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DISSERTATION ABSTRACT

Bruce Edelman

Doctor of Philosophy

Department of Physics

June 2023

Title: Binary Black Hole Astrophysics with Gravitational Waves

Gravitational Waves (GWs) have quickly emerged as powerful, indispensable

tools for studying gravity in the strong field regime and high-energy astrophysical

phenomena since they were first directly detected by the Laser Interferometer

Gravitational-Wave Observatory (LIGO) on September 14, 2015. Over the course

of this dissertation work gravitational-wave astronomy has begun to mature, going

from 11 GW observations when I began to 90 at the time of writing, just before

the next observing run begins. As the network of GW observatories continues to

grow and these observations become a regular occurrence, the entire population of

merging compact objects observed with GWs will provide a unique probe of the

astrophysics of their formation and evolution along with the cosmic expansion of

the universe. In this dissertation I present four studies that I have led using GWs

to better understand the astrophysics of the currently most detected GW source,

binary black holes (BBHs). We first present a novel data-driven technique to look
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for deviations from modeled gravitational waveforms in the data, coherent across

the network of observatories, along with an analysis of the first gravitational-

wave transient catalog (GWTC-1). The following three studies present the three

different approaches to modeling populations of BBHs, using parametric, semi-

parametric and non-parametric models. The first of these studies uses a parametric

model that imposes a gap in the mass distribution of black holes, looking for

evidence of effects caused by pair-instabiliy supernovae. The second study

introduces a semi-parametric model that aims to take advantage of the benefits of

both parametric and non-parametric methods, by imposing a flexible perturbation

to an underlying simpler parametric description. This study was among the first

data-driven studies revealing possible structure in the mass distribution of BBHs

using GWTC-2, namely an additional peak at 10M⊙. The final study introduces

a novel non-parametric model for hierarchically inferring population properties of

GW sources, and performs the most comprehensive data-driven study of the BBH

population to date. This study is also the first that uses non-parametric models

to simultaneously infer the distributions of BBH masses, spins and redshifts. This

dissertation contains previously published and unpublished material.
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CHAPTER I

INTRODUCTION

1.1. Theory of Gravitational Waves

1.1.1. General Relativity

Einstein’s theory of general relativity has been immensely successful in

explaining astrophysical phenomena throughout the century following the ground-

breaking work, culminating with the verification of a robust prediction unique to

this new view of gravity with the successful direct detection of gravitational waves

(GWs) in 2015. This theory describes the nature of gravity not as a fundamental

force as the previously held Newtonian view, but arising from the curved geometry

of spacetime. Specifically it states that mass or energy in the universe distorts or

warps spacetime such that the geometry of spacetime is not flat, but instead has a

curvature. The result of this curvature looks like a gravitational force in flat space

at certain scales but in this view there are only bodies freely moving in ”straight

lines” (or geodesics) through a curved 4-dimensional manifold we call spacetime.

The entire theory can be described through Einstein’s field equations, which are 10

coupled, non-linear, partial differential equations, shown below in its succinct form.

Gµν + Λgµν =
8πG

c4
Tµν (1.1)

Where the right-hand side of this equation describes the distribution of mass

and energy in the universe with the stress-energy tensor, Tµν . The left-hand side

describes the geometry of spacetime with the metric tensor, gµν . The first term
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on the left-hand side is the Einstein tensor, Gµν , which is a function of the metric

tensor and its derivatives. The second term is the cosmological constant, Λ, which

is a constant of proportionality that describes the energy density of the vacuum.

To build up the nicely packaged Einstein tensor, let’s start with the line element of

4-dimensional spacetime, ds2 = gµνdx
µdxν . Through the principle of least action

one can derive equations of motion for a particle in such a geometry governed by

gµν , which we call the geodesic equation, defined as:

d2xµ

ds2
+ Γµ

αβ

dxα

ds

dxβ

ds
= 0 (1.2)

Above we have introduced the Christoffel symbols, Γµ
αβ, which you can get from

the metric tensor with:

Γµ
αβ =

1

2
gµν
(
∂gβν
∂xα

+
∂gνα
∂xβ

− ∂gαβ
∂xν

)
(1.3)

The next component we need is the Riemann curvature tensor, Rρµσν , which

encapsulates the curvature of spacetime, and is defined as:

Rρµσν = gρλ

(
∂Γλ

νσ

∂xµ
−

∂Γλ
µσ

∂xν
+ Γλ

µηΓ
η
νσ − Γλ

νηΓ
η
µσ

)
(1.4)

The Einstein tensor has two free indices which means we need to contract two

indices of the Riemann tensor to get the Einstein tensor. This is done in two

parts: first by constructing the Ricci tensor, Rµν = gρσRρµσν , followed with the

Ricci scalar, R = gµνRµν . With these pieces in place we have the definition of
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the Einstein tensor, Gµν , or the left-hand side of the Einstein field equations (eq.

1.1.1).

Gµν = Rµν −
1

2
Rgµν (1.5)

Now that we have built up the ingredients of Einstein’s field equations, the heart

of General Relativity, the hard part begins: actually solving them. This is an

especially difficult task because they are non-linear, coupled, partial differential

equations. There are only a few known exact solutions, all of which have to

make simplifying assumptions and thus are not very realistic in most situations,

especially those of two merging black holes which this thesis is focused on. This

is one reason why we often need to resort to numerical solutions to solve the

equations for most scenarios, which is what the field of numerical relativity focuses

on. The next section focuses on one method of simplifying the equations to make

them more tractable in the weak field limit, namely linearizing them.

1.1.2. Linearized Gravity

To illustrate the propagating wave solutions (gravitational waves) of

Einstein’s equations, we will linearize the equations in the weak field limit. We

start by describing the metric as the flat Minkowski metric, ηµν with some small

perturbation hµν around it with |hµν | << 1, which we can write as:

gµν = ηµν + hµν (1.6)
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Next we can derive the linearized Ricci tensor and Ricci scalar by substituting eq.

1.1.2 into the procedure laid out in the previous section, while neglecting terms

that are higher than first order in hµν , which yields:

Rµν =
1

2

(
∂∂hα

ν

∂xα∂xµ
+

∂∂hα
µ

∂xα∂xν
− ∂∂h

∂xµ∂xν
−□hµν +O(h2)

)
(1.7)

R = ηµνR
µν =

∂∂h

∂xµ∂xν
−□hµν +O(h2) (1.8)

Where above h := ηµνhµν is the trace of the metric perturbation and □ := ηµν∂µ∂ν

is the d’Alembertian operator in Minkowski spacetime. Next we make this

transformation to the trace-reversed metric perturbation: h̄µν := hµν − 1
2
ηµνh.

We can now write the linearized Einstein tensor as:

Gµν =
1

2

(
∂∂h̄ρ

ν

∂xµ∂xσ
+

∂∂h̄ρ
µ

∂xν∂xσ −□h̄σρ − ηµν
∂∂h̄σρ

∂xσ∂xρ

)
+O(h2) (1.9)

With the appropriate choice of gauge transformation, i.e. one that satisfies two

conditions: ∂µh̄µν = 0 and h̄ := ηµν h̄µν = 0, we arrive at the transverse-traceless

gauge where all terms without a □ operator in eq. 1.1.2 vanish such that the

linearized Einstein’s field equations simplify to:

−□h̄µν +O(h2) =
16πG

c4
Tµν (1.10)
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When considering vacuum solutions to the linearized Einstein field equations, i.e.

Tµν = 0, we arrive at a familiar simple wave equation: □h̄µν = 0, with gravitational

waves as solutions. Now consider a distribution of matter that is slowly varying.

The gravitational radiation far away from the source described by eq. 1.1.2 is

found to only depend on the second time derivative of the quadrupole moment

of the source matter distribution, Qij, along with the luminosity distance to the

source, dL:

hij =
2G

c4dL

d2

dt2
Qij (1.11)

This equation is implying that any distribution of accelerating matter that is

spherically asymmetric (i.e. Qij ̸= 0) will radiate gravitational waves, although

the second time derivatives of the quadrupole moments need to be very large to

produce GWs with non-neglible magnitudes, considering G
c4

∼ 10−20Mpc/(M⊙c
2).

In the next section we discuss the indirect and direct detections of GWs and their

sources.

1.2. Gravitational-Wave Detections

Gravitational Wave solutions to Einstein’s field equations have been known

for many years before any physical evidence for their existence was found. In

1974 Hulse and Taylor discovered a neutron star - pulsar binary, PSR 1913 + 16,

with a decreasing orbital period that aligned with general relativity’s predicted

energy loss due to emitted gravitational radiation. While this indirect detection

was strikingly strong, later winning the Nobel Prize in physics in 1993, it would

take more time to be able to construct instruments sensitive to directly detect
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these miniscule ripples in spacetime. As mentioned before in 2015 this was finally

achieved by the Laser Interferometer Gravitational-Wave Observatory (LIGO) with

the detection of GWs emitted in the last few seconds of the energetic merger of a

binary black hole (BBH) system with each black hole around 30 times the mass

of the sun. This gravitational wave detection (and all others) are named by the

date they were detected, in this case GW150914 – September 14th, 2015. Less

than two years later in LIGO’s second observing run (now with Virgo added), the

first binary neutron star (BNS) merger was detected, GW170817. This happened

to be coincident with a gamma-ray burst (GRB) – and through both this and

the GWs, an approximate location for the source was produced such that many

telescopes were able to observe the kilonova that was predicted to follow BNS

mergers, marking the beginning of GW astronomy and multi-messenger astronomy

with GWs. While there are other types of GW sources that can produce a wide

spectrum of GWs across many frequencies, ground-based detectors (e.g. LIGO,

Virgo) are most sensitive to these compact binary mergers. To date only GWs

from compact binary mergers have been detected, including binary neutron stars

(BNSs), binary black holes (BBHs), and neutron star black hole binaries (NSBHs),

with the most recent count being 90 GW detections (2 BNSs, 3-6 NSBHs, 82-85

BBHs) [1].

GW detectors like LIGO are in principle very large Michelson

Interferometers, which sends laser light down two perpendicular arms (4km long

for LIGO) and back in order to measure minute fluctuations in the distance of

each as GWs pass by, from the interference signal from each arms’ beams. We

quantify the effect of GWs on the detector by calculating the fractional change

in arm lengths of the interferometer, or strain, yielding the strain time-series
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h(t) sampled at a rate of 16kHz. Instruments this sensitive are bound to have

lots of noise sources, but these can be mitigated with appropriate modeling and

environmental monitoring. With multiple detectors spaced geographically far

apart, we can impose coincidence across the network to reduce the false alarm

rate of detections, while also gaining directional information from the time delay

between detectors allowing for better sky localization of sources.

The first step of analyzing this swath of data is to use algorithms that

search the data for possible GW signals. This is most commonly done with

matched filtering procedures where we store a large bank of simulated gravitational

waveforms from a variety of sources and parameters, which are then compared

against the data to see if there is a match. In practice these methods or search

pipelines are much more complex, but the primary focus of this thesis is on the

next step in the data-analysis procedure after the pipelines have identified a

stretch of data that likely contains a GW signal. Since solving Einstein’s equation

is challenging even in the simplest cases, constructing accurate models of GWs

from compact binary mergers is another active field of study within GR. These

models are constructed either by phenomenological approaches (i.e. [2, 3]),

effective one body formalism (i.e. [4]), fits to expensive numerical relativity

simulations (i.e. [5]), or combinations of such methods, and each come with

their own simplifying assumptions and domains of applicability. The study

presented in Chapter 2 explores novel methods that can be used to validate such

waveform models while looking for signs in un-modeled physics within GW data.

With waveform models from compact binary mergers, we can then use Bayesian

inference and forward modeling to estimate the parameters of the source that

produced the GWs, which is discussed in detail in the next section.
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1.3. Bayesian Inference and Parameter Estimation

The goal of Bayesian inference or parameter estimation is to infer the

probability distribution of a set of model parameters, θ, conditioned on the data

of interest, d, and the assumed model or hypothesis, H (i.e. the waveform model in

the GW context). This is called the posterior distribution and is given by Bayes’

theorem:

p(θ|d,H) =
L(d|θ,H)π(θ|H)

Z(d|HH)
(1.12)

Where L(d|θ,H) is the likelihood of the data given the model and parameters,

π(θ|H) is the prior distribution of the parameters, and Z(d|HH) is the evidence or

marginal likelihood. This quantity is a factor that ensures the normalization of the

posterior, found by integrating the numerator of eq. 1.3 over parameters θ:

Z(d|HH) :=

∫
dθL(d|θ,H)π(θ|H) (1.13)

While the evidence is often ignored since it is just a normalizing constant of the

posterior and does not depend on the parameters of interest, note that it does

depend on the model H, and is often used for Bayesian model selection, which

is used later in chapters 3 and 4. Oftentimes the desired quantity, the posterior

distribution, is highly dimensional, leaving one forced to sample the distribution

using Markov Chain Monte Carlo (MCMC) methods. The works in this thesis

explore the use of different MCMC methods that are each well suited in different
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scenarios including, but not limited to, parallel tempering, nested sampling, and

Hamiltonian Monte Carlo.

For the likelihood in GW data, we make the assumption that the noise is

stationary and Gaussian, which is a valid approximation for the short stretches

of data that contain the signal we wish to analyze. Now let dij be the frequency

domain strain data in interferometer, i, at frequency bin j. Additionally, each

interferometer’s noise can be represented by its Power Spectral Density (PSD),

which can be thought of as the power of the noise in each frequency bin, denoted

as P i
j . Finally, as before H represents our assumed physical waveform model,

with hi
j(θ) being waveform model evaluated with parameters, θ, at frequency

bin j projected into interferometer i. With the assumption that the data at each

frequency bin in each interferometer is independent of each other, the total log-

likelihood is then calculated by summing over the Nifos interferometers (indexed by

i) and Nbin frequency bins (indexed by j):

logL({d}|θ,H) = −
Nifos∑
i=0

Nbin∑
j=0

[
2πP i

j +∆f
|dij − hi

j(θ)|2

P i
j

]
(1.14)

With this formalism in place we are now able to use various MCMC methods to

infer the posterior distribution over the set of GW source parameters, θ, given

the observed strain data from our network of interferometers. This is usually

a challenging task as the full parameter space for a BBH is 15-dimensional,

with highly structured posteriors. While chapter 2 focuses on the validation of

waveform models through parameter estimation, the following chapters focus

on inferring the astrophysical distribution of BBHs using Hierarchical Bayesian
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Inference. The method for extending this formalism to hierarchical models are

discussed in the additional analysis details of chapters 3-5.

1.4. Polynomial Splines

FIGURE 1.1. Spline interpolation from 5 knots or control points with a cubic
(blue) and quadratic (orange) spline function interpolated from the same knots.

A powerful tool in statistical modeling that we make use of in 3 out of the

next 4 chapters is polynomial splines. A polynomial spline is a function of piece

wise polynomials of a given order that are stitched together at control points or

knots, which are often used for interpolation [6]. To construct a spline function of

order k with n degrees of freedom across the interval [a, b], we first define a knot

vector, t, consisting of n + k + 1 knots in increasing order where t0 = a and

tn+k = b. Given these specifications the resulting spline function, Sk(t|t) consists

of n − 1 polynomial sections, Pn−1(t), tn−1 ≤ t ≤ tn. There is an additional

condition that the derivatives of both polynomials around each knot must match,
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for all derivatives up to the k − 1 order. Figure 1.1 shows a simple example with

a cubic spline function (k = 3) interpolated from 5 control points. It can further

be shown that the set of spline functions of order k with n degrees of freedom and

knot vector, t (i.e. Sk(t|t, n)), forms a vector space, which can be decomposed into

different basis sets that span this space, which we call basis splines [6, 7]. Basis

splines are discussed further and put to use later in this dissertation in chapter 5.

1.5. Outline

The remainder of this thesis consists of selected published works that I

have led studying different aspects of the astrophysics of binary black holes with

gravitational waves. Each of the following chapters consists of these publications

along with additional brief summaries of each publication to put the work into the

broader context of the field. The included publications and their chapters are:

– Chapter 2: Constraining Unmodeled Physics with Compact Binary Mergers

from GWTC-1

– Chapter 3: Poking Holes: Looking for Gaps in LIGO/Virgo’s Black Hole

Population

– Chapter 4: Ain’t No Mountain High Enough: Semi-Parametric Modeling of

LIGO-Virgos Binary Black Hole Mass Distribution

– Chapter 5: Cover Your Basis: Comprehensive Data-Driven

Characterization of the Binary Black Hole Population
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CHAPTER II

CONSTRAINING UNMODELED PHYSICS WITH COMPACT BINARY

MERGERS FROM GWTC-1

2.1. Summary

All analyses of gravitational-wave data rely on the foundation of robust and

accurate waveform models of the GWs emitted from merging compact binaries.

Directly solving Einstein’s equations to get this is a monumentally challenging

task, leaving the field to either phenomenological or numerical approaches in

building waveform models that each have their own simplifying assumptions. In

order to validate these models and to look for any impact on the observed signals

from possible physical effects neglected in the simplified models, we present a data-

driven method to constrain deviations from modeled waveforms that are coherent

across the network of detectors. In this chapter we present the study, published

as Edelman et al. [8], introducing this novel non-parametric method to validate

and constrain deviations from the models used to analyze data from the compact

binary coalescences (CBCs) contained in the first gravitational-wave transient

catalog, GWTC-1 [9].

2.2. Abstract

We present a flexible model to describe the effects of generic deviations of

observed gravitational wave signals from modeled waveforms in the LIGO and

Virgo gravitational wave detectors. With the detection of 11 gravitational wave

events from the GWTC-1 catalog, we are able to constrain possible deviations
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from our modeled waveforms. In this paper we present our coherent spline model

that describes the deviations, then choose to validate our model on an example

phenomenological and astrophysically motivated departure in waveforms based on

extreme spontaneous scalarization. We find that the model is capable of recovering

the simulated deviations. By performing model comparisons we observe that

the spline model effectively describes the simulated departures better than a

normal compact binary coalescence (CBC) model. We analyze the entire GWTC-1

catalog of events with our model and compare it to a normal CBC model, finding

that there are no significant departures from the modeled template gravitational

waveforms used.

2.3. Introduction

General relativity (GR) has passed a multitude of tests over the past years

[10], but until the detection of gravitational waves (GWs) from binary black

holes[11, 12] it had not been widely tested for strong dynamical gravitational

fields. Gravitational-wave astronomy and more specifically that of compact

binary coalescences (CBC) gives us access to a genuinely strong gravitational field

regime to both test GR [13, 14, 15, 16], and to provide constraints on new physics

not predicted by GR modeled waveforms of these systems. Contemporary GW

analyses employ matched filtering and forward modeling techniques, which both

inherently rely on accurately modeled waveforms [12, 17, 18, 19]. We introduce

here a model that can account for and measure in data deviations in phase and

amplitude from a modeled waveform, either due to approximations inherent in the

waveform calculation or a mismatch between theory (GR) and nature.
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We present a parameterization that quantifies the deviations between

the observed waveform (hintrinsic) and the GR waveform models (hmodel), with

few assumptions about the deviations. This provides the ability to perform

additional tests of GR and also presents a generic model for describing and

possibly constraining additional effects in a binary merger like presence of higher-

order modes [20] and tidal effects [21]. Quantifying such deviations is one of

the major challenges in GW data analysis. The numerical method we use to

parameterize deviations here is based on cubic spline interpolation in which the

deviations (in phase and amplitude) are modeled as independent cubic spline

functions interpolated from node points in the frequency domain. The cubic spline

interpolant generates deviations that vary smoothly in frequency, but otherwise

does not constrain the type or nature of deviation.

The splines employed to characterize the deviation provide a uniform way of

describing GR departures rather than fitting separate parameters to the inspiral,

merger, and ringdown (IMR) of the waveform separately as commonly done in GR

IMR consistency tests [16, 22, 23]. In addition, IMR consistency tests have the

same limitation as matched filtering, as they inherently assume perfect accuracy of

the template waveform.

Another common test of GR is the parameterized test where one expands

the waveform model in different regimes with post-Newtonian (PN) correction

parameters added [24]. This test also builds in assumptions about how possible

deviations may occur and has to fit different parts of the waveform with separate

models as in the IMR consistency test. One commonly used class of model-

agnostic tests of GR are residual [15] tests, where best-fit waveform models

are subtracted from the data and normality tests (e.g., Anderson-Darling) are
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conducted on the residuals. Such tests would be sensitive to very large deviations

from the signal model, but not to small but correlated deviations across many

frequency bins. Our proposed model differs from these tests and constraints by

allowing uncertainty in the template waveforms and letting it vary smoothly across

the entire frequency range. Our model is able to describe and fit the inaccuracies

in waveform models. With the assumption that the template GR waveform

is completely accurate, it provides a clear way of describing and constraining

unmodeled physics of our waveform models or departures from GR across the

frequency range of the waveform.

In Section 2.4 we describe the model and methods for incorporating it in the

LALInference Bayesian Analysis software [19]. Our implementation is similar

to the calibration spline model described in [25]. We then present simulated

deviations on which we validated the performance of our model in Section 2.5,

followed by discussions and implications of the results. In Section 2.6 we present

results of this model on the entire first LIGO and Virgo Gravitational Wave

Transient Catalog (GWTC-1) [9] which includes the results of the first and

second observing runs of the Advanced LIGO [26] and Virgo [27] detectors. This

catalog of gravitational wave events includes ten binary black hole detections and

one binary neutron star detection [9, 28]. Lastly the results and conclusions are

summarized and discussed in Section 2.6.1.

