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DISSERTATION ABSTRACT

Ethan Holdahl

Doctor of Philosophy

Department of Economics

June 2023

Title: Theoretical and Experimental Investigations into the Evolution of Populations and
their Behavior.

This dissertation examines game theory and evolutionary dynamics, exploring

strategic decision-making, social norm emergence, and inter-group con�icts.

Chapter 2 focuses on stepping stones, recurrent classes that facilitate equilibrium

transitions. An experiment tests their e�ectiveness in promoting the transition to a

Pareto e�cient equilibrium. Results show groups with stepping stones consistently

achieve the high-payo� equilibrium, contrasting occasional failures in groups without

them. Information about other players' payo�s is crucial, with complete information

outperforming incomplete information. However, the e�ect diminishes with stepping

stones, emphasizing their low-cost transitions. Players' decision-making behavior and

factors in�uencing deviations are also examined.

Chapter 3 explores the role of incomplete sampling in determining convergence to

conventions in adaptive play. The chapter demonstrates that even minimal incomplete

sampling is su�cient for convergence to occur in the 2 × 2 coordination game. The

analysis also reveals that incomplete sampling criteria are often unnecessary, expanding

the boundaries of adaptive play theory. The implications of incomplete sampling on the

perturbed adaptive process are examined, identifying a robust resistance function that

persists under di�erent degrees of sampling.

iv



In Chapter 4, the e�ects of signaling in inter-group con�icts are investigated.

The competitive advantage of costly signaling within groups is examined, and a model

is developed to explore the dynamics of inter-group con�icts. The �ndings suggest that

shorter periods of isolation and more e�cient weapons favor the rise of signaling norms in

societies.

Overall, this dissertation provides valuable insights into game theory, evolutionary

dynamics, and their implications for strategic decision-making, social norms, and inter-

group con�icts. The �ndings contribute to interdisciplinary �elds such as economics,

sociology, and political science, o�ering a foundation for further research in these areas.

This dissertation includes both previously published co-authored material and

unpublished co-authored material.
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CHAPTER I

INTRODUCTION

Game theory and evolutionary dynamics provide valuable frameworks for

understanding strategic decision-making, the emergence of social norms, and the

dynamics of inter-group con�icts. These �elds o�er insights into the complex interactions

and behaviors exhibited by individuals and groups in various strategic settings. This

dissertation encompasses three distinct chapters that explore di�erent aspects of game

theory and evolutionary dynamics, contributing to our understanding of these phenomena.

Chapter 2 focuses on the concept of stepping stones in game theory, drawing on

the theoretical foundations established by Young (1993) and Ellison (2000). Stepping

stones are recurrent classes that facilitate transitions between di�erent equilibria. The

chapter begins by introducing an experimental design aimed at testing the e�ectiveness

of stepping stones in facilitating the transition from an initial equilibrium to a Pareto

e�cient equilibrium. The experiment employs a 3x2 treatment design, varying the amount

of information players receive about the game and the speci�c game they play. The results

highlight the signi�cance of stepping stones in promoting successful transitions, as groups

playing games with stepping stones consistently achieved the high-payo� equilibrium in

those games. In contrast, groups without stepping stones occasionally failed to make

the transition. Additionally, the impact of information about other players' payo�s on

game outcomes is examined. Groups with complete information performed better than

those with incomplete information in the absence of stepping stones, attributable to the

common knowledge of a Pareto improvement. However, the e�ect of complete information

diminished when stepping stones are introduced, as they o�er low-cost transitions to

desirable outcomes. Lastly, the chapter explores players' decision-making behavior in

relation to their myopic best response and identi�es factors in�uencing their propensity

to deviate from it. The �ndings provide support for the use of adaptive learning models

1



and underscore the importance of incorporating payo�-dependent mistake models for more

comprehensive analysis.

Chapter 3 delves into the theory of adaptive play and investigates the role of

incomplete sampling in determining the convergence to conventions. The fundamental

question addressed is how incomplete sampling needs to be for convergence to occur.

Focusing on the foundational 2 × 2 coordination game, the chapter establishes that and

degree of incomplete sampling is su�cient for the unperturbed adaptive play process to

converge to a convention. Moreover, we demonstrate that in most cases, the criterion of

incomplete sampling is unnecessary, thereby expanding the boundaries of the adaptive

play framework. Additionally, the chapter explores the implications of allowing for

minimally incomplete sampling on the perturbed adaptive process. By identifying a robust

function for resistance that remains consistent across the degree of sampling, we show that

increasing the sample size beyond a certain threshold may lead to increased resistance

between conventions. However we show that even when the resistance of transition does

change as result, the stochastically stable states remain unchanged under incomplete

sampling conditions. The insights provided in this chapter underscore the resilience of the

adaptive play process and shed light on the e�ects of sampling on convention emergence.

Chapter 4 explores the e�ects of signaling in inter-group con�icts, focusing on

the competitive advantage of costly signaling at the intra-group level and extending the

analysis to the inter-group context. While the bene�ts of signaling within groups are well-

documented, the role of signaling in inter-group con�icts remains relatively unexplored.

The chapter introduces a model where populations with signaling eventually evolve to be

homogeneously high type, providing an advantage in intra-group interactions. However,

in inter-group con�icts, the absence of signaling costs gives populations without signaling

a competitive edge. Nonetheless, the chapter argues that signaling can still play a crucial

role in inter-group con�icts by accelerating the evolutionary process. The model predicts

2



that societies with shorter periods of isolation before con�icts and more e�cient weapons

are more likely to witness the rise of signaling norms. By examining the dynamics of inter-

group con�icts and considering the potential impact of signaling, this chapter expands our

understanding of the factors in�uencing the emergence and prevalence of social norms.

Overall, this dissertation presents a comprehensive exploration of game theory and

evolutionary dynamics, drawing insights from experimental design, theoretical analysis,

and modeling. The �ndings from each chapter contribute to our understanding of strategic

decision-making, the emergence of social norms, and the dynamics of inter-group con�icts.

These insights have broader implications for �elds such as economics, sociology, and

political science, o�ering valuable perspectives on human behavior in diverse strategic

settings. By integrating these diverse perspectives, this dissertation aims to advance our

understanding of complex social phenomena and provide a foundation for further research

in these areas.
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CHAPTER II

TESTING THE EFFICACY OF STEPPING STONE EQUILIBRIA IN

COORDINATION GAMES

2.1 Introduction

As a social species, coordination games are ever present in our lives. From the

language we speak, where we choose to live, and how much e�ort we put into our work,

often the best choice depends upon matching the decisions made by those we interact

with. In games like these, there are often multiple equilibria. However, not all equilibria

are always as desirable as others; Once an equilibrium has been achieved, whether by path

dependency, as a result of risk preferences, or simply due to chance, escaping from one

equilibrium to another, even one that is a Pareto improvement, is inherently di�cult.1

This potential of getting stuck in payo� dominated equilibrium is what makes the study

of variations of the stag hunt game, �rst considered by Jean-Jacques Rousseau in his

Discourse on Inequality in 1755, of considerable interest to economists spanning the gamut

from experimentalists to macro theorists (Bryant, 1983; R. Cooper & John, 1988; Romer,

1996). In this paper, I introduce, experiment with, and examine the e�ectiveness of the

addition of a stepping stone equilibrium crafted to aid the transition from the payo�

dominated equilibrium to the Pareto e�cient equilibrium in the classic stag hunt game.

Coordination and transition problems have increasingly become a staple in our

evolving society. As technology continues to improve, conventions and goods that were

ubiquitous years ago become threatened by the process of creative destruction where old

goods or markets become displaced by new products and markets (Schumpeter, 2013).

However, these new, better markets don't instantly replace their predecessors. A new good

may still require improvements in technology or a critical mass of early adopters before

1An equilibrium E is a Pareto improvement over another equilibrium E′ if all players weakly prefer E
to E′ and at least one player strictly prefers E to E′.
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mainstream adoption. Take for example, the now robust streaming market. In the 1990's

and early 2000's, there was virtually no market for streaming movies and TV shows,

everything was consumed via DVD and cable TV. That ended up changing with Net�ix

who had the idea that streaming would be the future of movie consumption. However,

in order to make their vision a reality, Net�ix operated as a DVD delivery service before

adding streaming as an option once it became viable. In an interview, Marc Randolph, the

�rst CEO of Net�ix said:

One of the biggest challenges that we had, which I think is also one of the

things we did very well, is recognize very early on that if we were going to be

successful, we had to come up with a premise for the company that was delivery

agnostic.

So we could not come out and say, �Hey, we're the best way on Earth to rent

plastic.� Because while that might be the right positioning for the present, it

would crush us in the future.

But if we were to come out and say, �This is all about downloading or

streaming,� and we said that in 1997 and '98, that would have been equally

disastrous. So we had to come up with a positioning which transcends the

medium.

Net�ix succeeded because it realized that it needed to create a pathway for the

consumer to transition from renting movies at Blockbuster to receiving deliveries from

Net�ix in the mail to �nally streaming them online. While the payo�s in this situation

are not static like those stag hunt game, the dynamics and importance of a transitional

strategy are similar.

A current example of a transition in progress that more closely mirrors the payo�s

in the games considered in this paper is the question of personal vehicle choice in the

5



United States. Among a wide range of disadvantages, gas cars tend to produce higher

emissions, cost more to operate, and require more frequent maintenance than their electric

counterparts (Harto, 2020; Malmgren, 2016). However, making the switch from gas

to electric can be an unappealing decision for many due to the dependence on fueling

infrastructure and mechanics. In this sense, vehicle choice is a coordination game, as more

people switch to electric, more charging stations are built2. While gas stations are nearly

omnipresent, the relative scarcity of charging stations can make driving certain routes

much less e�cient,3 if not impossible in an electric vehicle. This may explain why in 2018

when passenger vehicles contributed 29% of total US greenhouse gas emissions, electric

vehicles (EVs) only accounted for 2% of US auto sales 4.

Trying to change equilibrium selection in these group coordination games with

so much inertia behind them can be a challenging and expensive task. Continuing with

the EV example, in an e�ort to speed up the transition from gas to electric, the recent

In�ation ReductioFiguren Act is estimated to cost over $14 billion in clean vehicle

spending over the next ten years, primarily though EV tax credits 5. Directly incentivizing

the desired strategy should help increase the transition speed to that equilibrium, however,

with how important and costly transitions like these are it is valuable to be as e�cient

as possible. Theoretically, there may be other mechanisms that can help a population

transition from one strategy to another that are more e�cient; If there exists another

2Firms and the government also build charging stations to help stimulate adaptation, which can be
though of as equivalent in e�ect to a proportion of population adopting the electric choice

3The charging rate in electric batteries decreases as current charge level increases. For example, a Tesla
3 can charge from 0% to 50% in 15 minutes using a Tesla Supercharger, however, it takes an additional 41
minutes to charge it from 50% to 100% (Ho�man, 2020). Consequently, the most time e�cient strategy
when driving a long route is to only partially charge the battery at charging stations, thus reducing total
time spent charging. However, this method requires su�cient charging station density, otherwise drivers
may have to spend more time charging than what would otherwise be e�cient just to make it to the next
charging station.

4United Auto Workers (2020)

5Congressional Budget O�ce (2022)
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strategy that provides an easier and faster transition from the initial equilibrium to the

desired state, then the creation or investment in that path may be more e�cient than

directly incentivizing the desired equilibrium. In the case of vehicle choice, the plug-in

hybrid vehicle (PHEV) could be viewed as the strategy to facilitate that transition. The

PHEV boasts some of the bene�ts of EVs, as it has a short electric only range, which

is su�cient for most daily tasks, without as many cons, since it is able to use gas. This

position the makes the transition from gas to plug-in relatively easy. If plug-ins were then

widely adopted, that would incentive more charging stations to be built which would make

the full transition to EVs easier. Thus, the inclusion of a PHEV as a strategy theoretically

acts as a stepping stone, a strategy that makes the transition from gas to electric easier.

To examine if stepping stone are e�ective, I design a study to test if stepping stones

impact transition dynamics in group coordination games. In the experiments, subjects

played 200 rounds of a stag hunt coordination game where the group was initiated with

starting at the safe, Pareto dominated, equilibrium. Groups were treated with complete

or incomplete information about other's payo�s and group played games with a high

payo� stepping stone, low payo� stepping stone, and no stepping stone (control). Halfway

through the 200 rounds, the stepping stone strategy was removed and players played the

no stepping stone game for the remaining 100 rounds with everyone starting at the safe

equilibrium again. The idea being to see if any treatment e�ects in the �rst 100 rounds

would impact play after the treatment is removed, even in the worst case scenario.

The results of the experiment show that groups were able to transition to and play

the e�cient equilibrium quicker and more often when there was a stepping stone present,

providing experimental evidence that a third equilibrium can speed up the transition from

the initial to the e�cient equilibrium. Additionally, the presence of compete information

about the other players payo�s impacted the group's play. When complete information

was present, players more quickly and more brie�y utilized the transition strategy to jump

7



to the e�cient equilibrium strategy, something they were less willing to do when there was

no stepping stone. However, when players only knew their own payo�s, they frequently

used the transition strategy and through it more slowly arrived at the Pareto e�cient

equilibrium. In short, more information about the game appeared to make individuals

more froward-looking. As such, it seems that the mere presence of a stepping stone may

be enough to change behavior, even if the strategy isn't frequently chosen.

Related Literature. There is a large literature focused on experiments

addressing the challenge of coordination failures (Devetag & Ortmann, 2007). Games

like the minimum e�ort game (Van Huyck, Battalio, & Beil, 1990), are among the most

studied and illustrate that in coordination games even though a Pareto e�cient outcome

may be a Nash equilibrium, it may be di�cult to achieve if it is risk dominated by another

equilibrium. While many studies of the repeated minimum e�ort game have shown that

as group size increases, groups are more likely to exhibit coordination failure (Di Girolamo

& Drouvelis, 2015; Goeree & Holt, 2005; Knez & Camerer, 1994; Van Huyck et al., 1990),

the game examined in this paper should be less prone to coordination failure due to group

size since payo�s depend on the full distribution of other player's strategies, not just the

minimum e�ort level.

There is a small, growing experimental literature studying deviations from myopic

best response behavior in laboratory games. Hwang, Lim, Neary, and Newton (2018)

examines which convention emerges between �ve strategies in a bargaining game. They

�nd that deviations from myopic best response is payo� dependant as their subject

displayed intentional bias. They suggest that this mechanism leads to the egalitarian

solution being the most likely bargaining norm to evolve. Lim and Neary (2016) studies

the behavior of a large population playing the Language Game of Neary (2012). They �nd

that deviations depend on the myopic best-response payo� but not on the deviation payo�

and that deviations decrease over the rounds played in the experiment. Mäs and Nax
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(2016) tests the decisions made in a coordination game when players are in a �xed network

as described by Ellison (1993). They also �nd that deviations are payo� dependant and

that there is evidence of individual heterogeneity in those deviations. I contribute to this

literature by studying a non-competing coordination game with payo� rankable Nash

equilibria.

The idea of intermediate transitions being used to enable a population to move

from one state to another (i.e. the process of biological evolution) can perhaps �rst be

attributed to the 19th Century naturalists A. R. Wallace (1858) and Darwin (1859). 140

years later, Ellison (2000) formalized this idea of step-by-step evolution in a game theory

setting. Here, I give name, stepping stones, to those states that are used to speed up or

enable evolution from an initial state to a latter state. Coincidentally, Gulesci et al. (2023)

is a concurrent paper which also de�nes stepping stones as a transitory state that enables

transitions in the intermediate run. The primary di�erence between my de�nition and

theirs is that in their de�nition, stepping stones are strictly transitory where as I consider

conventions, which are self-enforcing, as stepping stones in stochastic games. Gulesci et

al. (2023) examines practice of female genital cutting in Somalia and treats the norm as a

discrete choice problem between three options: a high invasive practice called "Pharaonic",

a milder practice called "Sunna", or no cutting. They �nd that over the past 50 years,

Sunna has almost complete displace Pharaonic circumcision. Yet Sunna seems to be an

absorbing state as the proportion of uncut remains very low. As such, Gulesci et al. (2023)

discusses the implications of trying to correct for harmful norms by creating transitions

which may end up being absorbing and creating a new, still not ideal, norm. With this in

mind, my paper is relevant as it establishes a connection between the stepping stone and

the facilitation of easier stochastic transitions in the long run. Consequently, supporting

such transitions leads to monotonically increasing welfare.
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The games studied here are most similar to those found in R. W. Cooper, DeJong,

Forsythe, and Ross (1990). Like Cooper, I use a stag hunt game and expand it to a 3x3

game and investigate how the added strategy might a�ect equilibrium selection and

transition dynamics. However, the games vary as Cooper added a dominated strategy

to the stag hunt game to help solve the coordination failure problem. In addition, in

R. W. Cooper et al. (1990) players only played 20 rounds, against each other player

twice. Since the added strategy was a dominated one, it is reasonable to think that as

play evolves the frequency that the dominated strategy is played, and along with it the

belief that others would play it, would converge to 0. Thus resulting in the irrelevance

of dominated strategies for equilibrium selection (Kohlberg & Mertens, 1986). I di�er

from Cooper by adding a third equilibrium to the game instead and examining play in an

evolutionary setting against the same players for 100 rounds. This experiment also di�ers

as the game begins with the risk dominant equilibrium as the established choice.

The remainder of the paper is organized as follows: In the next section I introduce

the theoretical framework and design of the experiment followed by the hypotheses and

the procedure. Following that I report the results of the experiment at the group and

individual level. Finally, I provide a summary of the results in my concluding remarks.

2.2 Experiment

In this section I lay out the design for the experiment followed by my hypotheses

and then the procedure. The primary objective of the experiment is to test if and how

e�ective transitory equilibria are in coordination games where players play against the

�eld.

2.2.1 Design. When players make decisions in a game we assume they are

best responding to their beliefs about what the other players in the game will play. Most

evolutionary game theory assumes that individuals play the myopic best response the

majority of the time (Canning, 1992; Kandori, Mailath, & Rob, 1993; Young, 1993). This

10



translates to players believing that their opponents will play the same action in the future

as they did in the past. Recent experimental evidence from evolutionary games supports

this idea as 90% to 96% of decisions from those experiments could be explained by myopic

best response play (Hwang et al., 2018; Lim & Neary, 2016; Mäs & Nax, 2016).

Since myopic best response appears to well explain behavior of players in long

repeated games, it is natural to use Young (1993)'s adaptive play model of learning, which

is entirely backwards looking, to form the basis of analysis for evolutionary games. As

such, I adapt the theoretical framework from Young (1993) and Ellison (2000) to �t a

repeated game where everyone in a population plays every period and all plays of that

period are observed and recalled by all players in the subsequent period:

2.2.1.1 Theoretical Framework. Let G be a symmetric w-strategy game. A

population of N players repeatedly match with all other players in the population to play

G in every period t > 0. In this environment each player i has a semi-persistent strategy,

si(t) they use to play G every period. In each period, players can attempt to change their

strategy by selecting an action ai(t) ∈ A to play. Since this is a symmetric game, the

action sets for all players are the same. 6 After selecting their action, with probability

p their strategy is updated such that si(t) = ai(t). Otherwise, their strategy remains

unchanged from the previous period: si(t) = si(t − 1) where si(0) is given. Each period

after players strategies have been determined, G is played N − 1 times, once against every

other player, earning a total period payo� of Π(si(t), s−i(t)) :=
∑
j 6=i

π(si(t), sj(t)) where

π(si, sj) is the payo� player i receives playing against player j in the game G.7

During each period t, each player i observes each other players' last period strategy,

s−i(t − 1) and responds by playing the action that maximizes their payo� given the other

6Since the stage game has w strategies, it follows that the number of actions in A, |A| is w.
7Note that this is a symmetric game so it doesn't matter if a player is the "row player" or the "column

player". This payo� setup is equivalent to one where every player plays once against a randomly drawn
opponent and players are risk neutral.
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players strategies remain unchanged: ai(t) ∈ BRi(s−i(t− 1)) := arg max {Π(ai, s−i(t− 1)) |

ai ∈ A}. Such an action choice is referred to as a myopic best response.

De�nition 1. MYOPIC BEST RESPONSE: A decision that is a best response to the

previous period's strategy pro�le.

However, instead of playing their best response, occasionally players choose an

action at random. For some ε ∈ [0, 1/w), each player randomly selects an action with

probability wε. With probability 1 − wε the player selects an action that is in their set of

myopic best responses. Actions that are not myopic best responses are called "mistakes"

and are thus played with probability ε.

