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DISSERTATION ABSTRACT

Corey Tucker Brooke

Doctor of Philosophy

Department of Mathematics

June 2023

Title: Lines on Cubic Threefolds and Fourfolds Containing a Plane

This thesis describes the Fano scheme F (Y ) of lines on a general cubic

threefold Y containing a plane over a field k of characteristic different from 2.

One irreducible component of F (Y ) is birational (over k) to a torsor T of an

abelian surface, and we apply the geometry and arithmetic of this torsor to answer

two questions. First, when is a cubic threefold containing a plane rational over

k, and second, how can one describe the rational Lagrangian fibration from the

Fano variety of lines on a cubic fourfold containing a plane? To answer the first

question, we apply recently developed intermediate Jacobian torsor obstructions

and show that the existence over k of certain classical rationality constructions

completely determines whether the threefold is rational over k. The second

question, motivated by hyperkähler geometry, we answer by giving an elementary

construction that works over a broad class of base fields where hyperkähler tools

are not available; moreover, we relate our construction to other descriptions of the

rational Lagrangian fibration in the case k = C.
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CHAPTER I

INTRODUCTION AND BACKGROUND

A cubic fourfold is a smooth hypersurface X ⊂ P5 of degree three. For

several reasons, cubic fourfolds have attracted significant attention from algebraic

geometers. Foremost, the question of whether a generic cubic fourfold is rational

has proved very difficult: conjecturally, rational cubic fourfolds are rare, but not a

single example has been proved irrational yet. This contrasts cubic surfaces (proved

to be rational by Clebsch in 1866) and cubic threefolds (proved to be irrational

by Clemens and Griffiths in 1972). Second, cubic fourfolds have rich connections

to hyperkähler geometry: many families of cubic fourfolds have associated K3

surfaces, explained later, and the variety of lines on a complex cubic fourfold is

a hyperkähler fourfold. Finally, largely due to work of Kuznetsov, the derived

category of coherent sheaves on a cubic fourfold encodes a surprising amount of

information about the geometry of that cubic fourfold.

Let us fix a cubic fourfold X over a field k. The Fano variety of lines on X

is a variety F ⊂ Gr(2, 6) parametrizing the lines in P5 that are contained in X.

The variety F is smooth of dimension 4, and in [6], Beauville and Donagi show that

when k = C, F is a hyperkähler manifold of K3[2]-type, i.e. deformation equivalent

to the Hilbert scheme of two points on a K3 surface. This establishes a two-way

flow of information between the study of complex cubic fourfolds and hyperkähler

fourfolds. In this spirit, this work draws intuition from hyperkähler geometry to

study the Fano varieties F of lines on some special cubic fourfolds X over arbitrary

fields. The central theorem is the following:

Theorem 1.0.1. Let X be a cubic fourfold over a field k of characteristic different

from 2. Suppose X contains a plane P , let F be the Fano variety of lines on X,
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and let M be the Mukai flop of F along the dual plane P ∗. Then M admits a

fibration M → P2 whose smooth fibers are torsors of abelian surfaces.

We describe the fibration M → P2 in explicit geometric terms and again

from the perspective of the derived category of coherent sheaves on X. The

advantage of the explicit construction is that it enables an examination of the

arithmetic of the fibers. This amounts to studying the Fano variety of lines on a

cubic threefold Y containing a plane obtained as a hyperplane section of X. I prove

the following:

Theorem 1.0.2. Let T be a smooth fiber of M → P2. Then there is a genus 2

curve C for which T is a torsor of Pic0C. In the Weil-Châtelet group H1(k,Pic0C),

the relations 2[T ] = [Pic1C ] and 4[T ] = 0 hold.

This arithmetic calls to mind similar results from [35], where Wang proved

the same relations for torsors coming from Fano varieties of linear spaces in a

complete intersection of two quadrics. Wang’s result has proved fruitful in studying

the rationality of an intersection of two quadrics over nonclosed fields; for examples,

see [7] and [16]. Similarly, we prove the following result about the rationality of

cubic threefolds containing planes.

Theorem 1.0.3. Let Y be a cubic threefold containing a plane P over a field k,

and suppose the singular locus of Y consists of four isolated nodes along P . Then Y

is rational over k if and only if one of the following is true:

1. one of the nodes on Y is defined over k, or

2. there is a line in Y \ P defined over k.

Note that in the above setup, Y is rational over the separable closure

ks regardless of whether it is rational over k. This result promises to produce
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interesting examples of rationality phenomena for threefolds over nonclosed fields:

for example, is there a smooth, geometrically rational threefold Y over a number

field K which is rational over Kv for all places v but irrational over K?

1.1 Lines on cubic hypersurfaces

Let X ⊂ Pn+1 be an irreducible but not necessarily smooth cubic

hypersurface of dimension n > 1. An important scheme attached to X is its Fano

scheme of lines F ⊂ Gr(2, n + 2), parametrizing the lines contained in X. For two

famous examples, the Cayley-Salmon Theorem asserts that the Fano variety of lines

on a smooth cubic surface consists of 27 isolated points, and Clemens and Griffiths

showed that the Fano variety of lines on a smooth, complex cubic threefold is an

abelian surface not isogenous to a product of curves to prove the irrationality of

smooth cubic threefolds [9].

It is not difficult to make general statements about the geometry of F : for

example, the following proposition relates the dimension and singularities of F to

those of X. For similar treatments, see [4], or [11, Ch. 6], or [21, Ch. 2].

Proposition 1.1.1. If X ⊂ Pn+1 is a cubic hypersurface over an algebraically

closed field k and F is the Fano variety of lines on X, then

(i) F is nonempty of dimension at least 2n− 4,

(ii) if X is smooth, then F is smooth of dimension 2n− 4.

Proof. Let X ⊂ Pn+1 be a smooth cubic n-fold containing a line L (for example,

the Fermat cubic), and let F be its Fano variety of lines. We first prove that F is

(2n− 4)-dimensional and smooth at [L]. The exact sequence of normal bundles

0 → NL/X → NL/Pn+1 → NX/Pn+1 |L → 0
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is

0 → NL/X → OL(1)
⊕n → OL(3) → 0.

Writing

NL/X ≃
n−1⊕
i=1

OL(ai),

we have
n−1∑
i=1

ai = n− 3

and since NL/X embeds in OL(1)
⊕n, ai ≤ 1 for all i. It must be the case then

that −1 ≤ ai ≤ 1 for each i, so H1(L,NL/X) = 0. The long exact sequence of

cohomology associated to the sequence of normal bundles yields H0(L,NL/X) =

2n− 4. Using the identification T[L]F ≃ H0(L,NL/X) and the fact that F is smooth

at [L] if H1(L,NL/X) = 0 (see [21, Ch. 2, Prop. 1.10]), we obtain our first claim

since there is an identification T[L]F ≃ H0(L,NL/X). Moreover, F is smooth at

every point [L] by the same argument.

Writing N =
(
n+4
3

)
, let PN−1 be the space of cubic hypersurfaces in Pn+1,

and let

W = {(L,X) | L ⊂ X} ⊂ Gr(2, n+ 2)× PN−1

be the universal line along with its projections π1 and π2. For a line L ⊂ Pn+1,

we may identify the fiber π−1
1 (L) with PH0(L,IL/Pn+1(3)). From the long exact

sequence in cohomology associated to the exact sequence

0 → IL/Pn+1(3) → OPn+1(3) → OL(3) → 0,

we obtain dim π−1
1 (L) = N − 5. As the dimension of Gr(2, n+ 2) is 2n,

dimW = N + 2n− 5 = (2n− 4) + dimPN−1.

12



We proved prior that the fiber of π2 over any point in PN−1 corresponding to a

smooth cubic hypersurface containing a line is (2n − 4)-dimensional, so by upper

semi-continuity and the fact that π2 is closed, π2 must by surjective. Therefore

every smooth cubic hypersurface contains at least one line so has a smooth, (2n −

4)-dimensional Fano variety, proving (ii). Again using upper semi-continuity, each

fiber of π2 has dimension at least 2n− 4, proving (i).

Remark 1.1.2. If X is a singular cubic n-fold, then it is possible for the Fano variety

F of lines on X to be of dimension greater than 2n − 4: for example, if X ⊂ P3 is

the cone over a cubic plane curve, then dimF = 1. On the other hand, if X ⊂ P4

is a cubic threefold containing a plane, then X is singular, but the Fano variety of

lines on X is nevertheless a surface, as discussed in detail in Chapter II.

Proposition 1.1.3. Let X ⊂ Pn+1 be a cubic hypersurface and F its Fano variety

of lines. Suppose F is of the expected dimension 2n− 4. Then F is smooth at [L] if

and only if X is smooth along L.

Proof. Let L ⊂ X. Regardless of whether X is smooth along L, there is an exact

sequence of sheaves

0 → NL/X → NL/Pn+1
α→ NX/Pn+1 |L,

and α is surjective if and only if X is smooth along L by [11, Prop. 6.24]. We

have seen already in the course of proving Proposition 1.1.1 how to use the above

sequence to show F is smooth at [L] when α is surjective. Conversely, suppose F is

smooth at [L]. Then

dimH0(L,NL/X) = dimT[L]F = 2n− 4.

From the long exact sequence in cohomology associated to the short exact sequence

0 → NL/X → NL/Pn+1 → im(α) → 0,
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we see dimH0(L, im(α)) ≥ 4. Since im(α) ⊂ NX/Pn+1 |L ≃ OL(3), it must be the

case that im(α) ≃ OL(3), i.e. α is surjective. This completes the argument.

Example 1.1.4. Revisit from Remark 1.1.2 the cone S ⊂ P3 over a smooth plane

cubic curve E. The Fano variety F of S is isomorphic to E so is smooth despite the

fact that each line in S passes through the cone point. This example highlights the

need for the assumption in Proposition 1.1.3 that F has the expected dimension.

Example 1.1.5. The Fano variety of lines on a smooth cubic fourfold is again a

smooth fourfold, and the Fano variety of lines on a nodal cubic threefold is singular

of dimension at least two. These Fano varieties are the central characters in what

follows.

1.2 Special cubic fourfolds

We now specialize to the case of smooth cubic fourfolds over the complex

numbers. The primary reference for this topic is Hassett’s survey paper [14]. To

begin, it is worth reiterating the major question surrounding cubic fourfolds: which

complex cubic fourfolds are rational? Conjecturally, almost none are, but none have

been proved irrational. In contrast, some smooth cubic fourfolds are rational:

Example 1.2.1. Suppose a cubic fourfold X ⊂ P5 contains two disjoint planes P1,

P2. For example, [14] presents the cubic fourfold with defining equation

x0x
2
3 + x1x

2
4 + x2x

2
5 = x20x3 + x21x4 + x22x5,

which contains the disjoint planes

x0 = x1 = x2 = 0 and x3 = x4 = x5 = 0.

Define a rational map φ : P1 × P2 99K X as follows: given (p, q) ∈ P1 × P2 such

that the line L = pq is not contained in X, Bezout’s theorem ensures L meets X

in a third point φ(p, q). The rational map ψ : X → P1 × P2 sending x ∈ X to
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(π1(x), π2(x)) where πi : X 99K Pi is the projection serves as an inverse to φ, so X

is birational to P2 × P2 hence also to P4.

This example calls to mind the very similar proof that a smooth, complex

cubic surface is rational, which uses the fact that such a surface always contains

a pair of skew lines. In contrast, cubic fourfolds containing even one plane

are relatively rare. More precisely, the moduli space C of cubic fourfolds is

20-dimensional, and the subspace of those containing at least one plane has

codimension 1.

For a very general cubic fourfold X, the algebraic part of the middle

cohomology of X, i.e.

H2,2(X,Z) = H4(X,Z) ∩H2(X,Ω2
X)

is 1-dimensional, spanned by the square of the hyperplane class, h2 [34]. In other

words, any algebraic surface in a very general cubic fourfold is homologous to a

complete intersection. On the other hand, if X contains a plane P , then the classes

h2, P ∈ H2,2(X) are linearly independent, which one can see via the intersection

pairing:

h2 P

h2 3 1

P 1 3

This phenomenon motivates Hassett’s definition of a special cubic fourfold.

Definition 1.2.2. A cubic fourfold X is special if rankH2,2(X,Z) > 1. A labeling

of X is a choice of rank-2 primitive sublattice K ⊂ H2,2(X,Z) containing h2, and

the discriminant of X is the discriminant of the intersection form on K.
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The moduli space Cd of cubic fourfolds of discriminant d is an irreducible

divisor in C when d ≥ 8 and d = 0, 2 mod 6. Otherwise, Cd is empty. The space C8

comprises cubic fourfolds containing at least one plane; the next simplest examples

are cubics containing a cubic scroll, belonging to C12, cubics containing a quartic

scroll, belonging to C14, and cubics containing a sextic del Pezzo surface, belonging

to C18.

Given a labeling K of a special cubic fourfold X, the sublattice K⊥ ⊂

H4(X,Z) has rank 21. In all known cases where X is rational, there is a polarized

K3 surface (S, f) and a Hodge isometry

K⊥ ∼−→ f⊥ ⊂ H2(S,Z)(−1).

When such an isometry exists, one says the pair (S, f) is associated to X. It turns

out that the cubic fourfolds with associated K3 surfaces are precisely those of

discriminant d where d is admissible, meaning not divisible by 4, 9, or any odd

prime congruent to 2 modulo 3.

The premier conjecture about cubic fourfolds, typically attributed to

Hassett, is that a cubic fourfold is rational precisely when it has an associated K3

surface. If that is true, then the rational cubic fourfolds lie in the countably infinite

collection of divisors Cd ⊂ C for d admissible, and a very general cubic fourfold is

irrational.

A cubic fourfold containing a plane P is of discriminant 8, and a general

member X ∈ C8 does not have an associated K3 surface. Nevertheless, there is a

K3 surface arising from a classical geometric construction used throughout what

follows.

Example 1.2.3. Let X be a smooth cubic fourfold containing a plane P . The

projection from P onto a complementary plane P⊥ gives a quadric surface fibration
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q : BlP X → P⊥; the fibers are quadric surfaces residual to P in the intersection

of X with each P3 ⊃ P . A generic cubic X contains no other planes meeting P , so

the fibers of q are irreducible. Imposing coordinates on P5 so that P is cut out by

x0 = x1 = x2 = 0, write the defining equation for X as

L1x
2
3 + L2x3x4 + L3x3x5 + L4x

2
4 + L5x4x5 + L6x

2
5 +Q1x3 +Q2x4 +Q5x5 + C = 0

where Li, Qi, C ∈ C[x0, x1, x2] are linear, quadratic, and cubic, respectively. Then

the Gram matrix associated to q−1(x3 : x4 : x5) is the following:

A =
1

2



2L1 L2 L3 Q1

L2 2L4 L5 Q2

L3 L5 2L6 Q3

Q1 Q2 Q3 C


The singular fibers of q are parametrized by the sextic curve ∆ = detA, which is

smooth by [34], having assumed that X contains no plane meeting P .

