measure this in terms of survival

rates, the observed proportion of simulations where the mutation is still present in the

population at the end of the simulation. We found that a new mutation’s fitness effect

has no measurable impact on its survival probability for all but the most extreme values

of s we explored, as shown in Fig. 20. Extremely beneficial and deleterious mutations

have higher and lower survival rates, respectively, but a flat horizontal line can be made

to fall within the error bars for all or nearly all values of s within ±0.05 at any (µ,

N∗/K) pair, which corresponds to |K ′s| ≤ 45.

Two spatial factors seem to be the key players determining survival probability:

the ability of new offspring to disperse across the landscape, as measured by the kernel

exponent µ; and the landscape occupancy when the mutation appears, as measured by

N∗/K. The dispersal dependence is visible by looking left to right across the panels of

Fig. 20. Survival rates increase as jump kernels get broader (as µ decreases) regardless

of the other parameters. Increased ability to disperse offspring long distances across the

landscape increases the odds that a nascent mutation will be able to surf the outward

expansion and survive to play a longstanding role in the population’s evolution.

Early-appearing mutations tend to fare better than those that appear later, as is

evident by looking at the different colored survival rates within each panel of Fig. 20.

The initial population can be thought of as emerging from a population and spatial

bottleneck, so individuals born within the first few generations see nothing but vacant

habitat as they look outwards and their descendants may have a large contribution to

the final population. While evidently early is best, specifically how late “late-appearing”

mutations appear has no impact on their survival probabilities. This is visible based on

the indistinguishable survival rates between the two higher values of N∗/K within each
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Figure 21. ECDFs of the frequencies of surviving mutations.

panel of Fig. 20: there is no difference in mutation survival rates despite the order of

magnitude difference in population size when the mutation appears.

3.3.2 The value of s often does not affect frequency distributions

of surviving mutations. The second question of interest is what frequency may a

mutation achieve given that it does survive? Is it present in the population but at very

low frequency, teetering at the precipice of loss, or has it been so successful that it may

eventually reach fixation? Returning to the Moran model expectations (Section 3.2.2) and

local fixation probabilities (Table 1), we expected to see signals of selection continually

growing stronger at the increasingly extreme values of |K ′s| we used in our simulations.

The expected signal would be that more beneficial mutations should reach generally

higher frequencies, and similarly more deleterious ones should have lower frequencies. We

see elements of that signal in the empirical cumulative distribution functions (ECDFs)
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N∗/K µ p value adjusted p value

3 1.0 0.002576 0.006623
3 1.5 0.008721 0.019027
3 2.0 0.053766 0.107532
3 2.5 0.007886 0.017742

100 1.0 0.516170 0.589909
100 1.5 0.306230 0.424011
100 2.0 0.285060 0.410486
100 2.5 0.200000 0.320000
1000 1.0 0.659620 0.730656
1000 1.5 0.924980 0.946475
1000 2.0 0.298930 0.422019
1000 2.5 0.259420 0.381189

Table 2. p values and adjusted p values from K-sample Anderson-Darling tests on
the ECDFs of surviving mutation frequences for the mutations with |s| ≤ 0.05
shown in Fig. 21. p values were adjusted according to the procedure of Benjamini and
Hochberg [72] which controls the false discovery rate.

of frequencies of surviving mutations, shown in Fig. 21. The empirical distributions

of mutation frequencies are often shifted higher or lower for the strongest beneficial or

deleterious mutations, respectively, where |K ′s| ≳ 100.

However, the distributions of frequencies for mutations closer to neutral appear

less sensitive to values of s over a wide range, mirroring the insensitivity of survival

rates to s shown in Fig. 20. To identify the mutation effect sizes at which differences

in frequency distributions are meaningful, we performed K-sample Anderson-Darling

tests [73] on the ECDFs of the surviving mutation frequencies for all mutations with

various ranges of |s|. The null hypothesis being tested is that the observed frequencies

at each value of s are samples from some common (unspecified) distribution; rejecting

the null hypothesis in this case would mean that the data we measured would be highly

unlikely if the samples were really all from some common distribution (where the

definition of “highly unlikely” comes from the threshold p value at which we decide to

reject the null hypothesis). In Table 2, we show p values from tests that used mutations

with |s| ≤ 0.05. The p values show that we can only reject the null hypothesis for a few
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values of µ and the earliest-appearing mutations. Intuitively, this means that nonzero

values of s within |s| ≤ 0.05 don’t have any meaningful impact on the frequency a

mutation is expected to achieve. The tests show us that fitness effects become significant

when mutations get even stronger; an extended table showing results from all tests is

presented in Section 3.5.3, Table 3. Incorporating more extreme values of s into the tests

leads to the null hypothesis being rejected at 8/12 (N∗/K, µ) pairs when mutations with

|s| ≤ 0.1 are used and at all parameter combinations when mutations with |s| ≤ 0.2 or

|s| ≤ 0.5 are used.

We should note that there is a clear theoretical limit that can be considered here:

the expected frequency under a well-mixed model. Studying frequencies with respect

to that limit tells us about the influence of space and dispersal across the landscape

on mutation outcomes; see Section 3.5.2 for discussion relative to the well-mixed

limit. A fact we will mention here in the main text is that the frequency attained by

deterministically growing mutants in a well-mixed model with the same final population

size does not vary strongly when |s| < 0.05, suggesting that the simulations have not run

long enough for the ECDFs in Fig. 21 to be well-separated from each other at µ = 1. It

is possible that the null hypothesis will be rejected if the range expansion runs for longer,

as small differences in growth rates between the wild type and the mutant accumulate

over longer times. However, space has been shown to accelerate selection relative to well-

mixed environments [69], which might lead one to believe that we should observe greater

separation between the ECDFs with |s| ≤ 0.05 at the higher values of µ. The tightly-

packed ECDFs we observe in our data defy that expectation.

3.3.3 Effects of long-range dispersal on survival rates. We now

return to observed mutation survival rates and directly consider how different amounts

of long-range dispersal affect mutation outcomes; this perspective also allows us to revisit

the theoretical expectations discussed in Section 3.2.2. Recall from Fig. 20 that broad

jump kernels and early appearances promote mutation survival, while having late versus
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Figure 22. Observed mutation survival rates plotted against kernel exponent µ for neutral
and very strong mutations. The upper dashed line marks the survival probability under
the exponential growth model of Ref. [36], and the lower dashed line marks the fixation
probability under the Moran model as computed in Section 3.2.2. The two lines are
indistinguishable at s = −0.5 where survival is unlikely. Points mark the observed
proportion of simulations where the mutation was present in the population at the end
of simulations, and error bars are the 95% bootstrap confidence interval over our 100
replicate simulations.

later values of N∗/K doesn’t seem to make a difference. Those points are reiterated

in Fig. 22, which reports survival probabilities grouped by values of s, allowing us to

compare against the theoretical expectations mentioned above. Survival rates are highest

at the broadest jump kernels and decrease as kernels get narrower. The early-appearing

mutations with N∗/K = 3 survive at much higher rates than late-appearing mutations,

and the survival rates of the late-appearing mutations are approximately equal despite

the order of magnitude separating their values of N∗/K. The horizontal dashed lines in

each panel come from the expectations outlined in Section 3.2.2.

The fixation probability from the Moran model [70] only depends on s and K ′

(Eq. (3.4)) and forms the lower bound on expected survival rates. That baseline assumes

the mutation first appears in a region saturated to K ′ individuals and considers the

outcomes only in terms of local dynamics within that region. Survival rates are always

at least as high as the Moran model fixation probability (lower dashed line in each panel

of Fig. 22), even for mutations that appear late in populations with the narrowest jump
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kernels shown here. Those mutations are likely to appear in fully saturated regions

(Fig. 19), but they persist at higher rates than the Moran model predicts.

The survival probability under the exponential growth model of Ref. [36] depends

only on s and the population growth rate, see Eq. (3.5). The sparsely inhabited landscape

and lack of competitors can allow early-appearing mutations in populations with broad

jump kernels to persist at higher rates than what is predicted by the model of Ref. [36],

whose survival probability is plotted as the upper dashed line in each panel of Fig. 22.

Late-appearing mutations in populations with broad jump kernels survive at rates

approaching the survival probability from Ref. [36], suggesting that it may be a useful

upper bound on expected survival rates for beneficial mutations that appear later into

fast expansions. We also see that even highly deleterious mutations can remain in the

population indefinitely if the mutation happens to appear near the beginning of a range

expansion in a population with a broad jump kernel.

3.3.4 Mutations can persist indefinitely at small population sizes.

The Moran model fixation probabilities of Table 1 show the likelihood of the mutation

reaching fixation among a population of K ′ individuals and the probability of wildtypes

taking back a region where the mutation has fixed. We interrogated our simulation

results in search of signals of interesting dynamics following local fixation by exploring

the data conditional on whether or not the mutant population was ever greater than or

equal to K ′ individuals at the end of any single simulation time step. We use whether

or not the mutant population size reached K ′ individuals as a minimal proxy for

local fixation since our continuous spatial landscape doesn’t have any demes or other

boundaries we could use to cleanly impose spatial structure or discriminate between

“local” and non-local events.

In Fig. 23a, we show that most mutations fail to reach population sizes of K ′.

