
CERTIFIED AND FORENSIC DEFENSES AGAINST POISONING AND

BACKDOOR ATTACKS

by

ZAYD HAMMOUDEH

A DISSERTATION

Presented to the Department of Computer Science
and the Division of Graduate Studies of the University of Oregon

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

December 2023

DISSERTATION APPROVAL PAGE

Student: Zayd Hammoudeh

Title: Certified and Forensic Defenses against Poisoning and Backdoor Attacks

This dissertation has been accepted and approved in partial fulfillment of the
requirements for the Doctor of Philosophy degree in the Department of Computer
Science by:

Daniel Lowd Chair
Thien Nguyen Core Member
Humphrey Shi Core Member
Luca Mazzucato Institutional Representative

and

Krista Chronister Vice Provost for Graduate Studies

Original approval signatures are on file with the University of Oregon Division of
Graduate Studies.

Degree awarded December 2023

2

© 2023 Zayd Hammoudeh
All rights reserved.

3

DISSERTATION ABSTRACT

Zayd Hammoudeh

Doctor of Philosophy

Department of Computer Science

December 2023

Title: Certified and Forensic Defenses against Poisoning and Backdoor Attacks

Data poisoning and backdoor attacks manipulate model predictions by

inserting malicious instances into the training set. Most existing defenses against

poisoning and backdoor attacks are empirical and easily evaded by an adaptive

attacker. In addition, existing empirical defenses provide, at best, minimal insights

into an attacker’s identity, goals, and methods. In contrast, this work proposes two

classes of poisoning and backdoor defenses: (1) certified defenses, which provide

provable guarantees on their robustness and (2) forensic defenses, which provide

actionable, human-interpretable insights into an attack’s goals so as to stop the

attack via intervention outside the ML system. We focus on certified defenses for

regression, where the model predicts a continuous value, and sparse (ℓ0) attacks,

where the adversary controls an unknown subset of the training and test features.

Our forensic defense identifies the target of poisoning and backdoor attacks while

simultaneously mitigating the attack; we validate our forensic defense on a wide

range of data modalities, including speech, text, and vision.

This dissertation includes previously published and unpublished coauthored

material.

4

CURRICULUM VITAE

NAME OF AUTHOR: Zayd Hammoudeh

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED:

University of Oregon, Eugene, OR
University of California Santa Cruz, Santa Cruz, CA
San José State University, San Jose, CA
Drexel University, Philadelphia, PA

DEGREES AWARDED:

Doctor of Philosophy, Computer Science, 2023, University of Oregon
Master of Science, Computer Science, 2016, San José State University
Master of Science, Computer Engineering, 2006, Drexel University
Bachelor of Science, Computer Engineering, 2006, Drexel University

AREAS OF SPECIAL INTEREST:

Certified Adversarial Defenses
Training Data Influence Analysis
Data Poisoning
Adversarial Machine Learning
Positive-Unlabeled Learning

PROFESSIONAL EXPERIENCE:

ML Applied Scientist, Qualtrics, 2023–Present
Graduate Researcher, University of Oregon, 2018–2023
Graduate Researcher, University of California Santa Cruz, 2017–2018
Wireless Power Engineer, Integrated Device Technology, 2011–2017
Applications Development Engineer, Teradyne, 2006-2011
Undergrad. Researcher & Teaching Assistant, Drexel University, 2003–2006

5

GRANTS, AWARDS, AND HONORS:

Gurdeep Pall Graduate Student Fellowship, University of Oregon 2022
J. Donald Hubbard Family Scholarship, University of Oregon, 2021
Travel Award, International Joint Conference on Artificial Intelligence

(IJCAI) 2019
Travel Award, SAT Association 2018
Travel Award, Federated Logic Conference (FLoC) 2018
Best Student Paper, International Conference on Theory and Applications

of Satisfiability Testing (SAT) 2018
Chancellor’s Fellowship, University of California, Santa Cruz 2017
Undergraduate Student Research Award, Drexel University 2005
Arnold H. Kaplan Stochastic Achievement and Academic Excellence

Scholarship, Drexel University 2005
Alvin W. Wene Engineering Scholarship, Drexel University 2004
Teaching Assistant Excellence Award, Drexel University 2004

PUBLICATIONS:

W. You, Z. Hammoudeh, and D. Lowd. Large Language Models Are
Better Adversaries: Exploring Generative Clean-Label Backdoor
Attacks Against Text Classifiers”. In: Findings of the Association for
Computational Linguistics. ELMNLP’23. 2023.

Z. Hammoudeh and D. Lowd. Feature Partition Aggregation: A Fast
Certified Defense Against a Union of ℓ0 Attacks. In: Proceedings of the
2nd ICML Workshop on New Frontiers in Adversarial Machine Learning,
AdvML-Frontiers’23, 2023.

W. You, Z. Hammoudeh, and D. Lowd. Large Language Models are
Better Adversaries: Exploring Generative Clean-Label Backdoor Attacks
Against Text Classifiers. In Proceedings of the 2nd ICML Workshop on
New Frontiers in Adversarial Machine Learning, AdvML-Frontiers’23,
2023.

J. Brophy, Z. Hammoudeh, and D. Lowd. Adapting and Evaluating
Influence-Estimation Methods for Gradient-Boosted Decision Trees.
In: Journal of Machine Learning Research vol. 24 (2023), pp. 1–48.

6

Z. Hammoudeh and D. Lowd. Reducing Certified Regression to Certified
Classification for General Poisoning Attacks. In Proceedings of the
1st IEEE Conference on Secure and Trustworthy Machine Learning,
SaTML’23, 2023.

Z. Hammoudeh and D. Lowd. Identifying a Training-Set Attack’s Target
using Renormalized Influence Estimation. In Proceedings of the 29th
ACM SIGSAC Conference on Computer and Communications Security,
CCS’22, 2022.

Z. Hammoudeh and D. Lowd. Simple, Attack-Agnostic Defense Against
Targeted Training Set Attacks Using Cosine Similarity. In Proceedings
of the 3rd ICML Workshop on Uncertainty and Robustness in Deep
Learning, UDL’21, 2021.

Z. Xie, J. Brophy, A. Noack, W. You, K. Asthana, C. Perkins, S. Reis,
Z. Hammoudeh, D. Lowd, and S. Singh. What Models Know
About Their Attackers: Deriving Attacker Information From Latent
Representations. In Proceedings of the 4th BlackboxNLP Workshop on
Analyzing and Interpreting Neural Networks for NLP, 2021.

Z. Hammoudeh and D. Lowd. Learning from Positive and Unlabeled Data
with Arbitrary Positive Shift. In Proceedings of the 34th Conference on
Neural Information Processing Systems, NeurIPS’20, 2020.

S. Jamshidi, Z. Hammoudeh, R. Durairajan, D. Lowd, R. Rejaie, and W.
Willinger. On the practicality of learning models for network telemetry.
In Proceedings of the 4th Network Traffic Measurement and Analysis
Conference, TMA’20, 2020.

Z. Hammoudeh and D. Lowd. Positive-Unlabeled Learning with
Arbitrarily Non-Representative Labeled Data. In Proceedings of the
37th International Conference on Machine Learning’s Workshop on
Uncertainty & Robustness in Deep Learning, UDL’20, 2020.

D. Achlioptas, Z. Hammoudeh, and P. Theodoropoulos. Fast Sampling
of Perfectly Uniform Satisfying Assignments. In Proceedings of
the 21st International Conference on Theory and Applications of
Satisfiability Testing, SAT’2018, 2018. (Best Student Paper Award.
Authors alphabetical)

7

Z. Hammoudeh and C. Pollett. Clustering-Based, Fully Automated
Mixed-Bag Jigsaw Puzzle Solving. In Proceedings of 17th International
Conference on Computer Analysis of Images and Patterns, CAIP’17,
2017.

8

To my mother.

9

TABLE OF CONTENTS

Chapter Page

1. INTRODUCTION . 34

2. PRELIMINARIES . 37

2.1. Nomenclature . 37

2.2. On Attacker Threat Models 39

2.3. On the Defender Objectives 39

3. RELATED WORK . 40

3.1. Defenses Against Evasion Attacks 41

3.1.1. Empirical Defenses . 42

3.1.2. Certified Evasion Defenses 43

3.2. Defenses Against Poisoning and Backdoor Attacks 44

3.2.1. Empirical Classification Defenses 45

3.2.2. Certified Pointwise Classifiers 46

3.2.3. Robust Regression . 48

3.2.3.1. Resilient Regression 48

3.2.3.2. Certified Regression 49

3.3. Defenses Outside the ML System 50

4. REDUCING CERTIFIED REGRESSION TO CERTIFIED
CLASSIFICATION . 51

4.1. Preliminaries . 52

4.1.1. One-Sided vs. Two-Sided Certification Bounds 53

4.1.2. Relating Regression and Binary Classification 53

4.2. Warmup: Perturbing a Set’s Median 54

4.2.1. Unweighted Swap Paradigm 55

10

Chapter Page

4.2.2. Insertion/Deletion Paradigm 55

4.2.3. Weighted Swap Paradigm 57

4.3. Reducing Regression to Voting-Based Binary Classification 58

4.4. Certified Instance-Based Regression 61

4.4.1. Fixed-Population Neighborhood 62

4.4.2. Region-Based Neighborhood 63

4.4.3. Computational Complexity 64

4.5. Certified Regression for General Models 65

4.5.1. Partitioned Certified Regression 65

4.5.2. Weighted Partitioned Certified Regression 67

4.5.3. Computational Complexity 68

4.6. Certified Regression Using Overlapping Training Data 69

4.6.1. Overlapping Certified Regression 69

4.6.2. Weighted Overlapping Certified Regression 71

4.6.3. Computational Cost 72

4.7. Certifying Any Model Beyond Unit Cost 73

4.7.1. Combining Instance-Based Learners & Ensembles 74

4.7.2. Certifying Non-Unit Costs by Construction 74

4.7.3. More Submodels vs. Weighted Costs 76

4.8. Evaluation . 76

4.8.1. Experimental Setup 77

4.8.2. Analyzing the Certified Accuracy 79

4.9. Conclusions . 81

5. CERTIFIED DEFENSE AGAINST A UNION OF ℓ0 ATTACKS 85

5.1. Preliminaries . 87

11

Chapter Page

5.2. Related Work . 89

5.3. Certifying Feature Robustness 91

5.3.1. Feature Robustness Under Plurality Voting 92

5.3.2. Feature Robustness Under Run-Off Elections 93

5.3.3. Advantages of Feature Partition Aggregation 96

5.4. Feature Partitioning Strategies 96

5.4.1. Feature Partitioning Paradigms 97

5.5. Evaluation . 98

5.5.1. Experimental Setup 98

5.5.2. Main Results . 101

5.6. Conclusions . 104

6. IDENTIFYING POISONING AND BACKDOOR ATTACK
TARGETS WHILE MITIGATING THE ATTACK 105

6.1. Preliminaries . 109

6.2. Review of Influence Analysis and Estimation 110

6.3. Why Influence Estimation Often Fails and How to Fix It 115

6.3.1. A Simple Experiment 115

6.3.2. Why Influence Estimation Performs Poorly 116

6.3.3. Renormalizing Influence Estimation 120

6.3.4. Renormalization and More Advanced Attacks 122

6.3.5. Renormalization and Non-Adversarial Data 125

6.4. Identifying Attack Targets 127

6.4.1. Measuring (Renormalized) Influence 128

6.4.2. Identifying Anomalous Influence 130

6.4.3. Target Driven Attack Mitigation 133

6.5. Evaluation . 134

12

Chapter Page

6.5.1. Training-Set Attacks Evaluated 135

6.5.2. Identifying Adversarial Set Dadv 137

6.5.3. Identifying Attack Targets 139

6.5.4. Target-Driven Mitigation 141

6.6. Adaptive Attacks . 142

6.7. Discussion and Conclusions 146

7. CONCLUSIONS AND FUTURE DIRECTIONS 149

APPENDICES

A. NOMENCLATURE REFERENCE 152

B. PROOFS . 159

B.1. Proofs for Chapter 4 . 159

B.2. Proofs for Chapter 5 . 169

B.3. Proof for Chapter 6 . 174

C. DETAILED EMPIRICAL RESULTS 177

C.1. Chapter 4 Detailed Results 178

C.1.1. Baseline Accuracy . 178

C.1.2. Numerical Results . 178

C.1.3. kNN-CR Full Certified Accuracy Plots 185

C.2. Chapter 5 Detailed Results 187

C.2.1. Non-Robust Accuracy 187

C.2.2. Detailed Median Certified Robustness Results 188

C.2.3. Feature Partition Aggregation vs. Randomized Ablation
Certified Accuracy Detailed Comparison 193

C.2.3.1. Numerical Comparison of Feature Partition
Aggregation and Randomized Ablation 194

13

Chapter Page

C.2.3.2. Graphical Comparison of Feature Partition
Aggregation and Randomized Ablation 199

C.3. Chapter 6 Detailed Results 203

C.3.1. Speech Recognition Backdoor Full Results 203

C.3.2. Vision Backdoor Full Results 205

C.3.3. Natural Language Poisoning Full Results 208

C.3.4. Vision Poisoning Full Results 211

C.4. Convex Polytope Poisoning and GAS Joint Optimization 214

C.4.1. Adversarial-Set Identification of the Jointly Optimized
Poisoning Attack . 218

C.4.2. Target Identification of the Jointly Optimized Poisoning Attack 220

C.4.3. Target-Driven Attack Mitigation of the Jointly Optimized
Poisoning Attack . 222

D. EVALUATION SETUPS . 223

D.1. Evaluation Setup for the Experiments in Chapter 4 224

D.1.1. Dataset Configuration 224

D.1.2. Dataset Target Value Statistics 225

D.1.3. Hyperparameters . 226

D.2. Evaluation Setup for the Experiments in Chapter 5 228

D.2.1. Hardware Setup . 228

D.2.2. Baselines . 228

D.2.3. Datasets . 230

D.2.4. Network Architectures 231

D.2.5. Hyperparameters . 233

D.3. Evaluation Setup for the Experiments in Chapter 6 235

D.3.1. Dataset Configurations 235

14

Chapter Page

D.3.1.1. Training Set Sizes 237

D.3.1.2. Target Set Sizes 237

D.3.2. Hyperparameters . 238

D.3.2.1. Model Training 238

D.3.2.2. Upper-Tail Heaviness Hyperparameters 238

D.3.2.3. Target-Driven Mitigation Hyperparameters 239

D.3.2.4. Adversarial Set Dadv Crafting 240

D.3.2.5. Baselines . 242

D.3.3. Network Architectures 244

REFERENCES CITED . 247

15

LIST OF FIGURES

Figure Page

1. Unweighted Median Perturbation: (1a) Blue denotes elements
in subset Vl, i.e., elements in V with value at most ξ = 5.4. Vu’s
values are red. Each “swap” (1b) switches a value in Vl with an
arbitrarily large replacement. Deletions (1d) and insertions (1c) are
interchangeable (suppl. Lemma B.1), with both yielding the same
median value in the same number of modifications made to V. In
Figs. 1b to 1d above, any additional modifications to the set would
perturb the median. 56

2. Weighted Swap Paradigm: Extension of Fig. 1 to weighted costs.
For simplicity and w.l.o.g., let R = {3, . . . , 7}, i.e., ∀l rl = νl + 1
Fig. 2a is identical to Fig. 1a except below each element νl is
its corresponding weight rl. Observe ∆ = 1 and R̃l = {3, 4}.
Fig. 2b shows that for R = 6 (visualized below each element), it
is impossible to perturb the median, and any additional weight
would be sufficient to swap out ν2 = 3. 57

3. Certified Regression to Certified Classification Reduction:
For xte ∈ X , the decision function is f(xte) := medV – just like
voting-based certified classification. Certified regression binarizes V
into V±1, which is used by the robustness certifier (optionally with
weights R) to determine R. 59

4. Certified Instance-Based Regression: Fig. 4a visualizes an
unperturbed IBL model. Test instance xte’s neighborhood is
visualized as a dashed line with neighborhood N (xte) identical
to V in Fig. 1a. Fig. 4b shows an attack on a kNN-m model where
the neighborhood’s cardinality (L = 5) is fixed, and the one attack
instance () replaces one instance in Vl () (source Fig. 1b). A
rNN-median model is shown in Fig. 4c, where the two inserted
instances () do not change the neighborhood’s radius (source Fig. 1c). 63

5. Overlapping Certified Ensemble: Simple visualization of
the ensemble architecture for (weighted) overlapping certified
regression. Function htr partitions training set D into (m = 7)
blocks. Function hf defines each of the L = 5 submodel training
sets, D1, . . . ,D5. The ensemble prediction is the median submodel
prediction, i.e., f(xte) := med {fl(xte; 1), . . . , fl(xte;L)}. 68

16

Figure Page

6. Overlapping Certified Regression Integer Linear Program:
Adapted from the partial set (multi)cover integer linear program.
Calculates certified robustness R for both OCR and W-OCR
with indicator variable σ adjusting the program to account
for weighted costs. For arbitrary feature vector xte, Tl is
the set of submodels that predict fl(xte) ≤ ξ. Variable ω(j)

contains the number of modifications made to training set
block D(j). Binary variable δl = 1 if submodel fl has been
sufficiently modified for fl(xte) > ξ and 0 otherwise. 73

7. Certified Accuracy: Mean certified accuracy (larger is better) for
our five primary certified regressors. kNN-CR is always trained on
all of training set D (i.e., q = 1). Ensemble submodels are trained
on 1

q
-th of D, with three q values tested per dataset. The x-axis is

clipped to enhance readability; see suppl. Sec. C.1.3 for kNN-CR’s
full results. The best performing method depends on the target
certified robustness R. For smaller R values, W-OCR achieves the
best certified accuracy. For larger R values, kNN-CR outperforms
the ensemble methods. This result aligns with previous findings
on certified classification [Jia+22a]. Sec. 4.8.2 summarizes these
experiments’ primary takeaways. Figure continued on the next page. . 83

7. Certified Accuracy (cont.): Mean certified accuracy (larger
is better) for our five primary certified regressors. kNN-CR is
always trained on all of training set D (i.e., q = 1). Ensemble
submodels are trained on 1

q
-th of D, with three q values tested per

dataset. The x-axis is clipped to enhance readability; see suppl.
Sec. C.1.3 for kNN-CR’s full results. The best performing method
depends on the target certified robustness R. For smaller R values,
W-OCR achieves the best certified accuracy. For larger R values,
kNN-CR outperforms the ensemble methods. This result aligns
with previous findings on certified classification [Jia+22a]. Sec. 4.8.2
summarizes these experiments’ primary takeaways. See Sec. C.1 for
the numerical results, including variance. 84

17

Figure Page

8. Feature partition aggregation example prediction for: test
instance x ∈ X , n = 3, d = 4, and |Y| = 3. Feature partitioning
across L = 4 submodels, where the l-th submodel uses only feature
dimensions Sl = {l} ⊂ [4] and training set Dl, i.e., the tuple
containing the l-th column of feature matrix X (denoted Xl) and
label vector y := [y1, y2, y3]. xSl denotes the subvector of x restricted
to the feature dimensions in Sl. Plurality label ypl = 0; runner-up
label yru = 1; and run-off label yRO = 0. Under the plurality voting
decision function (Sec. 5.3.1), f(x) has certified feature robustness
Rpl = 0. With run-off (Sec. 5.3.2), f(x)’s certified feature robustness
is RRO = 1. 89

9. Renormalized Influence: CIFAR10 & MNIST joint, binary
classification for [frog] vs. [airplane & MNIST 0] with
|Dcl| = 10,000 & |Dadv| = 150. Existing influence estimators (upper
half) consistently failed to rank Dadv’s MNIST training instances as
highly influential on MNIST test instances. In contrast, all of our
renormalized influence estimators (Section 6.3.3) outperformed their
unnormalized version – with AUPRC improving up to 25×. Results
averaged across 30 trials. 111