Given that only the strategies from the most recent period of play are considered

each period, the probability of advancing to some strategy pro�le in period t + 1, s(t + 1)

depends only upon the strategy pro�le in period t, s(t). Thus, the set of all possible

states is equal to the set of strategy pro�les. I refer to both as S which is equal to the

set of action pro�les: S = AN . As such each strategy pro�le is a state in a discrete-time

homogeneous Markov process as detailed by the decision rules above where P ε
ss′ describes

the probability of moving directly from state s in one period to s′ in the subsequent

period. Through an unperturbed process where ε = 0, a self-enforcing pattern of play,

called a convention, has the potential to arise.

De�nition 2. CONVENTION: A convention is a state s such that in the unperturbed

process P 0
ss = 1.8

Thus, to escape a convention requires perturbations. As perturbations are assumed

to occur infrequently, the least number of perturbations required to transition from one

state to another, known as the resistance, describes how di�cult the transition is to make.

8Since memory is restricted to 1, a strategy pro�le is a strict pure strategy Nash equilibrium if and
only if it is a convention.
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De�nition 3. RESISTANCE: For any two strategy pro�les s, s′ the resistance r(s, s′) is

the number of perturbations required to make the direct transition from s in one period to

s′ in the subsequent period.

Given any two distinct states s, s′, consider all the directed paths that begin with s

and end with s′ and call the collection of those paths Zss′ . Among all such paths, let ζ∗ss′

be the path with the least sum total resistance for each step along each directed path. Let

t be the period the directed path ζ∗ss′ starts such that s(t) = s and T > t be the period

s′ is reached so s(T ) = s′ and de�ne rss′ as the sum total of the resistance for every step:

rss′ =
T−1∑
t

r
(
s(t), s(t+ 1)

)
. Thus, rss′ measures the least amount of perturbations necessary

to transition from s to s′.9

De�ne a recurrent class, E ⊆ S, which has the property rss′ = 0 and rs′s = 0 if

and only if s, s′ ∈ E. In other words, a recurrent class is a closed subset of states that the

unperturbed Markov process cannot escape from once it enters the class. As such, a strict

pure strategy Nash equilibrium is by itself a recurrent class in this setting.

Note that the resistance of the transition between recurrent classes: E1, E2, . . . , EK

is largely characterized by the di�culty of escaping the basins of attraction D(·) of the

initial recurrent class. The following de�nition is due to Ellison (2000):

De�nition 4. BASIN OF ATTRACTION: A state s is said to be in the basin of

attraction of a recurrent class E if in an unperturbed process:

s ∈ D(E) := {s ∈ S|Prob(∃T > t s.t. ∀t′ > T s(t′) ∈ E|s(t) = s) = 1}

As such, in order for transitions to occur from recurrent classes E to E ′, play must

�rst escape the basin of attraction of E and then make its way into the basin of attraction

of E ′. This transition may occur in one step, or play could, for example, move from E

9Note that s′ does not need to immediately succeed s. It may often be the case where the path of least
resistance involves multiple steps. See an example in Figure 5.
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to D(E ′′) to E ′′ then to D(E ′) and �nally to E ′. If the path of least resistance doesn't

involve a direct transition from D(E) to D(E ′) but instead includes transitioning to some

other recurrent class E ′′ then I call E ′′ a stepping stone from E to E ′.

De�nition 5. STEPPING STONE: A stepping stone from one recurrent classes E to

another, E ′ is a recurrent class E ′′ if the path of least resistance ζ∗ee′ from some e ∈ E to

some e′ ∈ E ′ includes e′′ ∈ E ′′.10

Figure 1. Path of Least Resistance from A to C in two 3x3 Games

No Stepping Stone from A to C B is a Stepping Stone from A to C

In the game on the left there are only 2 recurrent classes: pure strategy equilibria of all A and all

C. The path of least resistance is to in one step move from A to the nearest point in D(C) and
then move from D(C) to C with no added resistance. In the game on the right, the path of least

resistance is instead from A to D(B) to B to D(C) to C.

Now construct a directed graph with K vertices, one for each recurrent class. Call the

vertex corresponding to the recurrent class Ei vertex i. The weight on the directed edge from

10Note that this de�nition of stepping stone di�ers from that of Gulesci et al. (2023) which examines a
stepping stone in an intermediate run dynamic and de�nes stepping stones strictly as states belonging to
a transient class. The de�nition I use is similar to the step-by-step process used by Ellison (2000) and how
using a step-by-step process can a�ect the modi�ed coradius.
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vertex i to vertex j is rij. The tree rooted at vertex i contains K − 1 directed edges such

that there is a pathway from each vertex j 6= i to vertex i. The resistance of each rooted

tree is calculated as the sum of weights of the K − 1 directed edges in the tree.

De�nition 6. STOCHASTIC POTENTIAL: The stochastic potential, γi, of a recurrent

class i is the tree rooted at i with the lowest resistance.

Figure 2. Trees rooted at C

Tree 1 Tree 2 Tree 3

In a game with 3 recurrent classes there are 3 vertices, each with 2 directed edges such that there

is a pathway from each vertex to C. In this example, The resistance of each rooted tree is 4, 6,

and 10 for Tree 1, Tree 2 and Tree 3 respectively. As such, the stochastic potential of γC is 4.

Young (1993) showed that the stochastically stable states are those contained in the

recurrent class with the minimum stochastic potential in the game.

De�nition 7. STOCHASTIC STABILITY: A state s is stochastically stable if s has the

smallest stochastic potential of all states.

Given that the inclusion of a stepping stone E ′′ in a game reduces the resistance from

E to E ′, stepping stones not only reduce the resistance of directed transitions but may also

a�ect the set of stochastically stable states.

The goal of the experiment is to test if stepping stone equilibria are e�ective as

theoretically predicted. That is to say, that when populations play long repeated games they
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utilize stepping stones to transition between conventions. In the next section, I describe how

I choose the payo�s in each game played in the experiment.

2.2.1.2 Treatment Design. I design a lab experiment to test if players utilize

stepping stones and if so, if there are certain aspects of the game that make a stepping stone

more e�ective. Of particular interest, I study how the strategy pro�le of the group evolves

when playing a coordination game with Pareto-rankable equilibria when the population starts

the game at a Pareto dominated equilibrium.11 To do this, I use a 2x3 treatment design.

One dimension of the treatment design is selecting the games groups played. Groups of

size 8 were asked to play one of three augmented stag hunt games all of which had groups

starting the game playing EA. In two of the three games (Game 2 and 3), a stepping

stone was added to the classic stag hunt game. In Game 2 a stepping stone that payo�

dominates the starting equilibrium was added. I will refer to this as the high payo� stepping

stone treatment. In Game 3 I instead add a stepping stone that is payo� dominated by the

starting equilibrium. I will refer to Game 3 as the low payo� stepping stone treatment. The

motivation for the di�erent stepping stone levels is to see if payo� dominance in transitions

makes a di�erence in group's play. In the control game (Game 1), groups played without a

stepping stone and instead with an added strategy that guaranteed the worst payo� possible.

On the other dimension of the treatments, I varied the amount of information subjects

were given. Players were given either complete information meaning that they knew both

their payo�s and the payo�s of the other players in the game, or players were given incomplete

information meaning they did not know what payo�s the other players received for a given

strategy pro�le. This is important since having common knowledge that players are playing

a coordination game and are starting at an ine�cient equilibrium may impact player's

decisions, presumably by making them more forward looking.

11A game with Pareto-rankable equilibria means that at least one equilibrium is preferred by all players
in the game to another equilibrium.

16



Figure 3. Parameter Selection

Player 2
A B C

Player 1
A aG bG eG
B cG dG gG
C fG hG iG

The game is symmetric and the reported payo�s are those of the row player

I create a 3×3 symmetric game with action space {A,B,C} with the payo�s received by

the row player in game G = {1, 2, 3} as depicted in Figure 3 with three pure strategy Nash

equilibrium: EA = (A,A), EB = (B,B), and EC = (C,C) in each game. With 9 payo�

variables in each game G, parameters were chosen to create a large di�erence in the path of

least resistance from EA to EC between the game without a stepping stone, Game 1, and the

games with a stepping stone, Games 2 and 3, while observing certain restrictions, namely:

1. EA and EC must be strict Nash equilibria. Thus, aG > cG, fG; iG > eG, gG ∀G

2. EB must be a strict Nash equilibrium in Games 2 and 3. Thus, di > bi, hi i ∈ {2, 3}

3. EC must be the Pareto E�cient equilibrium. So, iG > aG, dG ∀G

4. The variables aG, eG, fG, iG must remain the same across all games.

5. The resistance from EA to EB must be equal to the resistance from EB to EC in and

between Games 2 and 3.12

6. In Game 1 (no stepping stone), b1, c1, d1, g1, h1 must be equal to the lowest payo� in

the game.

7. The variables aG and eG must be equal so that Game 1 is essentially a stag hunt game.

12By controlling for the resistance between equilibria between and across games I can test for the e�ect of
pairwise and global payo� dominance.
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8. aG + eG > fG + iG so that EA pairwise risk dominates EC .

9. In Game 2 (high payo� stepping stone), the payo� at the transition equilibrium must

be greater than that at the starting equilibrium d2 > a2.

10. In Game 3 (low payo� stepping stone), the payo� at the transition equilibrium must

be smaller than that at the starting equilibrium d3 < a3.

11. To make calculations as simple as possible for subjects, all payo�s must be single digit

integers.

12. Payo�s must be greater than 0 to avoid behavioral distortions (Gneezy & Potters,

1997; Tversky & Kahneman, 1991).

In all games EA pairwise risk dominates EC which implies that EA is the stochastically

stable equilibrium in the 2x2 game with just A and C which is the result of Theorem 4.2

in Young (1998). This dynamic lends additional justi�cation for initiating the game with

everyone playing A.

Figure 4. Games Played in the Experiment

Game 1

Player 2
A B C

Player 1
A 7 1 7
B 1 1 1
C 1 1 9

Game 2

Player 2
A B C

Player 1
A 7 3 7
B 6 8 4
C 1 7 9

Game 3

Player 2
A B C

Player 1
A 7 1 7
B 6 6 4
C 1 5 9

The games are all symmetric and the reported payo�s are those of the row player

2.2.1.3 Games and Theoretical Analysis. Figure 4 shows the construction of

the three di�erent games played in the experiment. All three games are symmetric with the

payo�s reported being those of the row player. In addition, players play against the �eld
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meaning they are playing against the full distribution of pure strategies of all other players

in the population. All 3 games are coordination games with 3 pure strategy Nash equilibria

on the diagonal. I will refer to each equilibrium, where all 8 players play the same strategy,

as follows: EA = (A,A, . . . , A), EB = (B,B, . . . , B), EC = (C,C, . . . , C). Game 1 represents

the case where there is no stepping stone from EA to EC . Note that Game 1 is essentially

a stag hunt game. I include B as a strategy to increase the con�dence that any change in

play between di�erent games is due to the change in payo�s and not due to a change in

the strategy space of the game. As a bene�t, including B in game 1 guarantees players will

receive the worst possible payo� in the game allow us to test if random errors that don't

take into account payo�s occur.13

The idea of trying to solve the coordination failure problem as seen in stag hunt games

with the addition of another strategy was examined in R. W. Cooper et al. (1990). However,

I di�er here by adding a third equilibrium, a stepping stone, to game 2 and 3 instead of a

dominated strategy. Note that Game 3 is constructed by taking a payo� transformation of

Game 2 that preserves the best reply structure, speci�cally by subtracting the payo� the row

player receives when the column player plays B by 2 (Harsanyi, Selten, et al., 1988). This

transformation allows me to test what, if any, e�ect payo� dominance for the stepping stone

strategy has. In theory, there shouldn't be any di�erence between individuals whose play

is motivated by myopic payo� di�erences. However, there is reason to believe that player's

decisions are also in�uenced by payo� dominance (Harsanyi et al., 1988; Jagau, 2022).

Resistance Calculations. In order for the added equilibrium, EB, in Games 2 and 3

to be considered a stepping stone from one equilibrium, EA, to another, EC , the path of least

resistance from EA to EC must go through an indirect path through EB compared to the

13This is assuming that players don't utilize B as a way to punish other players, or in games with incomplete

information, use B to see if that may help other players move from A to C
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most e�cient direct path from EA to s ∈ D(EA) to EC .
14 Simply stated, EB is a stepping

stone if the resistance from EA to EC is smaller in Games 2 and 3 than Game 1.

Below I calculate the resistance from EA to EC in Games 1, 2, and 3. Refer to Figure 5

for a depiction of the directed paths of least resistance on a simplex. Note that the graphs

depict the mapping of the strategies of the other players in the group from the perspective of

a player who always plays their myopic best response. This distinction is made since players

best respond to the other players' strategies and this set of strategies will di�er across

players if their own strategies are not the same as one another. As such, by examining the

best reply structure of a player who always plays their myopic best response, the minimum

number of "mistakes" necessary to change the myopic best response of some players, and

following that, the entire group is revealed. This is possible because of stochastic strategy

updating implemented in this game. The path of least resistance does not necessarily require

transitioning directly from EA to s′ ∈ D(EC). It is possible to transition from EA to some

s ∈ D(EA) then with no further mistakes but with selective stochastic strategy updating,

make the transition directly from s to EC . I elaborate below.

First I will describe the path of least resistance in Game 1, which is also the directed path

of least resistance that travels directly from EA to EC without entering D(EB) in Games 2

and 3. Starting from EA (1) the transition into D(EC) can be accomplished with the least

"mistakes" required by transitioning to a state where d3(N − 1)/4e15 of the players play C

and all other players play A, requiring a minimum of d3(N − 1)/4e "mistakes". Once in this

state, (2), the remaining N − d3(N − 1)/4e players who have A as their current strategy

calculate their expected payo�s for playing against their opponents' last period strategies.

If they play A then their expected payo� is 7(N − 1). If they play C then their expected

14All strict Nash equilibria are recurrent classes in this game.

15The notation dxe means rounding up to the nearest integer that is greater than or equal to x.

20



Figure 5. Path of Least Resistance from EA to EC in Games 1, 2 and 3

Game 1 Games 2 and 3

Recall: The best reply structure is the same in Games 2 and 3. Because resistance is a count of

only non-myopic best response play (represented by dashed curves), once the game is within the

basin of attraction of an equilibrium D(E), it can travel the rest of the way to that equilibrium

using only best response play (represented by solid curves). Note that the paths are curved only

to make following the steps easier to follow. The directed path accurately mapped onto the

simplex is a straight line. The basins of attraction for each recurrent class is color coded in the

simplex: purple for EA, green for EB, and yellow for EC .

payo� is N − 1− d3(N − 1)/4e + 9d3(N − 1)/4e ≥ 7(N − 1). So they can play C as a best

response. The other d3(N−1)/4e players whose current strategy is C have A as their unique

best response. Since d3(N−1)/4e ≥ N/2 it can be shown that the current state is in D(EA).

However, it is possible that all players whose last period strategy was A now play C and

their strategies are all stochastically accepted while all the players last period strategy was

A now have their actions stochastically rejected. Hence, EC (3) is reached. The resistance

from EA to EC in Game 1 is therefore d3(N − 1)/4e.

Now I will describe the path of least resistance in Games 2 and 3. Starting from EA

(1) the transition to a state in D(EB) can be made by d(N − 1)/6e players picking B as

their action by "mistake" and all those actions being stochastically accepted. In the next
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period (2), the players who did not make a mistake get and expected payo� of 7(N −d(N −

1)/6e) + 3d(N − 1)/6e if they pick A, 6(N − d(N − 1)/6e) + 8d(N − 1)/6e if they pick

B, and (N − d(N − 1)/6e) + 7d(N − 1)/6e if they pick C. Clearly, the expected payo�

for C is less than B. So B is a best response if 7(N − d(N − 1)/6e) + 3d(N − 1)/6e ≤

6(N −d(N − 1)/6e) + 8d(N − 1)/6e. The expression simpli�es to N ≤ 6d(N − 1)/6e, so B is

a best response. So play can transition to EB (3) without any additional "mistakes". Once

at EB, the transition to a state (4) in D(EB) can be made by d(N − 1)/6e players picking C

as their action by "mistake" and all those actions being stochastically accepted. It is simple

to calculate, similar as above, that play can then progress with no further "mistakes" to

arrive at EC (5). Hence, the resistance from EA to EC in Games 2 and 3 is 2d(N − 1)/6e.

As such, the directed paths of least resistance using and not using EB can now be

compared. If 2d(N − 1)/6e < d3(N − 1)/4e then EB is a stepping stone in Games 2 and 3.

It is easy to verify that for all N > 3, EB is a stepping stone in Games 2 and 3.

In the experiment, groups of size N = 8 were used. As such, EB is a stepping stone in

Games 2 and 3. In all three games, when the game is at EA, the amount of simultaneous

deviations from myopic best response needed to make C a best response for the remaining

players in the next period is then d(3/4) ∗ (N − 1)e = 6. In Games 2 and 3, the resistance

from EA to EB as well as the resistance from EB to EC is d(1/6) ∗ (N − 1)e = 2. Examining

the resistance in all three games from EC to EA is d(1/4) ∗ (N − 1)e = 2. In Games 2 and 3,

the resistance from EC to EB and the resistance from EB to EA is d(1/4)∗(N−1)e = 6. This

means if perturbations are independent and payo� independent then if conventions change

in Games 2 and 3 they should travel almost exclusively in the direction from EA to EB to

EC to EA et cetera spending on average equal time at each.16 However, if deviations from

myopic best response are a function of payo� dominance then populations should spend a

16Note that by de�nition just as EB is a stepping stone from EA to EC so too is EC a stepping stone from
EB to EA and EA is a stepping stone from EC to EB .
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greater portion of their time at the payo� e�cient equilibrium EC when cycling or not cycle

at all.

In several evolutionary game theory experiments in the literature (Hwang et al., 2018;

Mäs & Nax, 2016), subjects were randomly given an opportunity to change their strategy

in each round. In the event they weren't given a revision opportunity, their action from

the previous round was retained. This is valuable from a data collection standpoint as it

slows down the transition from one equilibrium to another, which is where decisions are most

important. As discussed in the theory section, in this experiment for all games and in every

round, all subjects will be asked which action they want to play. However, with probability

p their new action is adopted and with probability (1− p) their strategy from the previous

round is retained. In essence, in this experiment I am moving the nature node deciding if

they can update their strategy from before to after the subject makes their decision. This

change in procedure yields the bene�t of being able to collect 1/p times as much data. This

procedure is similar to the strategy method (Selten, 1967) which is often used to boost data

collection in extensive form games.

For the experiment trails I use p = 1/2. The bene�t of using a relatively small p value

is that it makes states stickier, thus making equilibria more stable. Additionally, it helps

enforce the initial condition of all the games in the experiment: that the game starts with

everyone playing A, corresponding to EA, the safe, payo� dominated equilibrium. This

"stickiness" can be demonstrated by considering a player who uses level-K thinking (Nagel,

1995a; Stahl & Wilson, 1995). Consider a level-1 player. They assume every other player

plays each strategy with equal probability. So, they expect to face the mixed strategy of

(1−p+p/3, p/3, p/3). Thus, since here I use p = 1/2, their expected payo�s from playing each

strategy is (36/7, 1, 11/6) in Game 1, (38/7, 36/7, 20/7) in Game 2, and (36/7, 34/7, 18/7) in

Game 3 for each of strategy (A,B,C) respectively. Thus, A is the unique best response in

each game. Level-2 players assume all other players are level-1 players and thus will also play
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A. It follows that for all players of level-K > 0 thinking have A as a best response.17 Now

consider if p = 1, the case where players are always able to change their strategy. In this

case, level 1 thinkers assume they are facing a mixed strategy of (1/3, 1/3, 1/3) which means

their expected payo�s from playing each strategy is (5, 1, 11/3) in Game 1, (17/3, 6, 17/3)

in Game 2, and (5, 16/3, 5) in Game 3 for each of strategy (A,B,C) respectively. Thus, in

Games 2 and 3, B is their best response when p = 1 as in this case enforcing that everyone

starts the game playing A is little more than a default option (Samuelson & Zeckhauser,

1988; Thaler & Sunstein, 2008). This example shows how incorporating stochastic strategy

updating can a�ect decisions and enforce initial conditions.

2.2.2 Procedure. 18 sessions (3 per treatment) of 8 participants each were held in

person at the Tattersall Computer Lab at the University of Oregon. A total of 144 subjects

were recruited from the University of Oregon student population, each of which made 200

decisions over the course of one hour and were paid, on average, $21.

Each participant was seated at a computer with dividers between the monitors and

all participants were seated facing a wall to prevent any in-person interaction or viewing of

others' screens. The software used for the experiment was built using oTree (Chen, Schonger,

& Wickens, 2016), which is software using Python, HTML, and JavaScript designed for use

in laboratory and �eld experiments in game theory.

The instructions, quiz questions, and screenshots of the UI during the experiment can be

found in the appendix.