A mutation’s probability of reaching a population size of K ′ depends on N∗/K in a

similar way to what was observed in the survival rates of Figs. 20 and 22: early-appearing
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Figure 23. Mutation outcomes in simulations where the mutant population never reached
K ′ individuals. a.) The proportion of simulations where the mutant population never
reached K ′ individuals. b.) Mutation survival rates in simulations where the mutant
population never reached K ′ individuals. Error bars are the 95% bootstrap confidence
interval.
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mutations are more likely to reach a population size of K ′, while the probability of

doing so doesn’t appear to depend on N∗/K at the two higher values despite the order

of magnitude between them. There is a sharp increase in the probability of reaching

population sizes of K ′ for the most beneficial mutations, mirroring the improved survival

rates for the most beneficial mutations shown in Fig. 20. Reaching K ′ individuals seems

to be a high and unlikely level of success for most mutations, and it seems to guarantee

the survival of mutations that are able to do it; we never observed mutations being lost

after reaching population sizes of K ′ individuals.

In Fig. 23b, we show the survival rates of mutations which never reached

population sizes of K ′ individuals. Never reaching K ′ individuals means that the

mutation could not have locally fixed anywhere in the landscape, so it would be destined

for loss based on the Moran model expectations that ignore the expanding range

(Section 3.2.2). However, we find that it is increasingly possible for the mutation to

survive without ever being present in K ′ individuals as jump kernels become broader,

especially for later-appearing mutations. Evidently more long-range dispersal across the

landscape supports a mutation’s effort to remain in the population, even if it is never

able to locally fix anywhere. Perhaps being present at low to intermediate frequencies in

multiple regions provides enough defense against loss and sufficient offspring production

and dispersal attempts that some mutations can persist indefinitely without ever taking

over one single region of space.

3.3.5 Most mutations to be lost are lost quickly. Statistics about

mutation survival rates and possible mutation frequencies are influenced by the

simulation parameters, in particular the cutoff population size at which simulations are

terminated (recall, we use 107 individuals as that cutoff throughout this paper). It is

possible to learn about how observed survival rates may change in shorter or longer range

expansions by interrogating the population sizes at which mutations are lost, as explored

in Fig. 24. Most mutations that are lost disappear from the population within the first
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Figure 24. Rescaled population sizes at the time step when mutations are lost from their
respective populations. The population size N is rescaled by dividing by the population
size N∗ when the mutation was introduced; the × symbols mark the rescaled cutoff
population sizes at which simulations are terminated: 107/N∗.

two orders of magnitude of population growth after they appear (all medians fall below

100 in Fig. 24). All extremely beneficial mutations that will be lost are lost more or less

immediately after they appear – their fates are decided right away (Fig. 24c).

The picture is slightly more nuanced for neutral and strongly deleterious

mutations (Fig. 24a–b). In both cases, there are (µ, N∗/K) pairs where many points

are grouped at or just below the cutoff population size. These points suggest that our

observed survival rates are transients and still decaying, since there’s nothing special

about the cutoff population size we chose. Longer simulations could result in notably

lower survival rates at those parameter combinations if mutations are still being lost from

those populations at a steady rate. Parameter combinations with few or no points near

the cutoff population size have likely shown us something close to the “true” survival

probability at those parameters; the same mutations would be lost in shorter simulations,

and we assume that survival rates would be nearly identical in slightly longer expansions

since there’s nothing special about our cutoff.

3.4 Discussion

A new mutation’s fitness effect has a far weaker impact on survival probabilities

(Fig. 20) and mutant frequencies (Fig. 21) than would be expected if fixation within a

local density regulation region were necessary for long-term survival. As discussed in
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Section 3.2.2, we expected to see signs of selection continually becoming more effective

as values of |K ′s| became larger; instead, space seems to be the key factor determining

possible mutation outcomes in two ways.

First, mutations that appear early (N∗/K values of order one) appear in

individuals who have relatively few competitors and see nothing but vacant habitat

beyond them. It pays dividends to appear early, close to the spatial and population

bottleneck that is the beginning of the expansion. The specific time at which the

mutation appears ceases to matter once N∗/K ≳ 100. Much of the population growth

happens just beyond the core in regions that will soon be absorbed into it, meaning that

even mutations that appear to be born away from the core population may quickly be

surrounded and thwarted by wildtypes. Regardless of where in relation to the core a new

mutation appears, it becomes more likely for juveniles to be born into locally saturated

areas as N∗/K increases, particularly for narrower jump kernels as shown in Fig. 19. The

primary struggle for a new mutation will be whether or not it can establish locally, which

has nothing to do with the global population size. For later-appearing mutations, the key

takeaway seems to be that the local dynamics, such as what is summarized by the Moran

model in Eq. (3.4) and Table 1, need to be considered as an important factor even in

populations with long-range dispersal.

Second, mutations are more likely to survive in populations with broader jump

kernels (Fig. 22), even if they are never able to locally fix anywhere (Fig. 23b). More

long-range dispersal helps the population spread faster and enables offspring to disperse

long distances in search of vacant habitat. Newborn individuals in populations with

broader jump kernels are generally born into less densely occupied areas than those in

populations with narrower jump kernels (Fig. 19), increasing the odds that a nascent

mutation could establish a solid foothold in the population before experiencing fierce

competition from wildtypes. That being said, we do see signs of selective mutations’

outcomes improving relative to neutral at lower values of s for narrower jump kernels
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(see Fig. 20); we also show in Fig. 27 that the highest frequencies at any given (N∗/K,

s) pair are often achieved by populations with narrower jump kernels. These results are

in line with the findings of Ref. [69] that spatial structure enhances selection. Given that

a mutation isn’t lost soon after appearing (as is the most common case; Fig. 24), it may

soar to the highest heights in populations with narrower jump kernels if all else is equal.

Our simulation results provide insights into mutation outcomes in populations

for which there is no existing theory. We showed that unlucky mutations can be likely

to appear in fully saturated regions even in populations with long-range dispersal,

necessitating the Moran model fixation probability as a worst case lower bound on

expectations. This scenario is most relevant in populations with narrower jump kernels

as shown in the right panel of Fig. 19. For fast expansions with broad jump kernels,

the closest theoretical work to date was done by Ref. [36], who computed the survival

probability for mutations that appear in exponentially growing populations with non-

overlapping generations. Our simulations with density-dependent mortality provide a

mechanism by which individuals can survive for several time steps if they are fortunate

enough to be born in a relatively empty area. This effect launches survival rates above

the survival probability from Ref. [36] for mutations that appear early in populations

with broad jump kernels. Even if we don’t know the exact breadth of a jump kernel’s

power law tail or exactly how early a mutation appeared during an expansion, Ref. [36]’s

survival probability provides a good starting point for estimating mutation survival

probabilities. The survival rates we observed were always of the same scale as the

probabilities we computed according to the procedure outlined by Ref. [36], which would

make that value a worthwhile first estimate for survival probabilities in e.g. experimental

populations, where there may be more unknowns and messier conditions than our

idealized simulations.

Neither the Moran model nor Ref. [36] consider the influence of space or the

expanding range on mutation outcomes. Later-appearing mutations become more likely
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to appear in saturated regions, particularly in populations with narrower jump kernels

(Fig. 19), meaning a new mutation will have to compete against an otherwise all-wildtype

local population filled to the local carrying capacity in order to survive. The Moran

model fixation probabilities set our baseline expectations for mutations that appear

in saturated areas, and they are often quite low (Table 1). In the Moran model, any

mutations that don’t reach fixation are lost, so the probabilities in Table 1 suggest

that we should see very few surviving mutations at many parameter combinations.

However, even though the local fixation probabilities are often low and we rarely see

signals of possible local fixation (Fig. 23a), we often observe high survival rates that are

constant across a wide range of fitness effects s (Fig. 20). These higher than expected

survival rates seem to be a result of the population’s expansion into unoccupied territory.

Mutations that appear in recently colonized areas may experience less competition than

those that appear in the densely occupied core and therefore be able to quickly proliferate

due to the decreased competition, analogous to the gene surfing that can occur during

diffusive expansions. Mutants may take advantage of long-range dispersal to travel

outwards from partially inhabited area to partially inhabited area, making it possible

for the mutation to survive indefinitely despite never locally fixing anywhere (i.e. the

surviving mutations which generated the data plotted in Fig. 23b).

We have shown that whether or not a new mutation persists in a population

is independent of the effect the mutation confers on its carriers for the most common

(non-extreme) range of fitness effects. This may encourage different mutations to become

prominent in different habitats that have been invaded by the same species, since different

mutations will stochastically appear in individuals in each site and any new mutations

are likely to be functionally neutral in terms of their survival probability and expected

frequency if they do survive (i.e. within the flat section with |s| ≤ 0.05 in Fig. 20, the

same range of s values that were not statistically significant from neutral as shown in

Table 2). This structure could possibly be detected by population genetic measures of
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differentiation between populations, such as FST , although it may be difficult to pin

said variation on expansion dynamics rather than other factors (like generic isolation

by distance).

In this work, we restricted our focus and studied only mutations that confer

a global fitness effect by changing the offspring production rate. A local competitive

advantage could provide a different mechanism for a mutation that appears during a

range expansion to remain and/or become prominent in the population by means of

increasing the survival probability of mutants relative to wildtypes in saturated areas.

Incorporating local competition into the model could lead to surprising new outcomes.

Ref. [74] recently explored how a slower-expanding microbial strain can beat a faster

strain and take over the front of diffusive range expansions. In 2D expansions analogous

to what we report here, the slower strain invades by forming a dented sector that eats

into the faster strain’s sector. Intuition about the “fastest runner winning the race”

breaks down because the slower strain has a local advantage over the faster strain and

can invade laterally into what would otherwise be the faster strain’s territory, despite the

slower strain’s decreased radial expansion. An exciting future research topic will be to

incorporate local competition effects, as that could illuminate pathways to evolution for

populations that are unlikely or unable to evolve via global fitness differences alone.