Let F (X/P⊥) be the relative variety of lines of q, a variety parametrizing

the lines in fibers of q. There is an obvious morphism π : F (X/P⊥) → P⊥ whose

fiber over p ∈ P⊥ is isomorphic to P1 ⊔ P1 if p ̸∈ ∆ and to P1 if p ∈ ∆. The

Stein factorization of π consists of a P1-bundle F (X/P⊥) → S and a double cover

f : S → P⊥ branched over ∆. Since ∆ is a smooth sextic, S is a K3 surface.

The sublattice K = ⟨h2, P ⟩ ⊂ H2,2(X,Z) is a marking on X, and for a very

general X ∈ C8, this is the only marking. In [33], van Geemen shows that there is

an embedding

K⊥ ⊂ f⊥ ⊂ H2(S,Z)

with index 2 but no isometry K⊥ → f⊥, so (S, f) is not associated to X. However,

there may still be another polarized K3 surface (T, g) associated to X, as happens
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in various cases when the quadric surface fibration q : BlPX → P⊥ admits a

section. In that case, X is rational since the base and fibers of q are rational.

1.3 The derived category of a cubic fourfold

The derived category of coherent sheaves on a cubic fourfold X offers a

second perspective on the connections between cubic fourfolds and K3 surfaces.

Kuznetsov studied a semiorthogonal decomposition

Db(X) = ⟨AX ,OX(−1),OX ,OX(1)⟩,

proving in [23] that AX is a K3 category, i.e. an indecomposable category whose

Serre functor is a shift by 2. When there is a K3 surface S for which AX ≃ Db(S),

one says that AX is geometric; for cubics in C14 and cubics containing a plane

P for which the quadric surface fibration q : BlPX → P2 admits a section,

Kuznetsov showed that AX is geometric [24]. In a similar vein, when X is singular,

Kuznetsov showed that there is a K3 surface S and a crepant categorical resolution

Db(S) → AX [24, Thm. 5.2]. In all of these cases, X is rational. Moreover, in

these examples, the K3 surface realizing AX as a derived category is precisely the

K3 surface associated to X via Hodge theory. This phenomenon led Kuznetsov to

conjecture that X is rational if and only if AX is geometric, and by [3] and [5, Cor.

1.7], Kuznetsov’s conjecture is equivalent to Hassett’s.

Example 1.3.1. Recall from Example 1.2.3 that a general cubic fourfold X

containing a plane has no associated K3 surface, but there is nevertheless a K3

surface S arising from the geometry of X as well as a P1-bundle on S giving a

Brauer class α ∈ Br(S)[2]. Kuznetsov showed that AX is equivalent to Db(S, α),

the derived category of α-twisted sheaves on S. In Section 3.2, we carry out a

simpler proof of this equivalence that highlights its highly geometric character,

inspired by the techniques of Addington and Lehn in [2]. In the course of writing
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this thesis, it came to my attention that a similar proof will also appear in

Huybrechts’ forthcoming book on cubic hypersurfaces [21].

It is worth noting also that the derived category affords another perspective

on the Fano variety F of lines on a cubic fourfold X. Kuznetsov and Markushevich

proved in [26] that F is isomorphic to a moduli space of rank-3 reflexive sheaves on

X: namely, to L ⊂ X one associates the sheaf

FL = ker(OX(−1)4
ev
↠ IL/X),

which is a left mutation of IL/X through OX(−1). Using the sequences

0 → FL → OX(−1)4 → IL/X → 0

and

0 → IL/X → OX → OL → 0,

it is easy to verify that FL ∈ AX . When there is an equivalence Φ : AX
∼→ Db(S, α)

between the Kuznetsov component and a derived category of twisted sheaves on a

K3 surface S, a point on F specifies a twisted complex Φ(FL) on S. Huybrechts

proved in [20] that in this case F is birational to a moduli space of stable α-twisted

sheaves on S.

For a complex cubic fourfold X ∈ C8, Macr̀ı and Stellari showed explicitly

in [27] that the Fano variety F is birational to a moduli space of twisted sheaves

on the K3 surface from Example 1.3.1. Their approach illuminates which twisted

sheaves on S the Fano variety parametrizes: they are twisted sheaves supported on

curves in the linear system f ∗OP2(1) where f : S → P2 is the double cover. By

describing a relatively simple equivalence AX → Db(S, α) in Section 3.2, we present

a streamlined proof of this fact that works over any field of characteristic zero.
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1.4 The Fano variety of a cubic fourfold as a hyperkähler variety

A smooth, compact, simply-connected, complex Kähler variety M equipped

with an everywhere nondegenerate holomorphic 2-form σ spanning H0(M,Ω2
M) is

called a hyperkähler variety. Note that the (complex) dimension of a hyperkähler

variety is always even. Hyperkähler varieties of dimension 2 are also called K3

surfaces, and if S is a K3 surface, then the Hilbert scheme of n points S[n] on S

is a hyperkähler 2n-fold; any hyperkähler variety deformation equivalent to S[n] is

said to be of K3[n] type, and these are some of the best-understood examples. The

primary reference for facts mentioned in this section is [12, Ch. III].

Beauville and Donagi proved in [6] that if X is a general cubic fourfold of

discriminant 14 and F is the Fano variety of lines on X, then F ≃ S[2] for a K3

surface S associated to X. Using a deformation theoretic argument, they concluded

that the Fano variety of lines on any smooth cubic fourfold is a hyperkähler

fourfold of K3[2] type. This section lays out some of the tools from hyperkähler

geometry (chiefly the Beauville-Bogomolov form) that are useful for studying the

Fano variety F of lines on a smooth, complex cubic fourfold. The main question

we address is when F admits a fibration, or, more generally, when F is birational

to another hyperkähler fourfold admitting a fibration. The hyperkähler perspective

motivates the content of Chapter III where we work over fields other than C.

The (complex) dimension of a hyperkähler variety is always even. Moreover,

if M is a hyperkähler 2n-fold, B is a smooth variety, and f : M → B is a nontrivial

surjective morphism with connected fibers which is not an isomorphism, then the

following must be true:

(i) B ≃ Pn, proved in [22], and
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(ii) the restriction of σ to any fiber of f is zero, and the fibers of f are abelian

varieties, proved in [29].

Such morphisms are called Lagrangian fibrations and are central to hyperkähler

geometry.

The available methods for testing whether a hyperkähler variety M admits

a Lagrangian fibration (i.e. the Beauville-Bogomolov form, described shortly)

are birational invariants among hyperkähler varieties. For this reason, it is much

more convenient to ask whether M is birational to another hyperkähler variety N

admitting a Lagrangian fibration, and the composition M 99K N → Pn is called a

rational Lagrangian fibration.

Example 1.4.1. Let S be a K3 surface. Any two K3 surfaces that are birational

are in fact isomorphic, so the question of whether S admits a rational Lagrangian

fibration is the same as whether S admits a Lagrangian fibration, in which case one

calls S elliptic. A classical fact (see, for example, [19, Ch. 11]) is that S is elliptic if

and only if there is a class E ∈ Pic(S) with E2 = 0 under the intersection form on

S. However, a general K3 surface contains no such curve, so elliptic K3 surfaces are

rather rare.

For a hyperkähler 2n-fold M , there is a quadratic form called the Beauville-

Bogomolov form qM on H2(M,Z) defined uniquely (up to sign) by the properties

that for some c ∈ R,

qM(α)n = c

∫
M

α2n

for all α ∈ H2(M), and qM restricts to a primitive integral quadratic form on

H2(M,Z). Conjecturally, qM generalizes the intersection form on a K3 surface in

the sense that M admits a rational Lagrangian fibration if and only if qM vanishes
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on a nontrivial divisor class D ∈ H2(M,Z) in the birational Kähler cone of M . In

that case, the rational Lagrangian fibration M 99K Pn is induced by the complete

linear system |D|. By results from [28, Sect. 6], the existence of any nontrivial

isotropic integral divisor class implies the existence of one in the birational Kähler

cone (for further discussion, see [31, Cor. 7.3]). In [30], Matsushita verified this

conjecture for hyperkähler varieties of K3[n]-type, a class that includes Fano

varieties of cubic fourfolds.

Let X be a smooth, complex cubic fourfold and F its Fano variety of

lines. To test whether qF vanishes on a nontrivial class in H2(F,Z), it is useful

to consider the Abel-Jacobi map

α : H4(X,Z) → H2(F,Z), α(S) = π2∗π
∗
1(S)

where W ⊂ X×F is the incidence correspondence and π1 and π2 are its projections.

In [6], it is proved that α respects the Hodge filtrations, restricts to an isomorphism

H4(X,Z)prim
∼→ H2(F,Z)prim,

and is compatible with the quadratic forms on each group in the sense that

qF (α(S), α(T )) = −S.T

for any S, T ∈ H4(X,Z)prim. With these facts, it is possible to characterize exactly

when F admits a rational Lagrangian fibration.

Proposition 1.4.2. F admits a rational Lagrangian fibration if and only if X ∈ Cd

for some d which is twice a square.

Proof. We have already seen that a necessary condition for F to admit a rational

Lagrangian fibration is that X be special. Choose a primitive rank two sublattice

h2 ∈ K ⊂ H2,2(X,Z) and a class S ∈ K ∩ H4(X,Z)prim. Let i be the index of

the sublattice K ′ = Zh2 + ZS in K. The discriminant of the intersection form on
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K ′ is 3S2, so the discriminant of the intersection form on K is 3S2/i2, and X ∈ Cd

for d = 3S2/i2. There is a class D ∈ α(K) isotropic with respect to qF if and only

if there is such a class in α(K ′). We will show that such a class exists in K ′ if and

only if d is twice a square.

Applying the compatibility of the Abel-Jacobi map with the various

quadratic forms and using the fact from [14] that qF (α(h
2)) = 6,

qF (α(mh
2 + nS)) = 6m2 − n2S2 = 6m2 − i2n2d/3.

Thus there is a class D ∈ α(K ′) satisfying qF (D) = 0 if and only if there are

integers m,n with 2(3m/(in))2 = d.

Note that, as with K3 surfaces, Proposition 1.4.2 implies that the Fano

variety of a cubic fourfold rarely admits a rational Lagrangian fibration. The “first”

example is the Fano variety of lines on a cubic fourfold X containing a plane, i.e.

the case d = 8.

Example 1.4.3. Let X ∈ C8 be a cubic fourfold containing a plane P and F its Fano

variety of lines, and let g = α(h2) and p = α([P ]). For simplicity, assume X is

general, so H2(F,Z) is spanned by g and p. Using the proof of Proposition 1.4.2,

it is easy to see that the classes in H2(F,Z) isotropic with respect to the Beauville-

Bogomolov form are the multiples of g−p and 2g−3p. A straightforward calculation

shows that the nef cone of F is the closed cone whose boundary contains the classes

g + p and 3g − p, illustrated in Figure 1. There is an isomorphism H2(F,Z) ≃

H2(M,Z) where M is the Mukai flop of F along P ∗; indeed, F and M become

isomorphic after cutting out a codimension-two subvariety of each. The nef cone of

M is the closed cone whose boundary contains the classes 3g − p and g − p, also

illustrated in Figure 1.
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Figure 1. The shaded region the left illustrates the nef cone of F , the Fano variety
of lines on a complex cubic fourfold containing a plane P . The shaded region on
the right illustrates the nef cone of M , the Mukai flop of F along the dual plane
P ∗.

Hence the complete linear system of g − p induces a Lagrangian fibration

M → P2, but the complete linear system of ±(2g − 3p) does not induce a rational

Lagrangian fibration on F .

Note that [Q] = h2 − [P ] where Q is a quadric surface residual to P , i.e.

there is some P3 ⊂ P5 for which P3 ∩ X = Q ∪ P , so the complete linear system

|α([Q])| induces the rational Lagrangian fibration F 99K P2, which is the unique

such rational Lagrangian fibration for a general member X ∈ C8.

However, the argument for the existence of the rational Lagrangian fibration

in this case using Beauville-Bogomolov form is rather opaque and only works over

C, two shortcomings addressed via an explicit geometric construction given in

Chapter III. To further motivate constructing the rational Lagrangian fibration

in the discriminant 8 case, consider the following example where the linear system

inducing a rational Lagrangian fibration is known but a geometric description of

the Lagrangian fibration remains elusive.
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Example 1.4.4. If X ∈ C18, then X contains a sextic del Pezzo surface S, as

explained in [1]. The intersection form on the sublattice spanned by h2 and S is

given below:

h2 S

h2 3 6

S 6 18

It is straightforward to check that the classes α(3h2 − S) and α(S − h2) are Kähler

and isotropic with respect to the Beauville-Bogomolov form; however, even with

these divisor classes in hand, it is unclear how to describe the associated rational

Lagrangian fibrations from F geometrically, essentially because it is more difficult

to describe a divisor in either linear system.

1.5 Intermediate Jacobian torsor obstructions to rationality

To study the rational Lagrangian fibration from the Fano variety of lines of

a cubic fourfold containing a plane, we will analyze the Fano variety F (Y ) of lines

on a general cubic threefold Y containing a plane P . Note that Y is geometrically

rational, which one can argue in two ways:

(i) Y has four nodes along P , and projection from a node gives a birational

equivalence onto P3;

(ii) projection from P induces a quadric surface fibration BlP Y → P1 which

geometrically has a section (for example, a line in Y \ P gives a section).

Must Y be k-rational, though? And is it possible for Y to be k-rational even when

Y has no k-rational node and BlP T → P1 has no k-rational section? For a general

cubic threefold over a field of characteristic zero, Chapter II Section 2.6 answers
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both questions in the negative by using intermediate Jacobian torsor obstructions,

briefly described here.

Let X be a smooth, projective threefold over a field k. How can one tell

whether X is rational over k? In the case k = C, Clemens and Griffiths used the

intermediate Jacobian J2(X), which for a rationally connected variety X is

J2(X) = H3(X,C)/(H3(X,Z)⊕H1,2(X)),

to prove that smooth, complex cubic threefolds are irrational. When k ⊂ C is

not algebraically closed, however, one can only use the intermediate Jacobian to

determine whether X is geometrically rational, not whether X is rational over k.

For other fields, it is not obvious what construction should replace J2(X).

Recent progress on a generalization of the intermediate Jacobian was made

by Hassett and Tschinkel in [16] when k ⊂ C and by Benoist and Wittenberg in

[7] for arbitrary fields. They construct a group scheme CH2
X/k whose points agree

with the codimension-2 Chow group, parametrizing rational equivalence classes

of codimension-2 cycles. The identity component (CH2
X/k)

0 is an abelian variety

parametrizing classes that are algebraically trivial, and when k = C, there is an

isomorphism of abelian varieties (CH2
X/k)

0 ≃ J2(X).

