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THESIS ABSTRACT 
 

Ian Lane Ramsey Van Dusen 
 
Master of Science 
 
Department of Geography 
 
June 2023 
 
Title: Assessing the Relative Accuracy of Planet and Sentinel-2 Derived Water Maps 
Using Field Data 
 

This study compares the accuracy of surface water maps from Sentinel-2 and Planet 

satellites with 43 shoreline observations on the Tanana and Willamette Rivers. High-

precision GNSS rover provided the most precise results, with ~10cm accuracy. Handheld 

devices (BadElf: ~1m, eTrex: ~2m) were less accurate but still can be used for ground 

validation of satellite shorelines. For the Tanana River, Planet NDWI-derived water maps 

(~5m) were slightly more accurate than Sentinel-2 (~6m), despite smaller differences 

than their spatial resolutions. On the Willamette River, Planet achieved ~3m accuracy 

and Sentinel-2 ~4m accuracy using NIR-band thresholding due to minimal reflectance 

difference. The temporal advantage of Planet data was evident, with more clear sky 

observations, particularly in regions with low orbital convergence and during non-clear 

sky months. Despite slightly lower spatial accuracy and temporal resolution, the 

accessibility and reliability of Sentinel-2 data make the datasets comparable. 
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I 

INTRODUCTION 

1. Introduction 

The last decade has brought substantial technological improvements to both 

governmental and private sectors' satellite technologies. These advancements have 

substantially improved data collection and accessibility and enhanced the spatial and 

temporal precision of these observations (Belward & Skøien, 2015). Private companies 

like Planet now manage constellations of hundreds of CubeSats, providing near-daily 

observations at 3.7-meter resolution (Planet Monitoring - Satellite Imagery and 

Monitoring, n.d.). In parallel, public-sector contributions such as the European Space 

Agency’s Sentinel-2 satellites offer 10-meter resolution data with a maximum revisit time 

of 5 days or less when combining data from both satellites in orbit (Delwart, n.d.). This 

frequency of monitoring and near real-time data accessibility has initiated a paradigm 

shift in Earth observation. This shift has moved us from infrequent, large-scale 

observations towards a continuous, high-resolution monitoring system. Instead of waiting 

for periodic satellite passes, researchers and analysts now have access to a constant 

stream of high-resolution data, enabling more timely and detailed study of Earth’s surface 

processes (Aragon et al., 2018). This advancement in satellite technology provides 

superior spatial and temporal resolution compared to earlier iterations of public earth 

observation satellites. For instance, Landsat 8 and 9, offer 30m resolution and have an 8-

day revisit time (Claverie et al., 2018a; Zhu et al., 2019). 

Surface water observations have been tracked from optical data for some time 

(Allen & Pavelsky, 2018; Alsdorf et al., 2007; Pekel et al., 2016). The assimilation of 

data from Planet and Sentinel-2, each usable since ~2016, has improved our ability to 

analyze Earth’s surface water processes. Research has investigated the seasonality and 

variability of lakes (Cooley et al., 2017; Kaiser et al., 2021; Mullen et al., 2023; Qayyum 

et al., 2020). High-resolution remote sensing is beneficial for gaining insight into water 

quality (Lerch et al., 2005), determining discharge estimates(Bjerklie et al., 2023), and 

monitoring changes in river structure and behavior(Harlan et al., 2023). This not only 
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enhances our comprehension of river systems but also facilitates their management, 

especially in areas where gathering field data is logistically difficult, hazardous, or 

prohibitively expensive. The value of these satellite observations of surface water is 

underscored by the limitations inherent in traditional gage-based measurements. 

Historically, gage-based measurements have been the primary tool for researching 

fluctuations within rivers and lakes. Water flow estimates from gages form the 

foundation of our water management and hydrological understanding (Gleason & 

Durand, 2020), but these single-point measurements only provide direct observation of 

specific sites within a basin. Furthermore, gage sites are distributed unevenly across the 

globe, often influenced by national boundaries and proximity to urban centers. This 

uneven distribution, coupled with the decline in global gages, particularly in Arctic 

environments (Shiklomanov et al., 2002), limits the scope of large-scale hydrologic 

analyses. In isolated cold regions where temporal and spatial gaps in field observations 

are common, these advancements hold immense value in understanding phenomena. 

High-resolution remote sensing techniques can provide a globally available, consistent 

data source that can be used to complement and enhance hydrologic understanding from 

traditional gage-based measurements.  

However, despite the high spatial resolution provided by satellite technologies, 

there are limitations to water classifications in complex environments. Optical imagery-

based classification of surface water may struggle in areas with mixed vegetation and 

mixed pixels, often leading to their exclusion from inundation maps and discharge 

calculations. Such challenges arise from spectral similarities between different elements 

within a pixel and shadowing effects (DeVries et al., 2017; Hondula et al., 2021; Jones, 

2015). The prevailing classification technique to identify water in high-resolution 

imagery relies on the Near-Infrared (NIR) band due to the absorptive properties of water.  

The NIR band is used to create the Normalized Difference Water Index (NDWI), which 

involves a ratio between the Green and NIR bands (McFEETERS, 1996). Further 

derivative techniques include Modified NDWI (MNDWI) using NIR and straight NIR-

band thresholding (Mondejar & Tongco, 2019). These classification techniques, despite 

their computational simplicity, are suited for cross-comparison between multiple satellite 
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platforms and ground-validated shorelines (Liu et al., 2016). Therefore, they provide a 

trustworthy method for evaluating the precision of shoreline detection by various sensors.  

Given the known classification challenges in water environments, ground 

validation of high-resolution water classifications is essential. While a few studies have 

used ground data to verify high-resolution water-mapping of map lake areas and ocean 

shorelines derived from satellite imagery (Mullen et al., 2023; Pilartes-Congo, 2022; 

Pitcher et al., 2020), there has been limited focus on evaluating the accuracy of high-

resolution classifications over rivers.  Consequently, developing a standardized protocol 

and methodology for ground truthing satellite classifications in river systems, where 

feasible, is of paramount importance.  

In this study, we aim to evaluate the accuracy and utility of Planet and Sentinel-2-

derived water maps through comparison with in-situ ground data. For this work, we focus 

on stretches of the Tanana River near Fairbanks, Alaska and the Willamette River near 

Eugene, Oregon. These diverse locations, with different river forms, management 

practices, and applications, allow us to assess water classification techniques in 

heterogeneous locations. To evaluate the functional accuracy of Planet and Sentinel-2-

derived classifications, we compared them with in-situ GNSS shoreline surveys. We 

establish a protocol for data collection by walking along shorelines and developed an 

adaptive NDWI-based and NIR-based thresholding method for identifying open surface 

water in river systems. By comparing the accuracy of satellite-derived water maps with 

in-situ shoreline observations, we assessed the performance of satellite systems and their 

applicability and relevance in understanding the dynamics of river systems. 
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II 

STUDY SITE 

2.1 Geographic Location 

This study examines two river reaches in the United States: the Tanana River near 

Fairbanks, Alaska, and the Willamette River near Eugene, Oregon. Although not 

representative of all river types, these sites are ideal for their diversity of shoreline 

environments and accessibility. Both rivers feature road-accessible boat launch sites and 

are suitable to return for future ground validation campaigns.  