2.4. Methods

2.4.1. Waveform Representation

When a gravitational wave enters a gravitational wave detector, the detector

records a data stream which we can describe in the frequency domain as d(f) =
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hobserved(f) + n(f), which is an additive combination of a waveform hobserved(f) and

noise n(f). The observed waveform in a detector can be represented as the sum of

the intrinsic waveform polarizations, projected across that detector. This is done

by multiplying the two (time-dependent) antenna pattern terms of that detector,

F+ and F×, to the plus and cross gravitational-wave polarizations as:

hobserved(f) = h+(f)F+(f) + h×(f)F×(f) (2.1)

with

h+,×(f) = hmodel,+,×(f) [1 + δA(f)] exp [iδϕ(f)] . (2.2)

Since we are searching for deviations from the coherent modeled waveforms,

every detector observing a GW should see the same deviations. We model the

uncertainties in the intrinsic waveform, hmodel,+,×(f), as frequency-dependent

amplitude and phase departures in h+,× with respect to hmodel,+,×. This is the

same technique that Farr et al. [25] use to model calibration errors in each detector

independently. We also take the assumption that there are only two polarizations

and that GWs travel at the speed of light. While our model is degenerate with the

calibration model, coherent deviations observed across all detectors are modeled

with a single set of parameters for this spline model, as opposed to modeling them

independently in each detector using the calibration model. Thus we expect our

prior distribution to result in deviations to the intrinsic waveform being preferably

described by the coherent spline, and the calibration splines to measure only

detector-dependent deviations.
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We assume that phase deviations are small and under this assumption, we

can approach the exponential term as

exp (iδϕ(f)) =
2 + iδϕ(f)

2− iδϕ(f)
+O(δϕ3) (2.3)

which is more computationally efficient [25]. Then, we can rewrite the intrinsic

waveform as:

h+,×(f) = hmodel,+,×(f) [1 + δA(f)]
2 + iδϕ(f)

2− iδϕ(f)
(2.4)

This replacement agrees with the exponential term to third order for small phase

deviations, and differs by 5% from the exponential term for the largest simulated

deviation used in this paper of 60 degrees.

The intrinsic waveform, after being modified as Eq. 2.4, is then projected

across the detectors to get hobserved in each detector as in Eq. 2.1. Despite the

expectation that these departures are small, they have the potential to impact

the measurement of all parameters of the source (masses, spins, distance, etc.) [18].

A consequence of modeling these deviations with a purely phenomenological model

is that we can no longer trust the inference of astrophysically modeled parameters

when deviations are present.

Under the assumption that δA(f) and δϕ(f) vary smoothly in frequency,

they can be modeled by a spline function [25].

2.4.2. Spline Model

A spline function is a piece-wise polynomial interpolation that obeys

smoothness conditions at the nodal points where the pieces connect. In the

following, we use the case of cubic splines defined by 15 nodal points confined to
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a finite frequency interval. Formally these departures can be written as

δA(f) = I3(f ; {fi, δAi}), (2.5)

δϕ(f) = I3(f ; {fi, δϕi}), (2.6)

where I3 is a cubic spline interpolant, the {fi} are the nodes of the spline

interpolant in frequency, and {δAi} and {δϕi} are the values of the spline at those

nodal points. To better generalize the model to fit a larger variety of possible

departures, we freely let the nodal points move around in frequency space during

sampling (with the condition that they do not exchange orders or get too close

to each other) after being initialized linearly in log-frequency space, as done in

Farr et al. [25], Vitale et al. [29]. We choose the node locations to be the same

for the amplitude and phase spline functions as we expect deviations to happen

at similar frequencies and to reduce our model degrees of freedom. One could

choose an independent set of node locations for phase and amplitude if expecting

to have deviation effects that alter the amplitude and phase at different points in

frequency. We prevent nodal points from getting arbitrarily close as this causes

the spline to be too sensitive to very small changes in node positions, creating

extreme deviations to satisfy the smoothness conditions of the spline function. The

parameters added to our inference for this model are then the {δAi}, {δϕi} and

{fi}.

With our assignment of Gaussian priors (see § 2.4.3) to the δA and δϕ

parameters, our spline model implements a Gaussian process prior for the

waveform deviations from the model (c.f. [30]).
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2.4.3. Statistical Framework

We place a Gaussian prior on the departure parameters, {δAi} and {δϕi},

centered around zero, with σA and σϕ characterizing our prior uncertainties

about the magnitude of the departures in amplitude and phase from the modeled

waveforms.

p(δAi) = N(0, σA) (2.7)

p(δϕi) = N(0, σϕ) (2.8)

p(fi) = U(flow, fhigh) (2.9)

It is important however, not to think of the Gaussian priors on the node values of

{δAi} and {δϕi} as the broadband uncertainties of the interpolated spline function

across the frequency range. In practice the prior widths on the nodes are wider

than the broadband uncertainty resulting from sampling the prior. We constrain

the spline nodes to be increasing in frequency:

fi−1 < fi < fi+1. (2.10)

The spline model introduces some challenges that need to be accounted for,

the first being the freedom in the frequency values of the node points. Since we

also use the node positions in frequency space as sampling parameters and we

place uniform priors on the spline node locations across the frequency band from

flow to the Nyquist frequency, the model is degenerate under exchange of node

positions. To circumvent this degeneracy, we impose that the node positions stay
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ordered as in Eq. 2.10. These parameters can then be fit and the corresponding

calibration errors marginalized over during inference.

Another challenge with the spline function is that if two nodes get too

close together, obeying the conditions required of the cubic spline can lead to the

interpolated deviations becoming very extreme. To account for this we prevent the

frequency nodes from getting closer than 4 frequency bins away from one another

as shown in equation 2.11, where the frequency bin width (in Hz) is determined

from the segment length of data we are analyzing as df = 1/T with T the segment

length. That is, we reject any configurations with

fi+1 − fi < 4 ∗ δf =
4

Tobs

. (2.11)

Other spline based interpolation methods such as BayesLine combat this by

keeping the spline nodes on a fixed frequency grid then turns them on/off during

inference using trans-dimensional Markov-Chain Monte Carlo sampling [31]. We

experimented with a few other fixes to this issue. We implemented a Gaussian

prior on every frequency bin location; we also tried evaluating the Gaussian prior

on some number of points between nodes of the spline interpolants to disfavor the

large spline excursions as well. In practice both of these priors turned out to be

too restrictive while attempting to recover the simulated deviations presented in

Section 2.5; they may still be useful when exploring astrophysical events.

The last challenge is that our model of amplitude deviations is perfectly

degenerate with the distance to the signal. The distance to the source can be

increased while simultaneously producing a positive amplitude deviation across

the entire frequency band of the signal to compensate. The default astrophysical

prior used in LALInference [19] is ∝ D2
L with DL the luminosity distance.
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When this prior distribution is coupled with the zero-mean Gaussian priors on

amplitude deviations, the strong ∝ D2
L prior on distance almost always results in

systematically positive amplitude deviations in the spline component of the model.

However, by allowing for broad-band changes to the amplitude of the signal in the

first place we are no longer able to meaningfully infer the distance to the source.

In other words, we use DL (with a uniform prior) as a phenomenological parameter

to fit the broad-band amplitude of the signal, and the spline model describes any

frequency-dependent deviations that may be present.

With the prior assumptions and modified waveform we can now construct the

posterior distribution according to Bayes’ Theorem,

p(θ, {δAi}, {δϕi}, {fi}|d) ∝

L(d|θ, {δAi}, {δϕi}, {fi})p(θ)p({δAi})p({δϕi})p({fi}) (2.12)

then use the LALInference Markov Chain Monte Carlo (MCMC) algorithm to

draw samples from the posterior distribution in Eq. 2.12, with θ the normal CBC

parameters, d the gravitational wave strain data, L the standard GW likelihood

with the modified intrinsic waveform as shown in Eq. 2.4.

2.5. Simulated Deviations

In order to validate our spline model, we run on data with astrophysically

motivated deviations included. We choose a toy model that presents an extreme

case of spontaneous scalarization [32] which modifies a simulated high-mass

BBH waveform with similar astrophysical parameters as GW150914 [11, 12]. We

generate two waveforms where one has simulated modifications according to the
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FIGURE 2.1. Simulated phase deviation δϕ for extreme spontaneous scalarization
toy model.

toy model and the other is exactly as the modeled GR waveform describes. We

then simulate colored Gaussian noise according to the the Advanced LIGO design

sensitivity noise curve or power spectral density (PSD) [26] and add it to the

simulated waveforms.

m1 36 M⊙
m2 29 M⊙
DL 450 Mpc
ϕ 2.76 rad
α 1.37 rad
δ -1.26 rad

S1,z 0.0
S2,z 0.0

TABLE 2.1. Parameters for simulated validation signals

We first generate a GR-based frequency domain waveform using the

IMRPhenomD [2] waveform approximant with the simulated parameters shown

in Table 2.1, then modify the same waveform according to our toy model described

above extreme scalarization case [32]. For the phase δϕ, the toy model includes an
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FIGURE 2.2. Simulated amplitude deviation δA for extreme spontaneous
scalarization toy model.

abrupt increase of 60 degrees centered at fz = 102Hz, with a width of df = 1Hz,

see Figure 2.1. The amplitude temporarily drops by 5% in frequency, again

centered at fz = 102Hz and with a width of df = 1Hz, see Figure 2.2. To get

these modifications we used these parameters in Eqs. 2.13 and 2.14 with dA = 0.1,

dϕ = 60◦.

δA(f) = e
1
2
dA

(
tanh( f−fz

df )
2
−tanh

(
fref−fz

df

)2
)

(2.13)

δϕ(f) =
1

2
dϕ
[
tanh

(
f − fz
df

)
− tanh

(
fref − fz

df

)]
(2.14)

2.5.1. Results on simulated signals

To compare the effect of the waveform modification and the spline model,

we ran the LALInference parameter estimation software on both the modified

and unmodified signals with our spline deviation model turned on and off. Figures
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FIGURE 2.3. Corner plots showing the 1-D and 2-D marginalised posterior
distributions for simulated parameters for PE runs on the Unmodified Signal with
spline model on (purple) or off (pink). This demonstrates the impact of the model
flexibility on astrophysical parameter uncertainties.
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FIGURE 2.4. Corner plots showing the 1-D and 2-D marginalised posterior
distributions for simulated parameters for PE runs on the Modified Signal
with spline model on (purple) or off (pink). This demonstrates inaccuracies
in parameter estimation performed on signals containing deviations from the
physically modeled waveforms.
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FIGURE 2.5. Spline Interpolation of unmodified (left) and modified (right) signal
deviations. 1 and 2 σ credible intervals (grey) and the median spline (red) are
shown with top panel the amplitude deviations and middle panel the phase
deviations. In the bottom frame we plot the node position posterior distributions,
which clump towards the frequency of deviations in the modified case in the
bottom right most panel. For the unmodified case they are more uniformly
distributed as they are exploring the prior.

2.3 and 2.4 show the corner plots for the simulated intrinsic (component masses,

spins, etc) and extrinsic (luminosity distance and sky localisation) GW parameters

comparing the 1-D and 2-D marginalised posterior distributions with the spline

model on or off. In figure 2.3 we see that there is minimal difference in posteriors

for the unmodified signal for most of the parameters which is what we would

expect for the case of no deviations. We also expect to see greater uncertainties

on certain parameters with the spline model as there are possible degeneracies

with the spline and other parameters as seen in the different 1-D spin parameter

posteriors in figure 2.3. This means the normal CBC model or template waveform

is able to explain the entire coherent signal in the data.

For the Modified case (fig 2.4) we see that the simulated values are included

in most of the spline model posterior distributions but not the posteriors with

the spline model inactive. This is because the modified signal includes the abrupt

26



FIGURE 2.6. Posterior quantile of the spline interpolant that 0-deviation
corresponds to for the simulated unmodified (pink) and modified (purple) signals.
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(in frequency) modifications or deviations simulated and these types of extreme

abrupt deviations are very poorly described by the template waveform models and

especially the IMRPhenomPv2 waveform template used in this analysis. However,

we see that with our spline model turned on, the posterior distributions do

encompass most of the simulated parameter values. This illustrates that parameter

estimation (PE) without including deviation parameters would not be reliable at

estimating the true signal parameters in cases where there may be departures from

the waveform template used. In particular we see from figure 2.4 that the masses

and trigger time posterior distributions are more consistent with the simulated

values with the spline model fitting the deviations.

Figure 2.5 shows the interpolated spline functions for the deviations

in amplitude and phase, δA and δϕ, for both the modified and unmodified

simulated signals (right, left). The plots show the 1σ and 2σ bounds in the spline

interpolants along with the median. We see here that our model consistently

recovers zero deviations for the unmodified signal across the frequency band. The

ranges included in the 1σ and 2σ bands show the exploration of the prior bounds

while sampling while also being symmetric around the median. Looking at the

modified case, we see a presence of deviations away from zero in phase around 100

Hz. The phase recovery does not show the clear step function behavior that was

simulated and shown in figure 2.1 as that extreme deviation is disfavored by the

prior, because the priors used on the node positions are Gaussian distributions

centered about zero; to recover the large flat step in frequencies greater than 100

Hz would require very low prior probability at those nodes. The spline posterior

does however show that there is a transition at the modified frequency (∼ 100

Hz) and shows that the phase increases roughly by 60 degrees as we simulated.

28



The model compensates for this by “ramping” down the phase modification so

that it slopes back to zero after the merger frequency (∼ 250 Hz for this signal)

since there is no signal content to infer from after merger. The model may also

be able to coherently ramp down as a result of possible degeneracies with other

parameters. The amplitude recovery is less revealing since the simulated deviation

is on order of the prior width along with the sharp resolution of the deviation in

frequency, it is harder to clearly recover that feature in our model. The presence

of deviations is corroborated by the fact that the posterior distribution on the

deviations excludes zero deviation at some frequencies at the 95% level, which

we do see in our modified case. To focus on this we can calculate the posterior

quantile of phase and amplitude deviation that the x-axis (0-deviations) falls at for

each frequency bin. This is shown in figure 2.6.

From this we see in the phase plot that there are significant portions of the

frequency range where the phase interpolant ruled out zero deviations at greater

than the 99% credible level. The amplitude recovery shows less excursion which

tells us we would not be able to constrain amplitude deviations of this type and

magnitude. We do see significantly more freedom in amplitude than the no-

modifications case which considerably constrained the amplitude interpolants

to zero, however zero deviations lies within the 1σ range across the frequency

band meaning it could still be consistent with no deviations present in amplitude.

2.5.2. Model Comparisons

A useful way to see how well the spline model performs on a given segment

of data is to perform a model comparison between the spline on and spline off
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FIGURE 2.7. The DIC value from spline-model-off run minus spline-model-on run
for different simulated phase deviations. Green shaded regions are where the spline
model is preferred and red shaded region is where the spline model off is preferred.

models. To do this we take an Information Theory approach by computing the

Deviance Information Criterion (DIC) [33, 34]. This measure of fitness has the

feature that lower values correspond to a better fit and includes an “Occam’s

Factor” that penalizes models with greater numbers of parameters. To effectively

compare the spline on to spline off models we take the DIC value from the spline

off and subtract the DIC value from the spline on model giving us a single value

that is positive if the spline model is preferred and negative if the spline model

is disfavored. We now perform a study where we run on simulated signals with

modifications as before but with increasing jumps in phase from 0 to 60 degrees

incrementing by 5 degrees. Looking at figure 2.7, we see that as the phase jump

increases the spline model becomes more favored. We can compare the DIC

differences from figure 2.7 and to the differences for the un-modified signal which

has DIC difference of -74.46, showing that for the DIC the spline model off is
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preferred at about the same level the spline model on is preferred for a phase jump

of 35 degrees.

2.5.3. Model Limitations and Alternative Parameterizations

We have attempted a few other iterations of this model to increase its

flexibility and performance on simulated signals which were not included in our

final analyses. The first was to parameterize the deviations in the derivative of

the phase/amplitude. This was tried for the same reason that the model was

insensitive to the step function deviation that we have simulated in the phase.

The step function was very incompatible with the normal model priors as each

node after stepping up is penalized from our priors yet if we parameterized in

the derivative the step function derivative looks like a delta function which is

much more compatible with zero-centered Gaussian priors on the spline nodes. In

practice this brought more challenges than it solved increasing other degeneracies

with parameters and did not seem to qualitatively improve our efficiency or

performance of correctly fitting the simulated deviations.

As a further test of our model, we attempted to recover modifications

to a neutron star-black hole (NSBH) merger waveform. In the event of tidal

disruption of the neutron star, there is an expected deviation to the waveform

predicted by GR for non-deformable bodies. Specifically, we constructed a toy

model featuring a roll-off in amplitude beyond a disruption frequency. Physically,

this corresponds to a spreading and redistribution of mass after the moment of

disruption, which would decrease the intensity of GWs emitted from then on

[35, 36]. We made no change to the phase. Our model was consistently unable to

recover these deviations. This is likely due to more degeneracies in our parameters,
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GWTC-1 Events

Event χeff dL (Mpc) m1 (M⊙) m2 (M⊙) M (M⊙) ρgstlal Source
GW150914 −0.01+0.12

−0.13 430.0+150.0
−170.0 35.6+4.8

−3.0 30.6+3.0
−4.4 28.6+1.6

−1.5 24.4 BBH
GW151012 0.04+0.28

−0.19 1060.0+540.0
−480.0 23.3+14.0

−5.5 13.6+4.1
−4.8 15.2+2.0

−1.1 10.0 BBH
GW151226 0.18+0.2

−0.12 440.0+180.0
−190.0 13.7+8.8

−3.2 7.7+2.2
−2.6 8.9+0.3

−0.3 13.1 BBH
GW170104 −0.04+0.17

−0.2 960.0+430.0
−410.0 31.0+7.2

−5.6 20.1+4.9
−4.5 21.5+2.1

−1.7 13.0 BBH
GW170608 0.03+0.19

−0.07 320.0+120.0
−110.0 10.9+5.3

−1.7 7.6+1.3
−2.1 7.9+0.2

−0.2 14.9 BBH
GW170729 0.36+0.21

−0.25 2750.0+1350.0
−1320.0 50.6+16.6

−10.2 34.3+9.1
−10.1 35.7+6.5

−4.7 10.8 BBH
GW170809 0.07+0.16

−0.16 990.0+320.0
−380.0 35.2+8.3

−6.0 23.8+5.2
−5.1 25.0+2.1

−1.6 12.4 BBH
GW170814 0.07+0.12

−0.11 580.0+160.0
−210.0 30.7+5.7

−3.0 25.3+2.9
−4.1 24.2+1.4

−1.1 15.9 BBH
GW170817 0.0+0.02

−0.01 40.0+10.0
−10.0 1.46+0.12

−0.1 1.27+0.09
−0.09 1.186+0.001

−0.001 33.0 BNS
GW170818 −0.09+0.18

−0.21 1020.0+430.0
−360.0 35.5+7.5

−4.7 26.8+4.3
−5.2 26.7+2.1

−1.7 11.3 BBH
GW170823 0.08+0.2

−0.22 1850.0+840.0
−840.0 39.6+10.0

−6.6 29.4+6.3
−7.1 29.3+4.2

−3.2 11.5 BBH

TABLE 2.2. Posterior estimates for LIGO-Virgo’s GWTC-1 catalog of events with
+/- 1σ errors shown as well

and specifically in component mass. By moving to a higher mass, parameter

estimation can push the amplitudes lower at high frequencies, and the additional

flexibility of the spline model was unable to capture any of the deviation. Better

results may be had with a more realistically modified NSBH waveform, or by

changing the way we manage degeneracies in our parameters.

2.6. Results from LIGO-Virgo Public Data

The LIGO-Virgo GWTC-1 catalog [9] presents a population of GW events

to study deviations of GR along with a suite of data with which to validate our

gravitational waveform models. We first discuss the results of our model on the

ten binary black hole merger events listed with a few selected median posterior

parameters in table 2.2, and then we will discuss the one binary neutron star

event, GW170817.

We performed parameter estimation on the ten binary black hole

(BBH) events with the template waveform IMRPhenomPv2 [2], and the

single binary neutron star (BNS) event, GW170817, with the comparable
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FIGURE 2.8. Spline interpolation of GW170823 with 1 and 2 σ credible intervals
(grey) and the median spline interpolant (red) shown.
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FIGURE 2.9. Spline interpolation of GW170729 with 1 and 2 σ credible intervals
(grey) and the median spline interpolant (red) shown.

34



IMRPhenomPv2 NRTidal [37] template waveform that includes neutron star tidal

effects, each with our spline model turned on and off. For GW170817, since there

was an Electromagnetic Counterpart detected, and to help optimize the speed of

sampling, we have fixed the sky location of the source in our analysis. These runs

used the same prior settings detailed in Section 2.4 which is a 5% uncertainty of

the amplitude and 5 degrees uncertainty on phase. First we look at the spline plot

recoveries for GW170823 and GW170729 to show two different cases, both still

consistent with zero deviations. In figure 2.8 we see the case where our model is

consistent with zero deviations consistently across the frequency band with the

credible intervals illustrating the prior exploration during sampling. Contrasting

to this we can look at figure 2.9 to see a case in which our model has less posterior

support for zero deviations at some frequencies. We see here that there is an area

on the plot, most importantly the phase portion, around 100 Hz in which zero

deviations falls nearly outside our 1σ interval. The first thing one might wonder

seeing deviations here is whether this can be explained by the normal calibration

uncertainties of each detector being similar. We check this in fig 2.10 along with

a run using a waveform model including higher-order modes (HOM) or greater

than ℓ = 2 modes in the spherical harmonic expansion [38], IMRPhenomPv3HM

[39]. As seen in table 2.2 GW170729 is the most massive event from GWTC-1

and HOM are more important for higher mass systems along with asymmetric

mass systems [20, 40]. We can clearly see a very similar spline interpolant recovery

leading us to believe this is fitting features in the data that are unexplained by

either a higher-order mode waveform or similar calibration errors across the

network of detectors. However for each of the GW170729 results we still have

posterior support for zero deviations at the frequencies of largest excursions.
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FIGURE 2.10. Spline interpolation of GW170729 with 1σ percent credible
intervals shown, comparing runs on GW170729 with calibration turned on/off
and using a HOM waveform also with calibration turned off.
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FIGURE 2.11. Quantile of spline interpolation that 0-deviation corresponds to
for GWTC-1 events. (Different choices of flow and sampling rates were chosen for
some events.)

As in the previous section we can now look at which quantile of the spline

interpolant posteriors will fall along the x-axis (corresponding to no deviation),

at each frequency bin for each event. This is shown in figure 2.11 in which we

highlight the > 1σ and > 2σ bands. We notice in this figure that for all ten binary

black hole events, no deviations or modifications in amplitude fall outside the 1-

sigma interval. We do see that for two events, namely GW170729 and GW170814,

there are regions in which no deviation falls outside of the 1σ band. However there

are significant portions where GW170817 also falls outside the 1σ band. Looking

at the spline posterior in figure 2.12 for GW170817 shows the clear departures

away from zero at some frequencies but overall outside of that small region looks

behaved.