Mutations can also influence fitness by changing the dispersal of those who

carry them. This scenario has clear ecological motivations, such as plants evolving

to produce seeds that are more easily carried long distances by the wind. Changes to

dispersal rather than (or in addition to) fecundity could readily be incorporated into our

simulations to study evolution in populations with mutations that affect dispersal. One

should carefully consider the populations they hope to model with such changes, and

carefully account for any costs associated with changes that affect dispersal. For example,

cane toads have evolved longer legs which accelerate their invasion of Australia [10],

but there is a metabolic cost to fueling the bigger muscles in longer legs that leads to
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diminishing returns on fitness beyond some threshold leg size. This sort of trade-off must

be acknowledged in studies that hope to model results of physical changes in organisms.

Another interesting future direction would be to study outcomes in populations

where multiple mutations could appear stochastically during the expansion rather than

having exactly one mutation appear during the expansion at a predetermined time as

we have done here. Our simulations model the spread of just one allele in an otherwise

homogeneous population, such as the simplified picture of the alpha variant becoming the

prominent strain of SARS-CoV-2 in the relatively early stages of the Covid-19 pandemic

when most people got infected with the original strain of the virus. But that picture is

obviously not the full story; the delta variant later became the prominent strain, then

the omicron variant quickly spread worldwide. What were the factors that caused those

strains to spread around the world so quickly? How did the relative fitness of each strain

combine with the random location that it first appeared and the dispersal by infected

people to overcome all other pre-existing and parallel-appearing strains of the virus?

This work is a minimal case that will build intuition and basic knowledge to later inform

studies of populations where multiple fitness-affecting mutations could appear as the

population expands into new territory.

3.5 Supplementary Information

3.5.1 Simulation details. Simulations begin with 100 individuals

randomly placed near the origin. The x and y positions of each individual were random

draws from Gaussian distributions with mean zero and a capacity-dependent standard

deviation; we used σ = 0.4ri for the simulations with K = 100 reported throughout the

main text. We sought to create a compact initial population so that individuals would

immediately feel the effects of density-dependent competition rather than a sparsely

inhabited landscape where there was little competition and unconstrained growth for

the first several time steps. The landscape is large enough to be functionally boundless;

the periodic boundary conditions have no effect.
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Local population density measurements begin by the focal individual summing

up the competition strengths exerted by everyone within distance 3ri; those competition

strengths are computed according to the Gaussian competition function Eq. (3.2). That

total competition strength is then divided by the integral of the interaction function over

the entire interaction region:∫ 2π

0

∫ 3ri

0
r exp

[
−r2/

(
2r2i
)]

dr dθ ≈ 6.21339

The integral of the interaction function represents something like the total “interaction

field” present around the focal individual [75], and dividing the total competition strength

felt by the focal individual by the integrated interaction function returns a population

density value in the correct units that accounts for increased competition between nearby

individuals relative to that between distant pairs of individuals.

Dispersal distances were drawn using inverse transform sampling. Recall, the

jump kernel is

J(r) =


A/ri r ≤ ri

(A/ri)(r/ri)
−(µ+1) r > ri

where the normalization constant is A = µ
µ+1 ; A also equals the total dispersal probability

with ri. The sampling procedure begins by drawing a random number X from the

uniform distribution between zero and one. If X ≤ A, the offspring will land within ri

of their parent. The dispersal distance is computed by integrating the jump kernel from

zero until the distance D at which the total integrated probability equals X. For short-

range dispersal draws when X ≤ A, this gives

X =

∫ D

0
A/ri dr =

AD

ri
→ D =

Xri
A

X > A corresponds to a long-range dispersal event drawn from the tail of the

distribution; now we must integrate both terms of the jump kernel. This gives

X = A+Arµi

∫ D

ri

r−(µ+1) dr = A−
Arµi
µ

(
D−µ − r−µ

i

)
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which leads to a distance of

D =

(
r−µ
i (A+Aµ−Xµ)

A

)−1/µ

The time and memory requirements vary between simulation parameters;

the following amounts of each reflect the resources we requested for each individual

simulation run on UO’s computing cluster. Recall that mutation loss immediately ends

simulations; simulations where the mutation is immediately lost require little time or

memory. In general, populations with higher values of the local carrying capacity K

require more memory, and those with narrower jump kernels (higher µ) require more

time. We requested 700 Gb in our batch submission files when running the simulations

with K = 100 reported here. The actual memory used was often far less, but that

request gave us enough of a buffer to run high-memory simulations to completion without

running out of memory. We requested up to 2.5 hours for the fast simulations at µ = 1

and 36 hours at µ = 2.5. Again, these requests often overshoot the actual duration

of simulations in order to make sure we don’t run out of time on the computers when

simulations happen to be longer than usual.

3.5.2 Well-mixed expectations. Spatial structure becomes irrelevant in

a well-mixed environment. All offspring are expected to have access to the nutrients and

other resources they need, so all offspring survive. The population grows exponentially,

approximately doubling in size every generation.

More specifically, wildtypes are expected to produce one offspring per time step.

Parent and offspring are assumed to survive since the well-mixed environment eliminates

spatial structure and therefore also the density-dependent competition described

throughout this paper. The wildtype population grows as

w(t) = w02
t−1

where the initial wildtype population is w0 = 100 and t − 1 reflects that time starts at

generation 1.

84



0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

N * /K = 3 | = 2.5 N * /K = 3 | = 2.0 N * /K = 3 | = 1.5 N * /K = 3 | = 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

N * /K = 100 | = 2.5 N * /K = 100 | = 2.0 N * /K = 100 | = 1.5 N * /K = 100 | = 1.0

10 4 10 2 100 102

Rescaled mutation frequency
0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

N * /K = 1000 | = 2.5

10 4 10 2 100 102

Rescaled mutation frequency

N * /K = 1000 | = 2.0

10 4 10 2 100 102

Rescaled mutation frequency

N * /K = 1000 | = 1.5

10 4 10 2 100 102

Rescaled mutation frequency

N * /K = 1000 | = 1.0

s
-0.5
-0.2
-0.1
-0.05
-0.02
-0.01
-0.002
0.0
0.002
0.01
0.02
0.05
0.1
0.2
0.5

Figure 25. ECDFs of the frequencies of surviving mutations, rescaled by the expected
frequency under a well-mixed model. The unscaled frequency distributions are shown in
Fig. 21
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The mutation affects offspring production; mutants are expected to produce 1 + s

offspring per time step. The mutant population grows as

m(τ) = (2 + s)τ

where τ is the number of generations elapsed since the mutation appeared, starting from

0 when the mutation appears in one individual.

We computed the expected frequencies for the rescaling of Fig. 25 by considering

the exponential growth of wildtype and mutant populations separately. No one dies due

to density-dependent competition since we’re in a well-mixed environment, so we can

simply compute the wildtype growth trajectory w(t) and mutant growth trajectory m(τ),

determine the relationship between t and τ by seeing when w(t) exceeds N∗, find the first

time step T when the total population w+m exceeds 107, and then compute the expected

mutation frequency as m/(w +m).

The rescaled ECDFs of Fig. 25 reveal that well-mixed models accurately predict

the frequencies of surviving mutations in populations with broad jump kernels; see how

the distributions fall on top of one another and rise sharply near the expected frequency

(where the rescaled frequency equals one) in the panels with µ = 1. Agreement with

the well-mixed model tells us that the spatial landscape doesn’t play a big role in the

outcomes of surviving mutations.

The empirical distributions spread apart from each other and away from the well-

mixed expectation when the jump kernels are narrower. The shift away from the expected

frequency tells us that now the environment and the population’s ability to disperse

across it are playing an important role. Furthermore, there seems to be an interplay

between dispersal and fitness effect; strongly beneficial mutations have higher frequencies

than other mutations and can even reach expected frequencies orders of magnitude above

the well-mixed expectation in qualitative agreement with the trends reported by Ref. [69].
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Figure 26. An example fit used to estimate an effective exponential growth rate for
neutral expansions with µ = 1 and K = 100. We fit for the early growth rate by using
only the first 15 time steps in the fits. The data shown are the average population growth
across 176 independent simulations. The same data and fit are plotted in linear space in
the inset, and the x axis ticks on the inset match those on the main x axis.