10. CIFAR10 and MNIST Intra-training Loss Tracking:
Dadv’s () and Dcl’s () median cross-entropy losses (L) at
each training checkpoint for binary classification – frog vs.
airplane & MNIST 0. The shaded regions correspond to each
training set loss’s interquartile range. MNIST’s training losses are
generally several orders of magnitude smaller than CIFAR10’s losses.
Gradient norm ratio () shows the tight coupling of loss and training
gradient magnitude. 117

11. Layerwise Decomposition of an Attack Target’s
Intra-Training Gradient Magnitude: One-pixel and
blend backdoor adversarial triggers (dashed and solid lines
respectively) trained separately on CIFAR10 binary classification
(ytarg = airplane and yadv = bird) using ResNet9. The network’s
first convolutional (Conv1) and final linear layers are a small
fraction of the parameters (0.03% and 0.01% resp.) but constitute
most of the target’s gradient magnitude (∥ĝtarg∥) with the dominant
layer attack dependent. Results are averaged over 20 trials. 124

18

Figure Page

12. Effect of Removing Influential, Non-Adversarial Training
Data: Test example zfilt’s misclassification rate (larger is
better) when filtering the training set using influence rankings
based on influence functions (top) and TracIn (bottom).
Renormalization (Rn.) always improved mean performance across
all training set filtering percentages. Results are averaged across
five CIFAR10 class pairs with 30 trials per class pair and 20 models
trained per method per trial. Results are separated by the reference
influence estimator. 126

13. GAS renormalized influence, v, density distributions for two
training set attacks: CIFAR10 vision poisoning [Zhu+19]
(ytarg = dog and yadv = bird) and speech-recognition backdoor
[Liu+18] (ytarg = 4 and yadv = 5). Theoretical normal () is w.r.t.
D := Dadv ∪ D. Observe that target examples (Figs. 13a and 13d)
have significant Dadv mass () well to the right of Dcl’s mass ().
This upper-mass phenomenon is absent in non-targets (Figs. 13b
and 13e). Training example gradient norms (Fig. 13c and 13f) are
poorly correlated with whether the training example is adversarial.
For example, speech recognition has Dcl mass well to the right of
even the right-most Dadv mass, necessitating renormalization. See
Sections 6.5.1 and D.3 for more details on these attacks. 129

14. Adversarial-Set Identification: Mean AUPRC identifying
adversarial set Dadv using a randomly selected target for Sec. 6.5.1’s
four attacks. Results averaged across related setups with ≥10 trials
per setup. See supplemental Section C.3 for the full granular results. . 138

15. Static Influence Adversarial-Set Identification: Comparing
the mean adversarial-set identification AUPRC of the static
influence estimators and their corresponding renormalized (Rn.)
versions. For all attacks, renormalization improved the static
estimators’ mean performance by up to a factor of >600×. These
experiments also highlight layerwise renormalization’s performance
gains, e.g., influence functions on natural-language poison. Results
are averaged across related experimental setups with ≥10 trials per
setup. 139

16. Target Identification: Mean target identification AUPRC for
Sec. 6.5.1’s four attacks. “FIT w/ GAS” denotes GAS was FIT’s
influence estimator with matching notation for GAS-L. Results
averaged across setups with ≥10 trials per setup. See Sec. C.3 for
the full granular results. 140

19

Figure Page

17. Adversarial-Set Identification for the Adaptive Vision
Poison Attack: Mean AUPRC identifying the adversarial
set where Zhu et al.’s vision poison attack is adapted to jointly
minimize the adversarial loss and the GAS influence. The baseline
results (orange) used Zhu et al.’s standard attack. Our jointly-
optimized attack reduced the GAS similarity by 7% at the cost of
a 19% decrease in ASR w.r.t. Table 6. See suppl. Sec. C.4 for the
granular results. 148

18. Target Identification for the Adaptive Vision Poison Attack:
Mean target identification AUPRC where Zhu et al.’s vision poison
attack is jointly optimized with minimizing GAS. FIT with GAS’s
mean target identification AUPRC declined only 9% versus the
baseline – an average change in target rank of 1.16 to 1.28 – still
strong performance. Results are averaged across related setups with
≥10 trials per setup. See suppl. Sec. C.4 for the full results. 148

C.19. kNN-CR vs. W-OCR Certified Accuracy: Full plots of the
mean certified accuracy for Sec. 4.8’s six datasets. The shaded
regions visualize one standard deviation of the certified accuracy for
each R value. W-OCR’s q value for each dataset is in Table C.19. . . 186

C.20. Classification certified accuracy envelope for datasets
CIFAR10 (d = 1024) and MNIST (d = 784) for feature partition
aggregation (FPA) and baseline randomized ablation (RA). Each
method’s envelope considers the corresponding hyperparameters
in Tables C.25 and C.26, emulating a certified defense where the
hyperparameters are roughly tuned to maximize the certified
accuracy at each robustness level. Subfigures C.20a and C.20b
visualize each method’s certified accuracy envelope (larger is better);
also shown in these subfigures is a naive baseline where the decision
function always predicts label f(x) = 1. Subfigures C.20c and C.20d
visualize the improvement in certified accuracy when using FPA
with the run-off decision function over the two randomized ablation
baselines from Levine and Feizi [LF20b] and Jia et al. [Jia+22b].
The envelope plots’ underlying numerical values are provided in
Table C.25 for CIFAR10 and Table C.26 for MNIST. 201

20

Figure Page

C.21. Regression certified accuracy envelope for the
Weather [Mal+21] (d = 128) and Ames [Coc11] (d = 352) datasets
for feature partition aggregation (FPA) and baseline randomized
ablation (RA). Each method’s envelope considers the corresponding
hyperparameters in Tables C.27 and C.28, emulating a certified
defense where the hyperparameters are tuned to maximize each
robustness level’s certified accuracy. Subfigures C.21a and C.21b
visualize each method’s certified accuracy envelope (larger is better);
also shown in these subfigures is a naive baseline that always
predicts the median training data target value. Subfigures C.21c
and C.21d visualize the improvement in certified accuracy when
using FPA (with plurality voting) as the decision function over the
two randomized ablation baselines from Levine and Feizi [LF20b]
and Jia et al. [Jia+22b]. FPA outperforms randomized ablation
for smaller certified robustness values, while Jia et al.’s [Jia+22b]
version of RA marginally outperformed both FPA and the naive
baseline at larger robustness values. The envelope plots’ underlying
numerical values are provided in Table C.27 for Weather and
Table C.28 for Ames. 202

C.22. Speech Backdoor Adversarial Set Identification: Mean
backdoor set (Dadv) identification AUPRC across 30 trials for
all 10 class pairs with 21 ≤ |Dadv| ≤ 28 (varies by class pair, see
Tab. D.57). GAS and GAS-L outperformed all baselines in all
experiments, with GAS-L the overall top performer on 6/10 class
pairs. See Table C.29 for the numerical results. 203

C.23. Speech Backdoor Target Identification: See Table C.30 for
numerical results. 204

C.24. Vision Backdoor Adversarial-Set Identification: Backdoor
set, Dadv, identification mean AUPRC across >30 trials for Weber
et al.’s [Web+23] three CIFAR10 backdoor attack patterns with
a randomly selected reference ẑtarg. All experiments performed
binary classification on randomly-initialized ResNet9. |Dadv| = 150.
Notation ytarg → yadv. See Table C.32 for the numerical results. 205

C.25. Vision Backdoor Target Identification: Mean target
identification AUPRC across 15 trials for Weber et al.’s [Web+23]
three CIFAR10 backdoor attack patterns and randomly selected
reference ẑtarg. All experiments performed binary classification on
randomly-initialized ResNet9. |Dadv| = 150. Notation ytarg → yadv.
See Table C.33 for the numerical results. 206

21

Figure Page

C.26. Natural Language Poisoning Adversarial-Set Identification:
See Table C.35 for the numerical results. 208

C.27. Natural Language Poisoning Target Identification: See
Table C.36 for the numerical results. 209

C.28. Vision Poisoning Adversarial-Set Identification: Adversarial
set (Dadv) identification mean AUPRC across >15 trials for four
CIFAR10 class pairs with |Dadv| = 50. Our renormalized influence
estimators, GAS and GAS-L, using just initial parameters θ0 and
with 5 subepoch checkpointing outperformed all baselines for all
class pairs. 211

C.29. Vision Poisoning Target Identification: See Table C.39 for the
numerical results. 213

C.30. Adversarial-Set Identification for the Adaptive Vision
Poison Attack: Mean AUPRC identifying the adversarial
set where Zhu et al.’s vision poison attack is jointly optimized
with minimizing GAS with ≥10 trials per setup as described
in Section C.4. Section 6.6’s baseline results set trade-off
hyperparameter β = 0, meaning the poison was not jointly
optimized. The jointly optimized results used β = 10−2 as explained
in suppl. Section C.4. This joint optimization reduces the GAS
similarity by 7% at the cost of a 19% decrease in ASR w.r.t. Table 6.
See Table C.42 (below) for the numerical results. 219

C.31. Target Identification for the Adaptive Vision Poison
Attack: Mean target identification AUPRC where Zhu et al.’s
[Zhu+19] vision poison attack is jointly optimized with minimizing
GAS. Section 6.6’s baseline results set trade-off hyperparameter
β = 0, meaning the poison was not jointly optimized. The jointly
optimized results used β = 10−2 as explained in suppl. Section C.4.
See Table C.43 (below) for the numerical results. 221

22

LIST OF TABLES

Table Page

1. Evaluation Dataset Summary: Training set size (n), data
dimension, overlapping spread degree (d), error threshold (ξ), and
submodel architecture for the six datasets. Error thresholds that are
a percentage of each instance’s true target value are denoted X% · y.
Alternate ξ values are evaluated in the original paper [HL23c,
Fig. 9]. 79

2. Median certified robustness. Each dataset’s best performing
method is in bold. Our median robustness was 20–30% larger for
classification and 3 to 4× larger for regression while simultaneously
providing stronger guarantees. For detailed results, see Sec. C.2.2. . . . 101

3. Classification accuracy (% – larger is better). We report FPA’s
accuracy at both RA’s (middle, bold) and FPA’s (blue) best
median robustness levels. At RA’s best median robustness, FPA
had better classification accuracy for all four datasets. For full
results, see Sec. C.2.2. 101

4. CIFAR10 certified patch accuracy (% – larger is better) for
FPA, RA, and three dedicated patch defenses. FPA is competitive
despite making fewer assumptions and providing stronger guarantees
than patch defenses. 103

5. Mean certification time in seconds for FPA and Jia et al.’s
[Jia+22b] randomized ablation (RA). FPA is 2 to 3 orders of
magnitude faster than baseline RA. 103

6. Target Driven Attack Mitigation: Alg. 6’s target-driven,
iterative data sanitization applied to Sec. 6.5.1’s four attacks for
randomly selected targets. The attacks were neutralized with
few clean instances removed and little change in test accuracy.
Attack success rate (ASR) is w.r.t. the analyzed target. Results are
averaged across related setups with ≥10 trials per setup. Detailed
results appear in Sec. C.3.1–C.3.4. 143

23

Table Page

7. Attack Mitigation for the Adaptive Vision Poison Attack:
Algorithm 6’s target-driven data sanitization where Zhu et al.’s
[Zhu+19] vision poison attack is jointly optimized with minimizing
the GAS influence. The results below consider exclusively the
jointly-optimized attack with β = 10−2. Clean-data removal remains
low, and test accuracy either improved or stayed the same for in but
one setup. The performance is comparable to the results with Zhu
et al.’s [Zhu+19]’s standard vision poisoning attack (see Table C.40).
Bold denotes the best mean performance with ≥10 trials per class
pair. 146

A.8. General Nomenclature Reference: This table contains symbols
that are relevant to one or more chapters in this dissertation.
Related symbols are grouped together with groups separated by
dotted lines. 152

A.9. Chapter 4 Nomenclature Reference: Notation specific to
Chapter 4 with related symbols grouped together. Groups are
separated by dotted lines. Note that this table spans multiple pages. . . 153

A.9. Chapter 4 Nomenclature Reference (Continued): Notation
specific to Chapter 4 with related symbols grouped together.
Groups are separated by dotted lines. Note that this table spans
multiple pages. 154

A.10. Chapter 5 Nomenclature Reference: Notation specific to
Chapter 5 with related symbols grouped together. Groups are
separated by dotted lines.Note that this table spans multiple pages. . . 155

A.10. Chapter 5 Nomenclature Reference (Continued): Notation
specific to Chapter 5 with related symbols grouped together.
Groups are separated by dotted lines. Note that this table spans
multiple pages. 156

A.11. Chapter 6 Nomenclature Reference: Notation specific to
Chapter 6 with related symbols grouped together. Groups are
separated by dotted lines. Note that this table spans multiple pages. . . 157

A.11. Chapter 6 Nomenclature Reference (Continued): Notation
specific to Chapter 6 with related symbols grouped together.
Groups are separated by dotted lines. Note that this table spans
multiple pages. 158

24

Table Page

C.12. Baseline Accuracy: Summary of the baseline (i.e., uncertified)
accuracy mean and standard deviation for Sec. 4.8’s six datasets.
Submodels were trained on all of training set D (i.e., q = 1). Beside
each dataset’s name is the submodel architecture used by the
ensemble. Threshold ξ matches values in Table 1. 178

C.13. Ames Housing Full Results: Certified accuracy mean and
standard deviation for the Ames Housing [Coc11] dataset. Each
ensemble submodel was trained on 1

q
-th of the training set with

three q values tested per dataset, while kNN-CR was always
trained on the whole training set (i.e., q = 1). The certified accuracy
results of five robustness values (R) are reported per q value. Also
reported as a baseline is the uncertified accuracy (R = 0) when
training a single model on all of training set D (q = 1). Results
are averaged across 10 trials per method, with each R’s best mean
certified accuracy in bold. 179

C.14. Austin Housing Full Results: Certified accuracy mean and
standard deviation for the Austin Housing [Pie21] dataset. Each
ensemble submodel was trained on 1

q
-th of the training set with

three q values tested per dataset, while kNN-CR was always
trained on the whole training set (i.e., q = 1). The certified accuracy
results of five robustness values (R) are reported per q value. Also
reported as a baseline is the uncertified accuracy (R = 0) when
training a single model on all of training set D (q = 1). Results
are averaged across 10 trials per method, with each R’s best mean
certified accuracy in bold. 180

C.15. Diamonds Full Results: Certified accuracy mean and standard
deviation for the Diamonds [Wic16] dataset. Each ensemble
submodel was trained on 1

q
-th of the training set with three q values

tested per dataset, while kNN-CR was always trained on the
whole training set (i.e., q = 1). The certified accuracy results of five
robustness values (R) are reported per q value. Also reported as a
baseline is the uncertified accuracy (R = 0) when training a single
model on all of training set D (q = 1). Results are averaged across
10 trials per method, with each R’s best mean certified accuracy in bold. 181

25

Table Page

C.16. Weather Full Results: Certified accuracy mean and standard
deviation for the Weather [Mal+21] dataset. Each ensemble
submodel was trained on 1

q
-th of the training set with three q values

tested per dataset, while kNN-CR was always trained on the
whole training set (i.e., q = 1). The certified accuracy results of five
robustness values (R) are reported per q value. Also reported as a
baseline is the uncertified accuracy (R = 0) when training a single
model on all of training set D (q = 1). Results are averaged across
10 trials per method, with each R’s best mean certified accuracy in bold. 182

C.17. Life Full Results: Certified accuracy mean and standard deviation
for the Life [Raj21] dataset. Each ensemble submodel was trained
on 1

q
-th of the training set with three q values tested per dataset,

while kNN-CR was always trained on the whole training set
(i.e., q = 1). The certified accuracy results of five robustness
values (R) are reported per q value. Also reported as a baseline
is the uncertified accuracy (R = 0) when training a single model on
all of training set D (q = 1). Results are averaged across 10 trials
per method, with each R’s best mean certified accuracy in bold. . . . 183

C.18. Spambase Full Results: Certified accuracy mean and standard
deviation for the Spambase [Hop+17] dataset. Each ensemble
submodel was trained on 1

q
-th of the training set with three q values

tested per dataset, while kNN-CR was always trained on the
whole training set (i.e., q = 1). The certified accuracy results of five
robustness values (R) are reported per q value. Also reported as a
baseline is the uncertified accuracy (R = 0) when training a single
model on all of training set D (q = 1). Results are averaged across
10 trials per method, with each R’s best mean certified accuracy in bold. 184

C.19. W-OCR q Values: As detailed in Sec. 4.8.1, ensemble submodels
were trained on 1

q
-th of the training data where q varies by dataset.

Below are the W-OCR q values used in Fig. C.19. 185

C.20. Non-Robust Accuracy: Prediction accuracy when training
a single model on all model features, i.e., L = 1. These values
represent an upper bound on the potential accuracy of our method
given the training set, model architecture, and hyperparameters. . . . 187

26

Table Page

C.21. CIFAR10 Detailed Results: Classification accuracy (%)
and median certified robustness (larger is better) for the
CIFAR10 [KNH14] dataset (d = 1024) for our certified sparse
defense, feature partition aggregation (FPA), and baseline
randomized ablation (RA) across various hyperparameter settings.
Each certification method’s hyperparameter setting with the best
median robustness is shown in bold. The best overall median
robustness is shown in blue. 189

C.22. MNIST Detailed Results: Classification accuracy (%)
and median certified robustness (larger is better) for the
MNIST [LeC+98] dataset (d = 784) for our certified sparse defense,
feature partition aggregation (FPA), and baseline randomized
ablation (RA) across various hyperparameter settings. Each
certification method’s hyperparameter setting with the best median
robustness is shown in bold. The best overall median robustness is
shown in blue. 190

C.23. Weather Detailed Results: Classification accuracy (%)
and median certified robustness (larger is better) for the
Weather [Mal+21] dataset (d = 128) for our certified sparse defense,
feature partition aggregation (FPA), and baseline randomized
ablation (RA) across various hyperparameter settings. FPA
considers only plurality voting-based certification (Sec. 5.3.1)
since the reduction is from certified regression to certified binary
classification. FPA results are reported using both GBDTs [Ke+17]
and linear submodels. Median robustness “−∞” denotes that
the classification accuracy was less than 50%. Each approach’s
hyperparameter setting with the best median robustness is shown in
bold. The best overall median robustness is shown in blue. 191

C.24. Ames Detailed Results: Classification accuracy (%) and
median certified robustness (larger is better) for the Ames [Coc11]
dataset (d = 352) for our certified sparse defense, feature partition
aggregation (FPA), and baseline randomized ablation (RA) across
various hyperparameter settings. FPA considers only plurality
voting-based certification (Sec. 5.3.1) since the reduction is from
certified regression to certified binary classification. FPA results
are reported using both GBDTs [Ke+17] and linear submodels.
Median robustness “−∞” denotes that the classification accuracy
was less than 50%. Each approach’s hyperparameter setting with
the best median robustness is shown in bold. The best overall
median robustness is shown in blue. 192

27

Table Page

C.25. CIFAR10 (d = 1024) certified accuracy for feature partition
aggregation (FPA) and baseline randomized ablation (RA).
“Plurality” denotes FPA with plurality voting as the decision
function while “Run-Off” denotes FPA using run-off elections
as the decision function. “[LF20b]” denotes Levine and Feizi’s
[LF20b] original version of RA while “[Jia+22b]” denotes Jia et al.’s
[Jia+22b] improved version of RA. We also consider an additional
naive baseline that always predicts f(x) = 1. For each certified
robustness level, each method’s best performing hyperparameter
setting is shown in bold with the overall best performing method
shown in blue. 195

C.26. MNIST (d = 784) certified accuracy for feature partition
aggregation (FPA) and baseline randomized ablation (RA).
“Plurality” denotes FPA with plurality voting as the decision
function while “Run-Off” denotes FPA using run-off elections
as the decision function. “[LF20b]” denotes Levine and Feizi’s
[LF20b] original version of RA while “[Jia+22b]” denotes Jia et al.’s
[Jia+22b] improved version of RA. We also consider an additional
naive baseline that always predicts f(x) = 1. For each certified
robustness level, each method’s best performing hyperparameter
setting is shown in bold with the overall best performing method
shown in blue. 196

