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DISSERTATION ABSTRACT

Layne N. Bradshaw

Doctor of Philosophy

Department of Physics

June 2023

Title: Seek and Ye Shall Find:
Machine Learning and Searches for New Physics

The discovery of the Higgs boson confirmed that the Standard Model is the

correct description of nature below some high energy scale. However, we know

the Standard Model is incomplete and have yet to find significant deviations from

it. Without well-motivated directions to guide new physics searches, we need to

reconsider where and how we search. We explore this in 3 parts here.

We start by identifying 3- and 4-point on-shell amplitudes involving top quarks

that are most susceptible to new physics. Using the Hilbert series as a cross-check, we

are able to create an independent set of amplitudes for four-fermion and two-fermion,

two-boson interactions. After translating these amplitudes to the lowest-dimension

SMEFT-like operator, we use pertubative unitarity to place an upper bound on the

coupling, under the assumption that the new physics appears around the TeV scale.

With this, we find a number of top quark decay modes that could be probed at the

HL-LHC.

Next, we compare the efficacy of a number of methods to decorrelate the output of

a machine learned classifier from the invariant jet mass. This decorrelation preserves

the background dominated sidebands in the invariant mass distribution as tighter cuts
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are made on the network’s output. This increases the potential discovery significance

of the new physics. We compare 4 techniques which broadly fall into one of 2

categories—data augmentation or training augmentation. We find that the simpler

and computationally cheaper data augmentation techniques perform comparably to

the training augmentation techniques across a variety of qualitatively different signals.

Finally, we turn to machine learning based anomaly detection, with the aim of

explaining the physics learned by an image-based autoencoder. Adapting techniques

from the literature, we make use of two strategies to mimic the autoencoder.

Despite fundamental differences, we find that both techniques, when compared to the

autoencoder, order background events similarly and perform comparably as anomaly

detectors across a wide swath of signals. The mimicker networks independently use

the same high-level observables, giving us confidence that these features are indeed

those learned by the autoencoder.

This dissertation includes previously published co-authored material.

v



CURRICULUM VITAE

NAME OF AUTHOR: Layne N. Bradshaw

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED:

University of Oregon, Eugene, Oregon, USA
Arizona State University, Tempe, AZ, USA

DEGREES AWARDED:

Doctor of Philosophy in Physics, 2023, University of Oregon
Master of Science in Physics, 2021, University of Oregon
Bachelor of Science, 2017, Arizona State University

AREAS OF SPECIAL INTEREST:

Interpretable Machine Learning, Machine Learning in Particle Physics, Physics
Beyond the Standard Model

PROFESSIONAL EXPERIENCE:

Graduate Research Assistant, University of Oregon, 2018-2023
Graduate Teaching Fellow, University of Oregon, 2017-2023

GRANTS, AWARDS AND HONORS:

Graduate Teaching Fellowship, University of Oregon, 2017-2023
New American University Scholarship—President’s Award, Arizona State

University, 2013-2017

PUBLICATIONS:

vi



L. Bradshaw and S. Chang, “Primary Observables for Top Quark Collider
Signals,” arXiv:2304.06063 [hep-ph] (Submitted for publication at
Physical Review D)

L. Bradshaw, S. Chang, and B. Ostdiek, “Creating Simple, Interpretable
Anomaly Detectors for New Physics in Jet Substructure,” Phys. Rev. D
106 (2022) no. 3, 035014, arXiv:2203.01342 [hep-ph]

L. Bradshaw, R. K. Mishra, A. Mitridate, and B. Ostdiek, “Mass Agnostic Jet
Taggers,” SciPost Phys. 8 (2020) no. 1, 011, arXiv:1902.05556 [hep-ph]

vii

http://arxiv.org/abs/2304.06063
http://dx.doi.org/10.1103/PhysRevD.106.035014
http://dx.doi.org/10.1103/PhysRevD.106.035014
http://arxiv.org/abs/2203.01343
http://dx.doi.org/10.21468/SciPostPhys.8.1.011
http://arxiv.org/abs/1908.08959


ACKNOWLEDGEMENTS

It would only be right to begin by thanking my mother, Lori Bradshaw, for your

unconditional love and support. Thank you for encouraging me to always go after

my dreams, even as they took me far from home. I truly could not have done this

without you. Thank you to Kaitlyne & Milo Nixon as well as Lana, Loren, & Rolan

McRee for traveling all the way out to Eugene to celebrate my defense with me. I

love you all more than I can put into words, and your support these past six years

has meant the world to me (and sorry for not saying thank you at the end of the

presentation).

Thank you to my advisor, Spencer Chang, for all of your guidance over the years.

Whether it was making sense of a result or navigating the stress and anxiety of the

pandemic, I will always appreciate you meeting me where I was at.

Thank you to Bryan Ostdiek for taking a bright-eyed, first-year grad student

under your wing and showing me how physics research should be done.

To everyone in the High Energy Theory group here at Oregon—Cristien Arzate,

Pouya Asadi, Autsin Batz, Tom Bouley, Spencer Chang, Tim Cohen, Joel Doss,

Haidar Essieli, Graham Kribs, Ben Lillard, Xiaochuan Lu, Chester Mantel, Bryan

Ostdiek, Aria Radick, Tom Schwemberger, Dave Soper, Anna-Maria Taki, Tom Tong,

and Tien-Tien Yu—thank you for helping me be a better physicist, researcher, and

communicator.

Thank you to Ian Kenney for your friendship over the past eight years. I still look

back on those late nights working through E&M over some espresso and a Franziskaner

(or two) fondly.

viii



To all of the fantastic people I’ve had the privilege to meet and befriend while

doing physics—Paul Abers, Trevor Brunnenmeyer, Joel Doss, Marija Glisic, Ryan

Heilman, Rachael Klaiss, Daniel Moore, Brandon Sumner, Stephanie Urbano, Brian

Veit, and so many others—thank you for all of the insightful and inane conversations

at the wee hours of the morning and way too late at night.

Thank you to Joseph Comfort and Richard Kirian at Arizona State University

for taking a chance on me, and giving me my first exposure to physics outside the

context of a lecture hall.

Thank you to all of my friends from outside physics—Luke Bennett, Eric Brown-

Malone, Brianna Griffith, Ashley Mas, Kelly McCormish, Curtis Spence, and everyone

else—for all of the laughs and for accepting me as I am.

Finally, thank you to my wonderful partner Katie Desautels. Thanks for putting

up with all of the late nights, practice talks, and anxious pacing over the past year.

You’ve made what would have otherwise been an unbearable year one that I’ll look

back on fondly.

ix



For my mother, Lori, and my late father, Ross.

There are no words to thank you for all of your love and support.

I hope I’ve made you proud.

x



TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. Primary Observables for Top Quark Collider Signals . . . . . . 5

1.2. Mass Agnostic Jet Taggers . . . . . . . . . . . . . . . . . 6

1.3. Creating Simple, Interpretable Anomaly Detectors for New Physics in
Jet Substructure . . . . . . . . . . . . . . . . . . . . . . 9

1.4. Outline . . . . . . . . . . . . . . . . . . . . . . . . . . 11

II. PRIMARY OBSERVABLES FOR TOP QUARK COLLIDER SIGNALS 13

2.1. Finding Independent Amplitudes/Couplings for Top Quarks . . . 14

2.2. Hilbert Series . . . . . . . . . . . . . . . . . . . . . . . 17

2.3. Phenomenology . . . . . . . . . . . . . . . . . . . . . . 20

2.3.1. Unitarity . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.2. Top Quark Decays . . . . . . . . . . . . . . . . . . . 21

2.4. Independent Amplitudes for Top Quark Physics . . . . . . . . 24

2.4.1. ffV V Amplitudes . . . . . . . . . . . . . . . . . . . 24

2.4.2. ffff Amplitudes . . . . . . . . . . . . . . . . . . . 34

2.5. Interesting Top Decay Amplitudes for the HL-LHC . . . . . . . 42

III. MASS AGNOSTIC JET TAGGERS . . . . . . . . . . . . . . . . 47

3.1. Simulation details . . . . . . . . . . . . . . . . . . . . . 48

3.2. Classification of Methods . . . . . . . . . . . . . . . . . . 51

3.2.1. Classification without decorrelation . . . . . . . . . . . 52

xi



Chapter Page

3.2.2. Decorrelation based on data augmentation . . . . . . . . 58

3.2.2.1. Analytic decorrelation . . . . . . . . . . . . . . . 59

3.2.2.2. Planing . . . . . . . . . . . . . . . . . . . . . 60

3.2.2.3. PCA . . . . . . . . . . . . . . . . . . . . . . 63

3.2.3. Decorrelation based on training augmentation . . . . . . . 65

3.2.3.1. uBoost . . . . . . . . . . . . . . . . . . . . . 65

3.2.3.2. Adversarial . . . . . . . . . . . . . . . . . . . . 67

3.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.3.1. Augmented training . . . . . . . . . . . . . . . . . . 73

3.3.2. Augmented data . . . . . . . . . . . . . . . . . . . . 77

3.3.3. Comparison . . . . . . . . . . . . . . . . . . . . . . 81

IV. CREATING SIMPLE, INTERPRETABLE ANOMALY DETECTORS FOR
NEW PHYSICS IN JET SUBSTRUCTURE . . . . . . . . . . . . . 84

4.1. Datasets . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.2. Methodology . . . . . . . . . . . . . . . . . . . . . . . 86

4.2.1. Creating a Target Anomaly Detector with a Convolutional
Autoencoder . . . . . . . . . . . . . . . . . . . . . 87

4.2.2. Mimicking the Target Anomaly Detector . . . . . . . . . 91

4.2.2.1. High Level Observables . . . . . . . . . . . . . . 92

4.2.2.2. Decision Ordering . . . . . . . . . . . . . . . . . 93

4.2.2.3. Paired Neural Network . . . . . . . . . . . . . . 96

4.2.2.4. High-Level Neural Network . . . . . . . . . . . . . 98

4.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.3.1. Background Decision Ordering . . . . . . . . . . . . . 99

4.3.2. Anomaly Detection . . . . . . . . . . . . . . . . . . 102

xii



Chapter Page

4.3.3. Using Only Prime EFPs . . . . . . . . . . . . . . . . 107

4.3.4. Comparison with Isolation Forests . . . . . . . . . . . . 108

4.4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 110

V. CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.1. Primary Observables for Top Quark Collider Signals . . . . . . 112

5.2. Mass Agnostic Jet Taggers . . . . . . . . . . . . . . . . . 113

5.3. Creating Simple, Interpretable Anomaly Detectors for New Physics in
Jet Substructure . . . . . . . . . . . . . . . . . . . . . . 116

APPENDICES

A. SUPPLEMENTAL MATERIAL FOR MASS AGNOSTIC JET TAGGERS 118

A.1. Adversary decorrelation parameter . . . . . . . . . . . . . . 118

A.2. Comparison of histogram distances . . . . . . . . . . . . . . 120

A.3. Histogram Sculpting Comparison . . . . . . . . . . . . . . 120

B. SUPPLEMENTAL MATERIAL FOR CREATING SIMPLE,
INTERPRETABLE ANOMALY DETECTORS FOR NEW PHYSICS IN
JET SUBSTRUCTURE . . . . . . . . . . . . . . . . . . . . . . 125

B.1. Simulation Details . . . . . . . . . . . . . . . . . . . . . 125

B.2. Network Training Hyperparameters . . . . . . . . . . . . . 125

REFERENCES CITED . . . . . . . . . . . . . . . . . . . . . . . . 127

xiii



LIST OF FIGURES

Figure Page

1. Distributions of the transverse momentum of the hardest jet. . . . . . . . . . . . . . 51

2. The architecture of a BDT. We take the BDT to be made of 150 DTs, with a max depth of 4. The input to

the BDT are the variables that span the 5-body jet phase space, see Eq. (3.4). The indicated parameters αi

represent the weight associated with the particular DT. . . . . . . . . . . . . . . 54

3. Many of the methods explored in this paper use a neural network classifier. For consistency, we always use

a network with three hidden layers, each of which has 50 nodes and uses the ReLu activation function. The

output is a single node with a sigmoid activation function. Our input data are the 11 τ
(β)
N variables of 5-body

jet phase space shown in Eq. (3.4). . . . . . . . . . . . . . . . . . . . . . 56

4. The left panel shows the ROC curves for three traditional methods, two based on machine learning, to classify

a 2-prong signal jet from a QCD jet. The machine learning based methods achieve an area significantly higher

than the single variable τ21 based classifier. The right panels show the background only distributions for

successively tighter cuts in the solid lines: signal efficiency of 1.0 (black), 0.95 (green), 0.9 (red), 0.8 (purple),

0.7 (brown), 0.6 (pink) and 0.5 (yellow). The signal with no cuts is shown in the filled-in, grey distribution.

The only background events which pass the cuts end up having masses similar to that of the signal, even

though the machine learning models do not have access to the mass. . . . . . . . . . . 58

5. The left panel shows the ROC curves for the data augmented neural network methods of PCA and planing

as well as the single variable DDT. The network trained on PCA-rescaled data is the best classifier, followed

by the network trained on planed data. Both MV decorrelation techniques result in better classification than

the single variable τDDT
21 based classification. The right panels show the background only distributions for

successively tighter thresholds for the DDT, Planed, and PCA classifiers: signal efficiency of 1.0 (black),

0.95 (green), 0.9 (red), 0.8 (purple), 0.7 (brown), 0.6 (pink) and 0.5 (yellow). For context, the 2-pronged

signal distribution is shown as grey filled-in region. All three methods reduce the background sculpting when

compared to their Fig. 4 counterparts. A full side-by-side comparison for 2, 3, and 4 prong signals is shown in

App. A.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6. The upper and lower panels show distributions before and after planing away the jet mass, respectively. The

left panels show the jet mass distribution for the 2-pronged signal and QCD background. By design, both

distributions are (nearly) identical, and uniform across the entire mass range after planing. The center panels

show τ
(1)
1 , one of the input variables for the classifiers. Before planing, this variable has discriminating power,

but that was correlated with the jet mass and got removed by the planing process. The right panels show τ
(1)
2 ,

which has more separation between signal and background after planing. . . . . . . . . 62

xiv



Figure Page

7. Scatterplot of two benchmark τ variables for QCD events in three different mass windows. The left panel

shows the original variables, before any kind of preprocessing. The events from different mass bins are well

separated. The center panel shows the same events after removing the mean and setting the variance of each

variable in each bin to unity. The different mass bins now have the same range, but the 2D correlations are still

distinct. In the right panel, the events have been standardized and PCA transformed on a linearly independent

basis. The different mass ranges are now hard to distinguish. . . . . . . . . . . . . 65

8. The network architecture used in the uBoost algorithm. Each BDT has the same layout as those in Fig. 2,

and is tasked with keeping the background uniform at a given target signal efficiency. We use 20 BDTs to

cover the entire efficiency range, and results are interpolated between target efficiencies to keep the background

uniform over the whole efficiency range. The Gini index is used to measure the quality of a split, and the best

split is taken when creating new branches. . . . . . . . . . . . . . . . . . . 67

9. The left panel shows the ROC curves for the adversarially trained neural network and uBoost, along with the

results of the base neural network and τ21, for comparison. The adversarial results use λ = 50, and the uBoost

results use βu = 1. The right panels show the background only distributions as successively tighter cuts are

made on the output of these classifiers: signal efficiency of 1.0 (black), 0.95 (green), 0.9 (red), 0.8 (purple), 0.7

(brown), 0.6 (pink) and 0.5 (yellow). The full 2-pronged signal is shown in the filled-in grey distribution for

context. Both these methods are able to preserve the background shape well, with only a marginal decrease

in performance, but take a factor of 10 to 100 more time to train. Compared to their MV counterparts in the

upper panels, it is clear that the training augmentation based approaches significantly reduce the extent of the

background sculpting. A full side-by-side comparison for 2, 3, and 4 prong signals is shown in App. A.3. 68

10. The setup of our adversarially trained neural network. The classifier has the same hyperparameters as in

Fig. 3. The output of the classifier becomes the input of the adversary, which attempts to predict which bin

of the jet mass the QCD events came from. We use tanh activation for the hidden layers of the adversary, and

softmax activation for the final layer, with 10 outputs. The multi-class cross entropy loss function is used for

the adversary. . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

11. ROC curves for the 2-, 3-, and 4-prong signal jets versus QCD background for the methods which augment

the training method to decorrelate the jet mass. The solid, dashed, and dotted curves show results for neural

networks, boosted decision trees, and single variable analysis, respectively. The light blue curves are for the

traditional method benchmarks. The purple and dark-blue lines denote the adversarially trained network and

uBoost decision tree. For the 3- and 4-prong cases, uBoost cannot classify as well as the adversarially trained

neural networks, but still does much better than using a single variable, τ3/τ2 and τ4/τ3, respectively 74

12. The Bhattacharyya distance for the QCD background distributions compared to the original distributions.

The distance is defined in Eq. (3.9), and a larger distance represents more sculpting—lower on the plot is

better. The upper and lower rows plot the distance as a function of signal efficiency or background rejection,

respectively. τDDT
21 produces the smallest distances for fixed signal efficiency, but does not generalize to higher-

prong jets. The adversarially trained network yields a close approximation and generalizes to more prongs.

uBoost falls between the original methods and the adversarially trained network, but takes a factor of 30 less

time to train. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

xv



Figure Page

13. ROC curves for the 2-, 3-, and 4-prong signal jets versus QCD background for the methods which augment

the data to decorrelate the jet mass rather than augment the training. The dashed and solid lines show the

gradient boosted decision trees (BDT) and neural networks (NN), respectively. The blue, red, and green

curves are for the data which has not been altered, data which uses the PCA rescaling, and data which has

the jet mass planed away. The dotted lines show the results using a single combination of the N-subjettiness

variables. Generally the BDTs have slightly worse background rejection than the NNs. Similarly, the PCA

rescaling based methods tend to be between the unaltered methods and the planing methods, which are better

than the single variable analyses. . . . . . . . . . . . . . . . . . . . . . . 78

14. The Bhattacharyya distance for the QCD background distributions compared to the original distributions.

The distance is defined in Eq. (3.9), and a larger distance represents more sculpting—lower on the plot is

better. The neural networks tend to sculpt the distributions worse than the BDT, regardless of the data.

Both the PCA rotations and Planing the jet mass result in smaller distances than the classifiers trained on

the original data. . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

15. A comparison of all the MV based methods to decorrelate the jet mass from the classifier output. The shown

PCA and Planed results are for NN architecture. The analytical τDDT
21 method sculpts the least for moderate

background rejection, but for larger values does not do as good as the adversarially trained neural network.

The network trained on data augmented by planing the jet mass do almost as good as the adversarially trained

network, with uBoost and the PCA based networks showing slightly more sculpting. With more prongs, planing

and adversaries are nearly identical to each other while PCA and uBoost are very similar to each other. 82

16. The average jet image for the background, 80 GeV W , 174 GeV top, and 80 GeV Higgs. Note that the Higgs

bosons are pair produced from the decay of a heavier Higgs, leading to potentially 4 prongs in the large-radius

jet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

17. The architecture of the convolutional autoencoder (AE). The AE consists of two separate networks, an encoder

that compresses the original image down to a smaller latent space, and a decoder tasked with recreating the

original image from the latent space representation. . . . . . . . . . . . . . . . . 89

18. The AE’s performance as an anomaly detector on 3 of the anomalous signals, the 80 GeV W , the 174 GeV

top, and the 80 GeV Higgs. Note that the Higgs bosons are pair produced from the decay of a heavier Higgs,

leading to potentially 4 prongs in the large-radius jet. The left panel shows the normalized distribution of the

log of the AE’s anomaly score for the background and each of the signals. The right panel shows the ROC

curves for each signal. . . . . . . . . . . . . . . . . . . . . . . . . . 90

19. The architecture of the Paired Neural Network. The interior model consists of 4 hidden layers each with 50

nodes and using the ELU activation function. The interior model outputs a single node for each input and uses

the ReLU activation function. The final output of the model is a single node which is the difference between

the two interior model outputs and uses a sigmoid activation function. Our input data are the jet’s mass, pT ,

and up to 14 EFPs. . . . . . . . . . . . . . . . . . . . . . . . . . . 97

20. The architecture of the High- Level Neural Network. This network consists of four hidden layers, with each

having 50 nodes and using the ELU activation function. The network output is a single node. Like the PNN,

our input data are the jet’s mass, pT , and up to 14 EFPs. . . . . . . . . . . . . . . 98

xvi



Figure Page

21. The ADOs for each PNN and HLN. The center line shows the ADO of the model that was used to select

the EFPs. The shaded bands show the maximum and minimum ADO values obtained when recalculating

the ADO an additional 50 times, using a different set of pairs of events each time. The x−axis denotes the

iteration step of the iterative process. See Table 17 for the multigraph and mathematical representations of

the selected EFPs and the iteration step at which they were added. The blue ‘+’ (orange ‘×’) shows the ADO

of a PNN (HLN) trained on only the 5 prime EFPs picked out by each method (see Eq. 4.12). The ADO of

each model trained on m, pT , and all of the d ≤ 5 EFPs is the same to 3 significant digits, and is plotted as a

single dashed line. . . . . . . . . . . . . . . . . . . . . . . . . . . 100

22. The performance of the AE, PNN14, and HLN14 as anomaly detectors on the 80 GeV W , 174 GeV top, and

80 GeV Higgs. Note that the Higgs bosons are pair produced from the decay of a heavier Higgs, leading to

potentially 4 prongs in the large-radius jet. The left panels show the normalized distribution of each method’s

respective anomaly score for the background and each signal. The right panel shows the ROC curves for each

signal, with the solid lines being the ROC curves for the AE, the dashed lines for HLN14, and the dashed-dot

lines for PNN14. . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

23. AUCs for the PNN and HLN at each iteration for each of the eight signals reserved for testing. Note that

the Higgs bosons are pair produced from the decay of a heavier Higgs, leading to potentially 4 prongs in the

large-radius jet. The solid center lines are the AUC of the model used in the iterative process, the shaded

bands show the maximum and minimum AUCs from retraining each network an additional 10 times. The

dashed black line corresponds to the AE’s AUC. The dotted lines correspond to the isolation forest anomaly

detectors and the blue ‘+’ (orange ‘×’) is the PNN(HLN) trained using mass, pT , and the five prime factors

in Eqn. 4.12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

A.24.The top row shows the ROC curves for all of the adversarially-trained neural networks tasked with

distinguishing the 2-, 3-, and 4-prong signal jets from the QCD background. Lighter shades correspond

to increasingly larger values of λ. Larger values of λ put an increased emphasis on making the network output

less dependent on the mass, at the cost of worse classification. The middle row shows how the Bhattacharyya

distance for the QCD background changes as tighter cuts are made on the network output. As expected,

higher values of λ lead to less sculpting than lower values of λ. The bottom row shows a parametric plot of the

Bhattacharyya distance for the QCD background versus the background rejection. The adversarially-trained

networks are all able to achieve similarly large background rejections, but networks using higher values of λ

are able to reject much of the background while preserving the profile of the underlying distribution. All three

rows show that the benefits of adversarial training saturate at λ = 50. . . . . . . . . . . 119

A.25.Comparison of Bhattacharyya distance and Jensen-Shannon distance for 2-, 3-, and 4-pronged signals, as a

function of signal efficiency for various decorrelation methods studied in this work. The general trend for both

metrics is seen to be the same. . . . . . . . . . . . . . . . . . . . . . . 121

A.26.Comparison of all decorrelation methods to the benchmarks for the 2-prong signal. τN/τN−1 is τ2/τ1. 122

A.27.Comparison of all decorrelation methods to the benchmarks for the 3-prong signal. τN/τN−1 is τ3/τ2. 123

A.28.Comparison of all decorrelation methods to the benchmarks for the 4-prong signal. τN/τN−1 is τ4/τ3. 124

xvii



LIST OF TABLES

Table Page

1. Primary 5- and 6-dimension operators for q̄qW+W− interactions. As outlined in the text, these operators

can be modified to yield the operators for q̄q′WZ interactions. Under the assumption that q̄ and q are each

other’s anti-particles, the operators are Hermitean and have the listed CP properties. If they are not, each of

these operators has a Hermitean conjugate, which can be used to create a CP even and a CP odd operator.

To simplify the expressions, we use the shorthand
↔
Dµν =

↔
Dµ
↔
Dν , and similarly, Dµν = DµDν . To get the

descendant operators, once can add contracted derivatives to get arbitrary Mandelstam factors of s, t. 26

2. Primary 7- and 8-dimension operators for q̄qW+W− interactions, where W̃µν = 1
2
εµνρσW ρσ . As outlined in

the text, these operators can be modified to yield the operators for q̄q′WZ interactions. Under the assumption

that q̄ and q are each other’s anti-particles, the operators are Hermitean and have the listed CP properties. If

they are not, each of these operators has a Hermitean conjugate, which can be used to create a CP even and a CP

odd operator. To simplify the expressions, we use the shorthand
↔
Dµν =

↔
Dµ
↔
Dν , and similarly, Dµν = DµDν .

To get the descendant operators, once can add contracted derivatives to get arbitrary Mandelstam factors of s, t.

At dimension 9, sO26 and sO27 become redundant to other operators and thus one only needs their descendants

tnO26 and tnO27 for an independent set of operators. . . . . . . . . . . . . . . . 27

3. Primary 5-, 6-, and 7-dimension operators for q̄qZZ interactions. Under the assumption that q̄ and q are each

other’s anti-particles, the operators are Hermitean and have the listed CP properties. If they are not, each of

these operators has a Hermitean conjugate, which can be used to create a CP even and a CP odd operator. To

simplify the expressions, we use the shorthand
↔
Dµν =

↔
Dµ
↔
Dν , and similarly, ∂µν = ∂µ∂ν . To get the descendant

operators, once can add contracted derivatives to get arbitrary Mandelstam factors of s, (t− u)2. . . 28

4. Primary 8-, 9-, and 10-dimension operators for q̄qZZ interactions. Under the assumption that q̄ and q are each

other’s anti-particles, the operators are Hermitean and have the listed CP properties. If they are not, each of

these operators has a Hermitean conjugate, which can be used to create a CP even and a CP odd operator. To

simplify the expressions, we use the shorthand
↔
Dµν =

↔
Dµ
↔
Dν , and similarly, ∂µν = ∂µ∂ν . To get the descendant

operators, once can add contracted derivatives to get arbitrary Mandelstam factors of s, (t−u)2. At dimension

11, sO31 and sO32 become redundant to other operators. Thus, for these two, we need only their (t− u)2nO31

and (t− u)2nO32 descendants. . . . . . . . . . . . . . . . . . . . . . . . 29

5. Primary operators for q̄qZγ interactions. As outlined in the text, these operators can be modified to yield the

operators for q̄qZg, q̄q′Wγ, and q̄q′Wg interactions. Under the assumption that q̄ and q are each other’s anti-

particles, the operators are Hermitean and have the listed CP properties. If they are not, each of these operators

has a Hermitean conjugate, which can be used to create a CP even and a CP odd operator. To simplify the

expressions, we use the shorthand
↔
Dµν =

↔
Dµ
↔
Dν , and similarly, Dµν = DµDν . To get the descendant operators,

once can add contracted derivatives to get arbitrary Mandelstam factors of s, t. At dimension 9, sO7 and sO8

become redundant to other operators. For these two, one only needs their tnO7 and tnO8 descendants. 31

xviii



Table Page

6. Primary operators for q̄qgγ interactions. Under the assumption that q̄ and q are each other’s anti-particles,

the operators are Hermitean and have the listed CP properties. If they are not, each of these operators has

a Hermitean conjugate, which can be used to create a CP even and a CP odd operator. To simplify the

expressions, we use the shorthand
↔
Dµν =

↔
Dµ
↔
Dν . To get the descendant operators, once can add contracted

derivatives to get arbitrary Mandelstam factors of s, t. At dimension 9, sO5 and sO6 become redundant to

other operators. For these two, one only needs their tnO5 and tnO6 descendants. . . . . . . . 32

7. Primary operators for q̄qγγ interactions. Under the assumption that q̄ and q are each other’s anti-particles,

the operators are Hermitean and have the listed CP properties. If they are not, each of these operators has

a Hermitean conjugate, which can be used to create a CP even and a CP odd operator. To simplify the

expressions, we use the shorthand
↔
Dµν =

↔
Dµ
↔
Dν , and similarly, ∂µν = ∂µ∂ν . To get the descendant operators,

once can add contracted derivatives to get arbitrary Mandelstam factors of s, (t− u)2. At dimension 11, sO7 and

sO8 become redundant to other operators. For these two, one only needs their (t− u)2nO7 and (t− u)2nO8

descendants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

8. Primary 7-, 8-, and 9-dimension operators for q̄qgg interactions. There are three allowed SU(3)

contractions, 2 symmetric ones—δAB and dABC—and one antisymmetric one—fABC . For example, Oq̄qgg1 =

(q̄δABq)
(
GAµνGBµν

)
, Oq̄qgg2 = dABC

(
q̄TAq

) (
GBµνGCµν

)
, and Oq̄qgg9 = fABC

(
q̄TAσµνq

) (
GBµρGCνρ

)
. Under

the assumption that q̄ and q are each other’s anti-particles, the operators are Hermitean and have the listed CP

properties. If they are not, each of these operators has a Hermitean conjugate, which can be used to create a

CP even and a CP odd operator. To simplify the expressions, we use the shorthand
↔
Dµν =

↔
Dµ
↔
Dν . To get the

descendant operators, once can add contracted derivatives to get arbitrary Mandelstam factors of s, (t− u)2.

At dimension 9, sO9 and sO10 become redundant to other operators and at dimension 11, sO21, sO22, sO23

and sO24 become redundant to other operators. For the O9,10,21,22,23,24 operators, one only needs descendants

with factors of (t− u)2. . . . . . . . . . . . . . . . . . . . . . . . . . 35

9. Primary 10- and 11-dimension operators for q̄qgg interactions. There are three allowed SU(3) contractions,

2 symmetric ones—δAB and dABC—and one antisymmetric one—fABC . Under the assumption that q̄ and

q are each other’s anti-particles, the operators are Hermitean and have the listed CP properties. If they are

not, each of these operators has a Hermitean conjugate, which can be used to create a CP even and a CP

odd operator. To simplify the expressions, we use the shorthand
↔
Dµν =

↔
Dµ
↔
Dν , and similarly Dµν = DµDν .

To get the descendant operators, once can add contracted derivatives to get arbitrary Mandelstam factors of

s, (t− u)2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

10. Primary operators for q̄q ¯̀̀ interactions (As described in the text, these operators can be modified to yield the

operators for baryon-lepton interactions uu′de and udd′ν.). Under the assumption the q̄, q and ¯̀, ` are each

other’s anti-particles, the operators are Hermitean and have the listed CP properties. If they are not, each of

these operators has a Hermitean conjugate, which can be used to create a CP even and a CP odd operator.