Phase I. Upon entering the lab and �lling out consent forms, participants were read

aloud instructions explaining how the game works and how the experiment is conducted.

Typed instructions were also be visible on their computer.18

17Note that in the incomplete information treatment players only know their own payo�s so computing
the best responses of other players can not be done reliably, especially at the start of the game.

18I did not read aloud the payo� tables in order to preserve the imperfect information treatment.
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Phase II. Participants were provided with a writing utensil, a basic calculator, and

blank paper to make notes and calculations if they desired to use them. After reading the

instructions, participants took a short quiz for comprehension to ensure that they understand

how the game works and how their payouts would be calculated. Participants had to answer

each question correctly before they could proceed to the following question. The number of

errors made by each participant was tracked.

Phase III. Participants then played the experiment which comprised of two sets of

100 rounds each. During each round, participants were able to view the payo� they earned

in the previous round, the strategies played by the other participants in the previous round,

if their action last round was accepted or rejected, the remaining time lest in the round,

their payo� table, and depending on the treatment of the study, their opponents payo�s

in the payo� table. In each round, participants were be able to change their strategy with

probability = .5 otherwise, their previous round strategy was retained. Everyone started

the experiment coordinating on A. In the �rst two rounds of each set, participants had 60

seconds to pick a strategy. In rounds 3-5, participants had 45 seconds to pick a strategy, In

rounds 6-8, participants had 30 seconds to pick a strategy, in rounds 9-11, participants had

20 seconds to pick a strategy, and in rounds 12-200 participants had 10 seconds to pick a

strategy. This shrinking decision time is commonly used in similar evolutionary experiments

(Hwang et al., 2018; Lim & Neary, 2016). Failure to select a strategy in a round resulted in

the player's previous round strategy being selected for them. The amount of time it took a

participant to select their choice in each round was also recorded.

During the �rst set of 100 rounds, the group played their treatment game (either Game

1, Game 2, or Game 3). After the conclusion of the �rst set of 100 rounds the participants

were brought to an screen informing them of possible changes that were being made to their

payo� table for the second set of rounds. Every group played Game 1 in the second set
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of rounds. However, the treatment of revealing/concealing the other players' payo�s was

maintained for each group across sets.

2.2.3 Hypotheses. Hypothesis 1: In the sessions where players play a game

where EB is a stepping stone (Games 2 and 3), the groups will be more successful in making

a transition from EA to EC than the sessions where EB is not a stepping stone (Game 1).

This hypothesis is to test if stepping stone equilibria actually work as predicted:

to reduce the amount of time it takes to transition from EA to EC by creating

a path of lower resistance. Under all arms of the study with a stepping stone,

both max(rAB, rBC) and rAB+rBC is less than the direct transition rAC , meaning

transitions from EA to EC are theoretically more probable in Games 2 and 3 than

in Game 1.

Hypothesis 20: In the games with stepping stones (Game 2 and 3), players will spend the

same number of periods with each action as their myopic best response.

Hypothesis 2A: In the games with stepping stones (Game 2 and 3), players will spend

a plurality of the periods played with the action corresponding to the Pareto e�cient

equilibrium as their myopic best response.

As discussed when calculating resistances, since the weight on the directed edges

from vertex A to B, B to C, and C to A are then same when N = 8, if "mistakes"

are uniformly random then each state EA, EB, and EC are stochastically stable.

Which means that the adaptive process is expected to spend an equal time at

each equilibrium.

However, if deviations from myopic best response are a. payo� dependant or

b. a function of equilibrium payo� dominance then populations should spend a
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greater portion of their time near the Pareto e�cient equilibrium, EC . This is

because a. The cost per game played of the �rst deviation from A to B and B

to C is only 1, where as the cost per game played of the �rst deviation from

C to A is 2.19 The explanation for preference for playing the payo� dominant

equilibrium, b., is self-evident.

Hypothesis 30: The rate of deviations from the myopic best response of A to choosing

action B will be no higher when the stepping stone payo� dominates the starting equilibrium

(Game 2 vs Game 3).

Hypothesis 3A: The rate of deviations from the myopic best response of A to choosing

action B will be higher when the stepping stone payo� dominates the starting equilibrium

(Game 2 vs Game 3).

The theoretical prediction under uniform random errors is that the transition

dynamics of these games should be identical since the resistance between

equilibria are the same in Games 2 and 3. Myopic payo� dependant deviations

also produces the same prediction since when comparing Game 2 to Game 3, the

expected payo�s increase by the same amount, depending on how many other

players play B, for all strategies a player can choose from.

However, there is reason to believe the transition speed may be faster in Game

2 than Game 3. This is because in Game 2 EB payo� dominates EA where EA

payo� dominates EB in game 3. In essence, this hypothesis tests if deviations

from a myopic best response towards a stepping stone are a function of payo�

dominance.

19I remind the reader that each player plays the game against all other players in each round.
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Hypothesis 40: Deviations from myopic best response are payo� independent.

Hypothesis 4A: Deviations from myopic best response are payo� dependant and occur less

frequently as the di�erence between expected payo� of the myopic best response and the

next highest expected payo� increases.

Hypothesis 50: Strategy update success will not in�uence rate of deviation from myopic

best response.

Hypothesis 5A: Strategy update success will increase rate of deviation from myopic best

response.

Although update probability is constant and independent, subjects who recently

experienced a low update success rate may view deviations as riskier behavior.

Hypothesis 60: In Game 1, 1/2 of the "mistakes" made are players choosing action B.

Hypothesis 6A: In Game 1, less than 1/2 of the "mistakes" made are players choosing

action B.

This hypothesis is similar to hypothesis 4, but the result is more straightforward

since there are few ways to rationalize playing B in Game 1. If B accounts

for signi�cantly less than half of the "mistakes" then we have evidence that

"mistakes" are not uniformly distributed.

Hypothesis 70: The rate of deviations from the myopic best response when the myopic

best response does not correspond to the Pareto e�cient equilibrium will be equal across

games with complete information vs incomplete information.
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Hypothesis 7A: The rate of deviations from the myopic best response when the myopic

best response does not correspond to the Pareto e�cient equilibrium will be higher in games

with complete information vs incomplete information.

Under incomplete information, it will take sophisticated subjects time to realize

that this is a coordination game, if in fact they do, and they may never realize

that their payo�s align in such a way that EC is Pareto e�cient and that EB is

a stepping stone from EA to EC .

If players have complete information, however, they will immediately know that

this is a coordination game and that EC is an equilibrium and the Pareto e�cient

outcome. Consequently, a deviation from an equilibrium may be viewed by other

players as a costly signal towards a new equilibrium.

If subjects are su�ciently sophisticated, they will realize in Games 2 and 3 that

using EB as a stepping stone is a more e�cient path towards EC than just

going directly from EA to EC , both in terms of payo� forgone in the transition,

and the number of likewise deviations needed to shift the myopic best response.

However, some players may instead view the direct jump as a faster method of

transitioning. In either case, their rate of deviation from myopic best response

when the myopic best response isn't A should be higher than the groups with

the incomplete information treatment.

If this hypothesis is true, then complete information should have an attenuation

e�ect of the amount of time it takes to transition from one equilibrium to the

next.

2.3 Experimental Results

2.3.1 Group Level Results.
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Stepping Stone vs. No Stepping Stone. The primary goal of the experiment

was to test if the inclusion of a stepping stone equilibrium was e�ective in facilitating the

transition from the initial equilibrium, to the Pareto e�cient equilibrium. Here I discuss the

�rst set of each experiment during which groups played one of three games for 100 rounds:

Game 1 which had no stepping stone, Game 2 which had a high payo� stepping stone, and

Game 3 which had a low payo� stepping stone.

Figure 6 shows the evolution of groups' strategies in the �rst 100 rounds of 6 di�erent

sessions, one from each treatment. If the stepping stones were e�ective in facilitating

transitions from A to C then Groups playing a game with a stepping stone should make

it to EC with higher probability and consequently, spend more rounds playing C.

I �nd that in all 12 sessions where groups played with a stepping stone they were able

to, at least once, make it to EC . By contrast, in the 6 sessions where players played Game 1

in the �rst set, only 4 groups were able to make it to EC . I test Hypothesis 1 using a 1-sided

Fisher's Exact Test which yields a p-value = 0.09804. While this is above the .05 threshold

traditionally required to reject that groups are just as likely to reach EC when playing Game

1, it does support the idea that stepping stones are e�ective as theoretically predicted.

Beyond the binary of "did a group transition to EC?", the proportion that each strategy

was played can be analyzed. Table A.4 reports the proportion that each strategy was played

in each experiment. Note that in 4/6 of the sessions with no stepping stone A accounted

for the majority of strategies in set 1. This is in sharp contrast to the games played with a

stepping stone where C made up the plurality of the strategies in every experiment. I use a

mixed logistic regression with clustering at the individual and experiment level, the results

of which can be found in Table A.8, which show that players played C in Game 2 and Game

3 signi�cantly more than in Game 1.
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Figure 6. Time Series of Group Strategy in Set 1 (Treatment)

Complete Information Games Incomplete Information Games

These stacked area plots depict how the proportion of each strategy played changed as the
round number increased. The proportion that a strategy was played in a given round is
equal to the vertical length with that strategy's color code. The time series of each set of
each experiment can be found in the appendix.

High vs Low Payo� Stepping Stones. I've established that stepping stones were

e�ective, here I examine if there was a di�erence in the e�ectiveness of the low payo� stepping

stone compared to the high payo� stepping stone. Looking again at the regression in Table

A.8, Game 2 had a point estimate of 1.8157 and Game 3 had a point estimate of .8588. Both

with standard errors approximately .31, this is a large and signi�cant di�erence between the

two, indicating that C is signi�cantly more likely to be played in the sessions with a high

payo� stepping stone compared to a low payo� stepping stone.
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Looking at the frequency of strategy played is informative but doesn't provide much

insight into the frequency with which strategy pro�les were played. Figure 7 does just that.

In Figure 7 and Figure 8, I map the strategy pro�le faced by each player each round onto

a simplex, linearly interpolate between the nearest points to �esh out the graph, then color

code by frequency, standardized across plots so they can be compared. I also report the

frequency that each action is a myopic best response (mBR) to the strategy faced. As can

be seen in the Figure 7, play is much more concentrated around EC in the games with a

high payo� stepping stone compared to the games with a low payo� stepping stone. In fact,

in the games with a low payo� stepping stone, A and B were myopic best responses twice

as often as they were in games with a high payo� stepping stone.

Figure 7. Frequency of Strategy Pro�le Faced

Figure 7 illustrates one of Hypothesis 2, which examines whether players in games with

stepping stones (Game 2 and 3) spend the same number of periods with each action as their

myopic best response. In the sessions, players were observed to have as their myopic best

response action A 1694 times, action B 1322 times, and action C 6584 times.
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I conduct a chi-squared test to see if this di�erence is signi�cant. I get X -squared =

5389.5 with 2 degrees of freedom, which reveals a highly signi�cant p-value of less than

2.2e−16. This provides strong evidence which indicates that in Games 2 and 3, players tend

to spend more time with C, the action corresponding to the Pareto e�cient equilibrium as

their myopic best response. It is noteworthy that despite the fact that all three states are

stochastically stable under uniform perturbations, players exhibit a preference for the Pareto

dominant equilibrium.

Figure 8. Frequency of Strategy Pro�le Faced

Complete vs Incomplete Information. When comparing groups that played with

a stepping stone with incomplete information to those who played with a stepping stone

with complete information, in aggregate as in Figure 8 the results appear almost identical.

Summary tables A.4 and A.5 hint towards the biggest di�erence between games played

with complete information vs incomplete information are when there are no stepping stones

present. During the �rst 100 rounds, players played A with the highest frequency every

time (n=3) when they played Game 1 with incomplete information. By contrast, in two of
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the three sessions with complete information, groups were able to make the transition and

play C for the majority of the set. The explanation for this is essentially that in complete

information games players know that they are playing a coordination game and that it is

in the group's best interest to transition to EC . As such, it reasons that groups may have

a higher propensity to play C even if A is the best response as playing C would likely be

viewed as a signal that the player wants to move the group to C and is willing to pay the

upfront cost.

It is perhaps because the barrier to transition out of A was so reduced by the stepping

stone that there doesn't appear to be much di�erence between the complete and incomplete

information treatments with stepping stones. In this sense, one could think that stepping

stones are particularly useful for attenuating the di�culty in coordinating inherent to some

environments and populations.

Patterns of Play. There were two primary patterns of group play observed once a

group made the transition to C. The group would then either stay at C for the remainder

of the set, or would fall into cyclical behavior of playing A → B → C → A → . . . until

the end of the set. Naturally, those who played Game 1 never fell into the cyclical behavior

since playing B guarantees the worst payo� possible. However, more than that, groups who

played Game 1 and made it to EC were the most stable, perhaps recognizing that getting

back to C would be di�cult if they deviated.

More interestingly, several of the experiment with stepping stones exhibited cyclical

behavior. This occurred most frequently in games with incomplete information and games

with a low payo� stepping stone. There doesn't seem to be a clear reason for why the cyclical

process gets initiated, perhaps due to boredom or competitive behavior.20 However, once the

process back to A starts, other subjects are quickly pressured by the payo�s to transition as

20Sheremeta (2010) has shown that in contests with a prize of zero some subjects are still willing to bid
to "win".
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well. From A they transition back to C through B. This cyclical behavior creates a positive

feedback loop through players expectations. Players learn that play moves from A to B to

C to A and the stochastic updating probability encourages players to make decisions based

on where they think play is heading least they get left behind and punished. This dynamic

should be particularly pronounced in games with incomplete information as individuals start

the game with no basis for strong prior beliefs as to how their opponents will play. Thus, if

they see cycling, they may think they are not playing a coordination game.

Set 2 Results. After playing 100 rounds of either Game 1, Game 2, or Game 3, all

groups played Game 1 (no stepping stone) for the second set of 100 rounds to see if playing

with the stepping stone had any e�ect. For example, can using stepping stones as a crutch in

the short term foster long term coordination in other games between the same population?

Overall, I do not �nd evidence of correlation between the treatment in the �rst set and

the performance in the second set. Of the eighteen groups, ten of them made it to EC in

the second set with three of the groups having played Game 1 in set 1, four having played

Game 2, and three having played Game 3. Four of the ten groups were playing with complete

information and the remaining six with incomplete information.

What appears to be the biggest predictor of success, meaning making it to EC and staying

there, is if the group ended the previous set at EC . Although every groups' strategy pro�le

was reset to EA at the start of set 2, none of the groups who ended set 1 with a strategy

pro�le not EC were able to make it to and stay at EC in the second set. By contrast, of the

twelve groups who did end set 1 at EC , eight of them made it back to and stayed at EC in

set 2.

This e�ect was driven by the groups with incomplete information where across all three

games, every group except for one (5/6) that ended at EC in set 1 ended at EC in set 2.

Among the three groups with incomplete information that didn't end set 1 at EC , none of
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them made it to EC in set 2. This result is signi�cant under Fisher's Exact Test yielding a

p-value of 0.04762.

2.3.2 Individual Level Results. At the individual level, I am examining the

decisions made by each player. In particular, I examine the rate of myopic best response

at di�erent positions in the game and test my remaining hypotheses. Table A.6 shows the

choices made in each experiment by mBR and table A.7 shows the aggregated choices by

mBR. As expected, most frequently subjects played their myopic best response with a few

notable exceptions: in 3 treatments action A was selected as a myopic best response less

than half the time. This occurred in both treatments of the high payo� stepping stone game,

and in the incomplete information treatment of the low payo� stepping stone game.

Figure 9. Choices in High Payo� Stepping Stone Games

Figure 10. Choices in Low Payo� Stepping Stone Games
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Figure 11. Choices in Complete Information Games with a Stepping Stone

Figure 12. Choices in Incomplete Information Games with a Stepping Stone

As discussed in the previous section, these are clear di�erence in play between Games

2 and 3. Recall, the di�erence between Game 2 and Game 3 is that in Game 2 the row

player's payo� increases by 2 when the column player plays B;21 As a result, in Game 2

EB payo� dominates EA and in Game 3 EA payo� dominates EB. Since Game 3 is just a

payo� transformation of Game 2 that preserves the best reply structure, theoretically, there

shouldn't be any di�erence between individuals whose play is motivated by myopic payo�

di�erences. As such I hypothesised that the biggest di�erence would be in the transition

from A to B as there is evidence that payo� dominance between equilibria plays a role in

players' choices (Harsanyi et al., 1988; Jagau, 2022).

21and because the game is symmetric, the column player's payo� also increases by 2 when the row player
plays B
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I investigate hypothesis 3 by using a generalized logistic mixed model with individual

�xed e�ects to test if the rate of deviation from the myopic best response of A to choosing

action B varies signi�cantly across Games 2 and 3. See Table A.9 for regression results.

The analysis reveals a di�erence between the estimates for Game 2 (intercept) and Game

3. The estimated di�erence is −0.1030. The p-value associated with this di�erence is 0.697.

As result, this test provides no evidence that the rate of deviations towards the stepping

stone are payo� dominance dependant. So I can not reject the null hypothesis 30.

Figures 9-12 show the proportion of choices made given the strategy pro�le faced in

di�erent treatments. The graphs were constructed in a similar manner to Figures 7 and

8, by linearly interpolating across the simplex. The groups that played with a high payo�

stepping stone or with complete information played A with much lower frequency than those

in incomplete information games and low payo� stepping stone games. When comparing the

high payo� stepping stone to the low payo� stepping stone this result may be explained by

EA Pareto ranking higher in the low payo� stepping stone game.22 On the information side,

the di�erence in play can be explained by the uncertainty that a better outcome is stable and

not being able to observe an e�cient path to achieve it. When there is common knowledge

of the game, decisions are more likely to be interpreted as intentional signals and players are

likely to believe that others will want to transition to C as fast as possible.

Next, I look at what factors in�uence players to deviate from playing their myopic best

response. Figure 14 shows the di�erence in myopic best response play between Game 2 and

Game 3 and Figure 15 shows the di�erence in myopic best response play between stepping

stone games with complete information vs incomplete information. Across games and levels

of information, when players had C as their best response, the strategy corresponding to the

Pareto e�cient equilibrium, they played their myopic best response 87-91% of the time, which

is inline with the literature examining myopic best response in evolutionary experiments

22EA payo� dominates EB in Game 3.
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(Hwang et al., 2018; Lim & Neary, 2016; Mäs & Nax, 2016). However, when another strategy

was a best response this rate fell dramatically.

This signi�cant drop o� appears to be largely driven by players picking C which partially

explains the di�erence in myopic best response play between when A was the myopic best

response and when B was the myopic best response. This is because, by formulation, the

basin of attraction for A can contain many more players with the strategy C than the basin

of attraction for B can.

I employ a generalized logistic mixed model to examine which factors a�ect the rate of

myopic best response play. I control for the e�ect that di�erent myopic best responses have

on the propensity to play those best responses, as there is a clear di�erence demonstrated in

Figure 14. I also control for the game played and I incorporate clustering at the subject ID

level and within the nested experiment number to address potential correlations within the

data. With these controls, I test if there is any signi�cant interaction between incomplete

information and which strategy is the myopic best response, if the di�erence in payo�

between the myopic best response and the next highest myopic payo� (denoted ∆ΠmBR),

and if past stochastic rejection of strategy updating has any e�ect on myopic best response

play.

To account for previous �ndings of Lim and Neary (2016) who found a positive in�uence of

the round number on the rate of myopic best response play, I included it as a control variable.

To test the most appropriate way to model the e�ect of round number on subjects choosing

to play their myopic best response I regress upon the above speci�ed model excluding the

independent variables round and lagged stochastic rejection. I then use the results of the

restricted model to predict the probability that subjects will play a myopic best response and

graph the residuals in Figure 13. In Figure 13, the blue points are the average residual for

each round when the players choice was rejected in the previous round, the average residual

when players' previous choices were accepted are colored goldenrod. There seems to be a
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Figure 13. Residual E�ect of Round and Lagged Failed Stochastic Update on Choice =
mBR Probability

non-linear relationship between the round number and residual value. As such i specify a

logarithmic relationship between round number and propensity to play myopic best response.

With this speci�cation, I regress log(Round) and lag(FailedUpdate) on the residuals of the

restricted model to demonstrate the impact of a player's action being stochastically rejected

in the previous round on the rate of myopic best response play. The area around the best �t

line indicate 95% con�dence intervals. Figure 13 clearly shows that players are more likely

to choose to play their myopic best response after failed stochastic update in the previous

round.

Given the results of the residual test, I include log(Round) in the full logistic model. The

results of the regression can be found in table A.10.
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As discussed, The analysis revealed that stochastically rejection had a signi�cant e�ect

on the odds that the myopic best response was selected in the next round with a point

estimate of 0.2602 and a p-value = 1.24 × 10−6. Thus, I rejected hypothesis 50 in favor of

hypothesis 5A, indicating that when a player's action was rejected in the previous round,

they are more likely to play the myopic best response in the next period.