C.27. Weather [Mal+21] dataset (d = 128) certified accuracy for feature
partition aggregation (FPA) and baseline randomized ablation (RA).
“[LF20b]” denotes Levine and Feizi’s [LF20b] original version of RA
while “[Jia+22b]” denotes Jia et al.’s [Jia+22b] improved version
of RA. Hammoudeh and Lowd’s [HL23c] reduction is from certified
regression to certified binary classification. Run-off is identical to
plurality voting under binary classification, so we report only the
plurality voting results below. We also consider an additional naive
baseline that always predicts the median training set target value
(i.e., f(x) = med{yi}ni=1). For each certified robustness level, each
method’s best performing hyperparameter setting is shown in bold
with the overall best performing method shown in blue. These
numerical results are visualized graphically as envelope plots in
Figure C.21. 197

28

Table Page

C.28. Ames [Coc11] dataset (d = 352) certified accuracy for feature
partition aggregation (FPA) and baseline randomized ablation (RA).
“[LF20b]” denotes Levine and Feizi’s [LF20b] original version of RA
while “[Jia+22b]” denotes Jia et al.’s [Jia+22b] improved version
of RA. Hammoudeh and Lowd’s [HL23c] reduction is from certified
regression to certified binary classification. Run-off is identical to
plurality voting under binary classification, so we report only the
plurality voting results below. We also consider an additional naive
baseline that always predicts the median training set target value
(i.e., f(x) = med{yi}ni=1). For each certified robustness level, each
method’s best performing hyperparameter setting is shown in bold
with the overall best performing method shown in blue. These
numerical results are visualized graphically as envelope plots in
Figure C.21. 198

C.29. Speech Backdoor Adversarial Set Identification: Mean
AUPRC across 30 trials for speech backdoor dataset [Liu+18] with
21 ≤ |Dadv| ≤ 28. GAS(-L) always outperformed the baselines.
Bold denotes the best mean performance. Mean results are shown
graphically in Figs. 14 and C.22. Variance results appear in the
original paper [HL22a, Sec. F.1.1]. 203

C.30. Speech Backdoor Target Identification: Bold denotes the
best mean performance. Mean results are shown graphically
in Figures 16 and C.23. Variance results appear in the original
paper [HL22a, Sec. F.1.1]. 204

C.31. Speech Backdoor Attack Mitigation: Bold denotes the best
mean performance with 10 trials per class pair. Aggregated results
are shown in Table 6. 204

C.32. Vision Backdoor Adversarial-Set Identification: Backdoor
set, Dadv, identification mean AUPRC across >30 trials for Weber
et al.’s [Web+23] three CIFAR10 backdoor attack patterns with
a randomly selected reference ẑtarg. All experiments performed
binary classification on randomly-initialized ResNet9. |Dadv| = 150.
Notation ytarg → yadv. Bold denotes the best mean performance.
Mean results are shown graphically in Figures 14 and C.24.
Variance results appear in the original paper [HL22a, Sec. F.1.2]. . . . 205

29

Table Page

C.33. Vision Backdoor Target Identification: Target identification
mean AUPRC across 15 trials for Weber et al.’s [Web+23] three
CIFAR10 backdoor attack patterns and randomly selected
reference ẑtarg. All experiments performed binary classification
on randomly-initialized ResNet9. Bold denotes the best mean
performance. Mean results are shown graphically in Figures 16
and C.25. Variance results appear in the original paper [HL22a,
Sec. F.1.2]. 207

C.34. Vision Backdoor Attack Mitigation: Bold denotes the best
mean performance with 15 trials per setup. Aggregated results are
shown in Table 6. 207

C.35. Natural Language Poisoning Adversarial-Set Identification:
Poison identification mean AUPRC across 10 trials for 4 positive
and 4 negative sentiment SST-2 movie reviews [Soc+13] with
|Dadv| = 50. GAS-L perfectly identified all poison in all but one
trial. Bold denotes the best mean performance. Mean results are
shown graphically in Figures 14 and C.26. Variance results appear
in the original paper [HL22a, Sec. F.1.3]. 208

C.36. Natural Language Poisoning Target Identification: Bold
denotes the best mean performance with 10 trials per review. Mean
results are shown graphically in Figures 16 and C.27. Variance
results appear in the original paper [HL22a, Sec. F.1.3]. 210

C.37. Natural Language Poisoning Attack Mitigation: Bold denotes
the best mean performance with 10 trials per review. Aggregated
results are shown in Table 6. 210

C.38. Vision Poisoning Adversarial-Set Identification: Adversarial
set (Dadv) identification mean AUPRC across >15 trials for four
CIFAR10 class pairs with |Dadv| = 50. Our renormalized influence
estimators, GAS and GAS-L, using just initial parameters θ0 and
with 5 subepoch checkpointing outperformed all baselines for all
class pairs. Bold denotes the best mean performance. Mean results
are shown graphically in Figure 14 and C.28. Variance results
appear in the original paper [HL22a, Sec. F.1.4]. 212

C.39. Vision Poisoning Target Identification: Bold denotes the best
mean performance with ≥15 trials per class pair. Mean results are
shown graphically in Figures 16 and C.29. Variance results appear
in the original paper [HL22a, Sec. F.1.4]. 213

30

Table Page

C.40. Vision Poisoning Attack Mitigation: Bold denotes the best
mean performance with ≥15 trials per class pair. Aggregated results
are shown in Table 6. 213

C.41. Effect of joint-optimization hyperparameter β on the attacker’s
success rate (ASR). Observe that even at β = 0, the attack success
rate is significantly lower than the 77.9% ASR in Table 6 due to the
fewer surrogate models that could be used during jointly-optimized
poison crafting as explained above. 217

C.42. Adversarial-Set Identification for the Adaptive Vision
Poison Attack: Adversarial-set identification mean AUPRC with
≥10 trials per setup as described in Section C.4. Section 6.6’s
baseline results set trade-off hyperparameter β = 0, meaning the
poison was not jointly optimized. The jointly optimized results
used β = 10−2 as explained in suppl. Section C.4. Bold denotes
the best mean performance. Mean results are shown graphically
in Figures 17 and C.30.Variance results appear in the original
paper [HL22a, Sec. F.2.1]. 218

C.43. Target Identification for the Adaptive Vision Poison
Attack: Target identification mean AUPRC where Zhu et al.’s
[Zhu+19] vision poison attack is jointly optimized with minimizing
GAS. Section 6.6’s baseline results set trade-off hyperparameter
β = 0, meaning the poison was not jointly optimized. The jointly
optimized results used β = 10−2 as explained in suppl. Section C.4.
Bold denotes the best mean performance with ≥10 trials per class
pair. Mean results are shown graphically in Figures 18 and C.31.
Variance results appear in the original paper [HL22a, Sec. F.2.2]. . . . 220

C.44. Target-Driven Attack Mitigation for the Adaptive Vision
Poison Attack: Algorithm 6’s target-driven data sanitization
where Zhu et al.’s [Zhu+19] vision poison attack is jointly optimized
with minimizing the GAS influence. The results below consider
exclusively the jointly-optimized attack with β = 10−2. Clean-data
removal remains low, and test accuracy either improved or stayed
the same for in but one setup. The performance is comparable to
the results with Zhu et al.’s [Zhu+19]’s standard vision poisoning
attack (see Table C.40). Bold denotes the best mean performance
with ≥10 trials per class pair. 222

D.45. Target Value Test Distribution Statistics: Mean (ȳ), standard
deviation (σy), minimum value (ymin) and maximum value (ymax) for
the test instances’ target y value for Sec. 4.8’s five regression datasets. . 225

31

Table Page

D.46. Ridge Regression Hyperparameters: Hyperparameter settings
for the three datasets that used ridge regression as the ensemble
submodel architecture. Hyperparameters are reported for the
three q values used in Fig. 7 and Sec. C.1. We also report the
hyperparameters for uncertified accuracy when q = 1. 228

D.47. XGBoost Hyperparameters: Hyperparameter settings for
the three datasets that used XGBoost as the ensemble submodel
architecture. Hyperparameters are reported for the three q values
used in Fig. 7 and Sec. C.1. We also report the hyperparameters for
uncertified accuracy when q = 1. 229

D.48. Evaluation dataset information 231

D.49. Target Value Test Distribution Statistics: Mean (ȳ), standard
deviation (σy), minimum value (ymin) and maximum value (ymax) for
the test instances’ target y value for regression datasets Weather
and Ames. 231

D.50. ResNet9 neural network architecture 232

D.51. Network-in-Network neural network architecture 233

D.52. FPA’s neural network training hyperparameters 234

D.53. Regression datasets LightGBM submodel training hyperparameters . . 234

D.54. Regression datasets linear submodel training hyperparameters 235

D.55. SST-2 movie reviews selected by Wallace et al.’s [Wal+21] poisoning
attack implementation. 236

D.56. Chapter 6 target identification dataset sizes 237

D.57. Number of backdoor training examples for each speech backdoor
digit pair. As detailed above, Liu et al.’s [Liu+18] dataset provides
30 backdoored instances for each digit pair. The remainder of the 30
instances for each digit pair are part of the fixed, validation set. . . . 237

D.58. Target and non-target set sizes used in Section 6.5.3’s target
identification experiments. 238

D.59. Renormalized influence model training hyperparameter settings 238

D.60. Training-set attack model training hyperparameter settings 239

D.61. Upper-tail heaviness cutoff count (κ) 239

32

Table Page

D.62. Target-driven attack mitigation hyperparameters 240

D.63. CIFAR10 vision backdoor adversarial trigger maximum ℓ2-norm
perturbation distance . 241

D.64. Convex polytope poison crafting [Zhu+19] hyperparameter settings . . 242

D.65. SST-2 sentiment analysis poison crafting hyperparameter settings.
These are identical to Wallace et al.’s [Wal+21] hyperparameter settings. 242

D.66. Influence functions hyperparameter settings 243

D.67. Simplified ResNet9 neural network architecture used for Sec. 6.5’s
CIFAR10 binary classification 245

D.68. Speech recognition convolutional neural network 246

33

CHAPTER 1

INTRODUCTION

Machine learning systems are increasingly being applied in domains critical to

human safety and well-being [HL22b; Awa+18]. Simultaneously, algorithmic decisions

are increasingly black boxes where the factors that led to a model prediction are not

human interpretable – in particular for neural networks. Exacerbating this is neural

networks’ propensity to learn spurious correlations or “shortcuts” [DAm+20; Gei+20].

Robust machine learning models are urgently needed because when (not if) today’s

brittle models fail, society will have to carry the burden of that failure.

Spurious correlations occur naturally in most training data [Ily+19] and are often

non-malicious [Fel20]. For example, model misbehavior can arise due to training

outliers drawn from the tails of the data distributions. Similarly, measurement or

labeling noise can also introduce spurious relationships into the training set. Rather

than focusing on these disparate causes of spurious training data, this dissertation

focuses on adversarial attacks, where an adversary introduces or exploits worst-

case spurious correlations [Car+23]. Making a model robust against worst-case

training modifications simultaneously makes the model robust against less severe (e.g.,

benign) training set issues, including those mentioned above. Today’s models are

highly susceptible to numerous different types of adversarial attacks [Li+22; LXL23;

Kum+20]. However, defenses against adversarial attacks remain relatively primitive

and “lack fundamental security rigor” [Kum+20]. The current defense landscape has

even been likened to “crypto Pre-Shannon” [Car19].

This dissertation focuses on two related types of adversarial attacks. First,

poisoning attacks manipulate model predictions on pristine or “natural” test instances

by adversarially modifying the training sets. Second, backdoor attacks manipulate

34

predictions by combining perturbations to the training set and with perturbations to

the test set. A recent survey of governmental and corporate organizations [Kum+20]

found that poisoning and backdoor attacks were the first and third biggest ML security

concerns, respectively, due to previously successful attacks [Lee16; Mur16]. Where

applicable, this dissertation also considers evasion attacks, which adversarially perturb

only test instances.

This dissertation proposes three novel defenses to make ML systems more robust

against poisoning and backdoor attacks. We focus on two primary strategies to stop an

attacker. We first consider two certified defenses which provide guaranteed robustness

given a specific threat model – i.e., definition of the attacker’s capability. We then

propose a forensic defense that provides insights into the identity, goals, and methods

of an attacker so as to stop the attack via intervention outside the ML system. In

practice, these two types of defenses are complementary and can be deployed together

to enhance their effectiveness.

Below we briefly summarize this dissertation’s primary contributions. Chapters 4

to 6 each provide a more detailed list of the chapter’s corresponding contributions.

– A reduction from certified regression to certified classification (Chapter 4). Our

reduction allows regression tasks to directly reuse methods that were previously

used only for classification.

– A unified, certified defense against sparse1 (ℓ0) poisoning, backdoor, and evasion

attacks (Chapter 5) – ℓ0 or otherwise. To the extent of our knowledge, our

method is the first to provide non-trivial guarantees over this union of attack

types.

1A “sparse” or ℓ0 attacker arbitrarily controls an unknown subset of the training and/or test
features [Sch+19; LF21; Jia+22b].

35

– A defense that simultaneously identifies the target(s) of poisoning and backdoor

attacks while also mitigating the attack (Chapter 6).

Note that all proofs appear in the appendix (Chapter B).

Before detailing our specific contributions, Chapter 2 first reviews general

nomenclature. Chapter 3 then reviews related defenses against adversarial attacks.

Note that Chapters 3, 4, 5, and 6 as well as Appendices B, D, and C contained

published and unpublished material coauthored with Daniel Lowd.

36

CHAPTER 2

PRELIMINARIES

This section introduces our primary nomenclature and includes a brief discussion

of the attacker threat models and defender objectives.

2.1 Nomenclature

In cases where a specific chapter uses specialized nomenclature, the custom

notation is introduced at the beginning of that chapter. See Chapter A in the

appendix for a full nomenclature reference.

Let [a] denote integer set {1, . . . , a}, and denote the corresponding power set 2[a].

1[q] is the indicator function which equals 1 is predicate q is true and 0 otherwise.

Let H(a) :=
∑a

i=1
1
i
denote the a-th harmonic number. Denote (multi)set A’s median

as medA. In cases where A’s cardinality is even, the median is the midpoint between

A’s |A|
2
-th and (|A|

2
+ 1)-th largest values.

Let x ∈ X ⊆ Rd denote a feature vector, where d := |x| denotes the feature

dimension. The feature set is denoted [d]. y ∈ Y ⊆ R denotes a dependent target

value; we consider both discrete and continuous target values. Let Z := X × Y denote

the instance space. Training set D := {zi}ni=1 ⊂ Zn consists of n instances where the

i-th training instance is tuple zi := (xi, yi).

Model f : X → Y is trained on D. Given arbitrary test instance (xte, yte), the

model prediction is denoted ŷte := f(xte). This dissertation considers both ensemble

and singleton models. We introduce the notation for these two types of models below.

Singleton Model We consider both parametric and non-parametric singleton

models. In the case of parametric models, let θ ∈ Rp denote f ’s model parameters.

Let f(x; θ) denote a parameterized prediction for x ∈ X . We usually drop parameter

vector θ for brevity and to enhance readability.

37

Parametric models are trained using any iterative, first-order optimization

algorithm (e.g., gradient descent, Adam [KB15]). Let L : Y × Y → R≥0 denote the

loss function. Denote instance z’s empirical risk w.r.t. θ as L(z; θ) := L (f(x; θ), y).

θ0 denotes f ’s initial parameters with θ0 randomly set and/or pre-trained. During

each training iteration t ∈ {1, . . . ,T}, the optimizer updates parameters θt using

loss L , parameters θt−1, and batch Bt ⊆ D, where b := |Bt|. Gradients are denoted

g
(t)
i := ∇θL(zi; θt); the gradient’s superscript “(t)” is dropped when the iteration is

clear from context.

Ensemble Model In cases where f is an ensemble, let L denote the number

of submodels, where fl : X → Y is the l-th submodel (l ∈ [L]). Ensemble submodels

are deterministic, meaning given a fixed submodel training set and xte, submodel

prediction fl(xte) is always the same.

A decision function aggregates the L submodel predictions to form ensemble f ’s

overall prediction; f ’s decision function is voting-based. Let

ċy(xte) :=
L∑
l=1

1[fl(x) = y] (2.1)

be the number of ensemble submodels that predict label y ∈ Y for xte ∈ X . The

plurality label for xte is defined as

ypl = argmax
y∈Y

ċy(xte). (2.2)

The runner-up label (i.e., the label that receives the second-most votes) is defined as

yru = argmax
y∈Y\ypl

ċy(x). (2.3)

All ties are broken by selecting the smallest class indices.

38

2.2 On Attacker Threat Models

A threat model defines the assumptions made regarding an attacker’s capabilities.

Chapters 4, 5, and 6 detail this dissertation’s primary theoretical contributions. Each

chapter considers a different poisoning or backdoor threat model, and we discuss the

corresponding threat model towards the beginning of each of these three chapters.

2.3 On the Defender Objectives

Differences in the attacker’s threat model lead to differences in the defender’s

objective(s). At the beginning of Chapters 4, 5, and 6, we detail the chapter’s

corresponding defender objective.

39

CHAPTER 3

RELATED WORK

This chapter draws on previously published, coauthored material [HL22a; HL23c;

HL23a]. Hammoudeh wrote this entire section, including adding new related work that

did not appear in the coauthored material. Lowd provided supervision and editorial

suggestions in the original papers [HL22a; HL23c].

Zayd Hammoudeh and Daniel Lowd. “Identifying a Training-Set Attack’s

Target Using Renormalized Influence Estimation”. In: Proceedings of the

29th ACM SIGSAC Conference on Computer and Communications Security.

CCS’22. Los Angeles, CA: Association for Computing Machinery, 2022. url:

https://arxiv.org/abs/2201.10055

Zayd Hammoudeh and Daniel Lowd. “Reducing Certified Regression

to Certified Classification for General Poisoning Attacks”. In: Proceedings

of the 1st IEEE Conference on Secure and Trustworthy Machine Learning.

SaTML’23. 2023. url: https://arxiv.org/abs/2208.13904

Zayd Hammoudeh and Daniel Lowd. “Feature Partition Aggregation:

A Fast Certified Defense Against a Union of ℓ0 Attacks”. In: Proceedings of

the 2nd ICML Workshop on New Frontiers in Adversarial Machine Learning.

AdvML-Frontiers’23. 2023. url: https://arxiv.org/abs/2302.11628

Defenses against adversarial attacks partition into two broad categories. First,

empirical defenses derive from understandings and observations about the underlying

mechanisms adversarial attacks exploit to change a network’s predictions. Empirical

defenses provide no guarantees of their effectiveness, and adversaries can adapt their

attacks to bypass the defense – often with very little effort [Tra+20]. In contrast,

certified defenses provide formal guarantees on their effectiveness given a specific set

40

https://arxiv.org/abs/2201.10055
https://arxiv.org/abs/2208.13904
https://arxiv.org/abs/2302.11628

of assumptions (i.e., threat model). These two defense categories are complementary

and can be deployed together for better performance.

The threat model defines the types of attacks against which the defense is directed.

Generally, most adversarial defenses target a single type of attack, e.g., poisoning,

backdoor, evasion, etc. Very few defenses – certified or empirical – are robust across

attack types [Web+23; HL23a]. We, therefore, organize the discussion of related

adversarial defenses below based on the type of attack they consider.

3.1 Defenses Against Evasion Attacks

Recall from Chapter 1 that evasion attacks manipulate model predictions

by perturbing test instances. Formally, given some test instance (xte, yte), the

adversary attempts to find some perturbation δ ∈ B such that yte ̸= f(xte + δ), where

B ⊂ X defines the perturbation neighborhood. Often B is constrained to limit the

perturbation’s perceptibility. Perturbation δ is typically constructed iteratively using

either the target model or a surrogate. Common perturbation optimization algorithms

include fast gradient sign method (FGSM) [GSS15] and projected gradient descent

(PGD) [Mad+18].

What constitutes an imperceptible adversarial perturbation is subjective and

implicitly human-centric [LSF21]. For continuous domains like vision, the perturbation

neighborhood is usually constrained based on some ℓp norm, where p ∈ N ∪∞.