Our primary study site for ground validation is the Tanana River. We specifically 

examine a 14 km stretch located just southwest of Fairbanks and between two gauges, the 

Tanana at Fairbanks (USGS #15485500) upstream and the Tanana at Nenana (USGS 

#15515500) downstream. The Tanana peaks at roughly 80,000 CFS in mid-summer 

(July) and freezes at the surface in the winter months, initially in mid-October before 

melting out in May. The Tanana's braided nature, wide floodplain, and low banks make it 

an ideal river for tracking inundation changes. Its high sediment load, originating from 

upstream glaciers, creates a highly turbid, optically brown river that presents challenges 

for satellite water classification, despite being unaffected by diurnal melt patterns. The 

river's high latitude (~64˚N) is advantageous for sun-synchronous polar orbiting satellites 

due to increased observations and overlapping flight patterns. Over two field campaigns 

during Summer 2022, we conducted shoreline surveys in June (when the river discharge 

was around 55,000 CFS) and surveys in August (45,000 CFS). 
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Figure	1.	Field	Site	of	the	Tanana	River	in	Alaska.	Red	Paths	on	the	map	are	the	GNSS	

Rover	shoreline	surveys	from	which	we	compare	handheld	GNSS	receivers	and	

satellite-derived	water	maps.	

 

The Willamette River serves as the second site for ground truth shoreline 

validation. Our site was 2.5 kilometers downstream from the confluence with the 

McKenzie River and located upstream (approx. 8 km) of the USGS gage at Harrisburg 

(#14166000). We conducted shoreline surveys in September and November, taking 

advantage of the more reliable cloud-free days during summer and fall. The river's flow 

ranges from approximately 50,000 CFS at its peak, which can be caused by spring 

snowmelt or concentrated rain events, to as low as 4,000 CFS in the dry summer season. 

The river is heavily regulated by upstream dams operated by the US Army Corps of 

Engineers, which limit sediment transport resulting in an unusually low sediment load 

and relatively clear river. It is surrounded by cropland and urban areas, providing a very 
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different environment for testing water classification than the mostly forested Tanana 

River.  

 

	

Figure	2.	Study	site	of	the	Willamette	River	in	Western	Oregon.	Reaches	surveyed	are	

highlighted	in	red.	Most	of	the	area	of	interest	is	surrounded	by	farmland.	This	section	

of	river	is	just	south	of	the	Harrisburg	gage.	
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III 

METHODS 

3.1 Satellite Data 

 Sentinel-2 is a satellite from the European Space Agency (ESA) - Copernicus 

Earth Observation and Monitoring program. The program includes two active satellites in 

the constellation, Sentinel-2A, and Sentinel-2B, launched in 2015 and 2017, respectively 

(Claverie et al., 2018b). A third satellite, Sentinel-2C, is planned to launch in 2024. 

Operating in a sun-synchronous low Earth orbit at 786km, the satellites have a maximum 

revisit time of 10 days at the equator, which is reduced to 5 days when combining data 

from both Sentinel-2A and 2B. The platform has a swath width of 290 km derived from 

the field of view at 20.6˚. The satellites are equipped with a Multi-Spectral instrument 

(MSI), which capture the following wave bandwidths at 10m resolution: Blue (B2) 

between 460.7 nm to 524.7 nm, Green (B3) between 542.3 nm to 577.3 nm., Red (B4) 

between 649.6 nm to 679.6 nm, and Near-infrared between 780.25 nm to 885.35 nm (See 

Table 1 and Figure 3 for specifics)(Main-Knorn et al., 2017). Although Sentinel-2 also 

records Vegetation Red Edge and Shortwave Infrared (SWIR) bands at 20m resolution, 

our analysis focuses exclusively on the 10m bands. We analyze Sentinel-2’s 

atmospherically corrected Level-2A data product, and for cloud masking, we use 

Sentinel-2’s QA60 band to remove clouds, shadows, and other abnormalities (Main-

Knorn et al., 2017). Notably, as a public space agency-operated sensor, Sentinel-2 data is 

freely available to the public.  
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Table	1.	The	radiometric	values	for	the	bands	of	 interest.	For	Planet	B,	G,	R,	and	NIR	
correlate	 to	 bands	 1,	 2,	 3,	 and	 4	 at	 3	m	 pixel	 size.	 Sentinel-2	 data	 B,	 G,	 R,	 and	NIR	
correlate	to	bands	2,	3,	4,	and	8	at	10	m	pixel	size.	All	band	values	in	nanometers.	

Satellite	 Blue	 Green	 Red	 NIR	

Planet	Dove	Classic:	
PS2	 455 - 515	 400 - 590	 590 - 670	 780 – 860	

Planet	Dove	R:	PS2.SD	 464 - 517	 547 - 585	 650 – 682	 846 - 888	

Planet	Super	Dove:	
PSB.SD	 465 - 515	 547 - 585	 650 - 680	 845 - 885	

Sentinel-2A:	MSI	 460.2 – 525.2	 542.3 - 577.3 	 649.6 – 679.6	 780.3 – 885.3	

Sentinel-2B:	MSI	 459.8 – 524.8	 541.5 – 576.4	 649.4 – 680.4	 780.4 – 885.4	

 

We also analyzed the high-temporal and high-spatial-resolution data provided by 

Planet. Planet operates a vast constellation of over 150 Dove CubeSats, making it the 

largest Earth observation satellite network globally(Planet Monitoring - Satellite Imagery 

and Monitoring, n.d.). Dove CubeSats, measuring 10cm x 10cm x 30cm, are positioned 

in sun-synchronous orbits approximately 400km above the Earth's surface. For our 

specific analysis, we exclusively use the 4-band product. Historically, the imagery came 

from 3 sources the Dove, Dove-R, and Super Dove satellites, and at present, imagery is 

solely from the Super Dove satellites (Table 1). The Dove CubeSats provides a ground 

spatial resolution of 3.7m and a swath width of 25.0km. We use Planet Orthotiles, which 

are orthorectified and atmospherically corrected by Planet to provide analysis-ready data. 