Figure 14. Rate of Myopic Best Response Play by Strategy Pro�le Faced

I also examined whether the likelihood of a subject playing the myopic best response is

in�uenced by the di�erence in expected payo� between the myopic best response and the

next highest option. I found a signi�cant positive relationship, with a logistic parameter

estimate of 0.1287 and a p−value < 2 × 10−16. Therefore, I rejected hypothesis 40 in favor

of hypothesis 4A, suggesting that a larger di�erence in expected payo� leads to a higher

probability of myopic best response play. This result in part explains why the mBR plots in

Figures 14 and 15 are notably dark around the mBR boundaries.

I also examine Hypothesis 7, which explores whether the rate of deviations from the

myopic best response, speci�cally when the myopic best response does not align with the
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Figure 15. Rate of Myopic Best Response Play by Strategy Pro�le Faced

Pareto e�cient equilibrium, di�ers between games of complete information and incomplete

information. To investigate this, I examine the interaction terms of myopic best response and

incomplete information. The point estimate of 0.7417 with a p-value = 0.000438 indicates

that when information is incomplete and the myopic best response is A, subject are much

more likely to play A in games with incomplete information. However, when the myopic

best response is B, the combined point estimate is just 0.199872 and a resulting insigni�cant

1-sided p-value of 0.232. Although I can not claim that the subjects were statistically

more likely to play B when B was the myopic best response when playing with incomplete

information, the combined results do provide signi�cant support to hypothesis 7A. As such,

I claim that the likelihood of deviating from the myopic best response is signi�cantly higher

in games with incomplete information when the myopic best response does not correspond

to the Pareto e�cient equilibrium.

Related to my test of Hypothesis 4, I investigate whether the proportion of "mistakes"

made by players choosing action B in sessions playing Game 1 is signi�cantly lower than 1/2,
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indicating non-uniform distribution of mistakes. To test this, I employ a simple binomial

test.

In the �rst 100 rounds, there were a total of 606 "mistakes" in sessions playing Game

1. Out of these mistakes, only 67 were players choosing action B. The binomial test yields

compelling results. It allows me to reject Hypothesis 60 in favor of 6A, as indicated by a

p-value of less than 2.2e−16.

2.4 Concluding Remarks

In this paper I use the theoretical foundations of Young (1993) and Ellison (2000) to

de�ne stepping stones, a recurrent class which reduces the resistance from one recurrent

class to another. I then design an experiment to test if injecting a stepping stone into a

stag hunt game helps the group transition to the Pareto e�cient equilibrium as theoretically

predicted. I use a 3× 2 treatment design varying the amount of information players receive

about the game as well as the game they play and conducted 18 sessions in total, three for

each treatment.

The main results are as follows: First, I �nd that groups that played games with stepping

stones were always able to make the transition to the risky, high payo� equilibrium and

ended up playing the strategy associated with that equilibrium with the highest frequency.

By contrast, groups without a stepping stone occasionally failed to make the transition. I

also �nd that in games where the stepping stone payo� dominated the starting equilibrium,

groups were more stable at and ended up playing the Pareto e�cient equilibrium signi�cantly

more than when the starting equilibrium payo� dominated the stepping stone.

Second, in examining the e�ect that information about other players' payo�s had on the

game, I found that the groups who played with complete information were more successful

than groups with incomplete information when playing the stag hunt game with no stepping

stone. I attribute this to the common knowledge that a Pareto improvement exists. However,
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I �nd that this e�ect disappeared when a stepping stone was added to the game, presumably

because the stepping stone o�ered easy to accomplish transitions at a low deviation cost.

Finally, I examine how players made decisions in relation to their myopic best response.

examining myopic best response, the decision making mechanism behind adaptive play

models. Recent experiments have found that subjects play their myopic best response 90-96%

of the time which provides good support for using the adaptive learning model in analyzing

evolutionary games. In this experiment I �nd that subjects played their myopic best response

87-91% of the time when their myopic best response corresponded with the Pareto e�cient

equilibrium which is in line with what's been observed in the literature. I found several

factors that in�uenced subjects propensity to deviate. Like Lim and Neary (2016), I �nd

that players are more likely to deviate from myopic best response in the initial stages of

the game and that players were sensitive to the di�erence in myopic payo�s. Speci�cally,

players were less likely to play their myopic best response when the di�erence in myopic

payo�s between that and an alternative strategy was lower. I also found that the largest

factor in determining if a player would play their myopic best response is if their myopic

best response corresponds to the payo� dominant equilibrium, adding support to the theory

of Harsanyi et al. (1988) and results of Jagau (2022). As such, combining the current data

with a payo�-dependent mistakes model would give more powerful analysis.

I also adapted the stochastic strategy update probability used in experiments like Hwang

et al. (2018) by �rst soliciting players decisions before the stochastic determination. This

pseudo-strategy method allowed me to boost data collection and provided an interesting

result. When subjects choices were not accepted in the previous round they were slightly

but signi�cantly less likely to deviate from myopic best response in the subsequent round. I

attribute this to the increased salience that they could get stuck in an ine�cient choice for

multiple rounds. Further testing is required to see if this same e�ect impacts play when the

stochastic determination is made prior to the player's decision.
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2.5 Bridge

In this chapter I designed and conducted an experiment to test if stepping stones are

e�ective in facilitating transitions from an initial equilibrium to a Pareto e�cient equilibrium.

The theory behind it, like many papers, builds o� the concept of adaptive play which was

introduced by Peyton Young in 1993 Young (1993). In the following chapter I delve into the

theory of adaptive play and relax the bounds under which its main results hold.
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CHAPTER III

MINIMALLY INCOMPLETE SAMPLING AND CONVERGENCE OF ADAPTIVE

PLAY IN 2× 2 GAMES

This chapter is co-authored with Anne van den Nouweland. I contributed to proving the

main results and wrote the introduction. The proofs and results were written by both myself

and Anne van den Nouweland who also provided editorial assistance throughout.

3.1 Introduction

With over 1000 citations, Young (1993) is a seminal paper in the �eld of evolutionary

game theory. In it, Young introduces a model of learning called adaptive play in which players

best respond to a sampled history of play. Young proved that play will eventually converge

to a convention, a self-enforcing pattern of play where the same Nash equilibrium is played in

each period, if the sampling in the available history by the players is su�ciently incomplete.

Through this backward looking best response behavior, Young o�ers an explanation for how

order and norms can spontaneously evolve in populations.

In the process of adaptive play, occasionally players make mistakes and play an action

that is not a best response. Such instances are called perturbations and allow the perturbed

adaptive play process to escape a convention and travel to another one. The resistance of

moving from one convention to another is measured by the number of mistakes that are

necessary to move the process into the basin of attraction of the latter convention. The

conventions that require the most mistakes to move from and/or the fewest to move to are

most likely to be played in the long run. Such conventions are said to be stochastically

stable. The theory of adaptive play, sometimes called adaptive learning or �ctitious play

with bounded memory, and its most celebrated result, identifying the stochastically stable

patterns of play, have since been applied to a wide variety of games. We restrict the scope of
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our literature review here to games with �nitely many strategies in which groups of players

interact with each other on a random basis.1

In his book Individual Strategy and Social Structure (Young (1998)), Young expanded

upon the foundation he laid in Young (1993). He proved that in 2 × 2 coordination games

adaptive play eventually converges to a convention if the amount sampled (s) in the available

memory (m) is su�ciently incomplete, where the criterion for "su�ciently" incomplete is

slackened to s/m ≤ 1/2 in Young (1998) (from the more permissive restriction in Young

(1993)2). Most recently, Proposition 6.4 of C. Wallace and Young (2015) simply states

that in n-player coordination games "if s/m is su�ciently small, the [adaptive learning]

process converges with probability one to a convention from any initial state". Although

acknowledged by Young in his 1998 book, "We do not claim the bound on incompleteness

s/m ≤ 1/2 is the best possible", to our knowledge no one has found and proven what the

best possible bound is. Consequently, follow-up work building upon this theory has retained

the restrictive bound of s/m ≤ 1/2.

The literature we review applies adaptive learning to a variety of games with a focus

on �nding di�erent criteria for stochastic stability. Maruta (1997) and Ellison (2000)

independently introduced the idea of global risk dominance,3 which indicates the existence of

an action that risk dominates every other strategy in a game, and showed that the stochastic

adaptive learning process of Young (1993) selects the globally risk dominant strategy if there

is one.

Durieu, Solal, and Tercieux (2011) applied Young's adaptive play model to the concept

of p-best response sets. The idea of p-dominant equilibrium, �rst introduced by Morris, Rob,

1So, we do not, for example, consider games played on networks. For an introduction and references to
the extensive literature on such games, we refer to reader to C. Wallace and Young (2015).

2The result in Young (1993) that we are referring to is Theorem 1, which is formulated for a more general
setting than only 2× 2 coordination games.

3The terminology "global risk dominance" was introduced in Maruta (1997).
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and Shin (1995), was adapted by Tercieux (2006) to create the concept of p-best response sets.

A p-best response set is a cartesian product of strategies for each player such that when all

players believe all other player(s) will play a strategy contributing to the p-best response set

with at least probability p then the best response(s) of all players are strategies contributing

to the p-best response set. A p-best response set with p = 1 is therefore equivalent to the

concept of a so-called curb set as introduced by Basu and Weibull (1991) and discussed in

the context of adaptive play in Chapter 7 of Young (1998). A p-best response set is said to

be minimal if it contains no proper subsets which are also p-best response sets. Durieu et al.

(2011) show that in n-person games, if p is su�ciently small then there is a unique minimal

p-best response set and only the strategy pro�les contained within the unique minimal p-best

response set can be stochastically stable given perturbation rates are also su�ciently small.

Note that this method does not necessarily make as sharp a prediction as Young (1993) since

a p-best response set may contain multiple conventions of which not all are stochastically

stable.

Breaking o� from the canonical model, adaptive play has also been modi�ed to �t a

cognitive hierarchy framework (Khan & Peeters, 2014; Matros, 2003; Sáez-Martí & Weibull,

1999). This branch of theory allows for variability in the degree of sophistication through

which players compute their best response, similar to level-k thinking as introduced by Nagel

(1995b). In Young's model of adaptive play, agents are backwards looking and best respond

to their sample of their opponents' play. Sáez-Martí and Weibull (1999) and Matros (2003)

refer to these players as "not clever" and Khan and Peeters (2014) refers to them as "level-1"

individuals. One step higher on the cognitive scale are the "clever" and "level-2" individuals.

These players sample their own history of play, compute their opponents' best responses

to that, and then play their own best response to their opponents' predicted play. Sáez-

Martí and Weibull (1999) and Matros (2003) cap the cognitive hierarchy at level-2 whereas

Khan and Peeters (2014) allows higher levels and moreover has even-leveled individuals
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sample their own history and odd-leveled individuals sample their opponents' history. Sáez-

Martí and Weibull (1999) studies bargaining games, Matros (2003) studies generic two-player

games, and Khan and Peeters (2014) covers both of these. All three impose s ≤ m/24 and �nd

that introducing "clever" agents can change which states are stochastically stable. Matros

(2003) and Khan and Peeters (2014) �nd that play with "clever" agents still converges to a

minimal curb set.

Jensen, Sloth, and Whitta-Jacobsen (2005) applies adaptive play to static 2-player games

of incomplete information. They allow for di�erent types of players within the class of players

for each role in the game, where each type of player creates their own history. In each period,

only the memories of the types who are selected to play are updated, and those of the other

types remain unchanged. Players know the distribution of types in the other classes and

sample for each type from the most recent m periods in which that type played, and then

weight their sample by the prevalence of each type and subsequently compute their best

response. Jensen et al. (2005) examines in detail a 2 × 2 game of chicken with incomplete

information and leverages the condition s < m/4 (which they obtain by applying Theorem

1 in Young (1993)) to show that the basic learning process converges to a convention and

that convention may be one which "lacks coordination" where not all types for the same

player play the same strategy. Depending on the payo�s in the game, this "uncoordinated"

convention can be stochastically stable.

In our paper we show that any degree of incomplete sampling is su�cient for the

unperturbed adaptive play process to converge to an equilibrium in 2×2 coordination games

from any given history. In addition, we show that incomplete sampling is unnecessary in all

but some 2 × 2 games. We also show that increasing the sample size beyond s/m ≤ 1/2

may result in increased levels of resistance between conventions, that is to say, increasing the

4The authors allow for di�erent roles in the game to have di�erent sample sizes but impose the upper
limit of m/2 for all samples.
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sample size may make conventions more stable. However, even though the resistance between

conventions may change, we show that this change does not a�ect which convention(s) are

stochastically stable when sampling is incomplete (s < m).

3.2 Adaptive Play in 2× 2 Coordination Games

3.2.1 2× 2 Coordination Games. Consider a 2× 2 game G = (N ;A1, A2;u1, u2)

with player set N = {1, 2}, actions sets A1 = {a1, a2} and A2 = {b1, b2}, and payo� functions

ui : A1 ×A2 → R (i = 1, 2). The game G is a coordination game if it has two pure-strategy

Nash equilibria on a diagonal. Without loss of generality, we assume that (a1, b1) and (a2, b2)

are Nash equilibria and we also assume that for player 1 either u1(a1, b1) > u1(a2, b1) or

u1(a2, b2) > u1(a1, b2) and for player 2 either u2(a1, b1) > u2(a1, b2) or u2(a2, b2) > u2(a2, b1).

These last two conditions rule out the possibility that one of the players has the same payo�

from both their actions regardless of the action played by the other player, in which case the

only distinction between a player's two actions is, from their own perspective, the names of

the actions.

Because each player has only two actions in the game G, every mixed strategy pi of player

i ∈ {1, 2} can be identi�ed by the probability pi(si) with which player i plays one of their

actions si (because that leaves probability 1− pi(si) that player i plays their other action).

Action a1 is a best response by player 1 to a mixed strategy p2 of player 2 if and only if

p2(b1) ≥ u1(a2,b2)−u1(a1,b2)
u1(a1,b1)−u1(a1,b2)−u1(a2,b1)+u1(a2,b2) . Note that α2 := u1(a2,b2)−u1(a1,b2)

u1(a1,b1)−u1(a1,b2)−u1(a2,b1)+u1(a2,b2) ∈

[0, 1] because G is a coordination game with Nash equilibria (a1, b1) and (a2, b2), and

either u1(a1, b1) > u1(a2, b1) or u1(a2, b2) > u1(a1, b2).
5 Similarly, action b1 is a best

response by player 2 to a mixed strategy p1 of player 1 if and only if p1(a1) ≥ α1 :=

u2(a2,b2)−u2(a2,b1)
u2(a1,b1)−u2(a2,b1)−u2(a1,b2)+u2(a2,b2) ∈ [0, 1].

5The only possible hick-up is that the denominator could equal 0, but that is ruled out when player 1 has
two actions that di�er to them in more than name only.
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3.2.2 Adaptive Play in 2-Player Games. We study adaptive play (Young, 1993)

with memory m and sample size 1 < k ≤ m of the game G, as explained below.6

For each role (player position) i ∈ N in game G, there is a class of players Ci who

can play that role. No player can play in more than one role (C1 ∩ C2 = ∅). In each

period t, a player is drawn from each class, and the two players that are drawn play the

game G � each player i chooses an action si(t) ∈ Ai from the actions available to them

in their role. The action-tuple s(t) = (s1(t), s2(t)) is recorded and will be referred to as

the play at time t. The history of plays up to and including time t is the ordered vector

h(t) = (s(1), s(2), s(3), ..., s(t)), and the history of the last m plays, called a state, is the

ordered vector h(t|m) = (s(t−m+ 1), s(t−m+ 2), ..., s(t)).

In period t + 1, the player in role i draws a sample Rt+1
i of size k from the m most

recent plays sj(t − m + 1), sj(t − m + 2), . . . , sj(t) by the players in role j 6= i. Player i

predicts that the players in role j play a mixed strategy pj(·|Rt+1
i ) that is the frequency

distribution of the actions in the sample drawn: pj(sj|Rt+1
i ) equals the number of times that

action sj occurs in the sample Rt+1
i divided by k, for each sj ∈ Aj. Player i then plays an

action that is a best response to this predicted mixed strategy: si(t + 1) ∈ BRi(R
t+1
i ) :=

arg max {
∑

sj∈Aj

(
pj(sj|Rt+1

i ) · ui(si, sj)
)
| si ∈ Ai}.

The decision making process described above is called unperturbed adaptive play with

memory size m and sample size k. Through an adaptive play process, self-enforcing patterns

of play, called conventions, can emerge.

De�nition 8. A convention is a state h(t|m) that entirely consists of m repetitions of the

same Nash equilibrium s∗ of the game G.

When a convention is reached in which the Nash equilibrium s∗ is played, then the

players can only sample the others playing their part of s∗ and thus all players have a best

6Throughout, we use k for the sample size because we already use s for strategies.
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response to play their part of s∗. That means that adaptive play predicts that the players

can keep playing s∗ in all subsequent periods. If the Nash equilibrium s∗ is strict, then

the best responses are unique and, without perturbations, the players will keep playing s∗

inde�nitely.

3.3 Minimally Incomplete Sampling

In Young (1998), Young proved that in 2× 2 coordination games, unperturbed adaptive

play will reach a convention as long as sampling is su�ciently incomplete. Incomplete

sampling means that the players sample only a faction of the records in memory and in Young

(1998) the speci�c limit for sampling to be "su�ciently" incomplete is k ≤ m
2
, meaning that

players sample at most half of all the records available in memory. We relax this bound

substantially and show that in 2× 2 coordination games, any degree of incomplete sampling

is su�cient for a convention to eventually be reached.

Lemma 1 will be used in the proof of Theorems 1, 2 and 3.

Lemma 1. Let G be a 2×2 coordination game and let s∗ = (s∗1, s
∗
2) be a (pure-strategy) Nash

equilibrium of G. Consider unperturbed adaptive play with memory size m and sample size

k ≤ m. Let t > m be a period in which each player i ∈ {1, 2} can play s∗i as a best response

to their sampled history, so that there is a positive probability that the strategy-tuple s∗ is

played in period t. Then the convention of playing s∗ can be reached with positive probability.

Proof of Lemma 1.

Using induction, we show that there exists a positive probability that s∗ is played in

periods t through t+m− 1, so that the convention of playing s∗ is reached.

Base Step: By assumption, the strategy-tuple s∗ = (s∗1, s
∗
2) is played with positive

probability in period t.

Inductive Step: Let t̂ ≥ t and suppose that it has already been demonstrated that each

player i ∈ {1, 2} can play s∗i as a best response to their sampled history in period t̂, so that
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there is a positive probability that the strategy-tuple s∗ is played in period t̂. It will be

shown that there is a positive probability that s∗ is played in period t̂+ 1 as part of adaptive

play.

For each player i ∈ {1, 2}, let Rt̂
i be a sampled history of player i in period t̂ such that

s∗i ∈ BRi(R
t̂
i), and let si(t̂) = s∗i . Then there is a positive probability that each player i

draws a sample Rt̂+1
i that is obtained by replacing one of the records in Rt̂

i with sj(t̂) = s∗j

(j 6= i). If the replaced record is equal to s∗j , then this does not change the frequency of s∗j

in i's sample, and if the replaced record is not equal to s∗j , then this increases the frequency of

s∗j in i's sample. If s∗ = (a1, b1), then pj(s
∗
j |Rt̂+1

i ) ≥ pj(s
∗
j |Rt̂

i) ≥ αj, where the last step holds

because s∗i ∈ BRi(R
t̂
i). Similarly, if s∗ = (a2, b2), then pj(s

∗
j |Rt̂+1

i ) ≥ pj(s
∗
j |Rt̂

i) ≥ 1 − αj. In

both cases, it follows that s∗i ∈ BRi(R
t̂+1
i ).

Therefore, there is a positive probability that s∗ is played in period t̂ + 1 as part of

adaptive play.

Conclusion: Using the inductive step m − 1 times, it has thus been shown that there

exists a positive probability that s∗ is played in periods t through t + m − 1, so that the

convention of playing s∗ is reached. �

Lemma 1 exploits the fact that in a 2× 2 game, when player i's Nash equilibrium action

s∗i is a best response to the other player j's mixed strategy, and subsequently, the probability

that player j plays s∗j (weakly) increases, then s
∗
i is still a best response by player i. Loosely

speaking, it seems fairly intuitive that a when the other player plays their Nash equilibrium

action with larger probability, this will increase a player's incentive to play their best response

to that action. However, the following example demonstrates that this intuition does not

extend to larger games.