3.5.3 Fits and statistics. An estimate of the population’s exponential

growth rate is required to compute a new mutation’s fixation probability according to

the procedure derived by Ref. [36]. Population growth approaches exponential as µ → 0,

but in general growth follows a stretched exponential form for µ < d [21]. The fastest

expansions we simulated had µ = 1. We estimated an effective exponential growth rate

using the average population growth by finding the best fit line in semilog space, where

the growth rate is extracted as the slope of logN(t) = At + B. We used data from

the first 15 time steps in order to capture the average growth experienced by mutations

that appear at various values of N∗, thus giving us a reasonable growth rate to plug into

Eq. (3.5). An example of this procedure is shown in Fig. 26. We determined this level of

accuracy to be satisfactory considering that the model of Ref. [36] does not exactly apply

to our populations and we’re solely using their fixation probability as a benchmark to

calibrate our expectations and interpretations.

s threshold N∗/K µ p value adjusted p value

0.01 3 1.0 8.482500e-01 8.851304e-01

87



s threshold N∗/K µ p value adjusted p value

0.01 3 1.5 3.439800e-01 4.586400e-01

0.01 3 2.0 4.238400e-01 5.237400e-01

0.01 3 2.5 2.251700e-01 3.524400e-01

0.01 100 1.0 3.437100e-01 4.586400e-01

0.01 100 1.5 4.338800e-01 5.237400e-01

0.01 100 2.0 1.521900e-01 2.632800e-01

0.01 100 2.5 2.000000e-01 3.200000e-01

0.01 1000 1.0 7.838800e-01 8.423785e-01

0.01 1000 1.5 9.333300e-01 9.464755e-01

0.01 1000 2.0 6.565700e-01 7.306560e-01

0.01 1000 2.5 2.594200e-01 3.811886e-01

0.02 3 1.0 1.257600e-01 2.321723e-01

0.02 3 1.5 1.454600e-01 2.618280e-01

0.02 3 2.0 4.202100e-01 5.237400e-01

0.02 3 2.5 3.535500e-01 4.628291e-01

0.02 100 1.0 4.364500e-01 5.237400e-01

0.02 100 1.5 4.912300e-01 5.704606e-01

0.02 100 2.0 4.479800e-01 5.287633e-01

0.02 100 2.5 2.000000e-01 3.200000e-01

0.02 1000 1.0 7.415300e-01 8.089418e-01

0.02 1000 1.5 9.652600e-01 9.652600e-01

0.02 1000 2.0 8.289100e-01 8.776694e-01

0.02 1000 2.5 2.594200e-01 3.811886e-01

0.05 3 1.0 2.575500e-03 6.622714e-03

0.05 3 1.5 8.720700e-03 1.902698e-02

0.05 3 2.0 5.376600e-02 1.075320e-01

0.05 3 2.5 7.885500e-03 1.774238e-02

0.05 100 1.0 5.161700e-01 5.899086e-01

0.05 100 1.5 3.062300e-01 4.240108e-01

0.05 100 2.0 2.850600e-01 4.104864e-01

0.05 100 2.5 2.000000e-01 3.200000e-01

0.05 1000 1.0 6.596200e-01 7.306560e-01

0.05 1000 1.5 9.249800e-01 9.464755e-01

0.05 1000 2.0 2.989300e-01 4.220188e-01

0.05 1000 2.5 2.594200e-01 3.811886e-01
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s threshold N∗/K µ p value adjusted p value

0.10 3 1.0 1.889000e-12 8.000471e-12

0.10 3 1.5 1.797100e-06 5.881418e-06

0.10 3 2.0 2.883200e-04 7.688533e-04

0.10 3 2.5 8.462700e-12 3.206918e-11

0.10 100 1.0 1.657900e-02 3.510847e-02

0.10 100 1.5 4.343300e-01 5.237400e-01

0.10 100 2.0 2.210700e-04 6.121938e-04

0.10 100 2.5 2.836900e-03 6.808560e-03

0.10 1000 1.0 7.432900e-02 1.446402e-01

0.10 1000 1.5 7.676400e-02 1.454476e-01

0.10 1000 2.0 1.535800e-01 2.632800e-01

0.10 1000 2.5 3.272700e-06 9.818100e-06

0.20 3 1.0 6.729100e-52 9.689904e-51

0.20 3 1.5 1.208500e-31 1.087650e-30

0.20 3 2.0 2.817100e-13 1.267695e-12

0.20 3 2.5 2.833000e-30 2.266400e-29

0.20 100 1.0 1.324100e-08 4.766760e-08

0.20 100 1.5 2.016300e-04 5.806944e-04

0.20 100 2.0 4.252200e-12 1.700880e-11

0.20 100 2.5 2.836900e-03 6.808560e-03

0.20 1000 1.0 2.371500e-02 4.878514e-02

0.20 1000 1.5 4.208000e-03 9.773419e-03

0.20 1000 2.0 5.832600e-08 1.999749e-07

0.20 1000 2.5 3.272700e-06 9.818100e-06

0.50 3 1.0 5.232300e-128 3.767256e-126

0.50 3 1.5 2.188700e-81 7.879320e-80

0.50 3 2.0 3.061900e-57 5.511420e-56

0.50 3 2.5 2.999000e-71 7.197600e-70

0.50 100 1.0 7.463900e-28 5.374008e-27

0.50 100 1.5 3.243000e-24 2.122691e-23

0.50 100 2.0 7.095900e-34 8.515080e-33

0.50 100 2.5 1.608200e-18 8.906954e-18

0.50 1000 1.0 2.430100e-17 1.249766e-16

0.50 1000 1.5 3.875000e-17 1.860000e-16

0.50 1000 2.0 5.526900e-32 5.684811e-31
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s threshold N∗/K µ p value adjusted p value

0.50 1000 2.5 7.038700e-22 4.223220e-21

Table 3. Results of all K-sample Anderson Darling tests. Each individual test
interrogated the empirical distributions of surviving mutation frequencies for all
mutations with |s| ≤ s threshold. The data from Table 2 appears here as the entries
with s threshold = 0.05. Adjusted p values were computed using the FDR-controlling
procedure of Benjamini and Hochberg [72].

We used the ad.test() function in the R library kSamples to perform the

Anderson-Darling tests mentioned in Section 3.3. The p values reported in Tables 2 and 3

were adjusted using the R function p.adjust() with method = ‘fdr’. The code to run

those tests and adjust p values is included in the GitHub repository associated with this

paper.

The p values of Table 2 report results of tests on the empirical distributions of

mutation frequencies when the mutations have |s| ≤ 0.05. The p values of all tests

are reported in Table 3. The p values show a transition from being consistently unable

to reject the null hypothesis when s threshold < 0.05 to consistently rejecting it when

s threshold > 0.05.

3.5.4 Visualizing effect of kernel exponent on mutation frequencies.

Ref. [23] discovered that the coarsening of space leads to a decay of neutral diversity

during range expansions with d < µ < d+ 1, whereas frequent long-range dispersal events

preserve diversity when µ < d. We report another observable result of the coarsening

of space here. Fig. 20 and Fig. 22 show that new mutations are more likely to survive

in populations with broader jump kernels (lower µ). However, out of all the surviving

mutations, the highest frequencies are often achieved by mutations in populations with

narrower jump kernels as shown in Fig. 27. This is because the coarsening of space allows

the mutant population to carve out and control a larger chunk of the habitat for itself,

while populations with broader jump kernels have more dispersal across the landscape

and finer spatial “speckles” composed of one genotype or the other.
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Figure 27. ECDFs of the frequencies of surviving mutations. This is an alternative view
of some of the data plotted in Fig. 21.
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CHAPTER IV

ESTIMATING DISPERSAL PARAMETERS USING NEURAL NETWORKS

4.1 Introduction

In this chapter, we present preliminary results on using genomic data to infer

information about a population’s jump kernel. The results shown here serve as a proof of

concept that these approaches can yield useful results in populations with long-range

dispersal, something which was not previously known, and highlight several exciting

directions for future research. This work was done in collaboration with Chris Smith.

The previous chapters used spatially explicit but genomically simplistic

simulations to gain insights about populations with long-range dispersal of offspring.

There are important gains to be made on the genomic side of the aforementioned

simulations: a connection between actual biological populations and simplified theory

such as what has been presented here and in the literature will require stepping up the

biological complexity of simulation models.

Furthermore, all previous work on populations with long-range dispersal by power

law jump kernels takes the jump kernel as a given [21, 22, 23, 34]. The kernel exponent is

an input to the simulation or model, and the evolved population is the output. However,

we often learn about biological populations in nature by investigating populations in their

current state, i.e. after evolution has acted on the population, with no ability to look

back in time to see how a population evolved from its initial to its current state. With

that being the case, it would be useful to invert the structure of previous work: can we

use observations of an evolved population to learn its jump kernel? Such information

would enable predictions regarding evolutionary phenomena that the population may

experience, like whether or not neutral diversity would be preserved during expansions

into new territories [23], or could give clues about how to sample the population in search

of alleles undergoing soft sweeps throughout the habitat [22]. It could also reveal how the

population might respond to range shifts forced by climate change [11].
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Ref. [38] showed that convolutional neural networks (CNNs) can accurately

perform the closely related task of inferring the standard deviation of Gaussian jump

kernels. We extend their results to show that networks with the same architecture can

also be trained to infer the kernel exponent when the training data and labels come from

populations with power law jump kernels. We then build further by training networks

to learn typical and standard deviations in dispersal distances without assuming any

particular jump kernel and describe attempts to classify between Gaussian and power

law jump kernels. We hope that the methods introduced below will continue to be

developed into tools that can be used to learn dispersal information from samples of

natural populations.

4.2 Background

Our use of neural networks here builds on a growing body of recent work that

leverages machine learning for population genetic inferences. Supervised machine learning

is a great choice for such applications because models can be trained using simulated

data, where researchers know the correct answers, before being used on data sampled

from natural populations where they are trying to learn previously unknown things.

Machine learning models have been shown to be able to perform well in a variety of tasks

in population genetics [76, 77, 78, 79, 80, 81, 82]. In particular, deep neural networks

have grown to be increasingly popular recently [39, 40, 41, 42, 43, 44] in part because

they can take in large numbers of features without requiring any sort of compression,

enabling predictions using raw genotype data as model inputs and bypassing the need

to compute population genetic summary statistics, which might empower models to

extract additional relevant information from the input that would otherwise be lost

during compression.