To further check our analysis we perform the same model comparisons

described earlier in this paper on an event by event basis comparing the spline

model on to the spline model off. This is seen in figure 2.13 with the same results
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FIGURE 2.12. Spline interpolation of GW170817 with 1 and 2 σ credible intervals
(grey) and the median spline interpolant (red) shown.
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FIGURE 2.13. DIC of spline-model-off run minus DIC of spline-model-on run
for GWTC-1 events and simulated signals. Simulated modified signals are
denoted with the magnitude of phase deviation jump in degrees. Negative values
correspond to spline model disfavored while positive values show the spline model
favored.

from differing the phase jump as discussed in the previous section. This shows that

for each event there is no preference to either model from their DIC values. Even

for the events with more extreme spline interpolant posterior (i.e, GW170729 and

GW170817) we still see that from a model comparison approach the spline model

does not significantly describe the data better than without the spline model.

2.6.1. Conclusions

We have presented a useful model and parameterization to describe general

departures or deviations from gravitational waveform models. Our model can be
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used to look for departures from any of modeled waveforms by generically fitting

the entire frequency band at once with spline functions. We find that for the 11

gravitational wave events of both BBH and BNS origin in GWTC-1, the data are

consistent with the IMRPhenomPv2 waveform. Shown in figure 2.11 there are two

events that we consider “outliers” with some portion of the phase deviation outside

of the 1σ range but still lying well within the 2σ bounds of no deviations, which

for a sample size of 11 events would not be unexpected, even with no deviations

present.

Currently, more investigation into possible degeneracies of our model would

be necessary to vet any significant sign of deviation. Further studies also need

to be done to evaluate effects of detector sensitivity on our model, expand the

validation of our model on other physically motivated deviations that can be

simulated, and possibly incorporating information from proposed alternatives to

GR into the priors. However, the model presented in this paper can be used as a

model agnostic test to look for first signs of departures in the modeled waveforms.

With more events and increased detector sensitivity, we will be able to better

constrain any general deviations with our model while at the same time giving us

a better testing set to look for hidden degeneracies between our model and other

parameters.
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2.8. Additional Analysis Details

2.8.1. Degrees of Freedom and Model Comparison

If deviations from a modeled waveform are primarily in phase but not the

amplitude of the signal, our model’s added flexibility could unnecessarily penalize

our model comparisons in the effective dimensionality penalty of the DIC. The

DIC test statistic is defined as:

DIC = −2log(L) + pD = −2
(
log(L)− var(log(L))

)
(2.15)

With logL the average log-likelihood, and pD the effective number of

dimensions, defined as pD = 1
2
var(−2 logL) with var(...) denoting the variance.

In this definition the effective dimension term penalizes models with more degrees

of freedom. Here we explore the constraints of a phase-only modified model. We

only do so in an approximate way, assuming that the goodness of fit (i.e., mean

of log-likelihood) term obtained with our full phase and amplitude model is the

same that a phase-only model would produce. We then halve the model’s effective

dimension, pD, in the DIC calculation shown in 2.15, effectively removing the

degrees of freedom due to allowing the amplitude to vary.

Figure 2.14 shows that when approximating a phase-only deviation model

as described above, we still do not show a clear favoring of the spline model for
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FIGURE 2.14. DIC of spline-model-off run minus DIC of spline-model-on run for
GWTC-1 events and simulated signals. DICs in this plot are calculated with half
of the variance degree of freedom penalty term. Simulated modified signals are
denoted with the magnitude of phase deviation jump in degrees. Negative values
correspond to spline model disfavored while positive values show the spline model
favored.
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any event in GWTC-1, but compared to figure 2.13 there is more ambiguity about

which model is favored. This illustrates that with the current data, a phase-only

spline deviation model as presented does not qualitatively alter our conclusions but

may be useful in analyzing future catalogs of GW events.
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CHAPTER III

POKING HOLES: LOOKING FOR GAPS IN LIGO/VIRGO’S BLACK HOLE

POPULATION

3.1. Summary

Near the end of 2020 the LIGO-Virgo-KAGRA (LVK) collaboration released

data and analyses from the first half of their third observing run (O3), with an

additional 35 GW detections bringing the cumulative second catalog, GWTC-

2, to 46 detections [45]. One of the especially interesting events in GWTC-2

is GW190521 [46, 47], which was the contained the most massive black holes

of the catalog. The detection of these massive black holes challenged current

theoretical understanding of black hole formation through stellar collapse, as the

phenomena of Pair-Instability Supernovae (PISNe) is expected to preclude the

creation of black holes with masses > 55M⊙ through stellar collapse, while the

components of GW190521 were estimated to be about ∼ 85M⊙ and ∼ 65M⊙

[46, 47]. This led to many new interpretations of this peculiar merger, including

one where Fishbach and Holz [48] showed that under a population-informed

prior, the masses of GW190521 could be straddling the bounds of the expected

PISNe mass gap. Additionally, Nitz and Capano [49] showed a re-analysis of

the parameter estimation of GW190521 with newer waveforms models that also

showed considerable support a high mass-ratio mode, letting the masses straddle

the mass gap. In this chapter we present work published as Edelman et al. [50],

that looks for evidence of such a gap in the mass distribution of black holes, with

simple parametric population models containing a gap. We find mild evidence
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for the presence of such a feature, however this depends both on the choice of

underlying mass distribution, and the parameter estimates for the most massive

binary black hole (BBH) in GWTC-2, GW190521. This model presented would

be later used in the LVK collaboration’s population analysis of the next catalog,

GWTC-3 [1, 51].

3.2. Abstract

Stellar evolution models predict the existence of a gap in the black hole mass

spectrum from ∼ 55M⊙ − 120M⊙ due to pair-instability supernovae (PISNe).

We investigate the possible existence of such an “upper” mass gap in the second

gravitational wave transient catalog (GWTC-2) by hierarchically modeling the

astrophysical distribution of black hole masses. We extend the Truncated and

Powerlaw+Peak mass distribution families to allow for an explicit gap in the

mass distribution, and apply the extended models to GWTC-2. We find that with

the Truncated model there is mild evidence favoring an upper mass gap with log

Bayes Factor lnB = 2.79, inferring the lower and upper bounds at 56.12+7.54
−4.38M⊙,

and 103.74+17.01
−6.32 M⊙ respectively. When using the Powerlaw+Peak model, we

find no preference for the gap. When imposing tighter priors on the gap bounds

centered on the expected PISNe gap bounds, the log Bayes factors in favor of

a gap mildly increase. These results are however contingent on the parameter

inference for the most massive binary, GW190521, for which follow up analyses

showed the source may be an intermediate mass ratio merger that has component

masses straddling the gap. Using the GW190521 posterior samples from the

analysis in Nitz and Capano [49], we find an increase in Bayes factors in favor of

the gap. However, the overall conclusions are unchanged: There is no preference
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for a gap when using the Powerlaw+Peak model. This work paves the way

for constraining the physics of pair-instability and pulsational pair-instability

supernovae and high-mass black hole formation.

3.3. Introduction

With the recent release of its second gravitational wave transient catalog

(GWTC-2), the LIGO/Virgo collaboration (LVC) has now detected 50

gravitational wave (GW) events since the start of the advanced detector era,

at least 46 of which came from binary black hole (BBH) systems [9, 26, 27, 45].

GWTC-2 therefore provides a rich data set to infer properties of the astrophysical

population of stellar mass black holes [52, 53]. A robustly predicted feature that

we can look for, specifically in the black hole (BH) mass distribution, is the

theorized upper mass gap produced from effects due pair instability supernovae

(PISNe) which precludes formation of BHs with masses ∼ 55M⊙ − 120M⊙ from

stellar collapse.

Stellar evolution simulations show that stars with core masses from ∼

40 − 135M⊙ undergo PISNe in which the highly energetic gamma rays produced

in the core can collide with atomic nuclei and produce electron-positron pairs

[54]. This production process absorbs energy that was previously counteracting

the gravitational pressure causing the core to contract. Heavier core stars in

the ∼ 65 − 135M⊙ range ignite oxygen leading to an unstable thermonuclear

explosion which leaves behind no compact remnant [55, 56]. Lighter stars with

core masses ∼ 40 − 65M⊙ can temporarily stabilize themselves after the ignition

and thus go through a series of pulsations (PPISN) that shed large amounts of

mass with each pulse [57]. This continues until the mass of the star is too light
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FIGURE 3.1. 90% credible level contour of the posterior samples for each of the 46
BBH mergers in GWTC-2. We show both sets of posterior samples for the highest
mass event, GW190521, from [49] (green) and from the LVC analysis (purple).
Posterior samples from Nitz and Capano [49] have been re-weighted to the same
priors as the LVC analyses. The approximate expected region (∼ 55M⊙ − 120M⊙)
of the PISNe mass gap is highlighted in orange.

to pair-produce, leaving the star to undergo a normal core-collapse supernova

(CCSN) that leaves behind remnant black holes of masses ≲ 55M⊙ [58]. Even

more massive low metallicity stars can bypass PISN completely and possibly

form intermediate-mass black holes (IMBHs) with masses > 120M⊙ [59]. While

simulations consistently predict the existence of this proposed mass gap in the

distribution of binary black hole masses, the precise locations of the lower and

upper boundaries remain uncertain [60, 61, 62, 63, 64, 65]. Analyses of GW data

from the first and second Advanced LIGO-Virgo observing runs put constraints

on the lower bound of this mass gap by modeling the black hole primary mass

distribution as a powerlaw with a sharp high-mass cutoff, and found support for

this lower edge at ∼ 45M⊙ [52, 66, 67]. While the GWTC-2 catalog is consistent

with 97% of observed BBH primary masses lying below 45M⊙, population analyses

using GWTC-2 and parameterized toy models find that there is less support for
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a sharp cutoff and instead preference for a shallow tail to larger masses [53]. This

shallow tail extending into the supposedly forbidden range of masses is primarily

driven by the few GW detections that have posterior support in the mass gap,

most notably GW190521 [46, 47]. This leads to the possibility that there could

be a separate population of black holes contributing in that mass range, formed

through some other mechanism. One possibility is that remnants of previous black

hole mergers undergo subsequent “hierarchical” mergers which, in dynamical

environments such as globular clusters or active galactic nuclei, can contribute a

significant fraction to the overall rate of mergers [68, 69, 70, 71, 72, 73, 74]. For

example, Kimball et al. [75] finds evidence that GWTC-2 includes at least one

merger with a second generation component under certain assumptions about the

1st generation black hole mass distribution.

The hierarchical merger scenario is not the only explanation for high mass

events like GW190521, though. Other recent work has looked more closely at

the inferred source parameters of GW190521. Using gravitational waveforms

with quasi-circular black hole inspirals and a standard “agnostic” prior, the

LVC found the source of GW190521 to have component source-frame masses

within the theorized bounds of the mass gap with msrc
1 = 85+21

−14M⊙ and

msrc
2 = 66+17

−18M⊙ [46, 47]. However, other waveform models and priors lead to

other interpretations of this event. For example, the source of GW190521 could

have had a highly eccentric orbit, been a head-on merger, or been subject to

new physics allowing formation within the PISNe mass gap [68, 71, 76, 77, 78].

Alternatively, assuming the secondary component of GW190521 comes from the

same prior distribution of secondaries as other events, there is more support for

the components of GW190521 to straddle the lower and upper bounds of the mass
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gap [48]. There has also been work by Nitz and Capano [49] (hereafter NC21)

reanalyzing the parameter estimates of GW190521 with the recently released

IMRPhenomPXHM waveform [79] which supports mass ratios q ≡ m1/m2 > 4

that were not considered in the LVC analysis. NC21 found that GW190521 may

be an intermediate mass ratio merger, reporting a multimodal posterior with an

additional high mass ratio mode not identified in the LVC analysis. The reported

source frame component masses for the high mass ratio mode squarely puts each

outside of the theorized mass gap with msrc
1 = 166+16

−35M⊙ and msrc
2 = 16+14

−3 M⊙

[49]. Figure 3.1 shows the 90% contours on the posterior samples from events

in GWTC-2 with both the LVC GW190521 posterior samples in addition to

samples from NC21 highlighted. This illustrates how differences in the analysis

of GW190521 can considerably change the posterior support for its component

masses to lie in the theorized PISNe mass gap. If GW190521 does “straddle” the

gap, it would signal the existence of a high-mass population that could inform

questions in both astrophysics and cosmology [80].

In this letter we present a simple phenomenological population model

parameterizing the PISNe mass gap that enforces a zero rate of BBH mergers

within the gap. Our model is a complementary approach to other physically

motivated models that describe the impact of PISNe on the mass spectrum [e.g.,

81]. Using this model we evaluate the evidence for the presence of a mass gap

in LIGO/Virgo’s second gravitational wave transient catalog, and constrain its

properties. We conduct each analysis twice, first using posterior samples for

GW190521 released by the LVC, and alternatively using samples produced in

NC21. In Section 3.4 we introduce our parameterized mass gap model, and the

methods used to infer population properties. In Section 3.5 we present the results
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Primary Mass Model Parameters
Model Parameter Description Prior

Truncated
α slope of the powerlaw U(-4, 12)
mmin minimum mass cutoff (M⊙) U(2M⊙, 10M⊙)
mmax maximum mass cutoff (M⊙) 200 M⊙

PowerLaw+Peak

α slope of the powerlaw U(-4, 12)
mmin minimum mass cutoff (M⊙) U(2M⊙, 10M⊙)
mmax maximum mass cutoff (M⊙) 200 M⊙
µp mean of Gaussian peak (M⊙) U(20M⊙, 70M⊙)
σp width of the Gaussian peak (M⊙) U(0.4M⊙, 10M⊙)
λp fraction of BBH in the Gaussian component U(0, 1)

Mass Ratio Model Parameters
PowerLaw MassRatio βq slope of the mass ratio powerlaw U(-4, 12)

Redshift Evolution Model Parameters
PowerLaw Redshift γ slope of redshift evolution powerlaw (1 + z)γ U(-6, 6)

Mass Gap Parameters

Agnostic MassGap
mg lower bound of PISNe mass gap (M⊙) U(40M⊙, 100M⊙)
wg width of the PISNe mass gap (M⊙) U(0M⊙, 160M⊙)

Informed MassGap
mg,min lower bound of the PISNe mass gap (M⊙) N (µ = 55M⊙, σ = 10M⊙)
mg,max upper bound of the PISNe mass gap (M⊙) N (µ = 120M⊙, σ = 20M⊙)

TABLE 3.1. Prior choices and description of hyperparameters for used population
models.

of our inference with both sets of posterior samples and two underlying mass

distributions. We then discuss our interpretation of the results and astrophysical

implications in Section 3.6 and finish with our conclusions on the support for the

presence of an upper mass gap in LIGO/Virgo’s BH population in Section 3.7.

3.4. Methods

3.4.1. Hierarchical Inference

We use hierarchical Bayesian inference to simultaneously infer

hyperparameters of the population distribution of the primary masses (m1), mass

ratios (q) and the redshifts (z) of observed BBHs. We assume the BBH merger

rate dR over a given interval of masses and redshifts can be factored as:

dR(m1, q, z|R0,Λ)

dm1dq
= R0p(m1|Λ)p(q|m1,Λ)p(z|Λ) (3.1)
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with Λ the population hyperparameters and R0 the local (z = 0) merger rate.

Under the condition that p(m1|Λ) and p(q|m1,Λ) are both normalized, and p(z)

chosen such that p(z = 0) = 1, integrating the merger rate density across all

primary massses and mass ratios at a given z, returns the total BBH merger rate

density at that redshift, R(z). The number density of BBH mergers can be related

to the merger rate density by:

dN(m1, q, z|R0,Λ)

dm1dqdz
=

dVc

dz

(
Tobs

1 + z

)
dR(m1, q, z|R0,Λ)

dm1dq
(3.2)

with Vc the comoving volume element and Tobs the total observing time with the

factor of 1 + z converting source-frame time to detector-frame. Integrating the

above number density across all primary masses, mass ratios and redshifts out to

a maximum zmax returns the expected number of BBH mergers in the universe

out to zmax. Given a set of data {di} from Nobs gravitational wave events, we can

calculate the posterior on Λ following e.g. Farr [82] and Mandel et al. [83]:

p (R0,Λ|{di}) ∝ p(Λ)p(R0)e
−R0⟨V T ⟩Λ

Nobs∏
i=1

[∫
L
(
di|mi

1, q
i, zi
) dR
dm1dqdz

(Λ)dm1dqdz

]
,

(3.3)

where L(di|m1, q, z) is the single-event likelihood function used to infer each

event’s parameters, and ⟨V T ⟩Λ is the average sensitive time-volume when assuming

a population corresponding to hyper-parameters Λ. To estimate the ⟨V T ⟩Λ, we

use the results of the LVC’s injection campaign where the GWs from a fixed,

broad population of sources were simulated, injected into real detector data,
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and searched for using the same analyses that produced GWTC-2 1. We use

importance sampling over the detected simulated events to estimate ⟨V T ⟩Λ,

marginalizing over the uncertainty in our estimate due to a finite number of

simulated events, following [82]. We assume that repeated sampling of ⟨V T ⟩Λ

will follow a normal distribution (i.e. ⟨V T ⟩Λ ∼ N (µ(Λ), σ(Λ))), with µ the

raw importance sampled estimate and σ standard error. Now we define Neff , the

effective number of independent draws contributing to the importance sampled

estimate, as Neff ≡ µ2

σ2 , which we verify to be sufficiently high after re-weighting

to a population (i.e. Neff > 4Ndet). After marginalizing over the uncertainty

estimating the sensitive time-volume, we write the marginalized posterior as:

p (R0,Λ|{di}) ∝ p(Λ)p(R0)

Ndet∏
i=1

[∫
L
(
di|mi

1, q
i, zi
)
p(mi

1, q
i, zi|Λ)dm1dqdz

]
∗

RNobs
0 e

R0µ(R0µ−2Neff)

2Neff (3.4)

Finally, when using the commonly chosen log-Uniform prior on R0 [53], we can

marginalize over the local merger rate, neglecting terms of O(N−2
eff ) or greater: [82]

log p (Λ|{di}) ∝
Nobs∑
i=1

log

[
1

Ki

Ki∑
j=1

p(mi,j
1 , qi,j, zi,j|Λ)

π(mi,j
1 , qi,j, zi,j)

]
−Nobs log µ+

3Nobs +N2
obs

2Neff

+O(N−2
eff ) (3.5)

1For O3a we used the injection sets used by Abbott et al. [53], which can be found at
https://dcc.ligo.org/LIGO-P2000217/public. For O1/O2 we used the mock injection sets used
by Abbott et al. [52] which can be found at https://dcc.ligo.org/LIGO-P2000434/public
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FIGURE 3.2. Posterior merger rate density (left) as function of primary mass
inferred with the mass gap imposed on top of the Truncated model from Abbott
et al. [53]. Solid curves shown the median posterior sample, while the shaded
regions show the 90% credible level. 1-d and 2-d marginal posterior samples (right)
of the two mass gap parameters, the lower edge, mg, and the width, wg, both with
uniform agnostic priors over the range shown. The contour lines enclose 10-80% of
the posterior. The grey region shows where our model reduces to the Truncated
model with maximum mass at mg. Results are shown using both the GW190521
posterior samples reported by the LVC (purple) and Nitz and Capano [49] (green).

In the last expression we further approximated the inner integral over the

individual event parameters mi
1, q

i, zi with importance sampling over Ki single-

event posterior samples generated from inference with prior π(mi,j
1 , qi,j, zi,j). To

calculate marginal likelihoods and draw samples of the hyper parameters from the

hierarchical posterior distribution shown in equation 3.5, we use the Bilby [84, 85]

and GWPopulation [86] Bayesian inference software libraries with the Dynesty

dynamic nested sampling algorithm [87].

3.4.2. Parameterized Mass Gap Model

We build on models used in Abbott et al. [53], Abbott et al. [52], and

Fishbach et al. [88] for the mass ratio and redshift of our population, specifically
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p(z|γ) ∝ (1 + z)γ and p(q|m1,mmin, βq) ∝ qβqΘ(qm1 − mmin)Θ(m1 − qm1)

with Θ denoting the Heaviside step function ensuring m2 is within the range

[mmin, m1]. We choose to neglect a population model for the spins, assuming

that their population follows the uniform and isotropic prior used in each event’s

initial analysis. For the primary mass distribution we use two different models

presented in Abbott et al. [53], the Truncated and PowerLaw+Peak models.

We choose to build upon the Truncated model for its simplicity and the

Powerlaw+Peak model since Abbott et al. [53] found it to have the highest

marginal likelihood of the models used. Additionally, it is important to include

the peak (Powerlaw+Peak), as it was motivated to model the pileup of events

due to PPISN mass loss which is expected from the same processes predicting the

upper mass gap [67]. We then introduce a mass gap into both the primary and

mass ratio distributions by enforcing that neither component mass can lie within

the gap, which we parameterize with the location of the lower edge mg and the

width of the gap wg:

p(m1|mg, wg,Λ) ∝


0 mg ≤ m1 ≤ mg + wg

p(m1|Λ) otherwise

(3.6)

p(q|mg, wg,m1,Λ) ∝


0 mg ≤ m1q ≤ mg + wg

p(q|m1,Λ) otherwise

(3.7)

Our model prescribes a zero-rate within the mass gap, which might be

expected if the entire population of sources is formed through stellar collapse. We

enforce an overall maximum BH mass of 200M⊙ so that if the upper edge of the

gap is not constrained (i.e. mg + wg ≥ 200M⊙), it is equivalent to the underlying
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primary mass model with a maximum mass at mg. The hyperparameters’

descriptions according to each of the models used along with their corresponding

priors can be found in Table 3.1.

3.4.3. Injections and Sensitivity Estimates

The injection sets reported and used by the LVC in Abbott et al. [53] only

include simulated signals with source frame masses up to 100M⊙. However, since

NC21 found GW190521 to have posterior support for its primary source frame

mass to be up to 180M⊙, we want to probe this region of parameter space. To

prevent inferring an artificially high merger rate above the gap, our mass gap

models are chosen to enforce the same powerlaw index in the region above the

gap as below. This fixes the normalization above the gap based on the powerlaw

fit below the gap that is influenced by the events which have m1 < 60M⊙, which

is the majority. This is also in-line with the expectation that very massive BHs

can also be produced through stellar evolution, and thus come from the same

stellar population as below the gap [89]. We additionally fit our population models

with the same injection set truncated to only include injections with masses up to

80M⊙, and found that it did not bias our results.