To get the descendant operators, one can add contracted derivatives to get arbitrary Mandelstam factors of

s, t. At dimension 8, sO9 and sO10 become redundant and thus, one only needs to consider O9 and O10 with

arbitrary factors of t. . . . . . . . . . . . . . . . . . . . . . . . . . . 37

xix



Table Page

11. Primary operators for uude interactions, where dc and ec are the charge conjugated down-type quark and

charged lepton 4-component spinor and SU(3) indices are contracted with an epsilon tensor (These operators

can be modified to yield the operators for uddν interactions by simply taking u→ d, d̄c → ūc, ēc → ν̄/ν̄c.). To
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CHAPTER I

INTRODUCTION

The Standard Model (SM) of particle physics is perhaps the most successful

scientific theory in human history, culminating with the discovery of the Higgs Boson

at the Large Hadron Collider (LHC) in 2012 [1, 2]. The agreement between theory and

experiment is remarkable, and is best highlighted by the measurement of the electron’s

anomalous magnetic moment [3], where the SM prediction and the experimentally

measured value agree to more than one part per trillion. For all of its successes,

though, we know that the SM cannot be a complete description of nature. There are

a number of observed phenomena, such as the existance of dark matter [4, 5, 6, 7, 8, 9]

and neutrino oscillations 1 [10, 11], that cannot be explained by the known particle

content of the SM.

As experiments at the LHC mature, much of the easily accessible parameter space

for theoretically well-motivated models to explain Beyond the Standard Model (BSM)

physics, such as supersymmetry [12], has been closed [13]. Experimental hints as to

where new physics may lie have been few and far between, and recent measurements

of the muon’s anomalous magnetic moment [14] or the mass of the W boson with

CDF II [15] demonstrate how difficult these searches can be. This reality suggests

a complementary approach to look for new physics—leveraging theoretical tools to

highlight production/decay modes that are most likely to be susceptible to BSM

operators while still being accessible to active experiments and using more powerful

computational tools to search for rare signs of BSM physics.

1Fermions in the SM acquire their mass through interactions with the Higgs, which requires both
a left- and right-handed copy of the fermion. As of now, only left-handed neutrinos have been
observed. There are simple modifications to the SM that either add in a right-handed neutrino, or
allow neutrinos to acquire a mass through a Majorana mass term. Here, we take the SM to be the
theory that predicts that neutrinos should be exactly massless.
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Effective field theories (EFTs) are a well-established method of organizing the

effects of physics above a certain energy scale, and have been by both theorists and

experimentalists to guide searches for BSM physics at both the LHC and future

colliders. Today, it is common to treat the SM as an EFT, where the effects of

new physics above the electroweak scale appear only indirectly as modifications

to parameters in the SM Lagrangian. The two commonly used paradigms used

to paramaterize the indirect effects of new physics are the Standard Model EFT

(SMEFT) [16, 17] and the Higgs EFT (HEFT) [18]. These two paradigms have

different assumptions about physics at high energy scales—SMEFT is expressed in

the electroweak symmetric phase and utilizes the Higgs doublet whereas HEFT is

expressed in the broken phase and consequently utilizes the physical Higgs boson

and an independent set of Goldstones. These differences give rise to contrasting

predictions about the relative importance of certain effects. See Ref. [19] for a more

comprehensive review of the differences between SMEFT and HEFT.

Despite the ease with which EFTs allow us to neatly organize the effects

of new physics on the low-energy degrees of freedom, there are a number of

Lagrangian-side issues that can obfuscate the connections between EFT operators

and their corresponding experimental signals. Operators which give the same physical

amplitude can be written in a number of seemingly different ways. Equations of

motion and integration-by-parts can give rise to redundancies in operator bases.

Additionally, the large number of allowed interactions make it difficult to know when

one has a complete basis. These issues have motivated work to understand the direct

connection between dimension-6 SMEFT operators and the physical observables they

paramaterize [20, 21, 22, 23].
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As alluded to above, these issues stemming from the Lagrangian have no impact

on the predictions of the physical amplitudes when all external particles are on shell.

These amplitudes are physically observable, and thus serve as a useful intermediary

between theory and experiment. Recent work in the study of amplitudes has resulted

in greater insight into the independent amplitudes for a given process. In particular,

the general structure of BSM amplitudes, given just SU(3)c × U(1)em invariance has

been analyzed with both spinor-helicity [24, 25, 26, 27] and standard variables [28].

While EFTs and amplitudes are useful to guide searches, these searches still need

to be carried out, and the data they collect analyzed. Finding rare physics amounts to

solving an increasingly difficult binary classification problem. If the relevant signals

are particularly uncommon, it can be hard to find these new signals in the first place,

and even more difficult to make any statistically significant statements. This problem

is only exacerbated if one needs to first define a new observable (or set of observables)

that can be used as a discriminant.

Over the past decade, advances in computational power and machine learning

(ML) have paved the way for the use of so-called ‘deep’ learning to search for BSM

physics. Compared to the ‘shallow’ ML models of yore, deep ML models have an

increased capacity to learn complex, non-linear functions of their inputs2. This

difference is highlighted well in Ref. [29], where a deep neural network given only

low-level information outperforms a shallow neural network with access to both the

same low-level information, as well as relevant high-level information. This increase

in performance has a corresponding increase in the potential discovery significance.

When searching for new resonances at the LHC, it is increasingly important

to develop and apply search strategies that are sensitive to a wide class of signals.

2Shallow ML models typically have 1 (or 0) hidden layers. Deep ML models will contain multiple
hidden layers.
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For hadronically decaying resonances, there has been considerable effort in the past

to develop various methods, targeted at the boosted regime (pT � m) of these

resonances. Such boosted resonances appear in many generic BSM scenarios, as

well as in hadronic channels of boosted W/Z in the SM itself. In the boosted regime,

the resulting jets from the hadronic decay of these resonances are merged, and the

result is a fat jet of wide radius. Using the difference in radiation pattern inside these

fat jets, captured by various substructure variables, single variable (SV) [30, 31] as

well as multi-variable (MV) machine learning based methods [32, 33, 34, 35, 36, 37,

38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53] have been shown to allow a

good discrimination of these signals from QCD background (see [54, 55] for a review

of machine learning based techniques in high energy physics).

Many analyses have been carried out at the LHC to look for new physics beyond

the Standard Model, but unfortunately these have yet to yield statistically significant

deviations from the expected background. This may indicate that there is no new

physics to be found in the data or, more optimistically, it may be a result of not looking

for the right signals. There remain many well-motivated models to search for, but

designing and carrying out dedicated analyses for each quickly becomes intractable.

This motivates the need for broad, model-agnostic searches. The advent of modern

machine learning has seen the creation of a variety of unsupervised anomaly detection

techniques, all capable of searching for new physics with no reliance on a particular

signal model. See Ref. [56] for a recent review of anomaly detection and unsupervised

techniques.
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1.1 Primary Observables for Top Quark Collider Signals

Ref. [28] was able to characterize the structure of on-shell 3- and 4-point

amplitudes involving the Higgs. To complete this procedure, a set of potential on-shell

amplitudes was constructed out of Lorentz invariant combinations of momenta and

polarizations. By studying their Taylor expansion in the kinematic variables, a set of

independent amplitudes was determined. These could then be converted into a basis

of Lagrangian operators. As a cross-check, the number of independent operators

at each mass dimension could be determined using the Hilbert Series approach

[57, 58, 59, 60, 61, 62, 63]. For the four point couplings, this lead to a number of

primary amplitudes/operators whose multiplication by Mandelstam variables gave

descendant amplitudes/operators. If these new interactions are mediated by the

exchange of a massive particle, the lowest order primary amplitude would be a first

approximation to the relevant phenomenology. Finally, by requiring unitarity up to

an energy Emax, one can place upper bounds on their coupling strength. These results

when combined with simple estimates, suggested that there are new amplitudes in

Higgs decays into Zf̄f,W f̄f, γf̄f, and Zγγ that could be searched for at the HL-

LHC.

In Chapter II, we extend this study to amplitudes involving the top quark.

At the High-Luminosity LHC (HL-LHC) and future TeV colliders, over a billion

top quarks will be produced, allowing the study for rare decays as well as new

production mechanisms. This requires understanding the general structure of four

fermion operators and two fermion operators with two gauge bosons, which can result

in primaries up to dimension 11. Interestingly, we find interactions (e.g. γγf̄f)

whose Hilbert series numerator has a complete cancellation in the coefficient for

one of the terms, where a näıve inspection incorrectly concludes that there are no
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primary operators at a mass dimension. In our analysis, we have also checked that

the primary and descendant structure up to at least dimension 12, going beyond the

existing dimension 8 results using spinor-helicity variables [26, 27]. As an initial look

at the phenomenology of these operators, we give simple estimates that top quark

decays for which FCNC modes (e.g. t → c(¯̀̀ , hγ, hg, Zγ, Zg, γγ, γg)) and charged

current decay modes could be interesting to search for at the HL-LHC. These simple

estimates indicate that there are some decay modes that appear at dimension 8 and

10 in SMEFT that are worth studying in more detail.

1.2 Mass Agnostic Jet Taggers

While entirely focusing on the best discriminant to distinguish between signal

and background is desirable, it is only a first step. In realistic searches for these

resonances, one needs to model the background with confidence, given that QCD

is hard to estimate entirely analytically. This is usually accomplished by looking at

distributions of variables in which the background is smooth and featureless, while the

signal is not—an example of such a variable being the invariant mass of the jet. Using

sideband analysis or control regions, one can model the background, and therefore

look for new resonances using a bump hunt strategy.

The substructure of a fat jet is related to kinematic variables such as the jet mass,

m, and transverse momentum, pT . As a result, the application of any classifier for

signal isolation tends to distort the background distribution for m and pT . This leads

to introducing spurious features in the distributions, making a bump hunt harder

to implement with statistical confidence. It is not surprising that such a distortion

for the background distribution occurs, because a good discriminant should reject a

large fraction of background events, so that the events that survive are necessarily
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signal like, and hence the background distribution starts to look signal like. The

right optimization requires taking these two competing effects into account—a strong

signal discrimination vs an undistorted background distribution.

Specifically, there are two side effects that come as a result of the correlation of

the jet mass with the classifier output. The first is that the classifier is only good for

a signal of a given mass. This is less than ideal as a broad search strategy for new

physics. One would either need to train multiple classifiers to cover the mass range,

or need to use other techniques such as parametrized networks [34, 64]. The other

side effect is related to systematics. If the only background that makes it through

the selection criteria looks exactly like the signal, it can be hard to estimate the level

of background contamination. While unintuitive, it can be better to have a classifier

which removes less background, if it does so in such a way that the systematics are

decreased. The overall goal is to maximize the significance, which is approximately

given by S/
√
B + σ2

sys. Allowing more background can lead to a better significance

if it decreases the systematic uncertainty σsys.

Recent work, based on both single variable and multivariate approaches have

addressed this constrained optimization problem. For example, a decorrelated τ21,

called τDDT
21 has been shown to be effective in keeping background distributions

unaffected [65, 66]. While this single variable method has the advantage of being

simpler to implement, it will not be useful for more complicated boosted jets.

Multivariate methods, while more powerful in general as compared to single variable

based methods, are also prone to distorting the background distributions more, and

require more sophisticated training augmentation based approaches. For example,

multivariate methods based on Boosted Decision Trees (BDT) use a modified

algorithm called uBoost to perform this constrained optimization [67]. Multivariate
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methods based on Neural Networks (NN) use an adverserial architecture [68, 64, 69]

to accomplish the same. However, these multivariable methods are significantly more

involved and require tuning additional hyperparameters for optimal performance. In a

recent work [70], the ATLAS collaboration has studied mass decorrelation in hadronic

2-body decays for both single and multivariate approaches.

In addition to these, there are data augmentation based approaches that aim for

a middle ground.3 The idea is to decorrelate the input to multivariate methods, so

that any dependence on a given background variable is reduced significantly. While

these methods are not as efficient in keeping the distributions undistorted, they are

quick to implement and still enjoy the power of multivariate discrimination. Two

such approaches, PCA [36, 65] (based on principal component analysis, from which it

derives the name) and Planing [33, 38] are shown to be efficient in benchmark cases.

There is a general need to compare and understand the advantages and

limitations of these methods, when requiring both high signal isolation and

undistorted background distribution. A classification of these methods, and

quantifying their performance using suitable metrics, for varying levels of signal

complexity (in terms of prongedness) is desired. Depending on the situation at hand,

one may want to work with higher/lower signal efficiency or lower/higher background

rejection, for a given background distortion. This should be quantified for various

methods and signal topologies. This can give a clear picture of when is a given

method suitable, and how to augment one with the other if needed.

3In the machine learning literature, data augmentation is a technique to modify an input and
add to the existing training set. This can make a classifier more robust to noise or underlying
symmetries. We use data augmentation instead to remove information that we don’t want to be
learned.
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1.3 Creating Simple, Interpretable Anomaly Detectors for New Physics

in Jet Substructure

Anomaly detection techniques rely on an ability to characterize the background

in some way, with the hope that this characterization does not generalize to out-of-

distribution events, thus making signal events appear “anomalous.” Broadly speaking,

anomaly detection can be split into two categories, depending on how similar one

expects the signal and background to look. If they are expected to look similar,

one has to work to exploit differences in the underlying probability distributions, and

many techniques have been developed to highlight those differences [71, 44, 72, 73, 74,

75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92]. However, one often

expects there to be qualitative differences between signal and background. In that

case, there are a variety of methods that can determine whether events are anomalous

or not on an event-by-event basis [93, 36, 94, 69, 50, 95, 96, 97, 98, 99, 100, 101, 102,

103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120].

Machine learning (ML) techniques, including unsupervised anomaly detection,

typically make use of low-level, high-dimensional data. This is in contrast to human-

engineered strategies, which tend to use high-level, low-dimensional data. When the

two perform equally well on a given task, we tend to assume that the ML strategy

must have used some combination of its low-level inputs to create an approximation of

the high-level variables used by humans. It could be, however, that the ML strategy

has found an alternative that is just as efficient. Unfortunately, the “black box”

nature of ML techniques make it difficult to understand what the machine is actually

learning. This problem is only amplified when the ML strategy outperforms the

human-engineered one. Has the machine learned a simple observable humans didn’t

consider or has it perhaps found something new?
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There have been efforts to understand a neural network by using existing high

level observables [29, 121, 38, 122, 123], as well as “knowledge distillation” techniques

to gain insights about complex networks by analyzing simpler ones [124, 125, 126, 127].

In a recent paper (Ref. [128]), a promising iterative technique was introduced to

build an interpretable classifier. This classifier mimics a “black box” deep neural

network classifier, where the mimicker’s inputs consists of a limited set of human-

interpretable high-level variables (see also [129, 130]). In this paper, we extend this

technique to anomaly detectors by presenting two strategies for mapping the low-level

information utilized by an anomaly detector into a handful of simple to understand

high-level observables. As a concrete example, we attempt to mimic both the decisions

and performance of an anomaly detector based on a convolutional autoencoder,

which is trained on background jet images. The convolutional autoencoder then

helps to iteratively select high-level observables that serve as the inputs to the

mimicker networks. As our pool of high-level observables, we use the Energy

Flow Polynomials [131] because they form a basis for all infrared- and collinear-safe

observables.

We introduce two strategies to mimic an autoencoder. The first strategy, the

High-Level Network, uses a small number of high-level observables to match the

autoencoder’s anomaly score on an event-by-event basis. The other strategy, the

Paired Neural Network, is tasked with using a potentially different set of observables

to learn to make the same ordering decisions as the autoencoder. Given a pair of

events, the Paired Neural Network learns which of the two was deemed to be less

anomalous by the autoencoder. Note that like the convolutional autoencoder we

want to mimic, both the Paired and High-Level neural networks are only trained on

background events and so are unsupervised with respect to signal events. Despite
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their philosophical differences, we find that both strategies agree on which high-level

observables are useful for ordering background events like the autoencoder. These

two strategies also have comparable performance, where we find that they both make

the same ordering decisions as the autoencoder ∼83% of the time.

Since these networks are unsupervised, applying these networks as anomaly

detectors allows us to test whether the decision ordering on background events

transfers to signal events. Interestingly, for seven of the eight different signals

we consider, we find that the mimickers perform as well or better as anomaly

detectors than the autoencoder. Thus, this shows that it is possible to create

interpretable anomaly detectors that have a limited number of high-level inputs

without compromising performance. This reduction of complexity is an obvious

advantage for experimental applications of anomaly detection, reducing work needed

for variable validation and determination of systematic uncertainties. Theoretically,

this result gives insights into the features of a QCD jet image which are harder to

compress into a lower dimensional latent space.

1.4 Outline

This dissertation is comprised of three analyses that aid in the search for BSM

physics.

In Chapter II, we adapt the methods outlined in Ref. [28] to characterize the

structure of 3- and 4-point on shell amplitudes involving the top quark. We create

a set of independent amplitudes, cross-checked by the appropriate Hilbert series,

and translate these amplitudes into a set of SMEFT-like operators. We then use

perturbative unitarity to place an upper bound on the coupling strength of these
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operators. With this, we highlight a number of new top production/decay amplitudes

that are accessible to the HL-LHC.

In Chapter III, we compare and quantify the efficacy of data augmentation

and training augmentation techniques in decorrelating a deep ML classifier from the

invariant jet mass. All of these techniques help to preserve the background dominated

sidebands in the invariant mass distribution, even as tighter cuts are made on the

classifier’s output. This allows experimentalists to better understand systematic

sources of error in the signal region, which allows us to make more statistically

significant statements about the data.

Finally, in Chapter IV, we focus on the intepretability of ML-based anomaly

detection. Adapting techniques from the literature, we iteratively build a series of

deep anomaly detectors with the aim of mimicking a more complex, image-based

convolutional autoencoder. One series of deep networks is tasked with regressing

the reconstruction error of the autoencoder, the other is tasked with mimicking the

background decision ordering of the autoencoder. The iterative process picks out

the high-level physics observables that best explain the physics being learned by the

convolutional autoencoder. We find that both techniques are able to successfully

mimic the autoencoder, both in the relative ordering of background events and when

used as anomaly detectors, and agree on the relevant underlying physics learned by

the autoencoder.

Chapter II contains material that has yet to be published (though a preprint

is available [132]) and co-authored with Spencer Chang. Chapter III contains

material that has been published [133] and was co-authored with Rashmish K. Mishra,

Andrea Mitridate, and Bryan Ostdiek. Chapter IV contains material that has been

published [134] and was co-authored with Spencer Chang
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CHAPTER II

PRIMARY OBSERVABLES FOR TOP QUARK COLLIDER SIGNALS

Future colliders, such as the HL-LHC, are expected to produce over a billion

top quarks over the lifetime of the experiment. This large number will allow for

the study of rare decays and new production mechanisms, which could point to

BSM physics. In this chapter, we adapt the techniques outlined in Ref. [28] to on-

shell amplitudes involving top quarks. We use a number of theoretical tools from

the modern amplitudes program to identify a set of independent operators up to

dimensions 12 and 13 for four fermion (ffff) operators and two fermion, two gauge

boson (ffvv) operators, respectively. We can then translate these amplitudes into

the lowest possible dimension SMEFT-like operator, and use perturbative unitarity

to place a bound on that operator’s coupling. This allows us to highlight which

production/decay modes are accessible to future experiments like the HL-LHC, and

warrant being studied in more detail.

This chapter is organized as follows. Section 2.1 describes what amplitudes we

will explore and how to determine independent amplitudes. Section 2.2 discusses the

Hilbert series results for our top quark operators. In Section 2.3, we discuss some

relevant phenomenological issues, such as unitarity bounds on coupling strengths and

also rough estimates for top quark decays at the HL-LHC. Section 2.4 is the main

body of results, where we list the operators for the primary amplitudes. In Section 2.5,

we estimate which top decay amplitudes are interesting for exploration at HL-LHC.

The characterization of ffV V amplitudes and operators was done by LB and

Spencer Chang. Spencer Chang characterized the ffff amplitudes and operators.
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2.1 Finding Independent Amplitudes/Couplings for Top Quarks

The general on-shell amplitudes needed for top quark phenomenology are

invariant under SU(3)c × U(1)em and Lorentz symmetry. For 3 and 4 point

interactions, imposing SU(3)c and Lorentz symmetry gives the following list:

3pt : q̄qV, q̄qh, 4pt : q̄q ¯̀̀ , qqq`, q̄qq̄q, q̄qhh, q̄qhV, q̄qV V (2.1)

where q is a quark, ` is a lepton (charged or neutral), h is a Higgs boson, and V is any

gauge boson. To fully characterize these 4 point interactions, we also need additional

3 point interactions for exchange diagrams, which add

3pt additional : V V V, hV V, hhh, ¯̀̀ h, ¯̀̀ V. (2.2)

Of these couplings, the three point couplings and q̄qhh, q̄qhV have been fully

characterized (e.g [28]), so in this paper this leaves the following four point couplings

to determine:

q̄qV V : WWq̄q,WZq̄q′, ZZq̄q, Zγq̄q, Zgq̄q,Wγq̄q′,Wgq̄q′, gγq̄q, γγq̄q, ggq̄q,

(2.3)

Four fermion : q̄q ¯̀̀ , q̄q′ēν, qqq`, q̄qq̄q. (2.4)

When there are identical particles involved, the form of the amplitude must respect

the relevant exchange symmetry and for these, there are no amplitudes with 3 or more

identical particles (note that, if we were characterizing down quark interactions, we

would have to consider dddē).
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In [28], a general approach for finding independent amplitudes for 3 and 4 point

on-shell amplitudes was presented. Here, we give a brief overview of the process

and refer to that paper for further details, but will also note where changes in that

approach need to be made. To characterize four point on-shell amplitudes, we form

Lorentz invariants out of particle momenta, fermion wavefunctions, and gauge boson

polarizations. For massless gauge bosons, we use the field strength contribution εµpν−

ενpµ, so that the amplitude is manifestly gauge invariant. Three point interactions

with a covariant derivative can also give a four point contact interaction with a

gauge boson; for our cases, the only one that will be relevant is q̄σµνq
′W µν , which

generates a q̄q′Wγ interaction. This results in a set of amplitudes Ma, giving a

linear parameterization of the general amplitudes M =
∑

aCaMa. For each on-

shell amplitude Ma, we can associate a local Lagrangian operator, which we choose

to have the lowest mass dimension possible, ca
vdO−4Oa, where we’ve normalized its

coefficient with factors of the Higgs vev to give a dimensionless coupling ca, resulting

in a Lagrangian which parameterizes the on-shell amplitudes

Lamp =
∑
a

ca
vdO−4

Oa. (2.5)

By connecting these amplitudes to Lagrangian operators, we can work in

increasing mass dimension of the corresponding operators. For example, q̄qWW

starts at dimension 5, since the lowest local operator needs two fermions and two

gauge bosons, while q̄qγγ will start at dimension 7. At a given mass dimension, we

write out all of the amplitudes for the allowed particle helicities. In cases where

there are two particles that are identical, we symmetrize and anti-symmetrize with

respect to those two particles. After finding the allowed primary amplitudes for

the distinguishable case, we can achieve the indistinguishable case by imposing the
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Bose/Fermi symmetry. We’ll have more to say on that later, when we have the Hilbert

series results.

For our four point amplitudes, we consider 1 + 2 → 3 + 4 scattering in

the center of mass frame, where p1 = (E1, 0, 0, pi), p2 = (E2, 0, 0,−pi), p3 =

(E3, 0, pf sin θ, pf cos θ), p4 = (E4, 0,−pf sin θ,−pf cos θ). On-shell these have the

constraints

E1 =
E2
com +m2

1 −m2
2

2Ecom
, E2 =

E2
com +m2

2 −m2
1

2Ecom
, E3 =

E2
com +m2

3 −m2
4

2Ecom
, E4 =

E2
com +m2

4 −m2
3

2Ecom

(2.6)

A general kinematic configuration is determined by the two continuous parameters

Ecom and cos θ as well as the choice of helicities. However, treating pi, pf , and

sin θ as independent is advantageous for finding amplitude redundancies. On-

shell, one can replace even powers of these variables as sin2 θ = (1 − cos2 θ), p2
i =

(E2
com−(m1+m2)2)(E2

com−(m1−m2)2)
4E2

com
, p2

f = (E2
com−(m3+m4)2)(E2

com−(m3−m4)2)
4E2

com
. After doing this,

as shown in detail in [28], the Taylor series coefficients of the amplitudes expansion

in Ecom, pi, pf , cos θ, sin θ must all vanish if there is an amplitude redundancy.

Schematically, if there are Taylor series coefficients Bα, we then form the matrix

∂Bα
∂Ca

, evaluate it for random numerical values for the particle masses, and numerically

evaluate its singular value decomposition. The number of nonzero values in that

decomposition is the number of independent amplitudes and one can find the

independent ones by removing Ca’s one at a time.

There are a few modifications to [28] needed to address the amplitudes of this

paper. First of all, for four fermion amplitudes, we are required to have fermions in

the final state. Similar to that paper, we can choose a mass configuration, either m3 =

0,m4 6= 0 or m3 = m4, to constrain the variable dependence of the kinematic variables
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in the fermion wavefunctions. We have checked that this mass assumption doesn’t

affect the basis of independent amplitudes. Having final state fermions also results in

dependence on cos θ
2
, sin θ

2
, which can be treated by replacing cos θ = 2 cos2 θ

2
− 1 and

sin θ = 2 cos θ
2

sin θ
2

and using cos θ
2

and sin θ
2

as our variables. Another complication

is that the allowed SU(3) gauge invariant contractions are more diverse than before.

This issue interplays with the Bose/Fermi symmetries of the amplitudes. As an

example, for q̄qgg, interchange of the gluons must result in the same amplitude. If

the gluons are contracted with an fABC then the amplitude must also be odd under

exchange of the momenta and polarizations of the gluons. On the other hand if

the gluons are contracted with a dABC then the amplitude must also be even under

exchange of the momenta and polarizations of the gluons.

2.2 Hilbert Series

The Hilbert series gives a systematic way to count the number of gauge invariant

independent operators, up to equation of motion and integration by part redundancies

[57, 58, 59, 60, 61, 62, 63], which provides a useful cross check on our amplitude

counting. It gives a function, whose Taylor series expansion in a parameter q gives

the number of independent operators at each mass dimension 1. In Eqn. 2.7, we list

the Hilbert series for each of the four point operators that we will characterize. The

1How to treat massive gauge bosons has only recently been worked out and is best explained in
[63].
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three point and the other four point operator results can be found in [28].

HWWf̄f = HWZf̄f ′ =
4q5 + 12q6 + 16q7 + 6q8 − 2q9

(1− q2)2
,

HZZf̄f =
2q5 + 6q6 + 12q7 + 6q8 + 6q9 + 6q10 − 2q11

(1− q2)(1− q4)
,

HZγf̄f = HZgf̄f = HWγf̄f ′ = HWgf̄f ′ =
4q6 + 12q7 + 8q8 + (2− 2)q9

(1− q2)2
,

Hgγf̄f =
6q7 + 8q8 + (4− 2)q9

(1− q2)2
, Hγγf̄f =

4q7 + 2q8 + 4q9 + 6q10 + (2− 2)q11

(1− q2)(1− q4)
,

Hggf̄f =
10q7 + 10q8 + (14− 2)q9 + 14q10 + (6− 4)q11

(1− q2)(1− q4)
,

Hq̄q ¯̀̀ = Hq̄q′ēν = Hq1q2q3` =
10q6 + 8q7 − 2q8

(1− q2)2
,

Hqqq′` =
4q6 + 6q7 + (6− 2)q8 + 2q9

(1− q2)(1− q4)
, Hq̄q̄′qq′ =

2(10q6 + 8q7 − 2q8)

(1− q2)2
,

Hq̄q̄′qq = Hq̄q̄qq′ =
10q6 + 8q7 + (10− 2)q8 + 8q9 − 2q10

(1− q2)(1− q4)
,

Hq̄q̄qq =
8q6 + 4q7 + (8− 2)q8 + 4q9 − 2q10

(1− q2)(1− q4)
.

(2.7)

These fractional forms are interpretable in the following way: the numerator counts

the number of primary operators and the denominator allows for the dressing of these

operators with Mandelstam factors.

For example, looking at Hq̄q ¯̀̀ = 10q6+8q7−2q8

(1−q2)2 , the numerator says that there are

10 dimension 6 primary operators and 8 dimension 7 primary operators. Ignore for

now the −2q8, which we’ll see denotes two constraints that appear at dimension 8.

The denominator of 1/(1− q2)2 has an expansion of (1 + q2 + q4 + · · · )2 which is just

counting the number of operators from multiplying the primaries by Mandelstam

factors of s, t (u is redundant to the on-shell condition). As we will see when we

analyze the amplitudes of this interaction, two primary amplitudes at dimension 6,
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say Ma,Mb (with respective operators Oa,Ob), when multiplied by a factor of s are

redundant to a linear combination of other amplitudes, so are no longer independent

at dimension 8. This explains the −2q8 since treating this as the loss of the two

related operators sOa and sOb and all of their descendants gives the correct counting

of the number of independent terms. Also for some denominators, the factors are

(1 − q2)(1 − q4). This results for situations where there are two identical particles

in the amplitude. Assuming the two initial state particles are the identical pair, s

and (t − u)2 are the Mandelstam factors that have the correct exchange symmetry

between the two particles, so we are allowed to multiply the primary by an arbitrary

set of s and (t−u)2 factors (note that the primary already has a factor of +/− when

exchanging bosons/fermions).

As you’ll notice in the Hilbert series list, some of the numerator coefficients

are written in an unusual way, for example the (14 − 2)q9 and (6 − 4)q11 in Hggf̄f .

When we evaluated the Hilbert series, these would of course have been 12q9 and 2q11.

However, when examining the number of independent amplitudes at dimension 9, we

found 14 new primaries and 2 redundancies when 2 of the dimension 7 amplitudes

were multiplied by s. In this way, the Hilbert series must be interpreted with care, as

there can be hidden cancellations. In some case, there is even a complete cancellation

like the (2−2)q11 term for γγf̄f , where a näıve interpretation would have missed the

new primaries at dimension 11.

The Hilbert series also allows for understanding of the constraints of Bose/Fermi

symmetry. For example, for ggf̄f there are two symmetric contractions for the gluon

SU(3) indices (δAB, dABC) and one antisymmetric contraction (fABC), then swapping

the kinematic variables of the two gluons would result respectively in a + sign for

the first two and a − sign for the last one. Now, if we calculated the Hilbert series
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assuming photons were odd under interchange, then Hasym

γγf̄f
= 2q7+6q8+(6−2)q9+2q10+2q11

(1−q2)(1−q4)
.