Recent work has trained neural networks to learn from correlations between

genotypes and location; for example, Ref. [42] showed they can be trained to predict

an individual’s location using their genomic data. Of particular interest here, Ref. [38]
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trained a convolutional neural network to learn about a population’s jump kernel

from a modest number of genomic samples. In the following sections, we introduce the

methods of Ref. [38], describe how we adapt their software to populations with long-range

dispersal, and finally discuss preliminary results from models that extend and generalize

their techniques.

4.3 Introducing disperseNN methods

Ref. [38] developed a software tool called disperseNN that used convolutional

neural networks to learn about dispersal from genomic samples. disperseNN was trained

on data generated by 2D continuous-space SLiM simulations [33] which themselves were

based on the simulation model presented in Ref. [42]. We provide a concise summary

here but encourage interested readers to refer to the original papers for all the details of

their simulation models. Mating pairs produce a Poisson-distributed number of offspring;

the mean of the distribution is set to 1/L, where L is the expected lifetime when the

population is at equilibrium. Offspring dispersal distances in x and y are draws from

a Gaussian distribution with mean zero and standard deviation σ; the length scales of

mate choice and spatial competition are also set by σ. Simulations are spatially explicit

and genomically realistic, with density-dependent competition throughout the landscape,

genomes of length 108 base pairs, and a recombination rate of 10−8 crossovers per base

pair. Simulations begin at approximately the global carrying capacity with individuals

randomly located throughout the landscape and then run for 105 time steps before being

terminated. Simulations generate tree sequences [59], which record the true ancestry at

all loci of all individuals alive at the end of simulations. Tree sequences are recapitated

using coalescent simulations [45], and then neutral mutations are placed on the tree

sequences in order to create the diversity from which the network will learn.

With neutral mutations atop tree sequences, the training data is ready to be fed

into the network. The disperseNN input data consists of two parts. First, a genotype

matrix that encodes the allelic identities of a modest number of randomly sampled
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individuals at a user-defined number of single nucleotide polymorphisms (SNPs). Ref. [38]

showed good results sampling as few as ten individuals, and often used 5,000 SNPs.

Second, the distance between the furthest-separated pair of individuals in the sample

is given to the network so it knows the spatial scale of the sampling area. The network

is trained to map the genotype matrix and size of the sampling area onto a predicted

value of σ, the standard deviation of the Gaussian jump kernel. It learns by first sending

the genotype matrix through several successive convolution and pooling layers, where

the number of convolution + pooling steps depends on the number of SNPs. The

convolutional layers are one-dimensional, spanning all individuals (columns) and two

SNPs (rows) of the genotype matrix. Simultaneously seeing the allelic identities of all

sampled individuals gives the network a view of how much diversity there is within the

sampling area and provides important clues about how dispersal is driving spatial mixing

of genotypes.

After the convolutional portion of the network, the intermediate tensor

is flattened and sent through three dense layers. The size of the sampling area is

concatenated with the output from the third dense layer and then the resulting tensor

is sent through a fourth dense layer. Finally, a dense layer with a single output gives the

estimate of σ. Since σ is proportional to the expected dispersal distance, disperseNN is

learning the typical dispersal rate of new offspring.

Typically 20% of the training data is set aside to use as the validation set

at the end of each training epoch. The model trains and learns from the rest of the

training data, and only sees the validation set at the end of each epoch for benchmarking

performance on data that isn’t learned from during training and as a way of monitoring

the network for overfitting. A complete summary of the network architecture is presented

in Ref. [38] and all simulation and network code related to disperseNN is available at

https://github.com/kr-colab/disperseNN.
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4.4 Inferring the kernel exponent

A simplistic view of disperseNN is that it is a software that has been trained to

use genomic data and the size of the sampling area to estimate some dispersal parameter.

That dispersal parameter must be the one and only parameter necessary to specify the

jump kernel; the network would be unable to learn if, for example, it was attempting

to learn the shape parameter of gamma-distributed dispersal distances while the scale

parameter was also varying and thus confounding the signal. The original disperseNN

software was trained using simulations with Gaussian-distributed dispersal distances, and

learned to predict the one parameter necessary to specify the jump kernel: the standard

deviation.

The work presented throughout this dissertation focuses on populations with

jump kernels that decay as power laws at long distances. Power law kernels are another

family of jump kernels with just one parameter, namely the exponent µ that sets the

weight of the power law tail according to J(r) ∼ 1/rµ+1. When the kernel exponent

µ is below a dimension-dependent threshold, power law jump kernels drive accelerating

expansions that are dominated by rare long-range dispersal events [21]. Long-range

dispersal leads to remarkably different growth dynamics during range expansions [21]

and leaves behind distinct spatial-genetic signatures following many generations of

evolution in a static range [22] when compared with populations that are only capable

of short-range dispersal. The latter case resembles the simulations used to train the

original disperseNN software, where many generations of evolution took place in a static

landscape and offspring dispersed according to Gaussian jump kernels. We now report

attempts to adapt the disperseNN network architecture to infer the kernel exponent from

genomic samples of populations where offspring disperse according to power law jump

kernels.

The first step in adapting disperseNN to power law jump kernels was to generate

new training data. This was a reasonably straightforward task since the SLiM simulation
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code was made available on GitHub along with the rest of the disperseNN code base.

Our hope was to make as few changes to the simulation code and network architecture

as possible. Fortunately, all that needed to be done was change the jump kernel from

Gaussian to power law, decide on a training distribution from which to draw values of µ,

and then run a few hundred simulations on the computing cluster.

We chose a jump kernel of the following form:

J(r) =


A/σ r ≤ σ

(A/σ)(r/σ)−(µ+1) r > σ

(4.1)

where the normalization constant is A = µ
µ+1 and σ is the length scale of spatial

competition and mate choice. We chose a jump kernel that is featureless out to distance

σ to model species where offspring are equally likely to draw dispersal distances

anywhere between zero and the length scales of competition and mate choice (the

only pre-existing length scales in the population), and decreasingly likely to end up

further away. Combining the length scale of dispersal with that of the other spatial

interactions is a simple and sensible choice that prevents us from having to introduce

more parameters into our model and follows the approach taken by previous work,

including our predecessors in using this particular simulation model [38, 42]. We draw

the dispersal distance following the inverse transform sampling procedure outlined in the

previous chapter, then draw the direction uniformly at random.

We chose values of µ to span the different growth regimes for populations in two

dimensional landscapes. Kernel exponents were drawn at random between 1 and 3.3

to give us good coverage in each of the stretched exponential, power law, and diffusive

growth regimes; keeping µ > 1 ensures a finite mean dispersal distance and was hoped

to be far enough from well-mixed that the network could still see and learn from spatial

structure. We kept all other parameters fixed when generating the training data. The

most important quantity we held constant was the value of σ, which we kept at 0.75 for
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all simulations. This guaranteed that dispersal distances were small enough relative to

the landscape width (50 SLiM distance units in each dimension) that the population

would be far from well-mixed. We generated a training data set of 759 simulations and

a test set of 372 simulations with kernel exponents between 1 and 3.3. We were also

interested in whether or not the model would be able to generalize to kernel exponents

beyond the training distribution, so we ran 191 simulations with exponents between 3.5

and 5 and 183 simulations with exponents between 0.4 and 1.

Ref. [38] released a pretrained model as part of the disperseNN code base. Our

first test of disperseNN for power law jump kernels involved seeing if the pretrained

model could detect any changes to the dispersal rate at different values of µ. This was

to interrogate what one may see if they erroneously used the pretrained model instead of

training a new model themselves with simulations that more accurately represent their

organism. disperseNN was trained to learn the dispersal rate from genomic samples of

individuals in Gaussian-dispersing populations; we can compare model performance by

integrating the jump kernel (Eq. (4.1)) to compute the expected dispersal distance in our

simulations:

E(r) =
∫ ∞

0
rJ(r) dr =

A

σ

[∫ σ

0
r dr + σµ+1

∫ ∞

σ
r−µ dr

]
=

µσ

2(µ− 1)
. (4.2)

Computing the expected dispersal distance reveals two key takeaways. First, we

quantitatively see how the expected distance decreases with increasing kernel exponent

(with a narrower and narrower jump kernel). Second, we see that the expected jump

distance diverges for µ ≤ 1: we cannot compute an expected jump distance for the

broadest kernels.

We asked the pretrained model to predict σ using genomic samples from all

1505 available simulations with power law dispersal. The model correctly picks up on

the scale of most dispersal events, but is insensitive to any changes in kernel exponent

until the jump kernel becomes so broad as to have a divergent expected distance, see
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Figure 28. Predicted dispersal rate from the pretrained disperseNN model plotted against
kernel exponent for all 1505 available simulations with power law dispersal. The red
dashed line marks the expected dispersal distance as a function of kernel exponent, the
solution of Eq. (4.2). Recall that the expected dispersal distance diverges for µ ≤ 1.

Fig. 28. The red dashed line is the expected jump distance (the solution to Eq. (4.2))

for µ ≥ 1.1. The pretrained model predictions get reasonably close to the true value for

the narrowest jump kernels we used, but fail dramatically for broader kernels. Clearly

it’s important to train the model using data that looks like what we want to eventually

generate predictions from.