The atmospherically corrected surface reflectance product mitigates radiometric 

inconsistencies between raw Planet imagery, a previously noted difficulty working with 

the constellation (Claverie et al., 2018b). This is appealing as we can directly compare 

Planets’ 4-band (RBG+NIR) surface reflectance product to Sentinel-2’s four 10m 

resolution bands (RGB+NIR) surface reflectance data. For cloud masking, we use 

Planet’s UDM mask, a data mask produced by Planet that flags pixels with snow, clouds, 

and smoke(UDM 2, n.d.). Planet may sometimes have non-published data, which is 

predominately due to cloudy conditions, where imagery is unable to locate due to a 

ground lock(PlanetScope, n.d.). Planet is a commercial company, and therefore, its data 
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is not freely available; the company does maintain partnerships with governments and 

universities, which enhance scientific accessibility to its dataset. 

 

 

Figure 3. The Radiometric band values for Planet (B1, B2, B3, B4) @3m and 

Sentinel-2 (B2, B3, B4, B8) @ 10m. Numbers within the boxes indicate the central 

wavelength, while the box width is proportional to the bandwidth (nm).  Since April 2022, 

Planet has been using the SuperDove dataset, which is a similar product to the Sentinel-2 

sensors allowing for harmonization between the two products. The biggest difference 

between the two platforms occurs in the Near-Infrared Band. 

 

3.2 Field Shorelines 

Our field sites for the Tanana and the Willamette Rivers concentrated on reach 

scales (approximately 10 km in river length), as this scale represents a practical unit in 

local remote sensing studies and can be extrapolated to global assessments. The 10 km 

reach length is in reference to centerline river distance. However, there are more than 10 

km of shorelines to identify over such a stretch. Ideally, the analysis should encompass a 

broad islanded river stretch where minor changes in river stage lead to large changes in 
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inundation detectable via satellites. Both reaches of interest for this study meet the 

criteria. On the Tanana River, we walked shorelines period from June 22nd to 24th and 

again from August 26th to 28th (Figure 4). The June survey, we walked 13 shorelines, for 

a total of 9.09 km of comparable data, while discharge was at ~50,000 cfs. In August we 

surveyed 15 shorelines, over 10.62 km, with a discharge of ~48,000 cfs. On the 

Willamette River, we surveyed shoreline locations on September 27th and November 18th 

(Figure 5). The September field data, we gathered 7 shorelines totaling 3.78 km at a 

discharge of 5500 cfs. The November data totaled 8 shorelines for 4.19km at 6370 cfs 

(Table 2). 

 

Table 2. Total Number of shorelines surveyed over the Willamette and the Tanana Rivers 
and the total cumulative length at each field site used for comparison.  

Field	Site	 Total	Shorelines	Surveyed	 Cumulative	Length	

June	Tanana	 13	 9.09	km	

August	Tanana	 15	 10.62	km	
September	Willamette	 7	 3.78	km	

November	Willamette	 8	 4.19	km	
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Figure 4. Shoreline walking environments for the survey on the Tanana River. Quality of 

shoreline observations correlated with sediment size and saturation of the sediment.    
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Figure 5. Shorelines on the Willamette River for survey. Increased sediment size made a 

clear shoreline, while in vegetated areas, we could not walk directly over the open water 

interface.  
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Figure 6. Handheld (black and yellow) and High-precision receivers (green and orange), 

we had a consistent methodology, including survey poles and walking directly above the 

wet/dry interface.  

 

The first goal of our research is to establish a consistent and accurate protocol for 

river shoreline surveying to enable reliable ground truthing comparisons with satellite 

data. We designed our in situ surveying methods from previously published work 

mapping lake surface area and coastal shorelines(Pilartes-Congo, 2022; Pitcher et al., 

2020). We evaluated three different GNSS receivers for shoreline surveying: a high 

precision rover (the Septentrio Altus NR3), with a cost of approximately $15,000, a 

weight of 1.16kg (excluding survey pole), and a stated accuracy of less than 10cm; the 

handheld Bad Elf GNSS Surveyor, priced at $650, weighing approximately 90 grams, 

and possessing a stated kinematic accuracy of 2.5 meters; and the handheld Garmin 

Etrex, priced at roughly $110, weighing 141 grams, and offering a stated accuracy of 15 
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meters. A consistent protocol was applied to all GNSS devices to ensure a direct 

comparison between various sensor types (Figure 6). The receivers were affixed to 

survey poles, with handheld instruments secured by screws or duct tape, and maintained 

level directly above the shoreline interface zone (between wet and dry//between water 

and land). Before survey commencement, devices were activated to operate for a 

minimum of 15 minutes to establish a stable satellite connection. Throughout the 

shoreline survey, devices consistently logged data at 1-second intervals. In instances 

where shoreline traversal was not feasible, we documented the timing where we could not 

exactly survey the shoreline and subsequently clipped during data processing. 

Shorelines were selected based on length, accessibility, and safety. River 

shorelines were surveyed on islands and banks with clear walkable reaches of at least 

50m in length while avoiding woody banks with overhanging vegetation that might pose 

risks during data collection. Ideally, field observations were conducted between 11 AM 

and 2 PM to align as closely as possible with sun-synchronous orbit observation times. 

When multiple users were involved in data collection, we maintained consistency by 

following the footsteps or route of the person with the high-precision rover (who walked 

first). The primary goal was to assess the accuracy of different GNSS sensors rather than 

evaluate errors associated with different individuals' interpretations of walking 

shorelines. 

Upon completing data collection, we adhered to specific processing steps to 

maintain consistency between GNSS devices. We waited at least one week after data 

collection to allow for the appropriate RINEX conversion updates. The Septentrio Rover 

records data in Receiver Independent Exchange Format (RINEX) and requires post-

processing, with free services offered by the Government of Canada through CSRS-PPP. 

Subsequent output CSV files were reprojected to UTM Zone 6N (EPSG:32606). We 

converted the GNSS outputs to SHP format and reprojected them into UTM Zone 6N. In 

instances where we were unable to walk a stretch of shoreline safely and accurately, such 

as due to the presence of large woody debris or overhanging banks, we noted the time. 

We removed all recorded points on all devices from those locations to ensure they did not 

affect our shoreline calculations. 
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To assess the performance and accuracy of shoreline mapping from different 

GNSS receiver types, we conducted a comparison of mapped shoreline positions. 

Operating under the assumption that the high-precision rover (the Septentrio Altus NR3) 

is the most accurate device, given its stated error margin of approximately 15 cm, we 

followed a series of steps for each shoreline. First, we converted the rover point SHP into 

a line to account for differences in internal logging speeds between the devices. Second, 

we calculated the average distance from each receiver point to the rover line, considering 

both the average distance (error from the rover) and the total number of points. Finally, 

we computed the weighted cumulative average for the receivers across all islands in the 

respective field season. This gave us a mean average error for each receiver. In total, we 

walked 28 shorelines on the Tanana River using the Septentrio rover, BadElf, and Etrex 

devices. The shorelines we walked ranged in length from 100m to 2km. On the Tanana 

River, we surveyed a total length of 19.71 km. On the Willamette River, we walked 15 

shorelines totaling 6.97 km, solely using the BadElf, as we completed the field effort 

after validation of device accuracy from the Tanana River.  