Example 1. Consider the 3× 3 coordination game in Figure 16
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Figure 16. Example 1 Game

Player 2
b1 b2 b3

Player 1
a1 1, 1 0, 0 0, 0
a2 0, 0 2, 2 −3,−3
a3 0, 0 −3,−3 2, 2

Suppose that t > m ≥ k = 2, Rt
1 = {b3, b2} and Rt

2 = {a2, a3}. Given the distribution of

the sampled actions of player 2 in Rt
1, player 1 has an expected payo� of 0 if they play a1,

−1
2
if they play a2, and −1

2
if they play a3, so that BR1(R

t
1) = {a1}. Given the distribution

of the sampled actions of player 1 in Rt
2, player 2 has an expected payo� of 0 if they play b1,

−1
2
if they play b2, and −1

2
if they play b3, so that BR2(R

t
2) = {b1}. Thus, the strict Nash

equilibrium (a1, b1) is played with positive probability period t.

Let s(t) = (a1, b1) and suppose that in period t+1 both players sample the record played in

period t. Assuming that player 1 draws the record s2(t) = b1 instead of one of the two records

b2 or b3 drawn in Rt
1, there are two possibilities, namely Rt+1

1 = {b1, b2} and Rt+1
1 = {b1, b3}.

Because BR1({b1, b2}) = {a2} and BR1({b1, b3}) = {a3}, it is no longer a best response for

player 1 to play b1 if they replace any of the records that they sampled at time t with the

record of player 2 playing b1 at time t. It is thus possible that adaptive play leads players

away from the strict Nash equilibrium (a1, b1) after a period in which that strategy pro�le is

played by the two players.

While Example 1 demonstrates that the proof that we provided of Lemma 1 is not valid

for coordination games in which players have more than 2 actions, the following example

demonstrates that when sampling is complete (k = m), the statement of the lemma is not

necessarily true for such games.

Example 2. Consider the game in Example 1 and let k = m = 2. Consider a period t > 2

such that h(t | m) =
(
(a2, b3), (a3, b2)

)
. Because sampling is complete, Rt+1

1 = {b2, b3} and
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Rt+1
2 = {a2, a3}. Because BR1({b2, b3}) = {a1} and BR2({a2, a3}) = {b1}, necessarily s(t+

1) = (a1, b1). Thus, h(t + 1 | m) =
(
(a3, b2), (a1, b1)

)
, Rt+2

1 = {b1, b2}, and Rt+2
2 = {a1, a3}.

Therefore, BR1(R
t+2
1 ) = {a2} and BR2(R

t+2
2 ) = {b3}, and necessarily s(t+ 2) = (a2, b3). It

follows that in period t+3, the players see the history h(t+2 | m) =
(
(a1, b1), (a2, b3)

)
, so that

Rt+3
1 = {b1, b3} and Rt+3

2 = {a1, a2}, and the players' best responses are BR1(R
t+3
1 ) = {a3}

and BR2(R
t+3
1 ) = {b2}. After playing s(t + 3) = (a3, b2), the history of the last m plays is

h(t+ 3 | m) =
(
(a2, b3), (a3, b2)

)
and the adaptive play process has thus returned to the same

state it was in during period t.

We have demonstrated that adaptive play with memory size 2 and complete sampling

(sample size 2) will keep cycling from (a2, b3) to (a3, b2) to (a1, b1), to (a2, b3), to (a3, b2),

and so on. Thus, although the strict Nash equilibrium: (a1, b1) is played every third period

as part of this sequence, the process never reaches the convention of playing (a1, b1).

Theorem 1. Let G be a 2×2 coordination game with Nash equilibria (a1, b1) and (a2, b2), in

which at least one of the two Nash equilibria is strict (i.e., either u1(a1, b1) > u1(a2, b1) and

u2(a1, b1) > u2(a1, b2), or u1(a2, b2) > u1(a1, b2) and u2(a2, b2) > u2(a2, b1)). From any initial

state, unperturbed adaptive play with memory size m and sample size k < m converges with

probability one to a convention corresponding to a strict Nash equilibrium and locks in.

Proof of Theorem 1. In light of Lemma 1, it su�ces to demonstrate that there

exists a period t > m in which a strict Nash equilibrium s∗ = (s∗1, s
∗
2) is played with

positive probability, because then the convention of playing s∗ can be reached with positive

probability, and once that convention is reached, the players will keep playing s∗ inde�nitely.

Without loss of generality, assume that the Nash equilibrium (a1, b1) is strict. Consider

unperturbed adaptive play with memory size m and sample size k < m starting from

an arbitrary initial state. Consider an arbitrary period t > m and the history h(t) =

(s(1), s(2), s(3), ..., s(t)) of plays up to and including time t. We distinguish three cases.
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Case 1. In period t + 1 it is possible for the players to draw samples Rt+1
i , i = 1, 2,

such that a1 ∈ BR1(R
t+1
1 ) and b1 ∈ BR2(R

t+1
2 ). Then there is a positive probability that

s(t+ 1) = (a1, b1).

Case 2. In period t+1 it is possible for the players to draw samples Rt+1
i , i = 1, 2, such

that a2 ∈ BR1(R
t+1
1 ) and b2 ∈ BR2(R

t+1
2 ). There is a positive probability that s(t + 1) =

(a2, b2). If the Nash equilibrium (a2, b2) is strict, then we have reached a period in which the

players play a strict Nash equilibrium.

If the Nash equilibrium (a2, b2) is not strict, then u1(a2, b2) = u1(a1, b2) or u2(a2, b2) =

u2(a2, b1) (or both). Assume, without loss of generality, that u1(a2, b2) = u1(a1, b2) (and

u2(a2, b2) ≥ u2(a2, b1)). Then BR1(R
t+1
1 ) = {a1, a2} and thus a1 ∈ BR1(R

t+1
1 ). Thus,

s(t + 1) = (a1, b2) is played with positive probability in the adaptive play process. For the

next k− 1 periods, regardless of the actions that player 2 plays and the samples that player

1 draws, player 1 can keep playing s1(t̂) = a1, t̂ = t+ 2, . . . , t+ k, as a best response. Then

in period t+ k + 1, player 2 can draw a sample Rt+k+1
2 from player 1's actions that consists

of k instances of player 1 playing a1, so that b1 ∈ BR2(R
t+k+1
2 ). Thus, there is a positive

probability that s(t+ k + 1) = (a1, b1).

Case 3. If in period t+1 it is not possible for the players to draw samples Rt+1
i , i = 1, 2,

such that si ∈ BRi(R
t+1
i ) for i = 1, 2 and (s1, s2) is a Nash equilibrium of G, then, without

loss of generality, assume that BR1(R
t+1
1 ) = {a1} for all samples that player 1 can draw, and

BR2(R
t+1
2 ) = {b2} for all samples that player 2 can draw, so that s(t+ 1) = (a1, b2).

This implies that in h(t | m) player 2 played b2 at most β2 times, where β2 is the largest

number in {0, 1, . . . , k − 1} that is strictly lower than (1 − α2) × k.7 Similarly, in h(t | m)

player 1 played a1 at most β1 times, where β1 is the largest number in {0, 1, . . . , k− 1} that

7We remind the reader that α2 is the probability such that action a1 is a best response by player 1 to a
mixed strategy p2 of player 2 if and only if p2(b1) ≥ α2. Also, because (a1, b1) is a strict Nash equilibrium,
α2 < 1, so that (1− α2)× k > 0.
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is strictly lower than α1× k.8 However, s(t+ 1) = (a1, b2), so that the number of times that

player 1 (resp. 2) plays action a1 (resp. b2) in h(t+ 1 | m) is either equal to that in h(t | m)

(in case s1(t−m+1) = a1, resp. s2(t−m+1) = b2) or one higher. As long as these numbers

do not exceed β1, resp. β2, the players will keep playing s(t̂) = (a1, b2) in periods t̂ ≥ t+ 2.

This clearly cannot persist because after m periods the players would only have plays (a1, b2)

in recent memory.

Let t̂ ≥ t + 1 be the �rst period in which either player 1 played a1 more than β1 times

in h(t̂ | m) or player 2 played b2 more than β2 times in h(t̂ | m) (or both). Without loss of

generality, assume that player 1 played β1 instances of a1 in h(t̂−1 | m) and β1 +1 instances

of a1 in h(t̂ | m). Then in period t̂+ 1, player 2 can draw a sample Rt̂+1
2 that contains β1 + 1

instances of player 1 playing a1, and play s2(t̂+ 1) = b1 ∈ BR2(R
t̂+1
2 ). Also, player 2 played

at most β2 instances of b2 in h(t̂−1 | m)), and thus at most β2+1 instances of b2 in h(t̂ | m)).

Thus, because k < m, in period t̂ + 1, player 1 can draw a sample Rt̂+1
1 that contains no

more than β2 instances of player 2 playing b2, and play s1(t̂ + 1) = a1 ∈ BR1(R
t̂+1
1 ). Thus,

there is a positive probability that s(t̂+ 1) = (a1, b1).

Conclusion. The three cases we considered are exhaustive and thus we have shown that,

starting from any period t > m and with any history of play at that time, we can �nd a

period in which there is a positive probability that the players play a strict Nash equilibrium

in the adaptive play process with sample size k < m. Lemma 1 then establishes that the

convention of playing that strict Nash equilibrium can be reached with positive probability,

and then the process is locked in. �

Note that in the proof of Theorem 1, there is only one instance in which we use that

sampling is incomplete (k < m), and that is in Case 3, where we need it to guarantee that

it cannot be the case that the adaptive play process can get "stuck" in a situation where

8We remind the reader that α1 is the probability such that action b1 is a best response by player 2 to a
mixed strategy p1 of player 1 if and only if p1(a1) ≥ α1. Note that α1 > 0, because otherwise b1 ∈ BR2(R

t+1
2 )

regardless of the sample that player 2 draws.
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both players mis-coordinate in every period, oscillating between (a1, b2) and (a2, b1) and

necessarily switching actions in exactly the same periods. If the game and sample sizes are

such that this cannot happen anyway, then we do not need sampling to be incomplete at

all, and we can have k = m. We use the notation d·e to denote the rounding up of any real

number to the smallest natural number that is at least as large.9

Theorem 2. Let G be a 2×2 coordination game with Nash equilibria (a1, b1) and (a2, b2),

in which at least one of the two Nash equilibria is strict (i.e., either u1(a1, b1) > u1(a2, b1)

and u2(a1, b1) > u2(a1, b2), or u1(a2, b2) > u1(a1, b2) and u2(a2, b2) > u2(a2, b1)) and such

that α1 6= 1 − α2.
10 Let the sample size k be such that dα1 × ke 6= d(1 − α2) × ke or

dα2×ke 6= d(1−α1)×ke.11,12 From any initial state, unperturbed adaptive play with memory

size m and sample size k ≤ m converges with probability one to a convention corresponding

to a strict Nash equilibrium and locks in.

Proof of Theorem 2. If k < m, then Theorem 1 applies. So, suppose that k = m, i.e,

sampling is complete in the sense that players see all of the past m records.

Consider an adaptive play process with k = m. If in some period t > m the players

coordinate, i.e., s(t) = (a1, b1) or s(t) = (a2, b2), then we can apply cases 1 or 2 in the

proof of Theorem 1 to establish that there is a positive probability that the players play a

strict Nash equilibrium (note that these cases do not depend on k < m). Lemma 1 then

establishes that the convention of playing that strict Nash equilibrium can be reached with

positive probability, and then the process is locked in.

9So, if n is a natural number itself, then dne = n. Also, we include 0 in the set of natural numbers.

10Thus, the smallest probability for player 1 to play a1 such that action b1 is a best response by player 2 is
not equal to the smallest probability for player 2 to play b2 such that action a2 is a best response by player 1.

11Note that if the game G is such that α1 and 1− α2 are close, then this will require a large sample size.

12dα1 × ke 6= d(1−α2)× ke does not necessarily imply dα2 × ke 6= d(1−α1)× ke. An example of this can
be found in Example 4.
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Thus, it remains to consider the possibility that the players mis-coordinate in all periods,

i.e., s(t) ∈ {(a1, b2), (a2, b1)} for all t. We will demonstrate that this cannot happen because

one of dα1 × ke 6= d(1 − α2) × ke or dα2 × ke 6= d(1 − α1) × ke implies that an adaptive

play process with k = m cannot result in string of mis-coordinated plays s(1), s(2), . . . with

s(t) ∈ {(a1, b2), (a2, b1)} for all t. Without loss of generality assume dα1×me 6= d(1−α2)×me.

If, in some period t > m,13 the players observe a history of play that consists of a string of

m instances of (a1, b2) having been played in the previous m periods, player 2's unique best

response is to play b1 in the next period or player 1's unique best response is to play a2 in the

next period.14 Thus, any string of mis-coordinated plays that contains a string of more than

m subsequent plays of (a1, b2) cannot be the result of an adaptive play process. Similarly,

any string of mis-coordinated plays that contains a string of more than m subsequent plays

of (a2, b1) cannot be the result of an adaptive play process. We conclude that if the players

mis-coordinate in all periods, and they follow an adaptive play process, then the process

needs to switch repeatedly between playing (a1, b2) and (a2, b1).

For player 1 to switch to playing a2, they need to observe d(1 − α2) × me instances of

player 2 playing b2, and for player 2 to switch to playing b1, they need to observe dα1 ×me

instances of player 1 playing a1. However, in all periods t > m, because k = m, player 1

samples as many records of player 2 playing b2 as player 2 samples records of player 1 playing

a1. Thus, dα1 ×me 6= d(1− α2)×me implies that the players will not switch from playing

(a1, b2) to playing (a2, b1) in the same period when they follow an adaptive play process. �

3.4 Perturbed Adaptive Play in 2× 2 Games

Now consider the adaptive play process as modeled in Section 2 but where players have

a small probability of playing an action that is not their best response. Speci�cally, in every

13We consider only periods t > m to ensure that the players have m periods' plays available in memory.

14This uses dα1 ×me 6= d(1 − α2) ×me, which implies that it cannot be the case that player 1 can best
respond by playing a1 and player 2 can best respond by playing b2 after both observe m instances of (a1, b2)
having been played.
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round players now play a strategy at random with probability ε and with probability 1− ε

they play a best response to their drawn sample, Rt
i. As such, an action that is not in

the set of possible best responses to samples drawn from the memory can be played with

probability ε/2.15 We shall refer to such actions as mistakes. This process is called perturbed

adaptive play. Allowing for mistakes makes transitions possible between conventions, even

those in which a strict Nash equilibrium is played. Continuing with the setup established

in Section 2 where (a1, b1) and (a2, b2) are Nash equilibria, denote by hi the convention

corresponding to (ai, bi), i.e., the state that consists of m repetitions of (ai, bi). Now consider

the transition from hi to hj. Let the resistance, denoted rk,mi,j , be the minimum number

of mistakes necessary to make the transition from hi to hj in the perturbed adaptive play

process. Young (1998) shows that the resistance between conventions is independent of m

when k ≤ m/2. Speci�cally, the resistance of moving from h2 to h1 equals min
(
dα1×ke, dα2×

ke
)
and the resistance of moving from h1 to h2 equals min

(
d(1− α1)× ke, d(1− α2)× ke

)
.

However, we demonstrate below that when sampling is less incomplete (k > m/2), the

resistances may be larger and depend on m.

Theorem 3. Let G be a 2×2 coordination game with Nash equilibria (a1, b1) and (a2, b2).

Consider unperturbed adaptive play with memory size m and sample size k ≤ m. The

resistance of moving from h2 to h1 equals r
k,m
2,1 = min

(
dα1× ke, dα2× ke

)
+ max

(
dα1× ke+

dα2 × ke −m, 0
)
and the resistance of moving from h1 to h2 equals r

k,m
1,2 = min

(
d(1− α1)×

ke, d(1− α2)× ke
)

+ max
(
d(1− α1)× ke+ d(1− α2)× ke −m, 0

)
.

Proof of Theorem 3. We compute the resistance rk,m2,1 . Similarly to Case 2 of the proof

of Theorem 1, we derive that no mistakes are necessary to move from h2 to h1 if equilibrium

(a2, b2) is not strict. In that case, either α1 = 0 or α2 = 0 or both hold and the expression

for rk,m2,1 in the statement of the theorem indeed produces a resistance equal to 0.

15The 1/2 comes from the fact that each player has two actions, each of which they choose with equal
probability when they play an action at random.
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So assume that equilibrium (a2, b2) is strict and let t be a period such that h(t|m) = h2,

i.e., the system is in convention h2. Because (a2, b2) is strict, (a2, b2) will continue to be

played if the players do not make any mistakes. To reach convention h1, it is necessary to

reach a period in which both a1 and b1 can be played as best responses to samples drawn by

the players.16 Reaching a period in which both a1 and b1 can be played as best responses to

samples drawn by the players is also a su�cient condition for the process to reach convention

h1 without further mistakes (see Lemma 1). Thus, starting from convention h2, we need to

determine the minimum number of mistakes (which will be positive) necessary to build a

length-m history of play from which both players can draw samples of size k such that a1

and b1 are best responses. For this condition to be met in some period T , player 1 must

have played a1 at least dα1 × ke times and player 2 must have played b1 at least dα2 × ke

times in periods T −m through T − 1. Clearly, this can be accomplished by having player 1

make a mistake and play a1 a total of dα1 × ke times and having player 2 make a mistake

and play b1 a total of dα2 × ke times in max
(
dα1 × ke, dα2 × ke

)
consecutive periods. This

gives an upper bound of dα1 × ke+ dα2 × ke for rk,m2,1 .

The number of mistakes can be lowered by decreasing the number of periods in which

both players make a mistake, so that players can sample each other's mistakes and potentially

play a1 and/or b1 as best responses.

At the extreme, when sample sizes are su�ciently incomplete so that players can keep

sampling mistakes long enough, it su�ces for one player to make enough mistakes to make

their action in (a1, b1) a best response by the other player, and we obtain the lower bound

min
(
dα1 × ke, dα2 × ke

)
for rk,m2,1 . We consider this case �rst.

Case 1. dα1 × ke+ dα2 × ke ≤ m.17

16Note that this is a property that is satis�ed by convention h1.

17In this case, derivations are similar to those in Young (1998).
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Starting in period t+ 1, suppose player 1 makes dα1× ke consecutive mistakes and plays

a1 in periods t + 1, . . . , t + dα1 × ke. During each of these periods, player 2 can sample

no more than dα1 × ke − 1 instances of player 1 playing a1 and can only play b2 as a best

response.

Because dα1 × ke + dα2 × ke ≤ m, in each of the periods t + dα1 × ke + 1 through

t+ dα1× ke+ dα2× ke, player 2 can sample all dα1× ke instances of a1 that player 1 played

in periods t+ 1 to t+ dα1× ke and play b1 as a best response. In these periods, player 1 can

sample no more than dα2 × ke − 1 plays of b1 and can only play a2 as a best response.

Table 1. Case 1 Example Transition

Play
Period t−m+ 1 . . . t t+ 1 . . . t+ dα1 × ke t+ dα1 × ke+ 1 . . . t+ dα1 × ke+ dα2 × ke t+ dα1 × ke+ dα2 × ke+ 1 . . .
Player 1 a2 a2 a2 a1 a1 a1 a2 a2 a2 a1 a1
Player 2 b2 b2 b2 b2 b2 b2 b1 b1 b1 b1 b1

The color red denotes actions which necessarily are mistakes. Actions colored blue can be played

as a best response.

Because dα1 × ke+ dα2 × ke ≤ m, in period t+ dα1 × ke+ dα2 × ke+ 1 it is possible for

player 2 to sample all dα1 × ke player 1's plays of a1 in periods t + 1 through t + dα1 × ke,

while player 1 samples all dα2× ke player 2's plays of b1 in periods t+ dα1× ke+ 1 through

t+ dα1× ke+ dα2× ke. Thus, both a1 and b1 can be played as best responses by the players

in period t+ dα1×ke+ dα2×ke+1 and the process can reach convention h1 without further

mistakes (see Lemma 1).

The process we just described reaches convention h1 from convention h2 with exactly

dα1 × ke mistakes by starting in period t + 1 with player 1 making dα1 × ke consecutive

mistakes and playing a1 in periods t+1, . . . , t+dα1×ke. If instead we start in period t+1 with

player 2 making dα2×ke consecutive mistakes and playing b1 in periods t+1, . . . , t+dα2×ke,

we obtain a process that reaches convention h1 from convention h2 with exactly dα2 × ke

mistakes.
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Because either player 1 must have played a1 at least dα1 × ke times to allow player 2

to play b1 as a best response, or player 2 must have played b1 at least dα2 × ke times to

allow player 1 to play a1 as a best response, the minimum number of mistakes necessary to

reach convention h1 from convention h2 equals min
(
dα1× ke, dα2× ke

)
. Since (at least) one

of the two processes we described reaches convention h1 from convention h2 with exactly

min
(
dα1 × ke, dα2 × ke

)
mistakes, we have demonstrated that rk,m2,1 = min

(
dα1 × ke, dα2 ×

ke
)

= min
(
dα1 × ke, dα2 × ke

)
+ max

(
dα1 × ke+ dα2 × ke −m, 0

)
.18

Case 2. dα1 × ke+ dα2 × ke > m.