We should note that this comparison is admittedly imperfect. The pretrained

model was designed to provide order of magnitude estimates, and was trained on

simulation data where several parameters varied. An “ideal” misspecification analysis

would be to generate new training data with the same fixed parameters we used but

have Gaussian rather than power law dispersal, train a disperseNN network to estimate

the dispersal rate from that data, and then predict the dispersal rate from our power

law simulations as we have done in Fig. 28. This could enable better understanding of

the consequences of misspecifying the jump kernel in simulations that otherwise closely

match what we ran. However, instead of pressing harder on misspecification analysis, we
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Figure 29. Predicted versus true kernel exponent using test data that the model did not
see during training. The red dashed line marks the correct value, and the vertical dashed
lines mark the bounds of the training distribution.

proceeded by attempting to train disperseNN networks to learn about power law jump

kernels.

Our next step was to see if a new model with disperseNN architecture could be

trained to infer the kernel exponent using genomic samples from populations with power

law dispersal when we give the model relevant training labels (kernel exponents). This

new model performed quite well on test data that resembled what it saw during training,

achieving a mean relative absolute error (MRAE) of 7% on predictions where the kernel

exponent fell within the training distribution; see Fig. 29.

The model failed to recognize kernel exponents beyond the training distribution

in either direction; see the roughly flat clusters of predictions outside of the vertical

reference lines in Fig. 29. The MRAE was 24% for samples with kernel exponents above

3.5 and 70% for those with kernel exponents less than 1. On one hand, this should be

no surprise since an inability to generalize beyond training data is a standard feature of

machine learning models. However, it was a surprise that the model showed no signs of

recognizing the rapidly increasing spatial mixing at the lowest values of µ. This serves

as yet another example of the importance of using training distributions that capture
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all regimes of interest; the network is unable to learn beyond examples it saw during

training.

4.5 Learning dispersal parameters without assuming a particular jump

kernel

The previous section showed promising results using a CNN to learn the kernel

exponent when we assume and train using power law jump kernels, building on recent

literature showing that CNNs can infer the dispersal rate from genomic samples of

populations with Gaussian jump kernels [38]. In this section, we describe efforts to

continue down the path of inferring dispersal parameters from genomic data, but now

without assuming any particular jump kernel. We hope to train a model capable of

answering three questions: What is the typical dispersal distance? How much variability

is there about that typical distance? Is there any dispersal much longer than that

expected from the typical range characterized by the mean and the variance? The initial

idea was to build up a data set consisting of simulations with Gaussian and power law

jump kernels, and then train one model capable of performing both regression tasks and

classifying between the two jump kernels. We only have preliminary results to share at

the time of this writing, but hope the project will continue and grow into a useful tool for

learning about dispersal from actual biological samples.

4.5.1 Simulation methods. Simulations generally follow the protocol

developed by Refs. [38, 42] and outlined in Section 4.3, but there are changes to the

choice of jump kernel, what data is recorded during simulations, and how data is logged

after simulations. Again there is a model input called σ which is the length scale of

mate choice and spatial competition. We want to build towards a model that can make

predictions agnostic of jump kernel, so these simulations may use Gaussian or power

law dispersal kernels. The decision is made at runtime by a computational coin flip (i.e.

by testing runif(1) > 0.5); Gaussian simulations use σ as the standard deviation for

jump distance draws in x and y just like the original disperseNN methods, while power
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Figure 30. Sample mean and sample standard deviation versus the length scale σ, where
the samples are the dispersal distances of all individuals alive in the final time step of
simulations. The color of the points indicate whether Gaussian or power law jump kernels
were used in that simulation. Each point corresponds to one simulation.

law simulations use σ as the cutoff between uniform probability and power law decay as

spelled out in Eq. (4.1).

A key change from previous models is that now we record the offspring dispersal

distances during simulations in such a way that the information is tied to the relevant

individual. Individuals disperse a random distance from their mother’s position when

they are born, and we ‘tag’ individuals with the average of the distances between their

position and that of each of their parents. We compute the sample mean and standard

deviation of the dispersal distances of everyone alive in the final time step of simulations,

giving us typically about 20,000 dispersal distance samples from any single simulation

at the parameters we used. These methods give us a way to record, and eventually

train to learn, dispersal distances as an emergent property rather than using simulation

input values like σ or µ directly as model targets as described in the previous sections.

Simulations produce two outputs: a CSV file including parameter values, which jump

kernel was used, and sample mean and standard deviation in dispersal distances from

everyone alive in the final simulation time step; and tree sequences containing the

ancestry of all individuals alive in the final time step.
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Figure 31. Phase plot showing sample mean and sample standard deviation of the
dispersal distances of all individuals alive in the final time step of simulations, where
the color of the points indicates whether Gaussian or power law jump kernels were used
in that simulation. Each point corresponds to one simulation. The marginal plots at the
top and right show kernel density estimates of the variable values to give a sense of what
the distributions of each separate quantity look like in the data.
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We ended up with a training set of 1953 simulations: 993 with Gaussian dispersal

and 960 with power law dispersal. We drew values of σ uniformly at random between

0.2 and 2, and kernel exponents between 2 and 5 (where the mean and variance are

both finite). σ is the independent variable that sets the scale for all spatial interactions;

its effect on typical dispersal distances in the training data is depected in Fig. 30. We

chose these parameter distributions with a few things in mind. First, we hoped to keep

dispersal distances generally well below our chosen landscape width of 50 SLiM distance

units in either direction; this was based on the disperseNN network being unable to learn

the dispersal rate when there’s too much spatial mixing (when dispersal distances are

an appreciable fraction of the landscape size). Second, we wanted to create a non-trivial

problem and see if a network could still learn. Great separation in phase space between

the Gaussian and power law simulations might make the regression and particularly the

classification between jump kernels easy. We hoped our training data, visualized as a

phase space in Fig. 31, would provide a challenging but still solvable problem.

4.5.2 Training the network. With the data in hand, we next began

adapting the disperseNN code base and attempting to train models. We sought to

make no changes to the network architecture and as few changes as possible to the

rest of the code base in an effort to build on knowledge and experience from training

networks to accurately learn dispersal rates and kernel exponents, and with an eye on

possibly merging useful changes into the main disperseNN repository in the future. The

classification between jump kernels ended up being a surprisingly difficult problem;

we begin by discussing only results from the regression outputs and later return to

classification.

The one obvious change we had to make to the network architecture was the

number of outputs. The original disperseNN network had just one output, which

predicted a continuous quantity; we needed two such outputs. Adding another output

to the model fortunately required just a few lines of additional code since the original
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software was written using Keras’ functional API [83]. We used the same loss function

(mean squared error) and optimizer (Adam) as in the original output since this regression

task is very similar to the original.

We improved model performance by updating how genomic samples are shown

to the network. Our network uses the same two inputs as the original disperseNN

software. The first input is the genotype matrix, a 2D array with shape (m, n) where

m is the number of SNPs and n is the number of individuals sampled; we typically used

m = 5000 SNPs and n = 100 individuals. The second model input is the size of the

sampling area. The order of the n individuals making up the columns of the genotype

matrix was random in the original disperseNN software; however, those individuals carry

useful information about the spatial distribution of genotypes across the landscape,

especially when considering that we tell the network the size of the sampling area. In

general, nearby pairs of individuals are more closely related and more similar genetically

than distant pairs of individuals [84, 85], even when power law dispersal can transport

individuals long distances across the landscape [61] (this statement views isolation by

distance from the opposite perspective – relatedness by proximity?). Additionally, recent

research [22] has studied the spatial distributions of alleles undergoing soft sweeps when

power law dispersal can transmit them long distances across a landscape and found

that power law jump kernels leave distinct signatures in the spatial distributions of

genotypes. We sought to leverage this correlation between location and genotype by

sorting individuals by spatial location when constructing the genotype matrix.

We used multidimensional scaling [86, 87, 88] to sort individuals by location.

Multidimensional scaling is a dimensionality reduction technique that projects high-

dimensional data into a lower-dimensional space while preserving distances between pairs

of data points from the original high-dimensional space as well as possible. We used it to

project our original positions on the 2D landscape into a new 1D landscape, then used

the order of individuals in the new 1D landscape to set the order of the columns in the
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Figure 32. Predicted versus true mean and standard deviations in dispersal distances.
The red dashed line marks where the predicted value equals the true value. Each point
is the model prediction output using data from one simulation as input; these are
predictions for the full training set of 1953 simulations.

genotype matrix. We chose to sort using multidimensional scaling in order to “let the

data speak for itself” in determining the appropriate sorting rather than an arbitrary

decision to sort by x or y positions which may not be a useful descriptor for a given

random sample of individuals. This information about who was close to whom in an area

of known size proved to be quite useful to the network; implementing multidimensional

scaling led to a 50% reduction in loss on the validation set compared with networks

trained using unsorted samples.

4.5.3 Regression results. The model does a decent job learning to predict

both of the continuous outputs, achieving an MRAE of about 15% for both the mean and

standard deviation targets; see the model predictions in Fig. 32. Note that the accuracy

metrics reported throughout this section will refer to model accuracy when predicting on

the entire training set rather than an unseen test set. We don’t believe we have found

the best possible model or model architecture yet, so have not yet generated a test set

for final model validation. Recall, though, that part of the training data is set aside for

model validation at the end of each epoch. The model doesn’t get to learn from the

validation set, only benchmark its performance on data it isn’t using for training. The
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model is saved to file at the end of epochs where the validation loss decreases; that is, the

model’s performance improves even on data that it isn’t using for training. We do not

continue saving models when they overfit to the training data, with continually decreasing

training loss at the expense of stagnant or increasing validation loss. Based on saving

the model with the best observed validation loss, we suspect the accuracy metrics we

report mimic what would be seen if we generated a new test set for additional model

performance benchmarking. Furthermore, the n individuals randomly sampled from each

tree sequence during the prediction step are very unlikely to be the same n individuals

chosen from each simulation during training, so we have no reason to worry about the

model predicting on training data that it has memorized.

