
NEW A-INFINITY DIAGONALS FROM CONTRACTIONS

OF THE WEIGHTED ASSOCIAHEDRA

by

BO Q. PHILLIPS

A DISSERTATION

Presented to the Department of Mathematics

and the Division of Graduate Studies of the University of Oregon

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

June 2023

DISSERTATION APPROVAL PAGE

Student: Bo Q. Phillips

Title: New A-infinity Diagonals from Contractions of the Weighted Associahedra

This dissertation has been accepted and approved in partial fulfillment of the re-
quirements for the Doctor of Philosophy degree in the Department of Mathematics
by:

Dan Dugger Chair
Nick Addington Core Member
Dev Sinha Core Member
Robert Lipshitz Core Member
Eren Çil Institutional Representative

and

Krista Chronister Vice Provost for Graduate Studies

Original approval signatures are on file with the University of Oregon Division of
Graduate Studies.

Degree awarded June 2023.

2

© 2023 Bo Q. Phillips

3

DISSERTATION ABSTRACT

Bo Q. Phillips

Doctor of Philosophy

Department of Mathematics

June 2022

Title: New A-infinity Diagonals from Contractions of the Weighted Associahedra

In this paper, we build on the work of Lipshitz, Ozsváth, and Thurston by con-

structing an algorithm that generates a weighted A∞-diagonal given a family of con-

tractions of the weighted associahedron complexes. Using this, we exhibit a new

weighted A∞-diagonal and relate it to the unweighted A∞-diagonal exhibited by

Masuda-Thomas-Tonks-Vallete given by so-called “right-moving trees.”

4

To my father

5

CONTENTS

List of Figures . 7

List of Tables . 9

1 Introduction . 10

1.1 Organization of this paper . 16

2 Trees and the Associahedra . 18

3 Associahedron Diagonals and Tree Diagonals 26

3.1 New Results . 29

4 Contracting the Complexes C∗(X
w
0) 36

5 The General Contraction of C∗(X
w
n) 42

6 Resulting Tree Diagonals . 50

6.1 Source Code . 55

References . 62

6

LIST OF FIGURES

1.1 The corolla trees Ψn for n ≤ 5. 11

1.2 The space K3, the trees corresponding to its cells, and the operations

corresponding to those trees. 12

1.3 The k-lollipops for k ≤ 5. 14

1.4 The space X1
1 , the weighted trees corresponding to its cells, and the

operations corresponding to those trees. 15

2.1 An example of tree composition. 18

2.2 Ψ4 and its expansions. 19

2.3 The trees corresponding to the cells of K4. 20

2.4 A 2-input, weight-10 tree. 22

2.5 Ψ3
1 and all of its expansions. 23

2.6 The weighted trees corresponding to the cells of X1
2 24

2.7 The internal vertices of a tree ordered by left-right depth-first search. 25

3.1 The crux v of a tree T and all of its branches 30

3.2 The trees in the proof of Lemma 3.7. 33

3.3 The trees in the proof of Lemma 3.8. 34

4.1 A weighted tree T in X7
0 , its first PWIV v, and the unique U in its

boundary such that J(U) = T . 38

4.2 Two examples illustrating case 2 in the proof of Lemma 4.4. J(S1) = 0

and f(S2) < f(T). 39

4.3 Two examples illustrating case 3 in the proof of Lemma 4.4. J(S1) = 0

and f(S2) < f(T). 39

5.1 A weighted tree T in X2
4 with f(T) = ⟨7, 4⟩ 43

5.2 The crucial part of the trees in the proof of Lemma 5.5, Case 1. . . . 45

5.3 The crucial part of the trees in the proof of Lemma 5.5, Case 2. . . . 46

5.4 The crucial part of the trees in the proof of Lemma 5.5, Case 3. . . . 47

5.5 The crucial part of the trees in the proof of Lemma 5.6, Case 1. . . . 48

5.6 The crucial part of the trees in the proof of Lemma 5.6, Case 2. . . . 49

7

6.1 The 2 terms in γ3 displayed with ASCII art. 51

6.2 The 6 terms in γ4 displayed with ASCII art. 51

6.3 The 22 terms in γ5 displayed with ASCII art. 52

6.4 The 8 terms in γ1
2 displayed with ASCII art. 53

6.5 The 20 terms in γ2
1 displayed with ASCII art. 54

8

LIST OF TABLES

1 Numbers of terms in weight-0 tree diagonals. 50

2 Numbers of terms in weight-1 tree diagonals. 53

3 Numbers of terms in weight-2 tree diagonals. 54

9

1 Introduction

The goal of this thesis is to expand on the work of Lipshitz, Ozsváth, and Thurston

in [3] to construct new examples of weighted A∞-diagonals. In their paper, Lipshitz

et al prove the existence of such objects but do not provide any examples. Masuda-

Thomas-Tonks-Vallete in [7] give an example of an unweighted A∞-diagonal. In the

present paper, we develop an algorithm that generates a new weighted A∞-diagonal

that agrees with the example given in [7].

What is meant precisely by an A∞-diagonal and a weighted A∞-diagonal is elab-

orated on in Section 3. The motivation to find an A∞-diagonal is to define a tensor

product of A∞-algebras, and from a weighted A∞-diagonal define accordingly a tensor

product of “deformed” A∞-algebras.

We begin with a brief review of A∞-technology. A∞-algebras are algebras over the

A∞-operad, also known as the Stasheff operad. Informally, an operad is a collection

of operations stratified by the number of inputs; i.e. a collection O(1) of unary

operations, a collection O(2) of binary operations, and so forth. In practice, there is

a background symmetric monoidal category and the “collections” O(n) are objects

in this category. The A∞-operad has two main guises: one in topological spaces and

one in chain complexes. As an operad of topological spaces, O(n) is the CW complex

Kn called the (n− 2)-dimensional Stasheff polytope or generalized associahedron. As

an operad of chain complexes, O(n) is the cellular chain complex C∗(Kn). If we have

a ground ring R, we use C∗(Kn;R).

The cells of Kn correspond to planar rooted trees T with n leaves (not counting

the root) and with no 2-valent vertices. Kn has the characteristic property that

the boundary of its single top dimensional cell is the union of products of lower

dimensional associahedra, i.e.

∂Kn =
⋃

i+j=n+1

i⋃
ℓ=1

Ki ×Kj

where 2 ≤ i, j ≤ n−1. The ℓ-th copy of Ki×Kj is the subcomplex of Kn whose cells

10

are n-leaf trees formed by grafting a tree with j leaves onto the ℓ input of a tree with

i leaves. The tree Ψn corresponding to the top dimensional cell is an indecomposable

n-ary operation, whose leaves are the inputs and whose root is the output, shown

in Figure 1.1. Its boundary cells consist of all ways to form an n-ary operation as a

composition of two lower arity operations.

Ψ2 Ψ3 Ψ4 Ψ5

Figure 1.1: The corolla trees Ψn for n ≤ 5.

For example, K2 is isomorphic to a point. Its single cell corresponds to the unique

planar rooted tree Ψ2 on two leaves, which graphically represents some abstract bi-

nary operation µ2. K3 is a 1-dimensional CW complex with two 0-cells, corresponding

to the two ways of forming a 3-leaf tree by grafting Ψ2 onto itself. These two trees

in turn represent the two ways to form a 3-fold product from a single binary opera-

tion µ2 and formal input values a, b, c, namely µ2(µ2(a, b), c) and µ2(a, µ2(b, c)). The

top-dimensional cell ofK3, corresponding to the tree Ψ3, represents a formal indecom-

posable ternary operation µ3; one can interpret this cell as a path between the two

bracketings of µ2. This is saying that µ2 is associative “up to a homotopy” mediated

by the higher operation µ3. See Figure 1.2 for an illustration of the correspondence

described. Note that the leaves of the trees in Figure 1.2 are labeled with formal

inputs a, b, c to better illustrate the correspondence. Strictly speaking, the leaves of

all trees in Kn are unlabeled.

One usually suppresses the µ2 and writes (ab)c and a(bc) for the two bracketings

of µ2 just described. In general, the 0-cells of Kn correspond to binary trees T , i.e.

trees whose nonleaf, nonroot vertices all have degree 3. Such trees are in bijection

with bracketings of an n-fold binary product, i.e. all ways to form an n-ary operation

out of a composite of binary operations. The fact that Kn is contractible for all

11

a b c

a b c a b c

µ2(µ2(a, b), c) µ2(a, µ2(b, c))
µ3(a, b, c)

Figure 1.2: The space K3, the trees corresponding to its cells, and the operations corresponding
to those trees.

n implies in particular that all of these bracketings are path-connected; i.e. µ2 is

homotopy associative. For more information on the Stasheff polytopes, see [10]. For

more information on the correspondence to bracketings and trees, see [11].

A∞-algebras in the category of chain complexes can be conceptualized as “homo-

topical enhancements” of differential graded algebras (DGA’s). A DGA is a monoid

in chain complexes; it consists of a chain complex C∗ and an associative multiplication

µ : C∗ ⊗C∗ → C∗. An A∞-algebra consists of a chain complex A∗ and multiplication

µ2 : A∗ ⊗A∗ → A∗ that is only assumed to be associative up to homotopies governed

by higher order operations. The failure of µ2 to be associative is measured by some

ternary operation µ3 : A∗ ⊗A∗ ⊗A∗ → A∗ which strictly speaking is not a morphism

of chain complexes. More precisely, µ3 is a graded map of degree 1, and the difference

between the two bracketings of µ2 is the differential of µ3 in the morphism chain

complex Ch(A⊗3
∗ , A∗). From this point of view, one can interpret the correspondence

in Figure 1.2 another way: if (A∗, {µn}n≥2) is an A∞-algebra and with a, b, c ∈ A∗,

then µ2(µ2(a, b), c) and µ2(a, µ2(b, c)) are elements of A∗ whose difference is

∂µ3(a, b, c)± µ3(∂a, b, c)± µ3(a, ∂b, c)± µ3(a, b, ∂c)

where the signs depend on the degrees of a, b, c. In this way, one can think of µ2 as

“homologically associative”, i.e. the induced operation HA∗ ⊗ HA∗ → HA∗ on the

homology of A∗ is associative. The operation µ3 may in turn satisfy a kind of “higher

12

associativity” condition (sometimes called the “pentagon identity”, see Section 7 of

[1]), and its failure to satisfy this is measured by some 4-ary operation µ4, and so forth.

An A∞-algebra on A∗ is a map of operads C∗(K•) → Ch(A⊗•
∗ , A∗), which amounts

to maps fn : C∗(Kn) → Ch(A⊗n
∗ , A∗) compatible with the operad structures. The

operations µn correspond to the elements fn(Ψn), and it turns out that these data

alone uniquely determine the maps fn. More information on A∞-algebras can be

found in [2].

An A∞-diagonal is a certain kind of map of operads C∗(K•) → C∗(K•)⊗C∗(K•).

It consists of chain maps Γn : C∗(Kn) → C∗(Kn) ⊗ C∗(Kn) that are compatible

with the operad structures. It turns out that these are determined by the classes

γn = Γn(Ψn), so an A∞-diagonal can be concretely realized as linear combinations

γn of tensor products of planar trees on n leaves, one for each dimension n ≥ 2.

The boundary conditions of Kn imply a recursive construction of γn in terms of the

lower dimensional combinations. As aforementioned, one can use this ultimately to

construct a tensor product of A∞-algebras.