In order to make the transition from h2 to h1, at least dα1 × ke plays of b1 and dα2 × ke

plays of a1 must occur within m periods. However, dα1 × ke+ dα2 × ke > m implies that in

order to achieve this condition, a1 and b1 must be played in the same period a minimum of

` := dα1×ke+dα2×ke−m times.19 Because player 1 cannot play a1 as a best response until

player 2 has played b1 at least dα2×ke times, and player 2 cannot play b1 as a best response

until player 1 has played a1 at least dα1×ke times, the ` concurrent plays of a1 and b1 require

2×` mistakes. Thus, in this case, we need at least an additional ` mistakes compared to Case

1. We demonstrate that we do not need more than an additional ` mistakes by describing a

transition from h2 to h1 with exactly min
(
dα1×ke, dα2×ke

)
+max

(
dα1×ke+dα2×ke−m, 0

)
mistakes.

Starting in period t+ 1, suppose player 1 makes dα1× ke consecutive mistakes and plays

a1 in periods t+1, . . . , t+dα1×ke. During each of these periods, player 2 can sample no more

than dα1 × ke − 1 instances of player 1 playing a1 and can only play b2 as a best response.

Suppose that in the last ` of these periods, t+m−dα2×ke+1 through t+dα1×ke, player 2

makes ` consecutive mistakes and plays b1.

18Note that when k ≤ m/2, the condition dα1 × ke+ dα2 × ke ≤ m is satis�ed regardless of the values of

α1 and α2. This is why in Young (1998) the resistance rk,m2,1 is given as rk2,1 = min
(
dα1 × ke, dα2 × ke

)
.

19Note that ` = dα1 × ke+ dα2 × ke −m ≤ m.
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Table 2. Case 2 Example Transition

Play
Period t−m+ 1 . . . t t+ 1 . . . t+m− dα2 × ke t+m− dα2 × ke+ 1 . . . t+ dα1 × ke t+ dα1 × ke+ 1 . . . t+m t+m+ 1 . . .
Player 1 a2 a2 a2 a1 a1 a1 a1 a1 a1 a2 a2 a2 a1 a1
Player 2 b2 b2 b2 b2 b2 b2 b1 b1 b1 b1 b1 b1 b1 b1

The color red denotes actions which necessarily are mistakes. Actions colored blue can be played

as a best response.

If dα1 × ke = dα2 × ke = m, then ` = m and the process described so far has reached

convention h1 with 2×m mistakes and this convention cannot be reached from h2 with fewer

mistakes. Thus, rk,m2,1 = 2×m = min
(
dα1×ke, dα2×ke

)
+ max

(
dα1×ke+ dα2×ke−m, 0

)
.

It remains to consider the case when dα1×ke < m. In that case, in periods t+dα1×ke+1

through t + m, player 2 can sample all dα1 × ke of player 1's plays of a1 in periods t + 1

through t + dα1 × ke, and play b1 as a best response. Because, by de�nition of `, m =(
dα1 × ke − `

)
+ ` +

(
dα2 × ke − `

)
, in these periods, player 1 can sample no more than

dα2 × ke − 1 plays of b1 and can only play a2 as a best response.

In period t+m+ 1, it is possible for player 1 to sample all dα2× ke player 2's plays of b1

in periods t+m−dα2× ke+ 1 through t+m, while player 2 samples all dα1× ke player 1's

plays of a1 in periods t + 1 through t + dα1 × ke. Thus, both a1 and b1 can be played as

best responses by the players in period t + m + 1 and the process can reach convention h1

without further mistakes (see Lemma 1).

The process we just described reaches convention h1 from convention h2 with exactly

dα1 × ke + ` mistakes if α1 ≤ α2. Analogously, we can describe a process that reaches

convention h1 from convention h2 with exactly dα2 × ke + ` mistakes if α2 ≤ α1. Thus,

we have identi�ed a process that reaches convention h1 from convention h2 with exactly the

minimum number of mistakes min
(
dα1×ke, dα2×ke

)
+` that we identi�ed as necessary, and

we have demonstrated that rk,m2,1 = min
(
dα1×ke, dα2×ke

)
+max

(
dα1×ke+dα2×ke−m, 0

)
.

Conclusion. We demonstrated that rk,m2,1 = min
(
dα1 × ke, dα2 × ke

)
+ max

(
dα1 × ke+

dα2 × ke − m, 0
)
. The resistance rk,m1,2 is now easily obtained by using 1 − α1 and 1 − α2
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instead of α1 and α2, resulting in rk,m1,2 = min
(
d(1− α1)× ke, d(1− α2)× ke

)
+ max

(
d(1−

α1)× ke+ d(1− α2)× ke −m, 0
)
. �

The interest in resistances of moving between conventions stems from the fact that, when

the probability of making mistakes (i.e., the degree of perturbation in the process) becomes

vanishingly small, the perturbed adaptive play process converges on the conventions that

are hardest to leave and easiest to reach.

In a game with exactly two Nash equilibria, and thus two conventions, a convention is

stochastically stable if and only if the resistance in the transition away from it is at least

as large as the resistance in the transition towards it (see Young (1993)). In the model

studied in Young (1993), sampling is su�ciently incomplete (k ≤ m/2) for the resistances

between conventions to be independent of m., so that stochastic stability of conventions

is also independent of m. In contrast, as we demonstrated in Theorem 3, the resistances

may be larger and depend on m when sampling is less incomplete (k > m/2). This opens

up the possibility that the degree of incomplete sampling in�uences which conventions are

stochastically stable. We turn to this next.

The following example shows that changing k when m is �xed may change which states

are stochastically stable.

Example 3. Consider the 2× 2 coordination game in Figure 17

Figure 17. Example 3 Game

Player 2
b1 b2

Player 1
a1 10, 13 0, 0
a2 2, 3 12, 10

In this game α1 = 7/20 and α2 = 3/5. Suppose m = 10 and k increases from 5 to 10.

When k = 5, dα1 × ke = d(1 − α2) × ke = 2, d(1 − α1) × ke = 4 and dα2 × ke = 3. So
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r5,102,1 = 2 and r5,101,2 = 2, which means both conventions h1 and h2 are stochastically stable.

However, when k = 10, dα1× ke = d(1−α2)× ke = 4, d(1−α1)× ke = 7 and dα2× ke = 6.

So r10,102,1 = 4 and r10,101,2 = 5 which means in this case only h1 is stochastically stable.

Example 3 shows that changing the degree of incomplete sampling, k/m, by varying k

and keeping m �xed can change which states are stochastically stable through the added

max(·) component of the resistance calculation.20 However, stochastic stability does not

change when the degree of incomplete sampling, k/m, changes by varying m while keeping k

�xed. Next, we prove that when sampling is incomplete, changing m alone does not change

which conventions are stochastically stable.

Theorem 4. Let G be a 2×2 coordination game with Nash equilibria (a1, b1) and (a2, b2).

Consider unperturbed adaptive play with �xed sample size k and memory size m such that

sampling is incomplete: m > k. Stochastic stability of conventions does not depend on

memory size m.

Proof of Theorem 4. Consider the pairwise resistances between h2 and h1. We will

consider both the case where min(dα1 × ke, dα2 × ke) 6= min(d(1− α1)× ke, d(1− α2)× ke)

and where min(dα1×ke, dα2×ke) = min(d(1−α1)×ke, d(1−α2)×ke). We show that when

k is held �xed, changing m to some m > k does not a�ect the comparison between rk,m1,2 and

rk,m2,1 .

Case 1. min(dα1 × ke, dα2 × ke) 6= min(d(1− α1)× ke, d(1− α2)× ke).21

Without loss of generality assume min(dα1×ke, dα2×ke) < min(d(1−α1)×ke, d(1−α2)×ke).

This means that for all m ≥ 2k, rk,m2,1 < rk,m1,2 . We will show that when m < 2k, the inequality

rk,m2,1 < rk,m1,2 is maintained.

20Note that it is already known that stochastic stability may change with k due to the ceiling functions
even when k ≤ m/2.

21Note that the restriction m > k is not leveraged in this case.
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Without loss of generality assume α1 ≥ α2. So, min(dα1 × ke, dα2 × ke) = dα2 × ke and

min(d(1−α1)×ke, d(1−α2)×ke) = d(1−α1)×ke which means dα2×ke < d(1−α1)×ke. It

follows that α2 < 1−α1 so α1 < 1−α2 which means dα1× ke ≤ d(1−α2)× ke. Combining

dα2 × ke < d(1 − α1) × ke and dα1 × ke ≤ d(1 − α2) × ke we get dα1 × ke + dα2 × ke <

d(1 − α1) × ke + d(1 − α2) × ke. This inequality combined with the fact, due to the fact

that dα1 × ke + dα2 × ke + d(1 − α1) × ke + d(1 − α2) × ke ∈ {2k, 2k + 1, 2k + 2} means

that dα1 × ke + dα2 × ke ≤ k < d(1 − α1) × ke + d(1 − α2) × ke as consequence of the

fact that the ceiling function can only yield integers. This means that max
(
dα1 × ke +

dα2 × ke − m, 0
)

= 0 ≤ max
(
d(1 − α1) × ke + d(1 − α2) × ke − m, 0

)
. This result shows

that the max(·) component of resistance in one direction can only be positive if the min(·)

component is strictly larger than the min(·) component in the opposite direction. Therefore,

if min(dα1×ke, dα2×ke) < min(d(1−α1)×ke, d(1−α2)×ke) then r1,2 < r2,1 for all m ≥ k.

So we have shown that the comparison between resistances is unchanged by the size of

m in this case.

Case 2. min(dα1 × ke, dα2 × ke) = min(d(1− α1)× ke, d(1− α2)× ke).

This means that when m ≥ 2k, the resistance is equal in both directions: rk,m1,2 = rk,m2,1 . We

will show that when k < m < 2k, the relationship rk,m1,2 = rk,m2,1 is maintained. Without loss

of generality assume α1 ≥ α2. So, min(dα1 × ke, dα2 × ke) = dα2 × ke and min(d(1− α1)×

ke, d(1 − α2) × ke) = d(1 − α1) × ke which means dα2 × ke = d(1 − α1) × ke. It is easily

veri�ed that dα1 × ke + d(1 − α1) × ke ∈ {k, k + 1} and so dα1 × ke + dα2 × ke ≤ k + 1.

Since both m and k are natural numbers and k < m it follows that k + 1 ≤ m. Thus,

max(dα1 × ke+ dα2 × ke −m, 0) = 0.

Likewise, dα2 × ke + d(1 − α2) × ke ∈ {k, k + 1}. Because dα2 × ke = d(1 − α1) × ke,

it follows that d(1 − α1) × ke + d(1 − α2) × ke ≤ k + 1. Since k + 1 ≤ m, it follows that

max(d(1−α1)×ke+d(1−α2)×ke−m, 0) = 0. Those results combined with the assumption
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min
(
dα1× ke, dα2× ke

)
= min

(
d(1−α1)× ke, d(1−α2)× ke

)
mean that rk,m1,2 = rk,m2,1 for all

m > k in this case.

Conclusion. The two cases are exhaustive. We have shown that all pairwise resistance

comparisons remain unchanged for all m > k given k is �xed. So, it follows that which states

are stochastically stable also remains unchanged. �

Note that we use that sampling is incomplete (m > k) only in Case 2 in the proof of

Theorem 4. This case covers instances where both conventions h1 and h2 are stochastically

stable when m is large (m ≥ 2k). If only one of the conventions is stochastically stable for

large m as in Case 1, then we do not need any incomplete sampling to obtain the result

that stochastic stability of conventions does not depend on memory size m. However, the

following example shows that when both conventions are stochastically stable for large m,

decreasing memory size to m = k may render one of the conventions no longer stochastically

stable.

Example 4. Consider the 2× 2 coordination game in Figure 18

Figure 18. Example 4 Game

Player 2
b1 b2

Player 1
a1 10, 11 0, 0
a2 0, 1 10, 10

Suppose that k = 10 and consider the resistances between h1 and h2. Note that in this

game α1 = 9/20 and α2 = 1/2. We compute dα1 × ke = dα2 × ke = d(1− α2)× ke = 5 and

d(1− α1)× ke = 6.

When m > k = 10, the resistances between h1 and h2 are rk,m1,2 = rk,m2,1 = 5, and both

conventions h1 and h2 are stochastically stable.
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However, when m = k = 10, the resistance of moving from h1 to h2 increases to r
k,m
1,2 = 6

while the resistance of moving from h2 to h1 remains unchanged at rk,m2,1 = 5. Thus, only

convention h1 is stochastically stable.

3.5 Concluding Remarks

Young's model of adaptive play has been studied and applied to a wide variety of games.

However, the boundary of precisely how incomplete sampling needs to be in order for

foundational results like convergence to a convention remain unaddressed. We examined

the most foundational game, the 2 × 2 coordination game, and proved that in this case,

any degree of incomplete sampling is su�cient for the unperturbed adaptive play process to

converge to a convention. In addition, we show that in all but some 2 × 2 games that the

criterion of incomplete sampling is unnecessary. We also examine how allowing for minimally

incomplete sampling a�ects the perturbed adaptive process. We identi�ed the function for

resistance that is robust to all degrees of sampling, k ≤ m, and found that increasing the

sample size beyond k/m ≤ 1/2 may result in increased resistance between conventions.

However, we also showed that even if the resistance does increase due to the relative size of

a �xed sample to a changing memory that the stochastically stable states remain unchanged

if sampling is incomplete (k < m).

3.6 Bridge

In this chapter Anne van den Nouweland and I proved that only minimally incomplete

sampling is necessary in order for the main results of adaptive play to apply. This included

showing that which norm is stochastically stable is unchanged by relaxing the incomplete

sampling restriction. In the following chapter, Jiabin Wu and I propose a model to explain

the potential role of inter-group con�icts in determining the rise and fall of signaling norms.
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CHAPTER IV

CONFLICTS, ASSORTATIVE MATCHING, AND THE EVOLUTION OF SIGNALING

NORMS

This chapter was co-authored with Jiabin Wu and published in the Journal of Economic

Interaction and Coordination in April 2023. The models, analysis and �gures were mainly

completed by me. The paper was written by both Jiabin Wu and myself.

4.1 Introduction

Harmful and wasteful practices such as elaborated body tattooing and piercings, lethal

initiation rituals, excessive feasts, and wearing obstructive dressing codes have been observed

throughout the human history. Why did humans adopt such practices? The classic theory of

signaling by Zahavi (1975) in biology and Spence (1973) in economics provides an answer:1

They serve as costly signaling devices to di�erentiate between types of individuals. Recently,

Przepiorka and Diekmann (2021) call these practices the signaling norms.

A more subtle yet important question is, suppose no signaling norm is the ancestral

condition, what determined the emergence of the signaling norms? On the one hand,

adopting a signaling norm to assort its members allowed a society to organize its social

hierarchy, mating and reproduction in a more e�cient way, which might help boosting the

society's population growth rate. On the other hand, the cost of practicing the signaling

norm might slow the rate down. Larger societies often had a higher chance to survive in

ancient warfare and violent con�icts are argued to have played a critical role in human's

ancestral past (Buss & Shackelford, 1997; Ferguson, 2012; Gat, 2006; Guilaine & Zammit,

2004; Keeley, 1996; M. Potts, 2008; R.W. Wrangham, 1996; S. LeBlanc, 2003). Would

con�icts matter for the selection of the signaling norms? If so, how? In this paper, we

1The theory has been widely applied to explain di�erent phenomena ranging from life sciences to social
sciences. See further discussion of the subject in Grafen (1990), Maynard Smith and Harper (1995), Johnstone
(1997), Zahavi and Zahavi (1997), Maynard Smith and Harper (2003), Searcy and Nowicki (2005), Getty
(2006), Grose (2011) and Számadó (2012), among many others.
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attempt to formally investigate the role of con�icts in in�uencing the evolution of signaling

norms in an evolutionary game theoretical model.

In the model we propose, there are two populations. In each population, there are two

types of individuals: high and low. The types are genetically determined and the high type

has some hidden �tness advantages over the low type. The individuals need to match in pairs

to obtain payo�s (forming a mating or foraging pair for example), which in turn determine

their reproduction rates. However, the individuals cannot directly observe others' types.

Assume that one population is equipped with signaling technology, while the other is not. In

the population without signaling technology, the individuals are randomly matched in pairs

because they cannot assort according to types. In the population with signaling technology,

the high type individuals may adopt the signal to di�erentiate themselves from the low type

individuals so that they can identify one another and avoid being matched with the low type

individuals. As long as doing so is bene�cial to the high type individuals, and at the same

time, the cost of signaling is su�ciently high to deter the low type individuals to mimic the

high type individuals, a separating equilibrium can be sustained in the population. Note

that we treat signaling as a behavioral trait instead of a genetic trait, so the individuals can

choose whether to adopt it in the behavioral timescale.

The assortative bene�t to high types in the signaling population allows them to evolve

faster than they would without signaling. However, even absent signaling, high types would

eventually prevail given their �tness advantage. When both populations are homogeneously

high type, the assortative advantage the signaling population had over the non-signaling

population disappears leaving the signaling population with a cost but no comparative

bene�t. This means the signaling population's �tness is lower in the long run. Therefore,

there is a trade-o� in utilizing signaling and it becomes crucial if the two populations engage

in con�icts. Through simulations, we show that the timing and the the e�ciency of weapon

used in inter-group con�icts play an essential role in determining the survival of the signaling
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population. In particular, the signaling population has a higher chance to survive when it

still has a �tness advantage if the period of isolation before con�icts is shorter and weapon

used in con�icts is more e�cient.

Our model provides a rationale for why signaling norms�even if transitory�may appear

in human history: A signaling norm helps to accelerate the population growth rate initially,

which may give an advantage to a population during con�icts. However, eventually when

high types dominate, it becomes redundant and there is no point for people to continue using

it.

The theory of signaling has been used in di�erent evolutionary models to explain human

behavior. Gintis, Alden Smith, and Bowles (2001) formalize the idea by Zahavi (1975) and

Miller (2000) that high-quality individuals may engage in pro-social activities (cooperate in a

public good provision game) to signal their desirability to gain better mating opportunities.

This is called the �competitive altruism" in Roberts (1998). While quality can be signaled

by doing good, it can well be signaled by any costly activity. Hopkins (2014) instead

considers a model in which the individuals do not di�er in qualities, but in their degrees

of altruism. In this model, it is natural for the altruists to use pro-social activities to signal

their altruism and the author shows that altruists who can mentalize have a greater advantage

over nonaltruists. Przepiorka and Diekmann (2021) consider a trust game in which there

are two types of trustees: short-term (impatient) and long-term (patient). They identify the

condition under which a separated equilibrium with only the long term trustees send a costly

signal to the trusters and they show that only when the probability of meeting a long-term

trustee is su�ciently low for the trusters, would the separated equilibrium be collectively

more bene�cial than the case without any signaling opportunity. Note that these papers

all consider what is called the �dilemma" situations. Without signaling opportunity, � bad"

type or behavior such as nonaltruist and defection prevail. On the contrary, we consider

a non-dilemma situation and high types would eventually dominate the entire population
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with or without signaling opportunity. In addition, these papers do not explicitly consider

the role of con�icts, while we investigate how di�erent properties of con�icts can a�ect

the evolution of signaling norms. Many social relationships do not necessarily resemble

�dilemma" situations and they are understudied because of perceived triviality. Nevertheless,

we show that interesting phenomena can still arise in such relationships.

The paper is organized as follows. Section 2 introduces the model, analyzes how types

evolve within a population and how con�icts work between the two populations. Section 3

conducts comparative statics on the timing and the e�ciency of weapon used in inter-group

con�icts. Section 4 discusses alternative modeling choices and provides some concluding

remarks.

4.2 The Model and Analysis

In this section we outline how populations evolve in our model. We are interested in the

e�ect that signaling has on the evolution of a population so we consider two populations: one

with signaling technology and the other without signaling technology. Both populations are

endowed with high type individuals who are better suited to their environment and thus have

a higher �tness, and low type individuals who are not as adapted to the current environment

and thus have a lower �tness. The types are genetically determined, meaning that the

individuals cannot change their own types and the distribution of types in a population

evolves through reproduction. We use a discrete generational model where in each generation

(period) individuals match with another individual in their population. This matching can be

interpreted as a mating relationship, a foraging relationship, or any other social relationship.