3.5. Results

We fit our population models to the 46 definitive BBH mergers in GWTC-

2 (i.e., excluding GW170817, GW190425, GW190814, and GW190426 15215

[28, 90, 91]), and since we are focused on the details of the high-mass population

we neglect the low-mass smoothing feature of the models used in Abbott et al.

[53] for simplicity. Fig. 3.2 (left) shows the inferred merger rate density as a
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function of primary mass, when using the gap model on top of the underlying

Truncated model, in which there is clear inference of a mass gap. When using

the Truncated model, the choice of GW190521 posterior samples (either from

the LVC or NC21) does not significantly affect the outcome, but the gap is inferred

to be narrower and with an upper edge at lower masses when using the LVC

samples. Fig 3.2 (right) shows the 1-d and 2-d marginal posterior distributions

for the two gap parameters. Here we can see that the posterior distribution for the

width of the gap is less constrained using NC21 samples, but both cases show little

support for a zero-width gap. Using the LVC GW190521 samples we find support

for the Truncated+Gap over Truncated model with Bayes factor lnB = 2.79,

with lower and upper bounds at 55.12+7.54
−4.38M⊙, and 103.74+17.01

−6.32 M⊙ respectively.

While the gap model is clearly favored in that comparison, when using samples

from NC21’s for GW190521 the gap is more clearly favored with lnB = 6.5, with

lower and upper bounds at 55.33+5.21
−4.21M⊙, and 126.03+30.25

−22.65M⊙.

Fig 3.3 (left) shows the inferred merger rate density as a function of primary

mass when imposing a gap on the most favored mass model in Abbott et al. [53],

Powerlaw+Peak. When including the Gaussian peak in our primary mass

distribution, the support for the upper mass gap significantly reduces, regardless

of which GW190521 samples are used. We find log-Bayes factors for inclusion of

the gap to be lnB = −0.5 and lnB = 0.5 when using the LVC, and Nitz and

Capano [49] GW190521 posterior samples respectively. Fig. 3.3 (right) shows the

1-d and 2-d marginal posterior distributions for the gap parameters, which show

poorer constraints on the gap in the Powerlaw+Peak+Gap model relative to

Powerlaw+Gap. In this case, both choices of posterior samples show support

for a zero-width gap, as reflected in the Bayes factors.
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FIGURE 3.3. Posterior merger rate density (left) as function of primary mass
inferred with the mass gap imposed on top of the Powerlaw+Peak model
from Abbott et al. [53]. Solid curves shown the median posterior sample, while
the shaded regions show the 90% credible level. 1-d and 2-d marginal posterior
samples (right) of the two mass gap parameters, the lower edge, mg, and the
width, wg, both with uniform agnostic priors over the range shown. The contour
lines enclose 10-80% of the posterior. The grey region shows where our model
reduces to the Powerlaw+Peak model with maximum mass at mg. Results are
shown using both the GW190521 posterior samples reported by the LVC (purple)
and Nitz and Capano [49] (green).
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Model LVC NC21
Truncated -4.98 -7.99
Truncated+Gap -2.20 -1.51
Truncated+Gap (informed) -0.87 0.0
Powerlaw+Peak 0.0 -1.93
Powerlaw+Peak+Gap -0.57 -1.35
Powerlaw+Peak+Gap (informed) -1.05 -0.95

TABLE 3.2. Log Bayes factors for the models analyzed in this work, shown
relative to the most favored model in each column. The two columns show
results with the LVC reported GW190521 parameter estimation samples vs. those
reported by NC21.

3.6. Discussion

Our results are inconclusive about the existence of a high-mass mass

gap. While a gap is clearly inferred when using a pure power-law model of the

population, adding a Gaussian peak to the mass distribution washes away the

need for the gap. Furthermore, differences in parameter estimates with different

priors and waveforms gives rise to different inferences on the gap parameters if

a gap indeed exists. These results are summarized in Table 3.2 through Bayes

factors comparing the marginal likelihood of each model to that of the model with

highest marginal likelihood (which therefore has lnB = 0). The Bayes factors for

LVC and NC21 parameter estimates are treated separately in the table. We also

include Bayes factors for analyses with “informed” priors on the gap boundary,

where we place Gaussian priors for mg,min and mg,max around centered on the

approximate expected gap bounds (i.e. p(mg,min) ∼ N (µ = 55M⊙, σ = 10M⊙)

and p(mg,max) ∼ N (µ = 120M⊙, σ = 20M⊙)). With the smaller prior volume

in these runs, the Bayes factors are higher than with the uninformed gap priors.

Nevertheless, these Bayes factors do not increase enough to change the general
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finding of this work that the gap is favored with the Truncated model, but its

existence is unclear when considering the Powerlaw+Peak model.

While the gap (if it exists) is difficult to resolve at present due to low number

statistics, future detections will enable a finer look at the gap. Three extensions

should be made when more high-mass detections are available, which we have

eschewed for now due to the single event GW190521 driving the inference:

1. Allow a different mass ratio distribution for high-total-mass events than for

low-total-mass.

2. Allow a non-zero rate in the gap, possibly with spins enforced to be near

χ ∼ 0.7 to account for hierarchical mergers [69, 92, 93, 94].

3. Allow the merger rate normalization above the gap to be a free parameter.2

The location of the lower edge of the PISNe mass gap has been found to be

insensitive to many variations in stellar physics, especially metallicities [61]. A

metallicity independent feature in the BH mass spectrum can provide a “standard

siren” that allows for independent measurements of redshift and luminosity

distances to GW sources to directly measure the Hubble constant [95]. The lower

edge of the PISNe mass gap has been found to be very sensitive to variations in

the 12C(α, γ)16O reaction rate, with some choices of rate pushing the lower bound

up to ∼ 90M⊙, illustrating that constraints on the lower bound can also be used

to put constraints on nuclear physics going on inside stars’ cores. [61, 63]. These

astrophysical implications rely on the CO-BH mass relation from Farmer et al. [61]

that predicts a pileup of BHs below the onset of the PISNe mass gap, implying

2This was not possible in this work due to LVC injections only reaching source frame
component masses of 100M⊙, making the overall rate above that threshold unconstrained, as
was discussed in Section 3.4.3
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constraints on the gap lower bound that neglect a pileup could not be reliably

used to constrain nuclear physics. The upper edge of the mass gap, is currently

not well constrained, but Ezquiaga and Holz [80] argues LIGO/Virgo (at A+

sensitivity) will be sensitive to BBH’s with component masses that could lie above

the PISNe gap. Future constraints on the upper edge may also provide a novel

probe of physics beyond the standard model [89].

3.7. Conclusions

Black holes formed through stellar collapse are expected to have a gap in

their mass spectrum from ∼ 55M⊙−120M⊙. We assess the support, or lack thereof,

for the existence of such a gap in the GWTC-2 catalog, using two parameterized

black hole binary merger population models. Our population models build on the

Truncated and Powerlaw+Peak models previously fit to these catalogs, and

explicitly allow for a zero-rate mass gap with a population of black holes above the

gap. Our analyses also consider two separate inferences of GW190521 parameters,

one from the LVC and the other from Nitz and Capano [49]. We find that the

results of our inference regarding the existence of a gap are contingent in part on

the choice of population model and GW190521 parameter estimation results.

If a pure power law is used to describe the distribution of primary masses, we

infer a mass gap from 56.12+7.54
−4.38M⊙ to 103.74+17.01

−6.32 M⊙, however if the data support

more unequal masses for GW190521 as suggested in Nitz and Capano [49], we

infer a mass gap from 55.33+5.21
−4.21M⊙ to 126.03+30.25

−22.65M⊙. When using a power law

with an additional Gaussian component, we no longer find significant support for a

zero-rate mass gap. This does not, however, imply the nonexistence of a mass gap

due to PISNe but points towards there being a secondary population of BHs that
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LIGO/Virgo is observing not formed through isolated stellar evolution. Future

studies may be able to distinguish between these multiple formation channels

in part by looking for a zero-rate gap in BH sub populations while additionally

using informed constraints on expected properties that a hierarchically formed

population of BHs would have.
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CHAPTER IV

AIN’T NO MOUNTAIN HIGH ENOUGH: SEMI-PARAMETRIC MODELING

OF LIGO-VIRGOS BINARY BLACK HOLE MASS DISTRIBUTION

4.1. Summary

After GWTC-2 the population of GW sources were beginning to be

uncovered, revealing a possible peak or break in the mass distribution at ∼

35 − 40M⊙, found with simple parametric models, while more flexible non-

parametric modeling was beginning to show more structure [51, 96]. In this

chapter we present work published as Edelman et al. [97] which introduces a novel

semi-parametric method of inferring the mass distribution of BBHs in GWTC-2.

Out semi-parametric approach allows us to gain the advantages of both parametric

and non-parametric modeling by using a flexible non-parametric modulation to

an underlying simpler parametric description. We construct this model with cubic

splines, similarly to the method used in Chapter 2, and find considerable support

for the peak at ∼ 35M⊙ along with signs of a peak at lower masses, ∼ 10M⊙,

validating hints of structure in the mass distribution. This model presented

would be later used in the LVK collaboration’s population analysis of the next

catalog, GWTC-3 [1, 51], finding more significant signs of structure, especially at

10M⊙. Since these papers came out there have been additional theoretical work

to interpret this low mass peak in the mass distribution [98], simulation studies

to calibrate significance of structure [99], as well as other groups borrowing this

model to construct analyses of their own [100].
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4.2. Abstract

We introduce a semi-parametric model for the primary mass distribution

of binary black holes (BBHs) observed with gravitational waves (GWs) that

applies a cubic-spline perturbation to a power law. We apply this model to the

46 BBHs included in the second gravitational wave transient catalog (GWTC-2).

The spline perturbation model recovers a consistent primary mass distribution

with previous results, corroborating the existence of a peak at 35M⊙(> 97%

credibility) found with the Powerlaw+Peak model. The peak could be the

result pulsational pair-instability supernovae (PPISNe). The spline perturbation

model finds potential signs of additional features in the primary mass distribution

at lower masses similar to those previously reported by Tiwari and Fairhurst

[96]. However, with fluctuations due to small number statistics, the simpler

Powerlaw+Peak and BrokenPowerlaw models are both still perfectly

consistent with observations. Our semi-parametric approach serves as a way to

bridge the gap between parametric and non-parametric models to more accurately

measure the BBH mass distribution. With larger catalogs we will be able to

use this model to resolve possible additional features that could be used to

perform cosmological measurements, and will build on our understanding of BBH

formation, stellar evolution and nuclear astrophysics.

4.3. Introduction

The LIGO-Virgo Collaboration’s second catalog of compact object mergers

has shown that the universe is teeming with colliding compact objects with a

variety of masses and spins [101]. In contrast to the 11 sources reported in the

first LIGO-Virgo Collaboration (LVC) catalog [GWTC-1 9], the second catalog
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[GWTC-2 45] contains 50 sources, enabling a deeper look into the formation

environments of compact object binaries. The sources in GWTC-2 include

two binary neutron stars (BNSs) [28, 90], 46 binary black holes (BBHs), and

two neutron star black hole (NSBHs) candidates [91]. The 46 confirmed BBHs

observed in GWTC-2 include the first clear evidence of an asymmetric mass

binary, potentially the least massive black hole known, and the most massive

stellar mass black hole to date [46, 47, 91, 102]. With this large catalog of BBH

mergers, one can now begin to robustly infer the properties of the astrophysical

BBH distribution in addition to each individual event properties [52, 53].

Prior to the release of GWTC-2, the inferred mass distribution for the

more massive (primary) components in mergers was thought to be consistent

with a declining power law that cuts off at ∼ 45M⊙ [52, 66]. When analyzing

the BBH primary mass distribution including events in GWTC-2, Abbott et al.

[53] found that a truncated power law is no longer consistent with the additional

observations. The primary mass distribution was found to have some feature at

∼ 35–40M⊙, which was best described by either a break to a steeper power law

or a with the addition of a peak. The presence of a peak in the primary mass

distribution in this mass range is not surprising: it would be expected if we are

witnessing effects of pulsational pair-instability supernovae (PPISNe) [67]. Massive

stars that are too light to be fully disrupted by a pair-instability supernova (PISN)

can shed large amounts of mass in a series of explosive pulsations before collapsing

to a black hole [57, 58, 61]. This process leads to a wide range of initial stellar

masses that map onto remnant black holes with masses 30M⊙ ≤ mBH ≤ 45M⊙ [60,

62, 103]. GWTC-2 also includes more massive binaries than previously observed,

most notably GW190521 [46, 47]. Both component black holes of GW190521 have
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masses that pose a challenge to the theoretical prediction that pair-instability

(PI) would forbid isolated stellar evolution from creating remnant black holes with

masses from ∼ 50–125M⊙ [54, 55, 56, 59]. There is some evidence that GW190521

could be a mass gap straddling binary or the result of other physical processes

that get around the conflict with PISN theory [48, 49, 50, 71, 72, 73, 77, 78, 104].

However, the presence of these high mass component black holes could also point

towards there being a contribution to the observed population of BBHs detected

by LIGO/Virgo, that formed in a way that avoids PI. These formation possibilities

include hierarchical mergers in dense stellar environments, relativistic accretion

onto heavy BHs in active galactic nuclei disks, isolated binary evolution of low-

metallicity Population II stars, or even the presence of new physics beyond the

standard model [64, 69, 70, 74, 75, 94, 105, 106, 107].

Incorrectly inferring the BBH mass distribution has been shown to

significantly bias both estimates of merger rates and the stochastic gravitational

wave background amplitude [67]. Additionally the effects of PI can imprint

features onto the mass distribution such as a high mass cutoff in the mass

distribution (PISN), or a possible a pileup of mergers at masses just below the

cutoff (PPISN). Resolving either of these features can provide a mass scale,

calibrated across cosmic time, that enables measurements of the redshift-

luminosity-distance relation to infer cosmological parameters [95]. As catalogs

of GWs from BBHs grow in size [108], we will be able to infer the BBH mass

distribution with greater fidelity to determine if there is presence of additional

structure beyond a power law. Such structure could yield insights about the nature

of what environments BBHs form in and how they are connected to the rich fields

of stellar evolution and nuclear astrophysics [61, 63, 109, 110].
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FIGURE 4.1. Sketch description of the spline perturbation primary mass model.
The inset shows the interpolated cubic spline perturbation function for the plotted
modulated power law.

Bayesian non-parametric models provide a useful data-oriented approach to

modeling when one has little information or prior knowledge about the structure of

a set of data. These approaches provide little to no constraints on the functional

form imposed by the model and instead use very flexible functions that have

large prior support for a wide variety of unknown densities. Non-parametric

modeling has been widely applied across different areas of GW Astrophysics,

including modeling deviations from GR waveform models, modeling the noise

power spectrum of detectors, modeling the calibration of the detectors, and

creating surrogate models for faster waveform execution [8, 31, 111, 112].

In this work, we approach the mass spectrum from a data-driven

perspective, using a semi-parametric method rather than the low-dimensional

parametric models used in Abbott et al. [52, 53]. Our semi-parametric method is
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complementary to both parametric and fully non-parametric approaches [113, 114]

by incorporating a simple parametric description of the large-scale structure

(i.e. a power law) with an additional non-parametrically modeled component on

top. This approach can aid in searching for generic deviations to the underlying

parametric descriptions that could be the result of astrophysical processes.

Since non-parametric approaches make few assumptions on the form that the

underlying distributions may take, our model minimizes biases to the structure

such deviations could take. We expect a large fraction of stellar mass BHs to

form at the end of life of massive stars, which motivates our choice of a power law

form of the BBH primary mass distribution following a similar functional form

to the stellar initial mass function [115]. We therefore reconstruct the primary

mass distribution with the Truncated power law model [53, 66], in which we

modulate with a non-parametric perturbation. This method takes advantage of

using a simple parametric form to capture the majority of the structure in the

primary mass distribution while the perturbation function can find data-informed

deviations from the power law. In Section 4.4 we describe our semi-parametric

perturbation population model, and in Section 4.5 we present and discuss the

inferred properties of the primary mass distribution when analyzing all 46 BBHs in

GWTC-2. Finally, we explore possible interpretations of our results and conclude

in Section 4.6.

4.4. Spline Perturbation Model

We use a hierarchical Bayesian inference framework to infer the properties

of the astrophysical distribution of BBHs that incorporates software injections

to estimate selection effects [82, 83, 116]. This procedure is described in detail
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in Appendix 4.8.1. In order to capture both the overall trends and any sharper

features that may be in the primary mass distribution, we modulate a base

parametric hyper-prior on primary mass, p(m1|Λ), by a highly flexible perturbation

function – in this case, a cubic spline. We choose the simplest of previously

used parametric models as our underlying mass distribution, p(m1|Λ), which is

described by a power law in both primary mass and mass ratio with a sharp low

and high mass cutoff [52, 53, 66]. This model was referred to as the Truncated

model in Abbott et al. [53]. While the Truncated model alone does not describe

GWTC-2 well [53], it captures the majority of the large-scale structure found in

the primary mass distribution. For our underlying description, we extend the

Truncated model to allow for a tapering of the distribution at low masses

following the same form used for the Powerlaw+Peak model described in

Talbot and Thrane [67] and Abbott et al. [53]. Figure 4.1 shows an illustration

of our spline perturbation model on top of a power law without any mass cutoffs

or tapering. We multiplicatively apply perturbations to the underlying distribution

as:

pspline(m1|Λ, {mi, fi}) = k ∗ p(m1|Λ) exp(f(m1; {mi, fi})) (4.1)

In the above equation, k is a normalization factor found by numerically integrating

pspline(m1|Λ, {mi, fi}) over the entire range of primary masses, and f(m1; {mi, fi})

is the perturbation function modeled as a cubic spline that is interpolated between

n knots placed in m1 space. These knots are denoted by their locations in mass

space, {mi}ni=1, and their heights at each knot, {fi}ni=1. For readability, we

hereafter drop explicit dependence of f on {mi, fi} unless needed.
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We fix the locations of each knot to be linear in log m1 space from 5–100M⊙

and restrict the perturbations to zero at the minimum and maximum knots.

With these restrictions our spline model adds n − 2 extra hyper-parameters

to the underlying primary mass model we are perturbing, one for each of the

inner knots’ heights. We log-space the knots and perturb our underlying model

with the multiplicative factor, exp(f(m1)), to reflect the wide range in orders of

magnitude of the underlying power law. We then impose Gaussian priors on the

knot heights {fi} centered at 0 and with standard deviations, σknot. Our model

then has two specifications which control the resolution (n) and the magnitude

(σknot) of perturbations the model is sensitive to. We discuss the effect of changing

these model settings on our prior assumptions and motivate the particular choices

we made for this work in Appendix 4.8.2.

In addition to the primary mass distribution, we simultaneously fit for the

mass ratio and redshift distributions, without any spline perturbations applied.

We apply a power law distribution for the mass ratio as p(q|m1,mmin, βq) ∝

qβqΘ(qm1 − mmin)Θ(m1 − qm1), with Θ denoting the Heaviside step function

that ensures m2 is within the range [mmin, m1]. We then fit for the evolution of the

merger rate with redshift also with a power law such that p(z|λ) ∝ dVc

dz
1

1+z
(1 + z)λ,

where dVc is the co-moving volume element [52, 53, 88, 117]. We do not fit for a

population prior on the BBH spins, and assume the spin prior used for individual

event parameter estimation in Abbott et al. [45], which is uniform in component

spin magnitudes and isotropic in component spin orientations. We enumerate each

of the model’s hyper-parameters and corresponding hyper-prior distributions used

in this work in tables 4.1 and 4.2 found in Section 4.8.1.
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FIGURE 4.2. We plot the differential merger rate, dR
d logm1

= m1
dR
m1

as a function

of primary mass (top row) for the combined spline model marginalized over the
10, 15, and 20 knot models in blue. The solid line shows the median while the
shaded region shows the 90% credible interval and the 90% credible interval found
from the Powerlaw+Peak model in green. The black traces show 1000 draws
from the combined spline model posterior and we plot kernel density estimates
(KDEs) of the posterior samples of primary source frame mass for each of the 46
BBHs in GWTC-2. We plot m1p(m1) on a log-scaled y-axis with a Gaussian KDE
approximating p(m1) for each event. These posterior samples are not re-weighted
to a population and come directly from the accompanying data release to Abbott
et al. [45].
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4.5. Results

4.5.1. Astrophysical BBH Primary Mass Distribution

We use a catalog containing each of the 46 BBH mergers reported in Abbott

et al. [45] in which we perform a hierarchical Bayesian analysis to infer the

astrophysical mass spectrum and merger rate evolution with redshift, as described

in Appendix 4.8.1. We perform multiple iterations of our semi-parametric model

with different numbers of knots and both a “conservative” (σknot = 1) and “wide”

(σknot = 2) prior width on the knots. For both cases of prior width we additionally

do a post hoc “marginalization” over the number of knots by combining posterior

draws weighted according to the ratios in marginal likelihoods. Explicitly we take⌊
Nmin

Zn

Zmax

⌋
samples from each inference where Nmin is the minimum number

of samples from each posterior, Zn the marginal likelihood of inference with n

knots, and Zmax, the maximum marginal likelihood of the combined posteriors. In

Figure 4.2 we plot the posterior merger rate density as a function of primary mass

(top row) for our combined spline model (combining 10, 15 and 20 knot models),

compared to the Powerlaw+Peak model. The most prominent feature in the

primary mass distribution is the apparent peak at ∼ 35M⊙, similar to the peak

found at the same mass by the Powerlaw+Peak model [53, 67].