More generally, one can study deformations of an A∞-algebra A∗. If A∗ is a chain

complex over a ring R, then a deformation of A∗ is a chain complex B∗ = A∗⊗RR[[t]]

over the ring R[[t]] equipped with the structure of an A∞-algebra in the category

of chain complexes over R[[t]]. The operations of B∗ are now stratified over formal

power series

µn =
∞∑

w=0

µw
n t

w

The operation µw
n should be thought of as an n-ary operation with a certain

nonnegative integer weight w attached to it. Note that the operations µ0
n of weight

0 induce an A∞-algebra structure on the chain complex A∗. Thus one should think

of A∗ with these operations as the undeformed A∞-algebra, and the positive weight

factors µw
n of the n-ary operation of B∗ as “twisting” the unweighted n-ary operation

of A∗. For more information on deformations of A∞ algebras, see [3].

Just as for ordinary A∞-algebras, the operations µw
n correspond to the top cells

13

of certain CW complexes, namely the complexes called weighted associahedra Xw
n .

These are a generalization of the Stasheff polytopes. As a space, Xw
n is an (n+2w−2)-

dimensional CW complex whose cells correspond to weighted planar trees ; i.e. n-leaf

trees whose non-root vertices have a nonnegative integer weight assigned to them,

and such that the sum of all these weights is w. We will often suppress 0-weights

and depict such vertices as unweighted. In this context, a leaf means any weight-

0, degree-1 vertex aside from the root. Degree-1 vertices with positive weight are

referred to as lollipops. We will also use the term k-lollipop to refer to the rooted

planar tree Ψk
0 with only a single nonroot vertex of weight k. Figure 1.3 shows some

examples of these trees for small values of k.

1

Ψ1
0

2

Ψ2
0

3

Ψ3
0

4

Ψ4
0

5

Ψ5
0

Figure 1.3: The k-lollipops for k ≤ 5.

The boundary of Xw
n satisfies a similar condition to that of the unweighted associ-

ahedron Kn; i.e. it is a union of products Xu
i ×Xv

j of lower-dimensional, lower-weight

spaces Xu
i , X

v
j . For example, X1

0 is isomorphic to a point; its single cell corresponds

to the 1-lollipop, the rooted planar tree Ψ1
0 with only a single nonroot vertex of weight

1. This tree represents a nullary operation µ1
0 which should be imagined as a fixed

constant term in the algebra. Figure 1.4 shows the space X1
1 along with the trees and

bracketings corresponding to its cells. Once again, the formal input a is included on

trees to better illustrate the correspondence. Strictly speaking, the leaves in Figure

1.4 marked by a are weight-0 vertices with no other label.

One can interpret the above correspondence as follows. If (B∗, {µw
n}n,w) is a de-

formation of the A∞-algebra (A∗, {µ0
n}n) and a is any element of A∗, then µ1

0 is an

element of A∗ such that µ0
2(µ

1
0, a) and µ0

2(a, µ
1
0) differ by the boundary terms involving

µ1
1(a); so µ1

0 is a central element of the DGA H(A∗) with multiplication induced by

µ0
2.

14

a

1
1

a

1

a

µ0
2(µ

1
0, a)

µ1
1(a) µ0

2(a, µ
1
0)

Figure 1.4: The space X1
1 , the weighted trees corresponding to its cells, and the operations corre-

sponding to those trees.

In a way analogous to that of ordinary A∞-algebras, one can define a tensor prod-

uct of deformations of A∞-algebras using a notion called a weighted A∞-diagonal.

These were introduced by Lipshitz et al in [3]. Such a diagonal is determined by terms

γw
n ∈ C∗(X

w
n)⊗C∗(X

w
n) satisfying some compatibilities. In this context, γw

n will be a

linear combination of order-2 tensors whose factors are weighted planar rooted trees

with n leaves and total weight w, i.e. generators of the cellular chain complex C∗(X
w
n)

as a graded R-module. The boundary property of Xw
n implies a recursive relationship

among the γw
n that can be exploited to generate them from a set of initial terms.

In the present paper, we develop an algorithm that generates weighted A∞-

diagonals from a particular contraction of the weighted associahedron chain complex

C∗(X
w
n). We first give a contraction of C∗(Kn) to the subcomplex generated by a

chosen basis element Rn in dimension 0. This is done by first putting a particular

filtration on C∗(Kn) such that the component with lowest filtration degree is precisely

the subcomplex generated by Rn. Next we define an algorithm on trees in Kn and use

this to produce a map α on C∗(Kn) that is chain homotopic to the identity and lowers

the filtration degree of generators with nonminimal filtration degree. Finally, we show

that finitely many applications of α produces the desired contraction of C∗(Kn).

In the subsequent sections, we show that there is a series of chain complex in-

clusions C∗(Kw) ⊂ C∗(X
w
0) ⊂ C∗(X

w
n). For the chain complex C∗(X

w
0), there is a

filtration F0 ⊂ F1 ⊂ ... such that F0 corresponds to C∗(Kw). By constructing an

algorithm on weighted trees in Xw
0 , we produce a map ξ that is chain homotopic to

15

the identity of C∗(X
w
0) and lowers the filtration degree of generators outside C∗(Kw).

We show that finitely many applications of ξ yields a contraction of C∗(X
w
0) to the

subcomplex C∗(Kw), thus reducing the contraction problem for C∗(X
w
0) to that of the

unweighted complex C∗(Kw). The general case of C∗(X
w
n) is handled simiarly. We

define a filtration for C∗(X
w
n) whose minimal filtration degree corresponds to C∗(X

w
0).

We construct an algorithmically defined map ζ and show that ζ reduces the filtration

degree of trees outside C∗(X
w
0). By combining finitely many iterations of ζ with the

contractions described for C∗(X
w
0) and C∗(Kw), we obtain a systematic contraction

of C∗(X
w
n) and ultimately a formula for generating new weighted A∞ diagonals.

1.1 Organization of this paper

The organization of this paper is as follows. Section 2 covers all preliminary definitions

about trees, the chain complexes C∗(X
w
n), and their relation to each other. Several

short lemmas about trees are included here that will be useful in the rest of the paper.

Section 3 gives more exposition on A∞ diagonals and how these arise from the

weighted associahedron complexes. We prove here how one can inductively construct

an A∞ diagonal or a weighted A∞ diagonal from a chosen family of contractions of

the chain complexes C∗(Kn) or C∗(X
w
n) respectively. The remainder of this section is

devoted to developing a contraction of the unweighted associahedron chain complexes

C∗(Kn). This is accomplished by putting a filtration on C∗(Kn) and defining an

algorithm on unweighted trees which produces a chain homotopy from the identity

map on C∗(Kn) to the inclusion of the subcomplex of next-lowest degree. Repeated

application of this algorithm is shown to yield a contraction from C∗(Kn) to a certain

subcomplex in dimension 0 generated by a single basis element.

Section 4 describes a similar procedure for the weighted associahedron complexes

C∗(X
w
n) in the special case that n = 0. We show that these chain complexes con-

tain a particular subcomplex F isomorphic to the unweighted associahedron complex

C∗(Kn). An algorithm is then described which when applied sufficiently many times

to any element in C∗(X
w
0) will reduce it to an element in the subcomplex F . One

may then combine this procedure with the procedure in Section 3 to obtain a total

16

contraction of the chain complex C∗(X
w
0).

Section 5 describes the general procedure for C∗(X
w
n) when n,w are both positive.

We show that this chain complex contains another special subcomplex G, this time

isomorphic to C∗(X
w
0). In this case, an algorithm is developed which after multiple

iterations reduces any element in C∗(X
w
n) to an element in G. When combined with

the results of Sections 3 and 4, this produces a total contraction of C∗(X
w
n) and

ultimately the desired A∞ diagonal.

Finally, Section 6 is devoted to an implementation of these algorithms written

in SageMath, an open-source mathematics software system based on Python. This

includes the source code along with the initial terms of a novel weighted A∞ diagonal.

In what follows, all chain complexes are assumed to use Z/2 coefficients or more

generally R coefficients where R is any ring of characteristic 2. This is a matter of

convenience and does not affect the generality of the algorithms that follow. For

more information on how the differentials behave when sign terms are introduced, see

Example 5.7 in [5].

17

2 Trees and the Associahedra

We first introduce some elementary notions about trees. In what follows, all trees are

assumed to be rooted with a chosen embedding in the plane, so that it is meaningful

to speak of “left” and “right” directions within each tree. The leaf vertices of each

tree will be numbered from left to right and hereafter referred to as the inputs of the

tree. Any vertex which is neither a leaf nor the root will be referred to as an internal

vertex.

Let S and T be trees with m and n inputs respectively. We define composition

in the following way. For 1 ≤ k ≤ n, T ◦k S is the tree obtained by gluing the root

edge of S to the k-th input edge of T and renumbering the inputs of the resulting

tree accordingly. An illustration of this composition operation is shown in Figure 2.1.

Note that this tree T ◦k S has m+ n− 1 inputs for any k.

T S T ◦2 S

1 2 3 1 2 3 1

2 3 4

5

Figure 2.1: An example of tree composition.

Given a tree T , a contraction of T is a new tree T ′ obtained by contracting exactly

one non-input, non-root edge in T and merging its two vertices into a single vertex

v. Conversely, T is called an expansion of T ′ at the vertex v. In such an expansion,

we will generally regard the “deeper” vertex (i.e. the one farther from the root) as

the new vertex, while referring to the other vertex as v. Note that a tree can only

be expanded if it has at least one vertex of degree greater than 3. For each n ≥ 2,

there is a unique n-leaf tree with exactly one internal vertex; we call such a tree a

corolla and denote it by Ψn. Figure 2.2 shows the corolla Ψ4 and all of its possible

expansions.

18

Figure 2.2: Ψ4 and its expansions.

The following lemma is an elementary observation about tree expansion that will

be useful in subsequent sections.

Lemma 2.1 Let T ′ be a contraction of a tree T , formed by merging two adjacent

vertices u, v in T into a single vertex v′ in T ′. Then

[deg(u)− 2] + [deg(v)− 2] = deg(v′)− 2

For n ≥ 2, there is an (n−2)-dimensional CW complexKn called the associahedron

of order n whose cells correspond to trees with n inputs and no 2-valent vertices. These

spaces were first described by Stasheff in [10]. Shown in Figure 2.3 is the space K4

and the trees corresponding to its cells.

The top-dimensional cell of Kn corresponds to the corolla Ψn, and the 0-cells cor-

respond to all binary trees on n leaves. More generally, if T corresponds to some cell

in Kn, then the boundary cells correspond to all possible expansions of T . In partic-

ular, the boundary cells of the cell corresponding to Ψn correspond to all composites

of the form Ψi ◦k Ψj where i+ j = n+ 1. Recursively, one can show that any tree T

can be written as a (not necessarily unique) composition of corollas.

In [11], Tamari showed that the set of binary trees with n leaves forms a poset

whose Hasse diagram is precisely the 1-skeleton of Kn. The partial order corresponds

to the transitive closure of the 1-cell relation on the 0-cells of Kn which is defined as

follows. A 1-cell corresponds to a tree T with exactly one internal vertex v of degree

4, all other internal vertices having degree 3. There are exactly two expansions of

19

�

�

��

�

Figure 2.3: The trees corresponding to the cells of K4.

such a tree: the tree W wherein the branches of the new vertex are the 1st and 2nd

branches of v (read from left to right), or the tree S wherein the branches of the new

vertex are the 2nd and 3rd branches of v. In this case, we say that W ≤ S under

the Tamari order. One can think of this as saying that S is obtained from W by

“shifting” the middle branch from the left side of v to the right.

The relation just described always has a unique maximal element, the fully right-

associated tree, which we denote by Rn or just R if n is clear from context. Likewise,

there is a unique minimal element, the fully left-associated tree, denoted by Ln or just

L.