The quotient

NS2(Xk̄) = CH2
X/k /(CH

2
X/k)

0

is a Galois module called the Néron-Severi group of algebraic equivalence classes of

codimension-2 cycles. By [7, Thm 3.1(v)],

NS2(Xk̄)
Aut(k̄/k) = (CH2

X/k /(CH
2
X/k)

0)(k)

when X is geometrically rational, so for each class γ ∈ NS2(Xk̄)
Aut(k̄/k), there is a

coset (CH2
X/k)

γ endowed with the structure of a (CH2
X/k)

0-torsor. Moreover, Benoist
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and Wittenberg obtain the following when X is a smooth, projective, k-rational

threefold [7, Thm 3.11]:

(i) (CH2
X/k)

0 ≃ Pic0C for some smooth, projective curve C, and

(ii) for all γ ∈ NS2(Xk̄)
Aut(k̄/k), there is some eγ ∈ Z and an equivalence of torsor

classes [(CH2
X/k)

γ] = [Pic
eγ
C ] in the Weil-Châtelet group H1(k,Pic0C).

These conditions proved powerful in studying the rationality of a complete

intersection of two quadrics in P5:

Example 1.5.1. Let Y ⊂ P5 be a complete intersection of two quadrics, and let F be

the Fano variety of lines in Y . By work of Wang in [35], there is a genus 2 curve C

for which F is a Pic0C-torsor, and

2[F ] = [Pic1C ] ∈ H1(k,Pic0C).

When F (k) ̸= ∅, the threefold Y is k-rational by a classical construction.

Conversely, if Y is k-rational, then (i) implies (CH2
Y/k)

0 ≃ Pic0C (see Lemma 2.6.2

for more details), and (ii) forces [F ] = 0 since 2[PiceC ] = 0 for all e ∈ Z. It follows

that F (k) ̸= ∅ if and only if Y is k-rational. This argument allows Hassett and

Tschinkel to characterize rationality for Y when k ⊂ C, and enables Benoist and

Wittenberg to give an example over a imperfect field k where Y has k-points and is

rational over a purely inseparable extension of k but not over k itself.

To study rationality of a cubic threefold Y containing a plane P using

similar techniques, we need some understanding of the Chow variety of Ỹ = BlP Y .

We restrict to the case when the ground field has characteristic zero in order to

take advantage of the fact that when k = C, there is an isomorphism J2(Ỹ ) ≃

(CH2
Ỹ /k

)0.
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Lemma 1.5.2. Over a field k of characteristic zero, let Y ⊂ P4 be a cubic threefold

containing a plane P whose singular locus is a complete intersection of two conics

in P . Let f : Ỹ → Y be the blowup along P . Then (CH2
Ỹ /k

)0 is a surface.

Proof. By the Lefschetz principle, we may assume k ⊂ C, and moreover we may

extend scalars to C. Thus we are afforded an isomorphism (CH2
ỸC
)0 ≃ J2(ỸC), so we

need only calculate the Hodge numbers of ỸC. We suppress the base change from

the notation in what follows.

First, we claim Ỹ embeds in P4 × P1 as a complete intersection of divisors of

type (1, 1) and (2, 1). Let E be the exceptional divisor of the blowup P̃4 = BlP (P4).

Using the embedding P̃4 ⊂ P4 × P1, consider the following diagram:

E P̃4 P1

P P4

q

p

The classes p∗[H] and [E] generate Pic(P̃4), where [H] ∈ Pic(P4) is the hyperplane

class. Let [h] ∈ Pic(P1) be the other hyperplane class, so q∗[h] = p∗[H] − [E]. We

have

Ỹ = p∗(3[H])− [E] = 2p∗[H] + q∗[h],

which shows a (2, 1)-divisor cuts Ỹ from P̃4. The Lefschetz hyperplane theorem

gives

hp,q(Ỹ ) = hp+2,q+2(P4 × P1) =



1 p = q = 3

2 p = q = 2

0 otherwise, for p+ q ≥ 3,
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where hp,q = dimHp,q(X,C). Let f : Ỹ → Y be the blowup. Since Rf∗OỸ = OY ,

h3,0(Ỹ ) = dimH3(Y,OY ) = 0. Using the Hodge symmetry and Serre duality,

χ(Ỹ ) = 6− 2h2,1(Ỹ )

On the other hand, if Y ′ is a smooth cubic threefold, we have χ(Y ′) = −6.

Topologically, Ỹ can be obtained from Y ′ by cutting out small neighborhoods of

four points and gluing in four copies of P1, so

χ(Ỹ ) = χ(Y ′)− 4χ(S3) + 4χ(P1) = 2.

It follows that h2,1(Ỹ ) = 2, giving the Hodge diamond below.

1

0 0

0 2 0

0 2 2 0

In particular, dim J2(Ỹ ) = 2, as needed.
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CHAPTER II

CUBIC THREEFOLDS CONTAINING A PLANE

This chapter describes the Fano scheme of lines on a cubic threefold

containing a plane. The topic calls to mind Clemens and Griffiths’s proof that

a smooth, complex cubic threefold is irrational, which relies on the intermediate

Jacobian, an abelian variety parametrizing lines contained in the threefold. Cubic

threefolds containing a plane, however, are singular and therefore geometrically

rational (for example, via projection from a singular point). The main result

in this chapter is that one component of the Fano scheme of lines on a general

cubic threefold containing a plane is birational to a torsor of an abelian surface.

This torsor exhibits interesting behavior in the Weil-Châtelet group. Remarkably,

in characteristic zero, whether the torsor is trivial over the base field k controls

whether the threefold is rational over k.

Moreover, the geometry outlined in this chapter foreshadows the next

chapter, in which we study the rational Lagrangian fibration from the Fano variety

of lines on a general cubic fourfold containing a plane. The fibers of the Lagrangian

fibration described there are precisely the torsors examined in this chapter.

Section 2.1 outlines the basic geometry of a cubic threefold Y containing a

plane, Section 2.2 outlines the irreducible components of the Fano scheme F (Y ) of

lines on Y , and Section 2.3 describes how these irreducible components intersect.

One irreducible component U ⊂ F (Y ) is birational to a geometrically abelian

surface T , and Section 2.4 introduces (rational) involutions on U and T used to

equip T with the structure of a torsor of an abelian surface. Building on this,

Section 2.5 describes the arithmetic of T , and Section 2.6 describes an obstruction

to the k-rationality of Y coming from T .
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2.1 Generalities

Let Y ⊂ P4 be a cubic threefold containing a plane P . Suppose also that Y

is general , by which we mean that Y contains only one plane, and the subscheme

Z = Sing(Y ) ∩ P is zero-dimensional. While we do not require that Sing(Y ) be

zero-dimensional, this will turn out to be the case. In Chapter III, we show that if

X is a smooth cubic fourfold containing exactly one plane P , then any section of X

by a hyperplane containing P is general, motivating our definition here.

Fix coordinates on P4 so that P = {x0 = x1 = 0}, and write the defining

equation for Y as

f = a22x
2
2 + a23x2x3 + a24x2x4 + a33x

2
3 + a34x3x4 + a44x

2
4

+ b2x2 + b3x3 + b4x4 + c

where aij, bi, c ∈ k[x0, x1] are linear, quadratic, and cubic forms, respectively. The

projection Y 99K P1 given by (x0 : · · · : x4) 7→ (x0 : x1) induces a quadric surface

fibration q : BlP Y → P1. Since Y contains only one plane, the degenerate fibers of

q are no worse than cones. The matrix below is the Gram matrix for the fiber of q

over (x0 : y0).

A =



a22
1
2
a23

1
2
a24

1
2
b2

1
2
a23 a33

1
2
a34

1
2
b3

1
2
a24

1
2
a34 a44

1
2
b4

1
2
b2

1
2
b3

1
2
b4 c


The sextic equation detA = 0 cuts out the discriminant locus of q, a degree six

divisor on P1 parametrizing the singular fibers of q.

Geometrically, each fiber of q has either one or two rulings depending on

whether the fiber is smooth or singular. A double cover C of P1 branched over the

divisor detA = 0 parametrizes rulings on fibers of q. Note that by the Riemann-
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Hurwitz formula, the arithmetic genus of C is 2. Over ks, the curve C is cut out of

weighted projective space by the equation y2 = detA, but over a nonclosed field,

a hyperelliptic curve is only defined up to quadratic twist by its branch locus. The

following lemma clarifies the equation for C over a nonclosed field, which will not

be referenced aagain but is useful for working out explicit examples.

Lemma 2.1.1. In P(1, 1, 3), the equation for C can be written y2 = detA.

Proof. A quadric surface Q over k has a k-rational ruling if and only if the

determinant of the Gram matrix for Q is a square in k. Since the matrix A is the

Gram matrix for the fiber of q over (x0 : x1), the solutions over k to the equation

y2 = detA parametrize k-rational rulings on fibers of q.

We will reference the curve C frequently through the chapter. The following

lemma clarifies the geometry of Y and the quadric surface fibration q : BlP Y → P1.

Lemma 2.1.2. Let Y be a general cubic threefold containing a plane P , and let

Z = Sing(Y) ∩ P. Then

(i) Z is a complete intersection of two conics in P ,

(ii) there is a bijection between quadric surfaces in Y and conics in P containing

Z, given by Q 7→ Q ∩ P ,

(iii) each k-point of Z gives a section of q,

(iv) Y has isolated singularities, and

(v) if the discriminant of q is reduced, then Y is smooth away from P .

Proof. Write the equation for Y as as x0Q0 + x1Q1 = 0 where the Qi are quadratic

in x0, . . . , x4, and let qi = Qi(0, 0, x2, x3, x4). The Jacobian criterion shows that Y is
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singular along the locus

Q0 + x0
dQ0

dx0
+ x1

dQ1

dx0
= 0

Q1 + x0
dQ0

dx1
+ x1

dQ1

dx1
= 0

x0
dQ0

dxi
+ x1

dQ1

dxi
= 0 for i = 2, 3, 4.

On P , the equations become q0 = q1 = 0, i.e. the intersection of two conics. Then

(i) follows from the assumption that Y is general, which entails dimZ = 0.

For (ii), note that each quadric surface in Y is cut out by the equations

sx1 − tx0 = sQ0 + tQ1 = 0

for (s : t) ∈ P1, and each point in Z is belongs to the locus Qi = 0 for i = 1, 2

so satisfies these equations. Hence each quadric surface in Y contains Z, and the

map Q 7→ Q ∩ P identifies the pencil of quadrics in X with the pencil of conics

through Z. Moreover, each point in Z gives a section of q since it is contained in

each quadric surface in Y , proving (iii).

Now we consider the singularities of BlP Y . For y ∈ BlP Y , we have

Ty(BlP Y ) = TyQ+ Tq(y)P1

where Q ∋ y is the quadric surface containing y. Hence if dimTy(BlP Y ) > 3,

then dimTyQ > 2, which happens for at most six points, i.e. the cone points of

each of the finitely many singular fibers of q. Since the blowup BlP Y → Y is

an isomorphism away from P , there are only finitely many singular points on Y ,

proving (iv).

A local computation shows that BlP Y is smooth if and only if the

discriminant of q is reduced. When BlP Y is smooth, Y is smooth away from P ,

proving (v).
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Finally, notice that the lines contained in quadric surfaces in Y form a conic

bundle p : F → C, each line belonging to at most one quadric surface. Importantly,

sections of p are in bijection with sections of q: specifying a point in each smooth

fiber of q is the same as specifying a line in each ruling of that fiber, explained

further in [15, Sect. 3]. By Lemma 2.1.2, each (geometric) point z ∈ Z gives a

section of q, and τz denotes the corresponding (geometric) section of p. In a slight

abuse of notation, for c ∈ C we variously regard τz(c) as a line in Y and as the

corresponding point in F .

2.2 The Fano scheme

This section describes the irreducible components of the Fano scheme of

lines on Y , denoted F (Y ). These lines come in three types: those contained in P ,

those meeting P once, and those disjoint from P . A line that meets P once belongs

to F , and a line contained in P belongs to the dual plane P ∗; let U ⊂ F (Y ) be the

open subsceheme composed of lines in Y not meeting P .

Theorem 2.2.1. F (Y ) contains the following components:

1. the plane P ∗ dual to P ,

2. a ruled surface F over a curve C of arithmetic genus 2,

3. and a singular surface U , geometrically birational to Sym2C.

Moreover, each of the components above is irreducible if C is irreducible.

Proof. All that requires proof is the birational geometry of U over the separable

closure ks.

Choose a point z ∈ Z. For a line L ⊂ Y \ P , let P ′ be the plane spanned

by L and z. Since Y is singular at z, so too is the curve P ′ ∩ Y . Thus P ′ ∩ Y
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consists of three lines: L and two other lines M and N (which may coincide with

one another), both containing z. Note [M ], [N ] ∈ F since M and N meet but are

not contained in P . The equation φz([L]) = {p([M ]), p([N ])} defines a morphism

φz : U → Sym2C.

To show φz is a birational equivalence, we construct its rational inverse. Let

V ⊂ Sym2C be the open set consisting of pairs {c, d} of distinct points such that

the lines τz(c) and τz(d) are not both contained in P . For such a pair, the plane P ′

spanned by τz(c) and τz(d) meets Y in a third line L, and we define a morphism

ψz : V → F (Y ) by ψz(c, d) = [L]. It is straightforward that ψz ◦ φz = idU , as

needed.

Remark 2.2.2. Let Sz ⊂ Y be the union over c ∈ C of the lines τz(c), which is a

cone over C. An unreduced length-2 subscheme of C specifies a line τz(c) ⊂ Sz and

a normal direction to that line in Sz, and together these span a plane P ′ meeting Y

in a third line. In this way, one can instead define ψz as a rational map Hilb2C 99K

U . The domain of ψz under this new definition is the complement of at most three

points, i.e. the pairs {c, d} of distinct points with τz(c), τz(d) ⊂ P .

Remark 2.2.3. One can regard U as an open subscheme of the space of sections of

the quadric surface fibration q : BlP Y → P1. In [15], Hassett and Tschinkel study

spaces of sections of quadric surface bundles over curves, ordering these sections by

a height which in this case is given by the formula

h(σ) := degNσ(P1)/BlP Y .

For each h ∈ Z, let Sect(q, h) denote the space of sections of q of height h, which

can be regarded as a subscheme of the Hilbert scheme of BlP Y . If L ⊂ Y \ P is a
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line, then q|L is an isomorphism, so q|−1
L is a section, and

h(q|−1
L ) = degNL/Y = 0.

Hence there is an open immersion U → Sect(q, 0). The authors prove that when the

base field is algebraically closed or finite (so that Br(C) = 0), for each h ≫ 0, there

exists an integer d and a composition

Sect(q, h) → S → PicdC

where the first morphism is an open immersion and the second is a projective

bundle [15, Prop. 2]. This provides a second perspective on Theorem 2.2.1, at least

when k is algebraically closed or finite, keeping in mind that Sym2C is a blowup of

Pic2C when C is smooth.

A line [L] ∈ U gives a section of q and hence a section σL of p. When C

is smooth, so too is F , and the following lemma describes the numerics of the two

types of sections of p mentioned so far.

Lemma 2.2.4. Suppose C is smooth, and let [L], [M ] ∈ U and z, w ∈ Z. Under the

intersection pairing on F ,

(i) σL.τz = 2,

(ii) σL.σM = 3, and

(iii) τz.τw = 1.