In addition to the peak at ∼ 35M⊙, there are signs of additional features

— albeit less significant — at lower masses. We find signs of an inflated rate of

mergers with primary masses ∼ 10M⊙ and reduced rate around ∼ 7.5M⊙, when

compared with the power law structure. The model is less certain about the low-

mass features as there are only a few events with support for m1 < 10M⊙. The

dearth of observed low mass BBHs, combined with their small sensitive volume,
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FIGURE 4.3. The median (solid) and 90% credible interval (shaded) of the
inferred differential merger rate density as a function of primary mass (top row)
with spline models with 10 (purple), 15 (blue), and 20 (orange) knots. We show
the conservative prior case (σknot = 1) in the left column and the wide prior
case (σknot = 2) on the right. The middle row shows kernel density estimates
(KDEs) of the posterior samples of primary source frame mass for each of the 46
BBHs in GWTC-2. We plot m1p(m1) on a log-scaled y-axis with a Gaussian KDE
approximating p(m1) for each event. These posterior samples are not re-weighted
to a population and come directly from the accompanying data release to Abbott
et al. [45]. The bottom row shows the median (solid) and 90% credible intervals
(shaded) of the inferred perturbation function, f(m1), for each choice of n, with
the vertical lines showing the locations of the spline knots.
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significantly inflates our uncertainty at the low end of the mass distribution. In

Figure 4.3, we show the results inferred by each of the 10, 15, and 20 knot spline

models individually, showing that the spline model consistently finds common

features regardless of the number and location of knots. The combined spline

model based on the marginal likelihoods is mostly comprised of the 15 knot result

because the ratios of marginal likelihoods favor 15 knots over 20 at 2:1 odds

and 15 over 10 at 3:1. The spline models are best constrained in the regions of

over/under densities discussed above and much less certain (prior dominated) in

regions between the features where the parametric component (i.e. power law)

can fully explain the trend. The bottom row of Figure 4.3 shows the perturbation

function, f(m1), inferred from the different spline models. While there are some

differences between knot choices due to the different length scales, they are all

in agreement when taking into account the uncertainties and each consistently

recovers similar merger rates and perturbations at both the 10M⊙and 35M⊙peaks.

In Figure 4.4 we plot the posterior distribution of the perturbation function sliced

at the approximate masses of the three, (f(m1 = 7.5M⊙), f(m1 = 10M⊙) and

f(m1 = 35M⊙)). We find similar posteriors on the perturbation at these three

mass regions, across the models varying the number of knots and the spline prior

width. We calculate the percentile where f = 0 falls in the posterior distribution

for each of these three cuts, which would be near 50% in the presence of no

deviations to the power law or equivalently for draws from the spline model prior.

The percentiles of zero perturbation for the combined model with the conservative

(wide) priors are 70.8% (72.6%), 19.4% (13.1%), and 0.8% (2.5%) at 7.5M⊙, 10M⊙,

and 35M⊙, respectively.

73



FIGURE 4.4. The posterior distribution of f(m1) at sliced at the three most
apparent inferred perturbations in the posterior which roughly lie at ∼ 7.5M⊙ (left
column), ∼ 10M⊙ (middle column), and ∼ 35M⊙ (right column). We show the
posteriors for 10 (purple), 15 (blue), and 20 (orange) knots and for both cases of
prior width: σknot = 1 (top row) and σknot = 2 (bottom row). We additionally show
the result when combining the models (weighted by their marginal likelihoods)
across the three choices number of nodes in black. We report the quantile in which
f = 0 falls for each of the models and perturbation regions knots in each legend.

The presence of the ∼ 35M⊙ feature was previously found and reported in

Abbott et al. [53] as being either a peak (likely due to the PPISN pileup [67]) or a

break to a steeper power law. The Powerlaw+Peak model returned the highest

marginal likelihood of parametric mass models considered in Abbott et al. [53], but

was only favored with roughly 3:1 odds. Due to the inherent nature of the spline

perturbation model, we would be more likely to find features that look like peaks

rather than a power law break in the distribution. We additionally fit for spline

perturbations on top of the BrokenPowerlaw model, which found little to no

support for two different power law slopes and recovered a nearly identical primary

mass distribution to what was found when modulating a single power law. The low

mass feature recovered by our spline model was not identified in Abbott et al. [53]

because the models considered there did not have the flexibility to fit such features
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at low mass: they only include a smooth rise to the low-mass end of the power-

law. This could be explained by additional structure that cannot be described by

a smooth rise to a power law, coming from the upper edge of the proposed neutron

star black hole mass gap. The flexibility of our semi-parametric approach enables

us to find additional structure in the astrophysical mass distribution beyond what

can be found with simpler toy models. While the spline perturbation model clearly

finds structure beyond the power law around ∼ 35M⊙ in the analyzed catalog of

46 BBH mergers, we cannot say for certain that the low mass feature is inherent

to the astrophysical mass distribution. There is still the possibility that our model

could be latching onto fluctuations in our data due to small number statistics.

This possibility is reflected in the percentiles in Figure 4.4. The perturbation

function at 7.5M⊙ and 10M⊙ does not rule out f = 0 at high credibility regardless

of prior choices in the spline model, while in contrast, the perturbation at 35M⊙

rules out f(35M⊙) = 0 at 97-99.4% credibility across each variation of spline model

used. We investigate the possibility that these subsequent deviations from a power

law could appear due to our model’s systematics in Appendix 4.8.3. We report

no signs of correlations between the successive perturbations, which would be

expected if the spline function was imposing biases onto our inferred perturbations.

With future larger catalogs of gravitational-wave sources, we will be able to further

resolve these low-mass features to determine if they are indeed present in the

astrophysical mass distribution or a reflection of the current small catalog size.

4.5.2. Posterior Predictive Checks

With the large flexibility that comes from taking non-parametric approaches

to modeling, one must be careful in validating inferences, especially in cases with
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FIGURE 4.5. Posterior predictive checks for three of the parametric models used
in Abbott et al. [53] and the spline perturbation model of this work. We show the
spline model result with the highest marginal likelihood which was the 15 knot
and σknot = 1 model. The observed and predicted values for primary masses are
generated by re-weighting either the injection set or the set of posterior samples
for each BBH analyzed, for 500 draws from each models inferred posterior on the
hyper-parameters, and then drawing 46 values from the re-weighted injections
and a single fair draw from each of the 46 event re-weighted posterior samples.
The top panel shows the CDF generated from these sets observed and predicted
events for each of the 4 models, with the 90% credible levels enclosed by the
bands, the median in dark black, and the thin black lines showing 50 of the 500
sets of 46 predicted events. The middle row uses the same set of predicted and
observed events and the y-axis shows the relative error in predicted to observed
mass ((mpred

1 − mobs
1 )/mpred

1 ) as a function of mobs
1 . The last row of plots shows the

PDF of the top row averaged over the 500 draws from the posterior on the hyper-
parameters for both sets of events.
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small numbers of observations. One way we evaluate our semi-parametric model

is through posterior predictive checks. We employ the same injection set used to

estimate our search’s selection effects mentioned in Appendix 4.8.1 to create mock

detected populations under a given population described by a posterior on hyper-

parameters. We then compare these mock populations to the observed population.

To do this, we first re-weight the injections to our inferred population for Ndraw

draws of hyper-parameters from our population posterior, then take Nobs (46

for this BBH-only analysis) draws for each of the re-weightings. This generates

Ndraw sets of Nobs “Predicted” observations for a given population inference.

Next, we re-weight the individual event posterior samples to the same inferred

population for Ndraw draws of hyper-parameters from the posterior. For each draw

of hyper-parameters, we take a fair draw from each re-weighted event posterior

to generate our corresponding Ndraw sets of Nobs “Observed” observations for

a given population inference. From this procedure we generated 500 sets of 46

“Observed” and “Predicted” catalogs, which we compare to each other in Figure

4.5 to confirm that our inferred population model predictions are consistent with

the observations. We show the cumulative probability as a function of observed

primary mass in the top row, the relative error in predicted primary masses to

observed in the second row, and the last row shows the observed and predicted

primary mass distributions averaged over all of the hyper-parameters inferred in

our posterior. The colored bands in the top row of Figure 4.5 show that a model

is inconsistent with observations when the dark “Observed” band extends outside

of the lighter “Predicted” band. We see this behaviour at ∼ 40–50M⊙ for the

Truncated model which illustrates a conclusion from Abbott et al. [53]: the

Truncated model is inconsistent with the mergers in GTWC-2. The spline

77



perturbation model is the only primary mass model that recovers both the low

and high mass features seen in the observed distribution, but it does exhibit more

uncertainty than other models in the regions between the ∼ 10M⊙ and ∼ 35M⊙

peak. When considering possible fluctuations due to small number statistics, the

observations at low mass are still consistent with both the Powerlaw+Peak and

BrokenPowerlaw models.

4.5.3. Astrophysical Implications

The BBH mass distribution is particularly well-suited to answering a wide

range of astrophysical questions. In particular, the masses of detected events

are relatively well-measured, and different channels of BBH formation result in

different mass distributions [e.g. 109], implying that the formation history is

encoded within these distributions. With the tens of detected events available

now, disentangling the overlapping sub-populations in the full population (if

they exist) is a challenge. Our perturbation model can be used to see if or

where a distribution describing a single (dominant) sub-population or formation

channel may fail to fully fit the data, which would provide evidence that there

may be non-negligible contributions due to additional formation channels. The

hints of structure we see at the low end of the mass distribution could point to

such a superposition of multiple formation channels. Another factor that can

affect the mass distribution is the physics of PISN or PPISN. Stellar evolution

models describing mass loss and PPISN have uncertainties that can drastically

change predictions on the masses at which the PPISN and PISN play a role.

For example, choices in nuclear reaction rates within stellar cores can affect the

BBH mass distribution [61, 63]. Our spline model enables us to measure these
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imprints of BBH formation in the observed distribution without enforcing the

specific distribution shapes that are inherent to parametric models. Our findings

corroborate the existence of a PISN “pile-up” in the 30 - 40 M⊙ range, and

we infer its shape without assuming a simple functional form. With more GW

detections, further resolution of this peak with the spline model could offer insights

into supernova physics.

4.6. Conclusions

Accurate estimation of the BBH mass distribution is paramount to getting

accurate estimates of merger rates, the GW stochastic background, and false alarm

rates for potential new triggers. Low-dimensional parametric models have the

advantage of being easily interpreted but are limited in their flexibility and subject

to a-priori expectations. We presented a semi-parametric approach to modeling

the primary mass distribution of BBH mergers, using cubic splines that modulate

a power law. We show that our flexible semi-parametric approach, when applied

to the BBHs in GWTC-2, consistently recovers the previously reported excess of

observed mergers near ∼ 35M⊙, and shows potential signs of additional features

in the low-mass end of the BBH distribution. These low-mass features beyond

the power law structure, correspond with similar features found in the chirp

mass distribution using a separate non-parametric approach based on a flexible

Gaussian Mixture model [96]. We show through posterior predictive checks that

the spline model is at least as good as the Powerlaw+Peak model at fitting the

high mass structure in our catalog while having the flexibility beyond a smooth

rise into a power law to capture the apparent excess at 10M⊙. Structure in the

mass distribution that could arise from many different astrophysical phenomena
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but if we are able to confidently identify either a high-mass cutoff or pileup

in the mass distribution it is likely to be related to effects of PISN or PPISN.

These two features can both be used as calibrated mass-scales to measure a

redshift-luminosity-distance relation with which it is possible to infer cosmological

parameters with [95].

Our semi-parametric approach has advantages compared to other fully non-

parametric approaches modeling the BBH mass distribution [96, 113, 114]. The

semi-parametric approach leverages the information learned from the parametric

models to explain the majority of the structure, while reserving the flexibility to

see where observations may start to diverge from previous inferences. This same

method of applying cubic spline perturbations to simpler population models can

be used on any of the other commonly modeled population distributions such

as the mass ratio, spins or redshift evolution. With the relatively small catalog

sizes currently available, structure, if present, would likely only appear in the

best measured parameters. In future work, we plan to extend this method to

incorporate multi-dimensional splines, that could uncover correlations between

different parameters such as peaks in the mass distribution associated with a high

spin magnitude. Such correlations would be a tell-tale sign of hierarchical mergers,

for example [66, 69, 70, 92, 94]. Future work could also extend this method to

more than just the BBH mass distribution, and allow for adaptive resolution

splines that allow the knot locations to vary [8]. With additional observations

of GWs associated with BNSs and NSBHs [118] our spline perturbation model

is well suited to model the joint mass distribution of all GW-observed compact

objects. This would complement the parametric model of [119], giving insights on
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the structure (or lack there of) of the “lower mass gap” that may exist between the

heaviest neutron stars and lightest black holes.
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4.8. Additional Analysis Details

4.8.1. Hierarchical Inference

We use hierarchical Bayesian inference to simultaneously infer the population

distributions of the primary masses (m1), mass ratios (q) and the redshifts (z) of

observed BBHs. For a set of hyper-parameters, Λ, and local (z = 0) merger rate

density (units of mergers per co-moving volume per time), R0, we write the overall

number density of BBH mergers in the universe as:

dN(m1, q, z|R0,Λ)

dm1dqdz
=

dVc

dz

(
Tobs

1 + z

)
dR(m1, q, z|R0,Λ)

dm1dq
= R0p(m1|Λ)p(q|m1,Λ)p(z|Λ)

(4.2)
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Above, dVc is the co-moving volume element [117] and Tobs, the observing time

period that produced the catalog with the related factor of 1 + z converting this

detector-frame time to source-frame. We assume a LambdaCDM cosmology using

the cosmological parameters from Planck Collaboration et al. [120]. The redshift

evolution of the merger rate follows p(z|λ) ∝ dVc

dz
1

1+z
(1 + z)λ. Integrating equation

4.2 across all masses, and up to some redshift, zm, returns the total number of

BBH mergers in the universe out to that redshift. Let {di} represent a set of

data from Nobs observed gravitational waves associated with BBH mergers. We

model the merger rate as an inhomogenous point process and when imposing a log-

uniform prior on the merger rate, we can marginalize over the merger rate to get

the posterior distribution of our hyper-parameters, Λ [83, 111].

p (Λ|{di}) ∝
p(Λ)

ξ(Λ)Nobs

Nobs∏
i=1

[∫
L
(
di|mi

1, q
i, zi
)
p(m1|Λ)p(q|m1,Λ)p(z|Λ)dm1dqdz

]
,

(4.3)

where, L(di|m1, q, z), is the single-event likelihood function from each events

original analysis, and ξ(Λ) is the detection efficiency given a population

distribution described by Λ. The procedure for calculating ξ(Λ) is described in

more detail below. The LVC reports out posterior samples for each observed event,

with which we can use importance sampling to estimate the integrals above in

equation 4.3. We replace the integrals with ensemble averages over Ki posterior

samples associated with each event in the catalog:

p (Λ|{di}) ∝ p(Λ)

Nobs∏
i=1

[
1

Ki

Ki∑
j=1

p(mi,j
1 |Λ)p(qi,j|Λ)p(zi,j|Λ)
π(mi,j

1 , qi,j, zi,j)

]
(4.4)
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Here j indexes the Ki posterior samples from each event and π(m1, q, z) is the

default prior used by parameter estimations that produced the posterior samples

for each event. In the analyses of GWTC-2 the default prior used is uniform in

detector frame masses and Euclidean volume. The corresponding prior evaluated

in source frame masses and redshift is π(m1, q, z) ∝ m1(1+ z)2D2
L(z)

dDL

dz
, where DL

is the luminosity distance.

To carefully incorporate selection effects to our model we need to quantify

the detection efficiency, ξ(Λ), of the search pipelines that were used to create

GWTC-2, at a given population distribution described by Λ.

ξ(Λ) =

∫
dm1dqdzPdet(m1, q, z)p(m1|Λ)p(q|m1,Λ)p(z|Λ) (4.5)

The above integral is not tractable since there is no analytic prescription for

Pdet(m1, q, z), the detection probability of an individual event. To estimate this

integral we use a software injection campaign where GWs from a fixed, broad

population of sources are simulated, put into real detector data, and then run

through the same search pipelines that were used to produce the catalog we are

analyzing 1. With these search results in hand, we use importance sampling to

evaluate the integral in equation 4.5:

ξ(Λ) =
1

Ninj

Nfound∑
i=1

p(mi
1|Λ)p(qi|m1,Λ)p(z

i|Λ)
pinj(mi

1, q
i, zi)

(4.6)

Where the sum indexes only over the Nfound injections that were successfully

detected out of Ninj total injections, and pinj(m1, q, z) is the reference distribution

1For O3a we used the injection sets used by Abbott et al. [53], which can be found at
https://dcc.ligo.org/LIGO-P2000217/public. For O1/O2 we used the mock injection sets used
by Abbott et al. [52] which can be found at https://dcc.ligo.org/LIGO-P2000434/public
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from which the injections were drawn. Additionally, we follow the procedure

outlined in Farr [82] to marginalize the uncertainty in our estimate of ξ(Λ) due

to a finite number of simulated events. We make the assumption that repeated

sampling of ξ(Λ) will follow a normal distribution with ξ(Λ) ∼ N (µ(Λ), σ(Λ)),

where the mean, µ, is the estimate from equation 4.6, while the variance, σ2, is

defined as:

σ2(Λ) ≡ µ2(Λ)

Neff

≃ 1

N2
inj

Nfound∑
i=1

[
p(m1|Λ)p(q|m1,Λ)p(z|Λ)

pinj(m1, q, z)

]2
− µ2(Λ)

Ninj

(4.7)

Above we define Neff as the effective number of independent draws contributing to

the importance sampled estimate, in which we verify to be sufficiently high after

re-weighting the injections to a given population (i.e. Neff > 4Nobs). We write the

hyper-posterior marginalized over the merger rate and uncertainty in estimation of

ξ(Λ), neglecting terms of O(N−2
eff ) or greater [82], as:

log p (Λ|{di}) ∝
Nobs∑
i=1

log

[
1

Ki

Ki∑
j=1

p(mi,j
1 |Λ)p(qi,j|Λ)p(zi,j|Λ)
π(mi,j

1 , qi,j, zi,j)

]
−Nobs log µ+

3Nobs +N2
obs

2Neff

+O(N−2
eff )

(4.8)

We explicitly enumerate each of the models used in this work for p(m1|Λ),

p(q|m1,Λ), and p(z|Λ) along with their respective hyper-parameters and prior

distributions in tables 4.1 and 4.2. To calculate marginal likelihoods and draw

samples of the hyper parameters from the hierarchical posterior distribution shown

in equatio n 4.8, we use the Bilby [84, 85] and GWPopulation [86] Bayesian

inference software libraries with the Dynesty dynamic nested sampling algorithm

[87].
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Primary Mass Model Parameters
Model Parameter Description Prior

Truncated
α slope of the powerlaw U(-4, 12)
mmin minimum mass cutoff (M⊙) U(2M⊙, 10M⊙)
mmax maximum mass cutoff (M⊙) 200 M⊙
δm low-mass smoothing scale (smoothes from mmin to mmin + δm) U(0, 10)

BrokenPowerlaw

α1 slope of the first powerlaw U(-4, 12)
α2 slope of the second powerlaw U(-4, 12)
b fraction between mmin and mmax where the power law break lies U(0, 1)
mmin minimum mass cutoff (M⊙) U(2M⊙, 10M⊙)
mmax maximum mass cutoff (M⊙) 200 M⊙
δm low-mass smoothing scale (smoothes from mmin to mmin + δm) U(0, 10)

PowerLaw+Peak

α slope of the powerlaw U(-4, 12)
mmin minimum mass cutoff (M⊙) U(2M⊙, 10M⊙)
mmax maximum mass cutoff (M⊙) 200 M⊙
µp mean of Gaussian peak (M⊙) U(20M⊙, 70M⊙)
σp width of the Gaussian peak (M⊙) U(0.4M⊙, 10M⊙)
λp fraction of BBH in the Gaussian component U(0, 1)
δm low-mass smoothing scale (smoothes from mmin to mmin + δm) U(0, 10)

PowerLaw+MutliPeak

α slope of the powerlaw U(-4, 12)
mmin minimum mass cutoff (M⊙) U(2M⊙, 10M⊙)
mmax maximum mass cutoff (M⊙) 200 M⊙
µp, 1 mean of the first Gaussian peak (M⊙) U(5M⊙, 40M⊙)
σp, 1 width of the first Gaussian peak (M⊙) U(0.4M⊙, 10M⊙)
λp, 1 fraction of BBH in the first Gaussian component U(0, 1)
µp, 2 mean of the second Gaussian peak (M⊙) U(5M⊙, 40M⊙)
σp, 2 width of the second Gaussian peak (M⊙) U(0.4M⊙, 10M⊙)
λp, 2 fraction of BBH in the second Gaussian component U(0, 1)
δm low-mass smoothing scale (smoothes from mmin to mmin + δm) U(0, 10)

TABLE 4.1. This table enumerates all the hyper-parameters for the parameteric
mass distributions, their descriptions, and chosen priors for this work for each
respective population model we use. The Truncated model is extended from the
version used in Abbott et al. [53] to have the option of a low-mass taper of the
same form as the Powerlaw+Peak model. Note that we do not describe a spin
population model in this table since in this work we are not inferring a hyper-prior
on the spins and instead assume they are described by the default (uniform in
component magnitudes, isotropic in orientations) parameter estimation prior used
to produce Abbott et al. [45].

4.8.2. Model Comparisons and Prior Specifications

To compare competing population models in the aforementioned Bayesian

framework we calculate two different measures of model goodness-of-fit, namely

the marginal likelihoods (Z) and deviance information criterion (DIC) [121]. The

marginal likelihood for a given model is a constant that enforces that the posterior

distribution is normalized (i.e. Z =
∫
dΛp(Λ|{di})), which has the property

that it is higher for models that fit the data better or find higher likelihoods,
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Mass Ratio Model Parameters
PowerLaw MassRatio βq slope of the mass ratio powerlaw U(-4, 12)

Redshift Evolution Model Parameters
PowerLaw Redshift γ slope of redshift evolution powerlaw (1 + z)γ U(-6, 6)

Spline Perturbation Model Parameters

Cubic Spline
{mn} location in primary mass of the n spline iterpolant knots FIXED
{fn} y-value of the n spline iterpolant knots N(µ = 0, σ = 1)

TABLE 4.2. This table enumerates the rest of the hyper-paramters not included
in fwfwf, their descriptions, and chosen priors for this work for each respective
population model we use. Note that we do not describe a spin population model
in this table since in this work we are not inferring a hyper-prior on the spins
and instead assume they are described by the default (uniform in component
magnitudes, isotropic in orientations) parameter estimation prior used to produce
Abbott et al. [45].