By the above discussion, we can think of the cellular chain complex C∗(Kn) (with

Z/2 coefficients) as the graded vector space generated by the set of n-leaf trees. The

generators in Ck(Kn) are the trees with n − k + 1 internal vertices. The boundary

map sends a tree T to the sum of all expansions of T . The composition operations ◦i
described above induce chain complex maps

20

C∗(Kn+i−j)⊗ C∗(Kj−i+1)
ϕn
i,j−→ C∗(Kn)

henceforth referred to as stacking operations. These are defined on generators T ⊗ S

by the formulas ϕn
i,j(T ⊗ S) = T ◦i S. Henceforth we will interchangeably use ϕn

i,j

and ◦i for the stacking operations on chain complexes, depending on which is more

convenient. For any pair of trees T, S, the sum of terms T ◦k S where k ranges over

the inputs of T will also be denoted T ◦ S; i.e. if T has n + i − j leaves and S has

j − i+ 1 leaves, then

T ◦ S =

n+i−j∑
k=1

T ◦k S

One can extend the maps ◦k to tensor products of trees in the following way. For

pure tensors T1 ⊗ T2 in C∗(Kn)
⊗2 and S1 ⊗ S2 in C∗(Km)

⊗2, let

(T1 ⊗ T2) ◦k (S1 ⊗ S2) = (T1 ◦k S1)⊗ (T2 ◦k S2)

Extending this definition bilinearly gives operations ◦k : C∗(Kn)
⊗2 ⊗ C∗(Km)

⊗2 →

C∗(Kn)⊗ C∗(Km). We will be most interested in the case when n = m. The map ◦

also extends to such an operation defined on pairs of pure tensors as follows.

(T1 ⊗ T2) ◦ (S1 ⊗ S2) =
n∑

k=1

(T1 ⊗ T2) ◦k (S1 ⊗ S2)

Throughout the rest of this paper, we will be interested in weighted trees ; that is,

trees whose non-root vertices are assigned nonnegative integer weights such that no

2-valent vertex has weight 0. If T is a weighted tree, the total weight of T (or simply

weight) is the sum of the weights of each of its vertices. The inputs of T are the leaf

vertices which have weight 0. Figure 2.4 shows an example of a weight-10 tree on 2

inputs. For convenience, we choose to depict weight-0 vertices as unweighted. Note

that any unweighted tree can be regarded as a weight-0 tree on the same number of

inputs.

In the context of weighted trees, we will use a slightly different convention for

21

2

1

1

1 1

2

2

Figure 2.4: A 2-input, weight-10 tree.

internal vertices. By an internal vertex, we mean either a non-leaf, non-root vertex or

a leaf vertex whose weight is at least 2. The tree in Figure 2.4 has 6 internal vertices

(three of weight 2, two of weight 1, one of weight 0).

For each pair of integers n,w ≥ 0 with w ≥ 1 or w = 0 and n ≥ 2, there is

a unique n-input, weight-w tree with exactly one internal vertex called the weighted

corolla and denoted Ψw
n . Note that Ψ

0
n is the unweighted corolla as defined previously.

The 0-input corollas are called lollipops and we will refer to the corolla Ψw
0 as the

w-lollipop. If T is any weighted tree, we will also use the term lollipop to refer to its

non-input leaves.

The operations of contracting and expanding for unweighted trees generalize to

the weighted case. If T is a weighted tree, a contraction of T is a new weighted tree

T ′ that results from contracting exactly one non-input, non-root edge and merging

its two vertices into a single vertex v. The weight of v is the sum of the weights of

the original two vertices. Conversely, T is called an expansion of T ′ at the vertex

v. Note the condition that T be a weighted tree; i.e. expanding T ′ cannot create a

2-valent, weight-0 vertex nor can it create a new input (although it may create a new

non-input leaf). Figure 2.5 shows Ψ3
1 and all of its expansions.

We state here an analog for Lemma 2.1 that will be useful in the context of

weighted trees. The main difference is that when expanding at a positive weight

vertex v′, the original weight must be redistributed on the vertices of the newly

created edge. Note however that when wt(v′) = 0, the following statement reduces

to that of Lemma 2.1.

22

3

Ψ3
1 2

1

1

2

2

1

1

2 3

2

1

1

2 3

Figure 2.5: Ψ3
1 and all of its expansions.

Lemma 2.2 Let T ′ be a contraction of a weighted tree T formed by merging two

adjacent vertices u, v in T into a single vertex v′ in T ′. Then

[deg(u)− 2] + wt(u) + [deg(v)− 2] + wt(v) = deg(v′)− 2 + wt(v′)

As was the case for unweighted trees, weighted trees are associated with a family

of spaces Xw
n called the weighted associahedra. For n,w ≥ 0 with w ≥ 1 or w = 0

and n ≥ 2, Xw
n is a CW complex of dimension n + 2w − 2. Its cells correspond to

weight-w trees on n inputs. A weight-w tree with n input leaves and k non-input,

non-root vertices corresponds to a (n+ 2w − k − 1)-dimensional cells of Xw
n . Unlike

Kn, X
w
n is generally not a polytope. The top-dimensional cell corresponds to the

weighted corolla Ψw
n . If T is an n-input, weight-w tree, the boundary cells of the

cell corresponding to T correspond to all expansions of T . See Section 8 of [3] for

more information on these spaces. Figure 2.6 shows the space X1
2 and the trees

corresponding to its cells.

23

�

��

�

� �

1

1

1

1

1

1 1

1 1

1

1

1

1

Figure 2.6: The weighted trees corresponding to the cells of X1
2

Observe that the generators of C0(X
w
n) are the binary trees all of whose positive

weight vertices are weight-1 lollipops. In other words, it is isomorphic as a vector

space to a direct sum of copies of C0(Kn+w), one for each linear arrangement of the

leaves and lollipops. In general, there is no analog for weighted trees of the Tamari

ordering on unweighted trees. However, it will still be useful to distinguish a basis

element Rw
n of C0(X

w
n) which we call the fully right-associated weighted tree. Its

underlying unweighted tree (i.e. the tree with all weights forgotten) is Rn+w and its

rightmost w leaves are weight-1 lollipops.

In what follows, it will be convenient to put an order on the internal vertices of

a (possibly weighted) tree. It is well-known that the vertices of a tree graph can be

ordered according to left-right depth-first search. If T is a planar tree, the left-right

depth-first search algorithm explores the vertices of the tree by starting at the root

24

and exploring along leftmost branches as deeply as possible. After reaching a leaf,

the algorithm backtracks to the deepest vertex v along its path at which there is an

unexplored branch and continues down the leftmost such branch of v. This algorithm

is more precisely termed pre-order left-right depth-first search; see Chapter 3 of [12]

to contrast this with other similar search algorithms. Hereafter we will write simply

the n-th vertex of T to mean the n-th vertex found in a left-right depth-first search of

T as described above, restricted to the internal vertices of T . An example of ordering

the internal vertices of a weighted tree is shown in Figure 2.7.

2

1

1

1 1

2

2

1

2

3
4

5

6

Figure 2.7: The internal vertices of a tree ordered by left-right depth-first search.

25

3 Associahedron Diagonals and Tree Diagonals

We briefly review the structure of operads in the category of chain complexes over

Z/2. A (nonsymmetric) operad O(•) in chain complexes consists of a sequence of chain

complexes O(1), O(2), O(3), ... along with composition morphisms O(n)⊗ O(m)
◦i−→

O(n+m−1) for 1 ≤ i ≤ n such that certain diagrams commute. As mentioned before,

one should think of O(n) as a collection of n-ary operations and the composition

morphism O(n) ⊗ O(m)
◦i−→ O(n + m − 1) as nesting an m-ary operation inside

the i-th input of an n-ary operation. There are natural associativity conditions one

wishes to have when composing three or more operations together, and these follow

from the commutative diagrams in the definition of such an operad. See [6] or [4] for

a more precise definition and general overview of operads in an arbitrary symmetric

monoidal category.

The standard differential graded A∞-operad consists of the cellular chain com-

plexes C∗(Kn), and the composition morphism ◦i : C∗(Kn)⊗C∗(Km) → C∗(Kn+m−1)

is the stacking morphism ϕn+m−1
i,n+i−1 described in Section 2. These same tree compo-

sitions induce an operad structure on the chain complexes C∗(Kn) ⊗ C∗(Kn); its

composition morphisms are given by

C∗(Kn)
⊗2 ⊗ C∗(Km)

⊗2 ∼=−→ (C∗(Kn)⊗ C∗(Km))
⊗2

ϕn+m−1
i,n+i−1⊗ϕn+m−1

i,n+i−1−→ C∗(Kn+m−1)
⊗2

where the first morphism is the isomorphim that permutes the middle two tensor

factors.

A differential graded A∞-algebra consists of a chain complex A∗ and an operad

morphism from C∗(K•) to Ch(A⊗•
∗ , A∗), the endomorphism operad of A∗. Concretely,

this consists of chain complex morphisms ωn : C∗(Kn) → Ch(A⊗n
∗ , A∗) such that the

following diagram commutes for all suitable index combinations n, i, j.

26

C∗(Kn)⊗ C∗(Km) C∗(Kn+m−1)

Ch(A⊗n
∗ , A∗)⊗Ch(A⊗m

∗ , A∗) Ch(A⊗n+m−1
∗ , A∗)

ϕn+m−1
i,n+i−1

ωn⊗ωm ωn+m−1

ϵi

The morphism ϵi is defined on pure tensors by

ϵi(f ⊗ g) = f ◦
(
id⊗i−1 ⊗ g ⊗ id⊗n−i

)
The operad structure of C∗(K•) implies that the morphisms ωn are determined

by µn = ωn(Ψn), the image of the top-dimensional generator of C∗(Kn). Concretely,

µn : A⊗n
∗ → A∗ is a degree n− 2 map of graded modules which we refer to simply as

the n-th operation of A∗. As mentioned, the operations µn completely determine the

A∞-structure of A∗, and one can give an equivalent characterization of an A∞-algebra

in terms of such maps. See [2] for more details.

An associahedron diagonal is a “nondegenerate” morphism between the operads

C∗(K•) and C∗(K•)⊗ C∗(K•). That is, it consists of degree-preserving chain maps

C∗(Kn)
Γn

−→ C∗(Kn)⊗ C∗(Kn)

which commute with the stacking operations (i.e. the following diagram commutes

for all suitable index combinations n, i, j).

C∗(Kn+i−j)⊗ C∗(Kj−i+1) C∗(Kn+i−j)
⊗2 ⊗ C∗(Kj−i+1)

⊗2

(C∗(Kn+i−j)⊗ C∗(Kj−i+1))
⊗2

C∗(Kn) C∗(Kn)
⊗2

ϕn
i,j

Γn+i−j⊗Γj−i+1

∼=

ϕn
i,j⊗ϕn

i,j

Γn

where the top right isomorphism permutes the middle tensor factors. Moreover, for

nondegeneracy, we assume that Γ2 is the standard isomorphism Z/2 ∼= Z/2⊗Z/2 Z/2

(recall that K2 is a single point). Because of the stacking condition and the fact that

each tree is a composition of corollas, it follows that such a morphism is determined

by the values γn = Γn(Ψn). This motivates the following equivalent characterization.

27

An associahedron tree diagonal is a collection of (n−2)-chains γn ∈ C∗(Kn)⊗C∗(Kn)

for each n ≥ 2 such that γ2 = Ψ2 ⊗Ψ2 and

∂γn =
∑

i+j=n+1

γi ◦ γj.

As mentioned above, associahedron diagonals are determined by an associahedron

tree diagonal, and the converse is also true. For a proof of this, see Lemma 2.19 in

[3].