The type of each individual is not observable to the other members of the population, so

where there is no signaling, individuals match randomly with another individual in their

population. However, when signaling is present individuals are able to discriminate. As a

result, signalers randomly match with another signaling individual in their population leaving

the non-signalers in that population to randomly match with each other. After matching,
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they reproduce according to the payo�s in the table below minus the cost of signaling if

applicable. Table 3 reports the payo�s. An individual of type i, who is matched with an

individual of type j, obtains a payo� of V (i, j), for i, j ∈ {H,L}. Note that since these

payo�s determine the individuals' life long reproductive rates, the length of each discrete

period can be thought of as the amount of time needed for a given individual to reach

adulthood.

Table 3. Payo�s: Reproduction Rates

H L
H V (H,H) V (H,L)
L V (L,H) V (L,L)

We impose the following relation on the payo�s:

V (H,H) > V (H,L) > V (L,H) > V (L,L). (4.1)

Viewing the matching as a mating relationship, we have a model where there are no

hybrids, only high or low type o�spring can be produced. High types produce V (H, ∗) high

type o�spring which depend on who they match with. Likewise, low types produce V (L, ∗)

low type o�spring which depend on who they match with. Then two high types will together

produce 2V (H,H) high types, a low and high type pairing will produce V (H,L) high types

and V (L,H) low types, and a 2 low type pairing will produce 2V (L,L) low types.

Alternatively, we can think of V (∗, ∗) as the amount of o�spring per parent that makes

it to reproduction. Since high types are more �t than low types, high types will be more

successful than low types in making it to adulthood thus explaining V (H,L) > V (L,H), even

if we expect high and low types to be born in equal proportion in a mixed parent situation.

Additionally, we can think that the parents provide for their o�spring in some capacity before

they reach adulthood. It is likely that high type parents are better providers than low type

parents which explains V (H,H) > V (L,H), V (H,H) > V (H,L), V (H,L) > V (L,L), and
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V (L,H) > V (L,L). In other words, one's reproductive rate is increasing both in one's type

and in its matched partner's type.

An analogous story can be told in a foraging relationship. Matched individuals share

some, but not all of their foraged goods together. Here, high types are more successful than

low types in procuring food. Since the amount of food is directly related to reproductive

rate, Inequality (4.1) follows. Here, high types produce only high type o�spring and low

types produce only low type o�spring either asexually or otherwise.2

In addition, we want to ensure that populations will not die out. Hence, we require

V (H,H) > 1.

4.2.1 A Population without Signaling. In a population without signaling

technology, the individuals cannot observe others' types. As such they are randomly matched

with another individual in their population. We de�ne the non-signaling population at time

t as Nt ∈ R where Nt = NH
t +NL

t . Here, N
H
t ∈ R and NL

t ∈ R are the amount of high types

and low types, respectively, in the non-signaling population at time t.

Assuming a large Nt, the law of large numbers implies that NH
t and NL

t evolve according

to their expected payo�s from Table 3. So we have:

NH
t+1 = [

NH
t

Nt

∗ V (H,H) +
NL
t

Nt

∗ V (H,L)] ∗NH
t , (4.2)

NL
t+1 = [

NH
t

Nt

∗ V (L,H) +
NL
t

Nt

∗ V (L,L)] ∗NL
t . (4.3)

2Note that joint foraging is usually considered as a typical example of a game with a dilemma and yet
Inequality (4.1) does not re�ect a dilemma situation. We want to emphasize that H and L are not strategies,
but types of the individuals, and if we consider that di�erent individuals are matched to play a game of
dilemma, their equilibrium payo�s as functions of their types would match Inequality (4.1). Suppose when
two individuals are matched, they play a prisoner's dilemma type foraging game with two strategies: exerting
a high e�ort or exerting a low e�ort. The low e�ort is the strictly dominant strategy in the game. Hence,
both individuals in a pair always choose to exert the low e�ort and V (x, y) is the equilibrium payo� of an
x-type individual against a y-type individual when both exert the low e�ort, where x ∈ {H,L}. Assume
that the H-type individual exerting the low e�ort is still more productive than the L-type individual does
and the two individuals in a pair are not sharing food equally but according to their productivity. Then we
would still have Inequality (4.1).
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We simulate the dynamics described by Equations (4.2) and (4.3) in Figure 19. The �rst

graph shows the evolution of the average reproductive rate for each type as well as for the

population as a whole and the second shows the evolution of the sizes of high and low type

sub-populations as well as the population as a whole. Note that the starting population has

been normalized to 1 with high types initially making up 20% of the population.The second

graph shows how the population level, and the amount of each type evolves over time. The

�nal graph shows how the proportion of types within the population change over time.

Inequality (4.1) implies V (H,H) > V (L,H) and V (H,L) > V (L,L). Hence, in the

absence of signaling, high types are able to evolve within the population because they realize

higher payo�s than low types i.e. survival of the �ttest. As the proportion of high types

increases in the population, the average reproductive rate of the population will converge to

the reproductive rate of the high types. Note that there is a secondary e�ect here. Inequality

(4.1) also implies V (H,H) > V (H,L) and V (L,H) > V (L,L). Hence, as high types make

up a greater proportion of the population, individuals become more likely to match with

high types, thus the reproductive rates of both low types and high types increase as high

types come to make up a greater proportion of the population, which can be seen in the �rst

graph of Figure (19).

4.2.2 A Population with Signaling. In this section we consider a population that

has signaling technology. We should emphasize that here we examine behavioral signaling

that individuals can choose whether to opt into. Hence, the individuals make their decisions

on signaling within each generation, while the genetically determined types evolve across

generations. Let K be the cost of signaling. We assume that the cost of signaling, K, is

su�ciently high such that only high types can a�ord it. Formally, we require:

V (L,L) > V (L,H)−K. (4.4)
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Figure 19. Population Dynamics Without Signaling

Parameters:
NH

0 = .2
NL

0 = .8

H L
H 1.15 0.90
L 0.85 0.80
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Inequality (4.4) states that the payo� for a low type by being matched with another low

type is larger than the bene�t of adopting the signal, a higher payo� by being matched with

a high type, minus the cost of signaling. We also only want to consider signals that are

potentially incentive compatible for high types. That is, a high type receives a higher payo�

by being matched with another high type, even after paying the cost of signaling, than it

does by being matched with a low type:

V (H,H)−K > V (H,L). (4.5)

Combining the Inequalities 4.4 and 4.5, we know that for a viable signal of cost K to

exist it must be the case that:

V (H,H) + V (L,L) > V (L,H) + V (H,L). (4.6)

This is known as the single crossing property (Spence, 1973; Zahavi, 1975). We enforce these

conditions on the reproductive rates V (., .) and the cost of signaling K.

Since we consider behavioral signaling, we assume that the individuals reach an

equilibrium on their decisions on adopting the signal within each generation before

reproduction. In an equilibrium, each individual has no incentive to deviate from its current

choice of whether to signal. As shown in Spence (1973), given the incentive compatibility

conditions (4.4) and (4.5), there exists a separating equilibrium in which only high types

signal. Moreover, all high types are matched with one another, and low types are matched

with one another, resulting in perfectly assortative matching in types. The high types earn

a payo� of V (H,H) − K and the low types earn a payo� of V (L,L) in equilibrium. Note

that the separating equilibrium is independent of the distribution of types in the population.

Even when the group of low types is vanishingly small, the high types would still pay the

cost of signaling to segregate themselves from the low types.

We de�ne the population with signaling at time t as St ∈ R where St = SHt + SLt . Here,

SHt ∈ R and SLt ∈ R are the amount of high types and low types, respectively, in the
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signaling population at time t. Because of signaling, the individuals are only matched with

their own types. Hence, SHt and SLt experience a constant reproductive rate over time. Their

evolutionary dynamics are as follows:

SHt+1 = [V (H,H)−K] ∗ SHt , (4.7)

SLt+1 = V (L,L) ∗ SLt . (4.8)

We simulate the dynamics described by Equations (4.7) and 4.8 in Figure 20. We have

three similar graphs as in Figure (19) and use the same parameters. Note that in the top

graph, the reproductive rate of the high types and low types are not in�uenced by the relative

size of each sub-population since they always match with their own types. This can be seen

in Equations (4.7) and (4.8), where the coe�cients on SHt and SLt , do not depend on the

population composition. As a result, the reproductive rate of the population increases only

because high types evolve to make up a greater proportion of the population. It can not be

seen in the graphs here, but it should be clear that as K, the cost of signaling, decreases the

speed of evolution increases.

4.2.3 Comparing Signaling and Non-Signaling Populations. Figure 21 shows

the overlap of Figure 19 and Figure 20, both of which have the same parameters. Looking

at the �rst graph of Figure 21, we can see that while NH
t /Nt is su�ciently small, the

reproductive rate for the signaling high types is greater than the reproductive rate for the

high types in the non-signaling population. This is because V (H,H) − K > V (H,L). As

a result, high types evolve faster within the signaling population compared to the high

types in the non-signaling population. In the �rst graph of Figure 21, we can see that

it takes until period 10 before the high types in the non-signaling population reach the

same reproductive rate of their counterparts in the signaling population. Because of this

and because low types in the signaling population have a lower reproductive rate than low

types in the non-signaling population, high types make up a larger proportion of the signaling
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Figure 20. Population Dynamics Where High Types Signal

Parameters:
SH0 = .2
SL0 = .8
K = .1

H L
H 1.15 0.90
L 0.85 0.80
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population compared to the non-signaling population. Therefore, it takes a few more periods

until the average reproductive rate across the non-signaling population surpasses that of the

signaling population. Looking at the second graph in Figure 21, we can see that although the

reproductive rate of the non-signaling population surpasses that of the signaling population

around period 13, the signaling population retains a population advantage until around

period 21. This is because the signaling population builds a signi�cant population advantage

in the initial periods. However, once su�cient time has passed and both populations are

essentially homogeneous with only high types left, the non-signaling population realizes a

reproductive rate that is K greater than that of the signaling population. The �nal graph

in Figure 21 shows the di�erence in the type makeup of the two populations. Note that the

greatest di�erence occurs shortly after the start of the evolution but then vanishes as high

types eventually make up the entirety of both populations.

4.2.4 Con�icts between the Two Populations. Assume that in period T the

non-signaling population and the signaling population engage in con�icts. In periods t ∈

[0, T ) the populations evolve according to the dynamics in the above sections, but starting at

period T they start to eliminate the other population according to the Lanchester's square

law (Lanchester, 1916). The Lanchester's square law has been applied to a variety of human

and non-human con�icts. See for example Wilson, Britton, and Franks (2002), Johnson and

MacKay (2015) and Clifton (2020).3 In each period, before reproduction, each member of a

population kills β members of the other population. Individuals that are killed are drawn

uniformly from the population. Parameter β re�ects how e�cient the weapons used in the

3Another common way of modeling intergroup con�ict is to treat it as a game played between two groups.
Individuals within a group can contribute to the group's e�ort, which is costly to themselves, but bene�cial
to the group collectively in the con�ict. Hence, an individual may have an incentive to free ride on fellow
group members. See Bornstein (2003) for a review. Since our focus is on signaling behavior, we refrain from
complicating the model by adding an extra layer of e�ort choice.
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Figure 21. Comparison of Population Dynamics Between Signaling and Non-Signaling
Populations

Parameters:
NH

0 = SH0 = .2
NL

0 = SL0 = .8
K = .1

H L
H 1.15 0.90
L 0.85 0.80
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con�icts are. Hence, the dynamics for NH , NL, SH , and SL are now given as:

NH
t+1 = [

NH
t

Nt

∗ V (H,H) +
NL
t

Nt

∗ V (H,L)] ∗max{[NH
t − β

NH
t

Nt

It≥TSt], 0}, (4.9)

NL
t+1 = [

NH
t

Nt

∗ V (L,H) +
NL
t

Nt

∗ V (L,L)] ∗max{[NL
t − β

NL
t

Nt

It≥TSt], 0}, (4.10)

SHt+1 = [V (H,H)−K] ∗max{[SHt − β
SHt
St
It≥TNt], 0}, (4.11)

SLt+1 = V (L,L) ∗max{[SLt − β
SLt
St
It≥TNt], 0}. (4.12)

In the equations above, It≥T is an indicator that the groups are engaging in inter-group

con�icts and the max argument simply ensures that the populations would not reach a

negative number. Note that we specify that con�icts take place before reproduction in each

period in this model. It is clear that when applying this model, the time between each

discrete period would simply be the amount of time it takes for a generation to reproduce.

While con�icts may run at a di�erent time scale, we can force con�icts into the reproduction

time scale by adjusting the value of β.

Figure 22 provides three examples of outcomes when con�icts occur in our model. In

the top graph, the non-signaling population enters the periods of con�icts with a population

advantage. Because they do not need to pay the cost of signaling, the fact that they have a

population advantage indicates that they also have a superior reproductive rate. As a result,

the non-signaling population always wins. In the second graph, the signaling population

enters the con�icts with a population advantage. At this point the signaling population

doesn't necessarily have a higher reproductive rate, however, if weapon used in con�icts is

su�ciently e�cient (β is su�ciently large), the signaling population will be able to eliminate

the non-signaling population before the non-signaling population can catch up with their

superior long run reproductive rate. The third graph is a special case. Although the signaling

population enters the con�icts with a slightly larger population, because β is su�ciently
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Figure 22. Con�icts Between Signaling and Non-Signaling Populations After a Period of
Peace

Parameters:

NH
0 = SH0 = .2

NL
0 = SL0 = .8

K = .1
β = .2

H L
H 1.15 0.90
L 0.85 0.80

The vertical lines indicate
the last period before
con�icts begin (T − 1).
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small, the non-signaling population is able to overcome the signaling population during the

con�icts.

4.3 Comparative Statics

We have shown that costly signaling in a population may be competitively advantageous

in inter-group con�icts in our model. The viability of signaling depends largely on three

di�erent factors: the period that con�icts start (T ), the cost of signaling (K), and the

e�ciency of weapon used in con�icts (β). Here, we argue that the signaling population

bene�ts from a shorter period of isolation before con�icts, a smaller cost of signaling, and

more e�cient weapon used in con�icts. To clearly see the e�ects of these three factors,

we run the model thousands of di�erent times, varying the key parameters: T,K and, β

and indicate the outcomes of the con�icts. The results are reported in Figure 23, in which

each pixel plotted corresponds to the outcome of the evolution given a set of parameters. In

areas colored orange, the non-signaling population wins the con�icts and in the blue area the

signaling population wins. The white intercept lines indicate where the model is evaluated

in the last graph of Figure 22.

The �rst graph in Figure 23 shows the result of the con�icts between the signaling

population and the non-signaling population as we vary the period that con�icts start and

the e�ciency of weapon used in con�icts. As we can see, beyond a certain period the non-

signaling population will always win no matter what the value of β is. This is because the

non-signaling population is both greater and growing faster beyond that period. One can

verify this by looking at Figure 21. It is also necessary for β to be su�ciently large for

the signaling population to possibly win the con�icts. As we can see, when β is su�ciently

small, the non-signaling population always wins. Looking at the second graph of Figure 23,

we can see that a smaller signaling cost bene�ts the signaling population. The third graph

of Figure 23 shows the interaction between the cost of signaling and the e�ciency of weapon

used in con�icts at T = 20. The non-signaling population always wins when K > .1 because
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Figure 23. Con�icts Between Signaling and Non-Signaling Populations After a Period of
Peace: Comparative Statics

Parameters:

NH
0 = SH0 = .2

NL
0 = SL0 = .8

K = .1
β = .2
T = 20

H L
H 1.15 0.90
L 0.85 0.80

The white intercept
lines indicate the current
parameters values.
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the non-signaling would have a larger population than the signaling population at T = 20.

Before that point, more e�cient weapon used in con�icts can compensate for a higher cost

of signaling for the signaling population.

Please note that thus far we have used NH
0 = .2 and NL

0 = .8 and SH0 = .2 and SL0 = .8.

Recall that high types are the individuals that are better suited to their current environment

and thus have a higher �tness than low types. With this in mind, it is useful to think

about the initial values of NH
0 , N

L
0 , S

H
0 , and S

L
0 as being related to the speed at which the

environment is changing around the people. The faster the environment changes, the less

time passes before a new genetic mutation is considered the high type which would essentially

restart our model with a small proportion of high types. So, a faster changing environment

would translate to a smaller initial proportion of high types. With that in mind, Figure 24

shows the results of the con�icts when we vary the initial proportion of high types in each

population, NH
0 and SH0 , while keeping them consistent across populations, NH

0 = SH0 , and

maintaining N0 = S0 = 1 so that NH
0 and SH0 is simply the initial proportion of high types

in each population. The results are clear: The smaller the initial proportion of high types,

the more likely it is that the signaling population will win the con�icts. This is because the

assortative advantage is largest when the proportion of high types is smallest which further

exaggerates the speed at which the makeup of the population changes from low type to

high type. Hence, giving the populations more room to evolve naturally favors the signaling

population. Abstracting from the model, this implies that signaling is more advantageous

the quicker one's environment changes. In a rapidly changing environment, the amount of

high types at any given time is expected to be lower than in a slow changing environment

since we de�ne high types as those best adapted to the current environment. As can be seen

in the graphs, the smaller the initial proportion of high types, the wider the range of T,K

and β values that result in con�icts that favors the signaling population.
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Figure 24. Con�icts Between Signaling and Non-Signaling Populations After a Period of
Peace: Initial Conditions Comparative Statics

Parameters:

NH
0 = SH0 = .2

NL
0 = SL0 = .8

K = .1
β = .2
T = 20

H L
H 1.15 0.90
L 0.85 0.80

The white intercept
lines indicate the current
parameters values.
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When competition erupts or is ongoing, the eventual winner can be determined by

examining the relative population levels as well as the type distribution within those

populations.

Figure 25. Relative Population Needed for Signaling Population to Win in Con�ict

Parameters:
K = .1
β = .2

H L
H 1.15 0.90
L 0.85 0.80

Figure 25 depicts the minimum relative population level (St/Nt) needed for the signaling

population to defeat the non-signaling population once con�ict is ongoing given the type

makeup of each population. Since a greater proportion of high types increases the

reproductive rate in each population, as the proportion of high types in the signaling

population, SHt /St increases, a smaller relative population level, St/Nt is needed for the

signaling population to win. The inverse is true for increases in the proportion of high types

in the non-signaling population, NH
t /Nt.

4.4 Discussions

4.4.1 Alternative Modeling Choices.

4.4.1.1 Low Types also Signal. In our model we assume that in the signaling

population only high types transmit a signal and as a result, the signal enforces perfect
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assortative matching within the signaling population. One may question what if the signal is

ubiquitous across the signaling population such that low types as well as high types transmit

the signal. In this case, the signal would not be a signal at all but just a costly trait since

no one would be able to distinguish one type from another. As a result, the one di�erence

between the evolutionary dynamics of the signaling and non-signaling population would be

that the signaling population experiences a level decrease in their reproductive rate with no

functional assortativity advantage. The only scenarios where the signaling population is able

the beat the non-signaling population in con�icts in this setup are with extreme parameter

values where the signaling cost and the expression V (H,H) − V (H,L) are so large that

the low types in the signaling population are e�ectively eliminated by the signaling cost

immediately, thus e�ectively giving the high types assortative matching which, if the initial

proportion of high types in each population is low enough, may allow for a very narrow

window under which the signaling population will realize a population advantage.

4.4.1.2 One Population of Signalers and Non-Signalers. Another question

one may have is what if there are both signalers and non-signalers in the same population.

In this case, so long as the signaling high types are able to gain an assortative advantage

over the non-signaling high types in the population, then that may be enough to o�set

the signal cost and realize a higher reproductive rate for them in the short run even in the

absence of inter-group con�icts. We demonstrate that this is not the case in a one-population

model with four types (signaling high type, non-signaling high type, signaling low type, non-

signaling low type) as shown in Figure 26. The rationale is as follows. In our settings, high

types evolve to make up an increasing proportion of the population with certainty as time

increases until there are only high types remaining. As a result, at some point the relative

di�erence in assortativity between the signaling high types and the non-signaling high types

will not be big enough to o�set the cost of signaling. Therefore, absent con�icts between

90



the signalers and non-signalers, non-signaling high types will dominate the entire population

with certainty in the long run.

The above discussions on alternative modelling choices suggest that signalling being

behavioral (only high types choose to adopt it) and con�icts between the signaling population

and the non-signaling population are prerequisites for signaling to survive.