One can then check that Hggf̄f = 2Hγγf̄f+Hasym

γγf̄f
as expected from the behavior under

kinematic variable exchange and the allowed SU(3) contractions.

Note that unlike in [28], due to complications of enumerating all of the terms, we

do not claim to have examined the full, allowed tensor structures of the amplitudes.

Instead, we have checked that we agree with the Hilbert series up to dimension

13 for q̄qV V amplitudes and dimension 12 for four fermion amplitudes. Up to

those dimensions, the numerator of these Hilbert series do not have any additional

cancellations. As the Hilbert series shows, the redundancies that appear at higher

dimension appear in pairs so it seems unlikely there are more, but still we cannot

guarantee that others do not appear at higher dimension.

2.3 Phenomenology

2.3.1 Unitarity

As in [28], we utilize unitarity to constrain the coupling strengths of these

operators. Since these are new couplings beyond the Standard Model, they violate

unitarity at high energies. Requiring the amplitudes to satisfy perturbative unitarity

up to a scale Emax, gives an upper bound on the couplings. The technique follows

the work [135, 136, 137, 138], where the unitarity bounds due to high multiplicity

scattering was developed (see also [139, 140, 141, 142, 143]).

To stand in for a more detailed calculation of each amplitude, we utilize a SMEFT

operator realization of the amplitude to act as a proxy. As an example, consider the

case of c
v
q̄qWW. This is realized by the dimension 8 SMEFT operator 1

Λ4 (Q̄LH̃uR +

h.c.)|DµH|2 2. Since we are only looking for an approximate bound, we ignore O(1)

factors like
√

2, g, g′, sin θW , cos θW and only take into account factors of v. Under this

2Note that the dimension 6 operator 1
Λ2 (Q̄L(D2H̃)uR + h.c.) can be reduced by equations of

motion and does not result in the correct high energy behavior of the q̄qWW interaction.
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approximation, c ≈ v4/Λ4. The SMEFT operator has many contact interactions that

violate unitarity, but we find that either the lowest and highest multiplicity give the

best bound as a function of Emax, so we will calculate these for all interactions and

include them in our tables. For this example, the lowest multiplicity amplitude is for

two quarks and two Goldstones, with a matrix element that goes as M2→2 ≈ vE3
max

Λ4 ,

where one factor of Emax comes from the fermion bilinear and the other two come

from the two derivatives acting on the Goldstones. This is bounded by phase space

factors M2→2 ≤ 8π [135], which translates into c ≤ (8π)v3/E3
max ≈ 0.4

E3
TeV

where ETeV =

Emax/TeV. The highest multiplicity amplitude is for two quarks and 3 Goldstones,

with M2→3 ≈ E3
max

Λ4 ≤ 32π2

Emax
, where the bound again depends on the phase space. This

gives the bound c ≤ (32π2)v4/E4
max ≈ 1.2

E4
TeV
. As this example illustrates, we generally

find that the low multiplicity constraint is stronger for Emax < 4πv and the high

multiplicity one is stronger for energies above that.

2.3.2 Top Quark Decays

The HL-LHC will produce about 5 billion top quarks, allowing searches for rare

decays as well as new production modes. Here we will consider decay modifications

due to our amplitudes. The on-shell 2 and 3 body decay modes of the top quark

allowed by the Standard Model quantum numbers are

t→ dW, u(Z, h), d(eν, d̄u,WZ,Wγ,Wg), u(¯̀̀ , q̄q,WW,Zγ, Zg, γγ, γg, gg) (2.8)

along with changes in flavors of quarks and leptons.

Searches for the flavor changing two body decays are actively being pursued

at the LHC (e.g. [144, 145, 146, 147, 148, 149, 150]), where theoretical analyses

are often performed in SMEFT (e.g. [151, 152, 153, 154]). Some of the three

body decays are higher order decays that exist in the Standard Model at tree level
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(e.g. dW (Z, γ, g), uWW ), while the others require flavor changing neutral current

interactions which should be suppressed in the Standard Model. Searches for new

decay modes can be triggered by requiring one of the tops decays in the standard

leptonic channel and then looking for the new decay mode for the other top quark.

For this simple analysis of the phenomenology, we will approximate top decay

amplitudes as a constant, assuming the top quark mass is the only relevant mass scale

MO(t→ 2) ' cO
vdO−4

mdO−3
t ≈ cO

(mt

v

)dO−4

mt ≈ cO22−dO/2mt, (2.9)

MO(t→ 3) ' cO
vdO−4

mdO−4
t ≈ cO

(mt

v

)dO−4

≈ cO22−dO/2, (2.10)

where we’ve approximated v ≈
√

2mt. Note that this ignores O(1) enhancements of

the form (mt/mW ) that can come from longitudinal polarizations, but is sufficient for

our estimates.

Let’s first consider non-FCNC top decays that are not suppressed in the Standard

Model, such as t → b(W, `ν,Wγ,Wg). In such cases, one has at least the Standard

Model top background to contend with. For new amplitudes which are CP even, they

will interfere with the Standard Model amplitude and have enhanced sensitivities

(unless one designs CP violating observables). In this case, we want to compare the

number of new decays to the fluctuation in the Standard Model top background.

Under our approximation the branching ratios in the Standard Model and the

modification due to interference are

Br(t→ 2)SM ≈
1

16πmtΓt
|M(t→ 2)SM |2, (2.11)

δBr(t→ 2) ≈ 1

16πmtΓt
|M(t→ 2)SM ||M(t→ 2)BSM |. (2.12)
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To estimate sensitivity, we require that the new top decays must be as large as a one

sigma deviation in the Standard Model top background, which for a sample of Nt top

quarks gives NtδBr(t → 2) &
√
NtBr(t→ 2)SM . Such a calculation gives for two

and three body decays the constraints

2 Body Decays : c & 5× 10−6

(
109

Nt

)1/2

2dO/2,

3 Body Decays : c & 6× 10−5

(
109

Nt

)1/2

2dO/2
(2.13)

where we’ve normalized to a total sample of a billion top quarks.

For FCNC decays, such as t→ c(Z, γ, g,WW,Zγ, Zg, γγ, γg, gg), the branching

ratios predicted in the Standard Model (10−12 to 10−17) are too small to occur at the

HL-LHC (e.g. [?, ?, ?, ?, 155]). Thus, for these decays we can ignore interference

and give an estimate that works for both CP even and odd interactions. If we make

an optimistic assumption that other backgrounds can be neglected, this requires that

the new branching ratios BrBSM give a few events at the HL-LHC or NtBrBSM & 1.

Under our approximation, this gives the same bounds as Eqn. 2.13.

To get some sense of how well this approximation works, we’ve checked in a

few existing FCNC searches, whether the background free assumption works at the

O(1) level. As one might expect, one finds that for final states with a single gluon

or photon, where hadronic backgrounds and fakes are relevant, that this is a poor

assumption and gives a branching ratio bound that is too strong by two and three

orders of magnitude for photon and gluon decays, respectively. Thus, estimates for

these final states should be viewed as very optimistic. However, we found that the

searches with a Higgs decaying into two photons agree roughly with our bounds.

Similarly, the final states with e, µ’s give bounds that are correct to a factor of 2− 3
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as long as one takes into account tagging efficiencies for b (∼ 0.5), e/µ (∼ 0.8) and,

when relevant, Z and W leptonic branching ratios (∼ 0.06 and 0.2). Thus, as long as

one take these factors into account, these final states should be more reliable. Later,

when combined with our upper bounds from perturbative unitarity, these calculations

will enable us to give a simple estimate of which decay amplitudes that are worth

exploring further at the HL-LHC.

2.4 Independent Amplitudes for Top Quark Physics

In the following subsections, we will list operators corresponding to the primary

amplitudes for ffV V and ffff interactions involving the top quark. We will

make comparisons to the Hilbert series to show consistency with the number of

independent operators, including discussions of redundancies that occur at certain

mass dimensions. We will also give CP properties of the operators and unitarity

bounds on the coupling constants for these interactions.

2.4.1 ffV V Amplitudes

Tables 1 and 2 list the primary operators for q̄qWW interactions. Note that for

the primary operators, covariant derivatives are with respect to SU(3)c×U(1)em and

thus only involve the photon and gluon. From the Hilbert series, we expect that there

should be 4 operators at dimension 5, 12 operators at dimension 6, 16 operators at

dimension 7, 6 operators at dimension 8, and at least two redundancies at dimension

9. This is precisely what we find, with the 38 listed operators and at dimension 9, sO26

and sO27 become redundant to other operators, where s = (pq + pq̄)
2. To generate

an independent set of operators, one needs to add descendants of the primaries,

which involve multiplying by arbitrary powers of s and t. However, because of the

redundancies at dimension 9, for O26 and O27, one only needs their descendants

tnO26 and tnO27. We’ve also listed the lowest dimensional SMEFT-like operator

24



(that we could find) which realizes each operator, where the covariant derivatives

are with respect to SU(3)c × SU(2)L × U(1)Y . We also list the unitarity bounds for

each SMEFT operator, assuming the lowest and highest particle multiplicity. These

operators can also be reworked to account for q̄q′WZ amplitudes provided we take

q → q′ and W → Z. Here, we use q′ to denote a different quark flavor of the correct

charge.

In Tables 3 and 4, we list the primary operators for q̄qZZ interactions. Reading

off from the Hilbert series, we expect to see 2 operators at dimension 5, 6 operators

at dimension 6, 12 operators at dimension 7, 6 operators at dimensions 8, 9, and

10, and at least 2 constraints at dimension 11. We do indeed find that there are

38 primary operators, as well as two redundancies at dimension 11, for sO31 and

sO32. To generate an independent set of operators, one needs to add descendants of

the primaries, which involve multiplying by arbitrary powers of s and (t− u)2 (note

that (t − u)2 respects the exchange symmetry of the Z’s). However because of the

redundancies at dimension 11, for O31 and O32, one only needs their descendants

(t− u)2nO31 and (t− u)2nO32.

We have listed all of the primary operators for q̄qZγ interactions in Table 5.

The Hilbert series tells us to expect 4 operators at dimension 6, 12 new operators at

dimension 7, 8 operators at dimension 8, and 2 new operators and 2 new redundancies

at dimension 9. We note that a näıve interpretation of the Hilbert series would have

missed the 2 new primary operators that appear at dimension 9. We find that there are

26 primary operators, in agreement with the Hilbert series, as well as two constraints

at dimension 9—sO7 and sO8. Thus for those two operators, one only needs their

descendant operators tnO7 and tnO8. These operators can also be adapted to account

for q̄q′Wγ, q̄qZg, and q̄q′Wg where we use a prime to denote a different quark flavor.
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ū
R
γ
ν
u
R
)( [D

µ
H

]†
[ D µ

ν
H
] +

h
.c

.)
14

(q̄
γ
ν
γ
5
q
)
( W

+
µ
D
µ
W
− ν

+
h
.c

.)
−

( Q̄ L
γ
ν
Q
L
−
ū
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Table 1. Primary 5- and 6-dimension operators for q̄qW+W− interactions. As outlined in the text, these
operators can be modified to yield the operators for q̄q′WZ interactions. Under the assumption that q̄ and
q are each other’s anti-particles, the operators are Hermitean and have the listed CP properties. If they are
not, each of these operators has a Hermitean conjugate, which can be used to create a CP even and a CP odd

operator. To simplify the expressions, we use the shorthand
↔
Dµν =

↔
Dµ
↔
Dν , and similarly, Dµν = DµDν . To

get the descendant operators, once can add contracted derivatives to get arbitrary Mandelstam factors of s, t.

26



i
O
q̄
q
W

+
W
−

i
C

P
d
O
i

S
M

E
F

T
c

U
n

it
a
ri

ty
O

p
er

a
to

r
B

o
u

n
d

17
( q̄
↔ D
µ
ν
q

) ( W
+
µ
W
−
ν
)

+

7

( Q̄
L

↔ D
µ
ν
H̃
u
R

+
h
.c

.) ( [D
µ
H

]†
[D
ν
H

]
+

h
.c

.)

0
.0

2
E

5 T
e
V
,

0
.0

7
E

6 T
e
V

18
( iq̄

γ
5

↔ D
µ
ν
q

) ( W
+
µ
W
−
ν
)

−
( iQ̄

L

↔ D
µ
ν
H̃
u
R

+
h
.c

.) ( [D
µ
H

]†
[D
ν
H

]
+

h
.c

.)
19

( iq̄
↔ D
µ
q

) ( W
+
ν
D
ν
W
−
µ

+
h
.c

.)
−

( iQ̄
L

↔ D
µ
H̃
u
R

+
h
.c

.) ( [D
ν
H

]†
[D
ν
µ
H

]
+

h
.c

.)
20

( q̄
γ
5

↔ D
µ
q

) ( W
+
ν
D
ν
W
−
µ

+
h
.c

.)
+

( Q̄
L

↔ D
µ
H̃
u
R

+
h
.c

.) ( [D
ν
H

]†
[D
ν
µ
H

]
+

h
.c

.)
21

( iq̄
↔ D
µ
q

) ( i
W

+
ν
D
ν
W
−
µ

+
h
.c

.)
+

( iQ̄
L

↔ D
µ
H̃
u
R

+
h
.c

.) ( i
[D
ν
H

]†
[D
ν
µ
H

]
+

h
.c

.)
22

( q̄
γ
5

↔ D
µ
q

) ( i
W

+
ν
D
ν
W
−
µ

+
h
.c

.)
−

( Q̄
L

↔ D
µ
H̃
u
R

+
h
.c

.) ( i
[D
ν
H

]†
[D
ν
µ
H

]
+

h
.c

.)
23

ε
µ
ν
ρ
σ

( iq̄
↔ D
µ
q

)(
W

+
ρ
↔ D
ν
W
−
σ
)

+
ε
µ
ν
ρ
σ

( iQ̄
L

↔ D
µ
H̃
u
R

+
h
.c

.)(
[D
ρ
H

]†
↔ D
ν

[D
σ
H

]
+

h
.c

.)
24

ε
µ
ν
ρ
σ

( q̄
γ
5

↔ D
µ
q

)(
W

+
ρ
↔ D
ν
W
−
σ
)

−
ε
µ
ν
ρ
σ

( Q̄
L

↔ D
µ
H̃
u
R

+
h
.c

.)(
[D
ρ
H

]†
↔ D
ν

[D
σ
H

]
+

h
.c

.)
25

( iq̄
σ
µ
ν
↔ D
ρ
q

)(
iW

+ ν

↔ D
µ
W
−
ρ

+
h
.c

.)
−

( iQ̄
L
σ
µ
ν
↔ D
ρ
H̃
u
R

+
h
.c

.)(
i
[D
ν
H

]†
↔ D
µ

[D
ρ
H

]
+

h
.c

.)
26

(q̄
σ
µ
ν
q
)

( i[
D
ρ
W

+ ν
]↔ D
µ
W
−
ρ

+
h
.c

.)
+

( Q̄ L
σ
µ
ν
H̃
u
R

+
h
.c

.)(
i
[ D ρ

ν
H
] †↔ D

µ
[D
ρ
H

]
+

h
.c

.)
27

(i
q̄
σ
µ
ν
γ
5
q
)

( i[
D
ρ
W

+ ν
]↔ D
µ
W
−
ρ

+
h
.c

.)
−

( iQ̄
L
σ
µ
ν
H̃
u
R

+
h
.c

.)(
i
[ D ρ

ν
H
] †↔ D

µ
[D
ρ
H

]
+

h
.c

.)
28

( q̄
σ
µ
ν
γ
5

↔ D
ρ
q

)(
iW

+ ν

↔ D
µ
W
−
ρ

+
h
.c

.)
+

( Q̄
L
σ
µ
ν
↔ D
ρ
H̃
u
R

+
h
.c

.)(
i
[D
ν
H

]†
↔ D
µ

[D
ρ
H

]
+

h
.c

.)
29

(q̄
q
)
( Wµ

ν
W
µ
ν
)

+

7

( Q̄ L
H̃
u
R

+
h
.c

.)(
W
a
µ
ν
W
a µ
ν

)
0
.4

E
3 T
e
V
,

1
.2

E
4 T
e
V

30
(i
q̄
γ
5
q
)
( Wµ

ν
W
µ
ν
)

−
( iQ̄

L
H̃
u
R

+
h
.c

.)(
W
a
µ
ν
W
a µ
ν

)
31

(q̄
q
)
( W

+
µ
ν
W̃
− µ
ν

)
−

( Q̄ L
H̃
u
R

+
h
.c

.)(
W
a
µ
ν
W̃
a µ
ν

+
h
.c

.)
32

(i
q̄
γ
5
q
)
( W

+
µ
ν
W̃
− µ
ν

)
+

( iQ̄
L
H̃
u
R

+
h
.c

.)(
W
a
µ
ν
W̃
a µ
ν

+
h
.c

.)
33

( q̄
γ
µ
↔ D
ν
ρ
q

)(
iW

+
ν
↔ D
µ
W
−
ρ
)

+

8

( Q̄
L
γ
µ
↔ D
ν
ρ
Q
L

+
ū
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ū
R
γ
µ
u
R
)( [

D
ν
ρ
H
] †↔ D

µ
[D
ρ
ν
H

]
+

h
.c

.)

Table 2. Primary 7- and 8-dimension operators for q̄qW+W− interactions, where W̃µν = 1
2
εµνρσW ρσ . As

outlined in the text, these operators can be modified to yield the operators for q̄q′WZ interactions. Under the
assumption that q̄ and q are each other’s anti-particles, the operators are Hermitean and have the listed CP
properties. If they are not, each of these operators has a Hermitean conjugate, which can be used to create

a CP even and a CP odd operator. To simplify the expressions, we use the shorthand
↔
Dµν =

↔
Dµ
↔
Dν , and

similarly, Dµν = DµDν . To get the descendant operators, once can add contracted derivatives to get arbitrary
Mandelstam factors of s, t. At dimension 9, sO26 and sO27 become redundant to other operators and thus one
only needs their descendants tnO26 and tnO27 for an independent set of operators.
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ū
R
γ
ν
u
R

)( B̃
ν
σ
H
† D

σ
H

+
h

.c
.)

9
(q̄
q
)
(Z
µ
ν
Z
µ
ν
)

+

7

( Q̄
L
H̃
u
R

+
h

.c
.) (B

µ
ν
B
µ
ν
)

0
.4

E
3 T
e
V
,

1
.2

E
4 T
e
V

10
(i
q̄
γ

5
q
)
(Z
µ
ν
Z
µ
ν
)

−
( iQ̄

L
H̃
u
R

+
h

.c
.) (B

µ
ν
B
µ
ν
)

11
(q̄
q
)
( Z

µ
ν
Z̃
µ
ν

)
−

( Q̄
L
H̃
u
R

+
h

.c
.)( B

µ
ν
B̃
µ
ν

)
12

(i
q̄
γ

5
q
)
( Z

µ
ν
Z̃
µ
ν

)
+

( i Q̄
L
H̃
u
R

+
h

.c
.)( B

µ
ν
B̃
µ
ν

)
13

( iq̄
σ
µ
ν

↔ D
ρ
q

) (Z
µ
∂
ρ
Z
ν
)

+

7

( iQ̄
L
σ
µ
ν

↔ D
ρ
H̃
u
R

+
h

.c
.) ( [D

µ
H

]†
[D
ρ
ν
H

]
+

h
.c

.)
0
.0

2
E

5 T
e
V
,

0
.0

7
E

6 T
e
V

14
( q̄
σ
µ
ν
γ

5

↔ D
ρ
q

) (Z
µ
∂
ρ
Z
ν
)
−

( Q̄
L
σ
µ
ν

↔ D
ρ
H̃
u
R

+
h

.c
.) ( [D

µ
H

]†
[D
ρ
ν
H

]
+

h
.c

.)
15

( q̄
↔ D
µ
ν
q

) (Z
µ
Z
ν
)

+
( Q̄

L

↔ D
µ
ν
H̃
u
R

+
h

.c
.) ( [D

µ
H

]†
[D
ν
H

]
+

h
.c

.)
16

( iq̄
γ

5

↔ D
µ
ν
q

) (Z
µ
Z
ν
)

−
( iQ̄

L

↔ D
µ
ν
H̃
u
R

+
h

.c
.) ( [D

µ
H

]†
[D
ν
H

]
+

h
.c

.)
17

( iq̄
↔ D
ν
q

) (Z
µ
∂
µ
Z
ν
)

−
( iQ̄

L

↔ D
ν
H̃
u
R

+
h

.c
.) ( [D

µ
H

]†
[ Dν µ

H
] +

h
.c

.)
18

( q̄
γ

5

↔ D
ν
q

) (Z
µ
∂
µ
Z
ν
)

+
( Q̄

L

↔ D
ν
H̃
u
R

+
h

.c
.) ( [D

µ
H

]†
[ Dν µ

H
] +

h
.c

.)
19

( iq̄
↔ D
µ
q

) ( Z̃
µ
σ
Z
σ
)

+
7

( iQ̄
L

↔ D
µ
H̃
u
R

+
h

.c
.) ( B̃

µ
σ
H
† D

σ
H

+
h

.c
.)

0
.0

9
E

4 T
e
V
,

0
.9

E
6 T
e
V

20
( q̄
γ

5

↔ D
µ
q

) ( Z̃
µ
σ
Z
σ
)

−
( Q̄

L

↔ D
µ
H̃
u
R

+
h

.c
.) ( B̃

µ
σ
H
† D

σ
H

+
h

.c
.)

Table 3. Primary 5-, 6-, and 7-dimension operators for q̄qZZ interactions. Under the assumption that q̄
and q are each other’s anti-particles, the operators are Hermitean and have the listed CP properties. If they
are not, each of these operators has a Hermitean conjugate, which can be used to create a CP even and a CP

odd operator. To simplify the expressions, we use the shorthand
↔
Dµν =

↔
Dµ
↔
Dν , and similarly, ∂µν = ∂µ∂ν .

To get the descendant operators, once can add contracted derivatives to get arbitrary Mandelstam factors of
s, (t− u)2.
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21
( iq̄

γ
ν
↔ D
ρ
q

) ([
∂
ν
Z
µ

]∂
ρ
Z
µ

)
+

8

( iQ̄
L
γ
ν
↔ D
ρ
Q
L

+
iū
R
γ
ν
↔ D
ρ
u
R

) ( [
D

µ
ν
H
] †[ D

ρ µ
H
] +

h
.c

.)
0
.0

0
6

E
6 T
e
V

22
( iq̄

γ
ν
γ

5

↔ D
ρ
q

) ([
∂
ν
Z
µ

]∂
ρ
Z
µ

)
+

( iQ̄
L
γ
ν
↔ D
ρ
Q
L
−
iū
R
γ
ν
↔ D
ρ
u
R

) ( [
D

µ
ν
H
] †[ D

ρ µ
H
] +

h
.c

.)
23

( q̄
γ
ν
↔ D
µ
ρ
q

) (Z
µ
∂
ρ
Z
ν
)

−
( Q̄

L
γ
ν
↔ D
µ
ρ
Q
L

+
ū
R
γ
ν
↔ D
µ
ρ
u
R

) ( [D
µ
H

]†
[ Dρ ν

H
] +

h
.c

.)
24

( q̄
γ
ν
γ

5

↔ D
µ
ρ
q

) (Z
µ
∂
ρ
Z
ν
)

−
( Q̄

L
γ
ν
↔ D
µ
ρ
Q
L
−
ū
R
γ
ν
↔ D
µ
ρ
u
R

) ( [D
µ
H

]†
[ Dρ ν

H
] +

h
.c

.)
25

( iq̄
γ
ν
↔ D
ρ
q

) (Z
µ
∂
ρ
µ
Z
ν
)

+
( iQ̄

L
γ
ν
↔ D
ρ
Q
L

+
iū
R
γ
ν
↔ D
ρ
u
R

) ( [D
µ
H

]†
[ Dρµ

ν
H
] +

h
.c

.)
26

( iq̄
γ
ν
γ

5

↔ D
ρ
q

) (Z
µ
∂
ρ
µ
Z
ν
)

+
( iQ̄

L
γ
ν
↔ D
ρ
Q
L
−
iū
R
γ
ν
↔ D
ρ
u
R

) ( [D
µ
H

]†
[ Dρµ

ν
H
] +

h
.c

.)
27

( q̄
↔ D
ν
α
q

) (Z
µ
∂
α
µ
Z
ν
)

+
9

( Q̄
L

↔ D
ν
α
H̃
u
R

+
h

.c
.) ( [D

µ
H

]†
[D
α
µ
ν
H

]
+

h
.c

.)
0
.0

0
1

E
7 T
e
V
,

0
.0

0
4

E
8 T
e
V

28
( iq̄

γ
5

↔ D
ν
α
q

) (Z
µ
∂
α
µ
Z
ν
)

−
( iQ̄

L

↔ D
ν
α
H̃
u
R

+
h

.c
.) ( [D

µ
H

]†
[D
α
µ
ν
H

]
+

h
.c

.)
29

( iq̄
σ
µ
ν
γ

5

↔ D
ρ
σ
q

) ([
∂
µ
Z
ρ
]∂
σ
Z
ν
)

+
( iQ̄

L
σ
µ
ν

↔ D
ρ
σ
H̃
u
R

+
h

.c
.) ( [D

µ
ρ
H

]†
[D
σ
ν
H

]
+

h
.c

.)
30

( q̄
σ
µ
ν
↔ D
ρ
σ
q

) (Z
µ
ν
∂
σ
Z
ρ
)

−
9

( Q̄
L
σ
µ
ν
↔ D
ρ
σ
H̃
u
R

+
h

.c
.) ( B

µ
ν
H
† D

σ
ρ
H

+
h

.c
.)

0
.0

0
6

E
6 T
e
V
,

0
.0

5
E

8 T
e
V

31
( iq̄

σ
µ
ν
↔ D
σ
q

) ([
∂
ρ
Z
µ
ν
]∂
σ
Z
ρ
)

+
( i Q̄

L
σ
µ
ν
↔ D
σ
H̃
u
R

+
h

.c
.) ( [∂

ρ
B
µ
ν
]H
† D

σ
ρ
H

+
h

.c
.)

32
( iq̄

σ
µ
ν
↔ D
ρ
q

) ([
∂
µ
Z̃
ν
σ

] ∂
ρ
Z
σ
)

−
( iQ̄

L
σ
µ
ν
↔ D
ρ
H̃
u
R

+
h

.c
.) ([

∂
µ
B̃
ν
σ

] H
† D

ρ
σ
H

+
h

.c
.)

33
( q̄
γ
µ
↔ D
ν
σ
q

) ([
∂
µ
ρ
Z
ν
]∂
σ
Z
ρ
)

−
10

( Q̄
L
γ
µ
↔ D
ν
σ
Q
L

+
ū
R
γ
µ
↔ D
ν
σ
u
R

) ( [
D
ν µ
ρ
H
] † [D

σ
ρ
H

]
+

h
.c

.)
3
×

1
0
−

4

E
8 T
e
V

34
( iq̄

γ
µ
↔ D
σ
q

) ([
∂
µ
ρ
Z
ν
]∂
σ
ν
Z
ρ
)

+
( iQ̄

L
γ
µ
↔ D
σ
Q
L

+
iū
R
γ
µ
↔ D
σ
u
R

) ( [D
µ
ρ
ν
H

]†
[D
σ
ν
ρ
H

]
+

h
.c

.)
35

( iq̄
γ
µ
γ

5

↔ D
σ
q

) ([
∂
µ
ρ
Z
ν
]∂
σ
ν
Z
ρ
)

+
( iQ̄

L
γ
µ
↔ D
σ
Q
L
−
iū
R
γ
µ
↔ D
σ
u
R

) ( [D
µ
ρ
ν
H

]†
[D
σ
ν
ρ
H

]
+

h
.c

.)
36

( q̄
γ
α
↔ D
µ
β
q

) ( Z̃
µ
ρ
∂
ρ
β
Z
α

)
+

10

( Q̄
L
γ
α
↔ D
µ
β
Q
L

+
ū
R
γ
α
↔ D
µ
β
u
R

) ( B̃
µ
ρ
H
† D

ρ
β α
H

+
h

.c
.)

0
.0

0
1

E
7 T
e
V
,

0
.0

0
4

E
8 T
e
V

37
( q̄
γ
α
γ

5

↔ D
µ
β
q

) ( Z̃
µ
ρ
∂
ρ
β
Z
α

)
+

( Q̄
L
γ
α
↔ D
µ
β
Q
L
−
ū
R
γ
α
↔ D
µ
β
u
R

) ( B̃
µ
ρ
H
† D

ρ
β α
H

+
h

.c
.)

38
( iq̄

γ
ρ
γ

5

↔ D
µ
α
β
q

) ( Z̃
µ
ρ
∂
β
Z
α
)

−
( iQ̄

L
γ
ρ
↔ D
µ
α
β
Q
L
−
iū
R
γ
ρ
↔ D
µ
β
α
u
R

) ( B̃
µ
ρ
H
† D

α
β
H

+
h

.c
.)

Table 4. Primary 8-, 9-, and 10-dimension operators for q̄qZZ interactions. Under the assumption that q̄
and q are each other’s anti-particles, the operators are Hermitean and have the listed CP properties. If they are
not, each of these operators has a Hermitean conjugate, which can be used to create a CP even and a CP odd

operator. To simplify the expressions, we use the shorthand
↔
Dµν =

↔
Dµ
↔
Dν , and similarly, ∂µν = ∂µ∂ν . To get

the descendant operators, once can add contracted derivatives to get arbitrary Mandelstam factors of s, (t−u)2.
At dimension 11, sO31 and sO32 become redundant to other operators. Thus, for these two, we need only their
(t− u)2nO31 and (t− u)2nO32 descendants.
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To get q̄qZg operators, one replaces F µν → Gµν , to get q̄q′Wγ operators, one should

make the replacement q → q′ and Z → W , and to get q̄q′Wg operators one needs to

make the replacements q → q′, F µν → Gµν , and Z → W .

Table 6 lists the primary operators for q̄qgγ interactions. Reading the appropriate

Hilbert series, we expect to find 6 dimension 7 operators, 8 dimension 8 operators, and

4 dimension 9 operators, as well as 2 operators that become redundant at dimension

9, so the analysis again finds 2 additional dimension 9 primary operators that a

quick interpretation of the Hilbert series would have missed. We indeed find the 18

operators we expect from the Hilbert series analysis, as well as two operators that

become redundant at dimension 9—sO5 and sO6. Thus, for those two operators, we

can just add their descendants tnO5 and tnO6.

We list the primary operators for q̄qγγ interactions in Table 7. From the Hilbert

series, we expect that there should be 4 operators at dimension 7, 2 operators at

dimension 8, 4 operators at dimension 9, 6 operators at dimension 10, and 2 operators

at dimension 11. We also find that there are two new redundancies at dimension 11.