Saneblidze and Umble give an example of an explicit associahedron diagonal mor-

phism in [9]. Masuda-Thomas-Tonks-Vallete give an example of an associahedron

tree diagonal in [7] using a geometric construction on Kn. This second example can

be alternatively characterized by taking γn to be the sum of all pairs of trees which

are “right-moving” in dimension n− 2. See Example 2.21 in [3] for more information

on this description.

Associahedron diagonals allow us to define tensor products of A∞-algebras in

the following way: given actions αn : C∗(Kn) → ChR(A
⊗n, A) and βn : C∗(Kn) →

ChR(B
⊗n, B), define the action on A⊗B by the composite

C∗(Kn)
Γn

−→ C∗(Kn)
⊗2 αn⊗βn−→ ChR(A

⊗n, A)⊗ChR(B
⊗n, B) → ChR((A⊗B)⊗n, A⊗B).

Our next goal is to describe the analog of each of the aforementioned topics in

the weighted case. For this, we need the notion of so-called curved A∞-algebras.

Essentially these allow for an extra 0-ary operation µ0; ordinary A∞-algebras are

precisely those curved A∞-algebras with µ0 = 0. For more information on curved

A∞-algebras, see section 4 of [3].

Given an A∞-algebra A∗ with operations {µ0
n}n≥2, a 1-parameter deformation of

A∗ is a curved A∞-algebra structure on B∗ = A∗ ⊗R R[[t]] whose operations µn :

B⊗n
∗ → B∗ decompose as

28

µn =
∞∑

w=0

µw
n t

w

The nonnegative integer w is called the weight of the operation µw
n , and A∗ together

with the operations µ0
n is called the undeformed algebra corresponding to B∗. See

Section 4 of [3] for more discussion.

The analog of tree diagonals for deformations of A∞-algebras is a weighted asso-

ciahedron tree diagonal. It consists of elements γw
n ∈ C∗(X

w
n)⊗C∗(X

w
n) in dimension

n+ 2w − 2 such that

∂γw
n =

∑
i+j=n+1

∑
u+v=w

γu
i ◦ γv

j

.

for each pair n,w ≥ 0. By convention γ0
0 = γ0

1 = 0. The element γ1
0 is called the seed of

the diagonal, which we will always take to be the generator of C∗(X
1
0)⊗C∗(X

1
0)

∼= Z/2.

More discussion of seeds can be found in Section 6 of [3].

3.1 New Results

In what follows, a chain homotopy contraction (or sometimes simply contraction) on a

chain complex A∗ will mean a chain homotopy from idA∗ to a given map π : A∗ → A∗

which projects onto a subcomplex of A∗ that is 1-dimensional (as an R-module) and

concentrated in dimension 0. One should think of this as analogous to a contraction

of a CW complex X to a chosen 0-cell of X.

Proposition 3.1 Let Rn be the fully right-associated tree in C0(Kn), and let h be a

chain homotopy contracting C∗(Kn) to Rn. Then h determines an associahedron tree

diagonal {γn}n≥2 and thus an associahedron diagonal.

Proof: Let Rn : C∗(Kn) → C∗(Kn) denote the map that takes all generators in

dimension 0 (i.e. 0-cells of Kn) to Rn and all generators in positive dimension to 0.

Note that Rn is a chain map. Define a map k on C∗(Kn)
⊗2 by k := id⊗ h+ h⊗Rn.

29

T

v

1st branch

v

2nd branch

v

3rd branch

v

Figure 3.1: The crux v of a tree T and all of its branches

That is, k is the null homotopy on C∗(Kn) induced by h that contracts the first tensor

factors followed by the second. Define γn recursively by setting

γn := k

(∑
i+j=n+1

γi ◦ γj

)

Let x denote the sum on the right. Since x is a cycle, it follows that

∂γn = ∂kx = x+ k∂x+ [Rn ⊗Rn]x = x+ 0 + 0 = x

The fact that [Rn ⊗Rn]x = 0 follows immediately from the dimension of x when-

ever n ≥ 4. A quick computation verifies that this still holds when n = 3. Hence γn

as defined above satisfies the structure equation for a tree diagonal. □

Essentially the same argument allows us to inductively construct weighted tree

diagonals γw
n from a system of null homotopies of the weighted tree complexes C∗(X

w
n).

Proposition 3.2 Let Rw
n be the fully right-associated weighted tree in C0(X

w
n), and

let h be a chain homotopy contracting C∗(X
w
n) to Rw

n . Then h determines a weighted

associahedron tree diagonal {γw
n }n,w by the recursion

γw
n := (id⊗ h+ h⊗Rw

n)

(∑
u+v=w

∑
i+j=n+1

γu
i ◦ γv

j

)

30

We conclude this section with a procedure for contracting the complexes C∗(Kn).

Let v be an internal vertex of a tree T . A predecessor of v is recursively defined as

follows. v is a predecessor of itself, and if v has an input edge whose other vertex is

w, then all predecessors of w are predecessors of v. By an internal predecessor, we

mean a predecessor that is an internal vertex. Since T is planar, one can order the

input edges at v from left to right. The k-th branch of v is the subtree induced by

the predecessors of v along its k-th input edge taking v as the root. See Figure 3.1.

Algorithm 3.3 Define a map H : C∗(Kn) → C∗+1(Kn) on a generator T as follows.

Let v be the first (in left-right depth-first order) internal vertex of T .

1. If deg(v) > 3, then H(T) = 0.

2. If deg(v) = 3 and the left input of v is internal, H(T) is the tree formed by

contracting that input into v.

3. If deg(v) = 3 but the left input of v is a leaf, skip to the next internal vertex w

of T and repeat the procedure on w.

4. If all internal vertices of T have been skipped, then H(T) = 0.

Note that Algorithm 3.3 skips every internal vertex of an n-leaf tree T if and only

if T = Rn. If T ̸= Rn, define the crux of T to be the first internal vertex v of T that

Algorithm 1 does not skip (i.e. deg(v) > 3 or deg(v) = 3 and its left input is not

a leaf). See Figure 3.1. If v is the k-th internal vertex of T in left-right depth-first

order, for 1 ≤ k ≤ n − 1, then it follows that T can be written as Rk ◦k S where

S is the right branch of the (k − 1)-th internal vertex, i.e. the vertex immediately

preceding v. Moreover, k is maximal with this property; otherwise deg(v) = 3 and

its left input is a leaf, contradicting the definition of v. In other words, if we let r(T)

denote the maximal i such that T can be written as Ri ◦i S for some subtree S, then

the crux of T is precisely the r(T)-th internal vertex of T . For purposes hereof, we

define R1 to be the single-edge tree with one root vertex, one leaf vertex, and no

internal vertices. In this way, R1 ◦1 T = T for any tree T .

31

We will now define a filtration f on C∗(Kn) indexed by N×N with the lexicographic

ordering. Let T be a generator of C∗(Kn). Let f(T) = ⟨fa(T), fb(T)⟩ with fa defined

as follows:

fa(T) = n− r(T)

If v is the crux of T , then fb is given by

fb(T) =
∑
w

[deg(w)− 2]

where the sum ranges over all internal predecessors w of v such that w is contained

in a branch of v that is not the rightmost branch. If T has no crux vertex, then

fb(T) = 0 by convention.

Define f(T) = ⟨fa(T), fb(T)⟩ and let F(p,q) be the span of all T such that f(T) ≤ (p, q).

Proposition 3.4 We have a filtration F(n−1,n−1) ⊃ F(n−1,n−2) ⊃ ... ⊃ F(0,1) ⊃ F(0,0)

on C∗(Kn) with F(0,0) equal to the subcomplex generated by Rn.

Note that this filtration is always finite with C∗(Kn) = F(n−1,n−1) because the

corolla Ψn always has filtration degree (n− 1, n− 1). For any tree T , since ∂T is the

sum of all expansions of T , we can deduce the statement of Proposition 3.4 from the

following lemma.

Lemma 3.5 If S is an expansion of T , then

1. fa(S) < fa(T); or

2. fa(S) = fa(T) and fb(S) ≤ fb(T).

Proof: If T = Rn, then T has no expansions and there is nothing to prove.

Otherwise let v be the crux of T , and write T = Rr(T) ◦r(T) T
′. If S is an expansion

of a vertex u, then necessarily u = v or u is an internal vertex of T ′. In the second

case, we clearly have fa(S) = fa(T). We need to consider u in the calculation of fb if

32

T

v

S0

v
v′

S1

v
v′

Figure 3.2: The trees in the proof of Lemma 3.7.

u is not in the rightmost branch of v; however Lemma 2.1 implies that fb(S) = fb(T)

even in this case.

For the first case, let u and u′ denote the new vertices created from the expansion

at v, where u occurs first in left-right depth-first order. If deg(u) = 3 and its left

input is internal, then r(S) > r(T) and so fa(S) < fa(T). Otherwise fa(S) = fa(T),

and fb(S) < fb(T) if u
′ is in the rightmost branch of u or fb(S) = fb(T) by Lemma

2.1 otherwise. □

Lemma 3.6 Let T ̸= Rn be a generator in C∗(Kn). Then f(HT) ≤ f(T) with

equality precisely when H(T) ̸= 0.

Proof: When H(T) = 0 the statement is clear. Otherwise T has a crux vertex v

and H(T) merges v with its left input. Since v is still the crux of H(T), we have

fa(HT) = fa(T). The fact that fb(HT) = fb(T) follows from Lemma 2.1. □

Lemma 3.7 Let α = id + ∂H + H∂, and let T ∈ C∗(Kn) be a generator in F>(0,0)

such that H(T) = 0. Then f(α(T)) < f(T).

Proof: Let v be the crux of T . Since deg(v) > 3, there are at least two expansions

of T at v. Let S0 be the expansion at v wherein v now has degree 3 and its left

input is a new vertex v′ whose branches are the original branches of v except for

the rightmost branch. Let S1 be the “mirror” expansion wherein v′ is now the right

input of v and whose branches are the original branches of v except for the leftmost

branch. Any other expansion S of T will have H(S) = 0 since deg(v) > 3 in S. So

H(∂T) = HS0 +HS1 and α(T) = T +HS0 +HS1.

We see that H(S0) = T , canceling with the id term of α. For the second tree, we

clearly have fb(S1) < fb(T) and so fb(H(S1)) < fb(T) since fb(H(S1)) = fb(S1) by

33

T

v
u

H(T)

uv

S1

uv
w

Figure 3.3: The trees in the proof of Lemma 3.8.

Lemma 2.1 if H(S1) ̸= 0. Likewise we have fa(H(S1)) ≤ fa(S1) ≤ fa(T), and thus

we conclude f(H(S1)) < f(T). Therefore the result follows. □

Lemma 3.8 Let α = id + ∂H +H∂ and T ∈ C∗(Kn) be a generator in F>(0,0) such

that H(T) ̸= 0. Then f(α(T)) ≤ f(T) and α(T) is a sum of trees S such that

H(S) = 0 or f(S) < f(T).

Proof: Let v be the crux of T . Since H(T) ̸= 0, deg(v) = 3 and its left input is

an internal vertex u. Then H(T) is formed by contracting the edge connecting u and

v into a single vertex which will be denoted uv.

We first consider the terms in H∂(T). Suppose S is a tree in the boundary of T .

Then necessarily S is an expansion of a vertex that occurs after v. Hence H(S) is

formed by contracting u into v as in H(T), and so we will have H(H(S)) = 0. We

also have f(H(S)) ≤ f(T) by Lemma 3.6.

Now consider the terms in ∂H(T). These consist of expansions S of H(T) which

fall into three types: T itself, expansions wherein deg(uv) > 3, and one other expan-

sion S1. The first term cancels with the id term of α, while the terms of the second

type all have f(α(S)) < f(S) = f(T) by Lemma 3.7. The final term S1 is the ex-

pansion of H(T) at uv wherein uv now has degree 3, its leftmost input is unchanged,

and its right input is a new vertex w whose branches are all of the other original

branches of uv. We see that fb(S1) < fb(H(T)) = fb(T) and fa is unchanged. Hence

f(S1) < f(T).