Figure 26. One Population Where Some High Types Signal and Some Don't

Parameters:

NH
0 = SH0 = .1

NL
0 = .8

SL0 = 0
K = .1

H L
H 1.15 0.90
L 0.85 0.80
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4.4.1.3 Imperfect Signaling. In the dynamics explored in this paper, we assumed

agents always made the payo� maximizing choice which led to perfect assortativity in the

signaling population. This perfect assortativity allowed the signaling population to gain

a temporary reproductive edge over the non-signaling population. Here we will relax the

assumption of perfect associativity and instead examine how our model behaves where there

is a probability p that agents make a mistake and signal when they shouldn't (low types)

or not signal when they should (high types). 1 − p measures the accuracy of signaling.4

Intuitively, p should be some value in the range [0, 1/2) as p = 0 implies mistake free signaling

and p = 1/2 implies signaling is entirely uninformative. As such, the payo�s realized by each

type is no longer �xed and now depends on the proportion of high types to low types within

the population as a whole. Note that the dynamics in the non-signaling population remain

unchanged by this assumption.

If high types imperfectly signal and low types imperfectly choose not to signal that means

that SHt ∗ (1− p) + SLt ∗ p describes the total number of signalers and SHt ∗ p+ SLt ∗ (1− p)

describes the total number of non-signalers at time t.

Assuming that high types choose to signal and low types choose to not signal, and match

according to their signal. When a high type does signal, the payo� they get is given by the

following expression:

A ≡ V (H,H) ∗ SH ∗ (1− p)
SH ∗ (1− p) + SL ∗ p

+ V (H,L) ∗ SL ∗ p
SH ∗ (1− p) + SL ∗ p

−K.(4.13)

When a high type does not signal, the payo� they get is given by the following expression:

B ≡ V (H,H) ∗ SH ∗ p
SH ∗ p+ SL ∗ (1− p)

+ V (H,L) ∗ SL ∗ (1− p)
SH ∗ p+ SL ∗ (1− p)

. (4.14)

4Essentially, we endogenize the degree of assortative matching through imperfect signaling. See Nax
and Rigos (2016), Newton (2017), Wu (2016, 2018, 2023) for the study of endogenous assortativity through
di�erent mechanisms.
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As such, in order for choosing to signal to be incentive compatible for high types the

following relation must hold: (1−p)∗A+p∗B > p∗A+ (1−p)∗B. Given that p ∈ [0, 1/2),

this can be simpli�ed to: A > B.

The inequality A > B can be rewritten as:

(V (H,H)− V (H,L)) ∗ (1− SL ∗ p
SH ∗ (1− p) + SL ∗ p

− SH ∗ p
SH ∗ p+ SL ∗ (1− p)

) > K.(4.15)

This inequality sets the upper bound on viable signal cost K. Since p ∈ [0, 1/2), and

V (H,H) > V (H,L), the left hand side term is positive if SL, SH 6= 0 which means there can

exist a positive signaling cost K under which high types are incentivized to signal.

Likewise, when a low type does signal, the payo� they get is given by the following

expression:

C ≡ V (L,H) ∗ SH ∗ (1− p)
SH ∗ (1− p) + SL ∗ p

+ V (L,L, ) ∗ SL ∗ p
SH ∗ (1− p) + SL ∗ p

−K.(4.16)

When a low type does not signal, the payo� they get is given by the following expression:

D ≡ V (L,H) ∗ SH ∗ p
SH ∗ p+ SL ∗ (1− p)

+ V (L,L, ) ∗ SL ∗ (1− p)
SH ∗ p+ SL ∗ (1− p)

. (4.17)

As such, in order for choosing to not signal to be incentive compatible for low types the

following relation must hold: (1−p)∗C+p∗D < p∗C+(1−p)∗D. Given that p ∈ [0, 1/2),

this can be simpli�ed to: C < D.

The inequality C > D can be rewritten as:

(V (L,H)− V (L,L)) ∗ (1− SL ∗ p
SH ∗ (1− p) + SL ∗ p

− SH ∗ p
SH ∗ p+ SL ∗ (1− p)

) < K.(4.18)

This inequality sets the lower bound for incentive compatible levels of K. Since p ∈

[0, 1/2), the term 1 − SL∗p
SH∗(1−p)+SL∗p −

SH∗p
SH∗p+SL∗(1−p) ∈ (0, 1]. In e�ect, an increase in p

decreases the lower bound on K.
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Combining inequalities [4.15] and [4.18] we get the following expression:

(V (H,H)− V (H,L)) ∗ (1− SL ∗ p
SH ∗ (1− p) + SL ∗ p

− SH ∗ p
SH ∗ p+ SL ∗ (1− p)

) > K >

(V (L,H)− V (L,L)) ∗ (1− SL ∗ p
SH ∗ (1− p) + SL ∗ p

− SH ∗ p
SH ∗ p+ SL ∗ (1− p)

).

(4.19)

Figure 27. Range of Viable Signal Costs (K) by Signal Accuracy (1-p) and Degree of
Heterogeneity

Figure 27 shows how the accuracy of signaling (1 − p) and the degree of heterogeneity

within the entire population (measured by min{ SH

SH+SL ,
SH

SH+SL}) a�ect viable levels of costly

signaling (K) that give a separating equilibrium. Note that as the accuracy of signaling or

heterogeneity decrease, the range of viable signal costs (K) decreases and approaches zero.

This can be seen mathematically in equation [4.19] by taking the limit of the leftmost and

rightmost terms as 1) p approaches 1/2, or as 2) SL or 3) SH approaches 0. In all three cases,

the limit of the terms is equal to 0, thus collapsing the inequality. In each case, this is because

the assortative bene�t to signaling decreases as signaling accuracy or heterogeneity decreases.

In the �rst case, when p increases and approaches 1/2, the decision to signal becomes less

and less precise. As result, the assortativity within populations decreases. When signaling

is imperfect (p > 0) and heterogeneity decreases, the di�erence in type distribution between
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the signalers and non-signalers decreases. As SH or SL approaches 0 (i.e., heterogeneity goes

to 0), the type distribution of signalers and that of non-signalers converge.

The assortative bene�t of signaling when signaling is imperfect is maximized when the

entire population is most heterogeneous. This can be seen in Figure 28. This graph shows

the types of equilibria reached under di�erent values of K and degrees of heterogeneity with

a �xed p ∈ (0, 1/2). This graph shows that as a population evolves from almost all low types

to almost all high types with a �xed signal cost K, the type of equilibrium in the population

can change, in some cases several times. First, suppose K < (V (L,H)− V (L,L)) ∗ (1− 2p).

When the degree of heterogeneity is su�ciently low, the separating equilibrium inequality

fails because the assortative bene�t is not large enough for the high types to signal (as

discussed in the previous paragraph). When the degree of heterogeneity is su�ciently high,

the separating equilibrium inequality fails again because it is no longer incentive compatible

for the low types to not signal. Consequently, there exists two "Goldilocks" zones over which

a separating equilibrium can exist. Second, suppose (V (H,H)− V (H,L)) ∗ (1− 2p) > K >

(V (L,H) − V (L,L)) ∗ (1 − 2p). In this case, there is no region where the low types would

choose to signal and just one interval over which the high types would want to signal. Third,

suppose K > (V (H,H)−V (H,L)) ∗ (1− 2p). In this case, the signaling cost is too large for

a separating equilibrium to ever exist.

Note that since 1− SL∗p
SH∗(1−p)+SL∗p −

SH∗p
SH∗p+SL∗(1−p) ∈ (0, 1] inequality [4.19] implies that in

order for a separating equilibrium with signaling cost K to exist, it must be the case that:

V (H,H) + V (L,L) > V (L,H) + V (H,L). (4.20)

This, is the same single crossing property that was derived when populations signal with

perfect accuracy. (Spence, 1973; Zahavi, 1975).

As in the case of perfect signaling, imperfect signaling can improve short run population

growth through imperfect assortative matching resulting in faster evolution of the type
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Figure 28. Range of Viable Signal Costs (K) and Equilibrium Type by Degree of
Heterogeneity

makeup of a population. Unlike the case of perfect signaling, once the population is nearly

entirely high types, the population no longer signals by choice, only signaling by mistake with

probability p. However, this p ∗K cost of signaling means that the non-signaling population

will always, in the long run, attain a higher reproductive rate and larger population, just

like in the case of perfect signaling. In examining how imperfect signaling might impact

competition, Figure 29 provides three examples of outcomes when con�icts occur in our

model, using the same initial parameters used in �gure 22, but here with a 5% chance

of making a mistake when signaling, that is, p = 0.05. As can be seen, the margins

between the populations in �gure 29 become slimmer than in �gure 22, however, the same

patterns remain. The imperfect signaling population may gain an advantage initially and if

competition occurs, can defeat the non-signaling population. However, given enough time

to evolve before con�ict, the non-signaling population will always win.

4.5 Concluding Remarks

It has been well understood that costly signaling can provide a competitive advantage

at the intra-group level, however, to our knowledge the e�ects of signaling has not been

examined at the inter-group level of con�icts. We consider a model in which the same

96



Figure 29. Con�icts Between Imperfect Signaling and Non-Signaling Populations After a
Period of Peace

Parameters:

NH
0 = SH0 = .2

NL
0 = SL0 = .8

K = .1
β = .2
p = .05

H L
H 1.15 0.90
L 0.85 0.80

The vertical lines indicate
the last period before
con�icts begin (T − 1).
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individuals (high types) that bene�t from signaling would evolve even in the absence of

signaling. Thus, when there are two populations, one with and one without signaling, it

follows that they would both eventually evolve to be homogeneously high type. At that

point, if the two populations were to engage in con�icts, the population without signaling

would have a competitive advantage because they do not need to pay the cost of signaling.

However, we argue that there can be an advantage to signaling in inter-group con�icts: that

the group with signaling evolves faster than the group without signaling. As a result, if

con�icts occur, the prevailing population is largely a question of how long the populations

evolve in isolation before they engage in con�icts. Our model predicts that societies that

have shorter periods of isolation before con�icts, and more e�cient weapon used in con�icts

may favor the rise of signaling norms.
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CHAPTER V

CONCLUSION

In this dissertation, three chapters were dedicated to exploring di�erent aspects of game

theory and evolutionary dynamics. Each chapter provides valuable insights and contributes

to our understanding of strategic decision-making and the emergence of social norms.

In Chapter 2, the focus was on the concept of stepping stones, which are recurrent

classes that facilitate transitions between di�erent equilibria. Through an experimental

design, it was observed that the introduction of stepping stones in a stag hunt game helped

groups transition to the Pareto e�cient equilibrium more consistently compared to groups

without stepping stones. The amount of information provided to players about other players'

payo�s also in�uenced the success of the groups, with complete information leading to better

outcomes in the absence of stepping stones. Furthermore, players' decision-making behavior

aligned with their myopic best response, but deviations were in�uenced by factors such as

the di�erence in payo�s and the dominance of a particular equilibrium. Overall, the �ndings

support the use of adaptive learning models in analyzing evolutionary games and suggest

the potential for further analysis using payo�-dependent mistake models.

Chapter 3 focused on the theory of adaptive play and the role of incomplete sampling. It

was shown that even minimal incomplete sampling is su�cient for the adaptive play process

to converge to a convention in the 2× 2 coordination game. The results also demonstrated

that relaxing the incomplete sampling requirement did not change the stochastically stable

states, except in some 2 × 2 games. The �ndings emphasize the robustness of the adaptive

play process and provide insights into the e�ects of sampling on the emergence of conventions.

In Chapter 4, the investigation delved into the e�ects of signaling in inter-group con�icts.

Costly signaling has been recognized as bene�cial within groups, but its role in inter-

group con�icts remained unexplored. The model presented in this chapter suggests that

populations with signaling would eventually evolve to be homogeneously high type, providing
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a competitive advantage in intra-group interactions. However, in inter-group con�icts, the

population without signaling would have an advantage due to the absence of signaling costs.

Nonetheless, it was argued that signaling could still play a role in inter-group con�icts by

accelerating the evolutionary process and favoring the rise of signaling norms. The model

predicts that societies with shorter periods of isolation before con�icts and more e�cient

weapons would be more likely to see the prevalence of signaling norms.

Combining the insights from these chapters, it is evident that game theory and

evolutionary dynamics o�er valuable frameworks for understanding strategic decision-

making, the emergence of social norms, and the dynamics of inter-group con�icts. These

�ndings contribute to a deeper understanding of human behavior in various strategic settings

and provide important implications for �elds such as economics, sociology, and political

science.
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APPENDIX

APPENDIX

Figure A.30. No Stepping Stone & Complete Information Time Series of Group Strategy
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Figure A.31. No Stepping Stone & Incomplete Information Time Series of Group Strategy
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Figure A.32. High Payo� Stepping Stone & Complete Information Time Series of Group
Strategy
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Figure A.33. High Payo� Stepping Stone & Incomplete Information Time Series of Group
Strategy
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Figure A.34. Low Payo� Stepping Stone & Complete Information Time Series of Group
Strategy
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Figure A.35. Low Payo� Stepping Stone & Incomplete Information Time Series of Group
Strategy
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Table A.4. Proportion of Strategy A, B, and C Played in Each Session

Game Information #
Set 1: Treatment Set 2: E�ects
A B C A B C

No Stepping
Stone

I
1 0.924 0.021 0.055 0.879 0.021 0.1
2 0.828 0.001 0.171 0.019 0 0.981
3 0.537 0.007 0.455 0.02 0.005 0.975

C
1 0.11 0.009 0.881 0.039 0.004 0.958
2 0.696 0.051 0.252 0.835 0.015 0.15
3 0.072 0.006 0.921 0.843 0 0.158

High Payo�
Stepping Stone

I
1 0.056 0.105 0.839 0.041 0.003 0.956
2 0.159 0.169 0.672 0.89 0 0.11
3 0.018 0.034 0.949 0.036 0 0.964

C
1 0.17 0.075 0.755 0.649 0.051 0.3
2 0.115 0.086 0.799 0.056 0 0.944
3 0.106 0.219 0.675 0.92 0 0.08

Low Payo�
Stepping Stone

I
1 0.166 0.295 0.539 0.494 0.003 0.504
2 0.325 0.204 0.471 0.972 0 0.028
3 0.336 0.138 0.526 0.583 0 0.418

C
1 0.065 0.03 0.905 0.956 0.004 0.04
2 0.298 0.248 0.455 0.415 0.038 0.548
3 0.135 0.205 0.66 0.968 0 0.032

Table A.5. Mean Proportion of Strategy A, B, and C Played in Each Treatment

Game Information
Set 1: Treatment Set 2: E�ects
A B C A B C

No Stepping
Stone

I 0.763 0.010 0.227 0.306 0.009 0.685
C 0.293 0.22 0.685 0.572 0.006 0.422

High Payo�
Stepping Stone

I 0.078 0.103 0.82 0.322 0.001 0.677
C 0.13 0.127 0.743 0.542 0.017 0.441

Low Payo�
Stepping Stone

I 0.276 0.212 0.512 0.683 0.001 0.316
C 0.166 0.161 0.673 0.78 0.014 0.207
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Table A.6. Choices in each Session by MBR

Game Information # mBR
Set1: Treatment Set 2: E�ects
n A B C n A B C

No Stepping
Stone

I

1
A 800 .93 .02 .05 798 .9 .01 .09
C 0 - - - 2 .5 0 .5

2
A 722 .89 0 .11 30 .13 0 .87
C 78 .03 0 0 770 0 0 1

3
A 496 .86 .01 .13 38 .18 0 .82
C 304 0 0 1 762 0 .01 .99

C

1
A 126 .4 .01 .59 30 .23 0 .77
C 674 .05 0 .95 770 .02 .01 .97

2
A 782 .7 .05 .25 800 .84 .02 .14
C 18 .67 0 .33 0 - - -

3
A 593 .59 .03 .37 800 .82 0 .18
C 714 0 0 1 0 - - -

High Payo�
Stepping Stone

I

1
A 34 .18 .35 .47 62 .4 .02 .58
B 56 .02 .66 .32 - - - -
C 710 .04 .03 .93 738 0 0 1

2
A 152 .38 .11 .51 800 .91 0 .09
B 102 .08 .67 .25 - - - -
C 546 .08 .07 .85 0 - - -

3
A 8 .25 .62 .12 54 .43 0 .57
B 18 .11 .56 .33 - - - -
C 774 .01 .01 .98 746 0 0 1

C

1
A 210 .29 .16 .55 698 .73 .06 .21
B 21 .29 .19 .52 - - - -
C 569 .11 .07 .82 102 .11 0 .89

2
A 100 .52 .16 .32 76 .42 0 .58
B 82 .07 .68 .24 - - - -
C 674 .04 0 .96 724 0 0 1

3
A 62 .5 .19 .31 800 .92 0 .07
B 138 .14 .69 .17 - - - -
C 600 .06 .1 .84 0 - - -

Low Payo�
Stepping Stone

I

1
A 116 .63 .28 .09 446 .87 0 .13
B 256 .04 .79 .17 - - - -
C 428 .1 .02 .88 354 .01 0 .99

2
A 268 .76 .13 .11 800 .98 0 .02
B 175 .06 .74 .19 - - - -
C 357 .1 .02 .87 0 - - -

3
A 316 .69 .12 .18 528 .84 0 .16
B 103 .08 .54 .38 - - - -
C 381 .06 .04 .9 272 .03 0 .97

C

1
A 48 .21 .1 .69 800 .95 0 .05
B 18 .17 .56 .28 - - - -
C 734 .05 .01 .93 0 - - -

2
A 256 .54 .21 .26 498 .64 .04 .32
B 209 .15 .62 .23 - - - -
C 335 .21 .07 .72 302 .04 .02 .94

3
A 124 .38 .16 .46 800 .97 0 .03
B 144 .1 0 .18 - - - -
C 532 .09 .04 .87 0 - - -
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Table A.7. Grouped Choices by Treatment

Game Information mBR n A B C

No Stepping
Stone

C A 994 0.65 0.04 0.3
C C 1406 0.03 0 0.96
I A 2018 0.9 0.01 0.09
I C 382 0.01 0 0.99

High Payo�
Stepping Stone

C A 372 0.39 0.16 0.45
C B 241 0.13 0.64 0.22
C C 1787 0.07 0.06 0.87
I A 194 0.34 0.18 0.48
I B 176 0.06 0.65 0.28
I C 2030 0.04 0.03 0.93

Low Payo�
Stepping Stone

C A 428 0.45 0.18 0.36
C B 371 0.13 0.65 0.22
C C 1601 0.1 0.03 0.87
I A 700 0.71 0.15 0.14
I B 534 0.05 0.73 0.22
I C 1166 0.09 0.03 0.88

Table A.8. Generalized Logistic Mixed Model: Is C Played More in Game 2 and 3 than
Game 1?

Fixed E�ects Estimate Std. Error z value Pr(> |z|)
(Intercept) -0.3045 0.2230 -1.366 0.17202
Game 2 1.8157 0.3147 5.770 7.94× 10−9

Game 3 0.8588 0.3130 2.744 0.00608
Model Information
AIC: 14738.0
BIC: 14775.8
Log Likelihood: -7364.0
Deviance: 14728.0
Residual degrees of freedom: 14395
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Table A.9. Hypothesis 3 Test: Generalized Logistic Mixed Model Results

Data �ltered to only include observations where mBR = A
Fixed E�ects Estimate Std. Error z value Pr(> |z|)
(Intercept) -1.7481 0.2022 -8.645 < 2× 10−16

Game 3 -0.1030 0.2645 -0.389 0.697
Model Information
AIC: 1448.1
BIC: 1464.4
Log Likelihood: -721.1
Deviance: 1442.1
Residual degrees of freedom: 1691

Table A.10. Hypotheses 4, 5 and 7 Test: Generalized Logistic Mixed Model

mBR is the Dependant Variable
Fixed E�ects Estimate Std. Error z value Pr(> |z|)
(Intercept) -2.359739 0.244356 -9.657 < 2× 10−16

mBR = B 1.200690 0.127741 9.399 < 2× 10−16

mBR = C 2.239175 0.097942 22.862 < 2× 10−16

Incomplete Info 0.741663 0.210947 3.516 0.000438
Game 2 0.097101 0.247757 0.392 0.695116
Game 3 0.168979 0.245713 0.688 0.491637
lag(stochastic rejection) 0.260193 0.053658 4.849 1.24× 10−6

∆ΠmBR 0.110395 0.004179 26.416 < 2× 10−16

log(round) 0.290226 0.029797 9.740 < 2× 10−16

mBR = B:Incomplete Info -0.541791 0.173655 -3.120 0.001809
mBR = C:Incomplete Info -0.582463 0.141303 -4.122 3.75× 10−5

Model Information
AIC: 9536.0
BIC: 9634.3
Log Likelihood: -4755.0
Deviance: 9510.0
Residual degrees of freedom: 14243
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Figure A.36. Experiment Instructions (Complete Information)
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Figure A.37. Quiz Question 1

Figure A.38. Quiz Question 2 (Complete Information Only)
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Figure A.39. Quiz Question 3

Figure A.40. Quiz Question 4
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Figure A.41. Quiz Question 5
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Figure A.42. Experiment UI 1
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Figure A.43. Experiment UI 2
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