Proof. We may work over ks. The equation (i) follows from the proof of

Theorem 2.2.1: [M ] ∈ τz(C) if and only if z ∈ M , [M ] ∈ σL(C) if and only if

L ∩ M = ∅, and there are two lines meeting z and L. For (ii), it is enough to

calculate σL.σM for a particular choice of L and M : indeed, Theorem 2.2.1 implies

U is irreducible when C is smooth, and a curve in U connecting two points gives
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an algebraic (hence also numerical) equivalence between the corresponding sections

of F . A generic hyperplane section of Y is a smooth cubic surface S and contains

skew lines not meeting P , which we may assume for the purpose of our calculation

are L and M .

Note that the span of L and M intersects P in a line ℓ, and the intersection

number σL.σM counts how many lines in Y meet L, M , and P , which are exactly

the lines in S meeting L, M , and ℓ. Given three disjoint lines in a cubic surface,

there are three other lines meeting each of those.

Because Num(F) is generated by the class f of a fiber and the class of any

section (see, for example, [13, V.2]), there are integers a, b ∈ Z with τz ∼ aσL + bf .

Pairing with f yields a = 1, and pairing with σL yields b = −1. Thus τz ∼ σL − f ,

and the same is true for τw, so (iii) follows from (i) and (ii).

2.3 Intersections of the components of the Fano variety

This section analyzes the pairwise intersections of the components of F (Y ),

enabling a description of the boundary of U .

Lemma 2.3.1. F ∩ P ∗ is zero-dimensional.

Proof. If [L] ∈ F ∩ P ∗, then L is contained in a quadric surface Q meeting P

in a degenerate conic (one component of which is L). There are at most three

degenerate conics containing Z, so there are finitely many quadrics Q for which

Q ∩ P is degenerate by by Lemma 2.1.2 (ii). Each of these quadrics contributes two

points to F ∩ P ∗.

Remark 2.3.2. Note that since F and P ∗ meet in codimension 2, Hartshorne’s

Connectedness Theorem [10, Thm. 18.12] implies that

F (Y ) \ U = F ∪ P ∗
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is not Cohen-Macaulay. By [10, Thm. 21.23], U is not Cohen-Macaulay. In

particular, U is not smooth.

Recall from Proposition 1.1.3 that F (Y ) is smooth at [L] if and only if Y is

smooth along L. The following two lemmas also use the basic fact that a scheme is

singular along the intersection of any two irreducible components.

Lemma 2.3.3. U ∩ P ∗ is the union of the pencils z∗ ⊂ P ∗ of lines in P through

each of the points z ∈ Z.

Proof. A line in P is a singular point of F (Y ) if and only if it intersects Z

nontrivially, so

P ∗ ∩ Sing(F (Y )) =
⋃
z∈Z

z∗.

Moreover, P ∗ is smooth, so any point in P ∗ ∩ Sing(F (Y )) belongs to a second

component of F (Y ). Then ⋃
z∈Z

z∗ = (P ∗ ∩ U) ∪ (P ∗ ∩ F).

The left-hand side is purely 1-dimensional, and P ∗ ∩ F is 0-dimensional by

Lemma 2.3.1, so ⋃
z∈Z

z∗ = U ∩ P ∗,

as needed.

Lemma 2.3.4. Suppose z ∈ Z is a rational point, so the morphism ψz : Hilb
2C 99K

U from Theorem 2.2.1 and Remark 2.2.2 is defined. Let Γ be the graph of ψz. Then

(i) the projection π2 : Γ → U is an isomorphism except over the zero-dimensional

subscheme U ∩ F ∩ P ∗, over which the fibers contain two points,

(ii) Γ is the blowup of U along U ∩ P ∗,
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(iii) the projection π1 : Γ → Hilb2C is the blowup of Hilb2C at the finitely many

points along E corresponding to the pairs {c, d} for which τz(c), τz(d) ∈ P ∗.

Proof. We assume Z is reduced, though it is straightforward to adapt the argument

in each of the cases where Z is nonreduced. For each c ∈ C, let c̄ denote the image

of c under the hyperelliptic involution. Let E = {{c, c̄} | c ∈ C} ⊂ Hilb2C,

let s1, s2, s3 ∈ Hilb2C be the points corresponding to the pairs {c, d} for which

τz(c), τz(d) ∈ P ∗, and let Ei = π−1
1 (si). Note that ψz is defined except at s1, s2, s3.

First, we claim π2 is an isomorphism away from E1 ⊔ E2 ⊔ E3. Since ψz ◦

φz = idU , we know U it contained in the image of ψz hence also of π2, and so π2

is surjective. Moreover, ψz is injective on its domain, so π2 is injective away from

E1 ⊔ E2 ⊔ E3, as needed.

It is straightforward to check that for each point w ̸= z ∈ Z, the pencil w∗

is not contained in the image of ψz. Therefore, π2 projects E1 ⊔ E2 ⊔ E3 onto the

pairwise-intersecting triple of lines ⋃
w ̸=z∈Z

w∗.

Also noticing that π2(π
−1
1 (E)) = z∗, we obtain (i).

Using the universal property of the blowup, π2 factors through a morphism

ρ : Γ → BlU∩P ∗ U . The morphism BlU∩P ∗ U → U fails to be an isomorphism over

the same six points as π2, i.e. the six pairwise intersections of lines in U ∩ P ∗ which

together compose U ∩ F ∩ P ∗. Since π2 is two-to-one over these points, ρ must be

an isomorphism.

For (iii), notice that the preimage Ei of each point si under π1 is isomorphic

to P1. By the universal property of the blowup, π1 factors through a morphism

Bls1,s2,s3 Hilb
2C → Hilb2C which must be an isomorphism.
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Figure 2 illustrates the configurations of lines on Γ, Hilb2C, and U .

Figure 2. Configurations of lines on the schemes appearing in the proof of
Lemma 2.3.4 in the case C is smooth and Z is reduced.

Note that the morphism Γ
∼→ BlU∩P ∗ U may not be defined over k if none

of the points in Z are k-rational. In that case, BlU∩P ∗ U still contains a quadruple

of skew lines whose Galois orbits correspond to the Galois orbits of points in Z.

When C is smooth, Hilb2C ≃ Sym2C ≃ BlOC
Pic0C , so the four lines on Γ can be

blown down to obtain the abelian surface Pic0C . When Z has no k-rational point,

the quadruple of lines on BlU∩P ∗ U can still be blown down to obtain a surface T

which is geometrically isomorphic to Pic0C . This surface T is the object of interest

in the next section.

We summarize the discussion above by the following corollary.

Corollary 2.3.5. The blowup BlU∩P ∗ U → U is an isomorphism away from the

finitely many points U ∩ F ∩ P ∗ and two-to-one over U ∩ F ∩ P ∗.

Finally, we work toward analyzing the intersection U ∩ F .
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Lemma 2.3.6. The intersection U ∩ Sing(F) is zero-dimensional.

Proof. We may work over ks and fix a point z ∈ Z. If C is smooth, then so is F ,

and there is nothing to prove. So, assume C is singular. Then Sing(F) consists of a

conic over each singular point of C. To show that such a conic does not belong to

U , we first show that is contains a dense open set not belonging to the image of the

rational map ψz.

Let c be a singular point of C, let Q = q−1(c) be the quadric lying over c,

and let L ⊂ Q be a line not intersecting Z. Such a line L is generic in Q. The cone

point y ∈ Q does not lie in P or else Y would have a fifth node along P .

The plane P ′ spanned by L and z intersects Y in two other lines: τz(c) and

another line L′ containing z. Since τz(c) and L intersect at y ̸∈ P , the line L′ joins

z and L ∩ P . Hence L′ ⊂ P . As L ∩ P ̸∈ Z, and deg(L′ ∩ Q ∩ P ) = 2, the line

L′ does not contain a length-two subscheme of Z so does not belong to the image of

τz. It follows that L is not in the image of ψz.

Now, we apply Lemma 2.3.4, which shows that the only curves in U without

dense open sets lying in the image of ψz are the pencils w∗ for z ̸= w ∈ Z. Since

Sing(F) ̸⊂ P ∗ and Sing(F) ∩ im(ψz) is finite, we arrive at the desired result.

Let Cz ⊂ F denote the image of τz.

Lemma 2.3.7. U ∩ F = ∪z∈ZCz.

Proof. First, we show Cz ⊂ U ∩ F for each point z ∈ Z. Note Cz ⊂ Sing(F (Y ))

since each line in Cz meets Z. Hence

Cz ⊂ F ∩ Sing(F (Y )) = (U ∩ F) ∪ (F ∩ P ∗) ∪ Sing(F).
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But F ∩ P ∗ is finite by Lemma 2.3.1, Sing(F) consists of finitely many conics, and

the genus of Cz is 2, so there is no embedding

Cz → (F ∩ P ∗) ∪ Sing(F).

Therefore Cz ⊂ U ∩ F .

For the reverse inclusion, note that if L ∈ U ∩ F , then L is a singular point

of F (Y ) so passes through a singular point of Y . The lines in F passing through

singular points of Y are parametrized by the curves Cz for z ∈ Z and by Sing(F),

so

U ∩ F ⊂
⋃
z∈Z

Cz ∪ Sing(F).

By Lemma 2.3.6, U ∩ Sing(F) is zero-dimensional, so it remains to show that U ∩F

is equidimensional. Indeed, F (Y ) is Gorenstein, and P ∗ is Cohen-Macaulay, so

F (Y ) \ P ∗ = F ∪ U

is Cohen-Macaulay by [10, Thm. 21.23]. By [10, Cor. 18.11], F ∩ U is purely 1-

dimensional.

Proposition 2.3.8. We have the following description of the boundary of U :

U = U ∪
⋃
z∈Z

(z∗ ∪ Cz).

Proof. This follows directly from Lemmas 2.3.3 and 2.3.7.

2.4 Rational Involutions on U and T

Recall from Corollary 2.3.5 and the discussion preceding it that BlU∩P ∗ U

contains a set of skew lines in bijection with the subscheme Z, and that these

lines can be contracted over k to obtain a surface T . We can make the following
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identification:

T =

(
U \

⋃
z∈Z

z∗

)
∪ Z.

When C is smooth, T is geometrically an abelian surface. In the next section, we

equip T with the structure of a Pic0C-torsor, for which we will need a collection of

involutions jc on T to define an action by Div(C). First, we define a collection of

rational involutions on U .

Definition 2.4.1. For c ∈ C, define a rational map ic : U 99K F (Y ) as follows: c

specifies a ruling in a quadric surface in Y , and a line L ⊂ Y \P meets a unique line

M in this ruling. The plane spanned by L and M meets Y in a third line, ic(L).

We have defined ic on U , though the domain turns out to be larger, as

explained shortly.

Lemma 2.4.2. For c, d ∈ C and z ∈ Z,

ic(τz(d)) = id(τz(c))

whenever both sides of the equation are defined.

Proof. It suffices to check that the two rational maps C×C → U defined by sending

(c, d) to ic(τz(d)) and to id(τz(c)) agree on a dense open set. For the open set, take

V = {(c, d) | c̄ ̸= d and τz(c), τz(d) ̸⊂ P} ⊂ C × C.

For (c, d) ∈ V , the lines τz(c) and τz(d) meet at z, and the third line in the plane

spanned by τz(c) and τz(d)) is, by definition, both ic(τz(d)) and id(τz(c)).

Remark 2.4.3. Lemma 2.4.2 affords another description of the birational maps

ψz : Hilb2C 99K U from the proof of Theorem 2.2.1:

ψz({c, d}) = ic(τz(d)).
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Lemma 2.4.4. Each ic is a rational involution whose image is contained in U .

Proof. It is easy to see that i2c = idU . To show that the image of ic is contained in

U , it is enough to show that the image contains U .

Let [L] ∈ U and take [M ] ∈ U be any line with L ∩M ̸= ∅. The plane P ′

spanned by L and M intersects P at a single point y and intersects Y in the union

of L, M , and a third line N . The point y ∈ P must lie on N , so [N ] ∈ F . Taking

c ∈ C to be the ruling N belongs to, [L] = ic([M ]).

Lemma 2.4.5. For all c, the domain of ic includes the following:

(i) the subscheme U ;

(ii) τz(d) for z ∈ Z and d ∈ C if d ̸∈ {c, c̄} and τz(d) ̸⊂ P ;

(iii) τz(c).

If also τz(c) ̸⊂ P for all z, then the domain of ic includes

(iv) any line ℓ ∈ P ∗ ∩ U not of the form τz(d);

(v) τz(c̄).

Proof. Let Q ⊂ Y be the quadric surface with ruling c. It is clear that ic is defined

on U and on τz(d) meeting the conditions in (ii): each of these lines L meets a

unique line M in the ruling c of Q, and the plane P ′ spanned by L and M is not P

so meets Y in dimension one, giving a third line in U . For (iii), the same argument

holds, but the plane P ′ is spanned by τz(d) and a normal vector to that line in the

surface ⋃
d∈C

τz(d) ⊂ Y.
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as in Remark 2.2.2. A line ℓ of the form in (iv) also meets a unique line in the

ruling c of Q, namely τz(c). If τz(c) ̸⊂ P , then the plane spanned by ℓ and τz(c)

is not P so meets Y in dimension one, giving a third line in U . For (v), note that

ψz({c, c̄}) is well-defined; it is the line [TzQ∩P ]. Using ic(τz(c̄)) = ψz({c, c̄}), we see

τz(c̄) is in the domain of ic.

Definition 2.4.6. For c ∈ C, let jc : T 99K T be the rational map already defined

on U ⊂ T by the rational involution ic.

Lemma 2.4.7. Each rational map jc extends to a morphism.

When C is smooth, Lemma 2.4.7 can been deduced from the fact that any

rational map from a smooth variety to an abelian variety extends to a morphism.

However, it is useful to have descriptions for how jc is defined at each point on T ,

motivating a more explicit proof.

Proof of Lemma 2.4.7. Let Q be the quadric surface with a ruling specified by c.

The following cases describe all types of points on T :

(i) [L] ∈ U ;

(ii) τz(d) for z ∈ Z if c̄ ̸= d ∈ C and τz(d) ̸⊂ P ;

(iii) τz(c̄) for z ∈ Z if τz(c̄) ̸⊂ P ;

(iv) z ∈ Z.

On each of these types of points, jc is defined as follows.

(i) Note ic([L]) ̸∈ P ∗, so ic([L]) can be identified with a point of T , and jc([L]) =

ic([L]).
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(ii) The line in the c-ruling of Q that τz(d) meets is τz(c). By Lemma 2.4.5,

ic(τz(d)) is defined: it is the third line ℓ in the plane spanned by τz(c) and

τz(d). We can identify jc(τz(d)) = ic(τz(d)) so long as the line ic(τz(d)) does

not lie in P . To verify this, note that the rational map ψz : Sym2C 99K U

sending {a, b} to ia(τz(b)) is injective, and it is straightforward to check that

the pencil of lines in P through z is the image of the pencil of pairs {a, ā}.