This again gives rise to a complete cancellation at dimension 11. We find 18 primary

operators, in agreement with the Hilbert series. We also find two new constraints

at dimension 11, sO7 and sO8. For those two operators, we only need to add their

descendant operators (t− u)2nO7 and (t− u)2nO8.

In Tables 8 and 9, we list all of the primary operators for q̄qgg interactions. The

Hilbert series says that we should expect 10 operators at dimension 7, 10 operators

at dimension 8, 14 operators at dimension 9, 14 operators at dimension 10, and

6 operators at dimension 11. Additionally, we find that there are 2 redundancies at

dimension 9—sO9 and sO10—and 4 redundancies at dimension 11—sO21, sO22, sO23,

and sO24. As noted in Sec. 2.2, there are three ways we can contract the SU(3) indices,
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1
(q̄
γ
ν
q
)
( F ν

µ
Z
µ
)

−
6

( Q̄ L
γ
ν
Q
L

+
ū
R
γ
ν
u
R
)( B

ν
µ
H
†
D
µ
H

+
h
.c

.)
0
.4

E
3 T
e
V
,

1
.2

E
4 T
e
V

2
(q̄
γ
ν
γ
5
q
)
( F ν

µ
Z
µ
)

−
( Q̄ L

γ
ν
Q
L
−
ū
R
γ
ν
u
R
)( B

ν
µ
H
†
D
µ
H

+
h
.c

.)
3

(q̄
γ
ν
q
)
( F̃ ν

σ
Z
σ
)

+
( Q̄ L

γ
ν
Q
L

+
ū
R
γ
ν
u
R
)( B̃

ν
σ
H
†
D
σ
H

+
h
.c

.)
4

(q̄
γ
ν
γ
5
q
)
( F̃ ν

σ
Z
σ
)

+
( Q̄ L

γ
ν
Q
L
−
ū
R
γ
ν
u
R
)( B̃

ν
σ
H
†
D
σ
H

+
h
.c

.)
5

(q̄
q
)
( F µ

ν
Z
µ
ν
)

+

7

( Q̄ L
H̃
u
R

+
h
.c

.) ( B
µ
ν
B
µ
ν
)

0
.4

E
3 T
e
V
,

1
.2

E
4 T
e
V

6
(i
q̄
γ
5
q
)
( F µ

ν
Z
µ
ν
)

−
( iQ̄

L
H̃
u
R

+
h
.c

.) ( B
µ
ν
B
µ
ν
)

7
(q̄
q
)
( F̃ µ

ν
Z
µ
ν
)

−
( Q̄ L

H̃
u
R

+
h
.c

.)(
B
µ
ν
B̃
µ
ν

)
8

(i
q̄
γ
5
q
)
( F̃ µ

ν
Z
µ
ν
)

+
( iQ̄

L
H̃
u
R

+
h
.c

.)(
B
µ
ν
B̃
µ
ν

)
9

( iq̄
↔ D
ν
q

) ( F
ν
µ
Z
µ
)

−

7

( iQ̄
L

↔ D
ν
H̃
u
R

+
h
.c

.) ( B
ν
µ
H
†
D
µ
H

+
h
.c

.)

0
.0

9
E

4 T
e
V
,

0
.9

E
6 T
e
V

10
( q̄
↔ D
ν
γ
5
q

) ( F
ν
µ
Z
µ
)

+
( Q̄

L

↔ D
ν
H̃
u
R

+
h
.c

.) ( B
ν
µ
H
†
D
µ
H

+
h
.c

.)
11

( iq̄
σ
µ
ν

↔ D
ρ
q

) (F
µ
ρ
Z
ν

)
+

( iQ̄
L
σ
µ
ν

↔ D
ρ
H̃
u
R

+
h
.c

.) ( B
ρ
µ
H
†
D
ν
H

+
h
.c

.)
12

( q̄σ
µ
ν
q
)( F

µ
ρ
∂
ρ
Z
ν
)

−
( Q̄ L

σ
µ
ν
H̃
u
R

+
h
.c

.)(
B
µ
ρ
H
†
D
ν ρ
H

+
h
.c

.)
13

( q̄
σ
µ
ν
γ
5

↔ D
ρ
q

) (F
µ
ρ
Z
ν

)
−

( Q̄
L
σ
µ
ν

↔ D
ρ
H̃
u
R

+
h
.c

.) ( B
µ
ρ
H
†
D
ν
H

+
h
.c

.)
14

( iq̄σ
µ
ν
γ
5
q
)( F

µ
ρ
∂
ρ
Z
ν
)

+
( iQ̄

L
σ
µ
ν
H̃
u
R

+
h
.c

.)(
B
µ
ρ
H
†
D
ν ρ
H

+
h
.c

.)
15

( iq̄
↔ D
µ
q

) ( F̃
µ
σ
Z
σ
)

+
( iQ̄

L

↔ D
µ
H̃
u
R

+
h
.c

.) ( B̃
µ
σ
H
†
D
σ
H

+
h
.c

.)
16

( q̄
γ
5

↔ D
µ
q

) ( F̃
µ
σ
Z
σ
)

−
( Q̄

L

↔ D
µ
H̃
u
R

+
h
.c

.) ( B̃
µ
σ
H
†
D
σ
H

+
h
.c

.)
17

(q̄
γ
ν
q
)
( [∂
ν
F
µ
ρ
]
Z
µ
ρ
)

−
8

( Q̄ L
γ
ν
Q
L

+
ū
R
γ
ν
u
R
)( [∂

ν
B
µ
ρ
]
B
µ
ρ
)

0
.0

9
E

4 T
e
V

18
(q̄
γ
ν
γ
5
q
)
( [∂
ν
F
µ
ρ
]
Z
µ
ρ
)

−
( Q̄ L

γ
ν
Q
L
−
ū
R
γ
ν
u
R
)( [∂

ν
B
µ
ρ
]
B
µ
ρ
)

19
( iq̄

γ
ν
↔ D
ρ
q

) ( [∂
ν
F
µ
ρ
]
Z
µ
)

+

8

( iQ̄
L
γ
ν
↔ D
ρ
Q
L

+
iū
R
γ
ν
↔ D
ρ
u
R

) ( [∂
ν
B
µ
ρ
]
H
†
D
µ
H

+
h
.c

.)
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2
E

5 T
e
V
,

0
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7
E
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e
V

20
( iq̄

γ
ν
γ

5

↔ D
ρ
q

) ([
∂
ν
F
µ
ρ
]Z
µ

)
+

( iQ̄
L
γ
ν
↔ D
ρ
Q
L
−
ū
R
γ
ν
↔ D
ρ
u
R

) ( [∂
ν
B
µ
ρ
]H
† D

µ
H

+
h

.c
.)

21
( iq̄

γ
ν
↔ D
µ
q

) ( F
µ
ρ
∂
ρ
Z
ν
)

+
( iQ̄

L
γ
ν
↔ D
µ
Q
L

+
iū
R
γ
ν
↔ D
µ
u
R

) ( B
µ
ρ
H
†
D
ν
ρ
H

+
h
.c

.)
22

( iq̄
γ
ν
γ
5

↔ D
µ
q

) ( F
µ
ρ
∂
ρ
Z
ν
)

+
( iQ̄

L
γ
ν
↔ D
µ
Q
L
−
iū
R
γ
ν
↔ D
µ
u
R

) ( B
µ
ρ
H
†
D
ν
ρ
H

+
h
.c

.)
23

( q̄
γ
µ

↔ D
ν
ρ
q

) (F
µ
ρ
Z
ν

)
−

( Q̄
L
γ
µ

↔ D
ν
ρ
Q
L

+
ū
R
γ
µ

↔ D
ν
ρ
u
R

) ( B
µ
ρ
H
†
D
ν
H

+
h
.c

.)
24

( q̄
γ
µ
γ
5

↔ D
ν
ρ
q

) (F
µ
ρ
Z
ν

)
−

( Q̄
L
γ
µ

↔ D
ν
ρ
Q
L
−
ū
R
γ
µ

↔ D
ν
ρ
u
R

) ( B
µ
ρ
H
†
D
ν
H

+
h
.c

.)
25

( q̄
↔ D
µ
ν
q

) ( F
µ
ρ
∂
ρ
Z
ν
)

+
9

( Q̄
L

↔ D
µ
ν
H̃
u
R

+
h
.c

.) ( B
µ
ρ
H
†
D
ν ρ
H

+
h
.c

.)
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0
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E
6 T
e
V
,
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E

8 T
e
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26
( iq̄

γ
5

↔ D
µ
ν
q

) ( F
µ
ρ
∂
ρ
Z
ν
)

−
( iQ̄

L

↔ D
µ
ν
H̃
u
R

+
h
.c

.) ( B
µ
ρ
H
†
D
ν ρ
H

+
h
.c

.)

Table 5. Primary operators for q̄qZγ interactions. As outlined in the text, these operators can be modified
to yield the operators for q̄qZg, q̄q′Wγ, and q̄q′Wg interactions. Under the assumption that q̄ and q are each
other’s anti-particles, the operators are Hermitean and have the listed CP properties. If they are not, each of
these operators has a Hermitean conjugate, which can be used to create a CP even and a CP odd operator.

To simplify the expressions, we use the shorthand
↔
Dµν =

↔
Dµ
↔
Dν , and similarly, Dµν = DµDν . To get the

descendant operators, once can add contracted derivatives to get arbitrary Mandelstam factors of s, t. At
dimension 9, sO7 and sO8 become redundant to other operators. For these two, one only needs their tnO7 and
tnO8 descendants.
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i Oq̄qgγi CP dOi
SMEFT c Unitarity
Operator Bound

1 (q̄q) (FµνGµν) +

7

(
Q̄LH̃uR + h.c.

)
(BµνGµν)

0.4
E3

TeV
, 1.2
E4

TeV

2 (iq̄γ5q) (FµνGµν) −
(
iQ̄LH̃uR + h.c.

)
(BµνGµν)

3 (q̄σµνq)
(
FµρGνρ

) −
(
Q̄LσµνH̃uR + h.c.

) (
BµρGνρ

)
4 (iq̄σµνγ5q)

(
FµρGνρ

)
+

(
iQ̄Lσµνγ5H̃uR + h.c.

) (
BµρGνρ

)
5 (q̄q)

(
FµνG̃µν

)
−

(
Q̄LH̃uR + h.c.

)(
BµνG̃µν

)
6 (iq̄γ5q)

(
FµνG̃µν

)
+

(
Q̄RH̃uR + h.c.

)(
BµνG̃µν

)
7 (q̄γνq) ([∂νFµρ]Gµρ) −

8

(
Q̄Lγ

νQL + ūRγ
νuR

)
([∂νBµρ]Gµρ)

0.09
E4

TeV

8 (q̄γνγ5q) ([∂νFµρ]Gµρ) − (
Q̄Lγ

νQL − ūRγνuR
)

([∂νBµρ]Gµρ)
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↔
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)
(BµρGνρ)

11
(
iq̄γν

↔
Dρq

)
(FνµGρµ) +

(
iQ̄Lγ

ν
↔
DρQL + iūRγ
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ν
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↔
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)
(BνµGρµ)
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iq̄γν

↔
Dρq

)(
F̃µνGµρ

)
−

(
iQ̄Lγ

ν
↔
DρQL + iūRγ

ν
↔
DρuR

)(
B̃µνGµρ

)
14

(
iq̄γνγ5

↔
Dρq

)(
F̃µνGµρ

)
−

(
iQ̄Lγ

ν
↔
DρQL − iūRγν

↔
DρuR

)(
B̃µνGµρ

)
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↔
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)
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E5

TeV
, 0.07
E6

TeV16
(
iq̄γ5

↔
Dµνq

)(
FµρGνρ

) −
(
iQ̄L

↔
DµνH̃uR + h.c.

)(
BµρGνρ

)
17

(
iq̄σµν

↔
Dσq

)
(FµρDρGνσ) +

(
iQ̄Lσµν

↔
DσH̃uR + h.c.

)
(BµρDρGνσ)

18
(
q̄σµνγ5

↔
Dρq

)
(FµσDσGνρ) −

(
Q̄Lσµν

↔
DρuR + h.c.

)
(BµσDσGνρ)

Table 6. Primary operators for q̄qgγ interactions. Under the assumption that q̄ and q are each other’s
anti-particles, the operators are Hermitean and have the listed CP properties. If they are not, each of these
operators has a Hermitean conjugate, which can be used to create a CP even and a CP odd operator. To simplify

the expressions, we use the shorthand
↔
Dµν =

↔
Dµ
↔
Dν . To get the descendant operators, once can add contracted

derivatives to get arbitrary Mandelstam factors of s, t. At dimension 9, sO5 and sO6 become redundant to
other operators. For these two, one only needs their tnO5 and tnO6 descendants.
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i Oq̄qγγi CP dOi
SMEFT c Unitarity
Operator Bound

1 (q̄q) (FµνFµν) +

7

(
Q̄LH̃uR + h.c.

)
(BµνBµν)

0.4
E3

TeV
, 1.2
E4

TeV

2 (q̄iγ5q) (FµνFµν) −
(
iQ̄LH̃uR + h.c

)
(BµνBµν)

3 (q̄q)
(
Fµν F̃µν

)
−

(
Q̄LH̃uR + h.c.

)(
BµνB̃µν

)
4 (iq̄γ5q)

(
Fµν F̃µν

)
+

(
iQ̄LH̃uR + h.c.

)(
BµνB̃µν

)
5

(
iq̄γν

↔
Dµq

)
(FµρFρν) +

8

(
iQ̄L

↔
DµγνQL + iūR

↔
DµγνuR

)
(BµρBρν) 0.09

E4
TeV

6
(
iq̄γνγ5

↔
Dµq

)
(FµρFρν) +

(
iQ̄L

↔
DµγνQL − iūR

↔
DµγνuR

)
(BµρBρν)

7
(
iq̄σµν

↔
Dρq

)
(Fµσ∂ρF νσ) +

9

(
iQ̄Lσµν

↔
DρH̃uR + h.c.

)
(Bµσ∂ρBνσ)

0.02
E5

TeV
, 0.07
E6

TeV8
(
q̄σµνγ5

↔
Dρq

)
(Fµσ∂ρF νσ) −

(
Q̄Lσµν

↔
DρH̃uR + h.c.

)
(Bµσ∂ρBνσ)

9
(
q̄
↔
Dµνq

)(
FµρF νρ

)
+

(
Q̄L
↔
DµνH̃uR + h.c.

)(
BµρBνρ

)
10

(
iq̄γ5

↔
Dµνq

)(
FµρF νρ

) −
(
iQ̄L

↔
DµνH̃uR + h.c.

)(
BµρBνρ

)
11

(
iq̄γν

↔
Dρq

)
([∂νFµσ ] ∂ρFµσ) +

10

(
iQ̄Lγ

ν
↔
DρQL + iūRγ

ν
↔
DρuR

)
([∂νBµσ ] ∂ρBµσ)

0.006
E6

TeV

12
(
iq̄γνγ5

↔
Dρq

)
([∂νFµσ ] ∂ρFµσ) +

(
iQ̄Lγ

ν
↔
DρQL − iūRγν

↔
DρuR

)
([∂νBµσ ] ∂ρBµσ)

13
(
q̄γν
↔
Dµσq

)
(Fµρ∂σFνρ) −

(
Q̄Lγ

ν
↔
DµσQL + ūRγ

ν
↔
DµσuR

)
(Bµρ∂σBνρ)

14
(
q̄γνγ5

↔
Dµσq

)
(Fµρ∂σFνρ) −

(
Q̄Lγ

ν
↔
DµσQL − ūRγν

↔
DµσuR

)
(Bµρ∂σBνρ)

15
(
q̄γν
↔
Dαβq

)(
F̃νσ∂βFσα

)
+

(
Q̄Lγ

ν
↔
DαβQL + ūRγ

ν
↔
DαβuR

)(
B̃νσ∂βBσα

)
16

(
q̄γνγ5

↔
Dαβq

)(
F̃νσ∂βFσα

)
+

(
Q̄Lγ

ν
↔
DαβQL − ūRγν

↔
DαβuR

)(
B̃νσ∂βBσα

)
17

(
q̄σµν

↔
Dσαq

)(
Fµρ∂αρF

νσ
) −

11

(
Q̄Lσµν

↔
DσαH̃uR + h.c.

)(
Bµρ∂αρB

νσ
)

0.001
E7

TeV
, 0.004
E8

TeV

18
(
iq̄σµνγ5

↔
Dσαq

)(
Fµρ∂αρF

νσ
)

+
(
iQ̄Lσµν

↔
DσαH̃uR + h.c.

)(
Bµρ∂αρB

νσ
)

Table 7. Primary operators for q̄qγγ interactions. Under the assumption that q̄ and q are each other’s
anti-particles, the operators are Hermitean and have the listed CP properties. If they are not, each of these
operators has a Hermitean conjugate, which can be used to create a CP even and a CP odd operator. To

simplify the expressions, we use the shorthand
↔
Dµν =

↔
Dµ
↔
Dν , and similarly, ∂µν = ∂µ∂ν . To get the descendant

operators, once can add contracted derivatives to get arbitrary Mandelstam factors of s, (t− u)2. At dimension
11, sO7 and sO8 become redundant to other operators. For these two, one only needs their (t− u)2nO7 and
(t− u)2nO8 descendants.
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two symmetric and one antisymmetric. For example, O1 and O2 in Table 8 should be

read as (q̄δABq)
(
GAµνGB

µν

)
and dABC

(
q̄TAq

) (
GBµνGC

µν

)
, respectively, where TA are

the generators of SU(3). O7 in Table 8 should be ready as fABC
(
q̄TAq

) (
GBµνGC

µν

)
.

Thus, for O9,10,21,22,23,24, we only need to add their descendants with factors of (t−u)2.

2.4.2 ffff Amplitudes

In Table 10, we’ve listed the primary operators for q̄q ¯̀̀ interactions. As the

numerators of the Hilbert series suggests, there should be 10 primaries at dimension

6, 8 primaries at dimension 7, and at least two redundancies at dimension 8. This is

precisely what we find with the listed 18 operators, where at dimension 8, sO9 and

sO10 are redundant to the other operators, where s = (pq + pq̄)
2. Thus, for those two

operators, one only needs their descendants tnO9 and tnO10. We’ve listed a potential

SMEFT operator to realize this interaction. In some cases, a linear combination

of the amplitudes may have a lower dimension SMEFT operator. For example,

q̄q ¯̀̀ − q̄iγ5q ¯̀iγ5` can be realized by the SMEFT operator (εabQ̄LauRL̄L beR + h.c.).

This would affect the unitarity bound by removing the higher multiplicity bound

of 15/E4
TeV. We can also convert these operators to account for baryon-lepton

interactions between uu′dē and udd′ν. The primes indicate different flavors and thus,

we do not need to consider any issues with indistinguishable particles. For example,

tcde interactions can be found by replacing q̄ → t̄c, q → c, ¯̀→ ēc, `→ d where tc and

ec are the charge conjugated 4-component spinor for the top quark and the electron

and the SU(3) indices are contracted with an epsilon tensor. For the baryon-neutrino

coupling, the number of operators would depend on whether the neutrino is Majorana

or Dirac, where the Dirac case has twice the operators, since one can use either ν̄ or

ν̄c.
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+
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)
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)
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+
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iū
R
γ
µ
↔ D
ρ
u
R

) ( G
ν
ρ
G̃
µ
ν

)
20

( iq̄
γ
µ
γ

5

↔ D
ρ
q

) ( G
ν
ρ
G̃
µ
ν

)
+
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+
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ν ρ

)
−
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+
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γ

5

↔ D
µ
ν
q

) ( G
µ
ρ
G
ν ρ

)
−
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ρ
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+

9
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)

Table 8. Primary 7-, 8-, and 9-dimension operators for q̄qgg interactions. There are three allowed SU(3)
contractions, 2 symmetric ones—δAB and dABC—and one antisymmetric one—fABC . For example, Oq̄qgg1 =

(q̄δABq)
(
GAµνGBµν

)
, Oq̄qgg2 = dABC

(
q̄TAq

) (
GBµνGCµν

)
, and Oq̄qgg9 = fABC

(
q̄TAσµνq

) (
GBµρGCνρ

)
. Under

the assumption that q̄ and q are each other’s anti-particles, the operators are Hermitean and have the listed CP
properties. If they are not, each of these operators has a Hermitean conjugate, which can be used to create a

CP even and a CP odd operator. To simplify the expressions, we use the shorthand
↔
Dµν =

↔
Dµ
↔
Dν . To get the

descendant operators, once can add contracted derivatives to get arbitrary Mandelstam factors of s, (t− u)2.
At dimension 9, sO9 and sO10 become redundant to other operators and at dimension 11, sO21, sO22, sO23

and sO24 become redundant to other operators. For the O9,10,21,22,23,24 operators, one only needs descendants

with factors of (t− u)2.
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Table 9. Primary 10- and 11-dimension operators for q̄qgg interactions. There are three allowed SU(3)
contractions, 2 symmetric ones—δAB and dABC—and one antisymmetric one—fABC . Under the assumption
that q̄ and q are each other’s anti-particles, the operators are Hermitean and have the listed CP properties. If
they are not, each of these operators has a Hermitean conjugate, which can be used to create a CP even and a

CP odd operator. To simplify the expressions, we use the shorthand
↔
Dµν =

↔
Dµ
↔
Dν , and similarly Dµν = DµDν .

To get the descendant operators, once can add contracted derivatives to get arbitrary Mandelstam factors of
s, (t− u)2.
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ē R
γ
µ
e R

)
7

(q̄
γ
µ
q)

(¯̀
γ
µ
γ

5
`)

+
(Q̄

L
γ
µ
Q
L

+
ū
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Table 10. Primary operators for q̄q ¯̀̀ interactions (As described in the text, these operators can be modified
to yield the operators for baryon-lepton interactions uu′de and udd′ν.). Under the assumption the q̄, q and
¯̀, ` are each other’s anti-particles, the operators are Hermitean and have the listed CP properties. If they are
not, each of these operators has a Hermitean conjugate, which can be used to create a CP even and a CP odd
operator. To get the descendant operators, one can add contracted derivatives to get arbitrary Mandelstam
factors of s, t. At dimension 8, sO9 and sO10 become redundant and thus, one only needs to consider O9 and
O10 with arbitrary factors of t.
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ēc
u

)

6

(d̄
c R
H̃
† Q

L
+
Q̄
c L
H
u
R

)(
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ēc

]↔ D
u µ
u

)
(i
d̄
c R
H̃
† Q

L
−
iQ̄
c L
H
u
R

)(
[D
µ
ēc R

]↔ D
u
,Q
µ

H̃
† Q

L
+

[D
µ
L̄
c L
H

]↔ D
u
,Q
µ

u
R

)

1
3

(d̄
c
u

)(
[D
µ
ēc
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ēc R

]↔ D
u
,Q
ν

D
µ
H̃
† Q

L
−
i[
D
ν
L̄
c L
H

]↔ D
u
,Q
ν

D
µ
u
R

)

Table 11. Primary operators for uude interactions, where dc and ec are the charge conjugated down-type
quark and charged lepton 4-component spinor and SU(3) indices are contracted with an epsilon tensor (These
operators can be modified to yield the operators for uddν interactions by simply taking u → d, d̄c → ūc, ēc →
ν̄/ν̄c.). To simplify the expressions, we’ve defined a back-forth derivative

↔
Duµ, which only acts on the u fields,

and similarly
↔
Du,Qµ which acts on uR and QL (but not Q̄cL). To get the descendant operators, one can add

contracted derivatives to get arbitrary Mandelstam factors that respect the exchange symmetry between the
two up-type quarks, i.e. s, (t− u)2. At dimension 8, sO3 and sO4 become redundant and thus, one only needs
to consider O3 and O4 descendants with arbitrary factors of (t− u)2.
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In Table 11, we’ve listed the primary operators for uude interactions, where all

SU(3) indices are contracted by an epsilon tensor. As the Hilbert series suggests,

there should be 4 primaries at dimension 6, 6 primaries at dimension 7, 6 primaries

with 2 redundancies at dimension 8, and 2 primaries at dimension 9. The table shows

the stated number of independent primaries and we find that at dimension 8, sO3

and sO4 are redundant to the other operators, where s = (pu + pū)
2. Thus, for those

two, one only needs their descendants (t − u)2nO3 and (t − u)2nO4. To account for

uddν interactions, one replaces u → d, d̄c → ūc, ēc → ν̄/ν̄c, where again the case of

Dirac neutrinos allows twice as many operators.

In Table 12, we’ve listed the primary operators for q̄qq̄′q′ interactions. Notably

the Hilbert series for this has a numerator that is twice the q̄q ¯̀̀ Hilbert series. This

factor of two is simply for the two allowed SU(3) contractions, one where the qq′ are

either in the 6 or 3̄ representation, leading to the symmetric (S) and antisymmetric

(A) operators. Again, at dimension 8, sO9 and sO10 are redundant to the other

operators, where s = (pq + pq̄)
2. Thus one only needs to add their descendants tnO9

and tnO10.

In Table 13, we’ve listed the primary operators for q̄qq̄q interactions when

two of the quarks are identical for the specific case of uut̄c̄. There are again two

allowed SU(3) contractions, specified by whether the uu are in symmetric (S) or

antisymmetric (A) combination. Since we’re suppressing the SU(3) indices, this

makes some of the expressions look identical, which occurs in the blocks (1-4) and (5-

8), (11-12) and (17-18), (19-22) and (25-28), and (29-30) and (31-32). At dimension

8, sO3 and sO4 become redundant and at dimension 10, sO27 and sO28 become

redundant, where s = (pu+pū)
2. Thus one only needs to add descendants for O3,4,27,28
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µuR)(Q̄′LH̃
↔
Dµu

′
R + h.c.)

13 (q̄γµγ5q)(iq̄
′
↔
Dµq

′) + (Q̄Lγ
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Table 12. Primary operators for q̄qq̄′q′ interactions. There are two allowed SU(3) contractions, the S indicates
where q, q′ form a symmetric 6 representation under SU(3), while A has the antisymmetric 3̄ representation. For

example, with explicit indices we have Oq̄qq̄
′q′

1,S = (q̄{αq{α)(q̄ ′β}q′
β}) and Oq̄qq̄

′q′

1,A = (q̄[αq[α)(q̄ ′β]q′
β]

), where q{αqβ} =

qαqβ + qβqα and q[αqβ] = qαqβ − qβqα. Under the assumption the q̄, q and q̄′, q′ are resprectively each other’s anti-
particles, the operators are Hermitean and have the listed CP properties. If they are not, each of these operators
has a Hermitean conjugate, which can be used to create a CP even and a CP odd operator. To get the descendant
operators, one can add contracted derivatives to get arbitrary Mandelstam factors of s, t. At dimension 8, sO9 and
sO10 become redundant and thus, one only needs to consider O9 and O10 with arbitrary factors of t.
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Table 13. Primary operators for qqq̄q̄ interactions with two indistinguishable quarks, for the specific case of
uut̄c̄ interactions (Hermitean conjugate yields tcūū and down-type interactions can be found by exchange for
down quarks.). The SU(3) contractions are determined by S(A) to be symmetric (antisymmetric) in the uu

indices. We’ve defined a back-forth derivative
↔
Duµ, which only acts on the u fields, and similarly

↔
Du,Q1
µ which acts

on uR and Q1L. For descendant operators, one adds contracted derivatives to get arbitrary Mandelstam factors
that respect the exchange symmetry, i.e.s, (t− u)2. At dimension 8, sO3 and sO4 become redundant, while at
dimension 10, sO27 and sO28 become redundant. Thus one only needs to consider O3,4,27,28 descendants with

arbitrary factors of (t− u)2.
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with factors of (t − u)2. These four redundancies explain the two −2 terms in the

Hilbert series numerator.

In Table 14, we’ve listed the primary operators for q̄qq̄q interactions when the

two quarks are identical and the two anti-quarks are identical, for the specific case of

uut̄t̄. There are again two allowed SU(3) contractions, specified by whether the uu

are in symmetric (S) or antisymmetric (A) combination. Since we’re suppressing the

SU(3) indices, this makes some of the expressions look identical, with (1-3) and (4-6)

being the same, as well as (13-15) and (18-20). At dimension 8, sO2 and sO3 become

redundant and at dimension 10, sO19 and sO20 become redundant. Thus one only

needs the descendants of O2,3,19,20 with factors of (t − u)2. These four redundancies

explain the two −2 terms in the Hilbert series.

2.5 Interesting Top Decay Amplitudes for the HL-LHC

Now that we have all of the results, we can compare our unitarity upper bounds

on the coupling strengths with our estimate of the couplings needed for HL-LHC

sensitivity to the new top quark decays in Eqn. 2.13, to highlight which top decay

amplitudes are worth studying in more detail at the HL-LHC. In the following, we

will assume we have top quark pair production, where one top quark decays into a b

quark and a leptonic W , with a b-tagging efficiency of 0.5, a lepton tagging efficiency

of 0.8, and a W leptonic branching ratio of 0.2. For the Higgs modes, we will assume

it decays to photons with a branching ratio of ∼ 2× 10−3.

First, let’s consider two body decays of the top quark. For the charged current

decays, we have t → W (b, s, d), which have left and right handed vector and tensor

couplings, which can be distinguished by the lepton angular distributions [156]. In

addition, the tensor operators can be constrained by top quark production [157]. For

flavor changing neutral current decays, we have t → (u, c)(h, Z, γ, g), which are all
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Table 14. Primary operators for qqq̄q̄ interactions with two indistinguishable quarks and two indistinguishable
antiquarks, for the specific case of uut̄t̄ interactions (The Hermitean conjugate yields the ttūū interactions and
the down-type interactions can be found by exchange for down quarks.). The SU(3) contractions are determined
by S to be symmetric in the uu indices and A to be antisymmetric. To simplify the expressions, we’ve defined a

back-forth derivative
↔
Duµ, which only acts on the u fields, and similarly

↔
Du,Q1
µ which acts on uR and Q1L. To get

the descendant operators, one can add contracted derivatives to get arbitrary Mandelstam factors that respect
the exchange symmetries, i.e. s, (t− u)2. At dimension 8, sO2 and sO3 become redundant, while at dimension
10, sO19 and sO20 become redundant. Thus, one only needs to consider O2,O3,O19,O20 with arbitrary factors
of (t− u)2.
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actively being searched for at the LHC [146, 147, 149, 148, 150, 145, 144]. For all

of these two body decays, there is a dimension 6 SMEFT operator that realizes the

coupling, which explains why they are actively being studied. Our constraints on

the coupling strengths agree that these are interesting and could potentially probe

unitarity violating scales up to several tens of TeV.