□

34

Proposition 3.9 The map α = id + ∂H + H∂ satisfies f(α2(T)) < f(T) for trees

T ∈ C∗(Kn) in F>(0,0).

Proof: Lemmas 3.7 and 3.8 together imply that f(α(U)) ≤ f(U) for any such tree

U . When H(T) = 0, we have that f(α2(T)) ≤ f(α(T)) < f(T) by Lemma 3.7. When

H(T) ̸= 0, we have by Lemma 3.8 the previous remark for U = α(T), and α(T) is

a sum of trees S such that H(S) = 0 or f(S) < f(T). If S is a term in α(T) with

f(S) > (0, 0) and H(S) = 0, then by Lemma 3.7 f(α(S)) < f(S) ≤ f(α(T)) ≤ f(T).

If S is a term in α(T) with f(S) > (0, 0) and f(S) < f(T), then f(α(S)) ≤ f(S) <

f(T). For all other terms, we have f(S) = (0, 0) and so f(α(S)) = (0, 0) < f(T),

since we assumed T was in F>(0,0). This proves that every term in the expression for

α2(T) has filtration less than f(T), and so f(α2(T)) < f(T). □

Theorem 3.10 Let α = id+∂H+H∂. Repeated application of α yields a contraction

of the chain complex C∗(Kn) to the subcomplex generated by Rn.

Proof: It’s immediate from the definition that α ≃ id. Hence αk ≃ idk ≃ id for

all k ≥ 1. From Proposition 3.9, we know that α2 lowers the filtration degree of all

generators in F>(0,0). Since the filtration is of finite length, it follows that αN for large

enough N maps C∗(Kn) to the subcomplex F(0,0) generated by Rn, and αN is chain

homotopic to the identity on C∗(Kn). □

35

4 Contracting the Complexes C∗(X
w
0)

For a weighted tree T in C∗(X
w
0) all the leaves have positive weight, since there are

zero inputs. If all of the internal vertices have weight 0, then all of the leaves have

weight 1; so we have exactly w leaves, and therefore T is just a tree from C∗(Kw) with

weight 1 added to all of the leaves. In this way, we regard C∗(Kw) as a subcomplex

of C∗(X
w
0).

In an unweighted tree, the number of leaves equals one more than the sum of

deg(v)− 2 where v ranges over all branch vertices ; that is, vertices which are neither

leaves nor the root. Using the fact that expansions/contractions preserve both sides

of the equation, one can just check this for a corolla.

As a consequence, for any tree T in C0(X
w
0)

∼= C0(Kw), the number of branch

vertices is precisely w− 1. This may not be true for trees in positive dimensions, but

w− 1 is still an upper bound since contraction cannot increase the number of branch

vertices.

If T in C∗(X
w
0) has no positive weight internal vertex (hereafter abbreviated as

PWIV), then it is in C∗(Kw). It has w leaves, and the internal vertices are precisely

the branch vertices. As previously mentioned, there will be at most w − 1 of these.

If T has no PWIV, then set w0(T) = w − 1. Otherwise, let w0(T) count the

number of weight-0, non-root vertices that occur before the first PWIV (with respect

to the usual left-right depth-first order). Note that upon expanding T the number of

weight-0 vertices cannot decrease, and so w0 cannot decrease (this uses the previous

paragraph for the “edge case” where the definition of w0 changes).

By repeatedly expanding any tree in C∗(X
w
0), we can get to a tree in C∗(Kw).

Since w0 does not decrease, this shows w0(T) ≤ w − 1 for any T .

Define f(T) = w − 1 − w0(T). Since w0 cannot decrease upon expansion, f(T)

cannot increase upon expansion. So f(S) ≤ f(T) for any S in the boundary of T .

Thus the trees T such that f(T) ≤ k generate a subcomplex Fk, and this defines a

filtration C∗(X
w
0) = Fw−1 ⊃ Fw−2 ⊃ ..., with F0 generated by the weight-w trees with

no PWIV; i.e. F0 is isomorphic to the ordinary associahedron chain complex C∗(Kw).

36

These observations are summarized in the following proposition:

Proposition 4.1 The map f(T) = w−1−w0(T) induces a filtration Fw−1 ⊃ Fw−2 ⊃

... ⊃ F1 ⊃ F0 on C∗(X
w
0) where F0 is the subcomplex corresponding to C∗(Kw).

Our goal now is to define a procedure similar to Algorithm 3.3 that yields a

contraction of C∗(X
w
0) to the subcomplex F0

∼= C∗(Kw). When combined with the

results in Section 3, this will ultimately produce a total contraction of the chain

complex C∗(X
w
0).

Algorithm 4.2 Define a map J : C∗(X
w
0) → C∗+1(X

w
0) on generators as follows.

Using left-right depth-first search, find the first PWIV v of T .

1. If deg(v) = 2 and wt(v) = 1, the map J contracts the unique input edge of v,

adding weights if necessary.

2. If deg(v) ∈ {1, 2} and wt(v) > 1, or deg(v) > 2, then J maps T to 0.

3. If T has no PWIV’s, then J(T) = 0.

Note that the subcomplex F0
∼= C∗(Kw) is mapped to 0 by J . Let ξ = ∂J+J∂+id.

If we could show that f(ξ(T)) < f(T) for trees in positive filtration, we would have

that repeated application of ξ defines a contraction of C∗(X
w
0) into C∗(Kw), thus

giving a total contraction of C∗(X
w
0) when combined with the contraction of C∗(Kw).

It turns out that this isn’t always the case, but it’s sufficient to prove a weaker result,

namely that f(ξ2(T)) < f(T) for trees in positive filtration. To that end, we start

with a lemma.

Lemma 4.3 Let T be a generator of C∗(X
w
0) in positive filtration. Then f(J(T)) ≤

f(T) with equality precisely when J(T) ̸= 0.

Proof: When J(T) = 0, the statement is clear. When J(T) ̸= 0, T and J(T) have

the same first PWIV and identical structure prior to this vertex, so f(J(T)) = f(T).

□

37

Lemma 4.4 Let T be a generator of C∗(X
w
0) with f(T) > 0, and suppose that J(T) =

0. Then the map ξ = ∂J + J∂ + id satisfies f(ξ(T)) < f(T).

Proof: Since T has positive filtration, it has at least one PWIV. Let v be the first

PWIV of T . Then wt(v) > 1 or wt(v) = 1 and deg(v) > 2, since J(T) = 0. Observe

that ∂T contains exactly one tree U such that J(U) = T , namely the result of creating

a new vertex above v so that v now has weight-1 and degree-2. See Figure 4.1 for an

example. Moreover any other tree S in ∂T wherein v has degree-2 will have J(S) = 0

since the weight of v is necessarily at least 2.

1

3

1 1 1

T

v

1

1

2

1 1 1

U

v

Figure 4.1: A weighted tree T in X7
0 , its first PWIV v, and the unique U in its boundary such

that J(U) = T .

It remains to consider what other trees S can occur in the boundary of T . Note

that J(S) = 0 if S results from changing a vertex other than v, so we need only

consider those trees which result from expanding at v, because

ξ(T) = ∂JT + J∂T + T = 0 +
∑

S in ∂T

J(S) + T =
∑

S changes v

J(S)

Case 1: v is a lollipop of weight at least 2.

Then S is created by adding a new lollipop above v. Aside from the tree U

mentioned above, all such S will have J(S) = 0, since v is now a degree-2 vertex of

weight at least 2.

Case 2: deg(v) ≥ 2 and S is created by adding a new lollipop at v.

Then deg(v) in S is now at least 3, so J(S) = 0 unless wt(v) is now 0. In this

38

case, v is no longer a PWIV, so we have f(J(S)) ≤ f(S) < f(T) by Lemma 4.3. See

Figure 4.2.

1

3

1

T

v

1

1

2 1

S1

v

1 31 1

S2

v

Figure 4.2: Two examples illustrating case 2 in the proof of Lemma 4.4. J(S1) = 0 and f(S2) <
f(T).

Case 3: deg(v) ≥ 2 and S is created by adding a new vertex u whose branches are

some of the original branches of v and whose weight is some of the original weight of

v.

The case where deg(v) = 2 in S was already addressed in the first paragraph, so

we will assume that deg(v) ≥ 3 in S. Then J(S) = 0 unless v is now weight-0 in S.

In this case, v is no longer a PWIV and so f(J(S)) ≤ f(S) < f(T) by Lemma 4.3.

See Figure 4.3. □

1

3

1 1

T

v

1

1

2

1

1

S1

v

u 1

1

31 1

S2

v

u

Figure 4.3: Two examples illustrating case 3 in the proof of Lemma 4.4. J(S1) = 0 and f(S2) <
f(T).

39

Lemma 4.5 Let ξ = ∂J + J∂ + id and let T ∈ C∗(X
w
0) be a generator in positive

filtration such that J(T) ̸= 0. Then f(ξ(T)) ≤ f(T) and ξ(T) is a sum of trees T ′

such that J(T ′) = 0 or f(T ′) < f(T).

Proof: Since J(T) ̸= 0, T has a first PWIV of degree 2 and weight 1 which we call v.

We first consider what J does to trees S that appear as terms in ∂T .

Case 1.1: S is created by adding a new lollipop at v.

This means that wt(v) is now 0, so f(J(S)) ≤ f(S) < f(T) by Lemma 4.3.

Case 1.2: S is created by changing a vertex other than v.

Let u be the vertex corresponding to the single input of v. By definition, H(S) is

formed by merging the vertices u, v, adding weights if necessary. But this means that

the new vertex has weight at least 2 or is weight 1 with degree at least 3. In either

case, we see that f(J(S)) ≤ f(S) = f(T) and J(J(S)) = 0.

The next step is to consider the tree J(T) and its boundary. Letting u be as

above, the tree J(T) is by definition formed by merging the vertices u, v. Let uv

denote this merged vertex in J(T). We have the following cases for S in ∂J(T).

Case 2.1: S is created by adding a new vertex above uv so that deg(uv) is now 2.

Exactly one of these trees is T which cancels with the id term in ξ(T). The

weight of uv in all other such S is at least 2, and so they will have J(S) = 0 and

f(S) ≤ f(J(T)) ≤ f(T).

Case 2.2: S is created by adding a new lollipop at uv.

The vertex uv in J(T) is either degree-2 with weight at least 2, or weight-1 with

degree at least 3. Thus J(S) = 0 for these S unless all the weight of uv is pushed

onto the new lollipop. In this case, we have f(S) < f(J(T)) ≤ f(T).

Case 2.3: S is created by adding a new vertex above uv so that deg(uv) is now at

least 3.

All of these trees will have J(S) = 0 except for the tree wherein all the weight is

pushed off uv onto the new vertex. In this case, f(S) < f(J(T)) ≤ f(T) once again.

Case 2.4: S changes a vertex other than uv.

Necessarily J(S) = 0, and f(S) ≤ f(J(T)) ≤ f(T) by Lemma 4.3 again. □

40

Proposition 4.6 The map ξ = id + ∂J + J∂ satisfies f(ξ2(T)) < f(T) for trees

T ∈ C∗(X
w
0) in positive filtration.

Proof: Lemmas 4.4 and 4.5 together imply that f(ξ(U)) ≤ f(U) for any tree U .