Having assumed c̄ ̸= d, we obtain ic(τz(d)) ̸⊂ P .

(iii) Suppose τz(c) ̸⊂ P . Then by Lemma 2.4.5, ic(τz(c̄)) ∈ z∗. Since z∗ is

contracted in T to a point identified with z, jc(τz(c̄)) = z.

If τz(c) ⊂ P , then ic(τz(c̄)) is not defined: τz(c̄) meets each line in the c-ruling

of Q. Given a line L ⊂ Q in the c-ruling, the plane P ′ spanned by L and

τz(c) intersects Y in a third line M . Noting that P ′ contains z and L ∩ P , we

see [M ] ∈ z∗. Different choices of L give different lines [M ] ∈ z∗, but z∗ is

contracted to z in T , so we may define jc(τz(c̄)) = z.

(iv) Since jc is an involution, applying jc to both sides of (iii) gives jc(z) = τz(c̄).

2.5 A torsor associated to the Fano variety

In this section, we restrict to the case that C is smooth, so T is

geometrically isomorphic to the abelian surface Pic0C . However, no isomorphism

between T and Pic0C need be available if none of the points in Z are k-rational.

This section describes how to endow T with the structure of a Pic0C torsor,

following the approach of Wang in [35]. The strategy is to put a group scheme

structure on the disconnected group variety

Pic0C ⊔ T ⊔ Pic1C ⊔ T ′
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where T ≃ T ′, and points in T ′ are the “negatives” of points in T . Since the

construction is rather technical, it is worth giving a simple description of the group

law in a few cases.

– addition on Pic0C ⊔ Pic1C is as in PicC /ωC ;

– for [L] ∈ U ⊂ T and (c) ∈ Pic1C , the sum [L] + (c) is the “negative” of the

third line coplanar to L and σL(c̄);

– a pair of lines [L], [M ] ∈ U ⊂ T that meet are coplanar to a third line which

must meet P so belongs to some ruling c ∈ C of a quadric surface, and [L] +

[M ] = (c) ∈ Pic1C ;

– a general pair of skew lines [L], [M ] ∈ U ⊂ T span a P3 intersecting Y in a

smooth cubic surface, and in that surface there are three lines meeting all of

[L], [M ], and P . Those lines belong to F so specify three points on C, and

the sum of these three points is [L] + [M ] ∈ Pic1C .

The proofs of Lemmas 2.5.2 and 2.5.4 below use information about the

incidence relations between lines on cubic surfaces. We fix the following notation

for the lines on a smooth cubic surface over an algebraically closed field, similar to

the notational scheme used in [13, V.4].

Notation 2.5.1. A smooth cubic surface S over an algebraically closed field is the

blowup of P2 at six points p1, . . . , p6 in general position and contains 27 lines:

(i) the six exceptional divisors Ei;

(ii) for each pair {i, j}, the proper transform ℓij of the line joining pi to pj;

(iii) and for each i, the proper transform Fi of the conic passing through all the pj

except pi.
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The incidence relations are as follows:

(i) Ei meets ℓij and fj for i ̸= j;

(ii) ℓij meets Ei, Ej, Fi, Fj, and ℓhk for {i, j} ∩ {h, k} = ∅;

(iii) Fi meets Ej for i ̸= j and ℓij for all j.

Moreover, given six pairwise skew lines L1, . . . , L6 ⊂ S, the blowdown of the Li is

isomorphic to P2, so one may assume Li = Ei.

Let T ′ be the variety isomorphic to T whose points are written −t for each

t ∈ T .

Lemma 2.5.2. The rules

t+ (c) = −jc̄(t)

and

−t+ (c) = jc(t)

define an action of Div(C) on T ⊔ T ′.

Proof. For the action to be well-defined, (c) + (d) must act the same as (d) + (c), so

we need to check jc ◦ jd̄ = jd ◦ jc̄ for any c, d ∈ C.

Work over ks. As T is irreducible, it suffices to show that the two maps

C × C × T → T sending (c, d, t) to jd ◦ jc̄(t) and jc ◦ jd̄(t) agree on a nonempty

open set. In particular, we can choose t = [L] ∈ U and c ̸= d ∈ C such that the P3

spanned by the lines σL(c̄) and σL(d̄) meets Y in a smooth cubic surface S.

Label σL(c̄) = E1, σL(d̄) = E2, and L = ℓ12, using the notation for the lines

on a smooth cubic surface. Notice that S ∩ P is a line meeting σL(c̄) and σL(d̄) but

not L. Label this line F6.
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Now we calculate jc̄([L]) = [F2]: indeed, only the line F2 meets E1 and ℓ12.

The line ℓ26 meets E2 and F6 hence σL(d̄) and P , so it is a line in the ruling of a

quadric surface specified by d. As jc̄([L]) = [F2] meets ℓ26, jd ◦ jc̄([L]) is the line

meeting F2 and ℓ26, namely E6. One calculates jc ◦ jd̄([L]) = [E6] similarly.

Proposition 2.5.3. The principal divisors act trivially on T ⊔ T ′, so the action of

Div(C) on T ⊔ T ′ descends to an action by PicC.

Proof. First, notice that T and T ′ are in different orbits of the action by Div0(C),

and it suffices to show that principal divisors act trivially on T .

Every nontrivial divisor class in Pic0C can be represented as a difference of

two effective divisors of degree 1 in exactly two ways: if (c) − (d) represents D,

then so does (d̄) − (c̄). By Lemma 2.5.2, jc ◦ jd = jd̄ ◦ jc̄, so there is a well-defined

morphism Pic0C → Aut(T ) sending (c)− (d) to jd̄ ◦ jc̄.

The map is automatically a homomorphism: its image is a commutative,

projective subgroup scheme, and any unital morphism of abelian varieties is a

homomorphism. Moreover, jd̄ ◦ jc̄(t) = t + (c) − (d), so the homomorphism

Div0(C) → Aut(T ) coming from the group action described earlier factors through

the morphism Pic0C → Aut(T ), i.e. principal divisors are in the kernel.

Note that ωC acts trivially on T ⊔ T ′ since

t+ (c) + (c̄) = j2c̄ (t) = t,

so the action by PicC descends to an action by

PicC /ωC
∼= Pic0C ⊔ Pic1C .

Note that Pic0C acts on each of T and T ′, and an element of Pic1C exchanges the

components T and T ′. The following lemma shows T ⊔ T ′ is a torsor over Pic0C ⊔

Pic1C .
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Proposition 2.5.4. The action described above makes T ⊔ T ′ a torsor over Pic0C ⊔

Pic1C.

Proof. To show that the action of Pic0C ⊔Pic1C on T ⊔T ′ is transitive, we must check

that for each s, t ∈ T ,

(i) there is a divisor class [D] ∈ Pic1C so that s+ [D] = −t;

(ii) there is a divisor class [E] ∈ Pic0C so that s+ [E] = t.

Moreover, we verify

(iii) the action of Pic0C on T is free;

(iv) the action of Pic0C ⊔ Pic1C on T ⊔ T ′ is free.

(i) First, we show that when [L], [M ] ∈ U span a P3 meeting Y in a smooth cubic

surface, there exists [D] ∈ Pic1C so that [L] + [D] = −[M ].

Using Lemma 2.2.4, let c, d, e ∈ C be the points lying below σL ∩ σM ⊂ F .

No two of σL(c), σL(d), σL(e) meet: if σL(c) met σL(d), then they would span a

plane containing L and M which would not meet X in degree three. Working over

ks and using the standard notation for lines on the cubic surface S, assume L = E1,

M = E2, S ∩ P = E3, σL(c) = F4, σL(d) = F5, and σL(e) = F6. One calculates

jd̄ ◦ jc([L]) = jd̄([ℓ14]) = [ℓ26] = je([M ]),

so

(e)− [M ] = [L]− (c)− (d),

and

[L] + (c̄) + (d̄) + (ē) = −[M ].

Taking [D] = (c̄) + (d̄) + (ē)− ωC , we are done.
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Now, for [L] ∈ U , define a morphism sL : Pic1C → T ′ by sL([D]) = [L] + [D].

By the above, the image of sL contains the dense open set

V = {−[M ] | [M ] ∈ U and span(L,M) ∩ Y is a smooth cubic surface},

so sL is surjective.

Next, consider the summation map

Σ : T × Pic1C → T ′, (u, [D]) 7→ u+ [D].

Let −t ∈ T ′. As sL is surjective for each [L] ∈ U , we get

U ⊂ π1(Σ
−1(−t))

where π1 is the projection T × Pic1C → T . Since π1 is closed,

π1(Σ
−1(−t)) = T.

That is, for each s ∈ T there exists [D] ∈ Pic1C so that s+ [D] = −t.

(ii) Apply (i) to obtain [D], [E] ∈ Pic1C with s + [D] = −t and t + [E] = −t.

Then s+ [D − E] = t.

(iii) Work over ks. It is enough to check that if (c) + (d) fixes a point z ∈

Z ⊂ T , then (c) + (d) = ωC . Indeed, if z = z + (c) + (d), then

z + (d̄) = z + (c)

jd(z) = jc̄(z)

τz(d̄) = τz(c),

so d̄ = c since τz is an embedding.

(iv) The argument for (iii) also shows Pic0C acts freely on T ′. Moreover, if

t+ [D] = t+ [E] for t ∈ T ⊔ T ′ and [D], [E] ∈ Pic1C , then [D]− [E] ∈ Pic0C fixes t, so

[D]− [E] = 0 by (iii).

We now prove our main structural results about T .
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Theorem 2.5.5. There is a commutative group law on

G = Pic0C ⊔ T ⊔ Pic1C ⊔ T ′

extending the group law on Pic0C ⊔ Pic1C such that for s, t ∈ T ⊔ T ′ and c ∈ C,

1. s+ (c) = −jc̄(s) and −s+ (c) = jc(s);

2. s+ t is the unique divisor class [D] such that −s+ [D] = t under the action of

Pic0C ⊔ Pic1C on T ⊔ T ′ defined prior.

Proof. All that remains to check is that the group law is associative, i.e. the

following all hold for for s, t, u ∈ T ⊔ T ′ and [D], [E], [F ] ∈ Pic0C ⊔ Pic1C .

(i) ([D] + [E]) + [F ] = [D] + ([E] + [F ])

(ii) (s+ [D]) + [E] = s+ ([D] + [E])

(iii) (s+ t) + [D] = s+ (t+ [D])

(iv) (s+ t) + u = s+ (t+ u)

The first is inherited from the associativity of Pic0C ⊔ Pic1C , and the second follows

from the fact that Div(C) acts on T ⊔ T ′. For (iii), let [E] = s + t, meaning [E] is

the unique divisor class such that −s+ [E] = t. Using (ii),

−s+ ([E] + [D]) = t+ [D],

i.e.

−s+ ((s+ t) + [D]) = t+ [D].

Similarly, s+ (t+ [D]) is defined by the equation

−s+ (s+ (t+ [D])) = t+ [D],
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so

−s+ ((s+ t) + [D]) = −s+ (s+ (t+ [D])).

Since Pic0C ⊔ Pic1C acts freely on T ⊔ T ′, we deduce

(s+ t) + [D] = s+ (t+ [D])

proving (iii). For (iv), let K1 = (s + t) + u and K2 = s + (t + u). Using (iii) and

commutativity,

t+K1 = t+ (u+ (s+ t))

= (t+ u) + (s+ t)

= (t+ s) + (t+ u)

= t+ (s+ (t+ u))

= t+K2,

so again using (iii), the divisor class t + K1 sends −K1 and −K2 both to t. As

Pic0C ⊔ Pic1C acts invertibly, K1 = K2.

Corollary 2.5.6. In H1(k,Pic0C), 4[T ] = 0 and 2[T ] = [Pic1C ].

Proof. There is a short exact sequence of group schemes

0 −→ Pic0C −→ G
π−→ Z/4Z −→ 0

where π(T ) = 1, π(Pic1C) = 2, and π(T ′) = 3. This yields a short exact sequence

0 −→ Pic0C(k
s) −→ G(ks)

π−→ Z/4Z −→ 0

of Galois modules. In the long exact sequence in Galois cohomology, the connecting

homomorphism H0(k,Z/4Z) → H1(k,Pic0C) sends 1 7→ [π−1(1)] = [T ] and 2 7→

[Pic1C ].

This completes the proof of Theorem 1.0.2.
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2.6 Connections to rationality

We retain earlier notation from the previous section for a general cubic

threefold Y containing a plane P . The threefold Ỹ = BlP Y is smooth and

geometrically rational as the quadric surface fibration q : Ỹ → P1 admits a section

over ks. If the torsor T has a k-point, then there is a section of q defined over k:

either one of the points in Z or a line in Y \ P . So, if T is trivial, Ỹ is rational

over k. We will see, perhaps surprisingly, that when char(k) = 0, the converse is

also true, so the arithmetic of T controls the rationality of Ỹ . To prove this, we

use recent results about the Chow scheme of a smooth, k-rational threefold over an

arbitrary field outlined in Section 1.5.

For the proof of our main theorem below, we argue as in [16, Thm 36] where

Hassett and Tschinkel prove a similar result for an intersection of quadrics in P5.

Theorem 2.6.1. Suppose k is a field of characteristic zero. Then Ỹ is k-rational if

and only if T (k) ̸= ∅.

Proof. If T (k) ̸= ∅, we have already seen Ỹ is k-rational. So, suppose Ỹ is k-

rational, and let γ ∈ NS2(Ỹk̄)
Aut(k̄/k) be the algebraic equivalence class of a line

in Y \ P . By rigidity, the rational map U → (CH2
Ỹ /k

)γ sending a line in Y \ P ⊂ Ỹ

to its rational equivalence class extends to a morphism T → (CH2
Ỹ /k

)γ. Moreover,

any two lines in Y \ P are rationally inequivalent on Ỹ , for a rational equivalence

between two lines determines a morphism P1 → T , which must be constant. Hence

T embeds in (CH2
Ỹ /k

)γ. By Lemma 1.5.2, dim((CH2
Ỹ /k

)γ) = 2, so this embedding is

an isomorphism. Note that this is the only point at which we use the assumption

on the characteristic of k.

Now, T ≃ (CH2
Ỹ /k

)γ is a torsor of (CH2
Ỹ /k

)0 as well as a torsor of Pic0C , so

Lemma 2.6.2 below implies (CH2
Ỹ /k

)0 ≃ Pic0C . Under the assumption that Ỹ is
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rational, [7, Thm. 3.11(iii)] affords some e ∈ Z for which

[T ] = [(CH2
Ỹ /k

)γ] = [PiceC ] ∈ H1(k,Pic0C).

Since C is hyperelliptic, 2[PiceC ] = 0 for all e, and applying Corollary 2.5.6,

[Pic1C ] = 2[T ] = 2[PiceC ] = 0 ∈ H1(k,Pic0C).

Hence [PiciC ] = 0 for all i, and in particular [T ] = 0, which means T has a k-

point.