Now, let’s consider three body decays. We do not consider all hadronic decays

of the top quark since those suffer from large combinatorial backgrounds at the LHC

and our estimates would be entirely too optimistic. The charged current contact

interaction t → (b, s, d)(ē, µ̄, τ̄)ν has a different lepton pair invariant mass, which

could be interesting to look for in terms of the quark-charged lepton invariant mass

distribution. Here our estimates say that all of the dimension 6 CP even amplitudes

could be interesting, even with unitarity violation occurring around 5 TeV, while the

dimension 7 CP even amplitudes are interesting if unitarity violation occurs at about

∼ 3 TeV. Thus, these are worth exploring as there is room to increase the coupling

for lower scales of unitarity violation. The other three body decays with a charged

current interaction are t → (b, s, d)W (γ, g), which are generated at higher order in

the Standard Model (we do not consider t → dWZ since this is so close to being

kinematically closed and thus, our assumptions about the phase space and matrix

element would be wrong.). Contact amplitudes, unlike the Standard Model processes,

are not enhanced in the collinear/soft limits so these might be distinguishable. Here,

we find that of the operators in Table 5 the operators 3-4, 5 and 8 could be interesting

for unitarity violation occurring at ∼ 6 TeV, operators 10 and 14-15 need unitarity

violation by ∼ 3 TeV, and operators 19-22 and 25 need unitarity violation just above

a TeV. However, since we should interpret our estimates carefully for these photon
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and gluon decays, the lowest dimension operators are probably the most realistic to

explore.

Flavor changing decays are highly suppressed in the Standard Model, so these

are very promising to search for. To start with, four fermion contact terms t →

(c, u)(e, µ, τ)(ē, µ̄, τ̄) are being searched for at the LHC in the lepton flavor violating

modes to eµ [158]. Here our estimates say that dimension 6 CP even and odd

amplitudes are interesting for unitarity violation above 9 TeV, while dimension 7

CP even and odd amplitudes require unitarity violation by ∼ 4 TeV. The existing

CMS search probes the dimension 6 amplitudes [158], but does not look for the

dimension 7 amplitudes since they appear at dimension 8 in SMEFT. We can also

consider flavor changing neutral current decays involving gauge bosons, including

t → (c, u)(hγ, hg, Zγ, Zg, γγ, γg, gg), but not t → (c, u)WW since it is also nearly

kinematically closed. Again, our estimates are too optimistic for the decay modes

that are completely hadronic, so we will focus on the other cases. For the decays with

a Higgs and a photon or gluon, using the amplitudes and unitarity bounds in Table

3 of [28] and assuming the diphoton Higgs decay, we find that the dimension 6, 7, 8

operators require unitarity violation respectively by ∼ 5, 2, 1 TeV, so the dimension

6 and 7 ones are the most promising. For the decays into a Z and a photon or gluon,

assuming the Z decays to ee or µµ, we find that the dimension 6, 7, 8, 9 operators

in Table 5, require unitarity violation respectively by ∼ 3.5, 2.5, 1.2, 0.8 TeV so the

dimension 6, 7, 8 ones should be explored more closely, but the dimension 9 operators

are likely out of reach. For the decays with two photons or a photon and gluon, we

find that the dimension 7, 8, 9, 10, 11 operators in Tables 6, 7 require unitarity

violation respectively by ∼ 5, 2, 1.3, 1, 0.7 TeV and given that we should be careful
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with these estimates (especially for the γg case), the dimension 7 ones are likely the

only relevant ones.

There are also baryon number violating three body decays mediated by our

amplitudes, t→ (c̄, ū)(b̄, s̄, d̄)(ē, µ̄, τ̄). These would have combinatorial backgrounds,

but have been searched for in the past by CMS [159]. Again, theory explorations of

these have focused on the dimension 6 SMEFT operators [160, 161], so it would

be interesting if the ones parameterized by dimension 8 SMEFT operators give

distinguishable signals.

To conclude, our unitarity bounds combined with our estimates for the interesting

size of couplings for top quark decays has allowed us a quick survey of which of

the decay amplitudes may be worth pursuing at the HL-LHC. As the dimension of

the amplitude gets larger, these two constraints become more challenging to satisfy

without lowering the scale of unitarity to the TeV scale. Since the SMEFT operator

realization must be at the same or higher dimension, this motivates studying in more

detail top decays from many dimension 8 and a few dimension 10 SMEFT operators

to determine their sensitivity at HL-LHC and future colliders.
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CHAPTER III

MASS AGNOSTIC JET TAGGERS

In Ch. II, we outlined a procedure for identifying on-shell amplitudes involving

top quarks that are most susceptible to new physics. By combining techniques from

the modern amplitudes program with perturbative unitarity, we were able to highlight

a number of SMEFT-like operators whose couplings could feasibly be probed at the

HL-LHC.

These SMEFT operators arise from integrating out a heavy new state. In

addition to looking for the imprint of new physics on deviations to SM couplings,

we can also search for signs of this new heavy state directly. This is often done

by looking for a new resonance in the invariant mass spectrum, with the resonance

centered at the mass of the new heavy state. If the production cross section of this

new state is small, it can be difficult to distinguish this ‘bump’ in the invariant mass

spectrum from a statistical fluctuation in the SM background. Traditional ‘cut and

count’ methods exacerbate this problem, as any background events that make it past

the cut must inevitably mimic the signal.

In this chapter, we compare a number of ML methods that aim to decorrelate the

ouput of a classifier from the invariant jet mass. The advantage of these methods is

two-fold. By removing the dependence on jet mass, this makes the classifier more

useful for a broader search, rather than a search that is only looking for a new

resonance at a specific mass. The second, perhaps more important advantage, is that

by intentionally forcing our ML classifiers to be agnostic to the invariant mass of the

jet, we preserve the background dominated sidebands around the new resonance, even

as tighter cuts are made on the classifier’s output. This is crucial, as preserving these

sidebands allows us to get a better handle on the underlying systematic uncertainties.
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The methods we study fall broadly into one of two classes—data augmentation and

training augmentation.

The outline of this chapter is as follows. A brief overview of the Monte Carlo

simulation used to generate the signal and background events is given in Sec. 3.1. In

Sec. 3.2, we classify and describe the representative methods for decorrelation, first

focusing on the general idea and then on specific details. We present the results in

Sec. 4.3. Appendix A.1 shows the results of the parameter sweep used to choose

the adversarial network studied in this work. A comparison of popular histogram

distance metrics is shown in App. A.2. A side-by-side graphical comparison of all of

the decorrelation methods applied to all of the signals considered is shown in App. A.3.

The characterization of how data planing impacts mass decorrelation was done

by LB. Rashmish K. Mishra characterized how the uBoost algorithm impacts mass

decorrelation and provided the simulated data from a previous project. Andrea

Mitridate characterized how PCA rotations impact mass decorrelation. Bryan

Ostdiek characterized how generative adversarial neural networks impact mass

decorrelation.

3.1 Simulation details

In this section, we provide the details about the Monte Carlo simulated dataset

used in this study. While this study does not rely on any specific model where the fat

jets with some level of prongedness come from, we choose to work with a model which

can give signals with 2- as well as 3- and 4-pronged jets, in suitable parts of parameter

space. Studying higher pronged signals is useful in the context of mass decorrelation

methods—apart from broadening the scope of the study, higher pronged jets are

also sufficiently distinct from the background QCD jets, so that the importance of
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de-sculpting of mass distribution is changed compared to lower pronged jets. We

quantify these statements in the next sections.

The model considered is based on warped extra-dimensional RS models with

more than 2 branes (see Ref. [162] for theory and [163, 164, 165] for phenomenological

details). The relevant degrees of freedom for our case are the KK modes of the EW

gauge boson (massive spin-1 EW charged particles, denoted by ZKK/WKK) and the

radion (a massive spin-0 singlet under SM, denoted by R). In this “extended” RS

model, the radion coupling to tops/higgs/gluons is highly suppressed as compared to

usual RS models, so that the dominant way to produce the radion is through the spin-

1 KK EW gauge boson’s decay into SM gauge bosons and a radion. This further leads

to the dominant decay modes of the radion to be into SM W/Z. In the fully hadronic

decay channel of W/Z from radion decay, one expects 4-pronged jets when the radion

and/or the intermediate W/Z are boosted (see Ref. [165] for a detailed discussion on

various regimes of boosted topology depending on the mass of the radion). The spin-1

KK EW gauge boson couples to SM particles like its SM counterpart. For preparing a

2-pronged signal sample, we use the process p+p→ ZKK+j, ZKK → jj, for a 200 GeV

mass ZKK. The produced ZKK is boosted due to recoil with the first jet, so that in its

fully hadronic decay, we get a 2-pronged jet. For a 3-pronged jet, we use the process

p + p → ZKK → tt̄, with the usual 3-pronged fully hadronic top decay. In this case,

the ZKK is not boosted. Choosing the mass of ZKK to be 1500 GeV, the tops from its

decay are sufficiently boosted, so that we get a boosted 3-pronged sample. Finally, for

the 4-pronged case, we consider p + p → ZKK → Z(→ νν̄) R(→ WW → jjjj). The

ZKK mass is taken to be 1500 GeV, and is produced unboosted. For a light radion

of mass 200 GeV, the radion is produced boosted, and in its fully hadronic decay

mode through Ws, we get a 4-pronged jet. Note that if one of the W from the radion
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decays leptonically, we would get non-isolated leptons inside a 2-pronged jet, which

would be rejected by usual isolation criteria. Further, in the case of radion decay to

two Zs, if one of the Z decays invisibly, we would again be led to a 2-pronged jet. We

avoid these complications by simply focusing on the fully hadronic decay mode of the

radion through Ws.

The details of the signal process considered are shown in Tab. 15, along with the

masses and the kinematic cuts chosen (at generation level) to produce boosted jets

of desired prongedness. The background for these signals is taken to be QCD jet,

generated by p + p→ Z + j, Z → νν̄, at leading order in QCD coupling. A sample

size of 500K is generated for each signal category, while 1M events are generated

for the QCD background,1 using MadGraph@aMC 2.6.4 [166] for parton-level

events generation (14 TeV center of mass energy), Pythia 8 [167] for parton showers

and hadronization, and Delphes 3.4.1 [168] for detector simulation. Jets are

constructed from the track and tower hits, using the anti-kt algorithm implementation

in FastJet, with a jet radius R = 1.2. The clustered jets are required to satisfy

pT,J > 500 GeV and −2.5 ≤ ηJ ≤ 2.5. A mass cut of 50 ≤ mJ( GeV) ≤ 400 is

further imposed on the groomed mass of the jet, where grooming is performed by

Pruning [169] with Cambridge-Aachen algorithm, with zcut = 0.1 and Rcut = 0.5.

The highest pT jet is considered as the candidate jet, from which the higher level

NN inputs are constructed using the Nsubjettiness module in FastJet for axis

choice of OnePass KT Axes, for the same jet radius used in the construction of

the original jet.

After the pre-selection cuts, the original 1M sample of QCD jets is cut down

to 151 559. Similarly, the 500k events for the different BSM jets are reduced to

1We do not use jet matching or merging and only take the hardest jet in the event.
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Prong Process Parameters (TeV) Kinematic Cuts (GeV)

2P p+ p→ j + ZKK, ZKK → j j mKK = 0.2 pT,min = 50, p≥1
T,min = 400

3P p+ p→ ZKK → t t̄ mKK = 1.5 pT,min = 50

4P p+ p→ ZKK → Z(νν̄) +R(jjjj) mKK = 1.5, mR = 0.2 pT,min = 50

Table 15. Details of the signal process used in the event generation, along with the choice of parameters and
generation level kinematic cuts.
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Figure 1. Distributions of the transverse momentum of the hardest jet.

187 659, 303 917, and 177 418 for the 2-, 3-, and 4-prong signals, respectively. The

pT distributions for the different samples are shown in Fig. 1. Training the machine

learning algorithms is done on 70% of the combined datasets with 15% set aside for

validation and 15% for independent testing.

3.2 Classification of Methods

In this section, we introduce various methods for decorrelating the mass

distribution from classifier output. For classifiers, we consider single variable, such as

τ21, as well as multivariate based architectures such as BDTs and NNs. We note that

typically, multivariate analysis refer to shallow NNs or BDTs, as opposed to the more

modern machine learning architectures. For mass decorrelation, we consider either

augmenting the data, to reduce the correlation of jet mass from the input to the
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classifier, or augmenting the training, where the optimization procedure is modified

to decorrelate the classifier output from mass. We also introduce the benchmark

classifiers, which are needed for comparison.

3.2.1 Classification without decorrelation

To allow a comparison for the performance of various decorrelation methods,

we need to introduce the corresponding benchmark methods, which do not take any

decorrelation into account. Jet classification is often done using the substructure

within the jet. The N -subjettiness observables τ
(β)
N [170, 31, 30] can quantify the

substructure, and are defined as

τ
(β)
N =

1

pTJ

∑
i∈Jet

pTi min
{

∆Rβ
1i, ∆Rβ

2i, · · · , ∆Rβ
Ni

}
, (3.1)

where pTJ is the transverse momentum of the whole jet, pTi is the transverse

momentum of the ith constituent of the jet, ∆RAi is the distance between axis A

and constituent i and β is a real number. The distance is defined as

∆RAi =
√

∆φ2
Ai + ∆η2

Ai . (3.2)

Suitable choices of the sub-jet axes lead to small values for different τ
(β)
N . For instance,

a boosted, hadronically-decaying W will have two hard partons in the jet. If the axes

are chosen to be along the directions of these two partons, the value of τ
(β)
2 will be

much lower than τ
(β)
1 where only one axis is considered. In contrast, a QCD jet will

have a radiation pattern taking up more of the jet area, leading to constituents further

away from the axes; both τ
(β)
1 and τ

(β)
2 will be relatively large. With this, a common

method for classifying jets with 2-prong structure is to examine the ratio between the
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two,

τ21 ≡
τ

(1)
2

τ
(1)
1

. (3.3)

For our 2-prong signal (described in more detail in Sec. 3.1), using τ21 results in an

area under the receiver operating characteristic curve (AUC) of 0.747. An AUC of

0.5 is the equivalent of randomly guessing, and an AUC of 1.0 is a perfect classifier.

Thus, τ21 is a simple, single observable which significantly aids in discriminating 2-

prong jets. When looking for boosted jets with more prongs, an analogous strategy

is applied. For 3-prong jets, we use τ32 = τ
(1)
3 /τ

(1)
2 and the observable τ43 = τ

(1)
4 /τ

(1)
3

is used for 4-prong jets. The corresponding AUCs are 0.819 and 0.938. Once again,

these simple single variable observables are strong discriminators of the corresponding

signal topologies.

We use τ21, τ32, and τ43 as examples of single variable based classifiers. The

benefit of these is that the variable is physics based and the systematics can be

readily studied. However, a single variable may not be able to take advantage of the

correlations of other observables in the data (e.g. see [171] for a BSM example). To

fully incorporate all of the information, multivariate analysis is needed. We study

two such multivariate methods, based on boosted decision tree and neural network

architectures, which have been shown to lead to increased discrimination.2

The authors of [172] introduced a minimal but complete basis for a jet with

M -body phase space. In particular, they showed that the dimension of the M body

phase space is 3M − 4 and can be spanned using combinations of the τ
(β)
N . In our

study, we examine jets with up to 4-prong structure. We use a 5-body phase space for

2We do not use convolutional neural networks (jet images), but only focus on the jet substructure
variables to keep the data representation constant across all methods.
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Figure 2. The architecture of a BDT. We take the BDT to be made of 150 DTs, with a max depth of 4. The
input to the BDT are the variables that span the 5-body jet phase space, see Eq. (3.4). The indicated parameters αi
represent the weight associated with the particular DT.

our multivariate analyses, as the performance is seen to saturate for 4-prong signals

for a larger basis. For jets with fewer prongs, the 5-body basis is over-complete and

the results saturate as well. This 5-body phase space basis is given as

X =
{
τ

(0.5)
1 , τ

(1)
1 , τ

(2)
1 , τ

(0.5)
2 , τ

(1)
2 , τ

(2)
2 , τ

(0.5)
3 , τ

(1)
3 , τ

(2)
3 , τ

(1)
4 , τ

(2)
4

}
. (3.4)

These observables are used as the inputs for all of the multivariate approaches studied

here. While this basis covers the substructure, the overall scale of the jet is not taken

into account. Including the overall scale by using the transverse momentum or jet

mass allows the classifiers to achieve better background rejection for a given signal

efficiency, but at the expense of more sculpting. In the interest of not sculpting, and

to have a fair comparison with the single variable taggers, we do not use the transverse

momentum or the jet mass as an input for the machine learning algorithms.3

3The τ
(2)
1 observable is related to the ratio of m/pT , so including the transverse momentum would

allow the multivariate analysis the possibility to learn the jet mass.
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The first multivariate method we consider is based on a boosted decision tree

(BDT) architecture. A BDT is made of decision trees (DT), which are a tree of

binary decisions on various variables, leading to a final binary classification of data.

Boosting is the technique to allow an ensemble of DT with weak predictions to build

an overall strong classifier, thereby boosting the performance. The DTs are ordered

such that each subsequent DT learns on the failures of its predecessors, by assigning

higher weights to the misclassified events. Figure 2 shows the architecture of a BDT

successively made from many DTs. BDTs have the advantage of being faster to train,

less prone to overfitting and easier to see inside the box, as compared to methods

based on Neural Networks (NN). However, they are more sensitive to noisy data and

outliers.

Before training, the inputs are first scaled using the StandardScaler of

scikit-learn so that each variable has zero mean and unit variance on the training

set. The data is split into three separate sets, one for training, one for validation,

and one for testing. The same StandardScaler is used for all of the sets. We use

the standard implementation of the gradient boosting classifier within the scikit-

learn framework [173]. In particular, we use 150 estimators, a max depth of 4, and

a learning rate of 0.1. This leads to good discrimination, with an AUC of 0.863—a

15% increase compared to using just τ21—for the same two-prong jets as before.

The second multivariate method we consider is based on neural networks.

Figure 3 shows the basic setup of our network, which is implemented in the

Keras [174] package with the TensorFlow backend [175]. Unless otherwise stated,

all neural networks in this study use the same architecture, with three hidden layers of

50 nodes each. The nodes are activated using the Rectified Linear Unit (ReLu). The

last layer contains a single node with a Sigmoid activation function so that the output
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Figure 3. Many of the methods explored in this paper use a neural network classifier. For consistency, we always
use a network with three hidden layers, each of which has 50 nodes and uses the ReLu activation function. The output

is a single node with a sigmoid activation function. Our input data are the 11 τ
(β)
N variables of 5-body jet phase space

shown in Eq. (3.4).

is a number between 0 and 1. We experimented with increasing or decreasing the

number of layers, and found that three hidden layers is where performance saturated.

Adding more nodes was not found to be helpful.

Training is done using the Adam optimizer [176] to minimize the binary cross

entropy loss function, which is given by:

Lclassifier = − 1

N

N∑
i

wi

[
yi ln fC

(
Xi

)
+
(
1− yi

)
ln
(

1− fC
(
Xi

))]
, (3.5)

where yi is the true label, fC
(
Xi

)
is the network output, and wi is the weight for

the ith event. It is standard for all of wi to be taken to be one, but in the case of

unbalanced classes with significant difference in the number of training samples, it is

useful to set wi to a specific value per class so that the effective number of training

samples for each class becomes equal; these are called class weights. We implement

class weights throughout as it was found to improve the classifiers, even though we

do not have badly imbalanced classes. In Sec. 3.2.2.2, we explore another application

of using weights during training.

The learning rate is initially set to 10−3. The loss is computed on the validation

set after each epoch of training to ensure that the network is not over fitting. If the
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validation loss has not improved for 5 epochs, the learning rate is decreased by a

factor of 10, with a minimum of 10−6. Training is stopped when the validation loss

has not improved for 10 epochs. Training usually takes between 30-40 epochs.

To have a fair comparison with the BDT, the network is trained on the same

training set, using the same pre-processing. In addition, a common test set is used

for all comparisons. The depth of the network allows it to learn more of the non-

linearities between the input features than the boosted decision tree, yielding a AUC

of 0.872. This is only a 1% increase in the AUC, but this can have large impacts on

the potential discovery of new physics. For instance, at a fixed signal efficiency of

0.5, the background rejection increases from a factor of 13 to a factor of 15, allowing

for 16% more background rejection.4

A summary of the application of the three different methods presented so far is in

Fig. 4. The left panel shows the ROC curves, where better classifiers are up and to the

right. In what follows, we will always use a solid line to denote a neural network based

classifier, a dashed line for a BDT, and a dotted line for a single variable analysis.

The two multi-variate analysis are similar and do much better than the single variable

τ21. The right panels highlight the main problem explored in this work. The solid

black line and the grey, shaded regions show the jet mass distributions for the QCD

background and the 2-prong signal, respectively. The different colored lines show

the resulting QCD only distribution when cutting to signal efficiencies of 0.95, 0.9,

0.8, 0.7, 0.6, and 0.5. The τ21 classifier removes much of the QCD background at

low jet masses, but allows many more events at high masses, so the background

efficiency changes drastically as a function of the jet mass. This is even worse for the

4Here, and in the rest of the paper, we define the background rejection over the whole jet mass
range considered: 50 ≤ mJ( GeV) ≤ 400. We expect this choice to give the same qualitatively result
which would be obtained by defining the background rejection on a smaller mass window (more
details on this can be found in section 4.3.).
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Figure 4. The left panel shows the ROC curves for three traditional methods, two based on machine learning, to
classify a 2-prong signal jet from a QCD jet. The machine learning based methods achieve an area significantly higher
than the single variable τ21 based classifier. The right panels show the background only distributions for successively
tighter cuts in the solid lines: signal efficiency of 1.0 (black), 0.95 (green), 0.9 (red), 0.8 (purple), 0.7 (brown), 0.6
(pink) and 0.5 (yellow). The signal with no cuts is shown in the filled-in, grey distribution. The only background
events which pass the cuts end up having masses similar to that of the signal, even though the machine learning
models do not have access to the mass.

multivariate analyses, which drastically sculpt the background distributions. Even

though they are only using substructure information, and do not have access to the

overall scale of the jet, the QCD events that make it through are peaked at the signal

mass. This better background rejection comes at the cost of having both the signal

and background shapes becoming very similar, which makes estimating systematic

uncertainties much harder.

With this motivation, we now turn to the different approaches of decorrelating

the output of a classifier with a given variable such as jet mass. These approaches

broadly fall into two categories. The first is to augment the data on which the model

is trained, while leaving the training procedure unchanged. The second category is

to not augment the data, but to alter the training algorithm itself. We discuss these

two in turn next.

3.2.2 Decorrelation based on data augmentation

The general idea of data augmentation is to reduce as much as possible the

correlation of the classifier input to the jet mass. This can be done for both single

and multivariable methods. For single variable classifier, this can be done analytically,
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which we review below. For multivariable classifiers, the decorrelation must be done

numerically, which we study using two recently proposed methods: Planing [38] and

PCA-based rescaling [36, 65]. Both of these methods can be used for NNs and BDTs;

in this section we only show the examples for the NN. These methods are fast, and

have little application-time computation cost.

3.2.2.1 Analytic decorrelation

For classification based on a single variable such as τ21, analytic decorrelation

methods have been proposed [65, 66], where a modified variable is constructed which is

explicitly designed to preserve the background distribution. The appropriate scaling

variable for QCD jets is the dimensionless ratio ρ = log(m2/p2
T ). A plot of τ21 vs

ρ shows that background jets in different pT ranges are linearly shifted from one

another, and that there is a linear relation between τ21 and ρ for a certain range of

ρ. With this information, the decorrelation with mass can be performed in two steps.

The pT dependence is removed by defining ρ′ = ρ + log (pT/µ) where the value of

µ is chosen phenomenologically (taken to be 1 GeV in [65]). The linear correlation

between τ21 and ρ′ can be removed by considering a modified variable—the so-called

“Designed Decorrelated Tagger”, τDDT
21 = τ21 − Mρ′, where M is the numerically

calculated slope of the τ21 vs ρ′ curve. Apart from being simple to implement, the

background systematics are easier to study because the method only involves a linear

shift of the original observable. However, this method fails to generalize to more

complex topologies, as there is not a simple linear relation between τ
(1)
N /τ

(1)
N−1 and ρ′

for N > 2.

Using τDDT
21 as a single variable classifier on a 2-prong signal gives an AUC of

0.687, which is the lowest among the decorrelation methods considered in this work.

Compared to τ21, the Designed Decorrelated Tagger has an AUC that is 8% lower,
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Figure 5. The left panel shows the ROC curves for the data augmented neural network methods of PCA and
planing as well as the single variable DDT. The network trained on PCA-rescaled data is the best classifier, followed
by the network trained on planed data. Both MV decorrelation techniques result in better classification than the
single variable τDDT

21 based classification. The right panels show the background only distributions for successively
tighter thresholds for the DDT, Planed, and PCA classifiers: signal efficiency of 1.0 (black), 0.95 (green), 0.9 (red),
0.8 (purple), 0.7 (brown), 0.6 (pink) and 0.5 (yellow). For context, the 2-pronged signal distribution is shown as grey
filled-in region. All three methods reduce the background sculpting when compared to their Fig. 4 counterparts. A
full side-by-side comparison for 2, 3, and 4 prong signals is shown in App. A.3.

though only a nominally smaller background rejection at a fixed signal efficiency of

50%, as seen in the left panel of Fig. 5. The right panels of Fig. 5 show how the

background distribution changes as tighter cuts are made on the signal efficiency.

τDDT
21 sculpts far less than τ21 (See App. A.3 for a side-by-side comparison), and by

eye, seems to perfectly preserve the shape of the QCD background distribution. We

quantify these statements in the next sections.

3.2.2.2 Planing

Data planing [38] is a procedure that was initially designed to better understand

what information an MV model is learning. This is accomplished by using the

“uniform phase space” scheme introduced in [33] to restrict the model’s access to a

certain observable, and looking for a subsequent drop in performance during testing.

It turns out, however, that limiting what information the neural network is capable

of learning and decorrelating the network output from a given observable are similar

tasks.

At its core, planing is a weighting technique that takes a given distribution, and

weights the data such that this distribution is now uniform over the range of values
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in consideration. Our choice to weight both the signal and the background to be

uniform is not unique—one could instead weight the signal to the background shape

or vice versa, as long as they have the same distribution after the procedure. For a

set of input features, Xi, where i denotes a given event, and m is the feature to be

planed, the weights can be computed as:

[w (Xi)]
−1 = C

dσ (Xi)

dm

∣∣∣∣
m=mi

, (3.6)

where σ(Xi) is the distribution of the data as a function of feature X, and

C is a dimensionful constant common to both signal and background. This is

required, as signal and background are planed separately. In practice, these weights

are determined by uniformly binning the events, and then inverting the resulting

histogram. This introduces some finite binning effects, which tend to be more

pronounced near the ends of the distribution. However, these effects can be easily

mitigated, and do not have a significant impact on training, see Ref. [177] for a method

to compute the weights without binning.

The planed feature does not necessarily have to be an input to the network. In

this work, we are interested in decorrelating the network output from the jet mass, so

this is the variable we apply the planing procedure to. As mentioned in Sec. 3.2.1, it

is possible to add event-by-event weights to the loss function when training, treating

some events as more or less important than others. Planing uses the weights in

Eq. (3.6) and treats events that weigh less (more) as more (less) important. When

training a network on planed data, the weights in the binary cross-entropy, Eq. (??),

are the product of the planing weights, Eq. (3.6), and the class weights discussed

previously.
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Figure 6. The upper and lower panels show distributions before and after planing away the jet mass, respectively.
The left panels show the jet mass distribution for the 2-pronged signal and QCD background. By design, both
distributions are (nearly) identical, and uniform across the entire mass range after planing. The center panels show

τ
(1)
1 , one of the input variables for the classifiers. Before planing, this variable has discriminating power, but that was

correlated with the jet mass and got removed by the planing process. The right panels show τ
(1)
2 , which has more

separation between signal and background after planing.

Figure 6 highlights the key features of planing. In the left panels, we show

the jet mass distributions for the 2-pronged signal events and the QCD background

events. These distributions are planed separately, and the lower left panel shows

the resulting distributions after planing away the jet mass information. Both are

uniform over the relevant mass range, though there are some finite binning effects

visible near the high- and low-mass ends of the planed distributions. The two center

panels show one of the network inputs, τ
(1)
1 , before and after planing. Before planing

there is a clear separation between the signal and background distributions, which

means that there is discriminating power available to the network from this feature
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alone. After weighting this input, we see that the signal and background τ
(1)
1 look

much more similar, so there is now less discriminating power in this planed feature.

However, planing does not reduce the discriminating power of every input feature. In

the rightmost panels, we see that before planing, the distributions of τ
(1)
2 are nearly

identical for signal and background. After applying the weights from the planing

procedure, we see that there is now more distinction between the two, with the added

benefit that this extra classifying power does not come at the cost of further sculpting

the background jet mass distribution.

The MV classifier is trained on planed data, but is tested using unaltered data.

Compared to a network with the same architecture, but trained on unaugmented data,

the network trained on planed data is only able to achieve an AUC of 0.778—nearly

11% lower. This reduction in AUC corresponds to a background rejection nearly 3

times smaller at a fixed signal efficiency of 50% compared to the network trained on

data which has not been planed, as seen in the left panel of Fig. 5. The right panels

of Fig. 5 shows how the background distribution changes as tighter cuts are made on

the signal efficiency. Comparing these distributions to the right panels of Fig. 4, it

is clear that a network trained on planed data sculpts far less than any of the MV

techniques discussed thus far. A side-by-side comparison can be found in App. A.3.

We quantify these statements in the next sections.