The model is able to learn dispersal distances from genotype data even when

the jump kernel is unknown; it is also able to estimate typical variability in dispersal

distances. The presence of multiple jump kernels in the training data seems to break

down any highly accurate mapping between genotypes and typical dispersal distances,

but we find that there are optimistic interpretations of these results. The model can

learn useful information from genotypes even when there are multiple “pathways” (jump

kernels) leading to the relevant dispersal parameters.

4.5.4 Classification results. While the model achieved respectable

performance predicting the two continuous output targets, it failed to accurately classify

between jump kernels. This came as a surprise since long-range dispersal by power law

jump kernels has been shown to promote spatial mixing of alleles [22], and we suspected

that the increased spatial mixing in simulations with power law jump kernels would make

the classification easy. No models we trained ever got much better than 50% accuracy on

the training set, and predictions using even our best models were heavily biased towards

guessing mostly one jump kernel or the other. It seemed that our models were failing to

learn this task.
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Figure 33. Slope of the isolation by distance model best fit line plotted against sample
mean dispersal distance from the final time step of simulations. Points are colored by
jump kernel and semitransparent in order to show that many points from either jump
kernel fall right on top of one another.

The model architecture was developed by Ref. [38] to accurately predict the

dispersal rate in populations with Gaussian dispersal kernels, and we showed in the

previous sections that it can learn other continuous targets related to dispersal, but those

facts don’t necessarily mean that the same architecture will be able to classify between

two jump kernels. It could be that a classifier CNN may need different structure or

more/different inputs to perform well, or maybe an entirely different model architecture is

required for this task.

We began to explore if we could find relevant information in the genomic data

to give helpful hints to the network. In particular, we hoped that computing summary

statistics using the tree sequences could illuminate quantities that might be useful as

other inputs to the neural network to aid the classification. If we found multiple statistics

to be descriptive and generally different between the two jump kernels, we could maybe

even train a much simpler logistic regression model to accurately discriminate between

the two classes. We found no differences between the two classes when we computed

nucleotide diversity π [89]. We also explored computing isolation by distance (IBD)
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following the procedure outlined by Ref. [90]. We compute genetic distance between every

pair of individuals and then find the best fit line between genetic distance and geographic

distance; the relevant summary statistic is the slope of the line, which tells us how genetic

distance changes with geographic distance. Since power law kernels promote spatial

mixing [22] and have been shown to reduce IBD relative to Gaussian jump kernels [61],

we expected to see generally lower slopes to the IBD line for power law jump kernels

compared with Gaussian jump kernels at a given typical dispersal distance. Instead, we

see no difference in isolation by distance between the two jump kernels; see Fig. 33.

4.6 Discussion

The disperseNN software was optimized to learn the dispersal rate from genomic

samples of populations that obey Gaussian jump kernels [38]; we explored other

applications by training to infer the kernel exponent from simulations with power

law jump kernels (Section 4.4) and learn mean and standard deviations in dispersal

distances without assuming any particular jump kernel (Section 4.5). These preliminary

investigations suggest several possible avenues of future research.

We achieved good accuracy when inferring the kernel exponent for values within

the training distribution (MRAE 7%; Fig. 29), but that result comes from somewhat

pristine training data where the only quantity that varied was the kernel exponent and

test data that had exactly the same conditions as the training data. A more complete

analysis would involve varying other quantities such as the local carrying capacity or the

length scale σ, or misspecifying some quantities between the training and test sets, in

order to learn how different values and/or misspecifications affect model performance.

The work done by Ref. [38] could be used as a roadmap for possible next steps.

We showed that disperseNN-like networks can learn the dispersal rate and

standard deviation in dispersal distances even when there are multiple jump kernels

present in the training data. While we couldn’t match the accuracy of networks trained

to infer specific parameters from assumed jump kernels, we hope the generality of this
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kernel-agnostic method may help it eventually become a useful tool to researchers. Few

biological species have known jump kernels, and measuring typical dispersal distances

empirically can be challenging, so we believe the ability to get reasonably accurate

estimates of typical dispersal distances and variability from a handful of genomic samples

without having to assume any particular dispersal kernel could someday be a useful step

forward.

The classification results presented in the previous section were a surprising failure

(to us). We expected the model to be able to classify between the two jump kernels fairly

well, and had visions of maybe someday using this network as a sort of model selection

algorithm that pointed out worthwhile directions of future study depending on which

jump kernel it inferred. If it inferred power law, perhaps one would proceed by trying

to infer the kernel exponent; if it inferred Gaussian, no more work is required since the

model also would’ve inferred the dispersal rate and typical variability. It would be great

to figure out why the model was unable to learn this task, or at least experiment with

different architectures to see if anything else looks promising. One possibility is that we

restricted kernel exponents to too narrow a range when generating the training data. The

expected jump distance from the power law jump kernel diverges for µ ≤ 1 (Eq. (4.2))

and the variance diverges for µ ≤ 2; perhaps a model could be highly sensitive to the

differences between Gaussian and some power law kernels if such broad power law kernels

were included.

Exploring the classification failure led us to begin exploring the tree sequences

for any noteworthy changes in population genetic summary statistic values between the

two jump kernels; we suspect that this in itself could be a worthwhile research target.

We have almost 2000 simulations, roughly evenly split between Gaussian and power

law jump kernels, with typical dispersal distances being about the same between the

two but the power law jump kernel permitting occasional long-range dispersal events.

Populations evolved for 105 time steps regardless of jump kernel; dispersal across the
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landscape was the only difference between the two classes of simulations. Is there

any sign of that difference in the tree sequences? Do the genomes or some summary

statistics somehow quietly encode a difference between Gaussian and power law jump

kernels? Or maybe more broadly, between Gaussian and any fat-tailed jump kernel? Such

investigations could lead to powerful inferences and novel insights about relationships

between genealogical structure and long-range dispersal.
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CHAPTER V

CONCLUSIONS

In this chapter, we briefly summarize the key findings of the previous three

chapters and call out various avenues of possible future research. While we have answered

several questions with the results presented in this dissertation, many exciting questions

remain.

5.1 Modeling expansions driven by long-range dispersal

In Chapter II, we explored the consequences of breaking the instant local

saturation and founder takes all assumptions that previous lattice-based studies

of populations with power law jump kernels [21, 22, 23] relied on. We found that

quantitative measures of population growth rate and the evolution of neutral diversity

are sensitive to the degree to which the aforementioned assumptions were violated. For

example, increased amounts of long-range dispersal slow down local saturation and lead

to greater levels of local heterozygosity while accelerating growth of the population as a

whole.

One possible avenue of future research would be to design theoretical models of

expanding populations that account for non-instantaneous local saturation. We showed in

Chapter II that qualitative trends match the predictions of lattice-based models; perhaps

a relatively minor correction to those models could lead to quantitative agreement with

more realistic spatially explicit simulations such as what was presented throughout this

dissertation. Models that account for the finite duration of local dynamics would be an

important step towards being able to predict the growth and spread of actual biological

populations as they invade new territories.

5.2 Evolution during expansions driven by long-range dispersal

In Chapter III, we studied the fate of fitness-affecting mutations that appear

during range expansions driven by long-range disperal. We showed that mutation effect

sizes have no measurable impact on mutation outcomes until the mutations become
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extremely beneficial or deleterious. “Survival of the luckiest” dynamics generally win

out over “survival of the fittest” for the wide range of most likely effect sizes.

Throughout that work, we used a common definition of “fitness-affecting.” We

considered mutations that only affected offspring production rate, and implemented

that change by changing the mean of the Poisson distribution from which mutant

offspring numbers were drawn each simulation time step. However, there are various

other pathways to changing fitness, and exploring any of them could lead to novel and

interesting results.

We think of changing the offspring production rate as a “global” fitness change;

it has no effect on local interactions between individuals, it just changes the growth rate

of the mutant population relative to wildtypes. Another fascinating global change to

study would be mutations that affect dispersal. Naively, it seems that faster dispersal

into new territories should simply be better, but there is often a cost associated with

improved dispersal. This cost may be minimal in e.g. plants where small changes to the

form of their seeds or pollen could facilitate further wind transport. However, in animal

populations where individuals must actively cover the dispersal distance themselves, the

metabolic cost becomes a macroscopic factor. For example, cane toads have evolved

longer legs during their invasion of Australia which allow them to travel further and

faster [10]. Longer legs enable faster movement but bigger muscles require more food and

water; legs that are too long may actually hinder the invasion by making it harder for

toads to obtain all the resources they need for survival. Future investigations that study

changes to dispersal would need to consider costs associated with changing dispersal and

find a way of balancing the cost of dispersal with the benefit of being the first to access

previously uninhabited territories.

There is also room for work to be done in the realm of mutations with local

fitness effects. It was recently shown that slower-expanding alleles can take over the

front in diffusive expansions when the slower allele has a local competitive advantage
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that allows it to invade laterally into the faster allele’s territory [74]. We showed in

Chapter III (Fig. 19) that juveniles are more and more likely to be born into saturated

areas as range expensions proceed, which makes it difficult for new mutations to establish

a solid local footing and escape drift; this problem is especially dire for mutations that

appear in populations with narrower jump kernels. Mutations that appear later are often

immediately lost because they are surrounded and outcompeted by wildtypes. Including

a local competitive advantage could drastically improve the outcomes of mutations that

appear in saturated areas by giving the mutants a better chance of surviving than the

wildtypes around them. This change could easily be incorporated into the SLiM script

that ran the simulations presented throughout Chapter III.