Formally, an ℓp-bounded attack defines the Bp,ϵ(xte) neighborhood w.r.t. xte ∈ X

as

Bp,ϵ(xte) := {x− xte : ∥x− xte∥p ≤ ϵ}, (3.1)

where ϵ ∈ R is the perturbation radius [LXL23]. Chapter 5 considers a sparse,

or ℓ0, attacker that arbitrarily controls an unknown subset of the features. For

discrete inputs (e.g., text), an ℓp perturbation model generally does not apply;

41

instead, text perturbation models focus on preserving syntactic structure and semantic

meaning [Ebr+18; Jin+20].

Below we discuss empirical and certified defenses against evasion attacks.

3.1.1 Empirical Defenses. Empirical evasion defenses can be broadly

categorized into two classes: adversarial training and gradient obfuscation methods.

We discuss both of these defense strategies below.

First, adversarial training is perhaps the best-known method to improve a model’s

robustness against adversarial attack [Bai+21]. Formally, empirical risk minimization

(without regularization) defines the optimal model parameters as

θ∗ := argmin
θ

∑
(xi,yi)∈D

L(zi; θ). (3.2)

Adversarial training considers a minimax constraint that, ideally, minimizes the

empirical risk over worst-case perturbations given B where the adversarially optimized

model parameters are

θ∗adv := argmin
θ

∑
(xi,yi)∈D

max
δi∈B
L((xi + δi, yi); θ). (3.3)

Typically, adversarial training considers ℓp-bounded attacks for one or more definitions

of p [TB19; MWK20; SGF22].

Finding the worst-case adversarial perturbation is provably hard [Wal+21]. First-

order and second-order gradient-based methods often only approximate Eq. (3.3)’s

inner maximization [LXL23]. While adversarial training generally improves robustness,

the robustness improvement is generally not verifiable against worst-case perturbations,

meaning adversarial training is only an empirical defense.

Gradient Obfuscation Methods The second class of empirical evasion defenses

(implicitly) exploit the reality that, in practice, most adversarial defenses are evaluated

42

against gradient-based attacks (e.g., FGSM, PGD) [KGB16; CW17; Mad+18]. These

defenses [Buc+18; Ma+18; Guo+18; Dhi+18; XZZ20] (unknowingly) rely on obfuscated

gradients [ACW18], which reduce the utility of the gradients used to construct

the adversarial example. Without useful gradients, traditional iterative, gradient-

based attacks fail. However, obfuscation-based defenses provide a false sense of

security [ACW18] since they are easily bypassed by an adaptive attacker [TB19].

The brittleness of empirical evasion defenses was a primary impetus that spurred the

emergence of certified defenses, which we discuss next.

3.1.2 Certified Evasion Defenses. Recall that a certified defense provides

provable robustness guarantees under a specific threat model. Numerous orthogonal

strategies to certify evasion robustness have been proposed. For example, some

methods bound a network’s curvature or Lipschitz constant to prove the impossibility

of an adversarial example under the threat model [Wen+18; LLP20]. Other methods

use a linear relaxation of a ReLU network to prove that a prediction is robust w.r.t.

Bp,ϵ(xte) [Gow+19]. A complete review of certified evasion defenses is well beyond

the scope of this work. For a detailed review of existing certified evasion defenses

including a taxonomy of the methods, we refer the reader to the excellent survey by

Li et al. [LXL23].

The subclass of certified evasion defenses most relevant to this work are based on

randomized smoothing [Li+19; CRK19; Léc+19]. Formally, given some xte, smoothing-

based methods create a smoothed classifier f̃ whereby prediction f̃(xte) is the most

probable label within some predefined region around xte. For example, for ℓ2 smoothing,

the evaluated region is based on isotropic Gaussian N (xte, σ
2I), where σ > 0 is a

user-specified hyperparameter. In most situations, it is intractable for randomized

smoothing to measure each class’s probability exactly; instead, class probabilities

43

are estimated using Monte Carlo methods [CRK19]. Smoothing-based methods then

commonly use the Neyman-Pearson lemma [NP33] to bound the certified radius.

In terms of smoothing-based evasion defenses, the method most relevant to

this dissertation is randomized ablation (RA) – a specialized form of randomized

smoothing [CRK19] for sparse (ℓ0) evasion attacks1 where the adversary arbitrarily

controls an unknown subset of the features [LF20b]. RA creates a smoothed

classifier by repeatedly evaluating different ablated inputs, each of which keeps a

small random subset of the features unchanged and masks outs (ablates) all other

features. Randomized smoothing certifies ℓ0-norm robustness, where the attacker

arbitrarily controls a subset of xte’s features.

3.2 Defenses Against Poisoning and Backdoor Attacks

Evasion attacks are just one means to manipulate a model’s predictions. Poisoning

and backdoor attacks are an alternative approach whereby an attacker manipulates

predictions by modifying the training set. Poisoning and backdoor attacks differ only

in that the latter allows test instance (xte) perturbations while the former considers

pristine test instances.

Poisoning attacks can be subclassified based on their effect on the model.

An indiscriminate or availability poisoning attack degrades the model’s overall

performance, e.g., accuracy [BNL12; Xia+15; Fow+21]. In contrast, targeted attacks

seek to manipulate an ML system’s prediction on specific target instances [YHL23a;

YHL23b]. A single-target attack seeks to influence one specific test prediction [Che+17],

while multitarget attacks manipulate multiple test predictions – usually with some

shared property (e.g., instances related to a specific individual or company) [Jag+21;

1Sec. 5.2 formalizes ℓ0-norm robustness.

44

Lin+20]. Generally, all backdoor attacks are multitarget, where the backdoor trigger

can be added to any (related) test instance.

Below we describe both empirical and certified defenses for poisoning attacks.

In practice, these two defense categories are complementary and can be deployed

together for better performance.

3.2.1 Empirical Classification Defenses. Like empirical evasion defenses,

empirical defenses against backdoor and poisoning attacks provide no guarantees of

their effectiveness. Empirical poisoning and backdoor defenses are generally founded

on insights into the mechanisms and characteristics of specific attacks. As such, most

existing empirical poisoning and backdoor defenses assume highly restricted threat

models, including specific data modalities (e.g., only vision [Gao+19; Ude+19; VB20;

Zhu+21]), model architectures (e.g, CNNs [Kol+19]), optimizers [HNM19], or training

paradigms [Sor+20].

Below we review a few common categories of empirical poisoning and backdoor

defenses. For a more comprehensive review, we direct the reader to the survey by Li

et al. [Li+22].

Sanitization-Based Defenses These methods seek to identify and remove

(i.e., sanitize) the adversarially perturbed instances in the training set. Sanitization-

based methods all generally follow the same paradigm. They first identify training

instances meeting some “outlier” criteria. The outliers are then removed from training

set D, and the model retrained [Per+20]. For example, Tran et al. [TLM18] found

that backdoor attacks tend to leave a “spectral signature,” i.e., a detectable trace in

the spectrum of the covariance of the feature representation. Tran et al. score and

filter training instances based on their variance from typical feature representations.

Similarly, Chen et al. [Che+19] cluster training instances based on the principal

45

components of the last linear layer; any training instances that are far away in feature

space from other instances with the same label are sanitized from the training set.

A primary limitation of sanitization-based defenses is determining how many

training instances to remove. Oversanitization results in excess removal of clean

training instances, degrading the model’s clean performance. Undersanitization means

that the attack may still succeed, albeit at a lower rate.

Model Disinfectant Defenses Rather than cleaning the training set, model

disinfectant defenses try to directly repair the poisoned model itself. For example,

Liu et al. [LXS17] neutralize any corrupted model weights by finetuning the model

on known-clean data hoping that any corruption is deactivated through deliberate

catastrophic forgetting. Another common disinfectant strategy relies on the insight

that poisoning and backdoor attacks activate rarely-used neurons. Pruning-based

defenses identify and disable these “unimportant” neurons expecting this will stop an

attack.

Trigger Synthesis Defenses These methods seek to reconstruct any backdoor

trigger(s) a model learned [Gao+19; Ude+19; VB20; Zhu+21]. The identified triggers

are added to known-clean data and the model retrained in the expectation catastrophic

forgetting deactivates the trigger. Note that trigger-synthesis defenses are specific to

backdoor attacks since poisoning attacks are triggerless.

3.2.2 Certified Pointwise Classifiers. Recent years have seen a marked

shift away from empirical poisoning and backdoor defenses to certified methods [SKL17;

JCG21; Web+23; WLF22b; Rez+23]. Certified defenses differ concerning the

assumptions they make about the attacker’s ability to perturb the training set. For

example, Rosenfeld et al. [Ros+20] consider an attack that is only able to perturb

46

(i.e., “flip”) training labels. Weber et al. [Web+23] propose an alternate threat model

that bounds the total ℓ2 perturbation distance of the training set.

The instance-wise poisoning threat model allows the attacker to arbitrarily

insert or delete entire instances in the training set and provide pointwise guarantees,

i.e., certify the robustness w.r.t. individual predictions. These general-purpose certified

poisoning classifiers are voting-based and derive their guarantees by lower bounding

the number of training set modifications required to flip the predicted label. The

primary difference between these certified classifiers is in the mechanism used to

generate the “votes” multiset. We briefly review a few of these methods below.

Jia et al.’s [Jia+22a] certified poisoning classifier based on nearest neighbor

methods is the simplest certified poisoning classifier, where the multiset of “votes” is

the training labels from the test instance’s neighborhood. Formally, let N (xte) denote

the multiset of labels for the k training instances nearest to xte. Given plurality label

ypl = f(xte), the pointwise certified poisoning robustness is

R =

⌈∑
y∈N (xte)

1[ypl = y]−
∑

y∈N (xte)
1[yru = y] + 1[ypl > yru]

2

⌉
− 1, (3.4)

where the indicator function breaks ties deterministically by choosing whichever label

is assigned the larger index.

The second class of certified poisoning classifiers is ensemble based. Deep partition

aggregation (DPA) was the first such method [LF21]. Levine and Feizi [LF21, Thm. 1]

specify DPA’s certified robustness bound as

R =

⌊
ċypl(xte)− (ċyru(xte) + 1[yru < ypl])

2

⌋
, (3.5)

where the indicator function breaks deterministically ties by choosing whichever label is

assigned the smaller index.2 Implicitly, Eq. (3.5) assumes the worst-case that a single

2Observe that other than how ties are broken, Eqs. (3.4) and (3.5) calculate instance-wise
robustness R in functionally the same way.

47

perturbation to any submodel’s training set can change that submodel’s prediction

arbitrarily. We formalize this assumption below.

Def. 3.1. Unit-Cost Assumption: Any modification to a submodel’s training set

changes the submodel arbitrarily.

In practice, there are limits to how much a single training set modification will

alter a submodel and its predictions – in particular for models with strong inductive

biases (e.g., linear models). Therefore, the unit-cost assumption’s pessimism can cause

methods like DPA to underestimate a prediction’s true robustness. Nonetheless, this

assumption greatly simplifies certifying ensemble classifier robustness by reducing the

task to just submodel vote counting.

Multiple improvements to DPA have been proposed. Wang et al. [WLF22a]

modify DPA’s ensemble so that submodels can be trained on overlapping data, which

(slightly) improves the ensemble’s certification bounds. More recently, Rezaei et al.

[Rez+23] propose run-off elections, a novel decision function for DPA that can improve

DPA’s certified robustness by several percentage points.

3.2.3 Robust Regression. So far, we have focused on exclusively robust

methods for classification, where the label space is finite. Many of the methods

proposed above do not (directly) generalize to cases where target space Y is continuous

or has unbounded cardinality. Below we discuss previous methods to improve the

robustness of regression.

3.2.3.1 Resilient Regression. Early methods were rooted in robust

statistics and focused on mitigating the effect of training set outliers. For example,

various trimmed loss functions (e.g., Huber [Hub64], Tukey [BT74]) cap a training

outlier’s influence on a model [JW78; Lec89]. Methods like RANSAC [FB81] are based

on data sanitization [TZ00; RH11].

48

3.2.3.2 Certified Regression. The above robust regressors primarily

target random noise/outliers. As explained in Chapter 1, adversarial training instances

can be much more insidious since they are crafted to avoid detection by appearing

uninfluential and may only affect a very small fraction of test predictions [Che+17;

Wal+21]. These factors can combine to make adversarial training instances difficult

for resilient methods to fully detect and correct [Li+22].

Some existing poisoning and backdoor regression defenses do provide pointwise

robustness guarantees, albeit under strong assumptions about the underlying data

distribution [KKM18]. For example, some work assumes that the training set

follows a linear data distribution with arbitrary white, Gaussian noise [CCM13;

Liu+20a]. Others assume the data distribution’s feature matrix is low rank [Liu+17].

Conditioning a guarantee on a specific data distribution is inherently precarious – in

particular if the strong distributional assumption rarely holds and cannot be easily

verified. If the distributional assumption does not hold, any guarantee is no guarantee

at all.

Note that there are some poisoning defenses for regression that provide guarantees

without making distributional assumptions [Jag+18; KKM18]. However, their

robustness guarantees are themselves distributional. For example, Jagielski et al.

[Jag+18] bound the clean training data’s mean error but provide no pointwise

guarantees. In other words, such methods do not provide insight into each prediction’s

robustness.

In summary, while certified classification methods has seen numerous promising

advances in recent years, certified regression still largely lags behind. Better certified

regressors that make fewer strong assumptions are sorely needed.

49

3.3 Defenses Outside the ML System

All of the ideas above seek to improve an ML system’s robustness by improving

the model itself. A motivated attacker will search for and exploit the weakest point in

the ML system, which may not be the model. For example, human failures are often

a common cause of security breaches [Col22; Ric22].

The best way to defend an ML system may lie outside of the ML system.

For example, email spammers can be stopped by blocking their access to payment

processors [Lev+11]. These outside defenses require information about an attacker’s

goals, and methods [Tur20]. Knowledge about an attack, including its target, enables

forensic and security analysts to reason about an attacker’s identity. Furthermore,

insight into an attacker and their motivations helps anticipate future attacks [Pit+09]

and build cost-effective, targeted defenses [Aga+19].

50

CHAPTER 4

REDUCING CERTIFIED REGRESSION TO CERTIFIED CLASSIFICATION

This chapter contains previously published, coauthored material [HL23c].

Hammoudeh developed the primary method, developed all code, conducted all

experiments, and wrote the manuscript. Lowd provided supervision, editorial

suggestions, and proposed some supplemental experiments.

Zayd Hammoudeh and Daniel Lowd. “Reducing Certified Regression to

Certified Classification for General Poisoning Attacks”. In: Proceedings

of the 1st IEEE Conference on Secure and Trustworthy Machine Learning.

SaTML’23. 2023. url: https://arxiv.org/abs/2208.13904

Section 3.2.3.2 explains that multiple certifiably-robust classifiers have recently

been proposed. These methods certify robustness against the insertion and deletion of

arbitrary instances in the training set. For example, Levine and Feizi [LF21] propose

deep partition aggregation, which uses an ensemble of L deterministic, independent

submodels trained on disjoint training sets. In addition, Jia et al. [Jia+22a] propose a

certified classifier based on nearest-neighbor classification. Certified regression has not

kept pace with these rapid advances in certified classification.

Formally, a problem Q is reducible to a different problem Q′ if an efficient

algorithm to solve Q′ can also efficiently solve Q [DPV08]. Our key insight is that

certified regression is reducible to voting-based certified classification. Mapping

certified regression to certified classification requires only minimal changes to the

certified classifier’s architecture, with the robustness certification function identical.

Given reducibility, an important takeaway is that certified regression can be viewed

as no harder than certified classification.

51

https://arxiv.org/abs/2208.13904

Coupling our reduction with existing certified classifiers [Jia+22a; LF21; WLF22a],

we propose six new certifiably-robust regressors. To the extent of our knowledge, our

methods are the first to provide pointwise regression robustness guarantees against

poisoning without both distributional and model assumptions.

This chapter’s primary contributions are enumerated below.

1. We formalize three paradigms based on median perturbation to map certified

regression to certified classification. All of this chapter’s certified regressors

apply one of these paradigms.

2. We propose two provably-robust instance-based regressors – one based on

k-nearest neighbors and the other based on all training instances within a

feature-space region.

3. We separately propose four ensemble-based certified regressors, where one pair of

regressors trains submodels on disjoint data while the other pair allows submodels

to be trained on overlapping data.

4. We significantly improve the certification performance of our ensemble-based

regressors and existing certified classifiers via a tighter analysis of submodel

prediction stability.

5. We demonstrate our methods’ effectiveness on both regression and classification

datasets, where we certify significant fractions of the training set and even

outperform state-of-the-art certified classifiers on binary classification.

4.1 Preliminaries

Below, we formalize this chapter’s threat model and defender objective. We then

review certification bounds for regression and how a certified regressor can be reused

as certified binary classifier.

52

Threat Model For arbitrary test instance (xte, yte), the adversary’s objective is

to alter the model so that the prediction error |f(xte)− yte| is as large as possible.

Our primary threat model considers an adversary that can insert arbitrary instances

into training set D and arbitrarily delete instances from D.1 The attacker has perfect

knowledge of the learner and our method. We make no assumptions about the

underlying data distribution or adversarial training instances.

Our Objective Determine certified robustness R – a guarantee on the number of

training instances that can be inserted into or deleted from training set D without the

model prediction ever violating the requirement that ξl ≤ f(xte) ≤ ξu, where ξl, ξu ∈ R

are user-specified and application dependent. Note that robustness R is pointwise,

meaning each prediction f(xte) is certified individually.

4.1.1 One-Sided vs. Two-Sided Certification Bounds. For simplicity,

the remaining sections exclusively describe how to certify a one-sided upper bound,

f(x) ≤ ξ, since all other bounds reduce to this base case. For example, certifying

a one-sided lower bound reduces to certifying an upper bound via negation as

f(x) ≥ ξ ⇔ −f(x) ≤ −ξ. Likewise, a two-sided bound is equivalent to the worst

one-sided robustness as

ξl ≤ f(x) ≤ ξu ⇔
(
f(x) ≥ ξl

)
∧
(
f(x) ≤ ξu

)
⇔

(
−f(x) ≤ −ξl

)
∧
(
f(x) ≤ ξu

)
.

(4.1)

4.1.2 Relating Regression and Binary Classification. Binary

classification can be viewed as a simple form of regression where Y = {±1}.

The model’s decision function becomes sgn f(xte) where sgn a = +1 if a > 0 and

1Sec. 4.7 considers a somewhat restricted threat model where attackers only make arbitrary
deletions but no insertions. This allows us to empirically evaluate our method despite few base
models fully utilizing our threat model.

53

−1 otherwise. While our primary focus is regression, our methods also achieve

state-of-the-art results for binary classification.

4.2 Warmup: Perturbing a Set’s Median

Traditional center statistics such as mean have a breakdown point of 0, i.e., altering

a single value in a set can shift the mean arbitrarily. In contrast, median has maximum

robustness, i.e., a breakdown of 50%. A high breakdown point entails that a statistic

is stable and resistant to change. We formalize changes to median below.

Def. 4.1. Median Perturbation: The task of altering a set’s contents so that its

median exceeds some specified ξ ∈ R.

Throughout this work, determining pointwise robustness R simplifies to

quantifying the number of changes that can be made to a set without perturbing

its median. To better foster intuitions, we first formalize robustness R w.r.t. simply

perturbing a multiset’s median and unrelated to any model. Later sections apply

these ideas to link certified regression and certified classification.

Formally, let V be a multiset of cardinality L := |V|. Denote the subset of

elements in V that are at most ξ as Vl := {νl ∈ V : νl ≤ ξ} and denote its complement

Vu := V \ Vl.

Below we define three different paradigms that constrain how V is modified.

Figure 1 visualizes our first two unweighted paradigms. Note that Fig. 1’s values are

repeatedly used throughout this chapter, including in Fig. 2 for our third median

perturbation paradigm and later in Figs. 4 and 5. In all cases below, consider when

medV ≤ ξ since the degenerate case of medV > ξ is by definition non-robust.