3.2.2.3 PCA

Another preprocessing procedure which aims to decorrelate the discrimination

power of the NN from the jet mass was proposed in [36]. The basic idea is to preprocess

the τ
(β)
N variables in such a way that their distribution for QCD events is no longer

correlated to the jet mass. This is achieved by first binning the standardized data

(zero mean and unit standard deviation for each variable) in jet mass, with a variable
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binning size to have the same number of QCD events in each bin. Then, in each bin,

the standardized input variables are transformed as follows:

~τ std
i → ~τ PCA

i = R−1
i SiRi ~τ

std
i , (3.7)

where ~τ std
i (~τ PCA

i ) is a 11 dimensional vector made of standardized (PCA transformed)

variables in bin i, Ri is the matrix that diagonalizes the covariance matrix for the

QCD τ variables in that given bin, and Si makes the covariance matrix unity in that

bin. The action of Ri is to induce a rotation into a basis where all the variables

are linearly uncorrelated (this is the typical procedure used in principal component

analysis (PCA), from which the method derives its name). Typically, after this

rotation the data needs to be standardized again, requiring the action of the diagonal

Si matrix. The effect of PCA preprocessing procedure is illustrated by the scatter

plot in Fig. 7, for two of the variables τ
(1)
1 and τ

(1)
2 , for three mass bins. In the scatter

plot, the differences for the mass bins in the original variables are very easy to see,

and also noticeable in the standardized variable. However, the mass bins look much

more similar for PCA transformed variables. Notice that, while both the R and S are

computed (bin-by-bin) only using the QCD sample, the transformation, Eq. (3.7), is

then applied both to the QCD and signal events (both during the training of the NN

and when applying the tagger to the test data).5

The network trained on PCA scaled data is able to achieve an AUC of 0.829,

which is only a 4% reduction compared to the network with the same architecture

trained on the unaltered data. This is shown in the left panel of Fig. 5. The right

panel of Fig. 5 shows how the background distribution changes as tighter cuts are

5This is different than the case of planing, where the test set does not use data augmentation.
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Figure 7. Scatterplot of two benchmark τ variables for QCD events in three different mass windows. The left panel
shows the original variables, before any kind of preprocessing. The events from different mass bins are well separated.
The center panel shows the same events after removing the mean and setting the variance of each variable in each
bin to unity. The different mass bins now have the same range, but the 2D correlations are still distinct. In the right
panel, the events have been standardized and PCA transformed on a linearly independent basis. The different mass
ranges are now hard to distinguish.

made on the signal efficiency. Comparing these distributions to the right panels of

Fig. 4 (see App. A.3 for the side-by-side comparison), it is again clear that a network

trained on PCA scaled data sculpts less. We quantify these statements in the next

sections.

3.2.3 Decorrelation based on training augmentation

The general idea of training augmentation is to assign a penalty to distorting a

background distribution that is desired to be uncorrelated with the classifier. This

allows the optimal solution to balance the performance with decorrelation. Further,

the decorrelation is not requested at just one step in the process, like in data

augmentation based approach, but rather at each step in the process. In this category,

we study two of recently proposed methods uBoost and Adverserial Neural Networks.

3.2.3.1 uBoost

A BDT algorithm can be modified to leave some distributions of a given class

unaffected in the classification procedure, as proposed in [67], called uBoost.6 The

6A follow up to the uBoost algorithm was developed in Ref. [178]. This new method achieves
similar classification and uniformity as uBoost, but only trains a single BDT with a modified loss
function, rather than training mulitple BDTs.
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basic idea is to incorporate the cost of affecting the distribution that is desired to

be unaffected in the optimization procedure. This procedure necessarily depends

on the efficiency of classification, since the cost of affecting a distribution has to be

measured for fixed efficiency. In other words, a trivial way to not affect a distribution

for a variable for a given class is to have a very small efficiency to select the other

class, so that no events of the other class are selected and the distribution stays the

same. Hence, the non-trivial optimization algorithm is implicitly defined for a given

efficiency, taken to be the average efficiency of the BDT. The average efficiency of the

overall BDT corresponds to a local efficiency for each event. This local efficiency is

calculated using k-nearest-neighbor (kNN) events that pass the BDT cut, constructed

from DTs up to this point. Hence this local efficiency depends on both the event and

the tree. Data points with a local efficiency lower than average efficiency are given

more importance, and those with a local efficiency higher than average efficiency are

given lesser importance. The relative importance is controlled by a parameter βu (see

Eq.(2.3) in Ref. [67]). The BDT then is optimized for a given efficiency. One can then

construct an even bigger ensemble of BDTs, each optimized for a given efficiency, and

design the response function in such a way that the right one is chosen for a given

efficiency. An illustration of this is sketched in Fig. 8.

The uBoost architecture we consider uses 20 BDTs to cover the full signal

efficiency range, with each BDT being comprised of 150 individual DTs, each with a

maximum depth of 4. The decision trees use the Gini Index to measure the quality

of a split. Additionally, we use k = 50 nearest neighbor events to compute the

local efficiencies. As the authors of [67] point out, there is very little change in the

performance of uBoost for k ∈ [50, 1000], but choosing k < 20 drastically increases

the statistical uncertainty on the local efficiency, which worsens the performance of
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Figure 8. The network architecture used in the uBoost algorithm. Each BDT has the same layout as those in
Fig. 2, and is tasked with keeping the background uniform at a given target signal efficiency. We use 20 BDTs to cover
the entire efficiency range, and results are interpolated between target efficiencies to keep the background uniform
over the whole efficiency range. The Gini index is used to measure the quality of a split, and the best split is taken
when creating new branches.

the uBoost algorithm. The parameter βu which sets the relative training importance

of events with local efficiency more/less than the average efficiency, is set to 1.

Using the uBoost algorithm for classification results in an AUC of 0.783, which

is a 9% reduction when compared to classification using standard gradient boosted

decision trees. At a fixed signal efficiency of 50%, this translates into uBoost

rejecting 23% less background than a standard BDT operating at the same signal

efficiency. However, this reduction in classification power comes with the benefit of

decreased background sculpting. The right panel in Fig. 9 shows how the background

distribution changes as tighter cuts are made on the uBoost network output. By eye,

uBoost sculpts the background considerably less than a traditional BDT. Quantitative

assessments are made in Section 4.3.

3.2.3.2 Adversarial

The idea to use adversarial networks to decorrelate jet mass from the output

of a classifier was first introduced in [64]. The authors showed that in the case of

small systematic errors, both adversarially trained networks and traditional neural
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Figure 9. The left panel shows the ROC curves for the adversarially trained neural network and uBoost, along with
the results of the base neural network and τ21, for comparison. The adversarial results use λ = 50, and the uBoost
results use βu = 1. The right panels show the background only distributions as successively tighter cuts are made
on the output of these classifiers: signal efficiency of 1.0 (black), 0.95 (green), 0.9 (red), 0.8 (purple), 0.7 (brown),
0.6 (pink) and 0.5 (yellow). The full 2-pronged signal is shown in the filled-in grey distribution for context. Both
these methods are able to preserve the background shape well, with only a marginal decrease in performance, but
take a factor of 10 to 100 more time to train. Compared to their MV counterparts in the upper panels, it is clear
that the training augmentation based approaches significantly reduce the extent of the background sculpting. A full
side-by-side comparison for 2, 3, and 4 prong signals is shown in App. A.3.

networks lead to better chances of discovery for 2-pronged jets than using traditional

jet substructure or the DDT [65]. However, when the systematic uncertainty on

the background is large, the traditional neural network never does as well as the

adversarially trained network or the analytic taggers. The adversarially trained

network remains better than the analytic methods.

The key aspect of adversarial training is using multiple neural networks, instead

of single one. First, the inputs are fed through a traditional classifier, as in Sec. 3.2.1.

The output of the classifier is a number between 0 and 1. The next stage trains a

second network to infer the feature to be decorrelated (the mass for us) using only

the output of the classifier. An illustration of this is shown in Fig. 10.

The overall goal then becomes to train a classifier which not only classifies well,

but which also does not allow the adversary to infer the jet mass. This is done using
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Figure 10. The setup of our adversarially trained neural network. The classifier has the same hyperparameters
as in Fig. 3. The output of the classifier becomes the input of the adversary, which attempts to predict which bin of
the jet mass the QCD events came from. We use tanh activation for the hidden layers of the adversary, and softmax
activation for the final layer, with 10 outputs. The multi-class cross entropy loss function is used for the adversary.

a combined loss function of the form

Ltagger = Lclassifier − λ Ladversary, (3.8)

where Lclassifier and Ladversary are usual classification loss functions. However, we only

calculate Ladversary for the QCD sample and not the signal samples. The parameter λ

is a positive hyperparameter set by the user, giving the relative importance of the two

tasks; classifying and decorrelating. A larger value of λ puts more emphasis on not

allowing the adversary to be able to infer the mass at the cost of poorer classification.

As done in Ref. [64], we use ten nodes for the output of the adversary, with the

jet mass digitized to ten bins with equal numbers of QCD jets per bin, treating the

problem as a multi-class classification problem. The activation for the last layer is

the softmax function and Ladversary is the multiclass cross entropy. This was found to

lead to more stable training than trying to regress the exact jet mass. In addition,

we found that a tanh activation function for the hidden layers of the adversary to be

more stable than ReLu activation. The ATLAS study in Ref. [70] also uses adversarial

neural networks for mass decorrelation, but does so by having the adversary predict
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the probability distribution function of the background, as in Ref. [68], rather than

predicting the mass bin.

The adversarial set-up makes training the networks more involved. First, we train

the classifier using only the binary cross entropy loss function. Next, the adversary is

trained alone, only using the output of the classifier. We found the training procedure

which led to the most stable results for the combined networks to be as follows. The

adversary is set to not be trainable, and the classifier weights are updated using the

total loss of Eq. (3.8). However, only a small number of updates to the weights of

the classifier are allowed. Then, the classifier weights are frozen and the adversary

becomes trainable. It is given substantially more time to adjust to the updated

classifier, minimizing its own Ladversary for many epochs. The process is then repeated

many times, first making minor updates to the classifier followed by ample time for

the adversary to respond. This procedure takes about a factor of 10-100 more time

to train than other methods.

The other aspect of adversarial training which makes it more challenging is the

choice of the hyperparameter λ. A priori, the value of λ should be chosen so that the

loss of the classifier is of order the same size as the loss of the adversary. However, the

best value will depend on the use case. The necessity of this optimization produces

a family of classifiers with trade-offs between classifying power and decorrelation

abilities. This is in contrast to analytic and data augmentation based decorrelation

methods, which only give a single classifier. For our studies, we scanned over ranges

of λ ∈ {1, 2, 5, 10, 20, 50, 100, 200, 500, 1000}. The results seem to saturate at λ = 50.

The result of this hyperparameter scan are shown in App. A.1. We tried smaller

values as well, but these were seen to be nearly equivalent with the traditional neural
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network. The longer training times, coupled with the need to optimize λ greatly

increases the computational overhead for using adversarial methods.

The adversarially-trained neural network (with λ = 50) achieves an AUC of

0.807, which is a 7% reduction in AUC compared to the neural network considered in

section 3.2.1. At a fixed signal efficiency of 50%, this difference in AUC translates to

the adversarially trained network rejecting 33% less background than a traditionally

trained neural network. However, the adversarial approach still results in a better

classifier than single variable analyses, as shown in Fig. 9. The right panel of Fig. 9

shows how the background distribution changes as tighter cuts are made on the output

of the adversarially trained network. It is clear that the adversarial approach sculpts

the background far less than traditional neural networks. We make this statement

more quantitative in Sec. 4.3.

3.3 Results

One of the considerations when choosing an analysis method is the computational

overhead. Table 16 shows the amount of time it takes to train the different classifiers.

The difference between the number of prongs is mostly dominated by the different

sample sizes, but also comes from how easy the minimum of the loss function is to

find.

The neural network based methods take longer to train than the boosted decision

trees. As expected, the methods which augment the training process take longer to

return a good classifier. The uBoost method trains 20 different BDTs so it takes

around 20 times longer than the base BDT.7 Decorrelating the NN by using an

adversary network takes substantially longer to train, although as we show below,

7The updated boosting methods found in [178] do not require training multiple BDTs, so their
training time is similar to a standard BDT.
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Method 2-prong 3-prong 4-prong

Base Network 409± 56.8 601± 82.9 483± 64.9

Base BDT 66± 2.7 88± 0.4 64± 1.1

PCA Network 421± 48.7 566± 63.6 366± 32.8

PCA BDT 70± 1.3 97± 1.3 69± 0.9

Planed Network 406± 44.2 604± 90.7 462± 81.7

Planed BDT 64± 1.0 88± 1.2 63± 0.8

Adversarial 49 429± 520.8 54 953± 683.3 49 003± 1892.0

uBoost 1495± 6.6 2047± 6.5 1430± 10.0

Table 16. The time in seconds to train a classifier on dual E5-2690v4 (28 core) processors. The mean and standard
deviation are calculated over 10 independent trainings. The large variance in the neural network times is due to
the early stopping condition, leading to a non-fixed number of epochs. Note that the adversarially trained neural
network statistics are over sampled once over each of the nine different values of λ due to the long training time. In
addition, the adversarial networks used GPU nodes. BDTs are faster to train, but are not as effective classifiers. The
Adversarial and uBoost decorrelation methods take much longer than the PCA or Planing methods.

it does achieve the best results. In contrast, the methods which augment the data

beforehand show very little change in the time it takes to train.

The computational overhead is not the only consideration. In the rest of this

section, we examine both the amount of background rejection and the degree to which

the background is sculpted. Depending on the particular analysis, it may be optimal

to allow more or less sculpting depending on the needed background rejection. The

background rejections is defined over the whole jet mass range considered: 50 ≤

mJ( GeV) ≤ 400. For the taggers considered in this work, we expect this choice to

give qualitatively the same results that would be obtained by defining it in a narrower

mass window centered around the signal. This is because they are structured exactly

to achieve this goal: to keep the background rejection constant over the whole mass

range.
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To quantitatively define how much the classifier sculpts the background, we use

the Bhattacharyya distance, which is a popular measure of the distance between two

probability distributions. For two given histograms H1 and H2 with N bins each, the

distance is given as:

dB(H1, H2) =

√
1− 1

N
√
〈H1〉〈H2〉

∑
I

(√
H1(I)H2(I)

)
, 〈HK〉 =

1

N

∑
J

HK(J) .

(3.9)

This distance has the nice property that it is normalized between 0 and 1, allowing for

a comparison of the sculpting from various taggers more easily. This choice of metric

is not unique. In App. A.2, we compare the Bhattacharyya distance with another

distance measure, the Jensen-Shannon distance (used in Ref. [70]). The two are seen

to have similar features.

3.3.1 Augmented training

In this section we examine the decorrelation methods which change the way

the training is done, namely the adversarial neural networks and uBoost. While

these methods take longer to train, their input data is unaltered, which is better for

calibration and other systematics. In all of the comparisons, we include the base

neural network and the single-variable analysis as benchmark references.

Figure 11 shows the ROC curves for decorrelation methods along with the

benchmarks. The left, middle, and right columns are for the 2-prong (boosted

ZKK → qq̄), 3-prong (boosted top), and 4-prong (boosted R → qq̄q′q̄′) jets as

described in Sec. 3.1, respectively. The first noticeable trend is that the more prongs

the signal sample contains, the easier it is to distinguish from the QCD background,

which is typically single pronged. In fact, for many of our classifiers for the 4-prong
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Figure 11. ROC curves for the 2-, 3-, and 4-prong signal jets versus QCD background for the methods which
augment the training method to decorrelate the jet mass. The solid, dashed, and dotted curves show results for
neural networks, boosted decision trees, and single variable analysis, respectively. The light blue curves are for the
traditional method benchmarks. The purple and dark-blue lines denote the adversarially trained network and uBoost
decision tree. For the 3- and 4-prong cases, uBoost cannot classify as well as the adversarially trained neural networks,
but still does much better than using a single variable, τ3/τ2 and τ4/τ3, respectively

signal, we run out of background events at a signal efficiency of around 0.1. We

will see evidence of this in the remaining metrics even though the rapid removal of

background events yields more statistical uncertainty on these results.

The adversarially trained network with λ = 50 is shown in the solid light-purple

line and uBoost classifier is shown by the dashed blue line. This value of λ was around

where the performance saturated; Appendix A.1 shows the results for all values of

λ tested. For the 2-prong signal, uBoost and the adversarially trained network have

very similar curves. These are roughly in the middle of the base MV methods and

the single variable analysis. Moving to the 3- and 4- prong signals, the adversarially

trained network achieves better background rejection than uBoost, but both of these

are significantly better than a single variable analysis. Note that currently there are

no DDT type methods for 3- and 4-prong jets.

The Bhattacharyya distance calculated on the QCD background only

distributions is shown in Fig. 12. Specifically, we calculate the distance between the

original (no cuts) jet mass distribution and the background distribution which passes
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Figure 12. The Bhattacharyya distance for the QCD background distributions compared to the original
distributions. The distance is defined in Eq. (3.9), and a larger distance represents more sculpting—lower on the
plot is better. The upper and lower rows plot the distance as a function of signal efficiency or background rejection,
respectively. τDDT

21 produces the smallest distances for fixed signal efficiency, but does not generalize to higher-prong
jets. The adversarially trained network yields a close approximation and generalizes to more prongs. uBoost falls
between the original methods and the adversarially trained network, but takes a factor of 30 less time to train.

a cut for the specified signal efficiency (top row) or background rejection (bottom

row). We see clearly that the original NN and BDT give the greatest amount of

distortion to the distributions, resulting in larger distances. For the 2-prong jets,

the distance for original MVs is around 0.5 for most of the signal efficiencies, and

τ21 slowly grows to the same values. For 3- and 4-prong, the single N-subjettiness

variable produce smaller distances than the original MVs over the whole region.

The τDDT
21 classifier was specifically designed to remove the mass correlation; as

such, it produces the smallest distances for fixed signal efficiency. However, there are

no 3- or 4-prong versions. That being said, the adversarially trained neural network
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produces distances that are comparable to τDDT
21 over the range of signal efficiencies.

It also has the smallest distances for the MV methods for the 3- and 4-prong signals.

uBoost does not achieve as low of distance scores but its distances are still generally

closer to the adversarially trained network than the originals, and trains about a

factor of 30 faster than the adversary.

Only looking at the distance compared to the signal efficiency does not take into

account how well the classifier separates the signal jets from QCD. Balancing the

need for unaltered distributions against the necessary background rejection is task

specific, but can be aided by plotting the two against each other. In the lower row of

Fig. 12, we show the parametric plots of the histogram distance versus the background

rejection. In these plots, the optimal classifier will be to the lower-left corner, yielding

a small distance between the distributions before and after cuts and simultaneously

rejecting large backgrounds. These are made by scanning over the values of the signal

efficiency from 1 to 0.05, which is why the curves do not extend all the way to the

left. The points marked by circles, stars, and squares are for fixed signal efficiencies

of 0.75, 0.5, and 0.25, respectively.

The original MV methods, along with the single variable analysis, yield similar

shaped curves, offering the same amount of sculpting for a fixed amount of background

rejection. This is interesting because the τN/τN−1 distances were quite different when

plotted against the signal efficiency. This can be observed by examining the location

of the marked points along the curve, where the pink ones fall further to the left than

do the light blue and orange points.

The adversarially trained classifier sculpts the least for a given background

rejection for the different pronged jets, other than a small region where τDDT
21 is the
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least. uBoost again falls between the original methods and the adversarially trained

network, providing a good compromise on computation time and decorrelation.

For the 4-prong jets, all of the classifiers give similar results with fairly large

distances. This indicates that the QCD is not 4-pronged, so all of the classifiers can

cut out large amounts of the background. Even the methods which are supposed

to produce smaller histogram distances end up sculpting the backgrounds quite

heavily. In any real analysis, this is most likely not an issue because of the extensive

background rejection.

Plotting the distance versus signal efficiency (top row of Fig. 12) makes it hard

to see trends in sculpting between the various pronged jets. However, in the bottom

row, we get a sense that the decorrelation techniques yield a certain distortion of the

background shape given the amount of rejection. For instance, with a background

rejection of 10, τDDT
21 , uBoost, and adversarially trained networks yield Bhattacharyya

distances ∼ 0.1 for all of the prongs. Additionally, the distance is ∼ 0.25 for a

background rejection of 100 for all prongs. This is expected because our different

pronged signal distributions peak at roughly the same mass (200 GeV for 2- and

4-pronged, and 173 GeV for 3-pronged). Thus, for a fixed background rejection,

the background events which remain mimic a signal region that is approximately

independent of the signal prongedness.

3.3.2 Augmented data

The previous section examined the extent to which uBoost and adversarially

trained neural networks can decorrelate the jet mass from the classifier output, which

is achieved by changing the training procedure. We now move on to focus on the

methods proposed in Sec. 3.2.2: altering the input data rather than the training.

Augmenting the data rather than the training procedure greatly reduces the amount
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Figure 13. ROC curves for the 2-, 3-, and 4-prong signal jets versus QCD background for the methods which
augment the data to decorrelate the jet mass rather than augment the training. The dashed and solid lines show the
gradient boosted decision trees (BDT) and neural networks (NN), respectively. The blue, red, and green curves are
for the data which has not been altered, data which uses the PCA rescaling, and data which has the jet mass planed
away. The dotted lines show the results using a single combination of the N-subjettiness variables. Generally the
BDTs have slightly worse background rejection than the NNs. Similarly, the PCA rescaling based methods tend to
be between the unaltered methods and the planing methods, which are better than the single variable analyses.

of time required to train the models, as shown in Tab. 16. Additionally, it allows us

to test the methods using both boosted decision trees and neural networks.

The overall ability to classify is shown in the ROC curves in Fig. 13. As with

the last section, the left, middle, and right plots have the signal jets with boosted

two-body, three-body, and four-body decays, respectively. In all of the plots, the

blue, red, and green lines are for the unaltered data, the PCA rotated data, and the

Planed data respectively. The solid lines represent the neural network results, and

the dashed lines are the gradient boosted decision tree. Additionally, we show the

single N-subjettiness variable analyses in the dotted lines.

In all of the plots, the unaltered neural network achieves the best classification.

This is expected, because neural networks can use more non-linearities, and the data

has not been processed to remove correlations with the jet mass. The 2-prong signal

shows some difference in the PCA and Planed neural network results, but for the 3-

and 4-prong signal neural nets, these methods yield similar classification. The BDTs

show similar trends, performing slightly worse than the neural networks in terms of
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pure classification. The methods to decorrelate the jet mass from the MV output still

achieve better background rejection than the single variable analysis.

The degree of decorrelation is examined in Fig. 14 where the Bhattacharyya

distance is plotted against the signal efficiency in the upper row. The distance is

calculated on the background-only distributions and the color scheme is the same

as the previous figure. In almost every case, the BDT has smaller distances (less

distortion) than the NN. The classifiers trained on the PCA rotated data show much

less distortion than the original data other than for the 4-prong jets. For instance, the

2-prong jet mass distribution distances are about half the value as the corresponding

unaltered method. The method of planing away the jet mass information shows nearly

an additional factor of two less sculpting than the PCA method for the 2-prong jets.

However, the planing curves do not reach as low of distances as τDDT
21 for most signal

efficiencies.

The planing method produces the smallest distances out of the different methods

considered here for the 3-prong jets. The 4-prong signal is particularly easy for the

classifiers to distinguish from the QCD background. As a result, even the MVs with

attempts at mass decorrelation have large Bhattacharyya distances for fixed signal

efficiency. Out of these, the planing method sculpts the distributions the least.

In the bottom row of Fig. 14 we again show the background rejection plotted

against the Bhattacharyya distance. We again find that for 2-prong jets, τDDT
21 sculpts

the least for a given background rejection. However, it does not reach the largest

background rejection values. The next best method is the neural network trained on

planed data, which even produces smaller distances for background rejection above

around 20, as compared to τDDT
21 . The planing methods seem different than the

others in that the NN has less sculpting than the BDT. The BDT trained on the PCA
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Figure 14. The Bhattacharyya distance for the QCD background distributions compared to the original
distributions. The distance is defined in Eq. (3.9), and a larger distance represents more sculpting—lower on the
plot is better. The neural networks tend to sculpt the distributions worse than the BDT, regardless of the data. Both
the PCA rotations and Planing the jet mass result in smaller distances than the classifiers trained on the original
data.

scaled data behaves similar to the BDT trained on planed data, but reaches to larger

background rejections and for a fixed background rejection has better signal efficiency.

The PCA scaled neural network has slightly more sculpting for fixed background

rejection than the other decorrelation methods, but still has much smaller distances

than the unaltered methods.

The 3-prong jet signal Bhattacharyya distance shows an interesting change when

plotted against the background rejection as opposed to the signal efficiency. In the

middle panel of Fig. 14, τ3/τ2 produces smaller distances for fixed signal efficiency

than all of the methods other than planing. However, for a fixed background rejection,
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it sculpts the data more than nearly all of the MV methods. We again find that the

neural network trained on planed data provides the smallest distances for a given

background rejection, but the BDT is not far behind. The PCA-based methods also

provide less sculpting than the original methods.

The 4-prong jet results are more clustered, but τ4/τ3 (shown in pink) has

smaller distances for fixed background rejection than the original methods—and

surprisingly—the PCA based methods. That being said, the signal efficiencies are

also much smaller. The neural network trained on data which has had the jet mass

planed away produces the best curve.

The data augmentation methods explored in this section allow for using both

BDTs and NNs and training takes about the same amount of time as the unaltered

data. However, by augmenting the data, it is possible to make the MVs sculpt the

jet mass much less than the original MVs. This does lower the overall background

rejection for a given signal efficiency, but for fixed background rejection, the degree

of sculpting can be much less. In this regard, these methods achieve similar results

to the methods which augment the training process instead of the input data which

have already been studied in the literature.

3.3.3 Comparison

Finally, we want to get a sense for how the augmented training methods

perform, as compared to the data augmentation methods. In Fig. 15 we show the

Bhattacharyya distance versus the signal efficiency (top) and background rejection

(bottom) for only the decorrelation methods and not the original methods. We only

show the neural networks for the data augmentation methods because they achieve

better background rejection than BDTs, for fixed signal efficiency. For 2-prong jets,

τDDT
21 has the least sculpting for background rejections smaller than around a factor
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Figure 15. A comparison of all the MV based methods to decorrelate the jet mass from the classifier output. The
shown PCA and Planed results are for NN architecture. The analytical τDDT

21 method sculpts the least for moderate
background rejection, but for larger values does not do as good as the adversarially trained neural network. The
network trained on data augmented by planing the jet mass do almost as good as the adversarially trained network,
with uBoost and the PCA based networks showing slightly more sculpting. With more prongs, planing and adversaries
are nearly identical to each other while PCA and uBoost are very similar to each other.

of 10, but for larger than this, the adversarially trained network has the smallest

distances. The network trained on planed data has the next smallest distances for

large background rejection. While the green line is close to the purple adversary line,

the marked points are further to the right, indicating that the planed network does not

have as much signal efficiency for the corresponding background rejection/histogram

distance. However, it is worth pointing out that planing sculpts less than uBoost, and

takes about a factor of three less time to train. For the 2-prong jets, the PCA based

method sculpts the most out of the decorrelation methods. PCA, however, seems to

perform far better when paired with BDTs rather than NNs. Comparing Figs. 14
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and 15, we see that augmenting the data using the PCA approach and then training

a BDT—as opposed to a NN—sculpts just about the same as uBoost does for fixed

background rejections, but takes less than 1/20 of the time to train.

The 3- and 4-prong jets show similar patterns in their results. As emphasized

before, there is currently not an analytic decorrelation method similar to τDDT
21 for

higher prong jets. The neural networks trained on the data with the jet mass planed

away achieve very similar curves to the adversarial network curves—and train about

a factor of 100 times faster. One may worry that this is a sign that the adversary is

not actually doing well for the higher pronged jets. In App. A.3 we show the jet mass

distributions and do not think this is the case.

With these higher-pronged jets, the PCA based rotation method gives similar

curves to uBoost. However, the PCA method has two benefits over uBoost. First,

the marked points are further to the left, indicating that for fixed signal efficiency,

the PCA networks have more background rejection than uBoost. Second, the amount

of time required to train the machine is around a factor of four less.
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CHAPTER IV

CREATING SIMPLE, INTERPRETABLE ANOMALY DETECTORS FOR NEW

PHYSICS IN JET SUBSTRUCTURE

In Ch. III, we reviewed and compared a number of methods that could be used

to decorrelate the output of an ML classifier from the invariant mass of the jet. Not

only did these methods allow for the classifier to be used across a broader range of

new resonance masses, but they also allowed us to make more statistically significant

statements about the new physics by preserving the background dominated sidebands

used to reduce systematic sources of error. While these classifiers have a reduced

dependence on the mass of the new state, they still have some dependence on the

underlying UV model.

Without a clear, theoretically well-motivated model of UV physics, this problem

quickly becomes intractable. Every new model of UV physics would require a unique

classifier to search for it. One can instead, however, turn to a number of ML-based

anomaly detection techniques. A dedicated classifier will outperform an anomaly

detector. But what the anomaly detector lacks in out-and-out classification power,

it makes up for in generality. Anomaly detectors only rely on a solid model of the

background, and can consequently be used to search for any BSM physics.

At the LHC, anomaly detectors tend to use low-level information as their inputs,

and rely on the deep ML model to learn a number of high level observables that will

prove to be a useful discriminant. Since these features are learned in the hidden

layers of the model, it is inaccessible to us. In this chapter, we adapt techniques from

the literature to anomaly detection, and iteratively map out the physics learned by a

complex, image-based anomaly detector by building a number of simpler ML models

with easily interpretable inputs.
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This chapter is outlined as follows. In Sec. 4.1, we describe the Monte Carlo

generated dataset, as well as the relevant selection criteria and preprocessing. Sec. 4.2

starts by describing the details of the convolutional autoencoder. We then review all

of the pieces needed to mimic the autoencoder—the pool of high-level observables we

use to explain the autoencoder, a metric to determine how similar the decisions of two

networks are, the details of our two simplified anomaly detectors, and the iterative

procedure we use to construct the mimickers from the pool of high-level observables.

We present our results in Sec. 4.3, detailing the construction and performance of the

mimickers. Details of the simulated events and network training hyperparameters

appear in the App. B.1 and App. B.2, respectively.

The computational work was performed by LB, with advisory help from Spencer

Chang and Bryan Ostdiek.

4.1 Datasets

In this section, we briefly describe the simulated datasets we use in this study. In

particular, our focus is on anomaly detection in boosted jets at the LHC. We utilize

the publicly available datasets provided by Ref. [103], using QCD dijet events [179] as

background and W , top, and Higgs jets [180] as the anomalous events. We consider

four different W masses, mW = 59, 80, 120, 174 GeV, two different top masses, mt =

80, 174 GeV, and two different Higgs masses, mh = 20, 80 GeV. Note that when

mt = 80 GeV, the mass of the decay product W is set to 20 GeV. The full simulation

details are given in App. B.1. These signals give a broad range of signals with varying

amounts of substructure (two to four prongs), which will prove useful when testing

the ability of our anomaly detectors.

These datasets contain approximately 700, 000 QCD dijet events and 100, 000

events for each of the W , top, and Higgs signals. After applying a pT cut (see
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App. B.1), we are left with ∼ 150, 000 QCD events and ∼ 30, 0000 events for each

of the anomalous signals We use 2/3 of the QCD dijet events for training the

autoencoder, with the remaining 1/3 being reserved for testing and validation. We

are not considering training on real data at this point, so we do not include the

possibility of contamination in the background set from signal samples when training

the autoencoder. However, previous work has shown that autoencoders are robust to

up to ∼10% signal contamination [50, 69, 95, 181].