FIGURE 4.6. 100 draws from the prior predictive distribution of the cubic spline
function, f(m1), for different choices for the number of knots, n, and the width
of the Gaussian priors on the knots, σknot. The orange dashed line shows ±σknot,
while the blue solid lines show the median and 1σ credible bounds of the draws
from the prior.

while penalizing more complicated models by their prior volumes. As our semi-

parametric approach has arbitrary prior choices one needs to make, this can
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FIGURE 4.7. We show the two model comparison methods, Bayes factors (orange,
left y-axis) and the DIC difference (blue, right y-axis), each comparing our spline
perturbation model (denoted as SP) to the Truncated model (denoted as PL).
The comparisons are calculated such that positive values of either metric denote
the spline perturbation model being favored over the Truncated. Both values
are shown for varying specifications for the spline prior. Along the x-axis we show
different discrete choices (5, 10, 15, and 20) for the number of nodes, n. Each of
these spline model analyses shown was performed with σknot = 1. The horizontal
dashed lines show the Bayes factor (orange) and DIC difference (blue) found when
comparing Abbott et al. [53]’s favorite mass model, Powerlaw+Peak, to the
Truncated model.
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significantly affect the marginal likelihoods inferred.We also calculate the DIC, a

metric developed specifically for Bayesian hierarchical models [121], which is less

sensitive to the arbitrary prior choices for our semi-parametric model. While there

are some limitations to the DIC [33], it provides a secondary metric to validate our

model choices. The DIC is defined as:

DIC = −2log(L) + pD = −2
(
log(L)− var(log(L))

)
(4.9)

With logL the mean log-likelihood, and pD the effective number of dimensions,

defined as pD = 1
2
var(−2 logL) with var(...) denoting the variance. Lower DICs

indicate better models which, similarly to the marginal likelihood, favors models

that find higher likelihoods while penalizing the more complicated models through

the effective dimension term. We compare two models by calculating the ratio of

their marginal likelihoods (i.e. Bayes Factors2), defined as the ratio of each models

marginal likelihoods. To compare DICs, we take the difference of two models

values (DIC dif = DICA − DICB) where positive differences indicate preference

for model B, and negative differences indicate preference for model A.

We use these model comparisons to motivate a sensible choice for our

spline models prior flexibility, namely the number of knots (n). Figure 4.6 shows

changing prior widths on our knots only effects magnitude of perturbations the

spline is sensitive to. Additionally, we see that as we add more knots, the model

is free to fit sharper fluctuations. This flexibility comes with a penalty in our

comparison metrics due to increased model complexity. Therefore, we would

2The true “Bayesian” way to compare models is using odds, which are Bayes factors
multiplied by the ratio of prior odds of each model. Because we don’t a priori have expectations
of which population model would be more likely, we use Bayes factors which are odds ratios with
equal prior weights for each model.
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Model Name lnZ lnB DIC dif

Powerlaw+Spline (n = 15, σknot = 1) -347.10 0.00 0.00
Powerlaw+Spline (n = 20, σknot = 1) -347.77 -0.67 -2.43
Powerlaw+Spline (n = 15, σknot = 1, δm = 0) -347.83 -0.74 -3.27
Powerlaw+Spline (n = 10, σknot = 1) -348.21 -1.11 -2.96
Powerlaw+Spline (n = 10, σknot = 1, δm = 0) -348.24 -1.14 -3.25
Powerlaw+Spline (n = 20, σknot = 1, δm = 0) -348.26 -1.16 -3.57
Powerlaw+Spline (n = 15, σknot = 2) -348.40 -1.30 -1.00
Powerlaw+Spline (n = 15, σknot = 2, δm = 0) -348.53 -1.43 -2.85
Powerlaw+Spline (n = 20, σknot = 2) -348.62 -1.52 -3.00
Powerlaw+Spline (n = 20, σknot = 2, δm = 0) -349.01 -1.91 -3.39
Powerlaw+MultiPeak -349.27 -2.18 -6.87
Powerlaw+Spline (n = 10, σknot = 2, δm = 0) -349.43 -2.34 -3.12
Powerlaw+MultiPeak (δm = 0) -349.44 -2.35 -6.27
Powerlaw+Peak -349.53 -2.43 -3.80
Powerlaw+Spline (n = 10, σknot = 2) -349.66 -2.57 -3.22
Powerlaw+Peak (δm = 0) -349.70 -2.60 -4.96
Broken Powerlaw (δm = 0) -349.92 -2.83 -9.32
Broken Powerlaw -350.21 -3.11 -8.90
Truncated -352.57 -5.47 -14.32
Truncated (δm = 0) -353.27 -6.18 -16.10

TABLE 4.3. Model comparison results, listing each model tested (semi-parametric
spline model or parametric mass model from Abbott et al. [53]) and their
respective marginal likelihoods (Z) along with lnB and DIC dif. Both comparison
metrics for each of the listed models are relative to the “best performing”
model or the one with the highest (lowest) marginal likelihood (DIC), which,
in both cases, was the Powerlaw+Spline (n = 15, σn = 1) model. We note
that the Powerlaw+MultiPeak finds higher marginal likelihoods than the
Powerlaw+Peak model which was not the case in Abbott et al. [53]. This is
because we used different priors for the Powerlaw+MultiPeak model that
allowed for a peak at lower masses than the ∼ 35M⊙ peak instead of higher.
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FIGURE 4.8. Corner plot that shows the posterior distribution on the power law
slope, α, and the height of the perturbation function, f(m1), sliced at the three
masses of most significant deviation: 7.5M⊙, 10M⊙, and 35M⊙. We show the
results for spline models with σknot = 1 and 10 (purple), 15 (blue) and 20 (orange)
nodes. The median and 90% credible intervals quoted are for the 15 knot model.
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FIGURE 4.9. Corner plot that shows the posterior distribution on the power law
slope, α, and the height of the perturbation function, f(m1), sliced at the three
masses of most significant deviation: 7.5M⊙, 10M⊙, and 35M⊙. We show the
results for spline models with σknot = 2 and 10 (purple), 15 (blue) and 20 (orange)
nodes. The median and 90% credible intervals quoted are for the 15 knot model.
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expect to see the model comparisons increasingly favor our spline perturbation

model as we increase our model’s complexity/flexibility up to a point where the

penalty will start to overpower the higher likelihoods found with more flexibility.

Figure 4.7 shows how the DIC differences and log Bayes factors (lnB) change

when comparing the spline perturbation model to the Truncated model with

different choices for n. We see that the comparisons favoring our spline model

peaks around 15 knots, indicating that 15 knots is a good trade-off between our

models flexibility and goodness of fit. We also report the marginal likelihoods

and model comparisons (relative to the most preferred model) for each of the

parametric primary mass models from Abbott et al. [53] and various specifications

of the spline model in table 4.3. From this table we see that the spline model is

consistently favored despite our arbitrary model specifications, giving credence to

the hypothesis that there are features in the data our semi-parametric method is

capable of finding that previously used parametric mass models are not sensitive

to. We do not use the comparisons in table 4.3 to determine the validity of

the Powerlaw+Spline models over others, and further studies on simulated

populations and the effect of small number statistics are needed to fully assess the

significance and robustness of these features. However, as catalogs of BBH mergers

increase in size, the impact of small number statistics will diminish.

4.8.3. Correlations of Peaks

We look for the effect of our spline function biasing the inferred perturbation

function by plotting a corner plot of the value of f(m1) sliced through the masses

that show the largest deviations. This is shown in Figure 4.8 for the conservative

knot prior and Figure 4.9 for the wide knot prior. If the dip followed by the peak
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feature at 7.5 and 10 solar masses was found due to the nature of cubic splines we

would expect to see correlations between the heights at these values which do not

appear in either Figure 4.8 or 4.9. Since we are fitting for the underlying power

law model simultaneously with the perturbations we also might expect to see some

correlations with the power law slope and the peaks. There are slight signs of an

expected anti-correlation of the 10M⊙peak height and the power law slope, and

corresponding correlation of the 35M⊙peak height with the slope. This happens

due to the degeneracy between the parametric and non-parametric portions of our

model. If the 10M⊙peak is small, the power law slope becomes steeper so that the

“turnover” power law at low mass can contribute to fitting this over-density. With

a steeper power law slope, the power law portion of the model under fits the excess

at 35M⊙, leading to a larger peak found in the perturbation. We also note these

correlations with the power law slope are more apparent in the lower resolution

spline models and under the wider prior on the knots.
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CHAPTER V

COVER YOUR BASIS: COMPREHENSIVE DATA-DRIVEN

CHARACTERIZATION OF THE BINARY BLACK HOLE POPULATION

5.1. Summary

Following the LVK collaboration’s analyses of GWTC-3, the population of

BBHs was found to exhibit significant structure in the mass distribution, which

could be signs of competing formation channels. Non-parametric models can be

useful to fully validate features in the population found with more restrictive

models since they should be more flexible and data-driven. We construct a novel

non-parametric model with basis splines that allow for simultaneous inference

of non-parametric mass, mass ratio, spin magnitude, spin tilt, and redshift

distributions of the BBH population. With basis splines the cost of computation

is drastically reduced, along with moving to use Hamiltonian Monte Carlo (HMC)

with GPU accelerators allows this massive inference problem with hundreds of

parameters to be completed in less than an hour. In this chapter we present work

published as Edelman et al. [122] which introduces this first completely non-

parametric population study of the binary black holes (BBHs). To date this is

the most comprehensive data-driven population study of BBHs and is the first to

non-parametrically infer mass ratio and redshift distributions. This model will be

more powerful as the catalog grows enabling us to probe additional subtle features

of the population, and already has been shown to be useful with mixture modeling

looking for signs of subpopulations of BBHs [123].
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5.2. Abstract

We introduce the first complete non-parametric model for the astrophysical

distribution of the binary black hole (BBH) population. Constructed from

basis splines, we use these models to conduct the most comprehensive data-

driven investigation of the BBH population to date, simultaneously fitting non-

parametric models for the BBH mass ratio, spin magnitude and misalignment,

and redshift distributions. With GWTC-3, we report the same features previously

recovered with similarly flexible models of the mass distribution, most notably

the peaks in merger rates at primary masses of ∼10M⊙ and ∼35M⊙. Our

model reports a suppressed merger rate at low primary masses and a mass ratio

distribution consistent with a power law. We infer a distribution for primary

spin misalignments that peaks away from alignment, supporting conclusions of

recent work. We find broad agreement with the previous inferences of the spin

magnitude distribution: the majority of BBH spins are small (a < 0.5), the

distribution peaks at a ∼ 0.2, and there is mild support for a non-spinning

subpopulation, which may be resolved with larger catalogs. With a modulated

power law describing the BBH merger rate’s evolution in redshift, we see hints of

the rate evolution either flattening or decreasing at z ∼ 0.2 − 0.5, but the full

distribution remains entirely consistent with a monotonically increasing power law.

We conclude with a discussion of the astrophysical context of our new findings

and how non-parametric methods in gravitational-wave population inference are

uniquely poised to complement to the parametric approach as we enter the data-

rich era of gravitational-wave astronomy.
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5.3. Introduction

Observations of gravitational waves (GWs) from compact binary mergers

are becoming a regular occurrence, producing a catalog of events that recently

surpassed 90 such detections [1, 9, 45]. As the catalog continues to grow, so does

our understanding of the underlying astrophysical population of compact binaries

[51, 52, 53]. Following numerous improvements to the detectors since the last

observing run, the anticipated sensitivities for the upcoming fourth observing

run of the LIGO-Virgo-KAGRA (LVK) collaboration suggest detection rates as

high as once per day [26, 27, 108, 124]. With the formation history of these dense

objects encoded in the details of their distribution [109, 125, 126, 127, 128], the

likely doubling in size of the catalog with the next observing run could provide

another leap in our understanding of compact binary astrophysics. Beyond

formation physics, population-level inference of the compact binary catalog has

also been shown to provide novel measurements of cosmological parameters

[95, 129, 130], constrain modified gravitational wave propagation [131, 132, 133],

constrain a running Planck mass [134], search for evidence of ultralight bosons

through superradiance [135, 136], constrain stellar nuclear reaction rates [61, 63],

look for primordial black holes [110, 137], and to constrain physics of neutron

stars [138, 139]. Through a better understanding of the mass, spin, and redshift

distributions of compact binaries that will come with the increased catalog size,

one can probe a wide range of different physical phenomena with even greater

fidelity.

The binary black hole (BBH) mass distribution was first found to have

structure beyond a smooth power law with simpler parametric models, exhibiting

a possible high mass truncation and either a break or a peak at m1 ∼ 35 −
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40M⊙ [52, 53, 66, 67]. Starting with the moderately sized catalog, GWTC-2,

more flexible models found signs of additional structure [96, 97]. The evidence

supporting these features, such as the peak at m1 ∼ 10M⊙, has only grown

after analyzing the latest catalog, GWTC-3, with the same models [51, 140].

While this shows the usefulness of data-driven methods with the current relatively

small catalog size, they will become more powerful with more observations. The

canonical approach to constructing population models has been to use simple

parametric descriptions (e.g., power laws, beta distributions) that aim to describe

the data in the simplest way, employ astrophysically motivated priors where

appropriate, then sequentially add complexities (e.g., Gaussian peaks) as the data

demands. This simple approach was necessary when data was scarce, but as we

move into the data-rich catalog era, this approach is already failing to scale. More

flexible and scalable methods, such as the non-parametric modeling techniques

presented in this manuscript, will be necessary to continue to extract the full

information contained in the compact binary catalog. In contrast to parametric

models, flexible and non-parametric models are data-driven and contribute little

bias to functional form. They additionally are particularly useful to search for

unexpected features in the data, providing meaningful insight into features that

parametric models may fail to capture.

While we eventually hope to uncover hints of binary formation mechanisms

in the mass spectrum of BBHs, the distribution of spin properties have been of

particular interest. The measurement of spin properties of individual binaries often

have large uncertainties, but the theorized formation channels are expected to

produce distinctly different spin distributions [109, 126, 127, 128, 141]. Isolated (or

field) formation scenarios predict component spins that are preferentially aligned
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with the binary’s orbital angular momentum, although some small misalignment

can occur depending on the nature of the supernova kicks as each star collapses

to a compact object [142, 143, 144]. Alternatively, dynamical formation in

dense environments where many-body interactions between compact objects

can result in binary formation and hardening (shrinking of binary orbits) should

produce binaries with components’ spins distributed isotropically [105, 126]. BBH

spins have also been of controversial interest recently, with different parametric

approaches to modeling the spin distribution coming to different conclusions.

Studies have disagreed on the possible existence of a significant zero-spinning

subpopulation, as well as the presence of significant spin misalignment (i.e.

cos θi < 0.0) [51, 145, 146, 147, 148]. Another study recently showed that

inferences of spin misalignment (or tilts) are sensitive to modeling choices and may

not peak at perfectly aligned spins, as is often assumed [149]. While enlightening,

these recent efforts to improve BBH spin models continue to build sequentially

on previous parametric descriptions [146, 148, 149]. To ensure we are extracting

the full detail the catalog has to offer, we extend our previous non-parametric

modeling techniques to include spin magnitudes and tilts, as well as the binary

mass ratio and redshift. Golomb and Talbot [150] was released concurrently with

this work (based on our previous work Edelman et al. [97]), and find similar

conclusions on the spin distribution when applying similar flexible models

constructed with cubic splines. The work presented in this manuscript however,

does not need to analyze a suite of different model configurations and includes

flexible non-parametric models for each of the mass, spin and redshift distributions

rather than spin alone.
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Polynomial splines have been applied to success across different areas of

gravitational-wave astronomy. They have been used to model the gravitational-

wave data noise spectrum, detector calibration uncertainties, coherent gravitational

waveform deviations, and modulations to a power law mass distribution

[8, 25, 31, 97, 151] In this paper we highlight how the use of basis-splines can

provide a powerful non-parametric modeling approach to the astrophysical

distributions of compact binaries. We illustrate how one can efficiently model

both the mass and spin distributions of merging compact binaries in GWTC-3

with basis splines to infer compact binary population properties using hierarchical

Bayesian inference. We discuss our results in the context of current literature on

compact object populations and how this method complements the simpler lower

dimensional parametric models in the short run, and will become necessary with

future catalogs. Should they appear with more observations, this data-driven

approach will provide checks of our understanding by uncovering more subtle –

potentially unexpected – features. The rest of this manuscript is structured as

follows: a description of the background of basis splines in section 5.9.1, followed

by a presentation of the results of our extensive, data-driven study of the mass

and spin distributions of BBHs in GWTC-3 in section 5.5. We then discuss these

results and their astrophysical implications in section 5.6 and finish with our

conclusions in section 5.7.

5.4. Building the Model

We construct our data-driven model with the application of basis splines, or

B-Splines [6]. B-Splines of order k are a set of order k polynomials that span the

space of possible spline functions interpolated from a given set of knot locations.
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For all B-Splines used in our model we use a third order basis which consists of

individual cubic polynomials. The basis representation of the splines allows for

the computationally expensive interpolation to be done in a single preprocessing

step – amortizing the cost of model evaluation during inference. To mitigate the

unwanted side effects of adding extra knots and to avoid running a model grid of

differing numbers of knots (as in Edelman et al. [97]), we use the smoothing prior

for Bayesian P-Splines [7, 152, 153], allowing the data to pick the optimal scale

needed to fit the present features. We discuss basis splines, the smoothing prior,

and our specific prior choices on hyperparameters in Appendix 5.9.1, 5.9.2 and

5.9.4.

We parameterize each binaries’ masses with the primary (more massive

component) mass (m1) and the mass ratio (q = m2/m1) with support from 0

to 1. Furthermore, we model 4 of the 6 total spin degrees of freedom of a binary

merger: component spin magnitudes a1 and a2, and (cosine of) the tilt angles of

each component, cos θ1 and cos θ2. The tilt angle is defined as the angle between

each components’ spin vector and the binary’s orbital angular momentum vector.

We assume the polar spin angles are uniformly distributed in the orbital plane.

For the primary mass distribution, we model the log probability with a B-Spline

interpolated over knots linearly spaced in log(m1) from a minimum black hole

mass, which we fix to 5M⊙, and a maximum mass that we set to 100M⊙. We then

have the hyper-prior on primary mass with log probability density log(p(m1|c)) ∝

Bk=3(log(m1)|c), where Bk=3 is the cubic B-Spline function with a vector of basis

coefficients c. We follow the same procedure for the models in mass ratio and

spin distributions with knots spaced linearly across each domain so that we have

log(p(θ|cθ)) ∝ Bk=3(θ|cθ), where θ can be q, a1, a2, cos θ1 or cos θ2. For the spin
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magnitude and tilt distributions we construct two versions of the model: first, we

model each component’s distribution as independently and identically distribution

(IID), where we have a single B-Spline model and parameters (coefficients) for

each binary spin. Secondly, we model each component’s distribution to be unique,

fitting separate sets of coefficients for the B-Spline models of the primary and

secondary spin distributions. Lastly, we fit a population model on the redshift

or luminosity distance distribution of BBHs, assuming a ΛCDM cosmology defined

by the parameters from the Planck 2015 results [120]. This defines an analytical

mapping between each event’s inferred luminosity distance, and its redshift, which

we now use interchangeably. We take a semi-parametric approach to model the

evolution of the merger rate with redshift, following Edelman et al. [97], that

parameterizes modulations to an underlying model with splines (in our case basis

splines). We use the PowerlawRedshift model as the underlying distribution

to modulate, which has a single hyperparameter, λz, and probability density

defined as: p(z|λz) ∝ dVc

dz
(1 + z)λz−1 [88]. For more detailed descriptions of each

model and specific prior choices used for the hyperparameters see Appendix 5.9.4.

Now that we have our comprehensive data-driven population model built, we

simultaneously fit the basis spline models on the BBH masses, spins and redshift.

We use the usual hierarchical Bayesian inference framework (see appendix 5.9.3

for a review; The LIGO Scientific Collaboration et al. [51], Abbott et al. [52, 53]),

to perform the most extensive characterization of the population of BBHs to date

using the most recent catalog of GW observations, GWTC-3 [1].
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FIGURE 5.1. The marginal primary mass distribution inferred with the B-
Spline model (red), with 64 knots spaced linearly in logm1, from 5M⊙to 100M⊙.
The solid line shows the population predictive distribution (PPD), and the
shaded region the 90% credible interval. We show the inferred PPD from the
PowerlawPeak (blue) and PowerlawSpline (green) models from the LVK’s
GWTC-3 population analyses [51].

5.5. Binary Black Hole Population Inference with GWTC-3

We use hierarchical Bayesian inference (see Appendix 5.9.3) to

simultaneously infer the astrophysical mass, spin, and redshift distributions of

binary black holes (BBHs) given a catalog of gravitational wave observations.

Following the same cut on the recent GWTC-3 catalog done in the LVK’s

accompanying BBH population analysis, we have 70 possible BBH mergers with

false alarm rates less than 1 per year [1, 51, 154]. Since it was concluded to be

an outlier of the rest of the BBH population in both GWTC-2 and GWTC-3, we

choose to omit the poorly understood event, GW190814 [51, 53, 91, 155]. This

leaves us with a catalog of 69 confident BBH mergers, observed over a period

of about 2 years, from which we want to infer population properties. Following

what was done in The LIGO Scientific Collaboration et al. [51], for events included

in GWTC-1 [9], we use the published samples that equally weight samples from

analyses with the IMRPhenomPv2 [156] and SEOBNRv3 [157, 158] waveforms.
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For the events from GWTC-2 [45], we use samples that equally weight all available

analyses using higher-order mode waveforms (PrecessingIMRPHM). Finally,

for new events reported in GWTC-2.1 and GWTC-3 [1, 159], we use combined

samples, equally weighted, from analyses with the IMRPhenomXPHM [79]

and the SEOBNRv4PHM [4] waveform models. Our study provides the first

comprehensive data-driven investigation, simultaneously inferring all the BBH

population distributions (i.e. mass, spin, and redshift), uncovering new insights

and corroborating those found with other methods. We start with our inference of

the mass distribution.