5.3 Using machine learning to infer dispersal parameters from genomic data

In Chapter IV, we shared preliminary results that highlight multiple directions

of future work. Fleshing out any of these projects would be a valuable step towards

connecting the growing body of theoretical and computational work about populations

with power law dispersal to samples that could be taken from actual biological

populations.

First, we showed that the disperseNN architecture [38] can learn to infer the

kernel exponent when trained to do so using simulations with power law dispersal

kernels. Those results had ideal training conditions, where the only thing varying between

simulations was the kernel exponent. A fuller understanding of the network’s abilities

and weaknesses would require exploring distributions of training parameters rather

than keeping everything fixed except the kernel exponent. It would also be helpful to

misspecify parameters between training and test data sets, following what was done by

Ref. [38], to learn more about which parameters the model is most sensitive to and which

are somewhat less important.

Second, we trained models with the same architecture but two outputs rather

than one to learn mean and standard deviations of dispersal distances from genomic
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samples without any assumptions about the jump kernel itself; we had a mix of Gaussian

and power law jump kernel simulations in the training data so we could learn kernel-

agnostic dispersal parameters from mixed data and also attempt to train a classifier

capable of discriminating between the two jump kernels. The grand vision for this

project was to train a network capable of answering three questions. 1. What is the

expected/typical dispersal distance? 2. How much variability is there about that typical

distance? 3. Is there any long-range dispersal (i.e. anything much longer than typical

plus normal variability)? We showed some promising results, but they come with many

of the same aforementioned caveats about relatively pristine training data. We varied the

length scales of dispersal, competition, and mate choice, and drew kernel exponents from

a distribution of possible values where appropriate, but have not yet explored varying

nuisance parameters or misspecifying anything; we have also not yet shown that such

networks are capable of learning to classify between the two jump kernels.

Beyond those obvious next steps, it would be interesting to see if a network could

be trained for similar regression tasks and a general yes/no classification regarding

whether or not there is long distance dispersal rather than our current classification

between two jump kernels. This would require at least two notable tasks. The first

is deciding how to determine the yes/no long distance dispersal classification. We

explored using the sample excess kurtosis from the dispersal distances of everyone alive

at the end of simulations to generate those labels and found that a value of one cleanly

separated Gaussian and power law dispersal samples. The second would be deciding

which additional jump kernels to use. It may be ideal to choose one that can allow for

long-range dispersal at some parameter combinations but not at others, such as the

gamma distribution at various combinations of its two parameters. This could create

data sets with a smooth transition from short-range to long-range dispersal where the

boundary between the two classes could be defined by such measurements as the nature

of advancement of the expanding front (constant-speed front for short-range, accelerating
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front for long-range [91]), the convergence of the mean or variance of the jump kernel,

or the excess kurtosis of a sample of dispersal distances. The network may object to the

fuzzy boundary between classes by returning nearly identical 50/50 class probabilities

for samples drawn from populations near the border, but having reliable predictions

regarding whether or not a population exhibits long-range dispersal could be a valuable

tool for predicting how the population mixes across its range or spreads into new habitats

when new areas become accessible.
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[71] W J Ewens. The probability of survival of a new mutant in a fluctuating environment.
Heredity, 22(3):438–443, 1967.

[72] Yoav Benjamini and Yosef Hochberg. Controlling the false discovery rate: A practical
and powerful approach to multiple testing. Journal of the Royal Statistical
Society. Series B (Methodological), 57(1):289–300, 1995.

[73] F. W. Scholz and M. A. Stephens. K-sample anderson-darling tests. Journal of the
American Statistical Association, 82(399):918–924, 1987.

[74] Hyunseok Lee, Jeff Gore, and Kirill S. Korolev. Slow expanders invade by forming
dented fronts in microbial colonies. Proceedings of the National Academy of
Sciences, 119(1):e2108653119, 2022.

[75] Benjamin C Haller and Philipp W Messer. Slim manual. https:
//github.com/MesserLab/SLiM/releases/download/v4.0.1/SLiM_Manual.pdf,
2022. Accessed 2022-11-01.

[76] Pierre Pudlo, Jean-Michel Marin, Arnaud Estoup, Jean-Marie Cornuet, Mathieu
Gautier, and Christian P. Robert. Reliable ABC model choice via random forests.
Bioinformatics, 32(6):859–866, 11 2015.

[77] Daniel R. Schrider and Andrew D. Kern. S/hic: Robust identification of soft and hard
sweeps using machine learning. PLOS Genetics, 12(3):1–31, 03 2016.

[78] Mehreen R Mughal and Michael DeGiorgio. Localizing and Classifying Adaptive
Targets with Trend Filtered Regression. Molecular Biology and Evolution,
36(2):252–270, 11 2018.

[79] Lauren Alpert Sugden, Elizabeth G. Atkinson, Annie P. Fischer, Stephen Rong,
Brenna M. Henn, and Sohini Ramachandran. Localization of adaptive variants in
human genomes using averaged one-dependence estimation. Nature
Communications, 9(1):703, 2018.

122

https://github.com/MesserLab/SLiM/releases/download/v4.0.1/SLiM_Manual.pdf
https://github.com/MesserLab/SLiM/releases/download/v4.0.1/SLiM_Manual.pdf


[80] Daniel R. Schrider, Julien Ayroles, Daniel R. Matute, and Andrew D. Kern.
Supervised machine learning reveals introgressed loci in the genomes of drosophila
simulans and d. sechellia. PLOS Genetics, 14(4):1–29, 04 2018.

[81] Arun Durvasula and Sriram Sankararaman. A statistical model for reference-free
inference of archaic local ancestry. PLOS Genetics, 15(5):1–18, 05 2019.

[82] Fernando A. Villanea and Joshua G. Schraiber. Multiple episodes of interbreeding
between neanderthal and modern humans. Nature Ecology & Evolution,
3(1):39–44, 2019.

[83] François Chollet et al. Keras. https://keras.io, 2015.

[84] Sewall Wright. Isolation By Distance Under Diverse Systems of Mating. Genetics,
31(1):39–59, 01 1946.

[85] F. James Rohlf and Gary D. Schnell. An investigation of the isolation-by-distance
model. The American Naturalist, 105(944):295–324, 1971.

[86] J. B. Kruskal. Nonmetric multidimensional scaling: A numerical method.
Psychometrika, 29(2):115–129, 1964.

[87] J. B. Kruskal. Multidimensional scaling by optimizing goodness of fit to a nonmetric
hypothesis. Psychometrika, 29(1):1–27, 1964.

[88] Ingwer Borg and Patrick Groenen. Modern Multidimensional Scaling: Theory and
Applications (Springer Series in Statistics). 08 2005.

[89] M Nei and W H Li. Mathematical model for studying genetic variation in terms of
restriction endonucleases. Proceedings of the National Academy of Sciences,
76(10):5269–5273, 1979.

[90] Francois Rousset. Genetic differentiation between individuals. Journal of Evolutionary
Biology, 13(1):58–62, 2000.

[91] Denis Mollison et al. The rate of spatial propagation of simple epidemics. In
Proceedings of the sixth Berkeley symposium on mathematical statistics and
probability, volume 3, pages 579–614. Berkeley and Los Angeles, University of
California Edinburgh, UK, 1972.

123

https://keras.io

	 Introduction 
	Introduction
	Simulating expansions with explicit local dynamics
	The fate of adaptive mutations during range expansions
	Estimating dispersal parameters using neural networks
	Continuous-space simulations

	 The influence of explicit local dynamics on range expansions driven by long-range dispersal 
	Introduction
	Background
	Population growth and time-doubling hierarchy
	Persistence of initial neutral variation

	Methods
	Results
	Local dynamics are consistent with logistic growth
	Slow local saturation invalidates founder-takes-all assumption within interaction regions
	Increased long-range dispersal favors faster population growth
	Increased local diversity boosts global heterozygosity but does not overcome long-term trends

	Discussion
	Appendices
	Simulation details
	Time scales
	Logistic growth description of population dynamics within interaction regions
	Quantitative assessment of time-doubling hierarchy
	Reporting the evolution of global heterozygosity
	Direct comparison to lattice model


	 The fate of adaptive mutations in range expansions driven by long-range dispersal 
	Introduction
	Methods
	Simulation methods
	Expectations

	Results
	The value of s often does not affect survival rates
	The value of s often does not affect frequency distributions of surviving mutations
	Effects of long-range dispersal on survival rates
	Mutations can persist indefinitely at small population sizes
	Most mutations to be lost are lost quickly

	Discussion
	Supplementary Information
	Simulation details
	Well-mixed expectations
	Fits and statistics
	Visualizing effect of kernel exponent on mutation frequencies


	 Estimating dispersal parameters using neural networks 
	Introduction
	Background
	Introducing disperseNN methods
	Inferring the kernel exponent
	Learning dispersal parameters without assuming a particular jump kernel
	Simulation methods
	Training the network
	Regression results
	Classification results

	Discussion

	 Conclusions 
	Modeling expansions driven by long-range dispersal
	Evolution during expansions driven by long-range dispersal
	Using machine learning to infer dispersal parameters from genomic data

	REFERENCES CITED