Our procedure for preprocessing the raw four vectors into images follows that

outlined in Ref. [49] and is implemented with the EnergyFlow package [182]. For

the leading jet in each event, we boost and rotate along the beam direction, such

that the pT weighted centroid lies at (η, φ) = (0, 0). The jet is then rotated about

its centroid until its principal axis lies along the vertical. Finally, the jet is reflected

about the horizontal and vertical axes so that the maximum intensity lies in the

upper-right quadrant. Only after centering, rotating, and reflecting the jet do we

pixelate the image. Our final pixelated images are 40× 40, covering ∆η = ∆φ = 2.0.

The last step of our preprocessing procedure is to divide by the total pT in the image.

This final normalization step ensures that each image has the same scale, which helps

with training. Figure 16 shows the average jet image for the background and three

representative signals—the 80 GeV W , 174 GeV top, and 80 GeV Higgs.

4.2 Methodology

While neural networks have been used for classification and anomaly detection

with great success, they are often viewed as black boxes, leading one to wonder what

information they are using to match or outperform traditional techniques. With this

in mind, the authors of Ref. [128] showed that modern classification networks are able

to be mimicked by interpretable networks using a few high level physics variables as
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Figure 16. The average jet image for the background, 80 GeV W , 174 GeV top, and 80 GeV Higgs. Note that the
Higgs bosons are pair produced from the decay of a heavier Higgs, leading to potentially 4 prongs in the large-radius
jet.

inputs. In this work, we adapt this method to the task of anomaly detection. In order

to do this, we first need a good anomaly detector to mimic with physics variables.

4.2.1 Creating a Target Anomaly Detector with a Convolutional

Autoencoder

The anomaly detector we chose is a convolutional autoencoder (hereafter referred

to as the AE). Given an input image, the AE is tasked with encoding the image down

into a smaller latent space, then reconstructing the original image from its latent space

representation. The idea behind compressing the data to a smaller representation is

that it forces the network to learn what is important about the jet image, while

ignoring noisy or less crucial aspects. The hope is that when the autoencoder is

applied to anomalous data, the important characteristics will be different, and thus

the image will be poorly encoded, leading to a decoded image which is quite different

from the initial image. Thus, we can distinguish between the background data and
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the anomalous signal data by the size of the reconstruction error. AEs were first

introduced to the high energy community as anomaly detectors in Refs. [94, 69, 50].1

The architecture of our AE is shown in Fig. 17 and is described below. The

encoder consists of multiple layers. The first two layers are a set of five 3 × 3

pixel convolutional filters. We use a stride of one and pad the output to keep the

same height and width as the original image. After each convolution we apply an

exponential linear unit (ELU) activation [183]. Following these convolutions, the

representation is down sampled with a 2 × 2 max pooling layer, leading to a height

and width of 20 pixels. This reduced image is then passed through another two

convolutional layers with five filters before being passed through a final convolutional

layer with a single filter. This final 20 × 20 image is then flattened and connected

to a Dense layer with 100 nodes, which is in turn connected to our 32-dimensional

latent space. We chose a 32-dimensional latent space, as that is where we found the

performance of the AE as an anomaly detector began to saturate.

The decoder mirrors the encoder and consists of a Dense layer with 100 nodes,

followed by another Dense layer with 400 nodes. Both of these Dense layers use the

ELU activation function. The output of this layer is then reshaped into a 20 ×

20 image, and is then passed through two convolutional layers with five filters each.

All of the convolutional layers in the decoder use a 3 × 3 convolutional kernel and

the ELU activation function, with the exception of the last convolutional layer in

the decoder, which uses the Softmax activation function along the pixel dimension

so that the sum of the pixel intensities is unity. These are then upsampled with a

transposed convolutional layer to 40 × 40, passed through a convolutional layer with

1Often, AEs can be improved with Variational Autoencoders (VAEs), in which the latent space
representation becomes a distribution, rather than a single point. As a proof of principle, we use
the simpler AE, and leave the extension to VAEs for further study.
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Figure 17. The architecture of the convolutional autoencoder (AE). The AE consists of two separate networks, an
encoder that compresses the original image down to a smaller latent space, and a decoder tasked with recreating the
original image from the latent space representation.
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leading to potentially 4 prongs in the large-radius jet. The left panel shows the normalized distribution of the log of
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signal.

5 filters, and finally passed through one last convolutional layer to create the output

image. We train the AE to reproduce QCD jet images, by minimizing the mean

squared error of their reconstruction. Explicitly, this is given as

LAE =
1

NiNp

Ni∑
k

Np∑
j

(
fA(Ijk)− I

j
k

)2

(4.1)

where Ni is the total number of images, Np is the number of pixels in each image, Ijk

is the jth pixel of the kth input image, and fA(Ijk) is the AE’s reconstruction of that

pixel for that input image. The training details for the AE are provided in App. B.2.

Our AE, along with all of the other neural network architectures discussed in Sec. 4.2

are implemented with Keras [174] using the TensorFlow [175] backend.

Figure 18 shows some examples of how the trained AE can act as an anomaly

detector. The left panels display the distribution of the reconstruction errors as the

anomaly score for the background training set as well as three different anomalous

signals. At first glance, the reconstruction errors are very small, but this is explained

by the normalization and the sparsity of our jet images. Because each image is
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normalized to sum to one, all pixels have a value of less than one. The images are

also very sparse, so most pixels are identically 0, and the network is very good at

predicting that. When we take the mean squared error over the pixels, we actually

average over the number of pixels, so the number of pixels with no intensity leads

to a very good average reconstruction. Importantly, we see that the background

distribution is at lower scores than the signal distributions. The encoder has never

seen jets with inherent substructure from the decay of a heavy resonance, so it doesn’t

recognize the important information to encode into the latent space, and the decoder

therefore performs worse when reconstructing the images. The right panel displays

the Receiver Operating Characteristic (ROC) curves for these three signals. While

the W is harder for the AE to distinguish from the background, the top and Higgs

jets have decent Area Under the ROC Curve (AUC) scores.

As we’ve seen, our constructed AE is capable of detecting jets which are different

from the QCD background it was trained on. In the next section we build up a method

to mimic the ordering decisions the AE makes using physics observables.

4.2.2 Mimicking the Target Anomaly Detector

As shown in the previous section, the AE is able to tag various signals as being

different from QCD. However, it is unclear what information in the event image

is being used to do this. In order to mimic the behavior of the AE, we need a few

ingredients. The first is a wide set of physics observables which could possibly explain

the anomaly detector. For these, we use the Energy Flow Polynomials, described in

detail in Sec. 4.2.2.1. Next, we use the idea of decision ordering to select which

observables are important as described in Sec. 4.2.2.2. Finally, we need a flexible

function which can use the physics observables to produce an anomaly score which

mimics that of the AE. We describe two complementary methods which achieve this
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goal. The first method, a Paired Neural Network, is a neural network which takes in

the physics observables from two events at the same time and is trained to determine

which event had the worse reconstruction error from the AE. We construct this in

such a way that at inference, we can feed in a single event and get an anomaly score.

This technique is described in Sec. 4.2.2.3. The second method, a High-Level Neural

Network, instead takes in only a single event at a time and is trained to regress the

reconstruction error of the AE for that event. This second method is described in

Sec. 4.2.2.4.

4.2.2.1 High Level Observables

Since there is no way to know which human-constructed, high-level observables

will be relevant a priori, we need to rely on using a basis of observables. To that

end, we make use of the Energy Flow Polynomials (EFPs) [131], a formally infinite

set of jet substructure observables inspired by previous work on energy correlation

functions [184, 185, 186, 187, 188, 189]. The EFPs form a discrete linear basis for

all infrared- and collinear-safe (IRC-safe) observables and are defined in terms of the

momentum fraction, za, and pairwise angular distances, θab. The EFPs are computed

using the four-momentum of each particle in the jet, where za is the momentum

fraction carried by particle a, and θab is the pairwise angular distance between particles

a and b. Each EFP is conveniently represented by a multigraph, using the following

correspondences:

each node a↔
N∑
a=1

za (4.2)

and

each k-fold edge between nodes a and b↔ (θab)
k . (4.3)
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As an example, we have

a

b

c

d =
N∑
a=1

N∑
b=1

N∑
c=1

N∑
d=1

zazbzczdθ
2
abθacθbcθ

3
cd. (4.4)

In this example, we’ve labeled the nodes for clarity, but will not do so for future

graphs. To build some intuition for this framework, we note that the fully connected

graphs with N vertices correspond to the N−point energy correlation functions.

The EFPs corresponding to each multigraph can be modified with a pair of

parameters, (κ, β), which determine the precise meaning of za and θab. More

specifically,

z(κ)
a =

(
pTa∑
b pTb

)κ
, (4.5)

θ
(β)
ab =

(
∆η2

ab + ∆φ2
ab

)β/2
(4.6)

where pTa is the transverse momentum of particle a, ∆ηab is the difference in

pseudorapidity between particles a and b, and ∆φab is the difference in azimuthal

angle between particles a and b. The original IRC-safe EFPs require κ = 1. While

there are well-motivated reasons to explore a broader space of observables at the

cost of IR and/or C safety [190, 191, 192], we restrict ourselves to only IRC-safe

observables in this work. For our iterative procedure to mimic the AE, we choose

κ = 1, β = 1, and consider all EFPs with degree (i.e. the number of edges) d ≤ 5.

With these parameters, we have a total of 102 EFPs to explore.

4.2.2.2 Decision Ordering

To create an interpretable alternative to the AE, we will iteratively add EFP

observables as inputs to the mimicking networks. To compare how well a network (or
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EFP input) orders events relative to the AE, we use a series of metrics implemented

in Ref. [128]. Here we briefly summarize these metrics. Given two decision functions,

f(x) and g(x), the decision ordering (DO) for a pair of events x1 and x2 is defined as

DO[f, g](x1, x2) = Θ
([
f(x1)− f(x2)

][
g(x1)− g(x2)

])
(4.7)

where Θ(x) is the Heaviside theta function, and we choose Θ(0) = 1. Here, we can

think of f(x) as being the anomaly score/reconstruction error for the AE and g(x)

being the output of one of our methods. Later, we will also use f(x) = AE(x) and

g(x) = EFP(x) to determine which EFP observables to include for our mimickers. A

DO of 1 means that f and g agree that one event is more anomalous than another;

a DO of 0 indicates the two methods disagree on which event is more anomalous. If

two decision functions have DO = 1 for all possible pairs x1 and x2, then the two are

effectively identical decision functions on the domain tested.

To create a summary statistic, we then average the DO over all possible pairs,

weighted by the underlying distributions that x1 and x2 are drawn from. The resulting

statistic, the average decision ordering (ADO) is given by

ADO[f, g] =

∫
dx1dx2 p1(x1)p2(x2)DO[f, g](x1, x2) (4.8)

This evaluates to 1 if both decision functions order every possible pair of events in

the same manner (making them equivalent decision functions), 0 if they order the

pairs in the opposite manner, and 1
2

if there is no consistency to the way the decision

functions order the events. Due to computing constraints, we could not compute the

ADO on the entirety of the background training set. Instead, when computing the
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ADO, we choose 10, 000 events at random, and then evaluate on the ( 10000
2 ) ∼ 5×107

pairs of events.

We now follow the Black-Box Guided Search Strategy from Ref. [128] to iteratively

construct neural networks whose decision functions should become better and better

approximations of the AE’s. We start by training a neural network, NN0 on some

initial set of observables, X0 = (mJ , pT ). We will later describe the two possible

architectures for NN0, but for now it is enough to say it aims to produce decision

functions that mimic the AE on background events. We then compute the ADO

between NN0 and the AE, and isolate all of the pairs of events misordered by NN0.

From our set of high-level observables, O, we then want to find the observable O1 ∈ O

with the highest ADO on the pairs misordered by NN0.2 We then train a new neural

network, NN1, whose input observables are X1 = X0 ∪ O1. Given its inputs, we

would expect NN1 to have a decision function that more closely resembles that of

the AE—and consequently, a higher ADO compared to NN0—since it has access to

the same information NN0 had, as well as information that can help order the pairs

misordered by NN0.

From here, we continue to iterate using the remaining observables in O. On the

nth iteration, we start by finding the observable On ∈ O with the highest ADO on the

pairs misordered by NNn−1(Xn−1) that is not already part of Xn−1. We then build a

new set of inputs, Xn = Xn−1 ∪On, and train a new neural network, NNn on Xn. At

each iteration, we expect the ADO between the neural network and AE to increase,

since the neural network we construct on the nth iteration has access to all of the

same information available to the previous network, as well as a new observable On

that helps order the events misordered by the (n− 1)th neural network.

2If the ADO of an observable is less than 0.5, we take 1-ADO, since a highly anticorrelated
variable is also useful.
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Now that we have described both the physics observables and the general method

for choosing which observables to give the networks, we describe the two network

architectures in more detail.

4.2.2.3 Paired Neural Network

Our first attempt to mimic the AE is an approach we call the Paired Neural

Network (PNN). The aim of the Paired Neural Network is to mimic the AE by

learning to predict the relative anomaly score between two events. To do this, the

PNN takes pairs of events as its input and classifies which has a larger anomaly score.

This is in contrast to other methods such as trying to match the AE’s output or

anomaly score on an event-by-event basis. In general, classifiers are easier to train,

so this seems like a promising method.

Figure 19 shows the PNN architecture. Both events are fed through the same

interior model in parallel. This is shown in the image as the “Common Interior

Model.” The interior model consists of four hidden layers with 50 nodes each, and the

ELU activation function is used for all layers. The interior model produces a single

output for each input event, and this single output node uses the ReLU activation.

The motivation for this is to think of the output for each event as its own anomaly

score. Within the larger PNN, we then subtract these two output anomaly scores from

each other. If the first event is more anomalous, the result should be negative and if

the second is more anomalous, the result will be positive. The larger the difference in

scores should tell us about the networks confidence in the relative ordering. Finally,

to turn this into a classification problem, we apply the sigmoid function to the interior

model difference, mapping large negative numbers to 0 and large positive values to

1. If the anomaly scores are the same (the difference is 0) the sigmoid gives a value

of 0.5.
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Figure 19. The architecture of the Paired Neural Network. The interior model consists of 4 hidden layers each
with 50 nodes and using the ELU activation function. The interior model outputs a single node for each input and
uses the ReLU activation function. The final output of the model is a single node which is the difference between the
two interior model outputs and uses a sigmoid activation function. Our input data are the jet’s mass, pT , and up to
14 EFPs.

To train the network, we continue the idea of classification and minimize the

binary cross-entropy given by

LPNN = − 1

N

N∑
k

[
yk ln

(
fP (Xk)

)
+ (1− yk) ln

(
1− fP (Xk)

)]
(4.9)

where k represents a specific pair of events, where the order matters. The value of yk

is the truth “label” for the pair of events as determined by the AE, i.e. yk = 0 (1) if

the AE determines the event in Input 1 to be more (less) anomalous than the event

in Input 2, and fP (Xk) is the PNN’s output for the pair of events. Appendix B.2

provides the training details for the PNN.

After training the PNN on ∼250, 000 pairs of events, we extract the interior

model for use on single events. Thus, even though the training procedure requires

pairs of events and was trained as a classifier, the interior model provides a function

which takes in observables from a single event and outputs an anomaly score.
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Figure 20. The architecture of the High- Level Neural Network. This network consists of four hidden layers, with
each having 50 nodes and using the ELU activation function. The network output is a single node. Like the PNN,
our input data are the jet’s mass, pT , and up to 14 EFPs.

4.2.2.4 High-Level Neural Network

The PNN described in the last section does not attempt to learn the actual

anomaly score of the AE, but only the relative difference in the anomaly score between

pairs of events. We also introduce a method which specifically aims to mimic the

actual anomaly score of the AE. We call this network the High- Level Neural Network

(HLN). In practice, the anomaly score (reconstruction error) from the AE spans many

orders of magnitude, so we found better results when the HLN is trained to predict

the log of the anomaly score rather than the score itself.

We find that a relatively simple neural network is able to achieve the task of

reproducing the loss of the AE. Figure 20 shows the architecture we use for the HLN.

The HLN consists of 4 hidden layers, with each hidden layer having 50 nodes. The

final output of the network is a single node. All of the nodes in the hidden layers use

the ELU activation function.

To train the HLN, we minimize the mean squared error between the (log of

the) anomaly score of the AE and the output of the HLN. Specifically, we use a loss

98



function of,

LHLN =
1

N

N∑
k

[
fH(Xk)− ln

( 1

Np

Np∑
j

(fA(Ijk)− I
j
k)

2
)]2

(4.10)

where fH(Xk) is the HLN’s output given some input data Xk and fA(Ijk) is the AE’s

output given a pixel j in an image Ijk for the kth event. When using the HLN as an

anomaly detector, we use the model’s output as the anomaly score. See App. B.2 for

the HLN training details.

4.3 Results

In the previous section, we outlined two different architectures we could use to

iteratively build neural networks whose decision functions would more closely resemble

the AE’s decision function. Here, we provide the results of the iterative procedure and

analyze the specific EFPs that are selected to mimic the anomaly detector. We will

find that the EFPs selected are composite observables built out of only six prime EFP

factors. We show that using only the prime components gives very similar results.

Finally, we demonstrate that using the EFPs with a traditional anomaly detection

technique, the isolation forest, gives very poor results. The failure of the isolation

forest when provided with the same basic physics observables highlights the benefits

of using our mimicker networks.

4.3.1 Background Decision Ordering

We start our iterative process by training both a PNN and HLN on jet mass and

pT for QCD events in the training set and then compute the ADO for each model.

Of the ∼5 × 107 pairs of events we use to compute the ADO, both the initial PNN

and HLN correctly order ∼72% of the events relative to the reconstruction error of

the AE. Next, we take all of the pairs which are misordered and compute the ADO
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Figure 21. The ADOs for each PNN and HLN. The center line shows the ADO of the model that was used to
select the EFPs. The shaded bands show the maximum and minimum ADO values obtained when recalculating the
ADO an additional 50 times, using a different set of pairs of events each time. The x−axis denotes the iteration step
of the iterative process. See Table 17 for the multigraph and mathematical representations of the selected EFPs and
the iteration step at which they were added. The blue ‘+’ (orange ‘×’) shows the ADO of a PNN (HLN) trained on
only the 5 prime EFPs picked out by each method (see Eq. 4.12). The ADO of each model trained on m, pT , and all
of the d ≤ 5 EFPs is the same to 3 significant digits, and is plotted as a single dashed line.

between all 102 EFPs and the AE. On this first iteration, we find that the observable

with the highest ADO for both networks is EFP 2, given by

=
N∑

a,b=1

zazbθ
2
ab. (4.11)

This observable is then added to the list of inputs. So in the next iteration the input

for each event is given by (mJ , pT ,EFP 2). We then repeat this process 14 more

times, recording both the ADO of each network, as well as which EFP has the largest

ADO for the pairs of events which are misordered by the respective networks.
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Figure 21 shows the result of this iterative process. The solid lines show the

ADO of the models we used to determine the next best observable to add; the shaded

band shows the maximum and minimum value of the ADO for each model after

recalculating the ADO an additional 50 times at each iteration using a different set

of ∼5 × 107 pairs of events. We also created PNN and HLN models trained on

m, pT and all d ≤ 5 EFPs. The ADOs of these two models agree to 3 significant

digits and thus is plotted as the single dashed line in the panel. Since they use all

of the EFPs, this line gives a sense of the highest ADO each model is capable of

achieving, given our set of observables. The blue ‘+’ and orange ‘×’ will be discussed

in Sec. 4.3.3. There are a few key takeaways from these plots. By the time the ADOs

start to plateau, both the HLN and PNN are correctly ordering 83% of the pairs

of events in the QCD sample relative to the AE. For the first two iterations, the

model ADOs do not change. Looking at Table 17, we see that the first two EFPs are

EFP 2 and [EFP 2]2, which are proportional to m2/p2
T and m4/p4

T . Since the initial

inputs to both the PNN and HLN are mass and pT , these observables contain no new

information, and thus it makes sense that the model ADO does not improve. This

redundancy of information follows since the EFPs are a linear basis of substructure

observables, whereas our neural networks can utilize nonlinear combinations of its

inputs. Despite their underlying philosophical differences—the HLNs are trying to

match the AE’s anomaly score, while the PNN is trying the match the DO of the

AE—both methods select the same set of 14 EFPs in the same order. In Table 17,

we list the multigraph and mathematical expression corresponding to each of these

EFPs as well as the iteration step in which they were added. The agreement of the

PNN and HLN approaches gives us confidence that these observables are important to

detect jets which do not look like typical QCD jets. Also, since by the last iteration,
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EFP No. EFP Multigraph EFP Expression PNN Iteration HLN Iteration

1
N∑

a,b=1

zazbθab 5 5

2
N∑

a,b=1

zazbθ
2
ab 1 1

54
N∑

a,b,c,d=1

zazbzczdθabθcd 6 6

57

N∑
a,b,c,d=1

zazbzczdθ
2
abθ

2
cd 2 2

65
N∑

a,b,c,d,e=1

zazbzczdzeθ
2
abθcdθ

2
de 3 3

70
N∑

a,b,c,d,e,f=1

zazbzczdzezf θabθcdθef 7 7

85

N∑
a,b,c,d,e,f=1

zazbzczdzezf θabθ
2
cdθ

2
ef 4 4

86
N∑

a,b,c,e,d,f,g=1

zazbzczdzezf zgθabθacθdeθfg 13 13

94

N∑
a,b,c,e,d,f,g=1

zazbzczdzezf zgθabθacθbcθdeθfg 11 11

95
N∑

a,b,c,d,e,f,g,h=1

zazbzczdzezf zgzhθabθcdθef θgh 8 8

97
N∑

a,b,c,d,e,f,g,h=1

zazbzczdzezf zgzhθabθbcθcdθef θgh 12 12

99

N∑
a,b,c,d,e,f,g,h=1

zazbzczdzezf zgzhθ
2
abθcdθef θgh 14 14

100
N∑

a,b,c,d,e,f,g,h,i=1

zazbzczdzezf zgzhziθabθacθdeθfgθhi 10 10

101
N∑

a,b,c,d,e,f,g,h,i,j=1

zazbzczdzezf zgzhzizjθabθcdθef θghθij 9 9

Table 17. The EFP multigraphs and corresponding expressions for each of the EFPs selected by both the HLN
and PNN. In the last two columns, we list the iteration step where the PNN or HLN selects the corresponding EFP.

the PNN and HLN have nearly reached the ADO of the dashed line, it suggests that

the decision ordering of our mimickers has almost converged to what is possible with

our set of EFPs.

4.3.2 Anomaly Detection

While both the HLN and PNN have demonstrated the ability to mimic the

AE’s anomaly score on QCD events, it’s unclear if matching the decision ordering

on in-distribution events will generalize to out-of-distribution events. In other words,

having mimicked the AE on QCD background events with HLNs and PNNs, we must
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Figure 22. The performance of the AE, PNN14, and HLN14 as anomaly detectors on the 80 GeV W , 174 GeV
top, and 80 GeV Higgs. Note that the Higgs bosons are pair produced from the decay of a heavier Higgs, leading
to potentially 4 prongs in the large-radius jet. The left panels show the normalized distribution of each method’s
respective anomaly score for the background and each signal. The right panel shows the ROC curves for each signal,
with the solid lines being the ROC curves for the AE, the dashed lines for HLN14, and the dashed-dot lines for PNN14.

test if this decision ordering transfers to boosted jet signals by comparing the AE,

PNN, and HLN as anomaly detectors. To determine how well each network performs

as an anomaly detector we use a popular metric, the AUC.

Figure 22 shows how the HLN and PNN on their final iteration compare to the

autoencoder on the same three signals as Fig. 18. The left panels show the normalized

distributions of each network’s anomaly scores for the background and three of the

signals. The right panel then shows all of the ROC curves for each model on each

signal. We can see that both the HLN and PNN do a good job of mimicking the

anomaly detector on events with higher anomaly scores. But the long tails in each of

the background distributions indicates that HLN and PNN struggle to match the AE

on less anomalous events, explaining their poorer background rejection at low signal

efficiency.

Figure 23 shows how the mimickers perform on all eight signals described in

Sec. 4.1 at each step of the iterative progress. The dashed black line in each panel

shows the AUC when using the reconstruction error of the AE as the anomaly score.

The blue and orange curves show the results of the PNN and HLN, respectively, as a
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Figure 23. AUCs for the PNN and HLN at each iteration for each of the eight signals reserved for testing. Note
that the Higgs bosons are pair produced from the decay of a heavier Higgs, leading to potentially 4 prongs in the
large-radius jet. The solid center lines are the AUC of the model used in the iterative process, the shaded bands
show the maximum and minimum AUCs from retraining each network an additional 10 times. The dashed black line
corresponds to the AE’s AUC. The dotted lines correspond to the isolation forest anomaly detectors and the blue ‘+’
(orange ‘×’) is the PNN(HLN) trained using mass, pT , and the five prime factors in Eqn. 4.12.

function of the number of iterations for selecting extra observables. The solid center

lines denote the AUC of the model used to select observables in the iterative process.

The shaded bands show the maximum and minimum AUCs when retraining each

network ten additional times, to give us a sense of how stable the training is. The

bands are quite narrow, indicating that the results are robust to training uncertainties.

Like we saw with the ADOs in Fig. 21, the HLN and PNN perform similarly,

despite their different approaches. For both the decision ordering and the AUCs, the

results start to plateau around the fifth iteration. When the HLN and PNN AUC

scores begin to plateau, we see that the value is similar to the AUC of the AE. This

indicates that the HLN and PNN are performing comparably to the AE when all

three are acting as anomaly detectors. It is surprising that mimicking the decision

ordering on the in-distribution (QCD) events seems to also generalize to the relative
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differences between the signals and the background. Some of the mimicking networks

even exceed the anomaly detection capability of the AE they are trying to mimic for

certain signals.

For some signals—specifically the 20 GeV Higgs, 80 GeV W , 120 GeV W , and

174 GeV W—we see a drop in AUC around the 3rd iteration for both the PNN

and HLN. While such dips are not ideal, they are not completely unexpected. Our

iterative process is trying to pick out the observables that help to best order the

background events, with no attention paid to how effective they may or may not be

to picking out signal events. So, for those three signals, it appears that the EFP

added at the iteration where the AUC dips improves the ADO relative to the AE,

but at the same time makes it more difficult for the HLNs and PNNs to distinguish

those signal events from the background.

However, AUC is an inclusive figure of merit and, consequently, does not tell the

whole story. As Fig. 22 highlights, networks with similar AUCs are not necessarily

making the exact same decisions when used as anomaly detectors. Some more

physically interpretable metrics are the background rejection (1/εB) at fixed signal

efficiency (εS) and the signal efficiency at fixed background rejection. Table 18 shows

the background rejection at two different fixed signal efficiencies—0.5 and 0.1—and

the signal efficiency at two different fixed values of the background rejection—10 and

100—for all 8 signals and 5 different networks—the AE, HLN0, PNN0, HLN14, and

PNN14.

There are a few key takeaways from this table. Looking at the signal efficiency

at a fixed value of the background rejection, we can see that, in general, our mimicker

networks need to operate at lower signal efficiencies to achieve the same background

rejection as the AE. The exceptions here are the final iteration of the mimicker
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80 GeV Top 174 GeV Top
AE HLN14 PNN14 HLN0 PNN0

εS(1/εB = 10) 0.252 0.012 0.114 0.071 0.071
εS(1/εB = 100) 0.022 0.007 0.008 0.007 0.008
1/εB(εS = 0.5) 4.24 4.03 3.95 2.29 2.29
1/εB(εS = 0.1) 26.5 12.0 11.3 7.33 7.39

AE HLN14 PNN14 HLN0 PNN0
εS(1/εB = 10) 0.470 0.357 0.428 0.146 0.148
εS(1/εB = 100) 0.088 0.016 0.022 0.013 0.013
1/εB(εS = 0.5) 8.93 6.94 8.26 5.96 6.00
1/εB(εS = 0.1) 87.6 28.6 38.0 12.8 12.9

20 GeV Higgs 80 GeV Higgs
AE HLN14 PNN14 HLN0 PNN0

εS(1/εB = 10) 0.240 0.027 0.086 0.032 0.033
εS(1/εB = 100) 0.025 0.001 0.001 0.001 0.001
1/εB(εS = 0.5) 4.06 3.39 4.14 4.87 4.91
1/εB(εS = 0.1) 25.7 6.82 9.67 6.68 6.72

AE HLN14 PNN14 HLN0 PNN0
εS(1/εB = 10) 0.446 0.549 0.565 0.030 0.031
εS(1/εB = 100) 0.036 0.022 0.020 0.002 0.002
1/εB(εS = 0.5) 8.58 11.3 11.9 4.67 4.70
1/εB(εS = 0.1) 42.4 46.1 50.1 6.41 6.44

59 GeV W 80 GeV W
AE HLN14 PNN14 HLN0 PNN0

εS(1/εB = 10) 0.155 0.017 0.007 0.011 0.012
εS(1/εB = 100) 0.015 3E-4 3E-4 7E-4 7E-4
1/εB(εS = 0.5) 2.86 2.76 2.62 1.40 1.40
1/εB(εS = 0.1) 16.1 5.08 3.91 2.36 2.35

AE HLN14 PNN14 HLN0 PNN0
εS(1/εB = 10) 0.190 0.043 0.013 0.014 0.014
εS(1/εB = 100) 0.028 5E-4 4E-4 9E-4 9E-4
1/εB(εS = 0.5) 3.06 3.57 3.44 1.77 1.77
1/εB(εS = 0.1) 22.4 7.17 5.52 2.83 2.84

120 GeV W 174 GeV W
AE HLN14 PNN14 HLN0 PNN0

εS(1/εB = 10) 0.244 0.070 0.089 0.021 0.022
εS(1/εB = 100) 0.040 0.001 0.001 0.001 0.001
1/εB(εS = 0.5) 3.71 4.01 4.76 2.97 2.97
1/εB(εS = 0.1) 32.9 8.52 9.58 4.30 4.31

AE HLN14 PNN14 HLN0 PNN0
εS(1/εB = 10) 0.289 0.124 0.190 0.064 0.064
εS(1/εB = 100) 0.052 0.003 0.003 0.003 0.003
1/εB(εS = 0.5) 4.40 4.21 5.53 6.05 6.10
1/εB(εS = 0.1) 42.4 11.4 14.7 8.61 8.57

Table 18. The background rejection (1/εB) at two different fixed signal efficiencies (εS)—0.5 and 0.1—and the
signal efficiency at two different fixed values of the background rejection—10 and 100—for all 8 anomalous signals.
We present these metrics for 5 different networks, the AE, PNN0, HLN0, PNN14, and HLN14. The values shown in
red are those where εB > εS .

networks when used as anomaly detectors for the 174 GeV Top and 80 GeV Higgs.