 

3.3 Comparison of Planet and Sentinel-2 Water Classifications to Ground-Validated 

Shorelines  

We obtained imagery acquired as close to our field surveys as possible. We 

compared our ground validations for June surveys to imagery from June 24th, as both 

platforms had clear sky imagery on this day. However, in August, there were no clear sky 

days coincident with when fieldwork occurred. Thus, we used the closest clear-sky 

observations from August 20th for Sentinel-2 (45,800 cfs) and August 23rd (43,300 cfs) 

for Planet. Over our August field survey days, discharge in the river ranged from 47,600 

– 48,500 cfs. On the Willamette River, we conducted fieldwork on September 27th and 

November 18th and analyzed Sentinel-2 and Planet data from the exact same dates to 

coincide with satellite observations. Our objective was to assess the 'best fit' between 

satellite classifications and in situ shorelines to determine the functional accuracy of 

classifications compared to ground data. Since we specifically chose to analyze clear sky 
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days, we did not need to use a cloud mask for this part of the analysis, avoiding potential 

cloud masking effects that would limit the accuracy of the comparison.  

We chose to use Normalized Difference Water Index (NDWI)-based 

classifications for surface water due to its compatibility with both Planet and Sentinel-2, 

as well as its prevalent use in contemporary research (Cooley et al., 2017; Huang et al., 

2018; McFEETERS, 1996; Mullen et al., 2023; Sogno et al., 2022). On the Tanana River, 

we first tested an NDWI classification (Green-NIR)/(Green+NIR). To capture the entire 

land water boundary, we generated shorelines from the NDWI band by applying binary 

thresholds in 0.01 increments between -0.2 and 0.2 NDWI values. To reduce noise, we 

sieved the values using a threshold of 5 and converted the TIFFs to polygon shapefiles. 

Finally, we converted the polygons into lines, with each line corresponding to a shoreline 

classification based on the selected thresholds. 

On the Willamette River, Planet NDWI histograms did not return a consistent 2-

peaked histogram as idealized in water classification studies (McFEETERS, 1996), 

representing water and land (Figure 5), meaning the NDWI water maps classification was 

unreliable.  Upon careful examination of the imagery, we think this is likely due to 

radiometric inconsistencies deriving from the low sensitivity of Planet’s Green band. We, 

therefore, instead tested water classification via thresholding in just the NIR band. Owing 

to the strong absorptive properties of water in the NIR, thresholding of the NIR band is 

another common water classification technique (Li et al., 2012; Liu et al., 2016)and has 

also been used with both Sentinel-2 and Planet (Islam & Ahamed, 2023). To find the best 

threshold for each image, we calculated the reflectance thresholds between 0.0 and 0.40 

at 0.01 increments to find the threshold most accurate to our shoreline observations, 

following the same comparison steps as on the Tanana River.  

To estimate the error compared to ground data for each satellite classification, we 

calculated the average error from the satellite to the in situ GNSS survey shorelines using 

the following steps. First, we computed the distance from each individual GNSS survey 

point to the nearest shoreline (24 total shorelines for the Tanana). We capped the 

maximum distance (error) at 20 meters to prevent the inclusion of extreme outliers 
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caused by entirely missed in-river islands. By averaging the total distance from every 

GNSS survey point, we derived the mean average error in the accuracy of each 

classification. This procedure was repeated for every classification threshold (40 for each 

sensor, in both NDWI and NIR) to identify the most accurate threshold in comparison 

with our in-situ shorelines. 

 

3.4 Multitemporal Analysis of Planet and Sentinel-2 Data  

To assess the functional temporal resolution of each dataset, we also analyzed 

imagery covering the entire 2022 open water seasons for both the Tanana and Willamette 

Rivers. We evaluated the multi-temporality of these datasets within the same SWORD 

reaches that we used for ground-validated shorelines. For the Tanana River, the ice-free 

time period spans roughly from May 8th to October 31st, 2022, while on the Willamette 

River, we analyzed the entire year, from January 1st to December 31st, 2022.  

Sentinel-2 data collection and cleaning were performed in Google Earth Engine. 

The process began by merging same-date imagery and selecting the clearest pixels. 

Cloudy and shadowed areas were masked out using the QA60 band(Ming Wang, 2020). 

The final image comprised a masked 4-band TIFF (RGB + NIR) clipped to the reach, 

with cloudy data masked out as no data. This resulted in an image for every day that 

Sentinel-2 collected data over the designated reach. 

Planet imagery was acquired through Planet Explorer and subsequently processed 

and cleaned locally. All data overlapping our specified date range and region of interest 

(ROI) were downloaded. We used the unusable Data Mask (UDM) from Planet (UDM 2, 

n.d.) to remove erroneous pixels not of clear ground, assigning a no-data value to 

masked-out portions of the image. Images from the same date were then mosaicked 

together, prioritizing clear image pixels. The product consisted of a mosaiced, cloud-

masked 4-band TIFF (RGB + NIR) every day when a Planet observation was available 

over the ROI. 

We established a river extent larger than the maximum observed extent, which we 
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used as the bounding limit and clipped all of our S2 and Planet imagery too. This meant 

that our histograms for NDWI data would display NDWI bimodal displays, as they have 

a closer to qual balance of Land and Water pixels in the imagery. Unlike our shoreline 

comparison, for our multitemporal analysis, we do not use a standardized threshold. 

Initial testing and previous work demonstrated that empirically selected thresholds can 

vary significantly due to image radiometric values, regions, and seasonality(Brown et al., 

2022; Claverie et al., 2018b; Frazier & Hemingway, 2021), leading to overestimation or 

underestimation of water area. Thus, instead, we use a normalized adaptive technique 

when using the same classification on more than one date. Adaptive thresholding is an 

effective tool for comparing images to classify water (Brown et al., 2022; Cooley et al., 

2017). Generally, NDWI histograms over water bodies are bimodally peaked (Figure 7), 

with each representing land and water (Zhang et al., 2018).  

 

 Figure 7. A+B: NDWI Histograms over the Tanana River from all data over the study 

area. We find distinctive two peaked histograms, although there is a significant variance 

between images on both platforms. C+D: NDWI histograms over the Willamette River, 

as you can see, Planet data does not display a clear second peak, while the Setinel-2 

imagery is not as distinctive as on the Tanana. 
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For all images from both platforms, we classified water using normalized NDWI 

and NIR thresholding techniques, enabling consistent and accurate comparisons of 

satellite data throughout the year. We calculated the NDWI band, which we then 

normalized between 0-100, with 0 representing the top of the land peak and 100 

representing the top of the water peak. The same normalization technique was applied 

with NIR data on the Willamette. However, the band peaks are inversed relative to 

NDWI, with water as the left peak (0) and land as the right peak (100). Given the 

radiometric variability between different sensors and observations, this normalization 

facilitates direct image comparison and generates more consistent results than employing 

fixed NIR or NDWI thresholds. We classified a chosen normalized value (e.g., 70 for 

NDWI) as water if greater than 70 and land if less than 70, producing a binary 

classification for a water/non-water map. We performed the same analysis for NIR. Both 

Planet and Sentinel-2 data were filtered to include only images with at least 75% clear 

river data, discarding images with less than 75% clear data. This means that the 

observations must cover at least 75% of the reach while having usable data; otherwise, 

they are deemed ineffective for rating curve creation or island comparison. 