54

4.2.1 Unweighted Swap Paradigm. Here, set V has fixed, odd-valued2

cardinality L. All modifications to V take the form of “swaps” where a single value in V

is replaced with any real number. Fig. 1b visualizes the unweighted swap paradigm on

a simple set V = {2, . . . , 6} of L = 5 values. Lemma 4.2 tightly bounds the number of

arbitrary swaps R that can be made to V without perturbing its median.

Lemma 4.2. For ξ ∈ R, real multiset V where medV ≤ ξ with L := |V| odd, and

Vl := {νl ∈ V : νl ≤ ξ}, let Ṽ be a multiset formed from V where elements have been

arbitrarily replaced. If the number of elements replaced in Ṽ does not exceed

R = |Vl| −
⌈
L

2

⌉
, (4.2)

it is guaranteed that med Ṽ ≤ ξ.

Proof sketch. For a set of odd cardinality L, the median is always the set’s
⌈
L
2

⌉
-th

largest value. For V ’s median to be at most ξ, at least
⌈
L
2

⌉
items in V cannot exceed ξ.

Each swap reduces the number of elements not exceeding ξ by at most one. If there are

|Vl| elements less than or equal to ξ in V and there must be at least
⌈
L
2

⌉
such elements

to avoid perturbing the median, then at most |Vl| −
⌈
L
2

⌉
swaps can be performed.

4.2.2 Insertion/Deletion Paradigm. For the second paradigm, V is no

longer fixed cardinality (it may expand or contract), and L may be even or odd. Each

modification of V takes the form of either a single deletion or insertion but not both.

Figs. 1c and 1d visualize median perturbation under insertions and deletions resp.

with certified robustness R following Lem. 4.3. Suppl. Sec. B.1 proves that worst-case

insertions and deletions perturb a set’s median in exactly the same way and thus

2Fixing L as odd simplifies the overall formulation and presentation since it ensures that V’s
median is always an element in V . In all cases here where L is fixed as odd, L is always a user-selected
hyperparameter. Extending our formulation to consider even L is not challenging but is verbose.

55

2 3 4 5 6 ∞ ∞V:

Initial Median ξ

(a) Initial set V := Vl ⊔ Vu

2 3 4 5 6 ∞ ∞V:

New Median

(b) Unweighted swap paradigm with R = 1

2 3 4 5 6 ∞ ∞V:

New Median

(c) Insertion only with R = 2

2 3 4 5 6 ∞ ∞V:

New Median

(d) Deletion only with R = 2

Figure 1. Unweighted Median Perturbation: (1a) Blue denotes elements in
subset Vl, i.e., elements in V with value at most ξ = 5.4. Vu’s values are red. Each
“swap” (1b) switches a value in Vl with an arbitrarily large replacement. Deletions (1d)
and insertions (1c) are interchangeable (suppl. Lemma B.1), with both yielding the
same median value in the same number of modifications made to V . In Figs. 1b to 1d
above, any additional modifications to the set would perturb the median.

are interchangeable. That is why Figs. 1c and 1d have identical certified robustness

(R = 2).

Lemma 4.3. For ξ ∈ R and real multiset V where medV ≤ ξ, define L := |V| and

Vl := {νl ∈ V : νl ≤ ξ}. Let Ṽ be any multiset formed from V where elements have

been arbitrarily deleted and/or inserted. Then, if the total number of inserted and

deleted elements in Ṽ does not exceed

R = 2|Vl| − L− 1, (4.3)

it is guaranteed that med Ṽ ≤ ξ.

56

2 3 4 5 6 ∞ ∞

3 4 5 6 7

V:

R:

Initial Median ξ

(a) Initial sets where V = {2, . . . , 6} and R = {3, . . . , 7}

2 3 4 5 6 ∞ ∞

3 0 0 0 3
(of 4) (of 5) (of 6) (of 7) (of 3)

+ + + +

V:

R =

New Median

(b) Weighted swap paradigm with R = 6

Figure 2. Weighted Swap Paradigm: Extension of Fig. 1 to weighted costs. For
simplicity and w.l.o.g., let R = {3, . . . , 7}, i.e., ∀l rl = νl + 1 Fig. 2a is identical to
Fig. 1a except below each element νl is its corresponding weight rl. Observe ∆ = 1
and R̃l = {3, 4}. Fig. 2b shows that for R = 6 (visualized below each element), it is
impossible to perturb the median, and any additional weight would be sufficient to
swap out ν2 = 3.

Eq. (4.2)’s bound may be non-tight by 1. We did this for consistency with other ideas.

Comparing Eqs. (4.2) & (4.3), the insertion/deletion paradigm’s robustness R is

about twice that of the unweighted swap paradigm. Intuitively, this is because one

swap entails two separate operations – both an insertion and a deletion.

4.2.3 Weighted Swap Paradigm. The two median-perturbation

paradigms above assume that each modification to V has equivalent cost. Consider

a generalized swap paradigm where each value νl ∈ V has an associated weight/cost

rl ∈ N. We seek to tightly bound the budget an attacker could spend with it remaining

guaranteed that f(xte) ≤ ξ; we still denote this budget R.

Given Vl as above, Rl := {rl : νl ∈ Vl} contains Vl’s corresponding weights/costs.

Define ∆ := |Vl| −
⌈
L
2

⌉
, and let multiset R∆ be the ∆ smallest values in Rl

(i.e., |R∆| = ∆). Directly applying Lem. 4.2, an obvious but non-optimal bound

is

57

R ≥
∑
r∈R∆

r. (4.4)

Recall Fig. 1a where V = {2, . . . , 6} and ξ = 5.4. Consider its weighted extension

where for simplicity and w.l.o.g. R = {3, . . . , 7}, i.e., ∀l rl = νl + 1. Eq. (4.4) certifies

robustness R = 3 for this example. However, Fig. 2b shows R = 6 since the budget

of the second (i.e., (∆ + 1)-th) largest value in Rl can be partially used. Lemma 4.4

formalizes this insight into a tight bound for median perturbation under weighted

swaps.

Lemma 4.4. For ξ ∈ R and real multiset V where medV ≤ ξ, let R be V’s

corresponding integral weight multiset where L := |V| = |R| is fixed and odd. Define

Rl := {rl ∈ R : νl ≤ ξ}, and let R̃l be the smallest (|V| −
⌈
L
2

⌉
+ 1) values in Rl. Then

the cost to perturb V’s median exceeds

R =
∑
r∈R̃l

r − 1. (4.5)

4.3 Reducing Regression to Voting-Based Binary Classification

We now show how methods used to certify binary classification can be adapted to

certify regression. During inference, all voting-based certified methods (both classifiers

and regressors) follow the same basic procedure.

First, the model generates a multiset of votes, which for binary classification

we denote V±1. Certified classifiers only differ in how V±1 is constructed and in the

consequences that construction has on certifying R. For example, V±1 could be a kNN

neighborhood or the submodel predictions in an ensemble. Nonetheless, for binary

classification, V±1 contains at most two unique values (+1 and −1), meaning V±1’s

majority label is also its median. In other words, f(xte) = medV±1.
58

MedianV

Robustness
Certifier

f(xte)

R
R

sgn(·) V±1−ξ

Inputs OutputsCertified Regressor

Figure 3. Certified Regression to Certified Classification Reduction: For
xte ∈ X , the decision function is f(xte) := medV – just like voting-based certified
classification. Certified regression binarizes V into V±1, which is used by the robustness
certifier (optionally with weights R) to determine R.

To certify robustness R, existing methods rely on a function we term the robustness

certifier. The function’s inputs are votes V±1 and optionally weights/costsR. Implicitly,

the certifier knows how the votes were generated and how changes to training set D

could affect V±1. Generally, a simple procedure to construct V±1 entails a simple

certifier, and complex construction implies a complex certifier. Fundamentally, for

voting-based, binary classification, robustness certification always reduces to the same

core idea. If f(xte) = medV±1, then for the runner-up label to overtake the majority

label, V±1’s median must be perturbed. Therefore, certifying voting-based, binary

classification is simply certifying median perturbation.

To generalize a voting-based, certified classifier to certify regression, two primary

modifications are required; we visualize our regression to classification reduction in

Fig. 3.

First, the model is modified from generating binary votes V±1 to generating real-

valued ones denoted V . The changes necessary to make this switch are specific to the

underlying certified classifier. In some cases, no change is required [Jia+22a]; for others,

ensemble submodel classifiers are simply replaced with submodel regressors [LF21;

WLF22a].

59

The second modification is more subtle. If V is real-valued, a robustness certifier

expecting binary votes cannot be directly applied. That is where ξ ∈ R fits in; it

partitions V into two subsets: Vl containing all “votes” at most ξ and Vu containing

all “votes” exceeding ξ. We can think of these subsets as two different classes

where if f(xte) ≤ ξ, Vl is the majority class and Vu runner-up. For any prediction

f(xte) := medV , the robustness certifier’s output R equals the number of training set

modifications that can be made without ever perturbing medV beyond ξ.

Lemma 4.5 formalizes the connection between real-valued and binarized robustness.

This symmetry in robustness derives from both tasks’ (implicit) shared reliance on

median.

Lemma 4.5. For ξ′ ∈ R and real multiset V ′ where medV ′ ≤ ξ′, let

V±1 := {sgn (νl − ξ′) : νl ∈ V ′}. (4.6)

Let R be the corresponding integral weight multiset of V ′ where |V ′| = |R|. Then, under

the (un)weighted swap and insertion/deletion paradigms, both V = V ′ with ξ = ξ′ and

V = V±1 with ξ = 0 have equivalent robustness R.

By binarizing V , Lem. 4.5 enables us to directly reuse robustness certifiers from binary

classification to certify regression.

Our reduction to certified classification entails two primary benefits. First, it

allows us to repurpose for regression the diverse set of voting-based, certified classifiers

that already exist [Jia+22a; LF21; WLF22a]. Moreover, as new voting-based, certified

classifiers are proposed in the future, these yet undiscovered methods can also be

reformulated as certified regressors.

Although this work focuses on certified poisoning defenses, other types of certified

defenses also rely on voting-based schemes, including randomized smoothing methods

60

for evasion attacks [LF20b; Jia+22b]. Our certified regression to certified classification

reduction can also be applied to these other types of voting-based defenses as well.

As mentioned above, the procedure to construct the set of votes and to certify

robustness is unique to each classifier. The next three sections describe how to certify

regression using progressively more complex models, with each method based on a

reduction to an existing voting-based certified classifier.

4.4 Certified Instance-Based Regression

For the first method, recall from Sec. 3.2.2 that Jia et al. [Jia+22a] propose

a state-of-the-art certified classifier based on kNN. Nearest-neighbor methods are

a specific type of instance-based learner (IBL), where predictions are made using

memorized training instances [AKA91]. IBLs generally rely on the intuition that

instances close together in feature space (X) have similar target values (Y). Specifically,

IBLs search for stored training instances most similar to xte and derive the model

prediction from these retrieved neighbors.

We partition IBLs into two subcategories:

– Fixed-population neighborhood methods specify the exact number of “neighbors”

when making a prediction.

– Region-based neighborhood methods define a neighborhood as all training

instances in a specific feature-space region.

These two subcategories calculate certified robustness differently and are discussed

separately below.

All IBLs considered here use the same decision rule. Formally, given xte ∈ X and

real multiset neighborhood N (xte) returned by the IBL, the model’s prediction is the

neighborhood’s median, i.e., f(xte) := medN (xte). Recall that our goal is to certify

61

that if at most R arbitrary insertions or deletions are made to D, it is guaranteed that

f(xte) ≤ ξ.

4.4.1 Fixed-Population Neighborhood. As the name indicates, fixed-

population neighborhood IBLs make predictions using a fixed number of training

instances, i.e., ∀xte L = |N (xte)|. k-nearest neighbors is perhaps the best-known fixed-

population method. Traditionally, kNN returns the neighborhood’s mean value. For

clarity, we will refer to the version of kNN that uses the neighborhood’s median value

as k-Nearest Neighbors Median, or simply kNN-m.

Our threat model allows the adversary to insert arbitrary training instances

and/or delete any existing instances. Fig. 4b visualizes an example attack on a

kNN-m regressor. Since k is fixed, inserting a new instance () into the neighborhood

causes one neighborhood instance to be ejected; in other words, insertions are simply

instance swaps. As a worst-case, we assume that the ejected element equals at most

threshold ξ, meaning each insertion always maximally increases the neighborhood’s

median. Under this simplifying assumption, adversarial insertions are always at least

as harmful as deletions for fixed-population neighborhood IBLs.

Neighborhood size k is a user-specified hyperparameter so let k be odd-valued.

Therefore, these fixed-population neighborhood IBL regressors satisfy all of the

criteria of median perturbation under the unweighted swap paradigm where L = k.

Theorem 4.6 then follows directly from Lemma 4.2.

Theorem 4.6. Let f be an instance-based regressor trained on set D. Given

ξ ∈ R and xte ∈ X , let real multiset N (xte) be xte’s neighborhood under f with

fixed, odd-valued cardinality L := |N (xte)|. Define Vl := {y ∈ N (xte) : y ≤ ξ}. Given

f(xte) := medN (xte) ≤ ξ, then if model f is trained on a modified D where the total

number of inserted and deleted training instances does not exceed

62

xte

2
3

45

6

(a) Unperturbed

xte

2
3

45

6

∞

(b) Fixed-population
R = 1

xte

2
3

45

6

∞∞

(c) Region-based
R = 2

Figure 4. Certified Instance-Based Regression: Fig. 4a visualizes an unperturbed
IBL model. Test instance xte’s neighborhood is visualized as a dashed line with
neighborhood N (xte) identical to V in Fig. 1a. Fig. 4b shows an attack on a kNN-m
model where the neighborhood’s cardinality (L = 5) is fixed, and the one attack
instance () replaces one instance in Vl () (source Fig. 1b). A rNN-median model is
shown in Fig. 4c, where the two inserted instances () do not change the neighborhood’s
radius (source Fig. 1c).

R = |Vl| −
⌈
L

2

⌉
, (4.7)

it is guaranteed that f(xte) ≤ ξ.

We denote kNN-m certified regression as kNN-CR. We defer the reader to the

supplement of the original paper [HL23c, Lemma 15] for the proof that when under

binary classification, kNN-CR and Jia et al.’s [Jia+22a] kNN classifier yield identical

robustness guarantees.

4.4.2 Region-Based Neighborhood. Neighborhood membership does

not need to be tied to the number of neighbors. Rather, a neighborhood can be

defined by specific criteria, with all stored training instances satisfying those criteria

included in the neighborhood. For instance, radius nearest neighbors (rNN) defines

xte’s neighborhood as all training instances within a given distance of xte [Ben75].

Alternatively, fully-random decision trees recursively partition the feature space into

63

disjoint regions, and a neighborhood is defined as all instances within the same feature

region [GEW06].

Fig. 4c visualizes an attack on an rNN-median learner, where the adversary inserts

malicious instances () to perturb the median prediction. Unlike fixed-population

neighborhoods, the inserted instances do not cause any existing training instances to

be ejected. Rather, inserting and deleting training instances are distinct operations.

It is easy to see that region-based IBLs with median as the decision operator

follow Sec. 4.2.2’s insertion/deletion paradigm. Theorem 4.7 then follows directly from

Lemma 4.3.

Theorem 4.7. Let f be an instance-based regressor trained on D that partitions X

into disjoint regions. Given xte ∈ X , let real multiset N (xte) be xte’s neighborhood

under f where L := |N (xte)|. For ξ ∈ R, define Vl := {y ∈ N (xte) : y ≤ ξ}. If model f

is trained on a modified D where the total number of inserted and deleted training

instances does not exceed

R = 2|Vl| − L− 1, (4.8)

it is guaranteed that f(xte) ≤ ξ.

Jia et al. propose an rNN-based certified classifier, with the robustness certifier

identical to their kNN method. By using our insertion/deletion paradigm for the

robustness certifier instead of Jia et al.’s approach, Eq. (4.8)’s R roughly doubles.

4.4.3 Computational Complexity. Eqs. (4.7) and (4.8) require

determining Vl’s cardinality, which has complexity O(L). However, constructing

neighborhood N (xte) can require scanning the entire training set and has

64

complexity O(n). Therefore, certifying each IBL regression prediction’s robustness is

in O(n) – the same as Jia et al.’s certified kNN and rNN classifiers.

4.5 Certified Regression for General Models

Instance-based learners lend themselves to robustness certification. However, there

are many applications where IBLs perform poorly. This section explores reducing

certified regression to a second certified classifier, which will now allow us to use

whichever model architecture has the best performance.

Recall from Sec. 3.2.2 that Levine and Feizi’s [LF21] certified classifier, DPA,

uses an ensemble trained on partitioned training data. In this section, we first

reduce certified regression to certified classification using DPA. We then improve

the certification performance of DPA and by extension our certified regressor by

using tighter, weighted analysis. All certified regression ensembles we consider have

L submodels denoted f1, . . . , fL, and the ensemble decision function uses median,

i.e., f(xte) := med {fl(xte; 1), . . . , fl(xte;L)} .

Since ensemble size L is always a user-specified hyperparameter, select odd L.

For arbitrary xte ∈ X , let V := {fl(xte) : l ∈ [L]}. Our goal remains to determine R

– a pointwise guarantee on the total number of training set modifications where it

remains guaranteed that f(xte) ≤ ξ.

4.5.1 Partitioned Certified Regression. Here, the L submodel regressors

are fully-independent, meaning their training sets are disjoint, and each submodel

prediction provides no direct insight into any other submodel’s behavior. This simple

framework makes no assumptions about the submodel architecture; the submodels may

be non-parametric or parametric, deep or shallow, etc. The only requirement is that

each submodel returns a deterministic prediction given its training set and feature

vector xte.

65

Levine and Feizi enforce disjoint submodel training sets by using deterministic

function htr to partition training set D into L disjoint blocks, D(1), . . . , D(L). Formally,

for all l ∈ [L], submodel fl’s training set is Dl = D(l).

Since each training instance is assigned to exactly one submodel, any training set

modification can only affect one submodel. Under the unit-cost assumption (Def. 3.1),

each training set modification changes the corresponding submodel’s prediction from

fl(xte) to ∞ in the worst case. Thus, perturbing a partitioned ensemble’s median

prediction follows Sec. 4.2.1’s unweighted swap paradigm where, as explained above,

each perturbed submodel entails one training set modification.

Via reduction to DPA, Theorem 4.8 directly applies Lemma 4.2 to certify unit-

cost, partitioned regression’s robustness under arbitrary training set insertions and

deletions.

Theorem 4.8. For xte ∈ X , ξ ∈ R, and deterministic function htr that partitions

set D into disjoint blocks D(1), . . . , D(L), let f be an ensemble of L submodels where

L is odd, and each deterministic submodel fl is trained on block D(l). Define

Vl := {fl(xte) : fl(xte) ≤ ξ}. Given f(xte) := med {fl(xte; 1), . . . , fl(xte;L)} ≤ ξ, if

model f is trained on a modified D where the total number of inserted and deleted

training instances does not exceed

R = |Vl| −
⌈
L

2

⌉
, (4.9)

it is guaranteed that f(xte) ≤ ξ.

We denote this disjoint ensemble regressor as partitioned certified regression (PCR).

The original paper [HL23c, Lemma 16] proves that when regression is used for binary

classification, PCR and DPA yield identical robustness guarantees (R).

66

4.5.2 Weighted Partitioned Certified Regression. Levine and Feizi

only consider the maximally pessimistic unit-cost assumption. For a feature vector xte,

it may take multiple training set insertions/deletions to corrupt a submodel’s prediction.

For example, Theorems 4.6 and 4.7 prove that IBL predictions are robust to multiple

training set modifications.

Fixing the regressor’s overall architecture, one obvious way to improve certified

robustness R is to improve the robustness certifier. Below, we introduce tighter

analysis of each PCR submodel’s pointwise robustness so as to move beyond unit

cost. Let rl ∈ N denote the minimum number of insertions/deletions required to

change3 the submodel enough where fl(xte) > ξ. By definition, if fl(xte) > ξ without

any training set modifications, rl = 0. When ∃l rl > 1, better certified guarantees are

possible through a weighted framework. Theorem 4.9 directly applies Lemma 4.4’s

weighted swap paradigm to adapt PCR (and DPA) to weighted perturbation costs.