When J(T) = 0, we have that f(ξ2(T)) ≤ f(ξ(T)) < f(T). When J(T) ̸= 0, we have

that f(ξ(T)) ≤ f(T) and ξ(T) is a sum of trees S such that J(S) = 0 or satisfying

f(S) < f(T). If S is a term in ξ(T) with f(S) > 0 and J(S) = 0, then by Lemma

4.4 f(ξ(S)) < f(S) ≤ f(ξ(T)) ≤ f(T). If S is a term in ξ(T) with f(S) > 0 and

f(S) < f(T), then f(ξ(S)) ≤ f(S) < f(T). For all other terms, we have f(S) = 0

and so f(ξ(S)) = 0 < f(T), since we assumed T was in positive filtration. This

proves that every term in the expression for ξ2(T) has filtration less than f(T), and

so f(ξ2(T)) < f(T). □

Theorem 4.7 Let ξ = id + ∂J + J∂. Repeated application of ξ yields a contraction

of the chain complex C∗(X
w
0) to the subcomplex generated by trees with no PWIV’s.

Proof: Similar to the proof of Theorem 3.10. □

41

5 The General Contraction of C∗(X
w
n)

For positive n, there is a subcomplex Rn ◦n C∗(X
w
0) of C∗(X

w
n) generated by all trees

of the form Rn◦nT , where Rn is the fully right-associated tree in Kn and T is any tree

in C∗(X
w
0). It’s not hard to see that Rn ◦n C∗(X

w
0) is isomorphic to C∗(X

w
0). Thus

it’s enough to find a chain homotopy contracting C∗(X
w
n) down to this subcomplex,

and the contraction problem for general C∗(X
w
n) will reduce to that for C∗(X

w
0).

Algorithm 5.1 Define a map K : C∗(X
w
n) → C∗+1(X

w
n) on generators as follows.

Using left-right depth-first search, check each vertex v of T .

1. If deg(v) = 3, wt(v) = 0, and the left input of v is not one of the input leaves

of T : K(T) is formed by contracting the left input edge of v.

2. If deg(v) > 3 or wt(v) > 0: K(T) = 0.

3. If deg(v) = 3, wt(v) = 0, but the left input is an input leaf: skip v and continue

search.

4. If v is an input leaf: skip v and continue search, keeping track of the number of

input leaves found in this way.

5. If all input leaves of T have been found: K(T) = 0.

To put a filtration on C∗(X
w
n), we will use indices from N2 with the lexicographic

order just as we did for the unweighted associahedron complexes. See Figure 5.1

for an example. Given a weighted tree T ∈ C∗(X
w
n), define its filtration degree

f(T) = ⟨fs(T), fb(T)⟩ by

fs(T) =
∑
ℓ

ρ(ℓ)

where the sum is taken over all input leaves ℓ of T and ρ(ℓ) is the sum of the weights

of all vertices occurring before ℓ in the left-right depth-first order.

42

1 1

Figure 5.1: A weighted tree T in X2
4 with f(T) = ⟨7, 4⟩

The fb filtration is defined similarly to its counterpart in the unweighted case,

with some modification to account for the weights. If T is a weighted tree such

that Algorithm 5.1 terminates after finding all of its input leaves, define fb(T) = 0.

Otherwise, there is some vertex v at which Algorithm 5.1 terminates in case 1 or 2,

hereafter called the crux of T . Then

fb(T) =
∑
w

[max(deg(w)− 2, 0) + wt(w)]

where w ranges over v and all internal predecessors of v that are not in its rightmost

branch. Just as in the unweighted case, it should be noted that if v is the crux of a

weighted tree T , then T can be written as Rk◦kT ′ for some k ≥ 1 with v corresponding

to the root of T ′. It should also be noted that T ′ always contains at least one input

leaf; otherwise Algorithm 5.1 would have terminated before reaching v.

Lemma 5.2 Let T be a generator in C∗(X
w
n), and let S be an expansion of T . Then

1. fs(S) < fs(T); or

2. fs(S) = fs(T) and fb(S) ≤ fb(T).

Proof: Let S result from expanding T at a vertex u, creating a new vertex u′ in S.

Let ℓ be any input leaf, and consider the values ρT (ℓ), ρS(ℓ) in T, S respectively. If u

occurs after ℓ in left-right depth-first order, then so does u′ and we have ρT (ℓ) = ρS(ℓ).

43

If u occurs before ℓ, then ρT (ℓ) = ρS(ℓ) unless u′ occurs after ℓ and wt(u′) > 0. In

this case, we have ρT (ℓ) > ρS(ℓ). Since this is true for all input leaves, we have shown

that fs(S) ≤ fs(T) in all cases.

For the remainder of the proof, it’s enough to show in each subcase that either

fs(S) < fs(T) or fb(S) ≤ fb(T). Let v be the crux of T , and let u, u′ be as before. As

mentioned in the previous discussion, T can be written as Rk◦kT ′ where v corresponds

to the root of T ′. So u cannot occur before v in left-right depth-first order (hence

neither can u′). If u ̸= v, then v is still the crux of S and either both u, u′ are in the

rightmost branch of v or they are both in another branch of v. In the first case, we

clearly have fb(S) = fb(T), and Lemma 2.2 gives the same result in the second case.

If u = v, then v may no longer be the crux of S. If this happens, then v is

now a degree-3, weight-0 vertex with leaf left input and u′ is now the crux of S. If

wt(u′) > 0, then fs(S) < fs(T). Otherwise fs(S) = fs(T) and fb(S) ≤ fb(T) by

Lemma 2.2, since every branch of u′ was a branch of v in T . If v is still the crux

of S, then Lemma 2.2 again implies that fb(S) = fb(T) unless u
′ is in the rightmost

branch of v and wt(u′) > 0. In this last case, we have that fb(S) < fb(T) by the same

lemma. □

Lemma 5.3 Let T be a generator in C∗(X
w
n). Then f(K(T)) ≤ f(T).

Proof: It’s clear that fs(K(T)) ≤ fs(T). The inequality fb(K(T)) ≤ fb(T) follows

from Lemma 2.1 and a similar observation about the weights in T and K(T). □

Let ζ : C∗(X
w
n) → C∗(X

w
n) be the morphism of chain complexes given by ζ =

∂K +K∂ + id. Lemmas 5.2 and 5.3 together imply the following useful result.

Corollary 5.4 For any generator T in C∗(X
w
n), f(ζ(T)) ≤ f(T).

Observe that the bottom filtration F(0,0) is precisely the subcomplex generated by

Rn ◦n Ψw
0 as desired. Thus it remains to show that repeated application of ζ lowers

filtration degree on generators in F>(0,0), and it will follow just as in the proof of

Theorem 3.10 that ζN maps into F(0,0) for sufficiently large N and is chain homotopic

to the identity on C∗(X
w
n). This is stated as Theorem 5.8 at the end of this section,

whither we build first with several lemmas.

44

Lemma 5.5 Let T be a generator of C∗(X
w
n) with f(T) > (0, 0), and suppose that

K(T) = 0. Then the map ζ = ∂K +K∂ + id satisfies f(ζ(T)) < f(T).

Proof: Since f(T) > (0, 0), there is either an input leaf that occurs after a positive

weight vertex, or T = T ′ ◦n Ψw
0 where T ′ is not fully right-associated. In either case,

T has a crux vertex v. As remarked in the discussion of Algorithm 5.1, at least one

branch of v must contain an input leaf; in particular, v itself cannot be a lollipop.

Since K(T) = 0, we have that either wt(v) > 0 holds or wt(v) = 0 and deg(v) > 3.

We consider trees S in ∂T in each of these cases separately. Note that any expansion

S at a vertex other than v always has K(S) = 0, so we only consider expansions at

v since

ζ(T) =
∑
S∈∂T

K(S) + T

Case 1: deg(v) = 2

Necessarily wt(v) is some positive integer s, and there are exactly two expansions

of T which K does not map to 0: the expansion S0 that creates a new left input of v

which is a lollipop of weight s, and the expansion S1 in which instead the s-lollipop

is the new right input of v. We have that K(S0) = T , canceling with the id term of

ζ, so ζ(T) = K(S1). We also have that fs(K(S1)) ≤ fs(S1) < fs(T); the inequality

holds because there is at least one input leaf in the original branch of v, and so the

weight s appears in the calculation of fs(T) but not fs(S1).

s

...

...

v

T

s

...

...

v

S0

s

...

...

v

S1

Figure 5.2: The crucial part of the trees in the proof of Lemma 5.5, Case 1.

45

Case 2: deg(v) = 3 and wt(v) > 0

Let wt(v) = s once again. There are precisely two expansions of T at v which will

be nonzero under K: the expansion S0 wherein all weight on v is pushed onto a new

degree-2 vertex to the left of v, and its “mirror” S1 wherein all weight on v is pushed

onto a new degree-2 vertex to the right of v. Observe that K(S0) = T , canceling with

the id term of ζ, so ζ(T) = K(S1). If there is an input leaf in the left branch of v,

then fs(K(S1)) ≤ fs(S1) < fs(T). Otherwise, K merges the left input of v with v,

and v is now the crux of K(S1). The cruces of T and K(S1) have the same internal

predecessors in the leftmost branch except for the crux of T itself, which contributes

s+ 1 to fb(T). Hence fs(K(S1)) = fs(T) and fb(K(S1)) = fb(T)− (s+ 1) < fb(T).

s

...

...
...

v

T

s

...

...

...

v

S0

s

...

...

...

v

S1

Figure 5.3: The crucial part of the trees in the proof of Lemma 5.5, Case 2.

Case 3: deg(v) > 3

Let wt(v) = s once again where now s ≥ 0. There are precisely two expansions

of T at v which will be nonzero under K: the expansion S0 wherein all weight on v

and all but the rightmost input of v are pushed onto a new left input of v, and its

“mirror” S1 wherein all weight on v and all but the leftmost input of v are pushed

onto a new right input of v. Observe that K(S0) = T , canceling with the id term of

ζ and giving ζ(T) = K(S1). The second tree will have fs(K(S1)) < fs(T) if s > 0

and there was an input leaf in the left branch of v. If not, then fs(K(S1)) = fs(T).

Moreover, in this last case, v in S1 has lost at least one of the middle branches it had

in T since we assumed deg(v) > 3. Since the crux of K(S1) is either v or in one of

its branches, we must have that fb(K(S1)) < fb(T). □

46

s

...

...
...

...

v

T

s

...

...
...

...

v

S0

s

...

...
...

...

v

S1

Figure 5.4: The crucial part of the trees in the proof of Lemma 5.5, Case 3.

Lemma 5.6 Let ζ = ∂K +K∂ + id and let T ∈ C∗(X
w
n) be a generator with f(T) >

(0, 0) and K(T) ̸= 0. Then ζ(T) is a sum of trees S such that K(S) = 0 or f(S) <

f(T).

Proof: Once again, the condition f(T) > (0, 0) implies that T has a crux vertex v.

Since K(T) ̸= 0, we must have deg(v) = 3, wt(v) = 0, and the left input of v is either

a 1-lollipop or an internal vertex. Call this left input u. First we consider the terms

of ∂T . Any such tree S is an expansion of T at a vertex after v, and so v is still the

crux of S. Hence v is also the crux of K(S) and we have K(K(S)) = 0 since v now

has positive weight or deg(v) > 3. Moreover, f(K(S)) ≤ f(S) ≤ f(T) by Lemmas

5.2 and 5.3. This show f(K∂T) ≤ f(T) and K∂T is a sum of trees S such that

K(S) = 0. Recall that

ζ(T) =
∑

S∈∂K(T)

S +K∂T + T

We next consider K(T) and its boundary terms. We do this by looking at two

cases for the vertex u.