Lemma 2.6.2. If T is a torsor over two abelian varieties A,B, then A ≃ B.

Proof. Over ks, choose some point t ∈ T and define an action of A on B by the

following: a · b = b′ where b′ ∈ B is the unique point with b′t = a(bt). The action is

simply transitive and descends to k since (σa) · b = σ(a · b); indeed,

(σa) · b = b′

⇐⇒ b′t = (σa)(bt)

⇐⇒ b′t = σ(a(bt))

⇐⇒ σ−1(b′t) = a(bt)

⇐⇒ (σ−1b′)t = a(bt)

⇐⇒ a · b = σ−1b′

⇐⇒ σ(a · b) = b′.

Having equipped B with the structure of an A-torsor, we conclude A ≃ B since

B(k) ̸= ∅.

Most likely, Theorem 2.6.1 holds for any field k, though the proof would

require a finer understanding of the Chow scheme.

Corollary 2.6.3. If 0 ̸= [Pic1C ] ∈ H1(k,Pic0C), then Ỹ is irrational over k.
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Proof. If Pic1C is nontrivial, then so is T , and we apply Theorem 2.6.1.

Corollary 2.6.4. If Y contains a quadric surface Q over k ⊂ C for which Q(k) =

∅, then Ỹ is irrational over k.

Proof. Since Q(k) = ∅, there can be no section of the quadric surface fibration q, so

also T (k) = ∅, and we apply Theorem 2.6.1.

Corollary 2.6.4 is useful for producing smooth, geometrically rational

threefolds over Q that are Q-irrational.

Example 2.6.5. Let Ỹ be the blowup along P = {x0 = x1 = 0} of the cubic

threefold

Y = {x0q0 + x1q1 = 0}

where

q0 = x20 + x21 + 2x22 + 3x23 + 5x24

and

q1 = x20 + x21 + x22 + x23 + x24,

all of which is defined over Q. Note Ỹ is smooth and geometrically rational.

However, Y contains the quadric surface Q = {x0 = q1 = 0}, and Q(R) = ∅, so

Corollary 2.6.4 shows that Ỹ is irrational over any subfield of R.

It would be interesting to apply Theorem 2.6.1 to local-global questions

about rationality. For example, consider the following question:

Question 2.6.6. Is there a general cubic threefold Y containing a plane P over a

number field K for which Ỹ is Kv-rational for all places v but irrational over K

itself?
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In other words, can Ỹ violate the Hasse principle with respect to rationality?

There are as yet no examples of smooth threefolds violating the Hasse principle

with respect to rationality. To answer Question 2.6.6 amounts to finding an

example where T is a nontrivial element of the Tate-Shafarevitch group (i.e.

T (Kv) ̸= ∅ for all v, but T (K) = ∅).

Toward producing an example, consider the following results.

Proposition 2.6.7. If C has good reduction at p ̸= 2, then ỸQp is rational.

Proof. As C has good reduction at p, so too do Ỹ and T . By Lang’s theorem, Tp

has an Fp-point, and by Hensel’s lemma, this lifts to a Qp point of TQp . This point

specifies a Qp-rational section of q, which makes ỸQp rational.

Corollary 2.6.8. For all but finitely many places v of Q, ỸQv is rational.

Proof. Since C has good reduction at all but finitely many primes p, this follows

directly from Proposition 2.6.7.

One obstacle in producing an example to answer Question 2.6.6 in the

affirmative is the difficulty of proving that the torsor T is nontrivial. One approach

would be to show that Pic1C is nontrivial since the relation 2[T ] = [Pic1C ] would

then force [T ] ̸= 0. However, there are few tools to use to do this in general: we

will sketch the premier approach for showing [Pic1C ] ̸= 0, introduced by Poonen and

Stoll:

Step 1. Count the number N of “deficient places” of C, i.e. the number of places v

for which there is no odd Kv-rational divisor (not just divisor class!) on Cv.

Step 2. Under the Cassels-Tate pairing on the Tate-Shafarevitch group of C,

⟨Pic1C ,Pic1C⟩ = N/2 ∈ Q/Z
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by [32, Thm. 11]. If N/2 ̸= 0, then conclude that Pic1C is nontrivial.

However, the following lemma and its corollary show that this strategy will not

work in our examples.

Lemma 2.6.9. Suppose T (K) ̸= ∅ for some field extension K/k. Then C has an

odd K-rational divisor.

Proof. The K-rational point on T can be one of four types:

(i) a singular point z ∈ P ⊂ Y ,

(ii) a line in a quadric surface Q ⊂ Y passing through a singular point z ∈ P ⊂

Y , or

(iii) a line in Y \ P .

A line of type (ii) belongs to a ruling of a quadric surface in Y so specifies a K-

rational point in C. In case (i), suppose first that Z = {x, y, z, w} is reduced, let

x be the K-rational point. Then the triple of lines xy, xz, xw is K-rational and

belongs to the intersection F ∩ P ∗ by Lemma 2.3.1. This triple specifies a K-

rational divisor of odd degree on C.

For case (iii), we first prove that there is a hyperplane H ⊃ L for which

Y ∩ H is smooth. By Bertini’s theorem, for a generic hyperplane containing L, the

intersection Y ∩ H is smooth away from L. The hyperplanes for which Y ∩ H is

singular along L are TxY for x ∈ L, of which there is only a pencil, so a generic

hyperplane containing L is also smooth along L.

Now, S = Y ∩H is a smooth cubic surface containing two K-rational lines: L

and H ∩P . There are five lines M1, . . . ,M5 meeting these two, and each Mi belongs

to a ruling of a quadric surface so specifies a point ci ∈ C. Over K, the divisor

c1 + · · ·+ c5 is defined.
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Corollary 2.6.10. Suppose T is locally solvable. Then ⟨Pic1C ,Pic1C⟩ = 0 under the

Cassels-Tate pairing.

Proof. By Lemma 2.6.9, Cv is nowhere deficient, i.e. for each place v of the ground

field K, there is a k-rational odd divisor on C. Then apply [32, Thm. 11].

Remark 2.6.11. Lemma 2.6.9 echoes Bhargava, Gross, and Wang’s result [8, Thm.

29], which makes the same claim when T is the torsor studied by Wang in [35]

whose points correspond to maximal linear spaces in a complete intersection of

two quadrics. In fact, the result by Bhargava et al. is stronger, asserting that if a

hyperelliptic curve C has an odd K-rational divisor class, then there is a complete

intersection of quadrics defined over k whose Fano variety of maximal linear spaces

is a torsor of Pic0C .
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CHAPTER III

CUBIC FOURFOLDS CONTAINING A PLANE

In this chapter, X is a general cubic fourfold of discriminant 8 and P ⊂ X

is a plane; here, the term general refers to the open conditions that X is smooth

and contains no other plane meeting P . The ground field k need not be closed

but has characteristic not equal to 2. Our foundational geometric ingredient

is the quadric surface fibration q : BlP X → P⊥ obtained via projection to a

complementary plane P⊥, described in Example 1.2.3. A sextic curve ∆ ⊂ P⊥

called the discriminant of q parametrizes the singular fibers of q. Here, we use

the assumption on the characteristic of k as ∆ is cubic when char(k) = 2 by [17,

Sect. 4.1]. The assumption that X contains no plane meeting P guarantees that

the singular fibers of q are no worse than cones and, by Lemma 2 in [34], that ∆ is

smooth.

A double cover S of P⊥ branched over ∆ parametrizes rulings of the fibers

of q, and since ∆ is a smooth sextic, S is a smooth K3 surface. The lines in the

fibers of q form a conic bundle over S defining a Brauer class α ∈ Br(S)[2]. We

have discussed the Hodge-theoretic relationship between X and the twisted K3

surface (S, α) in Section 1.4.

Let F be the Fano variety of lines on X, a smooth fourfold. Recall from

Example 1.4.3 that in the case k = C, F is hyperkähler, and the Beauville-

Bogomolov form detects that there is another hyperkähler fourfold M birational

to F admitting a Lagrangian fibration M → P2. This chapter describes how to

construct the Lagrangian fibration explicitly in a way that works over an arbitrary

field of characteristic different from 2. We then give another perspective on the

Lagrangian fibration in characteristic zero by reproving a result from [27] that F is
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birational to a moduli space of α-twisted torsion sheaves on S supported on curves

in a 2-dimensional linear system, from this point of view, the Lagrangian fibration

sends a twisted sheaf to its support.

Section 3.1 constructs the Lagrangian fibration explicitly using geometry

from Chapter II. In Section 3.2, we reprove Kuznetsov’s result that there is an

equivalence AX ≃ Db(S, α), at least in characteristic zero, giving a more explicit

equivalence than the one in [24]. Using this equivalence, Section 3.3 outlines how to

regard F as birational to a moduli space of α-twisted sheaves on S.

3.1 A rational Lagrangian fibration

For a line L ⊂ X \ P , the projection q(L) ⊂ P⊥ is again a line, allowing

us to define a rational map π : F 99K (P⊥)∗ by π([L]) = [q(L)]. In light of

Example 1.4.3, the following lemma shows that when k = C, π is the rational

Lagrangian fibration detected by the Beauville-Bogomolov form. This observation

motivates the definition of π but is not necessary for any results in what follows,

so we are free to refer to results proved later in this section in order to verify some

details in the proof.

Lemma 3.1.1. The linear system |α(Q)| induces π, where Q ⊂ X is a quadric

surface and α : H4(X,Z) → H2(F,Z) is the Abel-Jacobi map.

Proof. The class α([Q]) is represented by a divisor D ⊂ F parametrizing lines in

X meeting Q, and there is an open set U ⊂ D parametrizing lines meeting Q but

not P . Let p ∈ P⊥ be the image under q of the proper transform of Q. For each

[L] ∈ U , we have p ∈ q(L), so

π([L]) ∈ p∗ ⊂ (P⊥)∗.
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Hence U ⊂ π−1(p∗), so also D ⊂ π−1(p∗) where by π−1(p∗) we mean the closure of

the set of lines in the domain of π mapped to p∗.

We now measure the difference between π−1(p∗) and D. By Lemma 3.1.5

below, if [L] ∈ π−1(p∗) and L∩P = {x}, then there is some [ℓ] ∈ p∗ such that X∩H

is singular at x where H is the hyperplane spanned by P and ℓ. By Lemma 3.1.3

below, X ∩ H has finitely many singular points along P , and through each point

x ∈ P there is a one-dimensional family of lines in X. Hence π−1(p∗) differs from D

by at most a 2-dimensional subscheme, so [D] = [π−1(p∗)] as divisor classes.

Now, p∗ is a line in (P⊥)∗, so π−1(p∗) represents the divisor class

π∗O(P⊥)∗(1), which proves that the complete linear system

|α(Q)| = |[D]| = |[π−1(p∗)]|

induces π.

Before proving that π is rational Lagrangian, it is worth explaining the

relationship between (closures of) fibers of π and the content of Chapter II. Note

that if L ⊂ P⊥, then π−1([L]) ⊂ F contains all the lines in (X \ P ) ∩H where H is

the hyperplane spanned by P and L. In the language of Theorem 2.2.1, π−1([L]) is

the subscheme U of the Fano scheme of lines on Y = X ∩H.

We proceed as follows: first, we verify that π extends to F \ P ∗; second, we

show that the blowup BlP ∗ F resolves the indeterminacy of π; finally, we show that

π factors through the contraction of the exceptional divisor

E = {([L], x) | x ∈ L ⊂ P} ⊂ BlP ∗ F

via the second projection. From this, we obtain a Lagrangian fibration from

the Mukai flop of F along P ∗ whose fibers exhibit the arithmetic of the torsors

described in Section 2.5.
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Lemma 3.1.2. For each x ∈ P , there is a unique hyperplane H ⊃ P for which

X ∩H is singular at x.

Proof. Since X is a hypersurface, X ∩ H is singular at x if and only if H = TxH.

When x ∈ P , one also has TxP ⊃ P .

Lemma 3.1.3. For each hyperplane H ⊃ P , the singular locus of X ∩H along P is

zero-dimensional of length four.

Proof. There is a morphism g : P → (P⊥)∗ sending x 7→ ([TxX ∩ P⊥]), and the

fiber of g over [L] ∈ (P⊥)∗ is the singular locus of X ∩ H along P , where H is the

hyperplane spanned by P and L. Since any cubic threefold containing a plane has

singularities along the plane, g is surjective. Hence g is finite, as is any surjective

endomorphism of P2. We end by applying Lemma 2.1.2, which says that a cubic

threefold containing a plane P with finitely many singularities along P has four

nodes on P , counting multiplicity.

In other words, for each hyperplane H ⊂ P , the cubic threefold Y = X ∩H

containing P is general in the sense of Chapter II. The analysis of the Fano variety

of lines on each cubic threefold Y obtained as such a hyperplane section helps to

show to extend π to its domain.

Proposition 3.1.4. The domain of π is F \ P ∗.

The claim follows immediately from the next two lemmas.

Lemma 3.1.5. Let M be a line in X meeting P in exactly one point x. Then [M ]

belongs to the domain of π, and π([M ]) = [TxX ∩ P⊥].

Proof. Let

H = {(L,H) | L, P ⊂ H} ⊂ F ×Gr(5, 6),
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let p1 be the first projection, and let p2 : H → (P⊥)∗ send (L,H) 7→ [H ∩ P⊥]. If

L ⊂ X \ P , then p−1
1 ([L]) = {(L,H)} where H is the hyperplane spanned by L and

P , and p2(L,H) = π([L]), which verifies that the diagram below commutes.

H

F (P⊥)∗

p1 p2

π

Now, for each ℓ ⊂ P⊥, the restriction of p1 to p−1
2 ([ℓ]) is an embedding, and

moreover p−1
2 ([ℓ]) can be identified with the Fano scheme of lines on Y = X ∩ H

where H is the hyperplane spanned by P and ℓ. Let Z = P ∩ Sing(Y ), and let

P ∗, F , and U be the three components of this Fano scheme, as in Theorem 2.2.1.

We have U = π−1([ℓ]), so [M ] ∈ π−1([ℓ]) if and only if [M ] ∈ U ∩ F , which by

Lemma 2.3.7 holds if and only if M∩Z ̸= ∅. Since M∩P = {x}, we have M∩Z ̸= ∅

if and only if Y is singular at x, which occurs precisely when H = TxX. Thus [M ]

lies in the closure of the π−1([ℓ]) if and only if ℓ = TxX ∩ H. Since F is normal, π

extends to [M ].

Lemma 3.1.6. Each point [L] ∈ P ∗ lies in the closures of a pencil of fibers of π.

Specifically, [L] ∈ π−1([M ]) if and only if M = TxX ∩ P⊥ for some x ∈ L.

Proof. Suppose M ⊂ P⊥, let H be the hyperplane spanned by P and M let Y =

X ∩ H, and let F (Y ) be the Fano scheme of lines on Y . As usual, we refer to the

components of F (Y ) as U , F , and P ∗. Since L ⊂ P , we have [L] ∈ U if and only

if L passes through a node of Y by Lemma 2.3.3, and this is the case if and only if

H = TxX for some x ∈ L. This completes the argument since π−1([M ]) = U .