We denote this extension weighted partitioned certified regression (W-PCR).

Theorem 4.9. For xte ∈ X , ξ ∈ R, and function htr that partitions set D into

disjoint blocks D(1), . . . , D(L), let f be an ensemble of L submodels where L is

odd. Each deterministic submodel fl is trained on block D(l) and requires at least

rl ∈ Z+ modifications to D(l) for fl(xte) > ξ. For R := {rl : fl(xte) ≤ ξ}, let R̃l be R’s

smallest |R| −
⌈
L
2

⌉
+ 1 values. Given f(xte) := med {fl(xte; 1), . . . , fl(xte;L)} ≤ ξ, if

model f is trained on a modified D where the total number of inserted and deleted

training instances does not exceed

3Certified robustness R is the total number of training set modifications that can be made with
it remaining guaranteed that f(xte) ≤ ξ. In contrast, rl is minimum the number of modifications
needed to perturb submodel l’s prediction enough that fl(xte) > ξ. If Rl were the certified robustness
of just submodel l, then rl = Rl + 1. rl’s definition here follows related work [Ran+21].

67

D(6)

D(5)

D(7)

D(1)

D(5)

D(4)

D(6)

D(3)

D(4)

D(2)

Submodel
Training Sets

D(7)

D(6)

D(5)

D(4)

D(3)

D(2)

D(1)

Training set D
partitioned by htr

Block Mapping
by hf f1

f2

f3

f4

f5

Ensemble of
L = 5 Submodels

2

3

4

5

6

Submodel
Predictions

Threshold
ξ

Initial
Median

Figure 5. Overlapping Certified Ensemble: Simple visualization of the ensemble
architecture for (weighted) overlapping certified regression. Function htr partitions
training set D into (m = 7) blocks. Function hf defines each of the L = 5 submodel
training sets, D1, . . . ,D5. The ensemble prediction is the median submodel prediction,
i.e., f(xte) := med {fl(xte; 1), . . . , fl(xte;L)}.

R =
∑
r∈R̃l

r − 1, (4.10)

it is guaranteed that f(xte) ≤ ξ.

It can be easily shown that W-PCR always yields certified robustness at least

as good as PCR. Although proposed in the context of regression, our weighted

formulation also notably improves certified classification as shown in Sec. 4.8.2.

4.5.3 Computational Complexity. Both PCR and W-PCR require

training O(L) models. As established by Lemmas 4.2 and 4.4, the computational

complexity of PCR and W-PCR (resp.) to certify each ensemble prediction

is O(L) [Blu+73] – the same complexity as DPA.4

4Not included in W-PCR’s complexity is the time to determine r1, . . . , rL.

68

4.6 Certified Regression Using Overlapping Training Data

This section reduces certified regression to a third certified classifier, specifically

Wang et al.’s [WLF22a] reformulation of DPA where the submodels are trained on

overlapping data. This makes the submodels interdependent, meaning one training set

modification may alter multiple submodel predictions. Fig. 5 visualizes an ensemble

trained on overlapping training sets. Again, L is the number of submodels.5 Function

htr : Z → [m] still partitions the instance space into m disjoint blocks, where m ≥ L.

Following Wang et al., a second deterministic function hf : [m]→ 2[L] maps each

training set block to one or more submodel training sets. Formally, submodel fl’s

training set is Dl :=
⊔
l∈hf (j)D

(j). Let d(j) := |hf (j)| denote D(j)’s spread degree,

i.e., the number of models that use D(j) during training. Denote the maximum spread

degree as dmax := max{d(1), . . . , d(m)}. The ensemble’s decision function is still the

median submodel prediction.

Below, we first consider certified regression on overlapping data under the unit-

cost assumption. We then improve overlapping regression by leveraging our weighted

reformulation.

4.6.1 Overlapping Certified Regression. Irrespective of whether the

submodels are trained on disjoint or overlapping data, under the unit-cost assumption,

at least |Vl| −
⌈
L
2

⌉
submodel predictions must exceed ξ to perturb the ensemble’s

median. Observe that each submodel training set Dl ⊂ D is composed of one or more

dataset blocks. Perturbing any block in Dl is sufficient to perturb the submodel’s

prediction, with an optimal attacker minimizing the number of training set (block)

modifications.

5In practice, for overlapping certified regression to guarantee better robustness than (W-)PCR
the number of submodels generally must increase by several folds over partitioned regression.

69

If the goal were to perturb all L submodels, then for arbitrary block mapping

function hf , determining the minimum number of blocks that need to be modified

reduces to minimum set cover, which is NP-hard [Sla97a]. Specifically, the set to cover

is Tl := {l : fl(xte) ≤ ξ}, i.e., the submodels predicting at most ξ, and the collection

of subsets is S :=
{
{j : l ∈ hf (j)} : fl(xte) ≤ ξ

}
, which contains the dataset blocks

each relevant submodel is trained on.

However, recall that for median perturbation under unweighted swaps, we only

need to perturb (i.e., cover) |Vl| −
⌈
L
2

⌉
submodels – not all of them. Therefore, rather

than mapping to set cover, our problem reduces to the related problem of partial set

cover, where only a constant fraction of the instances (i.e., submodels) need to be

covered. For arbitrary block mapping function hf , Lemma 4.10 below establishes that

finding the optimal R here is NP-hard [Sla97b; EK10].

Lemma 4.10. Finding optimal certified robustness R for overlapping certified

regression is NP-hard.

Although our problem is NP-hard, it is polynomial-time approximable.

Specifically, the approximation uses the famous greedy set-cover algorithm where in

each iteration, the subset (training block D(j)) covering the most remaining elements

(submodels) is selected [Chv79; Sla97b]. Let G denote the bound found by this greedy

method, and define ∆ := |Vl| −
⌈
L
2

⌉
. Then for the non-naive case where ∆ ≥ 2,

R ≥
⌈

G

min{H(dmax), ln∆− ln ln∆ + 3 + ln ln 32− ln 32}

⌉
, (4.11)

where H(dmax) is the dmax-th harmonic number. This bound follows directly from

partial set cover approximation factor analysis ([Sla97a, Thm. 4]; [Sla97b, Thm. 3]).6

6Eq. (4.11)’s bound is tighter (often significantly so) than the much more famous approximation
factor, H(∆), of Johnson [Joh74] and Lovász [Lov75].

70

Slav́ık [Sla97a] shows that the difference between this approximation factor’s overall

lower and upper bound is only roughly 1.1, meaning this general approximation is

quite good overall.

However, in most cases, the performance advantage of overlapping versus disjoint

unit-cost regressors is small enough that the greedy optimality gap wipes out all gains.

Instead, we rely on Fig. 6’s integer linear program (ILP) to bound R in the overlapping

case.7 This ILP is directly adapted from standard partial set-cover, where for unit

costs ∀l rl = 1.

While the ILP is still NP-hard in the worst case, modern LP solvers often

find a (near) optimal solution in reasonable time (e.g., a few seconds) [Gur22]. In

cases where finding true robustness R is computationally expensive, these solvers

generally return guaranteed bounds on R that are (much) better than the greedy

approximation [Van14].8 We refer to this unit-cost, ILP-based approach as overlapping

certified regression (OCR).

4.6.2 Weighted Overlapping Certified Regression. Recall that

Sec. 4.5.2 improves certified regressor PCR by reformulating DPA so as not to

be restricted by the unit-cost assumption. Here, we follow the same approach of

improving certified regressor OCR by generalizing Wang et al.’s [WLF22a] certified

classifier to non-unit costs.

As with W-PCR earlier, rl > 1 entails that submodel fl’s training set must

be modified at least rl times for fl(xte) > ξ. This prevents weighted overlapping

regression from applying partial set cover since each submodel fl now has a coverage

requirement. Instead, partial set multicover (PSMC) generalizes partial set cover

7Fig. 6 jointly formulates calculating R under unit and weighted costs.

8Sec. 4.8’s experiments use a fixed time limit to ensure tractability.

71

to support coverage requirements rl ≥ 0 [Shi+19; Ran+21], and we adapt PSMC to

weighted, overlapping regression. PSMC, and by extension our task, is provably hard.

Corollary 4.10.1. Finding the optimal certified robustness R for weighted overlapping

certified regression is NP-hard.

PSMC is far less studied than (partial) set cover. PSMC is polynomial-time

approximable – albeit with worse known bounds than partial set cover. Ran

et al. [Ran+21] provide the best-known PSMC bounds; their method is much more

complicated than greedy partial set cover and relies on a reduction to another NP-hard

problem, minimum densest subcollection. Let G be the solution generated by Ran

et al.’s algorithm, then

R ≥
⌈

G

4 lgLH(dmax) ln∆ + 2 lgL
√
L

⌉
. (4.12)

Like with unweighted overlapping regression, Eq. (4.12)’s approximation factor is

large enough that it usually wipes out the performance gains derived from weighted

costs. Instead, we use Fig. 6’s ILP to bound R in accordance with Lem. 4.4. In the

ILP, σ = 1 in the weighted case and 0 otherwise. Hence, at least (|Vl| −
⌈
L
2

⌉
+ 1)

submodels must be covered (i.e., perturbed) in the weighted case. Following Eq. (4.5),

sum
∑m

j=1 ω
(j) is decremented by one in the ILP.

We refer to this overlapping ILP-based approach as weighted overlapping certified

regression (W-OCR).

4.6.3 Computational Cost. See the supplement of the original

paper [HL23c, Sec. I.E] for an empirical evaluation and extended discussion of the

OCR and W-OCR ILP execution time.

72

min R =
m∑
j=1

ω(j) − σ (4.13a)

s.t. Tl = {l : fl(xte) ≤ ξ}, (4.13b)

rmax = max{rl : l ∈ [L]} (4.13c)

σ = 1[rmax > 1] (4.13d)∑
l∈Tl

δl ≥ |Vl| −
⌈
L

2

⌉
+ σ, (Median perturb.) (4.13e)

rlδl ≤
∑

D(j)⊆Dl

ω(j), l ∈ Tl (4.13f)

δl ∈ {0,1}, l ∈ Tl (4.13g)

ω(j) ∈ {0, . . . , rmax}, j ∈ [m] (4.13h)

Figure 6. Overlapping Certified Regression Integer Linear Program:
Adapted from the partial set (multi)cover integer linear program. Calculates
certified robustness R for both OCR and W-OCR with indicator variable σ
adjusting the program to account for weighted costs. For arbitrary feature
vector xte, Tl is the set of submodels that predict fl(xte) ≤ ξ. Variable ω(j)

contains the number of modifications made to training set block D(j). Binary variable
δl = 1 if submodel fl has been sufficiently modified for fl(xte) > ξ and 0 otherwise.

4.7 Certifying Any Model Beyond Unit Cost

The preceding sections describe the benefits of having more robust ensemble

components (i.e., rl > 1) but do not address how to find rl. Apart from IBLs and

ensembles, the two methods we focus on in this work, we know of no general method

for computing insertion/deletion robustness efficiently. We attribute this scarcity

to the task’s difficulty. Nonetheless, we believe this work shows that certification

beyond unit cost merits future study. This section explores certifying beyond unit

cost from two perspectives. First, we consider the obvious idea of combining IBLs

with ensembles and explain why that performs poorly. Next, we propose a simple,

general approach to certify any (sub)model beyond unit cost, albeit with a (slightly)

more restricted threat model.

73

4.7.1 Combining Instance-Based Learners & Ensembles. The points

raised below apply to both fixed-population and region-based IBLs. We exclusively

discuss kNN-CR here with the extension to other certified IBLs straightforward.

In practice, function htr partitions instance space Z uniformly at random (u.a.r.)

into m approximately equal-sized regions. For simplicity and w.l.o.g., consider an

ensemble of kNN-CR submodels trained on disjoint subsets where L = m.

Let k′ and R denote the neighborhood size and certified robustness (resp.) of a

kNN-CR model trained on i.i.d. training set D. If D is partitioned u.a.r. to train

L kNN-CR submodels each with k ≈ k′

L
, then each submodel’s expected robustness

is roughly R
L
. In the best case for the defender (∀l fl(xte) ≤ ξ), an adversary only

needs to perturb at most
⌈
L
2

⌉
submodels. Combining the above with Theorem 4.9 for

W-PCR, this kNN-CR ensemble’s expected certified robustness is approximately

⌈
L

2

⌉(
R

L

)
− 1 =

R

2
+

R

2L
− 1 < R. (4.14)

As n, L→∞, then by Eq. (4.14), a kNN-CR ensemble’s expected robustness decreases

by 50% versus the single kNN-CR model baseline. Intuitively, for ensembles, an

adversary only needs to directly attack about half of the submodels and by extension

half of the training data. In contrast, when there is only a single kNN-CR model

trained on all of D, the adversary must attack the whole training set.

4.7.2 Certifying Non-Unit Costs by Construction. Since IBLs are a

poor candidate to marry with ensembles, we need an alternative approach to certify

a model’s robustness beyond r = 1. Given the dearth of existing methods (known

to us), we fill in the gap and propose a simple, general-purpose method to certify

robustness against arbitrary deletions.

74

To be clear, this is a (slightly) restricted version of the full threat model considered

so far, which allows arbitrary insertions and deletions. Nonetheless, this restricted

threat model still has broad applicability. For example, an adversary may only be

able to insert poisoned instances into a training set but not delete clean ones [Che+17;

Liu+17; Sha+18; Wal+21; HL22a].

Motivated by Cook and Weisberg’s [CW82] classic case deletion diagnostics,

we use a constructive proof to certify a (sub)model’s pointwise robustness under

instance deletions. Consider training (n+ 1) deterministic models – one model

using full set D = {(xi, yi)}ni=1 and another n models on each of the leave-one-out

subsetsD \ (xi, yi) for all i ∈ [n]. If all (n+ 1) trained models make the same prediction

(e.g., a value not exceeding ξ for some xte), then by construction, the model trained

on all of D has, at minimum, r = 2 for arbitrary deletions. Lemma 4.11 generalizes

the above for an arbitrary number of deletions r < n.

Lemma 4.11. For xte ∈ X , training set D where 2D is its power set, r ∈ [|D| − 1],

and ξ ∈ R, denote a deterministic model trained on subset D ⊆ D as fD. Given

∀D′∈2D |D′| < r =⇒ fD\D′(xte) ≤ ξ, then for any D̃ ⊂ D, if fD̃(xte) > ξ then at least

r instances from D were deleted in D̃.

A strength of Lemma 4.11 is its flexibility; it can be adapted to any model class,

including both classifiers and regressors. Its clear limitation is its computational

complexity.

Computational Complexity : Certifying r > 1 requires training O(n(r−1)) models; this

is a one-time, amortized cost.

Consider separately the cost to certify each prediction. During inference, the

O(n(r−1)) models are checked. While this may be problematic in some cases, it should

be contextualized. Recall that Sec. 4.4 explores IBLs like kNN, which have inference

75

complexity O(n). Therefore, our method to certify r = 2 has the same time complexity

during inference as kNN.

4.7.3 More Submodels vs. Weighted Costs. Increasing submodel

count L and using weighted costs are partially conflicting approaches to increase R.

A natural question is which of the two approaches yields better certified robustness.

Above, we explain why increasing L is a poor strategy for IBLs. For ensembles,

increasing L generally means that each submodel is trained on fewer data.

As an intuition, consider when ∀l rl = 2. For a unit-cost ensemble to certify

equivalent R, submodel count L must about double, and each submodel is trained on

50% fewer data, which can significantly degrade submodel performance. In contrast,

weighted costs with r = 2 reduces submodel training set sizes by 1 (Lem. 4.11). By

training weighted submodels on much more data, weighted submodels can outperform

submodels from ensembles with larger L. This improved submodel performance can

in turn improve certified robustness.

4.8 Evaluation

This section evaluates our five primary certified regressors: kNN-m certified

regression (kNN-CR), partitioned certified regressors PCR & W-PCR as well as

overlapping certified regressors OCR & W-OCR. Additional experimental results

are in the supplement, including full kNN-CR certification plots (C.1.3). Additional

results also appear in the supplemental materials of the original paper [HL23c, Sec. I].

To the extent of our knowledge, we propose the first pointwise certified regression

methods that make no assumptions about the test distribution or model architecture.

Without a clear baseline, we compare our five methods against each other. As

a reference on the clean-data performance, we report each dataset’s “uncertified”

(non-robust) accuracy.

76

4.8.1 Experimental Setup. For brevity, most evaluation setup details

(e.g., hyperparameters) are deferred to suppl. Sec. D.1 with a brief summary below.

For each experiment in this section, at least ten trials were performed. To improve

readability, we only report the mean values below with variances in suppl. Sec. C.1.

Dataset Configuration Each (sub)model is trained on 1
q
-th of the training data,

where q ∈ Z>0. For kNN-CR, always q = 1. For our four ensemble-based methods

(W-)PCR and (W-)OCR, q can significantly affect the ensemble’s accuracy and

best-case certified robustness (R). As such, for each dataset, we report results with

three different q values. For all ensembles, function htr partitions training set D u.a.r.9

For our partitioned regressors (W-)PCR, D is split into q blocks, with L = q. For

our overlapping regressors (W-)OCR, we followed Wang et al.’s [WLF22a] overlapping

certified classifier evaluation. Specifically, D is partitioned into qd blocks u.a.r. All

blocks have fixed spread degree d > 1 (see Tab. 1), and hf assigns blocks to submodels

at random. Hence, each overlapping ensemble necessarily has L = qd submodels.

Submodel Architectures To demonstrate their generality, our ensemble methods

use two different submodel architectures, namely ridge regression and XGBoost [CG16]

gradient-boosted forests. Model determinism is enforced via a fixed random seed.

Below, we report whichever submodel architecture performed the best on a held-out

validation set.

Evaluation Metric For each test instance (xte, yte), our goal is to determine the

largest pointwise certified robustness R that guarantees ξl ≤ f(xte) ≤ ξu. Throughout

9Each dataset’s largest q value maximized the ensembles’ certified robustness (R). For each
dataset, we also report small and medium q values. In practice, q should be as small as possible while
guaranteeing sufficient robustness given each application’s maximum anticipated poisoning rate.

77

this evaluation, ξl := yte − ξ and ξu := yte + ξ. These bounds are w.r.t. each test

example’s true target value yte, not predicted value f(xte). Therefore, a large certified

robustness R means that the prediction is both accurate and stable. Here, error

threshold ξ may be a specific fraction (e.g., 15%) of each instance’s target value yte or

a fixed value for the entire dataset (see Table 1). In practice, the appropriate ξ value

is application specific.

Our evaluation metric is certified accuracy, which is the fraction of instances with

robustness R ≥ ψ for ψ ∈ N. In each trial, we calculated the certified robustness (R)

for at least 100 random test instances and report the mean certified accuracy across

all trials. See suppl. Sec. C.1 for the certified accuracy variance. Note that existing

certified classifiers were previously evaluated using certified accuracy [Jia+22a; LF21;

WLF22a] with ξ = 0, i.e., the predicted label must match true label yte.

Datasets Our certified regressors are evaluated on six datasets: five regression and

one binary classification. Like previous work [BHL23], the datasets are preprocessed

where all categorical features are transformed into one-hot encodings. Table 1

summarizes each dataset’s key attributes, including its size, error threshold (ξ),

ensemble submodel architecture, etc. A brief description of each dataset is below.

Ames [Coc11] and Austin [Pie21] estimate home prices in two American cities.

Diamonds [Wic16] predicts a diamond’s price based on attributes such as cut, color,

carat, etc. Weather [Mal+21] estimates ground temperature (in degrees Celsius)

using date, time, and longitude/latitude information. For computational efficiency,

Weather’s size was downsampled by 10× u.a.r. Life [Raj21] estimates life expectancy

(in years) using epidemiological and other national statistics. Spambase [Hop+17]

is a binary classification dataset where emails are labeled as either spam or ham.

Spambase’s positive training prior is 39%.