We evaluated the temporal frequency of Sentinel-2 and Planet observations to 

understand each dataset's usability. Each day was classified into three categories for each 

dataset: No observation, Usable observation, and Unusable observation. No observation 

means that an image was not collected by that sensor on that day. We define a useable 

observation as when the reach was covered 75% usable (i.e., not cloudy, not missing) 

data on a given day for a given sensor. We analyzed all data that overlapped with the 

ROI, even if it was just a slight corner, so because of that, unusable data consisted of both 

cloudy days and clear days where the imagery did not sufficiently cover the ROI. The 

steps to this process are seen in Figure 8.  
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Figure 8. Flow chart to explain the process for computing utility of temporal data and 

comparing with discharge data at the reach scale.   

 

3.5 Comparative Analysis of Discharge  

We also assessed the comparative performance of Planet and Sentinel-2 satellite 

data by examining the correlation between observed inundation and river discharge 

obtained from USGS gages. To perform this correlation, we converted the total water 

pixels in water classification to effective width and assigned this value to each 

observation over the region of interest. Discharge data from the USGS gauge directly 

upstream of the reach were then compared to the effective width values. We established a 

rating curve to delineate the relationship between discharge and effective width. 
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IV 

RESULTS 

4.1 Ground Truthing GNSS Devices 

Through comparison of high precision vs. handheld GNSS surveying devices, we 

find that the relatively affordable, handheld Bad Elf and Etrex GNSS receivers exhibit 

satisfactory performance when compared to the high-precision rover, indicating their 

suitability for shoreline mapping with an acceptable accuracy of approximately 1-2 

meters. Over 24 shorelines on the Tanana River, the Bad Elf GNSS receiver had an 

average error of roughly 0.6m, while the Etrex GNSS receiver exhibited an accuracy of 

approximately 1.25 meters. It is essential to employ proper usage techniques, such as 

utilizing a survey pole, ensuring consistency, and activating the devices before initiating 

measurements, to attain these accuracies in the X and Y dimensions. Both Etrex and Bad 

Elf devices exhibit superior spatial accuracy compared to all but the highest-resolution 

satellites, rendering them appropriate for ground-truthing. Moreover, their portability, 

accessibility, and affordability render them advantageous over the Septentrio Rover when 

high precision (i.e., < 50 cm) is not required. We did not quantify the error in the Z-

dimension.  
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Figure 9. Comparison of the spatial accuracy of BadElf and Etrex GNSS devices relative 

to the Septentrio Rover. The BadElf has less variance and a lower mean error than the 

Etrex. Both devices are accurate to the rover on the island scale, but zooming in the Bad 

Elf has spatial accuracy on the sub-meter scale, while the Etrex has slightly more 

variance. 

 

4.2 Ground Comparison with Planet and Sentinel-2 Imagery 

On the Tanana River in June, we found that the NDWI classification method 

using both Planet and Sentinel-2 satellites yielded consistently accurate results. For 

Planet observations, we determined that the optimal NDWI threshold was -0.01, which 

resulted in an error compared to the GNSS shoreline retrievals of approximately 5.5 

meters. This is slightly larger than Planet's stated ground accuracy of 3.7 meters. The 

optimized NDWI threshold for Sentinel-2 imagery was 0.03 with an error of around 6.5 

meters, which is less than Sentinel-2’s stated ground sampling distance of 10 meters. Our 

results suggest that applying the same NDWI threshold to both Sentinel-2 and Planet 

imagery does not lead to accurate results, even when using atmospherically corrected 
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imagery. Additionally, we found that the NIR classification method was not effective for 

the Tanana River, likely due to the high sediment content that prevents the formation of 

clear land/water peaks. In June, the river exhibited a pattern of diminishing discharge, 

resulting in saturated shorelines along the areas we surveyed. 

 

 

Figure 10 – A+B. NDWI histograms for Planet and Sentinel-2 data from coincident 

observations on June 24th. C: Planet data is slightly more accurate in identifying the 

shorelines than Sentinel-2 relative to our ground shoreline surveys indicated by the 

Rover. Both images have a small threshold area where data classification accuracy is 

increased. D: Map view of the data, can see the increased resolution of the Planet data 

(blue) relative to that of Sentinel-2. 

 

For our August surveys, our survey window from the 26th to the 28th was 

disrupted by persistent cloud cover, preventing us from acquiring clear imagery. 
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Consequently, we had to use the closest clear-sky imagery: Planet's observation from 

August 23rd and Sentinel-2's from August 20th. Although the Sentinel-2 image was 

captured farther from our survey dates, it better resembled the river's water level during 

our fieldwork. In contrast, the Planet image was taken when the water level was slightly 

lower, leading to variations in shoreline locations. Furthermore, the river's water level 

was rising or consistent in August, while it was receding in June. As a result, our August 

observations revealed fewer muddy inundated zones, making satellite identification more 

straightforward compared to the conditions we encountered in June. In August, the best 

agreement threshold was -0.01 for Sentinel-2, resulting in an error of approximately 3 

meters, while the threshold for Planet was -0.07, resulting in an error of around 5.5 

meters. Both these thresholds were lower than those applied in June, signifying the need 

for flexible threshold values when comparing different date imagery. This result in 

threshold values for maximum accuracy underscores the importance of avoiding a one-

size-fits-all approach when comparing imagery across dates. 
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Figure 11 –  A+B: The NDWI histograms over the Tanana River in August 2022.  Both 

Planet and Sentinel-2 show a second water hump in areas with turbid water (Liu et al., 

2016). C: It must be noted that we did not have coincident imagery, and although Planet 

was closer to the date of observation, the river was at a more similar level for Sentinel-2. 

A rising river likely led to more distinctive identifiable shorelines. D: In the shoreline 

classification, it is clear to see the difference in pixel size between Sentinel-2 and Planet 

observations. 