Lemma 3.1.6 helps to describe the resolution of indeterminacy of π:

Lemma 3.1.7. The blowup of F along P ∗ resolves the indeterminacy of π.
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Proof. Let Γ ⊂ F × (P⊥)∗ be the graph of π along with its projections p1 and p2,

and note that since π does not extend to any point on P ∗, the projection p1 factors

through BlP ∗ F . By Lemma 3.1.6, the exceptional divisor E ′ of Γ → F can be

identified with

{([L], [TxX ∩ P⊥]) | x ∈ L},

and the induced map

E ′ → E = {([L], x) | x ∈ L ⊂ P} ⊂ BlP ∗ F

is an isomorphism. Hence Γ ≃ BlP ∗ F , as needed.

As mentioned in Section 1.4, the exceptional divisor E ⊂ BlP ∗ F can be

contracted via the projection E → P to give a blowdown q : BlP ∗ F → M where M

is again a smooth variety, called the Mukai flop of F along P ∗. Over C, M is again

hyperkähler.

Proposition 3.1.8. The map p2 : BlP ∗ F → (P⊥)∗ factors through q : BlP ∗ F →M .

Proof. Let [N ] ∈ (P⊥)∗, and let H be the hyperplane spanned by P and N . By

Lemmas 3.1.6 and 3.1.7,

p−1
2 ([N ]) ∩ E =

⋃
x∈P∩Sing(X∩H)

{([L], x) | x ∈ L ⊂ P},

so p−1
2 ([N ]) ∩ E consists of a union of fibers of q : BlP ∗ F →M .

We arrive at the following commutative square.

BlP ∗F M

F P2

p

q

ρ

π

The smooth fibers of ρ are geometrically abelian surfaces: in fact, they are

the types of surfaces T whose arithmetic we analyzed in Section 2.5:
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Proposition 3.1.9. Let T = ρ−1([L]) be a smooth fiber of ρ. Then there is a double

cover C of L branched over L ∩ ∆ for which T is a Pic0C-torsor. Moreover, 2[T ] =

[Pic1C ] in the Weil-Châtelet group.

Proof. Let H be the hyperplane spanned by P and L. Then Y = X ∩ H is a

general cubic threefold containing P by Lemma 3.1.3. The quadric surface fibration

BlP Y → L has discriminant locus L ∩ ∆, and let C be the double cover of L

parametrizing lines in the fibers of q. Let F (Y ) be the Fano variety of lines on Y ,

and let U be the closure of the set of lines in Y \ P . Note that U = π−1([L]), and

from the natural embedding BlU∩P ∗ U ⊂ BlP ∗ F , we identify

(π ◦ p)−1([L]) = BlU∩P ∗ U .

By the proof of Proposition 3.1.8, the restriction of q to (π ◦ p)−1([L]) contracts

a line in U for each point in P ∩ Sing(X ∩ H). The same lines are contracted by

the defining morphism BlU∩P ∗ U → T from Lemma 2.3.4. Hence we can identify

ρ−1([L]) with the Pic0C-torsor T and apply Theorem 1.0.2.

This concludes the proof of Theorem 1.0.1. In particular, the arithmetic

from Section 2.5 clarifies the geometry of the smooth fibers of ρ, which over C are

already guaranteed by results about hyperkähler varieties to be abelian surfaces, as

explained in Section 1.4.

3.2 The derived category

Recall that the Kuznetsov component AX ⊂ Db(X) is defined as the left

orthogonal complement

AX = ⟨OX(−1),OX ,OX(1)⟩⊥.
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As mentioned in Section 1.3, Kuznetsov proved in [24] that AX is equivalent to

the a the derived category of twisted coherent sheaves Db(S, α), at least over the

ground field C.

Here, we reprove Kuznetsov’s result for a general cubic fourfold X of

discriminant 8 over a field k of characteristic zero, using an approach similar to

Addington and Lehn’s proof in [2] of Kuznetsov’s equivalence for discriminant 14.

The utility of our equivalence is that its geometric character allows us to recast the

Fano variety F of lines on X as birational to a moduli space of rank zero sheaves

on S in the next section.

The first step is to construct a functor Φ : Db(S, α) → Db(X), which we do

by specifying a Fourier-Mukai kernel K ∈ Db(X × S, 1⊠ α); then Φ is defined by

Φ(−) = (π1)∗(π
∗
2(−)⊗ K)

where πi is the ith projection from X × S. To choose an appropriate kernel K, first

note than a point s ∈ S specifies a ruling of a quadric surface i : Q ↪→ X hence also

a sheaf i∗IL/Q which is independent of the choice L of line in the ruling of Q. The

sheaf i∗IL/Q(1) is globally generated, so the canonical map

O2
X ≃ H0(X, i∗IL/Q(1))⊗ OX

ev→ i∗IL/Q(1)

is surjective. Twisting and taking kernels, there are short exact sequences

0 → KL/Q → OX(−1)2
ev→ i∗IL/Q → 0

defining a collection of sheaves KL/Q on X. The Brauer class α obstructs the

existence of a section F1(BlP X/S) of the relative variety of lines of the quadric

surface fibration, i.e. a choice of line in each ruling of each fiber of q. Similarly, the

obstruction to a universal sheaf on X × S whose restriction to each slice X × {s}

is the corresponding sheaf π∗
1KL/Q is the Brauer class 1 ⊠ α, so such a universal
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sheaf K lies in Db(X × S, 1 ⊠ α). Let Φ : Db(S, α) → Db(X) be the Fourier-Mukai

transform with kernel K.

Theorem 3.2.1. The functor Φ takes values in AX and is an equivalence onto its

essential image.

By the following lemma, we need to check that the image of Φ is AX and

that Φ is fully faithful.

Lemma 3.2.2. Any fully faithful exact functor of triangulated categories Ψ : C →

AX admitting left and right adjoints is an equivalence.

Proof. As Ψ has left and right adjoints, its image is a component of a semi-

orthogonal decomposition. The Serre functor on AX is the shift −[2], so the left

and right orthogonal complements to the image of Ψ coincide. As explained in

Section 1.3, AX is indecomposable, so by [18, Cor. 1.56], Ψ must be essentially

surjective.

Proposition 3.2.3. The image of Φ is contained in AX .

The following lemmas leverage the proof of Proposition 3.2.3.

Lemma 3.2.4. If L is a line in a quadric surface i : Q ↪→ X, then

dimExtiX(OX(j), i∗IL/Q) =



0, j = 0, 1

2, j = −1, i = 0

0, j = −1, i ̸= 0.

Proof. Note ExtiX(OX(j), i∗IL/Q) ∼= H i(Q,IL/Q(−j)). To calculate these

cohomology groups, consider the exact sequence

0 → IL/Q(−j) → OQ(−j) → OL(−j) → 0
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For j = 0, 1, the long exact sequence in cohomology forces the cohomology of

IL/Q(−j) to vanish. For j = −1, we have h0(Q,OQ(1)) = 4 and h0(Q,OL(1)) = 2,

and the higher cohomology of these sheaves vanishes. Moreover, the map

H0(Q,OQ(1)) → H0(L,OL(1))

is a surjection since any linear form on L is the restriction of a linear form on Q (in

fact, the restriction of a linear form on P3). Hence

hi(Q,IL/Q(1)) =


2, i = 0

0, i ̸= 0

as needed.

Lemma 3.2.5. KL/Q ∈ AX for all L ⊂ Q ⊂ X.

Proof. We must show ExtiX(OX(j), KL/Q) = 0 for L ⊂ Q ⊂ X, j = −1, 0, 1, and all

i. From the short exact sequence

0 → KL/Q → OX(−1)2 → i∗IL/Q → 0,

we obtain a long exact sequence

· · · → ExtiX(OX(j),OX(−1)2) → ExtiX(OX(j), i∗IL/Q) → Exti+1(OX(j), KL/Q)

→ Exti+1
X (OX(j),OX(−1)2) → . . .

When i > 0, this yields isomorphisms

Exti+1
X (OX(j), KL/Q) ∼= ExtiX(OX(j), i∗IL/Q) = 0

for j = −1, 0, 1, using Lemma 3.2.4. Taking i = 0, we have

0 → H0(X,KL/Q(−j)) → H0(X,OX(−j − 1)2) → H0(X, i∗IL/Q(−j)).
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The middle term, hence also the first term, vanishes for j = 0, 1. For j = −1, we

get

H0(X,KL/Q(1)) = ker[H0(X,O2
X)

ev→ H0(X, i∗IL/Q(1))] = 0,

completing the calculations.

Proof of Proposition 3.2.3. Let ΦL be the left adjoint to Φ, which exists by [18,

Prop. 5.9]. By Lemma 3.2.5, Φ(Os) = KL/Q ∈ AX , so

Exti(ΦL(OX(j)),Os) ∼= Exti(OX(j), KL/Q) = 0

for −1 ≤ j ≤ 1 and all i. Hence ΦL(OX(j)) = 0 for −1 ≤ j ≤ 1. It follows that the

image of Φ lies in AX .

The remaining piece to the proof of Theorem 3.2.1 is the following

proposition.

Proposition 3.2.6. The Fourier-Mukai transform Φ : Db(S, α) → AX is fully

faithful.

Bondal and Orlov provide the following criterion for Φ to be fully faithful, as

outlined in [18, Ch. 7]:

dimExti(Φ(Os),Φ(Ot)) =


1, if s = t, i = 0

0, if s ̸= t or i < 0 or i > 2.

In other words, we must show

dimExti(KL1/Q1 , KL2/Q2) =


1, if IL1/Q1 ≃ IL2/Q2 and i = 0

0, if IL1/Q1 ̸≃ IL2/Q2 or i < 0 or i > 2.

We first prove a few lemmas.

Lemma 3.2.7. HomX(KL1/Q1 , KL2/Q2)
∼= HomX(h∗IL1/Q1 , i∗IL2/Q2) where h and i

are the inclusions of Q1 and Q2, respectively.
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Proof. Applying HomX(−, KL2/Q2) to the sequence

0 → KL1/Q1 → OX(−1)2 → h∗IL1/Q1 → 0

yields

Hom(KL1/Q1 , KL2/Q2)
∼= Ext1(h∗IL1/Q1 , KL2/Q2), (3.1)

since KL2/Q2 ∈ OX(−1)⊥. Applying Hom(h∗IL1/Q1 ,−) to the sequence

0 → KL2/Q2 → OX(−1)2 → j∗IL2/Q2 → 0

yields

Hom(h∗IL1/Q1 , j∗IL2/Q2)
∼= Ext1(h∗IL1/Q1 , KL2/Q2) (3.2)

since by Grothendieck-Verdier duality,

ExtiX(h∗IL1/Q1 ,OX(−1)2) ∼= Exti−2
Q1

(IL1/Q1 , h
∗OX(−1)2 ⊗ ωh) = 0

for i = 0, 1. Combining the equations (3.1) and (3.2) completes the proof.

Lemma 3.2.8. Retaining notation from before,

dimHomX(h∗IL1/Q1 , i∗IL2/Q2) =


1, if IL1/Q1 ≃ IL2/Q2

0, otherwise.

Proof. First, suppose Q1 ̸= Q2. Then the image of a morphism h∗IL1/Q1 → i∗IL2/Q2

is supported on the 0-dimensional subscheme Q1 ∩Q2. As IL2/Q2 is torsion-free, the

morphism is trivial.

Now suppose Q1 = Q2 which we now denote i : Q ↪→ X. We have

HomX(i∗IL1/Q, i∗IL2/Q)
∼= HomQ(IL1/Q,IL2/Q).

We claim that any nonzero morphism ϕ : IL1/Q → IL2/Q is an isomorphism. Indeed,

imϕ ⊂ IL2/Q2 has rank 1 since IL2/Q2 is torsion-free. Hence rank(kerϕ) = 0,

so kerϕ is torsion and therefore trivial. The additivity of the Hilbert polynomial
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applied to the sequence

0 → IL1/Q1

ϕ→ IL2/Q2 → cokerϕ→ 0

shows dim supp(cokerϕ) = deg(pcokerϕ) = 0, so ϕ is an isomorphism.

Hence EndQ(IL1/Q1) is a division algebra, and the same is true after passing

to the algebraic closure, so dimEndQ(IL1/Q1) = 1.

Lemma 3.2.9. χ(KL1/Q1 , KL2/Q2) = 0.

Proof. As the Euler characteristic is deformation invariant, we may assume Q1 =

Q2 and L1 = L2, and simply write Q and L. We may also assume Q is smooth.

From the defining sequence for KL/Q and the fact that KL/Q ∈ AX , we have

χX(KL/Q, KL/Q) + χX(i∗IL/Q, KL/Q) = χX(OX(−1)2, KL/Q) = 0

and

χX(i∗IL/Q, KL/Q) + χX(i∗IL/Q, i∗IL/Q) = χX(i∗IL/Q,OX(−1)2),

so

χX(KL/Q, KL/Q) = χX(i∗IL/Q, i∗IL/Q)− 2χX(i∗IL/Q,OX(−1)).

From Grothendieck-Verdier duality and the Künneth formula,

χX(i∗IL/Q,OX(−1)) = χQ(IL/Q,OQ) = χQ(Q,OQ(1, 0)) = 2.

It remains to show that χX(IL/Q,IL/Q) = 4.

Since i∗IL/Q is supported on Q, a codimension-2 subvariety, the classes

c0(i∗IL/Q) and c1(i∗IL/Q) are both trivial. The Grothendieck-Riemann-Roch

Theorem gives

ch(i∗IL/Q) = i∗ chIL/Q · td(NQ/X),
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which gives c2(i∗IL/Q) = i∗[1] = [Q]. Similarly, c2(i∗I∨
L/Q) = [Q]. Using the

Hirzebruch-Riemann-Roch formula,

χX(i∗IL/Q, i∗IL/Q) = χX(X, i∗I∨
L/Q ⊗ i∗IL/Q)

=

∫
X

ch(i∗I∨
L/Q) ch(i∗IL/Q) td(X)

= c2(i∗I∨
L/Q) · c2(i∗IL/Q) · 1

= [Q]2 = 4,

as needed.

Proof of Proposition 3.2.6. As mentioned earlier, Bondal and Orlov’s criterion

reduces the argument to verifying

dimExtiX(KL1/Q1 , KL2/Q2) =


1, if h∗IL1/Q1 ≃ i∗IL2/Q2 and i = 0

0, if h∗IL1/Q1 ̸≃ i∗IL2/Q2 or i < 0 or i > 2.

Since the objects KLi/Qi
are sheaves, this is true for i < 0, and Lemmas 3.2.7

and 3.2.8 verify the criterion for i = 0. Since the Serre functor on AX is a

shift by 2, the criterion is also satisfied for i ≥ 2. The case i = 1 follows from

Lemma 3.2.9.