Case 1: u is a lollipop of weight s

Then K(T) has crux at v but now deg(v) = 2 and wt(v) = s. We have that

K(S) = 0 for all trees S in the boundary of K(T) with two exceptions: T itself and

the tree S1 which instead has an s-lollipop as the right input of v. The first tree

47

cancels with the id term of ζ, while the second has fs(S1) < fs(K(T)) = fs(T) since

the other branch of v must contain an input leaf. The boundary trees such that

K(S) = 0 all have f(K(S)) ≤ f(S) ≤ f(T) by Lemmas 5.2 and 5.3.

s

...

...

v

K(T)

s

...

...

v

T

s

...

...

v

S1

Figure 5.5: The crucial part of the trees in the proof of Lemma 5.6, Case 1.

Case 2: u has at least one branch

Then K(T) merges the vertices u and v into a new vertex denoted uv. Once

again K(S) = 0 and f(K(S)) ≤ f(S) ≤ f(K(T)) for all but two expansions S of

K(T). The first is T itself which cancels with the id term of ζ. The second term

S1 pushes all weight and all but the leftmost input of uv onto a new right input

w of uv. If the leftmost branch of u contained an input leaf, then fs(S1) < fs(T).

Otherwise fs(S1) = fs(T), and since deg(u) ≥ 2, we have the following subcases.

Either deg(u) > 2 and so at least one branch of u in T is now a branch of w in S1; or

deg(u) = 2, hence wt(u) > 0, and so some positive weight that was in the left branch

of v in T has moved to the right branch of uv in S1. Thus in either subcase we will

have fb(S1) < fb(T), because the crux of S1 is either uv or in one of its branches.

Hence f(S1) < f(T) in any case. □

48

s

...

...
...

...

uv

K(T)

s

...

...
...

...

v

u

T

s

...

...
...

...

uv

w

S1

Figure 5.6: The crucial part of the trees in the proof of Lemma 5.6, Case 2.

Proposition 5.7 The map ζ = id + ∂K + K∂ satisfies f(ζ2(T)) < f(T) for trees

T ∈ C∗(X
w
n) in F>(0,0).

Proof: By Corollary 5.4, f(ζ(T)) ≤ f(T) for any tree T . WhenK(T) = 0, we have

that f(ζ2(T)) ≤ f(ζ(T)) < f(T). When K(T) ̸= 0, we have that f(ζ(T)) ≤ f(T)

and ζ(T) is a sum of trees S such that K(S) = 0 or satisfying f(S) < f(T). If S

is a term in ζ(T) with f(S) > (0, 0) and K(S) = 0, then by Lemma 5.5 f(ζ(S)) <

f(S) ≤ f(ζ(T)) ≤ f(T). If S is a term in ζ(T) with f(S) > (0, 0) and f(S) < f(T),

then f(ζ(S)) ≤ f(S) < f(T). For all other terms, we have f(S) = (0, 0) and so

f(ζ(S)) = (0, 0) < f(T), since we assumed T was in F>(0,0). This proves that every

term in the expression for ζ2(T) has filtration less than f(T), and so f(ζ2(T)) < f(T).

□

Theorem 5.8 Let ζ = id+ ∂K +K∂. Repeated application of ζ yields a contraction

of the chain complex C∗(X
w
n) to the subcomplex generated by Rn ◦n Ψw

0 .

Proof: Similar to the proof of Theorem 3.10. □

49

6 Resulting Tree Diagonals

We conclude this paper with an implementation of the algorithms described in the

previous sections used to produce weighted tree diagonals γw
n . The following outputs

were generated in SageMath using the Abstract Labeled Trees library. The source

code used to generate them is included at the end of the section. Tables 1, 2, and

3 summarize the number of terms in γw
n for small values of n and w along with the

runtime needed to compute them. All computations were done on a Hewlett-Packard

laptop with a 64-bit operating system, a 2.30 GHz processor, and 4 GB of RAM.

All trees are displayed in ASCII art using SageMath’s Abstract Labeled Trees

library. This prints the nonroot vertices of the tree as nonnegative integers according

to their label, with the first vertex (in depth-first search order) printed in the first

line and each other vertex printed below the vertex of which it is a branch.

We remark that the initial terms of our results in the unweighted case agree

with the results in [7]. It seems reasonable to suspect that they are the same given

the similarities in the definition of Algorithm 5.1 and in [7], although we have no

theoretical basis on which to justify this.

It’s also worth remarking that the numbers of terms in γn listed below agree with

the terms of the sequence a(n) = 2(3n)!
(2n+1)!(n+1)!

when offset by 1. This sequence has

been used to count various combinatorial sets of trees (see sequence A000139 at [8]),

so it seems reasonable to conjecture that a(n − 1) also counts the number of pure

tensors in γn.

n Number of terms in γn Runtime (sec)

2 1 0
3 2 0.00347
4 6 0.0607
5 22 0.5824
6 91 4.3637
7 408 32.8650
8 1938 240.8907

Table 1: Numbers of terms in weight-0 tree diagonals.

50

Figure 6.1: The 2 terms in γ3 displayed with ASCII art.

Figure 6.2: The 6 terms in γ4 displayed with ASCII art.

51

Figure 6.3: The 22 terms in γ5 displayed with ASCII art.

52

n Number of terms in γ1
n Runtime (sec)

0 1 0
1 2 0.00396
2 8 0.0782
3 38 0.9958
4 196 10.7997
5 1062 102.2154

Table 2: Numbers of terms in weight-1 tree diagonals.

Figure 6.4: The 8 terms in γ1
2 displayed with ASCII art.

53

n Number of terms in γ2
n Runtime (sec)

0 2 0.0128
1 20 0.3734
2 147 6.7881
3 1023 94.1467
4 7007 1141.8786

Table 3: Numbers of terms in weight-2 tree diagonals.

Figure 6.5: The 20 terms in γ2
1 displayed with ASCII art.

54

6.1 Source Code

import f un c t oo l s

#shor thand f o r b u i l d i n g t r e e s

def LOT(xs , n) : return Label ledOrderedTree (xs , l a b e l=n)

#the ze ro t r e e

zeroTree=LOT([] , l a b e l==1)

#con t r a c t l e f tm o s t i npu t and add we i g h t s

def con t ra c tLe f t (T) :

branches = [t for t in i ter (T [0])] + [t for t in i ter (T [1 :])]

new labe l = T. l a b e l () + T [0] . l a b e l ()

return Label ledOrderedTree (branches , l a b e l=new labe l)

#t r e e sum

#mod=2 reduce s a l i s t o f e l emen t s

def mod2Reduce (t s) :

r s =[]

for t in t s :

l 1 = len (t s) #l e n g t h w i th t

t s = [u for u in t s i f u != t]

l 0 = len (t s) #l e n g t h w i t hou t

i f (l1=l 0) % 2 == 1 :

r s . append (t)

#t s = us

return r s

#proper union f un c t i o n o f a l i s t o f l i s t s

def overUnion (xss) :

i f xss == [] : return []

else : return f un c t oo l s . reduce ((lambda x , y : x+y) , xss)

#expand a we i gh t ed t r e e a t a g i v en l o c a t i o n

def expandAt (S , path) :

#expanding a t t h e roo t vs e l s ewhe r e

i f path == () :

T=S

else :

T=S [path]

l=len (T)

w=T. l a b e l ()

#t s 0 and t s 1 on l y need to be con s i d e r e d when we i gh t i s p o s i t i v e

i f w>0:

#expans i ons t h a t c r e a t e a new l o l l i p o p

#expanding h i g h e r deg ree v e r t i c e s

i f l >1:

t s0=[LOT(T [: i]+[LOT([] , u)]+T[i :] , w=u) for i in range (l +1) for u in range (1 ,w+1)]

#expanding a degree=2

e l i f l ==1:

t s0=[LOT(T [: i]+[LOT([] , u)]+T[i :] , w=u) for i in range (l +1) for u in range (1 ,w+1)]

#expanding a degree=1 v e r t e x

#degree=2 v e r t i c e s must have p o s i t i v e we igh t , so u=w i s e x c l u d ed

else :

t s0=[LOT(T [: i]+[LOT([] , u)]+T[i :] , w=u) for i in range (l +1) for u in range (1 ,w)]

#expans i ons t h a t c r e a t e a deg ree 2 v e r t e x

#i f t h e deg ree o f t h e o r i g i n a l v e r t e x i s 1 , then t h e r e i s no th ing to c r e a t e here

i f l ==0:

55

t s1 =[]

#i f t h e deg ree o f t h e o r i g i n a l v e r t e x i s 2 ,

#t h e r e i s on l y one new v e r t e x t h a t can be c r e a t e d

e l i f l ==1:

t s1=[LOT([LOT([t for t in T] , u)] , w=u) for u in range (1 ,w)]

#i f t h e deg ree o f t h e o r i g i n a l v e r t e x i s a t l e a s t 3 ,

#c r e a t e a v e r t e x a l ong each branch i n c l u d i n g ” be low ”

else :

t s1a=[LOT([LOT([t for t in T] , u)] , w=u) for u in range (w)]

ts1b=[LOT(T [: i]+[LOT([T[i]] , u)]+T[i +1 :] , w=u) for i in range (l) for u in range (1 ,w+1)]

t s1 = ts1a + ts1b

else :

t s0 =[]

t s1 =[]

#expans i ons o f t h e remaining t y p e s

#on ly need to c on s i d e r when deg ree i s a t l e a s t 4

i f l ==3:

#t s 3 i s redundant in t h i s case

t s2=[LOT([LOT(T [: l =1] ,u) ,T[l =1]] , w=u) for u in range (w+1)]

t s3 =[]

t s4=[LOT([T[0] ,LOT(T [1 :] , u)] , w=u) for u in range (w+1)]

e l i f l >3:

t s2=[LOT([LOT(T [: l =1] ,u) ,T[l =1]] , w=u) for u in range (w+1)]

t s3=[LOT(T [: i]+[LOT(T[i : i +2] ,u)]+T[i +2 :] , w=u) for i in range (l =1) for u in range (w+1)]

t s4=[LOT([T[0] ,LOT(T [1 :] , u)] , w=u) for u in range (w+1)]

else :

t s2 =[]

t s3 =[]

t s4 =[]

#t s 0 may have r e p e t i t i o n s , so we need to compute i t s sum mod=2

t s=mod2Reduce (t s0)+ts1+ts2+ts3+ts4

#now append each o f t h e s e to S

es = []

for t in t s :

with S . c lone () as U:

i f path == () :

U = t

else :

U[path] = t

es . append (U)

return es

#boundary map f o r we i gh t ed or unwe igh ted t r e e s

def boundary (T) :

return overUnion ([expandAt (T, path) for path in T. paths ()])

#check i f v e r t e x (path in t r e e) i s i n t e r n a l (i . e . not a l e a f or a 1= l o l l i p o p)

def i s I n t e r n a l (v ,T) :

i f (len (T[v]) == 0) & (T[v] . l a b e l () <2): return False

else : return True

#H procedure

def HAlg(T) :

for v in T. paths () :

i f i s I n t e r n a l (v ,T)==False :

continue

i f len (T[v]) >2:

return zeroTree

i f len (T[v])==2:

#check l e f t i npu t and c on t r a c t i f v a l i d

56

i f i s I n t e r n a l (0 ,T[v])==False :

continue

else :

#con t r a c t i n g a t t h e roo t vs e l s ewhe r e

i f v == () :

return con t ra c tLe f t (T)

else :

with T. c lone () as S :

S [v]= cont ra c tLe f t (S [v])

return S

#i f a l l v e r t i c e s have been exhauted , H(T)=0

return zeroTree

#alpha map

def alpha (T) :

t s = mod2Reduce ([T]+boundary (HAlg (T))+[HAlg (S) for S in boundary (T)])

i f t s == [] : return [zeroTree]

else : return t s

#l i n e a r l y ex t end over sums

def alphaLE (t s) :

us = []

for t in t s :

x = alpha (t)

us . append (x)

return mod2Reduce (overUnion (us))