78

Table 1. Evaluation Dataset Summary: Training set size (n), data dimension,
overlapping spread degree (d), error threshold (ξ), and submodel architecture for the
six datasets. Error thresholds that are a percentage of each instance’s true target value
are denoted X% · y. Alternate ξ values are evaluated in the original paper [HL23c,
Fig. 9].

Dataset Size (n) Dim. Deg. (d) Error (ξ) Submodel

Ames 2.6k 253 17 15% · y XGBoost
Austin 12k 315 13 15% · y XGBoost
Diamonds 48k 26 9 15% · y Ridge
Weather 308k 140 5 3◦C Ridge
Life 2.6k 204 13 3 years XGBoost
Spambase 4.1k 57 17 0 Ridge

Certifying r > 1 For our two weighted methods, W-PCR and W-OCR, our

evaluation attempts to certify each submodel’s robustness against deletions up to

r = 2.

4.8.2 Analyzing the Certified Accuracy. Figure 7 visualizes our methods’

mean certified accuracy for the six datasets. For brevity, the corresponding numerical

values, including variance, are deferred to Sec. C.1. Below, we briefly summarize the

experiments’ primary takeaways.

Takeaway #1: Both our ensemble and IBL regressors certify non-trivial fractions

of the training set. For the Ames and Life datasets, W-OCR certifies 50% of test

predictions up to 1% training set corruption. Similarly, kNN-CR certifies 30% of

predictions on Ames up to 4% corruption. These certified guarantees are without

explicit assumptions about the data distribution or, in the case of ensembles, the

submodel’s architecture. For other datasets, we certify predictions up to hundreds or

thousands of training set modifications.

Takeaway #2: Ensemble regressors have better peak performance. Across all six

datasets, the ensemble-based methods all had better peak certified accuracy than

79

kNN-CR. The performance gap was as large as 3.5× and is not primarily due to

feature dimension as kNN-CR performed worst on Diamonds, which has the smallest

dimension by far.

Takeaway #3: W-OCR achieves the largest certified robustness (R) amongst the

ensemble methods. This is observed using each dataset’s largest q value. For all

six datasets, there is a (significant) gap between W-OCR () and our second-best

ensemble method, W-PCR ().

Takeaway #4: kNN-CR achieves the largest certified robustness. Although

kNN-CR certifies (far) fewer instances than the ensembles, for instances that it can

certify, its maximum robustness R is generally far larger than that of W-OCR. For

example with Weather, kNN-CR’s maximum R is 5× larger than W-OCR’s. Suppl.

Sec. C.1.3 best visualizes this trend in its plots of kNN-CR’s full certified accuracy.

Takeaway #5: W-OCR achieves state-of-the-art certified accuracy for binary

classification. While regression is this work’s primary focus, recall that binary

classification can be solved by a regressor. For binary classification, kNN-CR’s R is

identical to Jia et al.’s [Jia+22a] kNN classifier; PCR certifies equivalent robustness

as DPA, and OCR very closely approximates Wang et al.’s [WLF22a] overlapping

method. Observe that W-OCR outperforms the unweighted ensembles and kNN-CR

on Spambase’s [Hop+17] two largest q values. Note that Spambase’s maximum q

value cannot be increased further without severely degrading submodel performance.

This provides empirical evidence for Sec. 4.7.3’s claim that a weighted strategy can

outperform increasing submodel count L.

Takeaway #6: q can significantly affect certified accuracy. Previous certified

classifier evaluations [Jia+22a; WLF22a; LF21] under-explore q’s role. Those works

primarily evaluate vision datasets where the training data is supplemented by (1) using

80

a pre-trained model to extract much better features [JCG21; Jia+22a] or (2) using

vision data augmentation [LF21; WLF22a]. For the tabular datasets evaluated here,

such options are not as available.

Without such augmentation, increasing q can significantly degrade an ensemble’s

peak certified accuracy. As an example, the ensembles’ peak certified accuracy can

decline by up to 28% between training a model on all of D versus a dataset’s maximum

q value (compare to uncertified accuracy in Fig. 7). Therefore, when thinking

about certified classifiers and regressors, always consider the potential benefits of

external (clean) data augmentation. For instance, in our experiments, XGBoost

certified ensembles’ accuracy improved by multiple percent when using mixup data

augmentation [Zha+18].

4.9 Conclusions

This chapter describes a novel reduction from certified regression to certified

classification based on median perturbation. Applying this reduction, we propose six

new certified regressors that require no assumptions about the data distribution or

model architecture. As improved voting-based, certified classifiers are proposed in

the future, our reduction can be applied to those methods too. This enables certified

regression to keep pace with the rapid advances in certified classification.

While this work focuses on certified defenses against poisoning attacks, some

certified evasion defenses also rely on voting-based guarantees [LF20b; Jia+22a]. Our

reduction from certified regression to certified classification applies to those certified

evasion defenses as well.

Lastly, our empirical results show that improved certified guarantees are possible

when the unit-cost assumption is replaced by our tighter weighted analysis. These

certification gains apply to both classification and regression, but Sec. 4.7.2’s approach

81

is computationally expensive. We advocate for better methods that efficiently certify

beyond r = 1.

82

Uncertified (q = 1) PCR (ours) OCR (ours)

W-PCR (ours) W-OCR (ours) kNN-CR (ours)

0 5 10 15 20

20

40

60

80

Cert. Robustness (R), q = 25

A
m

e
s
H
o
u
si
n
g

C
er
ti
fi
ed

A
cc
.
(%

)

0 10 20 30 40

Cert. Robustness (R), q = 125

0 20 40 60 80

Cert. Robustness (R), q = 251

0 5 10 15 20

15

30

45

60

Cert. Robustness (R), q = 51

A
u
st
in

H
o
u
si
n
g

C
er
ti
fi
ed

A
cc
.
(%

)

0 25 50 75 100

Cert. Robustness (R), q = 301

0 50 100 150 200

Cert. Robustness (R), q = 701

0 30 60 90 120 150

20

40

60

Cert. Robustness (R), q = 151

D
ia
m

o
n
d
s

C
er
ti
fi
ed

A
cc
.
(%

)

0 100 200 300 400

Cert. Robustness (R), q = 501

0 150 300 450 600

Cert. Robustness (R), q = 1001

Figure 7. Certified Accuracy: Mean certified accuracy (larger is better) for our
five primary certified regressors. kNN-CR is always trained on all of training set D
(i.e., q = 1). Ensemble submodels are trained on 1

q
-th of D, with three q values tested

per dataset. The x-axis is clipped to enhance readability; see suppl. Sec. C.1.3 for
kNN-CR’s full results. The best performing method depends on the target certified
robustness R. For smaller R values, W-OCR achieves the best certified accuracy. For
larger R values, kNN-CR outperforms the ensemble methods. This result aligns with
previous findings on certified classification [Jia+22a]. Sec. 4.8.2 summarizes these
experiments’ primary takeaways. Figure continued on the next page.

83

Uncertified (q = 1) PCR (ours) OCR (ours)

W-PCR (ours) W-OCR (ours) kNN-CR (ours)

0 10 20 30 40

20

40

60

80

Cert. Robustness (R), q = 51

W
e
a
th

e
r

C
er
ti
fi
ed

A
cc
.
(%

)

0 300 600 900 1,200 1,500

Cert. Robustness (R), q = 1501

0 600 1,200 1,800 2,400

Cert. Robustness (R), q = 3001

0 5 10 15 20 25

20

40

60

80

Cert. Robustness (R), q = 25

L
if
e

C
er
ti
fi
ed

A
cc
.
(%

)

0 10 20 30 40 50

Cert. Robustness (R), q = 101

0 30 60 90 120

Cert. Robustness (R), q = 201

0 5 10 15 20 25

20

40

60

80

Cert. Robustness (R), q = 25

S
p
a
m
b
a
se

C
er
ti
fi
ed

A
cc
.
(%

)

0 25 50 75 100

Cert. Robustness (R), q = 151

0 50 100 150 200

Cert. Robustness (R), q = 301

Figure 7. Certified Accuracy (cont.): Mean certified accuracy (larger is better) for
our five primary certified regressors. kNN-CR is always trained on all of training set D
(i.e., q = 1). Ensemble submodels are trained on 1

q
-th of D, with three q values tested

per dataset. The x-axis is clipped to enhance readability; see suppl. Sec. C.1.3 for
kNN-CR’s full results. The best performing method depends on the target certified
robustness R. For smaller R values, W-OCR achieves the best certified accuracy. For
larger R values, kNN-CR outperforms the ensemble methods. This result aligns with
previous findings on certified classification [Jia+22a]. Sec. 4.8.2 summarizes these
experiments’ primary takeaways. See Sec. C.1 for the numerical results, including
variance.

84

CHAPTER 5

CERTIFIED DEFENSE AGAINST A UNION OF ℓ0 ATTACKS

This chapter contains previously published, coauthored material [HL23a].

Hammoudeh developed the primary method, developed all code, conducted all

experiments, and wrote the manuscript. Lowd provided supervision, editorial

suggestions, and input on experiments.

Zayd Hammoudeh and Daniel Lowd. “Feature Partition Aggregation: A

Fast Certified Defense Against a Union of ℓ0 Attacks”. In: Proceedings of

the 2nd ICML Workshop on New Frontiers in Adversarial Machine Learning.

AdvML-Frontiers’23. 2023. url: https://arxiv.org/abs/2302.11628

This chapter focuses on ℓ0 or sparse attacks,1 where an adversary controls an

unknown subset of the features. By certifying robustness w.r.t. the number of perturbed

features, ℓ0 analysis is particularly well-suited to heterogeneous (tabular) data where

the features have different types (e.g., numerical, categorical) or scales. Moreover,

ℓ0 defenses provide provable robustness against real-world patch attacks [LF20a].

Several certified ℓ0 defenses have been proposed [Lee+19; LF20b; Cal+21; Jia+22b],

but these methods apply to evasion only, which can be limiting. For example, consider

a distributed sensor network where each (tabular) feature is independently measured

by a different sensor. Under this type of vertical partitioning where features are

sourced from multiple parties, an attacker that controls a single feature (i.e., sensor)

can partially perturb every instance – training and test – up to 100% poisoning

rate [LDD21; Wei+22]. Existing ℓ0 evasion defenses do not certify robustness over

any training perturbation rendering them moot under such an attack. Moreover,

1The ℓ0 norm of vector x ∈ Rd equals ∥x∥0 := |{j : xj ̸= 0}|, where xj ∈ R denotes the j-th
dimension of x. Put simply, x’s ℓ0-norm equals the number of non-zero dimensions in x. Intuitively,
ℓ0 attacks bound the number of dimensions of x whose perturbation value can be non-zero.

85

https://arxiv.org/abs/2302.11628

existing ℓ0 defenses could not be combined with instance-wise poisoning defenses

here since typically, the latter are only provably robust under small poisoning rates,

e.g., ≤1% [WLF22b; Rez+23].

To address these limitations, we propose feature partition aggregation (FPA)

– a certified sparse defense jointly robust against both training and test feature

perturbations. FPA uses a model ensemble approach, where each submodel is trained

on a disjoint feature set, meaning any adversarially perturbed feature – training or test

– affects at most one submodel prediction. Hence, FPA guarantees robustness over the

union of ℓ0 evasion, backdoor, and poisoning attacks – a strictly stronger guarantee

than existing ℓ0 methods [LF20b]. In our empirical evaluation, FPA’s certified median

guarantees are up to 4× larger than state-of-the-art ℓ0 defenses [Jia+22b] with little

to no decrease in classification accuracy; FPA is also up to 3,000× faster. In other

words, FPA provided additional dimensions of ℓ0 robustness essentially for free. Our

primary contributions are summarized below; additional theoretical analysis and all

proofs are in the supplement.

– We define a new robustness paradigm we term certified feature robustness that

generalizes ℓ0 (sparse) robustness to encompass training set feature perturbations.

– We propose feature partition aggregation, a certified feature defense that uses an

ensemble of submodels trained on disjoint feature sets. We detail two certification

schemes – a simple one based on plurality voting and the other based on multi-round

elections.

– We empirically evaluate FPA on two classification and two regression datasets.

FPA provided simultaneously larger and stronger median guarantees than the

86

state-of-the-art certified ℓ0 defenses while also being 2 to 3 orders of magnitude

faster.

5.1 Preliminaries

Notation ℓ0 norm ∥w∥0 is the number of non-zero elements in vector w. Given

some matrix A, denote its j-th column as Aj. In a slight abuse of notation, let

A ⊖ A′ :=
{
j : Aj ̸= A′j

}
denote the set of column indices over which equal-size

matrices A and A′ differ. Similarly, let v ⊖ v′ ⊆ [|v|] denote the set of dimensions

where vectors v and v′ differ.

Denote the training set’s feature matrix as X := [x1 · · · xn]⊺ where X ∈ Rn×d,

and denote the label vector y := [y1, . . . , yn]. feature partition aggregation (FPA)

is an ensemble of L submodels (see Figure 8). A decision function aggregates the

L submodel predictions to form f ’s overall prediction. The model architecture and

decision function combined dictate how a prediction’s certified robustness is calculated.

For instance (x, y), let gl(x, y) be the l-th submodel’s logit value for label y, where

gl : X × Y → R. Let fl(x) denote the l-th submodel’s predicted label for x, where

fl : X → Y and fl(x) := argmaxy∈Y gl(x, y). Throughout this work, all ties are broken

by selecting the label with the smallest index.

Feature set [d] is partitioned across FPA’s L submodels. Let Sl ⊂ [d] be the

features used by the l-th submodel where
⊔L
l=1 Sl = [d]. In other words, each FPA

submodel considers a fixed, disjoint subset of the features for all training and test

instances. The l-th submodel’s training set, Dl, consists of: label vector y and the

Sl columns in X. FPA submodels are deterministic, meaning fixing Dl, Sl, and x, in

turn, fixes label fl(x) and logits ∀y gl(x, y).

Given x and y, the pointwise submodel vote count is ċy(x) :=
∑L

l=1 1[fl(x) = y].

The plurality and runner-up labels receive the most and second-most votes (resp.),

87

i.e., ypl = argmaxy∈Y ċy(x) and yru = argmaxy∈Y\ypl ċy(x). The pointwise submodel

vote gap between labels y, y′ ∈ Y is

Gapvote(y, y
′;x) := ċy(x)− ċy′(x)− 1[y′ < y], (5.1)

with the indicator function used to break ties. Let c̈y(x; y
′) :=

∑L
l=1 1[gl(x, y) > gl(x, y

′)]

be y’s logit vote count w.r.t. y′ ∈ Y . The pointwise logit vote gap for y w.r.t. y′ is

Gaplogit(y, y
′;x) := c̈y(x; y

′)− c̈y′(x; y)− 1[y′ < y]. (5.2)

Below, x is dropped from Gapvote and Gaplogit when the feature vector of interest is

clear from context.

Threat Model Given arbitrary (x, y), the attacker’s objective is to ensure that

y ̸= f(x). The adversary achieves this objective via two methods: (1) modify training

features X or (2) modify test instance x’s features. An adversary may use either

method individually or both methods jointly. An attacker can perturb up to 100% of

the training instances.

Our Objective For arbitrary (x, y), determine the certified feature robustness, R

(defined below). Note that pointwise guarantees certify the robustness of each instance

(x, y) individually.

Def. 5.1. Certified Feature Robustness Given training set (X,y), model f ′

trained on (X′,y), and arbitrary feature vector x′ ∈ X , certified feature robustness

R ∈ N is a pointwise, deterministic guarantee w.r.t. instance (x, y) where

|X ⊖ X′ ∪ x ⊖ x′| ≤ R =⇒ y = f ′(x′).

Certified robustness R is not w.r.t. individual feature values. Rather, certified

feature robustness provides a stronger guarantee allowing all values of a feature –

training and test – to be perturbed.

88

1 y1

0 y2

0 y3

0 y1

1 y2

0 y3

1 y1

1 y2

0 y3

0 y1

0 y2

1 y3

x⊺
1 1 0 1 0

x⊺
2 0 1 1 0

x⊺
3 0 0 0 1

X

Training Set
Feature Partitioning

X1

X2

X3

X4

D1

D2

D3

D4

f1

f2

f3

f4

0.2

0.0

0.8

2

0.9

0.0

0.1

0

0.7

0.1

0.2

0

0.4

0.5

0.1

1

xS1
D1

xS2
D2

xS3
D3

xS4
D4

Logits (gl) Labels (fl)

Figure 8. Feature partition aggregation example prediction for: test instance
x ∈ X , n = 3, d = 4, and |Y| = 3. Feature partitioning across L = 4 submodels, where
the l-th submodel uses only feature dimensions Sl = {l} ⊂ [4] and training set Dl, i.e.,
the tuple containing the l-th column of feature matrix X (denoted Xl) and label vector
y := [y1, y2, y3]. xSl denotes the subvector of x restricted to the feature dimensions
in Sl. Plurality label ypl = 0; runner-up label yru = 1; and run-off label yRO = 0. Under
the plurality voting decision function (Sec. 5.3.1), f(x) has certified feature robustness
Rpl = 0. With run-off (Sec. 5.3.2), f(x)’s certified feature robustness is RRO = 1.

5.2 Related Work

FPA marries ideas from two classes of certified adversarial defenses, which are

discussed below. A more detailed discussion of related work in the full paper [HL23b;

HL23a].

ℓ0-Norm Certified Evasion Defenses Representing the work most closely

related to ours, these methods certify ℓ0-norm robustness (also known as “sparse

robustness”), which we formalize below.

89

Def. 5.2. ℓ0-Norm Certified Robustness Given model f , α ∈ (0, 1), and arbitrary

feature vector x′ ∈ X , ℓ0-norm certified robustness ρ ∈ N is a pointwise guarantee w.r.t.

instance (x, y) where if ∥x− x′∥0 ≤ ρ, then y = f(x′) with probability at least 1− α.

There are two main differences between certified ℓ0-norm robustness (Def. 5.2)

and our certified feature robustness (Def. 5.1). (1) ℓ0-norm methods are not certifiably

robust against any adversarial training perturbations (e.g., poisoning and backdoors).

(2) ℓ0-norm robustness guarantees are probabilistic, while our feature guarantees are

deterministic. Put simply, our certified feature guarantees are strictly stronger than

ℓ0-norm guarantees.

Randomized ablation (RA) is the state-of-the-art certified ℓ0-norm defense [LF20b;

Jia+22b]. RA adapts ideas from randomized smoothing [CRK19] to ℓ0 evasion attacks

[LF20b]. Specifically, RA creates a smoothed classifier by repeatedly evaluating

different ablated inputs, each of which keeps a random subset of the features unchanged

and masks outs (ablates) all other features. RA’s ablated training generally permits

only stochastically-trained, parametric model architectures. At inference, certifying

a single prediction with RA requires evaluating up to 100k ablated inputs [Lee+19;

Jia+22b]. Jia et al. [Jia+22b] improve RA’s guarantees via new certification analysis

that is tight for top-1 predictions, meaning Jia et al.’s version of RA always performs

at least as well as the original. Jia et al. [Jia+22b] also extend RA to certify ℓ0-norm

robustness for top-k predictions.

Certified patch robustness is a restricted form of ℓ0-norm robustness where the

perturbed test features are constrained to a specific, contiguous shape, e.g., square

[MY21]. Existing patch defenses include (de)randomized smoothing (DRS) [LF20a] –

a specialized version of randomized ablation for patch attacks. Like RA, DRS performs

ablated training and inference. By assuming a single patch shape, the number of

90

possible attacks becomes linear in d, allowing DRS to only evaluate O(d) ablations

during inference; this derandomizes the ablation set, making DRS’s patch guarantees

deterministic.2 More recently, Metzen and Yatsura [MY21] propose, BagCert –

a certified patch defense that is less sensitive to patch shape than DRS. Note any

certified feature or ℓ0-norm defense (e.g., FPA, RA) is also a certified patch defense,

given the former’s stronger guarantees.

Instance-wise Certified Poisoning Defenses The second class of related

defenses certify robustness under the arbitrary insertion or deletion of entire instances

in the training set [Che+22; WF23] – generally a small poisoning rate (e.g., ≤1%).