3.3 The Fano variety as a moduli space of sheaves

The equivalence Φ : Db(S, α) described above allows us to connect the

explicit construction of a rational Lagrangian fibration π : F 99K P2 from

Section 3.1 to the literature. For example, at least over C, Macr̀ı and Stellari’s

proved in [27] that F is birational to a moduli space of rank-zero α-twisted sheaves

on S supported on curves in the linear system |f ∗OP2(1)| where f : S → P2 is the

double cover. Another description of the rational Lagrangian fibration, then, is to

send L to the support of the corresponding twisted sheaf on S. Here, we reprove
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Macr̀ı and Stellari’s result over a field of characteristic zero, showing that the two

descriptions of the rational Lagrangian fibration on F agree.

In [26], Kuznetsov and Markushevich proved that the Fano variety F of lines

on X is a moduli space of rank-three reflexive sheaves FL on X, each of which is

the left mutation of IL/X through OX(−1),

FL = ker(OX(−1)4
ev
↠ IL/X).

Using the sequences

0 → FL → OX(−1)4 → IL/X → 0

and

0 → IL/X → OX → OL → 0,

it is straightforward to verify that FL ∈ AX . Now, twisting the evaluation maps

O6
X → FL(2), taking cones, and shifting, we define a collection of complexes

GL = cone(OX(−1)6
ev→ FL(1))[−1]

which are (shifts of) the mutations of FL(1) past OX(−1). The functor AX → AX

obtained by sending C to the mutation of C(1) past OX(−1) is an autoequivalence

(see [23, Sect. 4]), so we may also regard F as a moduli space of complexes GL ∈

AX .

The functor Φ admits a left adjoint ΦL : Db(X) → Db(S, α), as explained in

[18, Prop. 5.9]. This functor restricts to an equivalence AX → Db(S, α), allowing

us to regard F as a moduli space of α-twisted complexes ΦL(GL) on S. We first

calculate the support of ΦL(GL).

Lemma 3.3.1. If i : L ↪→ X is the inclusion of a line, ΦL(GL) ≃ ΦL(i∗OL(1))[−3].
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Proof. In Proposition 3.2.3, we proved ΦL(OX(j)) = 0 for j = −1, 0, 1. The lemma

therefore follows from applying ΦL to the exact triangles

OX(−1)6 → FL(1) → GL[1],

O4
X → IL/X(1) → FL(1)[1],

and

OX(1) → i∗OL(1) → IL/X(1)[1].

Lemma 3.3.2. Let i : L ↪→ X be the inclusion of a line, let s ∈ S, and let

M ⊂ Q ⊂ X be a line in the corresponding ruling of a quadric surface. Then

s ∈ supp(ΦL(GL)) if and only if L ∩Q ̸= ∅.

Proof. We will show that ExtiS(Φ
L(GL),Os) = 0 for all i if and only if L ∩ Q = ∅.

By Lemma 3.3.1,

RHomS(Φ
L(GL),Os) ∼= RHomS(Φ

L(i∗OL(1)[−3],Os)

∼= RHomX(i∗OL(1),Φ(Os)[3]),

so

ExtiS(Φ
L(GL),Os) ∼= Exti+3

X (i∗OL, KM/Q(−1)).

By Grothendieck-Verdier duality,

ExtiX(i∗OL,OX(−2)) ∼= Exti−3
L (OL,OL(−1)) ∼= H i−3(L,OL(−1)) = 0

for all i. Hence the exact sequence

0 → KM/Q(−1) → OX(−2)2 → IM/Q(−1) → 0

begets isomorphisms

ExtiS(Φ
L(GL),Os) ∼= Exti+2

X (i∗OL,IM/Q(−1)).
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The following table contains values for dimExti(i∗OL,IM/Q(−1)) for various

configurations of lines L,M ⊂ X.

i = 0 i = 1 i = 2 i = 3 i = 4

L ∩Q = ∅ 0 0 0 0 0

L ∩Q = {x}, and x ̸∈ Sing(Q) 0 0 1 1 0

L ⊂ Q 0 0 1 1 0

The calculations in this table are carried out in the appendix to this document. It

remains to show that if L ∩ Q = {x} = Sing(Q), then s ∈ supp(ΦL(GL)). Note that

in this case, L ⊂ X \ P , and there is a genus 2 curve C ⊂ S parametrizing quadric

surfaces in X that L meets. We have shown that all but finitely many points of

C belong to supp(ΦL(GL)), and the support of a complex is closed, so s ∈ C ⊂

supp(ΦL(GL)), as needed.

Let f : S → P2 be the double cover. For a line L ⊂ X \ P , the genus-

2 curve f−1(q(L)) parametrizes rulings on quadrics that L intersects. If instead

L ∩ P = {p}, then L is contained in a quadric Q ⊂ X, and the other quadrics in X

meeting L are those contained in TpX; there is a pencil of such quadrics, and their

rulings are parametrized by f−1(TpX ∩ P⊥). On the other hand, if L ⊂ P , then

L meets every quadric surface contained in X. We summarize this in the following

corollary.

Corollary 3.3.3. If L ̸⊂ P , then ΦL(GL) is supported on a curve in the linear

system |f ∗OP2(1)|. Moreover, the rational map supp: F 99K |f ∗OP2(1)| sending

ΦL(GL) to its support is surjective.
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It is easy to see that the rational map supp agrees with the rational

Lagrangian fibration π studied in Section 3.1: indeed, if L ⊂ X \ P , then ΦL(GL) is

supported on f−1(q(L)), and π([L]) = [q(L)].

To compare our work with Macr̀ı and Stallari’s result from [27] that F is

birational to a moduli space of rank-zero α-twisted sheaves on S, we prove that our

complexes GL are also rank-zero α-twisted sheaves.

Proposition 3.3.4. If L ̸⊂ P , and C = suppΦL(GL) is an integral curve, then

ΦL(GL) is a twisted sheaf.

Proof. Let Hi be the ith cohomology sheaf of ΦL(GL), and let m be the minimal

integer for which Hm ̸= 0. Let s ∈ suppHm ⊂ C. We will use the spectral sequence

Ep,q
2 = Extp(H−q,Os) ⇒ Extp+q(ΦL(GL),Os).

Note that E0,−m ̸= 0, and Ep,q = 0 for p < 0 or q < −m, so

0 ̸= E0,−m ∼= Ext−m(ΦL(GL),Os),

and Exti(ΦL(GL),Os) = 0 for i < −m. From the proof of Lemma 3.3.2,

dimExti(ΦL(GL),Os) =


1 if i = 0, 1

0 otherwise,

so m = 0, and dimE0,0 = 1. Since

dimHom(H0,Os) = dimE0,0 = 1,

for each s ∈ C, the sheaf H0 is a line bundle on C. Then for each s ∈ C, there is

some neighborhood U ∋ s on which H0|U admits a resolution of the form

0 → OS∩U(−(C ∩ U)) → OS∩U → H0|U → 0,
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from which we deduce

dimEp,0 = dimExtpS(H
0,Os) = dimExtpU(H

0|U ,Os) =


1 p = 1

0 p > 1.

Hence the differentials E0,1 → E2,0 and E1,0 → E3,−1 are both trivial, and

1 = dimExt1(ΦL(GL),Os) = dimE0,1 + dimE1,0 = dimE0,1 + 1,

so Hom(H−1,Os) = E0,1 = 0. In particular, s ̸∈ suppH−1, and as this is true for all

s ∈ C, we conclude H−1 = 0.

Finally, suppose there is some i > 0 for which H−i ̸= 0, and let i be minimal

for this property. We have shown i > 1. Let s ∈ suppH−i. The differential from

E0,i is trivial, so Exti(ΦL(GL),Os) ̸= 0 which is impossible for i > 1. Hence the only

nontrivial cohomology sheaf of ΦL(GL) is H0, as needed.

To finish, it is worth mentioning how the perspective on the rational

Lagrangian fibration F 99K P2 offered in this section could fuel future work. Recall

from Proposition 1.4.2 that if X is a cubic fourfold whose discriminant is twice

a square, then its Fano variety of lines F admits a rational Lagrangian fibration.

Example 1.4.4 explored the case when X is of discriminant 18: here, F admits

two rational Lagrangian fibrations, but it is not clear how to describe either one

geometrically. There is a K3 surface K with a Brauer class β ∈ Br(K)[3] arising

naturally from the geometry of X, explained in [1], and it is reasonable to expect

from [25] that there is an equivalence Ψ : AX → Db(K, β). After constructing the

functor Ψ explicitly, one can regard F as a moduli space of β-twisted complexes

on K. As in discriminant 8, is it the case that F is birational to a moduli space

of rank-zero, β-twisted sheaves on K? If so, does describing the support of these

sheaves make a rational Lagrangian fibration from F more geometrically legible?
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APPENDIX

SUPPORTING CALCULATIONS

Again, X is a general cubic fourfold containing a plane P , and S is the K3

surface parametrizing rulings in the fibers of BlP X → P2.

Let j : Q ↪→ X and i : L ↪→ X be the inclusions of a quadric surface and a

line in X, respectively, and let M ⊂ Q be a line. Let s ∈ S be point corresponding

to the ruling of Q containing M . This appendix contains calculations of the groups

Exti(i∗OL, j∗IM/Q(−1))

for various configurations of L and M , used in Section 3.3.

Lemma A.0.1. If L ∩Q = ∅, then Exti(i∗OL, j∗IM/Q(−1)) = 0 for all i.

Proof. As

ωi = i∗ω∗
X ⊗ ωL ≃ ω∗

P5|L ⊗N∗
X/P5|L ⊗ OL(−2) ∼= OL(1),

Grothendieck-Verdier duality yields

RHomX(i∗OL, j∗IM/Q(−1)) ≃ i∗RHomL(OL, i
∗j∗IM/Q(−1)⊗ ωi[−3])

≃ i∗(i
∗j∗IM/Q(−1)⊗ OL(1))[−3]

Since L∩Q = ∅, the composition i∗j∗ is trivial. Applying RΓ, the result follows.

Lemma A.0.2. If L∩Q = {p}, and Q is smooth at p, then Exti(i∗OL, j∗IM/Q(−1))

is 1-dimensional for i = 2, 3 and is trivial otherwise.

Proof. As i∗j∗F is supported at p for any sheaf F on Q, the complex

RHomX(i∗OL, j∗IM/Q(−1))

is supported at p. Hence we can calculate the cohomology sheaves of the above

complex by first restricting to an open neighborhood U ⊂ X of p for which Q ∩ U is
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smooth, IM/Q(−1)|Q∩U ≃ OQ∩U , and ωi|L∩U ≃ OL∩U . Then

RHomX(i∗OL, j∗IM/Q(−1)) ≃ RHomL∩U(OL∩U , i
∗j∗OQ∩U [−3]),

and

ExtiX(i∗OL, j∗IM/Q(−1)) ∼= H i−3(L ∩ U, i∗j∗OQ∩U).

Since Q is locally a complete intersection in X, we can further restrict the open set

U to assume Q is cut out of X by two regular functions f and g of degrees d and e,

respectively. Moreover, we may assume OU(d) and OU(e) are trivial. Then there is

a Koszul complex

0 → OU
(g,−f)−→ O2

U

[f,g]−→ OU −→ j∗OQ∩U → 0

which, after restriction to L ∩ U , yields

0 → OL∩U
(g,−f)−→ O2

L∩U
[f,g]−→ OL∩U −→ i∗j∗OQ∩U → 0.

Since f and g both vanish at p, this resolution of i∗j∗OQ∩U is quasi-isomorphic to

the sequence

0 −→ Op
0−→ Op −→ 0,

so

Hi := Hi(i∗j∗OQ∩U) =


Op i = −1, 0

0 otherwise.

From the spectral sequence

Ep,q
2 = Hp(L,Hq) ⇒ Hp+q(L, i∗j∗IM/Q)

we obtain

hi(L ∩ U, i∗j∗OQ∩U) =


1 i = −1, 0

0 otherwise,
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completing the argument.

In the the remaining cases, L ⊂ Q. We will first need the following lemma.

Lemma A.0.3. If L ⊂ Q, but L ̸⊂ P , then NQ/X |L ≃ OL ⊕ OL(1).

Proof. From the sequences

0 → NL/X → NL/P5 → NX/P5|L → 0

and

0 → NL/Q → NL/X → NQ/X |L → 0,

we have deg(NQ/X |L) = 1, so NQ/X |L ≃ OL(a) ⊕ OL(b) with a + b = 1. Applying

HomX(−,OL) to the sequence

0 → IQ∪P/X → IQ/X → IQ/Q∪P → 0

yields an injection

0 → NQ/X |L → OL(1)
2

since IQ/Q∪P ≃ IQ∩P/P ≃ OP (−2), and HomX(OP (−2),OL) = 0. Thus a, b ≤ 1,

and the result follows.

Lemma A.0.4. If L ⊂ Q and L and M lie in the same ruling of Q, then

Exti(i∗OL, j∗IM/Q(−1)) is 1-dimensional for i = 2, 3 and is trivial otherwise.

Proof. Let h : L ↪→ Q be the inclusion. We proceed as before.

RHomX((jh)∗OL, j∗IM/Q(−1)) ≃ (jh)∗RHomL(OL, h
∗j∗j∗IM/Q(−1)⊗ ωi[−3])

≃ (jh)∗(h
∗j∗j∗IM/Q)[−3]

Taking global sections,

ExtiX((jh)∗OL, j∗IM/Q(−1)) ≃ H i−3(L, h∗j∗j∗IM/Q).
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By [2, Proposition 11.8],

Hi := Hi(j∗j∗IM/Q) ≃ IM/Q ⊗
−i∧
N∗

Q/X .

Since L and M lie in the same ruling of Q, IM/Q|L = OL. By Lemma A.0.3

NQ/X |L ≃ OL ⊕ OL(1), so

Hi ≃



OL i = 0

OL ⊕ OL(−1) i = −1

OL(−1) i = −2

0 otherwise,

Then

hp(L,Hq) =


1 p = 0, q ∈ {−1, 0}

0 otherwise.

and the spectral sequence

Ep,q
2 = Hp(L,Hq) ⇒ Hp+q(L, h∗j∗j∗IM/Q)

gives

hi(L, h∗j∗j∗IM/Q) =


1 i = −1, 0

0 otherwise,

as needed.

Lemma A.0.5. If L ⊂ Q and L and M lie in different rulings of Q, then

Exti(i∗OL, j∗IM/Q(−1)) is 1-dimensional for i = 2, 3 and is trivial otherwise.

Proof. As before,

ExtiX((jh)∗OL, j∗IM/Q(−1)) ∼= H i−3(L, h∗j∗j∗IM/Q),
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and we let Hi = Hi(h∗j∗j∗IM/Q). Now, IM/Q|L ≃ OL(−1), so we instead have

Hi ≃



OL(−1) i = 0

OL(−1)⊕ OL(−2) i = −1

OL(−2) i = −2

0 otherwise.

Hence

hp(L,Hq) =


1 p = 1, q ∈ {−2,−1}

0 otherwise.

The spectral sequence from before yields the desired result.
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