#t o t a l c o n t r a c t i o n f o r t r e e s in K n

def TotalH (T) :

hs =[]

Us = [T]

while (alphaLE (Us) != [zeroTree]) & (set (alphaLE (Us)) != set (Us)) :

for U in Us :

hs . append (HAlg (U))

Us = alphaLE (Us)

return mod2Reduce (hs)

#f u l l y r i g h t=a s s o c i a t e d unwe igh ted t r e e on n l e a v e s

def RAT(n) :

i f n<1: return zeroTree

i f n==1: return LOT([] , 0)

i f n==2: return LOT([LOT([] , 0) , LOT([] , 0)] , 0)

else : return LOT([LOT([] , 0) , RAT(n=1)] , 0)

#t r e e comp op e r a t o r s

def comp(T, i , S) :

j=1

for v in T. paths () :

i f (len (T[v])==0) & (T[v] . l a b e l ()==0):

#composing when T i s RAT(1)

i f v==():

return S

e l i f j==i :

with T. c lone () as U:

U[v]=S

return U

j+=1

#re t u rn s 0 i f i i n v a l i d

return zeroTree

#count number o f i npu t l e a v e s

def l ea fCount (T) :

57

j=0

for v in T. paths () :

i f (len (T[v])==0) & (T[v] . l a b e l ()==0): j+=1

return j

def totalComp (T, S) :

return [comp(T, i +1,S) for i in range (lea fCount (T))]

#p r o j e c t i o n to R n

#re t u rn s 0 i f not a b ina ry t r e e (i . e . 0= c e l l o f K n)

def toRAT(T) :

n = leafCount (T)

for v in T. paths () :

i f len (T[v]) >2: return zeroTree

return RAT(n)

#reduce sums o f b ina ry t e n s o r s mod=2

def tensorReduce (t s) :

xs = []

for t in t s :

i f (t [0]== zeroTree) | (t [1]== zeroTree) : continue

xs . append (t)

xs = mod2Reduce (xs)

i f xs == [] : return [(zeroTree , zeroTree)]

else : return xs

#t o t a l comp ope ra t o r on b ina ry t e n s o r s T=(t0 , t1) and S=(s0 , s1)

#assumes a l l f ou r t r e e s have t h e same number o f i npu t l e a v e s

def totalTComp (T, S) :

return [(comp(T[0] , i +1,S [0]) , comp(T[1] , i +1,S [1])) for i in range (lea fCount (T [0]))]

#l i n e a r l y ex t ended t o t a l comp over b ina ry t e n s o r s

def totalTCompLE(Ts , Ss) :

return tensorReduce (overUnion ([totalTComp (T, S) for T in Ts for S in Ss]))

#unweigh ted d i a g ona l c o n s t r u c t o r

def Diag (n) :

i f n<2: return []

e l i f n==2: return [(RAT(2) ,RAT(2))]

else :

t s s = [totalTCompLE(Diag (i) , Diag (n+1= i)) for i in range (2 , n)]

t s = overUnion (t s s)

gamma1 = [(t [0] , h) for t in t s for h in TotalH (t [1])]

gamma2 = [(h , toRAT(t [1])) for t in t s for h in TotalH (t [0])]

gamma = gamma1 + gamma2

return tensorReduce (gamma)

#check i f v e r t e x (path in t r e e) i s i n t e r n a l (i . e . not a l e a f or a 1= l o l l i p o p)

def isPWIV(v ,T) :

i f T[v] . l a b e l ()>1: return True

e l i f (T[v] . l a b e l ()==1) & (len (T[v]) >0) : return True

else : return False

#J procedure

def JAlg (T) :

for v in T. paths () :

i f isPWIV(v ,T)==False :

continue

i f (len (T[v])==1) & (T[v] . l a b e l ()==1):

#con t r a c t i n g a t t h e roo t vs e l s ewh e r e

i f v == () :

return con t ra c tLe f t (T)

58

else :

with T. c lone () as S :

S [v]= cont ra c tLe f t (S [v])

return S

return zeroTree

#i f no PWIV ’ s , we need to do HAlg to t h e und e r l y i n g unwe igh ted t r e e

return HAlg(T)

#x i map

def x i (T) :

t s = mod2Reduce ([T]+boundary (JAlg (T))+[JAlg (S) for S in boundary (T)])

i f t s == [] : return [zeroTree]

else : return t s

#l i n e a r l y ex t end over sums

def xiLE (t s) :

us = []

for t in t s :

x = x i (t)

us . append (x)

return mod2Reduce (overUnion (us))

#t o t a l c o n t r a c t i o n f o r t r e e s in X 0ˆw

def TotalJ (T) :

hs =[]

Us = [T]

while (set (xiLE (Us)) != set (Us)) :

for U in Us :

hs . append (JAlg (U))

Us = xiLE (Us)

return mod2Reduce (hs)

#f u l l y r i g h t=a s s o c i a t e d t r e e on n l e a v e s whose we i g h t s are a l l 1

def JRAT(n) :

i f n<1:

return zeroTree

e l i f n==1:

return LOT([] , 1)

else :

with (RAT(n)) . c l one () as T:

l e av e s = [v for v in T. paths () i f len (T[v])==0]

for v in l e av e s :

T. s e t l a b e l (v , 1)

return T

#count number o f 1= l o l l i p o p s

def l o l l i popCount (T) :

j=0

for v in T. paths () :

i f (len (T[v])==0) & (T[v] . l a b e l ()==1): j+=1

return j

#p r o j e c t i o n to JRAT(n)

#re t u rn s 0 i f t h e r e i s a PWIV (i . e . not a 0= c e l l o f X 0ˆw)

def toJRAT(T) :

n = lo l l i popCount (T)

for v in T. paths () :

i f isPWIV(v ,T) : return zeroTree

return JRAT(n)

#check i f v i s a we i gh t 0 l e a f

def i s L e a f (v ,T) :

i f (len (T[v])==0) & (T[v] . l a b e l ()==0): return True

else : return False

59

#f u l l y r i g h t=a s s o c i a t e d t r e e on n+w l e a v e s whose r i g h tmo s t w l e a f w e i g h t s are a l l 1

def KRAT(n ,w) :

i f (n<0) | (w<0):

return zeroTree

e l i f n==0:

return JRAT(w)

e l i f w==0:

return RAT(n)

else :

return LOT([LOT([] , 0) , KRAT(n=1,w)] , 0)

#p r o j e c t i o n to KRAT(n ,w)

#re t u rn s 0 i f t h e r e i s a PWIV or v e r t e x o f deg r ee > 3 (i . e . not a 0= c e l l o f X nˆw)

def toKRAT(T) :

n = leafCount (T)

w = lo l l i popCount (T)

for v in T. paths () :

i f isPWIV(v ,T) | (len (T[v]) > 2) : return zeroTree

return KRAT(n ,w)

#K procedure

def KAlg(T) :

n = leafCount (T)

i f n==0:

return JAlg (T)

m = 0

for v in T. paths () :

subT = T[v]

#i f a l l l e a v e s have been found , then app l y JAlg to remainder o f t r e e

i f m==n :

R = RAT(n+1)

J = JAlg (subT)

return comp(R, n+1,J)

i f i s L e a f (v ,T) :

m += 1

continue

i f (len (subT)==2) & (subT . l a b e l ()==0):

#check t h a t l e f t i npu t i s n ’ t an inpu t l e a f

i f i s L e a f (0 , subT) == False :

#con t r a c t i n g a t t h e roo t vs e l s ewhe r e

i f v == () :

return con t ra c tLe f t (T)

else :

with T. c lone () as S :

S [v]= cont ra c tLe f t (S [v])

return S

#sk i p v i f l e f t i npu t i s an inpu t l e a f

else : continue

i f (len (subT)>2) | (subT . l a b e l () >0):

return zeroTree

#ze t a map

def zeta (T) :

t s = mod2Reduce ([T]+boundary (KAlg(T))+[KAlg(S) for S in boundary (T)])

i f t s == [] : return [zeroTree]

else : return t s

#l i n e a r l y ex t end over sums

def zetaLE (t s) :

us = []

for t in t s :

60

x = zeta (t)

us . append (x)

return mod2Reduce (overUnion (us))

#t o t a l c o n t r a c t i o n f o r t r e e s in X nˆw

def TotalK (T) :

hs =[]

Us = [T]

while (set (zetaLE (Us)) != set (Us)) :

for U in Us :

hs . append (KAlg(U))

Us = zetaLE (Us)

return mod2Reduce (hs)

#v a l i d p a i r s o f t u p l e s in t h e r e c u r s i on f o r wDiag (n ,w)

def diagRecurs ion (n ,w) :

ds = []

for i in range (n+2):

for u in range (w+1):

i f (((i , u) !=(0 ,0)) & ((i , u) !=(1 ,0)) & ((i , u) !=(n+1,w)) & ((i , u) !=(n ,w))) :

ds . append (((i , u) , (n+1=i ,w=u)))

return ds

#we i gh t ed d i a g ona l c o n s t r u c t o r

def wDiag (n ,w) :

i f w<0: return []

e l i f w==0: return Diag (n)

e l i f n<0: return []

e l i f (w==1) & (n==0): return [(JRAT(1) ,JRAT(1))]

else :

ds = diagRecurs ion (n ,w)

t s s = [totalTCompLE(wDiag (x [0] [0] , x [0] [1]) , wDiag (x [1] [0] , x [1] [1])) for x in ds]

t s = overUnion (t s s)

gamma1 = [(t [0] , h) for t in t s for h in TotalK (t [1])]

gamma2 = [(h , toKRAT(t [1])) for t in t s for h in TotalK (t [0])]

gamma = gamma1 + gamma2

return tensorReduce (gamma)

61

7 References

[1] A. Joyal and R. Street. Braided Tensor Categories. Advances in Mathematics,
102(1):20–78, 1993.

[2] Bernhard Keller. Introduction to A-infinity algebras and modules. Homology,
Homotopy and Applications, 3(1):1 – 35, 2001.

[3] Robert Lipshitz, Peter Ozsváth, and Dylan Thurston. Diagonals and A-infinity
tensor products. 2020. preprint, Accessed 04-13-2023.

[4] Michael A. Mandell. Operads and operadic algebras in homotopy theory. In
Stable categories and structured ring spectra, volume 69 of Math. Sci. Res. Inst.
Publ., pages 183–247. Cambridge Univ. Press, Cambridge, 2022.

[5] Martin Markl. Models for operads. Comm. Algebra, 24(4):1471–1500, 1996.

[6] Martin Markl. Operads and PROPs. In Handbook of algebra. Vol. 5, volume 5
of Handb. Algebr., pages 87–140. Elsevier/North-Holland, Amsterdam, 2008.

[7] Naruki Masuda, Hugh Thomas, Andy Tonks, and Bruno Vallette. The diagonal
of the associahedra. J. Éc. polytech. Math., 8:121–146, 2021.

[8] OEIS Foundation Inc. The On-Line Encyclopedia of Integer Sequences, 2023.
Published electronically at http://oeis.org/A000139.

[9] Samson Saneblidze and Ronald Umble. Diagonals on the permutahedra, multi-
plihedra and associahedra. Homology Homotopy Appl., 6(1):363–411, 2004.

[10] Jim Stasheff. Homotopy associativity of H-spaces. II. Transactions of the Amer-
ican Mathematical Society, 108:293–312, 1963.

[11] Dov Tamari. The algebra of bracketings and their enumeration. Nieuw Archief
voor Wiskunde, 3:131–146, 1962.

[12] Gabriel Valiente. Algorithms on Trees and Graphs. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2002.

62