These networks, when applied to these signals operate at comparable signal efficiencies

to the AE for lower fixed values of the background rejection. Shifting now to the

background rejection at fixed signal efficiency, we see that our mimicker networks

compare favorably to the AE at higher signal efficiencies across all of the anomalous

signals we consider, but fall behind the AE at lower signal efficiencies. Again, the

exception here are the mimicker networks applied to the 80 GeV Higgs. As was

observed earlier in Fig. 22, as we make tighter cuts on our mimicker networks, forcing

them to operate at lower signal efficiencies, they begin to deem the background as

being more anomalous than the signal when compared to the autoencoder. While this

type of behavior would be difficult to deal with in a real analysis, it is not unique to

our mimicker networks and is a challenge with anomaly detection in general. The cuts

that result in εB > εS are highlighted in red in Tab. 18. Taken together, these indicate

that most of the performance of our mimicker networks is coming at higher signal
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efficiencies, and the long tails in their anomaly scores for the background distribution

holds them back from exactly matching the AE.

Finally, by the endpoint of the iterative process, we had found that the PNN and

HLN agreed on ordering of background events at about 83% when compared to the

AE. Here, we see that in terms of the AUC metric, 83% mimicking transferred quite

well to the use of these mimickers as simpler anomaly detectors with comparable

performance. We expect the tendency for the mimicker networks to tag the

background as being more anomalous than the signal at low signal efficiencies to

subside as the ADO of the mimickers approaches 1.

4.3.3 Using Only Prime EFPs

In examining the EFPs selected to improve the decision ordering, we note that

even though we use up to 14 EFPs, they only depend on six prime EFP factors:

, , , , , (4.12)

Notably in these primes, the first and fifth prime factors are the energy correlation

functions for two and three prong structures [184]. It is also interesting to note

that these prime factors are nonzero only for ≥ 2, 3 prong structures. As the AE

is learning to encode the predominantly 1-prong QCD events, it seems that it is

losing information contained in these higher prong observables. With this loss of

information, networks with direct access to these observables are able to explain the

reconstruction error of the network.

The observation that the anomaly scores can be explained by composite operators

which only have a few prime operators leads one to wonder if the prime EFPs are

good enough. To test this, we trained both the PNN and the HLN using mass, pT ,

and the six prime EFPs. The results are denoted in Fig. 21 and Fig. 23 by the blue
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‘+’ and orange ‘×’, respectively. Not only do these “prime-only” networks perform

comparably to each other, which matches the behavior we saw from the networks

trained on the composite EFPs, but the prime-only and composite networks also

perform comparably across all of the signals. The results in Fig. 21 show the ADO

of the prime-only networks computed on the same pairs of events as the center line

for the composite models. The ADO of the prime-only models has a similar spread

as the composite models, and thus the two do indeed perform comparably. Taken

together, this seems to indicate that the prime EFPs alone contain all of the necessary

information to construct simple anomaly detectors capable of matching much more

complex ones. While each of the prime EFPs on their own would have been selected

eventually, these results also suggests a more efficient iterative procedure for creating

HLN and PNN mimickers, where one uses the redundancy in the full space of EFPs

to their advantage and allows the algorithm to explore the full space of composite

EFPs, but only selects those containing new prime factors.

4.3.4 Comparison with Isolation Forests

Through this iterative process, we’ve constructed two different types of dense

neural networks that approximately match the AE not only in how their decision

functions order background events, but also as anomaly detectors for classifying a

variety of signals. It is clear then that the observables picked out by this procedure

contain the information needed to match the AE on both fronts. One then wonders

if an even simpler anomaly detector than the ones presented in Sec. 4.2 would

give similar results. To investigate this possibility, we consider isolation forests as

implemented by Isolation Forest in SciKit-Learn [173].

Isolation forests work by randomly selecting a feature from a given set of inputs,

and then randomly selecting a split value for that feature. This splitting process is
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repeated until each event the model is trained on has been isolated from the rest,

resulting in a tree-like structure. We then build an ensemble, or “forest” of these

classifiers. The anomaly score is the number of splittings needed to isolate each

event, averaged over the entire ensemble. This kind of random partitioning tends to

take fewer splittings to isolate anomalous events, so if the average number of splittings

across a large ensemble is low, the event is likely to be anomalous. We wanted to see

if the performance of the isolation forests saturate in the same way the HLNs and

PNNs did, so we trained a series of them and added the new observable picked out

by either the HLN or PNN each time. The details of our specific implementation is

given in App. B.2. Since the HLNs and PNNs selected EFPs in a slightly different

order, we trained 2 different sets of isolation forests. One set added observables in

the order selected by the HLN, while the other added them in the order selected by

the PNN.

Figure 23 shows how the isolation forests compare to the HLNs, CNNs, and

AE when used as a classifier on the 8 signals considered in this work. The blue

dotted line shows the AUC of the isolation forests trained on the EFPs selected by

the PNN, the orange dotted line corresponds to isolation forests trained on the EFPs

selected by the HLN. For most of the signals, both isolation forests have an AUC of

∼0.5, and are unable to match the performance of the HLN, PNN, or AE. This is a

very interesting observation. The same small set of observables are able to lead to

good anomaly detection when trying to match the decisions of the AE. However, as

discussed above, these observables in some sense tell us what the AE is choosing to

ignore when learning to reconstruct QCD images. Since these observables are not very

descriptive for QCD events, the isolation forest does not have much to learn from.

We expect the results would hold for other anomaly detection techniques trained on
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the same observables. Thus, we suspect it is the mimicking aspect of our procedure

which allows for good anomaly detection with the simple set of observables.

4.4 Conclusion

In this paper, we have extended the results of Ref. [128] to build simpler, more

interpretable anomaly detectors. Starting with a convolutional autoencoder, we

iteratively built a network that mimics the autoencoder’s ordering of background

events, where the network’s inputs are high-level variables taken from a set of Energy

Flow Polynomials. We presented two network architectures for the mimickers, the

High-Level Network and the Paired Neural Network. The High-Level Network aims

to reproduce the reconstruction error of the autoencoder, while the Paired Neural

Network takes in two events and is trained to order them like the autoencoder.

Note that both the PNN and HLN are trained to order anomalous events from the

physics observables, which is an inherently different task than the autoencoder, which

was only trained to compress and decompress background data. This highlights the

difference with Ref. [128], in which the black-box network and mimicking network have

the same task of binary classification. Given this fundamental difference between our

AE and mimicking networks, it is not obvious that employing the same strategy will

work when trying to mimic the autoencoder’s ordering. However, we find that these

two complementary approaches give similar performance, ∼83% agreement, when

ordering background events and also pick out the same list of EFPs, suggesting the

commonality of the information that is needed to order events like the autoencoder.

After mimicking the autoencoder on ordering of background events, we take

these networks and apply them as anomaly detectors on eight different signals. Even

though the mimickers and autoencoder have never seen these events, we find that

the similarity in ordering transfers to these events, making the mimickers as good
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(or better) than the autoencoder as an anomaly detector for seven of the eight

signals. It is worth emphasizing how such results were not guaranteed to occur.

The autoencoder, having been trained only on background events, has no concept of

what is anomalous. So it is not obvious that mimicking the ordering of events for the

background will generalize to anomalous events, especially given a large set of signal

classes.

Since the high-level observables picked out by these mimickers rely only on six

prime Energy Flow Polynomials, it indicates that the information required to order

events like the autoencoder is reasonably small. However, since the isolation forests

based on these high-level inputs did not perform as well, it shows that mimicking the

autoencoder’s background ordering is crucial in creating a simpler anomaly detector.

In terms of future directions, it would be interesting to extend the list of

Energy Flow Polynomials to check that one can saturate the decision ordering of

the autoencoder and to determine what prime Energy Flow Polynomials are needed

for that. Applying this technique to other anomaly detection methods on the same

dataset would help uncover what high-level variables are being used by these methods

and could help in designing more powerful anomaly detectors. Finally, it would be

interesting to see if one can extend this technique to cases where there is no known

high-level variable basis (like the Energy Flow Polynomials) and to see to what extent

decision ordering transfers to different signals. For instance, the methods which

performed best on the Dark Machines anomaly score challenge [93, 116, 119] used

variational autoencoder structures which only aimed to make a Gaussian latent space

and did not try to reconstruct events. It would be very interesting to see what physics

these methods are using, but there is no obvious basis of observables to use.
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CHAPTER V

CONCLUSIONS

5.1 Primary Observables for Top Quark Collider Signals

In this chapter, we have extended an approach [28] to determine the on-

shell 3 and 4 point amplitudes that are needed for modeling general top quark

phenomenology at colliders. These serve as an intermediary between the observables

searched for by experimental analyses and the operators in effective field theories

for the Standard Model. This involved characterizing the general amplitudes for

processes involving four fermions or two fermions and two gauge bosons. We were

able to characterize these respectively to dimension 12 and 13, finding the structure of

primary and descendant amplitudes, where descendants are primaries multiplied by

Mandelstam factors. Interestingly, we find two classes of interactions whose Hilbert

series numerator has a complete cancellation in the numerator. This näıvely would

suggest that there are no primary operators at a certain mass dimension, but in

actuality there are an equal number of new primaries and redundancies that appear

at that mass dimension. This illustrates the importance of using the Hilbert series

in conjunction with the amplitudes, as they complement each other in this process.

We also note that our approach is a complementary check to the existing results

up to dimension 8 using spinor-helicity variables [26, 27] and extends the amplitude

structure to higher dimension.

To provide an initial survey of the potential phenomenology, we’ve used

perturbative unitarity to place upper bounds on the coupling strengths of these

interactions. These depend on the scale where unitarity is violated ETeV = Emax/TeV,

with more stringent constraints as one increases ETeV. Given the expected sample of

top quarks at HL-LHC, we’ve estimated the coupling size needed for the top quark
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decays to be seen over irreducible backgrounds. This allowed us to highlight the that

top quark decays into both FCNC modes, like t→ c(¯̀̀ , hγ, hg, Zγ, Zg, γγ, γg)), and

non-FCNC modes, like t → b(Wγ,Wg), could be interesting to search for at the

HL-LHC. Some of these highlighted modes occur at dimension 8 and 10 in SMEFT

and thus would be interesting to explore how distinctive these new amplitudes are

compared to existing searches. We leave such detailed phenomenology to future work.

To conclude, the high energy program at colliders is entering the phase of testing

whether the Standard Model is indeed the correct description of physics at the TeV

scale. To do so, we must look for new physics in the most general way, so that

we can find such deviations or constrain them. On-shell amplitudes are a useful

intermediary between experimental analyses and the parameterization of new physics

by effective field theories. Finally, by determining the on-shell amplitude structure to

high dimension and writing down a concrete basis for them, we hope this will allow

the field to maximize its efforts to find what exists beyond the Standard Model.

5.2 Mass Agnostic Jet Taggers

The significance of a discovery or exclusion will always be the primary factor when

determining which decorrelation method to use in an analysis. With this in mind,

one potential concern with the data augmentation techniques is that they may reduce

the statistical power of the data itself, especially when applied to data on the tails of

the distribution. We do not expect this to be the case since the PCA based approach

involves only linear transformations of the data and Planing only requires that the

data used for training be reweighted. In future work, we will answer this question

concretely, as part of a larger study where we explicitly look at a phenomenological

proxy for the discovery significance that properly accounts for systematic errors and

further optimizes the working point of the tagger.
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One interesting extension of the techniques explored here would be to train

networks on jets in a given mass range, and then use these networks to classify jets in

an entirely different mass range. Neural networks offer a very flexible framework to

train a wide variety of models, but are far less adaptable once trained. The techniques

studied here distinguish signal from background with less reliance on the jet mass.

Since they only rely on substructure information, and not the absolute scale of the

jet, they should be applicable to other regions of the mass parameter space. Showing

that such results are possible could increase the usage of such MV techniques in large

experimental collaborations, such as those at the LHC.

Our comparisons used the same representation of the input data for all of the

classifiers, namely the N-subjettiness basis. However, there have been many studies

of jet taggers using other representations, such as images, sequences, or graphs. Mass

decorrelation has been done in images with Planing [33] and Adversarial training [69],

but it would be interesting to see how all of the techniques studied here could be

applied to the different representations, and if any additional advantage is offered.

Additionally, decorrelating in both the jet mass and the transverse momentum could

make for a stable jet tagger (See Ref. [177] for multidimensional decorrelation with

Planing).

In this work, we applied all our methods to decorrelate the classifiers from the

jet mass by explicitly using the jet mass in the decorrelation procedure (flattening the

jet mass distribution for Planing; binning in jet mass for PCA). However, τDDT
21 uses

ρ = log(m2/p2
T ) in its analytic decorrelation. An interesting test would be to examine

how the decorrelation techniques work using this value (or just pT ) as opposed to the

mJ alone. Additionally, it would be worthwhile studying how robust these techniques

are in a more realistic experimental environment by testing how the classification and
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decorrelation generalize to signals with mixed prongedness, and signal contamination.

This is work we intend to do, and leave to future study.

New physics searches are challenging, especially when the processes are rare

and the backgrounds plentiful. Rejecting background events is necessary, but how

the background is removed is also important. Experimental efforts to look for new

physics are greatly aided by easy-to-model backgrounds, so the need for techniques

that preserve the profiles of the underlying background distributions cannot be

understated.

In this work, we explored a variety of cutting-edge methods used in the

classification of boosted objects. We started by looking at how standard single-

and multi-variate techniques achieve better classification at the cost of increased

background sculpting. These standard methods serve as a point of comparison

to analytic [65] and multivariate [67, 64] methods designed specifically with mass

decorrelation in mind. Previous studies of these techniques [70] focused only on

their application to searches for two-body hadronic resonances. We extended these

analyses to see how existing methods perform when tasked with classifying jets with

more complex substructure. We also studied two data augmentation based techniques

to decorrelate the classifier output from the mass of the jet, Planing and PCA-

based rescaling, as well as two training augmentation based techniques, uBoost and

Adversarial NNs.

All of the decorrelation techniques studied in this work reduce the extent to

which the background is sculpted, and could therefore be used to increase sensitivity

in a new physics search. We have shown that Planing and PCA give comparable

performance to training augmentation based methods, while taking only a fraction of

the time and computational overhead to train. These data augmentation techniques
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could be useful in situations such as testing prototypes, where fast turnaround is

desired.

5.3 Creating Simple, Interpretable Anomaly Detectors for New Physics

in Jet Substructure

In this chapter, we have extended the results of Ref. [128] to build simpler,

more interpretable anomaly detectors. Starting with a convolutional autoencoder,

we iteratively built a network that mimics the autoencoder’s ordering of background

events, where the network’s inputs are high-level variables taken from a set of Energy

Flow Polynomials. We presented two network architectures for the mimickers, the

High-Level Network and the Paired Neural Network. The High-Level Network aims

to reproduce the reconstruction error of the autoencoder, while the Paired Neural

Network takes in two events and is trained to order them like the autoencoder.

Note that both the PNN and HLN are trained to order anomalous events from the

physics observables, which is an inherently different task than the autoencoder, which

was only trained to compress and decompress background data. This highlights the

difference with Ref. [128], in which the black-box network and mimicking network have

the same task of binary classification. Given this fundamental difference between our

AE and mimicking networks, it is not obvious that employing the same strategy will

work when trying to mimic the autoencoder’s ordering. However, we find that these

two complementary approaches give similar performance, ∼83% agreement, when

ordering background events and also pick out the same list of EFPs, suggesting the

commonality of the information that is needed to order events like the autoencoder.

After mimicking the autoencoder on ordering of background events, we take

these networks and apply them as anomaly detectors on eight different signals. Even

though the mimickers and autoencoder have never seen these events, we find that
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the similarity in ordering transfers to these events, making the mimickers as good

(or better) than the autoencoder as an anomaly detector for seven of the eight

signals. It is worth emphasizing how such results were not guaranteed to occur.

The autoencoder, having been trained only on background events, has no concept of

what is anomalous. So it is not obvious that mimicking the ordering of events for the

background will generalize to anomalous events, especially given a large set of signal

classes.

Since the high-level observables picked out by these mimickers rely only on six

prime Energy Flow Polynomials, it indicates that the information required to order

events like the autoencoder is reasonably small. However, since the isolation forests

based on these high-level inputs did not perform as well, it shows that mimicking the

autoencoder’s background ordering is crucial in creating a simpler anomaly detector.

In terms of future directions, it would be interesting to extend the list of

Energy Flow Polynomials to check that one can saturate the decision ordering of

the autoencoder and to determine what prime Energy Flow Polynomials are needed

for that. Applying this technique to other anomaly detection methods on the same

dataset would help uncover what high-level variables are being used by these methods

and could help in designing more powerful anomaly detectors. Finally, it would be

interesting to see if one can extend this technique to cases where there is no known

high-level variable basis (like the Energy Flow Polynomials) and to see to what extent

decision ordering transfers to different signals. For instance, the methods which

performed best on the Dark Machines anomaly score challenge [93, 116, 119] used

variational autoencoder structures which only aimed to make a Gaussian latent space

and did not try to reconstruct events. It would be very interesting to see what physics

these methods are using, but there is no obvious basis of observables to use.
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APPENDIX A

SUPPLEMENTAL MATERIAL FOR MASS AGNOSTIC JET TAGGERS

A.1 Adversary decorrelation parameter

As mentioned in Sec. 3.2.3.2, adversarially-trained neural networks introduce a

new positive hyperparameter, λ, which must be chosen by the user. Higher values of

λ increase the importance of the adversary when minimizing the loss function of the

tagger, which decorrelates the output from the tagger from the jet mass at the cost

of worse classification when compared to standard neural networks.

In choosing a value of λ to use in our analysis, we examined the different metrics

and found that λ = 50 is where results start to saturate. Figure A.24 shows the

results of this parameter sweep using the three metrics used in the main body of this

work. The ROC curves for the 2-, 3-, and 4-prong signals are shown in the top row.

Darker shades correspond to lower values of λ. As expected, using lower values of λ

result in better classification. In the middle row, we have plotted the Bhattacharyya

distance as a function of signal efficiency for every value of λ. The darkest curves

look nearly identical to the Original NN results of Fig. 12, and sculpt the background

the most, while the lightest curves (corresponding to higher values of λ) sculpt the

least. From this row, we can see that the mass decorrelation as measured by the

Bhattacharyya distance saturate at λ = 50. The bottom row shows a parametric

plot of the Bhattacharyya distance and the background rejection, made by scanning

across the signal efficiencies. For a fixed level of background rejection, we again see

that the decorrelating benefits of the adversarial approach saturate at λ = 50.
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Figure A.24. The top row shows the ROC curves for all of the adversarially-trained neural networks tasked with
distinguishing the 2-, 3-, and 4-prong signal jets from the QCD background. Lighter shades correspond to increasingly
larger values of λ. Larger values of λ put an increased emphasis on making the network output less dependent on
the mass, at the cost of worse classification. The middle row shows how the Bhattacharyya distance for the QCD
background changes as tighter cuts are made on the network output. As expected, higher values of λ lead to less
sculpting than lower values of λ. The bottom row shows a parametric plot of the Bhattacharyya distance for the
QCD background versus the background rejection. The adversarially-trained networks are all able to achieve similarly
large background rejections, but networks using higher values of λ are able to reject much of the background while
preserving the profile of the underlying distribution. All three rows show that the benefits of adversarial training
saturate at λ = 50.
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A.2 Comparison of histogram distances

We have used Bhattacharya distance in this work to quantify the sculpting of jet

mass distribution from various jet tagging methods. This distance has the nice feature

that it is normalized and therefore allows fair comparison across various methods. It

is certainly not a unique choice. Another method used by ATLAS collaboration in

Ref. [70] to quantify the mass distortion is the Jensen-Shannon distance, which is

given as

dJSD(P,Q) =

√
dKL(P, P+Q

2
) + dKL(Q, P+Q

2
)

2
, (A.1)

where dKL is the Kullback-Leibler divergence, given by

dKL(P,Q) =
∑
i

pi log
pi
qi
, (A.2)

pi, qi being the value of the distribution P,Q in bin i. For us, P is the background

mass distribution before the application of a given tagger, and Q is the background

mass distribution after the application of a given tagger. In Fig. A.25, we compare

how the two distances dB and dJSD compare. We see that the two distances are very

similar to each other for 2-pronged and 3-pronged signals, while have some differences

in the 4-pronged case. The general shape is the same however, and one can be chosen

over the other without biasing any inferences.

A.3 Histogram Sculpting Comparison

Here we show a qualitative comparison of all of the decorrelation methods

for all of the different pronged signals considered in the main body of this work.

The figures are organized as follows: the leftmost column shows the single-variable

benchmark, τ
(1)
N /τ

(1)
N−1 (N = 2, 3, 4 for 2-/3-/4-pronged signal), as well as the Designed
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Figure A.25. Comparison of Bhattacharyya distance and Jensen-Shannon distance for 2-, 3-, and 4-pronged
signals, as a function of signal efficiency for various decorrelation methods studied in this work. The general trend for
both metrics is seen to be the same.

Decorrelated Tagger for the 2-prong signal; the middle column shows how the BDT

benchmark sculpts the background, followed by all of the BDT based decorrelation

methods studied in this work—uBoost, Planing, and PCA; the right column shows

how the NN benchmark sculpts, followed by all of the NN based methods studied,

namely Adversarial NNs, Planing, and PCA. A legend is provided in the lower left of

each figure to remind the reader which colors correspond to which cuts on the signal

efficiency, εS.

Figure A.26 shows the comparison of methods for the 2-pronged signal, Fig. A.27

shows this comparison for the 3-pronged signal, and Fig. A.28 shows the comparison

for the 4-prong signal.
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Figure A.26. Comparison of all decorrelation methods to the benchmarks for the 2-prong signal. τN/τN−1 is
τ2/τ1.
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Figure A.27. Comparison of all decorrelation methods to the benchmarks for the 3-prong signal. τN/τN−1 is
τ3/τ2.
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Figure A.28. Comparison of all decorrelation methods to the benchmarks for the 4-prong signal. τN/τN−1 is
τ4/τ3.
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APPENDIX B

SUPPLEMENTAL MATERIAL FOR CREATING SIMPLE, INTERPRETABLE

ANOMALY DETECTORS FOR NEW PHYSICS IN JET SUBSTRUCTURE

B.1 Simulation Details

In this appendix, we provide further details of the simulated public datasets we

use in this work [103, 179, 180]. All of the QCD dijet, W , top, and Higgs samples are

subject to the same selection criteria, showering, and detection simulation parameters.

The background and anomalous events are generated using MadGraph [166] and

Pythia8 [193], with detector effects being simulated by Delphes [168]. The jets are

then clustered with FastJet [194, 195] using the anti-kT algorithm [196] with a cone

size of R = 1.0. All events are required to have two hard jets, with the leading jet

having pT > 450 GeV and the sub-leading jet having pT > 200 GeV. We then take

only the leading jet in each event.

The QCD jets are created via pp → jj. The W jets are created using pp →

W ′ → W (→ jj)Z (→ νν̄) with mW ′ = 1.2 TeV. The top jets are produced via

pp → Z ′ → tt̄ with mZ′ = 1.3 TeV. Finally, the Higgs jets are produced with

pp → HH,H → hh, h → jj with mH = 174 GeV. For each of these signals, we only

consider jets with pT ∈ [550, 650] GeV. This same pT cut is applied to the background

training and testing sets.

B.2 Network Training Hyperparameters

Here, we provide the details of the training hyperparameters of the AE, PNN,

HLN, and isolation forests. For all three deep neural network architectures, we

use the ReduceLROnPlateau and EarlyStopping callbacks from Keras to

dynamically reduce the learning rate and stop training early, respectively. All three

neural networks are trained with the Adam optimizer [197].
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For the AE, our training hyperparameters are:

– Train for 100 epochs with EarlyStopping on the validation loss with a

patience of 10 epochs.

– Initial learning rate of 10−3 with ReduceLRONPlateau on the validation loss

with a patience of 5 epochs.

– Batch size of 256.

For the HLN and PNN, our training hyperparameters are:

– Train for 200 epochs with EarlyStopping on the validation loss with a

patience of 10 epochs.

– Initial learning rate of 10−3 with ReduceLRONPlateau on the validation loss

with a patience of 5 epochs.

– Batch size of 256.

With the early stopping conditions, the AE trains in ∼30 epochs, the PNN trains

in ∼50 epochs, and the HLN trains in ∼60 epochs.

For the isolation forests, our training hyperparameters are:

– 250 estimators in the ensemble.

– The max features used to train each estimator is set to the number of inputs

for each event.

– contamination is set to ‘auto’ since there is no way to determine what fraction

of events can reliably be called outliers a priori.

– bootstrap is set to ‘False’, so individual trees are trained on random subsets

of the data without replacement.
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I. Oleksiyuk, and T. Plehn, “What’s Anomalous in LHC Jets?,” arXiv:2202.00686

[hep-ph].

[93] T. Aarrestad et al., “The Dark Machines Anomaly Score Challenge: Benchmark
Data and Model Independent Event Classification for the Large Hadron Collider,”
SciPost Phys. 12 (2022) 043, arXiv:2105.14027 [hep-ph].

[94] J. Hajer, Y.-Y. Li, T. Liu, and H. Wang, “Novelty Detection Meets Collider
Physics,” Phys. Rev. D 101 (2020) no. 7, 076015, arXiv:1807.10261 [hep-ph].

[95] O. Cerri, T. Q. Nguyen, M. Pierini, M. Spiropulu, and J.-R. Vlimant,
“Variational Autoencoders for New Physics Mining at the Large Hadron Collider,”
JHEP 05 (2019) 036, arXiv:1811.10276 [hep-ex].

[96] T. S. Roy and A. H. Vijay, “A robust anomaly finder based on autoencoders,”
arXiv:1903.02032 [hep-ph].

[97] A. Blance, M. Spannowsky, and P. Waite, “Adversarially-trained autoencoders
for robust unsupervised new physics searches,” arXiv:1905.10384 [hep-ph].

[98] M. Romão Crispim, N. F. Castro, R. Pedro, and T. Vale, “Transferability of
Deep Learning Models in Searches for New Physics at Colliders,” Phys. Rev. D 101
(2020) no. 3, 035042, arXiv:1912.04220 [hep-ph].

[99] O. Amram and C. M. Suarez, “Tag N’ Train: a technique to train improved
classifiers on unlabeled data,” JHEP 01 (2021) 153, arXiv:2002.12376 [hep-ph].

[100] M. Crispim Romão, N. F. Castro, J. G. Milhano, R. Pedro, and T. Vale, “Use
of a generalized energy Mover’s distance in the search for rare phenomena at
colliders,” Eur. Phys. J. C 81 (2021) no. 2, 192, arXiv:2004.09360 [hep-ph].

[101] O. Knapp, O. Cerri, G. Dissertori, T. Q. Nguyen, M. Pierini, and J.-R.
Vlimant, “Adversarially Learned Anomaly Detection on CMS Open Data:
re-discovering the top quark,” Eur. Phys. J. Plus 136 (2021) no. 2, 236,
arXiv:2005.01598 [hep-ex].

134

http://arxiv.org/abs/2106.05747
http://arxiv.org/abs/2106.05747
http://arxiv.org/abs/2107.11573
http://arxiv.org/abs/2109.00546
http://arxiv.org/abs/2202.00686
http://arxiv.org/abs/2202.00686
http://dx.doi.org/10.21468/SciPostPhys.12.1.043
http://arxiv.org/abs/2105.14027
http://dx.doi.org/10.1103/PhysRevD.101.076015
http://arxiv.org/abs/1807.10261
http://dx.doi.org/10.1007/JHEP05(2019)036
http://arxiv.org/abs/1811.10276
http://arxiv.org/abs/1903.02032
http://arxiv.org/abs/1905.10384
http://dx.doi.org/10.1103/PhysRevD.101.035042
http://dx.doi.org/10.1103/PhysRevD.101.035042
http://arxiv.org/abs/1912.04220
http://dx.doi.org/10.1007/JHEP01(2021)153
http://arxiv.org/abs/2002.12376
http://dx.doi.org/10.1140/epjc/s10052-021-08891-6
http://arxiv.org/abs/2004.09360
http://dx.doi.org/10.1140/epjp/s13360-021-01109-4
http://arxiv.org/abs/2005.01598


[102] M. Crispim Romão, N. F. Castro, and R. Pedro, “Finding New Physics without
learning about it: Anomaly Detection as a tool for Searches at Colliders,” Eur.
Phys. J. C 81 (2021) no. 1, 27, arXiv:2006.05432 [hep-ph]. [Erratum:
Eur.Phys.J.C 81, 1020 (2021)].

[103] T. Cheng, J.-F. Arguin, J. Leissner-Martin, J. Pilette, and T. Golling,
“Variational Autoencoders for Anomalous Jet Tagging,” arXiv:2007.01850

[hep-ph].

[104] C. K. Khosa and V. Sanz, “Anomaly Awareness,” arXiv:2007.14462 [cs.LG].

[105] P. Thaprasop, K. Zhou, J. Steinheimer, and C. Herold, “Unsupervised Outlier
Detection in Heavy-Ion Collisions,” Phys. Scripta 96 (2021) no. 6, 064003,
arXiv:2007.15830 [hep-ex].

[106] J. A. Aguilar-Saavedra, F. R. Joaquim, and J. F. Seabra, “Mass Unspecific
Supervised Tagging (MUST) for boosted jets,” JHEP 03 (2021) 012,
arXiv:2008.12792 [hep-ph]. [Erratum: JHEP 04, 133 (2021)].

[107] A. A. Pol, V. Berger, G. Cerminara, C. Germain, and M. Pierini, “Anomaly
Detection With Conditional Variational Autoencoders,” in Eighteenth International
Conference on Machine Learning and Applications. 10, 2020. arXiv:2010.05531
[cs.LG].

[108] M. van Beekveld, S. Caron, L. Hendriks, P. Jackson, A. Leinweber, S. Otten,
R. Patrick, R. Ruiz De Austri, M. Santoni, and M. White, “Combining outlier
analysis algorithms to identify new physics at the LHC,” JHEP 09 (2021) 024,
arXiv:2010.07940 [hep-ph].

[109] S. E. Park, D. Rankin, S.-M. Udrescu, M. Yunus, and P. Harris, “Quasi
Anomalous Knowledge: Searching for new physics with embedded knowledge,”
JHEP 21 (2020) 030, arXiv:2011.03550 [hep-ph].

[110] P. Chakravarti, M. Kuusela, J. Lei, and L. Wasserman, “Model-Independent
Detection of New Physics Signals Using Interpretable Semi-Supervised Classifier
Tests,” arXiv:2102.07679 [stat.AP].

[111] D. A. Faroughy, “Uncovering hidden new physics patterns in collider events
using Bayesian probabilistic models,” PoS ICHEP2020 (2021) 238,
arXiv:2012.08579 [hep-ph].
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