5.5.1. Binary Black Hole Masses

Figure 5.1 shows the primary mass distribution inferred with our B-

Spline model (red), where we see features consistent with those inferred by the

PowerlawPeak and PowerlawSpline mass models [51, 53, 67, 97, 160]. In

particular our B-Spline model finds peaks in merger rate density as a function

of primary mass at both ∼ 10M⊙ and ∼ 35M⊙, agreeing with those reported

using the same dataset in The LIGO Scientific Collaboration et al. [51]. The B-

Spline model finds the same feature at ∼ 18M⊙ as the PowerlawSpline model,

but remains consistent with the PowerlawPeak model; the mass distribution

is more uncertain in this region. For each of these features we find the local

maximums occurring at primary masses of 9.9+0.67
−0.48M⊙, 19

+3.2
−2.3M⊙, and 33+2.1

−3.0M⊙

all at 90% credibility. We find the largest disagreement at low masses, where the

power-law-based models show a higher rate below ∼8 − 9M⊙. This is partly due

to the minimum mass hyperparameter (where the power law “begins”) serving as

the minimum allowable primary and secondary masses of the catalog. This leads
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FIGURE 5.2. The marginal mass ratio distribution inferred with the B-Spline
model (red), with 18 knots spaced linearly in q, from 0.05 to 1. The solid line
shows the population predictive distribution (PPD), and the shaded region the
90% credible interval. We show the inferred PPD from the PowerlawPeak
(blue) and PowerlawSpline (green) models from the LVK’s GWTC-3
population analyses [51].

to inferences of mmin below the minimum observed primary mass in the catalog,

which is ∼ 6.4M⊙, to account for secondary BBH masses lower than that. We

choose to fix the minimum black hole mass for both primary and secondaries to

5M⊙, similar to the inferred minimum mass in The LIGO Scientific Collaboration

et al. [51]. The lack of observations of binaries with low primary mass make

rate estimates in this region strongly model dependent, while our flexible model

provides an informed upper limit on the rate in this region and given the selection

effects and that there are no observations. We could be seeing signs of a decrease
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in merger rate from a “lower mass gap” between neutron star and BH masses, or

we could be seeing fluctuations due to low-number statistics [98]. Either way we

expect this to be resolved with future catalog updates. We also find no evidence

for a sharp fall off in merger rate either following the pileup at ∼35M⊙ – expected

if such a pileup was due to pulsational pair instability supernovae (PPISNe) – or

where the maximum mass truncation of the power law models are inferred. The

lack of any high mass truncation, along with the peak at ∼ 35M⊙ (significantly

lower than expected from PPISNe) may pose challenges for conventional stellar

evolution theory. This could be hinting at the presence of subpopulations that

avoid pair instability supernovae during binary formation, but the confirmation

of the existence of such subpopulations cannot be determined with the current

catalog.

The marginal mass ratio distribution inferred by the B-spline model is

shown in figure 5.2. These results suggest we may be seeing the first signs of

departure from a simple power law behavior. We find a potential signs of a plateau

or decrease in the merger rate near equal mass ratios, as well as a broader tail

towards unequal mass ratios than the power law based models find, although a

smooth power law is still consistent with these results given the large uncertainties.

Our results also suggest a shallower slope from q ∼ 0.3 to q ∼ 0.7, though

uncertainty is larger in this region. The sharp decrease in rate just below q ∼ 0.5

is due to the minimum mass ratio truncation defined by qmin = mmin

m1
. When

marginalizing over the primary mass distribution with a strong peak at 10M⊙,

the mass ratio distribution truncates at q ∼ 0.5: the minimum mass, 5M⊙, divided

by the most common primary mass, ∼10M⊙.
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FIGURE 5.3. The spin magnitude distribution inferred with the B-Spline model
(red) with 16 knots spaced linearly from 0 to 1, assuming the components are IID.
The solid line shows the population predictive distribution (PPD), and the shaded
region the 90% credible interval. For comparison, we show the inferred PPD from
the Default (blue) model from The LIGO Scientific Collaboration et al. [51], the
LVK’s GWTC-3 population analyses.

5.5.2. Binary Black Hole Spins

Model apeak a90% cos θpeak fcos θ<0 log10 Y

B-Spline IID 0.19+0.12
−0.16 0.71+0.13

−0.14 0.44+0.56
−0.53 0.35+0.11

−0.11 0.24+0.46
−0.46

B-Spline Ind(primary) 0.2+0.24
−0.2 0.77+0.11

−0.13 0.16+0.84
−0.84 0.43+0.19

−0.16 0.12+0.5
−0.53

B-Spline Ind(secondary) 0.17+0.29
−0.17 0.8+0.1

−0.14 0.38+0.62
−1.0 0.38+0.18

−0.15 0.18+0.53
−0.54

Default [51] 0.16+0.11
−0.13 0.53+0.098

−0.073 1.0+0.0
−0.0 0.44+0.052

−0.12 0.19+0.4
−0.17

TABLE 5.1. Summary of Component Spin distributions inferred both the
independent and IID component spin B-Spline models and the Default spin
model from The LIGO Scientific Collaboration et al. [51].
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5.5.2.1. Spin Magnitude

The Default spin model (used by The LIGO Scientific Collaboration

et al. [51]) describes the spin magnitude of both components as identical and

independently distributed (IID) non-singular Beta distributions [161, 162]. The

Beta distribution provides a simple 2-parameter model that can produce a wide

range of functional forms on the unit interval. However, the constraint that

keeps the Beta distribution non-singular (i.e. α > 1 and β > 1) enforces

a spin magnitude that always has p(ai = 0) = 0. Recent studies have

proposed the possible existence of a distinct subpopulation of non-spinning

or negligibly spinning black holes that can elude discovery with such a model

[145, 146, 147, 148, 163].

We model the spin magnitude distributions as IID B-Spline distributions.

Figure 5.3 shows the inferred spin magnitude distribution with the B-Spline model,

compared with the Default model from The LIGO Scientific Collaboration

et al. [51]. The B-Spline model results are consistent with those using the Beta

distribution, peaking near a ∼ 0.2, with 90% of BBH spins below 0.71+0.13
−0.14 at

90% credibility. The B-Spline model does not impose vanishing support at the

extremal values like the Beta distribution, allowing it to probe the zero-spin

question. We find broad support, with large variance, for non-zero probabilities at

ai = 0, but cannot confidently determine the presence of a significant non-spinning

subpopulation, corroborating similar recent conclusions [146, 147, 148, 164]. We

repeat the same analysis with independent B-Spline distributions for each spin

magnitude component. In figure 5.4 we show the inferred primary (orange),

and secondary (olive) spin magnitude distributions inferred when relaxing the

IID assumption. We find no signs that the spin magnitude distributions are not

107



0.0 0.2 0.4 0.6 0.8 1.0
a

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
p(

a)
GWTC-3: Spin Magnitude Distribution

Abbott et. al. 2021b
This Work (p(a1))
This Work (p(a2))

FIGURE 5.4. The primary (orange) and secondary (olive) spin magnitude
distributions inferred with the B-Spline model with 16 knots spaced linearly from
0 to 1. The solid line shows the population predictive distribution (PPD), and
the shaded region the 90% credible interval. For comparison, we show the inferred
PPD from the Default (blue) model from The LIGO Scientific Collaboration
et al. [51], the LVK’s GWTC-3 population analyses.

IID but that the primary spin magnitude distribution peaks slightly higher, at

a ∼ 0.25, than the IID B-Spline model in figure 5.3, but with similar support at

near vanishing spins. The secondary spin magnitude distribution is more uncertain

due to the higher measurement uncertainty when inferring the secondary spins

of BBH systems [165, 166]. The PPD of the secondary distribution peaks at

smaller spin magnitudes a ∼ 0.15, than the primary distribution or B-Spline IID

spin magnitude distribution in figure 5.3, although the distributions are broadly

consistent with each other considering the large uncertainties. A population of
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compact binary mergers with component spin magnitude distributions that are

uniquely distributed can be produced through mass-ratio reversal in isolated

binary evolution [164], and could be uncovered in the future with larger catalog

sizes.

5.5.2.2. Spin Orientation

The Default spin model (used in The LIGO Scientific Collaboration et al.

[51], Abbott et al. [53]) also assumes the spin orientation of both components

are identical and independently distributed (IID), with a mixture model over an

aligned and an isotropic component. The aligned component is modeled with

a truncated Gaussian distribution with mean at cos θ = 1 and variance a free

hyperparameter to be fit [51, 53, 161, 162]. This provides a simple 2-parameter

model motivated by simple distributions expected from the two main formation

scenario families, allowing for a straightforward interpretation of results. One

possible limitation however, is that by construction this distribution is forced to

peak at perfectly aligned spins, i.e. cos θ = 1. While this may be a reasonable

assumption, Vitale et al. [149] recently extended the model space of parametric

descriptions used to model the spin orientation distribution and found considerable

evidence that the distribution peaks away from cos θ = 1. Again, this provides a

clear use-case where data-driven models can help us understand the population.

Figure 5.5 shows the inferred spin orientation distribution with the IID spin

B-Spline model, compared with the Default model from The LIGO Scientific

Collaboration et al. [51]. The B-Spline inferences have large uncertainties but

start to show the same features as found and discussed in Vitale et al. [149]. We

find a distribution that instead of intrinsically peaking at cos θ = 1, is found to
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FIGURE 5.5. The spin orientation distribution inferred with the B-Spline model
(red) with 16 knots spaced linearly from -1 to 1, and assuming the components
are IID. The solid line shows the population predictive distribution (PPD), and
the shaded region the 90% credible interval. For comparison, we show the inferred
PPD from the Default (blue) model from The LIGO Scientific Collaboration
et al. [51], the LVK’s GWTC-3 population analyses.

peak at: cos θ =0.44+0.56
−0.53, at 90% credibility. We find less, but still considerable

support for misaligned spins (i.e. cos θ < 0), consistent with other recent

studies [51, 53, 148]. Specifically we find that the fraction of misaligned systems

is fcos θ<0 =0.35+0.11
−0.11, compared to fcos θ<0 =0.44+0.052

−0.12 with the Default model

from The LIGO Scientific Collaboration et al. [51]. This implies the presence of

an isotropic component as expected by dynamical formation channels, albeit less

than with the Default model. To quantify the amount of isotropy in the tilt

distribution we calculate log10 Y , where Y is the ratio of nearly aligned tilts to
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nearly anti-aligned, introduced in Vitale et al. [149] and defined as:

Y ≡
∫ 1.0

0.9
d cos θp(cos θ)∫ −0.9

−1.0
d cos θp(cos θ)

. (5.1)

The log this quantity, log10 Y , is 0 for tilt distribution that is purely isotropic,

negative when anti-aligned values are favored, and positive when aligned tilts are

favored. We find a log10 Y =0.24+0.46
−0.46, exhibiting a slight preference for aligned

tilts.
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FIGURE 5.6. The primary (orange) and secondary (olive) spin orientation
distributions inferred with the B-Spline model with 16 knots spaced linearly from
-1 to 1. The solid line shows the population predictive distribution (PPD), and
the shaded region the 90% credible interval. For comparison, we show the inferred
PPD from the Default (blue) model from The LIGO Scientific Collaboration
et al. [51], the LVK’s GWTC-3 population analyses.
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We also model each component’s orientation distribution with an

independent B-Spline model as done above, and show the inferred primary

(orange), and secondary (olive) distributions in figure 5.6. The orientation

distributions are broadly consistent with each other and the Default model’s

PPD given the wide credible intervals. We find the two distributions to peak at:

cos θ1 =0.16+0.84
−0.84 and cos θ2 =0.38+0.62

−1.0 , showing that the primary distribution peak

is inferred further away from the assumed cos θ = 1 with the Default model.

There is also significant (albeit uncertain) evidence of spin misalignment in each

distribution, finding the fraction of misaligned primary and secondary components

as: fcos θ1<0 =0.43+0.19
−0.16 and fcos θ2<0 =0.38+0.18

−0.15. We again calculate log10 Y for each

component distribution and find: log10 Y1 =0.12+0.5
−0.53 and log10 Y2 =0.18+0.53

−0.54.

Model χeff,peak fχeff<0 fχeff<−0.3 fdyn fHM

B-Spline IID 0.039+0.034
−0.038 0.34+0.11

−0.11 0.019+0.021
−0.012 0.69+0.22

−0.22 0.12+0.13
−0.074

B-Spline Ind 0.023+0.034
−0.034 0.41+0.083

−0.088 0.035+0.027
−0.018 0.82+0.17

−0.18 0.22+0.17
−0.11

Default [51] 0.017+0.034
−0.022 0.43+0.059

−0.13 0.013+0.017
−0.0095 0.87+0.12

−0.26 0.081+0.11
−0.059

Gaussian [51] 0.06+0.029
−0.037 0.28+0.15

−0.13 0.00024+0.0081
−0.00024 0.55+0.3

−0.26 0.0015+0.051
−0.0015

TABLE 5.2. Summary of the effective spin distributions inferred with the B-Spline
model variations, along with the Default and Gaussian models from The LIGO
Scientific Collaboration et al. [51].

5.5.3. The Effective Spin Dimension

While the component spin magnitudes and tilts are more directly tied to

formation physics, they are typically poorly measured. The best-measured spin

quantity, which enters at the highest post-Newtownian order, is the effective spin:

χeff = a1 cos θ1+qa2 cos θ2
1+q

. There is additionally an effective precessing spin parameter,

χp = max
[
a1 sin θ1,

3+4q
4+3q

qa2 sin θ2
]
, that quantifies the amount of spin precession

given the systems mass ratio and component spin magnitudes and orientation.
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FIGURE 5.7. The effective (left) and precessing (right) spin distributions inferred
with the B-Spline IID spin model (red). The solid line shows the population
predictive distribution (PPD), and the shaded region the 90% credible interval.
We show the inferred PPDs from the independent component spin B-Spline model
(purple), and both the Default (blue) model and the Gaussian (green) model
from The LIGO Scientific Collaboration et al. [51], the LVK’s GWTC-3 population
analyses.

Figure 5.7 shows the inferred effective spin and precessing spin distributions with

the two versions of our B-Spline models (red and purple), along with results

on the Default [161] and Gaussian [167] models from The LIGO Scientific

Collaboration et al. [51]. We find considerable agreement among the effective

spin distributions, but the more flexible B-Spline models in component spins

more closely resemble results from the Default model, also using the component

spins. The B-Spline model finds very similar shapes to the other models, with a

single peak centered at χeff =0.039+0.034
−0.038, compared to χeff =0.017+0.034

−0.022 with the

Default model and χeff =0.06+0.029
−0.037 with the Gaussian χeff models from The

LIGO Scientific Collaboration et al. [51]. As for spin misalignment, we calculate

the fraction of systems with effective spins that are misaligned (i.e. χeff < 0) and

find similar agreement with previous work [51, 53, 148]. We find for the B-Spline

model fχeff<0 =0.34+0.11
−0.11, compared to fχeff<0 =0.43+0.059

−0.13 and fχeff<0 =0.28+0.15
−0.13 with

the Default and Gaussian models from The LIGO Scientific Collaboration et al.
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[51]. The precessing spin distributions inferred with the B-Spline models exhibit a

similar shape to the Default model, but with a much fatter tail towards highly

precessing systems, driven by the extra support for highly spinning components

seen in figures 5.3 and 5.3.
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SFR: z = 2.7

FIGURE 5.8. The BBH merger rate as a function of redshift. We show the B-
Spline model (red) with 16 knots spaced linearly in log(z), from the minimum to
the maximum observed redshifts. The solid line shows the population predictive
distribution (PPD), and the shaded region the 90% credible interval. We show
the inferred 90% credible interval from the PowerlawRedshift model from the
LVK’s GWTC-3 population analyses in blue and a power law with exponent of 2.7
in gray, representing the expected star formation rate [51, 168].
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FIGURE 5.9. The B-spline modulation to the underlying power law in redshift,
(red). The solid line shows the population predictive distribution (PPD), and the
shaded region the 90% credible interval. We show the 90% credible interval of the
prior predictive distribution in dashed black lines.

5.5.4. Merger Rate Evolution with Redshift

Recent analysis of the GWTC-3 BBH population has shown evidence for

an increasing merger rate with redshift, nearly ruling out a merger rate that is

constant with co-moving volume [51, 88]. When extending the power law form of

the previously used model to have a modulation that we model with B-Splines, the

merger rate as a function of redshift in figure 5.8 shows mild support for features

departing from the underlying power law. In particular, we see a small increase

in merger rate from z ∼ 0.09 to z ∼ 0.2 (where we best constrain the rate),

followed by a plateau in the rate from z ∼ 0.2 to z ∼ 0.4. At larger redshifts,
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where we begin to have sparse observations, we see no sign of departure from the

power-law as the rate continues to increase with redshift. The underlying power-

law slope of our B-spline modulated model is consistent with the GWTC-3 results

with the underlying model by itself: the PowerlawRedshift model found

λz =2.7+1.8
−1.9 when inferred with the PowerlawPeak mass, and Default spin

models. Our more flexible model infers a power law slope of λz =2.1+2.2
−2.5. We show

the basis spline modulations or departure from the power law in 5.9 compared

to the prior – showing where we cannot constrain any significant deviations from

the simpler parametric power law model. The extra freedom of our model does

inflate the uncertainty in its rate estimates, especially at z ∼ 0 where there

are not any observations in the catalog. We find a local (z = 0) merger rate of

R0 =20+29
−12Gpc−3yr−1 using the B-Spline modulation model which compares to

R0 =17+10
−6.7Gpc−3yr−1 for the GWTC-3 result.

5.6. Astrophysical Implications

The collective distribution of BBH source properties provides a useful

probe of the complex and uncertain astrophysics that govern their formation and

evolution until merger [109, 126, 127]. Our analyses with the newly constructed

B-spline models uncover hints new features in the population (e.g., in mass ratio

and redshift) and corroborates important conclusions of recent work, and provides

a robust data-driven framework for future population studies.

The results presented in section 5.5.1 illustrate a wider mass distribution

than inferred with power-law based models in The LIGO Scientific Collaboration

et al. [51], and a suppressed merger rate at low primary masses (i.e. ≤ 8M⊙),

showing possible signs of binary selection effects or the purported low mass gap
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between neutron stars and black holes [98, 119, 169]. While isolated formation is

able to predict the 10M⊙ peak [170], cluster and dynamical formation scenarios

struggle to predict a peak in the BH mass distribution less than 15 − 20M⊙

[105, 171]. Globular cluster formation is expected to produce more top-heavy

mass distributions than isolated and recent studies have shown suppressed BBH

merger rates at lower (m ≤ 15M⊙) masses when compared to predictions from the

isolated channel [60, 105, 144, 172]. BBHs that form near active galactic nuclei

(AGN) can preferentially produce higher mass black holes [173, 174, 175]. We

do not find any evidence for a truncation or rapid decline in the merger rate as

a function of mass, that stellar evolution theory predicts due to pair-instability

supernovae (PISNe) [54, 55, 56, 59, 62]. The original motivation for the peak in

the PowerlawPeak model [67] was to represent a possible “pileup” of masses

just before such truncation, since massive stars just light enough to avoid PISN

will shed large amounts of mass in a series of “pulses” before collapsing to BHs

in a process called pulsational pair-instability supernova (PPISN) [57, 58, 61].

While the predictions of the mass scale where pair-instability kicks in are uncertain

and depend on poorly understood physics like nuclear reaction rates of carbon

and oxygen in the core of stars, models have a hard time producing this peak

lower than m ∼ 40M⊙ [60, 61, 63, 103, 176]. The lack of a truncation could

point towards a higher prevalence of dynamical processes that can produce black

holes in mass ranges stellar collapse cannot, such as hierarchical mergers of BHs

[66, 69, 70, 75, 94, 177], very low metallicity population III stars [64, 72], new

beyond-standard-model physics[77, 106], or black hole accretion of BHs in gaseous

environments such as AGNs [73, 74, 78].
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Our constraints on the mass ratio distribution are not yet precise enough

to claim definitive departures from power law behavior, but do suggest possible

plateaus in the rate at several mass ratios, including equal mass. These features

should sharpen (or resolve) with future updates to the catalog.

Section 5.5.2 focused on inferences of the spin distributions of black holes,

observing evidence of spin misalignment, spin anti-alignment, and suppressed

support for exactly aligned systems. These point towards a significant contribution

to the population from dynamical formation processes, agreeing with conclusions

drawn about the mass distribution inference of section 5.5.1. While field formation

is expected to produce systems with preferentially aligned spins due to tidal

interactions, observational evidence suggests that tides may not be able to re-align

spins in all systems as some isolated population models assume. Additionally,

because of uncertain knowledge of supernovae kicks, isolated formation can

produce systems with negative but small effective spins. Consistent with recent

studies we report an effective spin distribution that is not symmetric about zero,

disfavoring a scenario in which all BBHs are formed dynamically [51, 53, 148].

Following the rules in Fishbach et al. [177], we place conservative upper bounds

on the fraction of hierarchical mergers fHM and fraction of dynamically formed

BBHs, fdyn with the B-spline χeff model constraining fHM <0.058 and fdyn <0.52

at 90% credibility. This is consistent with the 90% credible interval found from the

GWTC-2 analysis, 0.25 ≤ fdyn ≤ 0.93 [53].

Finally, section 5.5.4 shows potentially interesting evolution of the BBH

merger rate with redshift. Though uncertainties are still large, we may be seeing

the first signs of departure from following the star formation rate, which could help
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in distinguishing different subpopulations should they exist [178]. Again, we expect

these features to be resolved with future catalogs.

5.7. Conclusions

Non-parametric and data-driven statistical modeling methods have been

put to use with great success across the ever-growing field of gravitational waves

[8, 25, 31, 96, 97, 111, 112, 113, 114, 140, 151, 179]. We presented a case study

exploring how basis splines make for an especially powerful and efficient data

driven method of characterizing the binary black hole population observed with

gravitational waves, along with the associated open source software GWInferno,

that implements the models described in this paper and performs hierarchical

Bayesian inference with NumPyro and Jax [180, 181, 182]. Our study paves

the way as the first completely non-parametric compact object population study,

employing data driven models for each of the hierarchically modeled population

distributions. A complete understanding of the population properties of compact

objects will help to advance poorly understood areas of stellar and nuclear

astrophysics and provide a novel independent cosmological probe. With the

coming influx of new data with the LVK’s next observing run, development of

model-agnostic methods, such as the one we proposed here, will become necessary

to efficiently make sense of the vast amounts of data and to extract as much

information as possible from the population.
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5.9. Additional Analysis Details

5.9.1. Basis Splines

A common non-parametric method used in many statistical applications is

basis splines. A spline function of order k, is a piece-wise polynomial of order k

polynomials stitched together from defined “knot” locations across the domain.