 

In contrast to the Tanana River, the NDWI classification on the Willamette River 

did not produce two distinct land/water peaks in Planet imagery (Figure 4). This result is 

potentially attributable to the radiometric sensitivity of the Planet Green band, as the 

NDWI data over the river exhibited considerable noise. Sentinel-2 data yielded a two-

peaked NDWI histogram, albeit not as distinct as over the Tanana. Both Planet and 

Sentinel-2 data generated two-peaked histograms in NIR classification, but establishing a 

consistent threshold for the entire year proved difficult due to seasonal variations. For the 
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field data from September 27th, with a discharge at the Harrisburg gage at ~5,500 cfs, we 

find the optimal NIR thresholds to be 0.15 for Planet and 0.23 for Sentinel-2. These 

thresholds highlight the radiometric disparities between the two satellite systems, 

specifically when using the NIR band (Figure 3). The error of Planet data was 

approximately 3.0 meters, while that of Sentinel-2 was around 3.5 meters.  Our second 

field survey date was on November 18th, discharge of 6,400 cfs. We used coincident 

satellite imagery observations. We find a NIR threshold of 0.16 for Planet and 0.23 for 

Sentinel-2. With a mean average error of 3.5 and 4m, respectively. The discharge in 

November was higher than in September but was during a falling period as Discharge 

peaked at 19,000 cfs on November 5th and declined steadily til our survey date. In this 

example, NIR performed superior to NDWI, and the field data demonstrated it to be a 

more representative classification scheme.  
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Figure 12 – A+B: Histograms for the NIR band surface reflectance values over the 

Willamette River on September 27th. Sentinel-2 and Planet NIR values do not begin at 

the same reflectance origin, and the thresholds are not directly comparable to one 

another. C: Accuracy for both satellites is significantly improved to just over 3m on the 

Willamette River, where there are more defined shorelines. D: The image in the bottom 

right is NIR based, with the black area representing water. 
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Figure 13 -A-B: Histograms over the Willamette River on November 18th. The survey 

varies slightly from that in September, which explains the differences in the histograms 

relative to September but emphasizes the necessity of normalized thresholding. C: A 

Planet NIR threshold at 0.11 and Sentinel-2 threshold at 0.21 led to the minimum error 

relative to the Rover of 2.5 and 4.5 meters, respectively. 

 

4.3 Temporal Differences between Sentinel-2 and Planet 

Although the differences in spatial accuracy between Planet and Sentinel-2 

satellites are minor, our analysis reveals that Planet offers a superior temporal resolution. 

During our 172-day observation period on the Tanana River, we managed to identify 32 

Planet observations and 25 Sentinel-2 observations that were usable. Here, 'usable' refers 

to an image that provides clear pixels covering at least 75% of the river's reach. While 

Planet collected imagery over 96% of the total time, only 18.5% of the year had usable 
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observations. In contrast, Sentinel-2 collected imagery for approximately 60% of the 

dates and yielded usable data 14.5% of the time. Despite a more evenly distributed record 

for Planet, Sentinel-2 had a higher percentage of usable observations, likely due to more 

consistent data quality, complete reach coverage, and a more effective cloud masking 

product. 

 

 

Figure 14 – A: The temporality of observations between Planet and Sentinel-2o over the 

Tanana River ice-free time period between May and October. The most usable 

observations in June coincided with clear sky days. B: Total cumulative observations; 

even though Planet has significantly more observations, a similar amount is usable, likely 

due to full area coverage and data quality. C: The rate of observations over time; Planet 

has more Usable observations spread throughout the year, while Sentinel-2 is mostly in 

June. 

Over the Willamette River, we noticed that both Planet and Sentinel-2 satellites 

provided less temporal coverage than they did over the Tanana River. However, Planet 

outperformed Sentinel-2 in terms of the ratio of observed data to usable data. Throughout 

a 365-day period covering the 2022 calendar year, Planet made observations of the river 

on 253 days, equivalent to roughly 70% of the year, yet only 84 of these days, or about 
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23%, yielded usable data. This fell short of Planet's advertised daily observation 

frequency. A possible reason for the lower total observations was an inconsistency in data 

collection from April to June, during which there were the highest occurrences of no 

observations. Sentinel-2 had observation days totaling 145, or 40% of the year, with only 

38 days, approximately 10.4%, deemed usable. Sentinel-2 observation schedule 

maintained a consistent schedule over the year. The distinct weather patterns of the 

Willamette River, characterized by extremes of either very cloudy or completely clear 

conditions, notably with clear dry summers and cloudy winters, contrasted with the 

Tanana River's mixed cloud patterns. These weather patterns influenced the variance of 

usable observations, as few clouds can cover significant portions of the reach of interest, 

rendering the data unusable for these purposes.  

 

 

Figure 15  – A: 2022 temporal statistics for the Willamette River. While both platforms 

accumulate the most usable observations of the summer, predominately cloud-free 

months, Planet has more consistent data throughout the entire year. B: Planet has 

roughly 2/3 more observations than S2 but almost double the # of usable images. C: 

Planet has an increased usable observation over the entire year. 
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4.4 Comparison to Discharge Results 

Our initial comparisons from inundation to effective width to discharge yield 

promising results. Over the Tanana River, at the reach scale, we find the Sentinel-2 data 

to correlate at 0.78 and Planet 0.83 (Figure 16). We not find considerable difference in 

correlation between Sentinel-2 and Planet. Further analysis of the results demonstrates 

that these derived calculations, it is clear that this data may not be consistent nor correct. 

It represents a strong seasonality in the data and can track discharge on a monthly scale 

but not daily nor from image to image. We see this inconsistency in both Planet and 

Sentinel-2 results. This likely is an error in the adaptive thresholding process and the 

scaling of the effective width data.  

 

Figure 16  – Using the adaptive thresholding methodology to compare an effective width 

value derived from inundation against discharge. A logarithmic fit is applied to Sentinel-

2 (A and B) data with a correlation of 0.78, while Planet has 0.83(C and D). This data, 

which does demonstrate a seasonality that reflects Discharge, is unreliable on smaller 

scales and returns invalid Effective Width (m) data.   

 

The methodology currently creates a water map for every image and filters these 

images based on the % of clear pixels as defined in the methods. In Figure 17, you can 
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see the result of the filtered data. At the scale, the river appears to shrink in size with the 

usable water maps. This may be due to a changing threshold-based calculation that does 

not effectively model the river changes. It also appears that some images are missing data 

over the river (e.g., 08-03) and may be an artifact of the cloud masking step.  

 

 

Figure 17 – An adaptive thresholding approach to identify discharge over the Tanana 

River. This example shows S2 imagery using a subset of dates over the reach of interest. 

Red days are not included in the analysis due to not enough clear data pixels over the 

reach.  
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V 

DISCUSSION 

5.1 Shoreline Walking Validation 

Shoreline walking is a valuable tool for interpreting ground surface features 

captured by water classifications and, crucially, identifying surfaces they fail to detect. 

Our in-situ shoreline surveys on the Tanana River revealed that satellite classifications 

often do not perfectly capture the "wet vs. dry" transition, particularly on sandbars where 

discerning between inundated sediment and shallow mucky water is challenging using 

images alone. We found that cost-effective handheld GNSS receivers perform adequately 

compared to satellites, making shoreline walking an affordable ground validation 

approach. Our findings also indicate that human error in identifying and traversing 

shorelines exists but is generally limited to less than one meter. The ~one-meter error we 

find represents a combination of sensor and human error, implying that human error is 

relatively minor in numerous environments. However, we note that the while the field 

surveying team attempted to walk the same shorelines, they exhibited slight discrepancies 

in their perception of shoreline locations, resulting in minor variations in data collection. 

Factors including individual step size and walking style may also marginally influence 

the data. The human survey error likely exists on different values for different shoreline 

types. A rocky shore, with even footing, is much easier and clearer to survey directly 

above the interface zone. We find supporting evidence that the difficulty of classification 

increases as grain size decreases (Cabezas-Rabadán et al., 2021). At the same time, a cut 

bank with slightly sandy surface at the water level is extremely difficult to monitor. Areas 

where remote sensing classifications struggle due to vegetation and adverse conditions 

often coincide with locations where traditional surveying techniques are most likely to 

encounter difficulties. By recognizing these potential error sources, we can work to 

mitigate their impact on our analysis, thereby enhancing the overall quality of shoreline 

data. 

 

 While shoreline ground truthing offers valuable insights into the performance of 
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classifications compared to actual ground conditions, it exhibits some inherent 

limitations. First, shoreline walking necessitates accessibility, as it can only be conducted 

in areas with safe water access, excluding remote and dangerous waterways. Remote 

sensing often uniquely enables analysis of remote regions, but many locations cannot be 

validated because of their inaccessibility. Furthermore, shoreline walking is physically 

demanding, involving navigation through challenging terrain and time-consuming data 

collection. Sampling bias may arise due to the varying ease and safety of different 

shorelines, potentially skewing sample areas. Locations with obstacles, such as large 

woody debris, mucky zones, or other blockages, were not viable for ground truthing. 

Moreover, the state of the river significantly impacts the accessibility of different 

shoreline types. During a falling river phase, muddy shores that were recently submerged 

pose challenges for sensors. In contrast, during a rising river phase, there is a more 

distinct demarcation between dry land and water, making it easier for satellites (and 

humans) to differentiate. Thus, while informative, shoreline ground-truthing should be 

considered in the context of these limitations. Ground truthing through traditional surveys 

is effective where possible; the limitations should not prevent the necessity of shoreline 

observations. High-precision Drones can be used as an additional ground-validating data 

source and bridge the gap between ground survey and remote sensing imagery (Levenson 

& Fonstad, 2022). 

 

5.2 Planet and Sentinel-2 Spatial Resolution 

Our analysis indicates that Planet exhibits a slight advantage in terms of 

functional spatial accuracy in comparison to field data, though in specific circumstances, 

it may perform less effectively than Sentinel-2 due to issues related to the radiometric 

resolution. If assessed solely based on stated resolution, one would expect Sentinel-2 to 

exhibit an error ranging between 5-10 meters (given its 10x10-meter pixel size/ground 

sampling distance) and Planet to exhibit an error between 1.5 and 3.7 meters (given its 

3.125x3.125m pixel size/ground sampling distance). However, our findings reveal that 

Planet demonstrates a higher error in comparison to ground data than would be expected 
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given its stated pixel size, while Sentinel-2 does not. 

Our findings indicate that inconsistencies between surface reflectance imagery 

from multiple dates affect both satellites; however, the effects are more pronounced and 

variable with Planet sensors, ultimately influencing the derived classifications. For both 

sensors, NDWI calculations were performed suitably on the Tanana River, where the 

high sediment content creates a distinct two-peaked histogram. In contrast, the 

Willamette River's green band sensitivity led to significant inconsistencies in sensor 

results, rendering NDWI ineffective. NIR performed well on the Willamette River as an 

alternative to using an NDWI adaptive technique. We observed that the maximum 

accuracy of both NDWI and NIR-derived classifications is similar for both sensors, 

although they are required in different river environments. Normalized thresholding for 

the effectiveness of both sensors remains challenging, even after atmospheric corrections, 

due to factors such as seasonality of observations, water quality, and other elements that 

limit the consistency of results. 

It is important to acknowledge the variability in the threshold performance of the 

mentioned satellites. When considering the NDWI classifier accuracy figures, it is 

observed that Planet's derived accuracy metric exhibits a slightly wider range compared 

to Sentinel-2. This suggests that when utilizing Planet data, even if the desired threshold 

is missed, the impact on shoreline accuracy will be relatively lower compared to Sentinel-

2. This characteristic becomes especially valuable considering the challenges associated 

with accessing ground data and the subsequent calibration of derived water maps. The 

observed discrepancies in the histogram peaks between water and land can be attributed 

to the differences in the NIR and Green bands utilized by the satellites. Notably, the 

disparity in peak values is more pronounced in Planet data than in Sentinel-2. 

Our selected error metric for assessing the accuracy of satellite-derived water 

maps was the Mean Average Error. However, there are limitations to this method, 

particularly with respect to pixel size. Throughout our analysis, we consistently observed 

that the errors associated with Sentinel-2 were smaller than their corresponding pixel 

size. This finding suggests that the GNSS-identified shorelines and the shorelines derived 



36	
	

from water maps likely overlapped within the same pixel. 

 

5.3 Planet and Sentinel-2 Temporal Resolution 

While Planet’s spatial resolution advantages over Sentinel-2 are minor, we do find 

that Planet exhibits a notable advantage in terms of temporal resolution. We observed that 

both satellites register a significantly higher number of observations over the Tanana 

compared to the Willamette, with Planet having over two times the useful photos of 

Sentinel-2 on the Willamette. Over the Willamette, Planet provides an observation on just 

under 70% of the total days; however, a significant portion of the missing data occurs 

over a two-week stretch. This is likely, however not for certain, because Planet data was 

unable to acquire ground geolocation due to extremely cloudy conditions, and thus does 

make the data available for download. Excluding this data gap, the relative frequency of 

observations compared to Sentinel-2 would be higher, but such data inconsistencies 

should be expected when working with Planet, given the constant changes to their 

satellite constellation. Despite Planet's higher temporal frequency, its imagery often fails 

to cover the entire ROI, limiting its usefulness and advantage over Sentinel-2, which 

almost always records the entire ROI. Additionally, Sentinel-2's larger swath size 

increases the likelihood of observing the entire reach within one image, compared to 

Planet, where multiple images may need to be composited.  Lastly, we note that Sentinel-

2 observation patterns over the Willamette and Tanana are more consistent (i.e., 

acquiring data approximately two-three days over the Tanana and once every three days 

over the Willamette) compared to the Planet’s less predictable albeit increased (daily to 

sub-daily) sampling frequency. It is important to note that the greatest source in the 

usability of observations stems from the cloud masks generated by each respective 

platform. Improved cloud masking would likely increase the percentage of usable data 

for each platform and each respective reach.  
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5.4 Planet and Sentinel-2 Accessibility 

A crucial advantage of Sentinel-2 imagery over Planet lies in its global 

accessibility. Sentinel-2 imagery is publicly available and easily accessible, as it is 

natively integrated within Google Earth Engine (GEE), promoting open-source code 

collaboration and constantly improving the Sentinel-2 product (Gorelick et al., 2017). In 

contrast, Planet imagery is not freely available, although partnerships with space agencies 

and some universities make the data more broadly accessible to researchers. Planet 

imagery can be best accessed through Planet Explorer, which allows batch ordering and 

querying, but the system does not integrate as seamlessly with GEE as Sentinel-2 does. 