They provide a useful and cheap way to interpolate generically smooth functions

from a finite sampling of “knot” heights. Basis splines of order k are a set of

order k polynomials that form a complete basis for any spline function of order

k. Therefore, given an array of knot locations, t or knot vector, there exists a

single unique linear combination of basis splines for every possible spline function

interpolated from t. To construct a basis of n components and knots, t0, t1,...,ti+k,
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we use the Cox-de Boor recursion formula [6, 183]. The recursion starts with the

k = 0 (constant) case and recursively constructs the basis components of higher

orders. The base case and recursion relation that generates this particular basis

are defined as:

Bi,0(x|t) =


1, if ti ≤ x < ti+1

0, otherwise

(5.2)

Bi,k+1(x|t) = ωi,k(x|t)Bi,k(x|t) +
[
1− ωi+1,k(x|t)

]
Bi+1,k(x|t) (5.3)

ωi,k(x|t) =


x−ti

ti+k−ti
, ti+k ̸= ti

0, otherwise

(5.4)

This is known as the “B-Spline” basis after it’s inventor de Boor [6]. The power of

basis splines comes from the fact that one only has to do the somewhat-expensive

interpolation once for each set of points at which the spline is evaluated. This

provides a considerable computational speedup as each evaluation of the spline

function becomes a simpler operation: a dot product of a matrix and a vector.

This straightforward operation is also ideal for optimizations from the use of GPU

accelerators, enabling our Markov chain Monte Carlo (MCMC) based analyses,

often with hundreds of parameters, to converge in an hour or less. Basis splines

can easily be generalized to their two-dimensional analog, producing tensor

product basis splines that, with this computational advantage, allow for high

fidelity modeling of two-dimensional spline functions.

121



0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
p(

x)
Normalized Cubic B-Spline Basis: n=20

Ndof

i
ciMi, k(x) Knots
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component. In black, we show the resulting spline function given equal weights
and denote the location of the knots with gray x’s.

Another important feature of basis splines is that under appropriate prior

conditions, one can alleviate sensitivities to arbitrarily chosen prior specifications

that splines commonly struggle with. Previous studies using splines had to perform

multiple analyses, varying the number of spline knots, then either marginalized

over the models or used model comparisons to motivate the best choice [97]. We

can avoid this step with the use of penalized splines (or P-Splines) [7, 152, 153],

where one adds a smoothing prior comprised of Gaussian distributions on the

differences between neighboring basis spline coefficients. This allows for knots to

be densely populated across the domain without the worry of extra variance in

the inferred spline functions. When also fitting the scale of the smoothing prior

(i.e. the width of the Gaussian distributions on the differences), the data will

inform the model of the preferred the scale of smoothing required. We discuss the

details of our smoothing prior implementation in more detail in the next section,
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Appendix 5.9.2, following with our specific prior and basis choices for each model

in Appendix 5.9.4.

5.9.2. Penalized Splines and Smoothing Priors

Spline functions have been shown to be sensitive to the chosen number

of knots, and their locations or spacing [6]. Adding more knots increases the a

priori variance in the spline function, while the space between knots can limit the

resolution of features in the data the spline is capable of resolving. To ensure your

spline based model is flexible enough one would want to add as many knots as

densely as possible, but this comes with unwanted side effect of larger variance

imposed by your model. This can be fixed with the use of penalized splines (P-

Spline) in which one applies a prior or regularization term to the likelihood based

on the difference of adjacent knot coefficients [7]. The linear combination of spline

basis components or the resulting spline function is flat when the basis coefficients

are equal (see Figure 5.10). By penalizing the likelihood as the differences between

adjacent knot coefficients get larger, one gets a smoothing effect on the spline

function [7]. With hierarchical Bayesian inference as our statistical framework,

we formulate the penalized likelihood of Eilers and Marx [7]’s P-Splines with their

Bayesian analog [152]. The Bayesian P-Spline prior places Gaussian distributions

over the r-th order differences of the coefficients [152, 153]. This is also sometimes

referred to as a Gaussian random walk prior, and is similar in spirit to a Gaussian

process prior used to regularize or smooth histogram bin heights as done in other

non-parametric population studies [51, 113]. For a spline basis with n degree’s

of freedom, and a difference penalty of order of r (see Eilers and Marx [7]), the

smoothing prior on our basis spline coefficients, c is defined as:
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c ∼ N (0, σ) (5.5)

p(c|τλ) ∝ exp
[
− 1

2
τλc

TDT
r Drc

]
(5.6)

Above Dr is the order-r difference matrix, of shape (n − r × n), and N (0, σ) a

Gaussian distribution with zero mean and standard deviation, σ. This smoothing

prior removes the strong dependence on number and location of knots that arises

with using splines. The τλ controls the “strength” of the smoothing, or the inverse

variance of the Gaussian priors on knot differences. We place uniform priors on τλ

marginalize over this smoothing scale hyperparameter to let the data inform the

optimal scale needed. When there are a very large number of knots, such that your

domain is densely populated with basis coefficients, this allows the freedom for the

model to find the smoothing scale that the data prefers.

This prior is imparting a natural attraction of the coefficients closer to each

other in order to smooth the spline function, so one must ensure that the spline

function is in fact flat given all equal coefficients. There needs to be n + k + 1

knots to construct an order-k basis with n degrees of freedom. Some studies place

knots on top of each other at hard parameter boundaries [6, 183], which may seem

motivated, but this violates the above condition necessary for the P-Spline prior.

We follow the distinction in Eilers and Marx [7] that such a smoothing prior is

only valid with “proper” spline bases. A proper basis is where all n + k + 1 knots

are evenly and equally spaced, see Figure 5.10, as opposed to stacking them at the

bounds.
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5.9.3. Hierarchical Bayesian Inference

We use hierarchical Bayesian inference to infer the population properties

of compact binaries. We want to infer the number density of merging compact

binaries in the universe and how this can change with their masses, spins, etc.

Often times it is useful to formulate the question in terms of the merger rates

which is the number of mergers per Gpc3 co-moving volume per year. For a set

of hyperparameters, Λ, λ, and overall merger rate, R, we write the overall number

density of BBH mergers in the universe as:

dN(θ, z|R,Λ, λ)

dθdz
=

dVc

dz

(
Tobs

1 + z

)
dR(θ, z|R0,Λ, λ)

dθ
= Rp(θ|Λ)p(z|λ) (5.7)

where up above, we denote the co-moving volume element as dVc [117], and Tobs

as the observing time period that produced the catalog with the related factor of

1 + z converting this detector-frame time to source-frame. We assume a Lambda

CDM cosmology using the cosmological parameters from Planck Collaboration

et al. [120]. We model the merger rate evolving with redshift following a power law

distribution: p(z|λ) ∝ dVc

dz
1

1+z
(1 + z)λ [88]. When integrating equation 5.7 across all

θ and out to some maximum redshift, zmax, we get the total number of compact

binaries in the universe out to that redshift. We follow previous notations,

letting {di} represent the set of data from Nobs compact binaries observed with

gravitational waves. The merger rate is then described as an inhomogeneous

Poisson process and after imposing the usual log-uniform prior on the merger rate,

we marginalize over the merger rate, R, and arrive at the posterior distribution of

our hyperparameters, Λ [83, 111].
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p (Λ, λ|{di})
p(Λ)p(λ)

ξ(Λ, λ)Nobs

Nobs∏
i=1

[
1

Ki

Ki∑
j=1

p(θi,j|Λ)p(zi,j|λ)
π(θ, zi,j)

]
(5.8)

where above, we replaced the integrals over each event’s likelihood with ensemble

averages over Ki posterior samples [154]. Above, j indexes the Ki posterior

samples from each event and π(θ, z) is the default prior used by parameter

estimations that produced the posterior samples for each event. In the analyses

of GWTC-3, either the default prior used was uniform in detector frame masses,

component spins and Euclidean volume or the posterior samples were re-weighted

to such a prior before using them in our analysis. The corresponding prior

evaluated in the parameters we hierarchically model, i.e. source frame primary

mass, mass ratio, component spins and redshift is:

π(m1, q, a1, a2, cos θ1, cos θ2, z) ∝
1

4
m1(1 + z)2D2

L(z)
dDL

dz
(5.9)

Above, DL is the luminosity distance. To carefully incorporate selection effects

to our model we need to quantify the detection efficiency, ξ(Λ, λ), of the search

pipelines that were used to create GWTC-3, at a given population distribution

described by Λ and λ.

ξ(Λ, λ) =

∫
dθdzPdet(θ, z)p(θ|Λ)p(z|λ) (5.10)

To estimate this integral we use a software injection campaign where gravitational

waveforms from a large population of simulated sources. These simulated

waveforms are put into real detector data, and then this data is evaluated with

the same search pipelines that were used to produce the catalog we are analyzing.

With these search results in hand, we use importance sampling and evaluate the
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integral with the Monte Carlo sum estimate µ, and its corresponding variance and

effective number of samples:

ξ(Λ, λ) ≈ µ(Λ, λ)
1

Ninj

Nfound∑
i=1

p(θi|Λ)p(zi|λ)
pinj(θ, zi)

(5.11)

σ2(Λ, λ) ≡ µ2(Λ, λ)

Neff

≃ 1

N2
inj

Nfound∑
i=1

[
p(θ|Λ)p(z|λ)
pinj(θ, z)

]2
− µ2(Λ, λ)

Ninj

(5.12)

where the sum is only over the Nfound injections that were successfully detected

out of Ninj total injections, and pinj(θ, z) is the reference distribution from which

the injections were drawn. We use the LVK released injection sets that describe

the detector sensitivities over the first, second and third observing runs [184].

Additionally, we follow the procedure outlined in Farr [82] to marginalize the

uncertainty in our estimate of ξ(Λ, λ), in which we verify that Neff is sufficiently

high after re-weighting the injections to a given population (i.e. Neff > 4Nobs). The

total hyper-posterior marginalized over the merger rate and the uncertainty in the

Monte Carlo integral calculating ξ(Λ, λ) [82], as:

log p (Λ, λ|{di}) ∝
Nobs∑
i=1

log

[
1

Ki

Ki∑
j=1

p(θi,j|Λ)p(zi,j|λ)
π(θi,j, zi,j)

]
−Nobs log µ(Λ, λ)+

3Nobs +N2
obs

2Neff

+O(N−2
eff ).

(5.13)

We explicitly enumerate each of the models used in this work for p(θ|Λ),

along with their respective hyperparameters and prior distributions in the

next section. To calculate draw samples of the hyperparameters from the

hierarchical posterior distribution shown in equation 5.13, we use the NUTS
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Model Parameter Description Prior

Primary Mass Model Parameters
B-Spline Primary c Basis coefficients ∼ Smooth(τλ, σ, r, n)

τλ Smoothing Prior Scale ∼ U(2, 1000)
r order of the difference matrix for the smoothing prior 2
σ width of Gaussian priors on coefficients in smoothing prior 6
n number of knots in the basis spline 64

Mass Ratio Model Parameters
B-Spline Ratio c Basis coefficients ∼ Smooth(τλ, σ, r, n)

τλ Smoothing Prior Scale ∼ U(1, 100)
r order of the difference matrix for the smoothing prior 2
σ width of Gaussian priors on coefficients in smoothing prior 4
n number of knots in the basis spline 18

Redshift Evolution Model Parameters
PowerLaw+B-Spline λ slope of redshift evolution power law (1 + z)λ ∼ N (0, 3)

c Basis coefficients ∼ Smooth(τλ, σ, r, n)
τλ Smoothing Prior Scale ∼ U(1, 10)
r order of the difference matrix for the smoothing prior 2
σ width of Gaussian priors on coefficients in smoothing prior 1
n number of knots in the basis spline 18

Spin Distribution Model Parameters
B-Spline Magnitude c Basis coefficients ∼ Smooth(τλ, σ, r, n)

τλ Smoothing Prior Scale ∼ U(1, 10)
r order of the difference matrix for the smoothing prior 2
σ width of Gaussian priors on coefficients in smoothing prior 1
n number of knots in the basis spline 18

B-Spline Tilt c Basis coefficients ∼ Smooth(τλ, σ, r, n)
τλ Smoothing Prior Scale ∼ U(1, 10)
r order of the difference matrix for the smoothing prior 2
σ width of Gaussian priors on coefficients in smoothing prior 1
n number of knots in the basis spline 18

TABLE 5.3. All hyperparameter prior choices for each of the newly introduced
basis spline models from this manuscript. See appendix 5.9.1 and 5.9.2 for more
detailed description of basis spline or smoothing prior parameters.

Hamiltonian Monte Carlo sampler in NumPyro and Jax to calculate likelihoods

[180, 181, 182].

5.9.4. Model and Prior Specification

For each of the distributions with basis spline distributions, we have 2

fixed hyperparameters to specify. The number of degrees of freedom, n, and

the difference penalty order for the smoothing prior, r. Additionally, one must

choose a prior distribution on the smoothing prior scale hyperparameter, τλ,

which we take to be Uniform. For the primary mass distribution we model the

log probability with a B-Spline interpolated in log(m1) space. We follow a similar
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GWTC-3: B-Spline Model Posterior Predictive Checks

FIGURE 5.11. Posterior predictive checks showing the CDFs of the observed
(black) and predicted (red) distributions of GWTC-3 sized catalogs for each
posterior sample of the IID spin B-Spline model. The shaded regions show 90%
credible intervals and the solid red line is the median of the predicted distribution.

scheme for the models in mass ratio and spin, except we model the log probability

with B-Splines that are interpolated in q, ai or cos θi space. We adopt a minimum

black hole mass of 5M⊙, and maximum of 100M⊙ with the equally spaced in this

range. The knots for the mass ratio B-Spline are equally spaced from mmin

mmax
= 0.05

to 1. There is motivation for the evolution of the merger rate with redshift to

follow a power law form since it should be related to the star formation rate [168],

motivating our adoption of a semi-parametric approach where we use B-Splines

to model modulations to the simpler underlying PowerlawRedshift model

[88, 97]. We model modulations to the underlying probability density with the

multiplicative factor, eB(log z), where B(log z) is the B-Spline interpolated from

knots spaced linearly in log z space. We enumerate each of our specific model

hyperparameter and prior choices in table 5.3.
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FIGURE 5.12. Posterior predictive checks showing the CDFs of the observed
(black) and predicted (red) distributions of GWTC-3 sized catalogs for each
posterior sample of the IID spin B-Spline model. The shaded regions show 90%
credible intervals and the solid red line is the median of the predicted distribution.

5.9.5. Posterior Predictive Checks

We follow the posterior predictive checking procedure done in recent

population studies to validate our models inferences [53, 97]. For each posterior

sample describing our model’s inferred population we reweigh the observed event

samples and the found injections to that population and draw a set 69 (size

of GWTC-3 BBH catalog) samples to construct the observed and predicted

distributions we show in figure 5.11 and figure 5.12. When the observed region

stays encompassed within the predicted region the model is performing well, which

we see across each of the fit parameters.

5.9.6. Reproducibility

In the spirit of open source and reproducible science, this study was done

using the reproducibility software ShowYourWork [185], which leverages

continuous integration to programmatically download the data from zenodo.org,

create the figures, and compile the manuscript. Each figure caption contains two

links that point towards the dataset (stored on zenodo) used in the corresponding
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figure, and to the script used to make the figure (at the commit corresponding to

the current build of the manuscript). The git repository associated to this study is

publicly available at https://github.com/bruce-edelman/CoveringYourBasis,

which allows anyone to re-build the entire manuscript. The datasets and all

analysis or figure generating scripts are all stored on zenodo.org at https:

//zenodo.org/record/7566301 [186].
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Coenraad J. Neijssel, Dorottya Szécsi, and Ilya Mandel. The Impact of
Pair-instability Mass Loss on the Binary Black Hole Mass Distribution. apj,
882(2):121, September 2019. doi: 10.3847/1538-4357/ab3981.

[63] R. Farmer, M. Renzo, S. E. de Mink, M. Fishbach, and S. Justham.
Constraints from Gravitational-wave Detections of Binary Black Hole
Mergers on the 12C(α, γ)16O Rate. apjl, 902(2):L36, October 2020. doi:
10.3847/2041-8213/abbadd.

[64] Krzysztof Belczynski. The Most Ordinary Formation of the Most Unusual
Double Black Hole Merger. apjl, 905(2):L15, December 2020. doi:
10.3847/2041-8213/abcbf1.

[65] Jorick S. Vink, Erin R. Higgins, Andreas A. C. Sander, and Gautham N.
Sabhahit. Maximum black hole mass across cosmic time. mnras, 504(1):
146–154, June 2021. doi: 10.1093/mnras/stab842.

[66] Maya Fishbach and Daniel E. Holz. Where Are LIGO’s Big Black Holes? apjl,
851(2):L25, December 2017. doi: 10.3847/2041-8213/aa9bf6.

[67] Colm Talbot and Eric Thrane. Measuring the Binary Black Hole Mass
Spectrum with an Astrophysically Motivated Parameterization. apj, 856(2):
173, April 2018. doi: 10.3847/1538-4357/aab34c.

139



[68] Isobel Romero-Shaw, Paul D. Lasky, Eric Thrane, and Juan Calderón Bustillo.
GW190521: Orbital Eccentricity and Signatures of Dynamical Formation in a
Binary Black Hole Merger Signal. apjl, 903(1):L5, November 2020. doi:
10.3847/2041-8213/abbe26.

[69] Chase Kimball, Colm Talbot, Christopher P. L. Berry, Matthew Carney,
Michael Zevin, Eric Thrane, and Vicky Kalogera. Black Hole Genealogy:
Identifying Hierarchical Mergers with Gravitational Waves. apj, 900(2):177,
September 2020. doi: 10.3847/1538-4357/aba518.

[70] Z. Doctor, D. Wysocki, R. O’Shaughnessy, D. E. Holz, and B. Farr. Black Hole
Coagulation: Modeling Hierarchical Mergers in Black Hole Populations. apj,
893(1):35, April 2020. doi: 10.3847/1538-4357/ab7fac.

[71] V. Gayathri, J. Healy, J. Lange, B. O’Brien, M. Szczepanczyk, I. Bartos,
M. Campanelli, S. Klimenko, C. Lousto, and R. O’Shaughnessy. Eccentricity
Estimate for Black Hole Mergers with Numerical Relativity Simulations.
arXiv e-prints, art. arXiv:2009.05461, September 2020. doi:
10.48550/arXiv.2009.05461.

[72] Eoin Farrell, Jose H. Groh, Raphael Hirschi, Laura Murphy, Etienne Kaiser,
Sylvia Ekström, Cyril Georgy, and Georges Meynet. Is GW190521 the
merger of black holes from the first stellar generations? mnras, 502(1):
L40–L44, March 2021. doi: 10.1093/mnrasl/slaa196.

[73] Amy Secunda, Jillian Bellovary, Mordecai-Mark Mac Low, K. E. Saavik Ford,
Barry McKernan, Nathan W. C. Leigh, Wladimir Lyra, Zsolt Sándor, and
Jose I. Adorno. Orbital Migration of Interacting Stellar Mass Black Holes in
Disks around Supermassive Black Holes. II. Spins and Incoming Objects. apj,
903(2):133, November 2020. doi: 10.3847/1538-4357/abbc1d.

[74] B. McKernan, K. E. S. Ford, R. O’Shaugnessy, and D. Wysocki. Monte Carlo
simulations of black hole mergers in AGN discs: Low χeff mergers and
predictions for LIGO. mnras, 494(1):1203–1216, May 2020. doi:
10.1093/mnras/staa740.

[75] Chase Kimball, Colm Talbot, Christopher P. L. Berry, Michael Zevin, Eric
Thrane, Vicky Kalogera, Riccardo Buscicchio, Matthew Carney, Thomas
Dent, Hannah Middleton, Ethan Payne, John Veitch, and Daniel Williams.
Evidence for Hierarchical Black Hole Mergers in the Second LIGO-Virgo
Gravitational Wave Catalog. apjl, 915(2):L35, July 2021. doi:
10.3847/2041-8213/ac0aef.

140



[76] Juan Calderón Bustillo, Nicolas Sanchis-Gual, Alejandro Torres-Forné, and
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[84] Gregory Ashton, Moritz Hübner, Paul D. Lasky, Colm Talbot, Kendall Ackley,
Sylvia Biscoveanu, Qi Chu, Atul Divakarla, Paul J. Easter, Boris Goncharov,
Francisco Hernandez Vivanco, Jan Harms, Marcus E. Lower, Grant D.
Meadors, Denyz Melchor, Ethan Payne, Matthew D. Pitkin, Jade Powell,
Nikhil Sarin, Rory J. E. Smith, and Eric Thrane. BILBY: A User-friendly
Bayesian Inference Library for Gravitational-wave Astronomy. apjs, 241(2):
27, April 2019. doi: 10.3847/1538-4365/ab06fc.

141



[85] I. M. Romero-Shaw, C. Talbot, S. Biscoveanu, V. D’Emilio, G. Ashton, C. P. L.
Berry, S. Coughlin, S. Galaudage, C. Hoy, M. Hübner, K. S. Phukon,
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Ezquiaga, Ben Farr, and Daniel E. Holz. Things that might go bump in the
night: Assessing structure in the binary black hole mass spectrum. arXiv
e-prints, art. arXiv:2301.00834, January 2023. doi:
10.48550/arXiv.2301.00834.

[100] Yin-Jie Li, Yuan-Zhu Wang, Shao-Peng Tang, and Yi-Zhong Fan. Resolving
the stellar-collapse and hierarchical-merger origins of the coalescing black
holes. arXiv e-prints, art. arXiv:2303.02973, March 2023. doi:
10.48550/arXiv.2303.02973.

[101] B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, F. Acernese,
K. Ackley, C. Adams, T. Adams, P. Addesso, R. X. Adhikari, and et al.
GW150914: The Advanced LIGO Detectors in the Era of First Discoveries.
prl, 116(13):131103, April 2016. doi: 10.1103/PhysRevLett.116.131103.

143



[102] R. Abbott, T. D. Abbott, S. Abraham, F. Acernese, K. Ackley, C. Adams,
R. X. Adhikari, V. B. Adya, C. Affeldt, M. Agathos, and et al. GW190412:
Observation of a binary-black-hole coalescence with asymmetric masses. prd,
102(4):043015, August 2020. doi: 10.1103/PhysRevD.102.043015.

[103] Pablo Marchant, Mathieu Renzo, Robert Farmer, Kaliroe M. W. Pappas,
Ronald E. Taam, Selma E. de Mink, and Vassiliki Kalogera. Pulsational
Pair-instability Supernovae in Very Close Binaries. apj, 882(1):36, September
2019. doi: 10.3847/1538-4357/ab3426.
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