Moreover, the mosaicking and cloud masking products provided by Sentinel-2 and 

accessible can be performed tasks online, while Planet's (rapidly improving) mosaicking 

and masking are at times performed locally using the necessary UDM files.  Although the 

synergy between the Landsat and Sentinel-2 systems has been extensively studied, 

including the development of a harmonized data product (Claverie et al., 2018b; 

Vanhellemont, 2020), less attention has been given to the differences and potential 

integration between Sentinel-2 and Planet data. This study shows that the systems are 

more similar in spatial accuracy, but there is not a clear need as Planet has superior 

temporal data collection. Planet may be used as a complement to Sentinel-2 data when in 

need of increased temporal resolution data.  

 

5.5 Derived Comparison to Discharge 

Interestingly, our analysis of the comparison between remotely sensed effective 

width and discharge data highlights that scaling up classification methods based solely on 

shoreline comparison may not be the most effective approach. The relationship between 

inundation and discharge is neither consistent nor uniform, as subsurface hydrodynamics 

remain undetectable by optical satellites.  

Using NDWI-derived water classifications to minimize error relative to in situ 

shoreline observations may not optimally classify changes occurring throughout the 

entire river system. In challenging locations like the Tanana River, where sediment 
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content and watercolor vary substantially, it is crucial not to overemphasize the water-

sediment interface in calculations. In a previous analysis of lake areas using Planet and 

Sentinel-2, the two platforms produced minimal differences in area detection when both 

platforms identified lakes present, but Planet identified significantly more small lakes 

(Mullen et al., 2023). Differences in shoreline identification become less significant as 

the region of interest (ROI) expands, emphasizing the need to capture broader 

hydrological changes rather than scaling to specific shorelines that may not be 

representative of the entire region. This relationship varies across rivers, and optimizing 

these relationships could involve focusing on ROIs smaller than the reach scale. Aligning 

classification with ground-truth observations prioritizes a limited period over the study 

duration, which may not necessarily result in a superior rating curve for the river. 

To combat this issue in our discharge calculation, we tried calculating inundation 

from a smaller portion of the river (Figure 18). We used the same methods for the full-

reach normalization. We chose this area because of the islands with long sandy bars that 

are highly variable to slight changes in discharge. For this analysis, we manually filtered 

to only use 100% clear images of the river so to assure the quality of the input data.  We 

can conclude that this specific methodology in our research fails to relate to discharge, 

but that does not mean other adaptive thresholding techniques may not identify the 

phenomena more accurately.  
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Figure 18  – A: Example of using clear Sentinel-2 images over the Tanana River to map 

inundation on a subset of the reach, B: Discharge compared with effective width returns 

incorrect data, and C: The correlation is non-existent between Discharge and Effective 

Width. The error found from these images has more to do with the classification scheme 

than input quality.   

 

While our inundation comparisons are not accurate at this current phase, they 

show promise in capturing the seasonality of the river system. Previous scientific studies 

(Cooley et al., 2017) demonstrate that an adaptive threshold can be used to relate to 

discharge. However, the discharge comparison could be increased with the inclusion of 

physical hydrology measurements. The recent satellite remote sensing study of river 

discharge (Bjerklie et al., 2023) recommends that optical data is just one piece of the 

larger puzzle in deriving discharge from space. Optical can still be useful in identifying 

phenomena and contributing to data from the newly launched NASA Satellite Water and 

Ocean Topography (S.W.O.T.) satellite.   
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5.6 Discussion Summary 

In summary, while Planet does offer slightly higher spatial and temporal 

resolution than Sentinel-2, the differences are small enough that, when combined with 

data accessibility issues, Sentinel-2 data is likely suitable for many analyses requiring a 

moderate combination of high spatial and temporal resolution. For consistent and 

accurate classification, Sentinel-2 is likely preferable to Planet. The difference in 

accessibility is particularly notable by the ease of Sentinel-2 data. Planet's main 

advantage is its temporal resolution; if approximately weekly observations are 

acceptable, the ease of accessibility and improved, more consistent radiometric resolution 

make Sentinel-2 a better option for most applications. 
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VI 

CONCLUSIONS 

In conclusion, our study emphasizes the usefulness of ground observations in 

understanding the functional accuracy of satellite-derived water classification. Despite 

the accessibility and physical challenges, shoreline walking presents a cost-effective 

approach enabled by affordable handheld GNSS receivers. We find that in-situ 

observations can help make remote sensing classification decisions to more accurately 

depict that actual ground story. It's important to note, however, that the state of the 

river—whether rising or falling—can significantly influence the accuracy of shoreline 

classification. Our investigation also revealed the substantial variability of threshold-

based classification techniques across different rivers and within each watershed's 

seasonal patterns. Therefore, the need for adaptive thresholding proves that reflectance 

value comparison is paramount. Without this normalization, data inconsistencies could 

lead to inaccurate interpretations. Ultimately, this comparative analysis refines our 

techniques and guides informed decision-making regarding satellite data sources and 

classification approaches, bolstering our capacity to monitor and study dynamic river 

systems. 

We found that the spatial accuracy discrepancies between Sentinel-2 and Planet 

data were less pronounced than initially assumed. While Sentinel-2 data displayed a 

minor reduction in functional spatial accuracy and a less advanced temporal resolution, it 

remains an appealing option due to its ease of use and widespread accessibility. However, 

the true strength of Planet data lies in its superior temporal observation capabilities, 

which offer significant advantages in certain applications. 

This research invites additional questions on the capabilities of high-resolution 

sensors. There is compelling potential in the development of a hybrid product that 

combines Sentinel-2 and Planet data. This product would use Sentinel-2 as the 

foundational base, with the option to scale up to Planet in specific scenarios. Achieving 

this would likely require consistency in cloud masking across both platforms. 

Additional questions include assessing the effectiveness of machine learning 
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techniques in identifying the shoreline interface or in predicting discharge measurements 

(Claverie et al., 2018b; Hondula et al., 2021; McAllister et al., 2022; Mullen et al., 2023; 

Toure et al., 2019).  

The exploration of spatial and temporal accuracy for remote sensing of lakes 

remains a critical area of study. Additionally, analogous studies could evaluate the 

functional accuracy of commercial radar data, which has the advantage of being 

unaffected by cloud cover. 
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