Like FPA, most instance-wise poisoning defenses are voting-based [JCG21; Jia+22a;

WLF22a]. For example, deep partition aggregation (DPA) randomly partitions the

training instances across an ensemble of L submodels [LF21]. More recently, Rezaei

et al. [Rez+23] propose run-off elections, a novel decision function for DPA that can

improve DPA’s certified robustness by several percentage points. While certified

instance-wise poisoning defenses show promise, they are still vulnerable to test

perturbations – even of a single feature.

5.3 Certifying Feature Robustness

Our certified defense, feature partition aggregation (FPA), can be viewed as the

transpose of Levine and Feizi’s [LF21] deep partition aggregation (DPA). Both defenses

are (1) ensembles, (2) rely on voting-based decision functions, and (3) partition the

training set; the key difference is in the partitioning operation. DPA horizontally

partitions the set of training instances (rows of feature matrix X), enabling DPA

to certify instance-wise robustness. In contrast, FPA vertically partitions along an

2(De)randomized smoothing’s deterministic guarantees do not scale to RA which considers O(2d)
attacks.

91

orthogonal dimension – the feature set (columns of X) – enabling FPA to certify

feature-wise robustness. Intuitively, partitioning along orthogonal dimensions means

that DPA and FPA certify orthogonal types of robustness. Training FPA submodels

on disjoint feature subsets (e.g., Figure 8) entails that a perturbed feature affects,

at most, one submodel prediction. FPA leverages this property to certify feature

robustness R. Below we describe two FPA decision functions : (1) a simpler scheme

using plurality voting and (2) an enhanced multi-round voting procedure specialized

for multiclass classification. The decision function combined with FPA’s architecture

dictates how our robustness guarantee is calculated.

5.3.1 Feature Robustness Under Plurality Voting. For x ∈ X , the

plurality voting decision function defines the model prediction as f(x) := ypl, i.e., the

label that receives the most submodel votes. A successful attack requires perturbing

enough submodels to change ypl. Specifically, each submodel perturbation decreases

the submodel vote gap (Gapvote) between ypl and the adversary’s selected label

by two. Hence, the minimum number of submodel perturbations equals half the

vote gap between ypl and runner-up label yru. Thm. 5.3 formalizes this idea as a

deterministic feature robustness guarantee. Eq. (5.3)’s decomposed form is similar to

other voting-based certified defenses, including DPA [LF21; Jia+22a; HL23c].

Theorem 5.3. Certified Feature Robustness with Plurality Voting For feature

partition S1, . . . ,SL, let f be an ensemble of L submodels using the plurality-voting

decision function, where the l-th submodel uses the features in Sl. For instance (x, y),

the pointwise certified feature robustness is

Rpl :=

⌊
Gapvote(ypl, yru)

2

⌋
. (5.3)

92

Understanding Thm. 5.3 More Intuitively Let Atr ⊆ [d] be the set of features

(i.e., dimensions) an attacker modified in the training set, and let Ax ⊆ [d] be the

set of features the attacker modified in instance x. As long as |Atr ∪ Ax| ≤ R, the

adversarial perturbations did not change the model prediction. The union over the

perturbed feature sets entails that a feature perturbed in both training and test counts

only once against guarantee R. Put simply, there is no double counting of a perturbed

feature. Thm. 5.3’s certified guarantees are implicitly agnostic to the ℓ0 attack type.

Certified feature robustness R applies equally to an ℓ0 evasion attack (Ax only) as it

does to ℓ0 poisoning (Atr only). Thm. 5.3’s guarantees also encompass more complex

ℓ0 backdoor attacks (Atr ∪ Ax).

5.3.2 Feature Robustness Under Run-Off Elections. Under plurality

voting, only submodels that predict either ypl or yru are considered when determining

the certified feature robustness (Eq. (5.3)). In other words, submodels predicting other

labels essentially contribute nothing to plurality voting’s pointwise guarantees. Decision

functions that leverage these “wasted” submodels may certify larger guarantees (see

Figure 8). For instance, Rezaei et al. [Rez+23] propose run-off elections, an enhanced

two-round DPA decision function for multiclass classification.3 Since FPA and DPA

share the same basic architecture (excluding the partitioning dimension), run-off can

be directly combined with FPA to improve our certified robustness.

We now describe run-off. Our presentation is similar to Rezaei et al.’s [Rez+23]

except we standardize the formulation to align with previous work and to correct an

error in Rezaei et al.’s preprint version. Formally, run-off’s decision function procedure

is:

3Run-off only changes the decision function; no training or model architecture changes are required.

93

Round #1: Determine plurality and runner-up labels ypl and yru (resp.) as

above.

Round #2: Set run-off prediction yRO to either label ypl or yru based on the

logit vote gap where

f(x) = yRO :=


ypl Gaplogit(ypl, yru) ≥ 0

yru Otherwise

. (5.4)

Under run-off, ensemble prediction yRO can only be perturbed in two ways: (1) overtake

yRO in round #2 or (2) eject yRO from round #1’s top-two labels. Run-off’s certified

(feature) robustness is lower bounded by whichever case takes fewer submodel

perturbations. We discuss these two cases separately below; Thm. 5.4 combines

these analyses to define run-off’s overall feature robustness.

Case #1: Overtake yRO in Round #2 Let ỹRO := {ypl, yru} \ yRO denote the

label not selected in round #2. For a label y to overtake yRO in round #2, y must

simultaneously satisfy two requirements: (a) be in round #1’s top-two labels (in

turn ejecting ỹRO from the top two) and (b) receive more logit votes than yRO in

round #2. Hence, the certified robustness for this case is bounded by whichever of

these requirements requires more feature perturbations. Therefore, an attacker may

control up to

RCase1

RO
:= min

y∈Y\yRO

max

{⌊
Gapvote(ỹRO, y)

2

⌋
,

⌊
Gaplogit(yRO, y)

2

⌋}
(5.5)

features, without yRO being overtaken in round #2 (Lemma B.3).

Case #2: Eject yRO from Round #1’s Top-Two Labels In round #1, a label

y is preferred over a different label y′ iff Gapvote(y, y
′) ≥ 0 (Lemma B.2). Therefore,

ejecting yRO from round #1’s top-two labels requires perturbing sufficient submodels

94

such that two labels have negative submodel vote gaps w.r.t. yRO. Let dp be a function

that takes two submodel vote gaps (e.g., i, j ∈ N) and returns yRO’s round #1 certified

feature robustness. Recall that perturbing a submodel vote from yRO to a different

y decreases Gapvote(yRO, y) by 2; observe that this same submodel perturbation also

decreases Gapvote(yRO, y
′) by 1 for all y′ ∈ Y \ {yRO, y}. Combining these interactions,

dp can be defined recursively as

dp[i, j] =


0 max{i, j} ≤ 1 and (i, j) ̸= (1, 1)

1 + min{dp[i− 2, j − 1], dp[i− 1, j − 2]} Otherwise

,

(5.6)

where the base case ensures at least one submodel vote gap is non-negative. Therefore,

case #2’s total certified robustness is

RCase2

RO
:= min

y,y′∈Y\yRO

dp
[
gapy, gapy′

]
(5.7)

where gapy∗ = max{0,Gapvote(yRO, y
∗)} (Lemma B.4). Recursive formulations like

Eq. (5.6) are solvable using classic dynamic programming. O(L2)-space matrix dp

is prepopulated once, meaning the incremental lookup cost is only O(1) and RCase2
RO ’s

total time complexity O(|Y|2).

Combining Cases #1 and #2 to Certify Feature Robustness Thm. 5.4

provides the certified feature robustness for an FPA prediction using the run-off

decision function. Intuitively, an optimal attacker selects whichever of the two cases

above requires fewer feature perturbations; hence, Eq. (5.8) below takes the minimum

of RCase1
RO and RCase2

RO .

Theorem 5.4. Certified Feature Robustness with Run-off For feature partition

S1, . . . ,SL, let f be an ensemble of L submodels using the run-off decision function,

where the l-th submodel uses only the features in Sl. Then, for instance (x, y), the

95

pointwise certified feature robustness is

RRO = min{RCase1

RO , RCase2

RO }. (5.8)

5.3.3 Advantages of Feature Partition Aggregation. Below, we

summarize FPA’s advantages over state-of-the-art certified ℓ0-norm defense randomized

ablation (RA). These advantages apply irrespective of whether FPA uses plurality

voting or run-off.

(1) Stronger Guarantees FPA’s certified feature robustness guarantee (Def. 5.1)

is strictly stronger than RA’s ℓ0-norm guarantee (Def. 5.2). First, FPA’s guarantees

apply equally to ℓ0 evasion, poisoning, and backdoor attacks while RA only applies

to evasion. Second, FPA’s guarantees are deterministic while RA’s guarantees are

only probabilistic.

(2) Faster RA requires up to 100k forward passes to certify one prediction. FPA

requires only L forward passes – one for each submodel – where L < 200 in general.

FPA certification is, therefore, orders of magnitude faster than RA.

(3) Model Architecture Agnostic RA’s feature ablation is specialized for

parametric models like neural networks and generally prevents the use of tree-

based models like gradient-boosted decision trees (GBDTs). By contrast, FPA

supports any submodel architecture.

5.4 Feature Partitioning Strategies

The certification analysis above holds irrespective of the feature partitioning

strategy. However, how the features are partitioned can have a major impact on the

size of FPA’s certified guarantees. Below, we very briefly describe two insights into

the properties of good feature partitions.

96

Insight #1 Ensure sufficient feature information is available to each submodel.

Each incorrect submodel or logit vote cancels out a correct one, meaning the goal

should be to simultaneously maximize the number of correct submodel predictions and

minimize incorrect ones. In other words, robustness is maximized when all submodels

perform well, and feature information is divided equally.

Insight #2 Limit information loss due to feature partitioning. Feature partitioning

is lossy from an information theoretic perspective. Fixing L, some partitions are more

lossy than others, and good partitions limit the information lost.

5.4.1 Feature Partitioning Paradigms. Applying the above insights,

we propose two general feature partitioning paradigms. In practice, the partitioning

strategy is essentially a hyperparameter tunable on validation data. The validation

set need not be clean so long as the perturbations are representative of the test

distribution.

Balanced Random Partitioning Given no domain-specific knowledge, each

feature’s expected information content is equal. Balanced random partitioning assigns

each submodel a disjoint feature subset sampled uniformly at random, with subsets

differing in size by at most one. Random partitioning has two primary benefits. First,

each submodel has the same a priori expected information content. Second, random

partitioning can be applied to any dataset. FPA with random partitioning is usually

a good initial strategy and empirically performs quite well.

Deterministic Partitioning One may have application-related insights into

quality feature partitions. For example, consider feature partitioning of images.

Features (i.e., pixels) in an image are ordered, and that structure can be leveraged to

97

design better feature partitions. Often the most salient features are clustered in an

image’s center. To ensure all submodels are high-quality, each submodel should be

assigned as many highly salient features as possible. Moreover, adjacent pixels can be

highly correlated, i.e., contain mostly the same information. Given a fixed set of pixels

to analyze, the information contained in those limited features should be maximized,

so a good strategy can be to select a subset of pixels spread uniformly across the image.

Put simply, for images, random partitioning can have larger information loss than

deterministic strategies. The supplement of the original paper empirically compares

random and deterministic partitioning [HL23b; HL23a]. In short, a simple strided

strategy that distributes features regularly across an image tends to work well for

vision. Formally, given d pixels and L submodels, the l-th submodel’s feature set

under strided partitioning is Sl = {j ∈ [d] : jmod L = l − 1}.

5.5 Evaluation

Our empirical evaluation is modeled after Levine and Feizi’s [LF20b] evaluation

of randomized ablation. For clarity, additional results are deferred to the supplement

including the base (non-robust) accuracy for each dataset (C.2.1) and the full numerical

results (C.2.2 & C.2.3). Additional results appear in the original paper including:

hyperparameter sensitivity analysis, plurality voting vs. run-off comparison, random

vs. deterministic partitioning comparison, and model training times [HL23b; HL23a].

5.5.1 Experimental Setup. Due to space, most evaluation setup details

are deferred to suppl. Sec. D.2 with a brief summary below. We evaluate FPA with

both the plurality-voting (Sec. 5.3.1) and run-off (Sec. 5.3.2) decision functions.

Baselines Randomized ablation (RA) is FPA’s most closely related work and

the primary baseline below. We report the performance of both Levine and Feizi’s

[LF20b] original version of RA as well as Jia et al.’s [Jia+22b] improved version, where

98

the certification analysis is tight for top-1 predictions. RA performs feature ablation

during training and inference. Each ablated input keeps e randomly selected features

unchanged and masks out the remaining (d− e) features; RA evaluates up to 100,000

ablated inputs to certify each prediction. Recall that RA’s ℓ0-norm robustness only

applies to evasion attacks (Def. 5.2), while FPA provides strictly stronger feature

guarantees that cover manipulation of both training and test data (Def. 5.1).

We also compare FPA to three certified patch defenses: (de)randomized

smoothing [LF20a], patch interval bound propagation (IBP) [Chi+20], and

BagCert [MY21].

Performance Metrics Certified defenses generally trade-off robustness and

(clean) accuracy. Hence, following Levine and Feizi’s [LF20b] evaluation of randomized

ablation, performance is measured using two complementary metrics: (1) median

certified robustness, the median value of the certified robustness across a dataset’s entire

test set with misclassified instances assigned robustness −∞ and (2) classification

accuracy, the fraction of test predictions classified correctly. Below, Rmed and ρmed

denote the median certified feature robustness (Def. 5.1) and ℓ0-norm robustness

(Def. 5.2) resp. Mean certification time measures the time to certify a single prediction.

Performance is also quantified using certified accuracy, i.e., the fraction of correctly-

classified test instances that satisfy some specific robustness criterion; this criterion

can be patch robustness or certified robustness of at least ψ ∈ N.

Datasets We compare the methods on standard datasets used in data poisoning

evaluation. First, following Levine and Feizi’s [LF20b] evaluation of baseline RA,

99

we consider MNIST and CIFAR104 where each feature corresponds to one (RGB)

pixel. Second, Chapter 4 proves that certified regression reduces to certified binary

classification when median is used as the regressor’s decision function. We apply their

reduction to both FPA and RA where for instance (x, y) and hyperparameter ξ ∈ R≥0,

the goal is to certify that y − ξ ≤ f(x) ≤ y + ξ. We consider two tabular regression

datasets evaluated in Chapter 4. (1) Weather [Mal+21] predicts the temperature using

features such as date, longitude, and latitude (ξ = 3◦C). (2) Ames [Coc11] predicts

housing prices using features such as square footage (ξ = 15%y). These two regression

datasets serve as a stand-in for vertically partitioned data, which are commonly tabular

and, as mentioned at the beginning of this chapter, are particularly vulnerable to our

union of ℓ0 attacks threat model. Note run-off and plurality voting are identical under

binary classification so we only report FPA’s plurality voting regression results.

Model Architectures For vision datasets MNIST and CIFAR10, all methods used

convolutional neural networks. Gradient-boosted decision trees (GBDTs) generally

work exceptionally well on tabular data [BHL23] so for regression datasets Weather

and Ames, FPA used LightGBM GBDTs [Ke+17]. In contrast, RA’s feature ablation

prevents the use of tree-based models like GBDTs, so RA instead used linear models

for these two datasets (Hammoudeh and Lowd [HL23c] also used linear models for

Weather). Even when restricted to linear submodels, FPA still had better median

robustness and classification accuracy than RA; see suppl. Tables C.23 and C.24.

Feature Partitioning Strategy For CIFAR10 and MNIST, FPA used strided

feature partitioning; each submodel considered the full image dimensions with any

4Existing certified poisoning defenses do not evaluate on full ImageNet due to the high training
cost [Web+23; LF21; Jia+22a; WLF22a; WLF22b; Rez+23].

100

Table 2. Median certified robustness.
Each dataset’s best performing method
is in bold. Our median robustness
was 20–30% larger for classification
and 3 to 4× larger for regression
while simultaneously providing stronger
guarantees. For detailed results, see
Sec. C.2.2.

Dataset
FPA (ours) RA

Plural Run-Off [LF20b] [Jia+22b]

CIFAR10 11 13 7 10

MNIST 9 12 8 10

Weather 4 – 0 1

Ames 3 – 1 1

Table 3. Classification accuracy (%
– larger is better). We report FPA’s
accuracy at both RA’s (middle, bold)
and FPA’s (blue) best median robustness
levels. At RA’s best median robustness,
FPA had better classification accuracy
for all four datasets. For full results, see
Sec. C.2.2.

Dataset
FPA (ours) RA [Jia+22b]

Rmed Acc. Rmed Acc. ρmed Acc.

CIFAR10 13 62.4 10 75.0 10 64.7

MNIST 12 87.2 10 96.1 10 93.1

Weather 4 76.1 1 85.3 1 75.2

Ames 3 65.5 1 84.6 1 67.2

pixels not in Sl set to 0. For Weather and Ames, FPA used balanced random

partitioning as the tabular features are unordered.

Hyperparameters Hyperparameters L (FPA’s submodel count) and e (RA’s kept

feature count) control the corresponding method’s robustness vs. accuracy tradeoff.

When optimizing patch and median robustness, hyperparameters L and e were tuned

on validation data.5

Patch Robustness We consider two CIFAR10 patch attacks: (1) a 5× 5 pixel

square [LF20a] and (2) all 24-pixel rectangles (e.g., 1× 24 pixels, 24× 1, 2× 12, etc.),

reporting each method’s minimum and maximum certified accuracies across the eight

valid shapes [MY21].

5.5.2 Main Results. Table 2 summarizes the median certified robustness

for FPA and baseline RA. Tables 3 and 5 compare the methods and RA’s classification

accuracy and mean certification time (resp.); note that, for clarity, these two tables

5Secs. C.2.2 & C.2.3 compare each method’s certified accuracy across a range of hyperparameter
settings.

101

only report the results for Jia et al.’s [Jia+22b] better performing version of baseline

RA. Table 4 analyzes FPA as a patch defense. We briefly summarize the experiments’

takeaways below. See suppl. Secs. C.2.2 and C.2.3 for the full numerical results,

including comparing the methods at additional robustness levels.

Takeaway #1 FPA simultaneously provided larger and stronger median robustness

guarantees than RA. As Table 2 details, FPA’s median certified robustness was 20–30%

larger than RA for classification and 3 to 4× larger for regression. Importantly, FPA’s

certified feature guarantees apply to evasion, poisoning, and backdoor attacks, while

baseline RA only covers evasion attacks.

Takeaway #2 FPA’s median robustness gains come at little cost in classification

accuracy. Table 3 reports FPA’s classification accuracy at two robustness levels: (1)

FPA’s best median robustness (blue) and (2) RA’s best median robustness (bold).

Table 3 also reports RA’s classification accuracy at its own best median robustness

(last column). For CIFAR10 at median robustness of 10 pixels, FPA’s classification

accuracy was 10.2 percentage points (pp) better than RA (75.0% vs. 64.7%). At

Rmed = 13, FPA’s CIFAR10 classification accuracy was 62.4%, only 2.3pp lower than

RA’s classification accuracy at ρmed = 10. For Weather at median robustness 1,

FPA’s classification accuracy was 10.1pp better than RA (85.3% vs. 75.2%); even at

Rmed = 4, FPA’s classification accuracy was 76.1%, 0.9pp better than RA at ρmed = 1.

For MNIST at median robustness 10, FPA’s classification accuracy was 3pp better

than RA (96.1% vs. 93.1%). At Rmed = 12, FPA’s MNIST classification accuracy was

5.9pp lower than RA’s classification accuracy at ρmed = 10 (87.2% vs. 93.1%).

102

Table 4. CIFAR10 certified patch
accuracy (% – larger is better) for
FPA, RA, and three dedicated patch
defenses. FPA is competitive despite
making fewer assumptions and providing
stronger guarantees than patch defenses.

Method
24 Pixel Rect. Square

Min. Max. 5× 5

FPA Plurality (L = 180, ours) ←− 38.53 −→ 37.77

FPA Run-Off (L = 180, ours) ←− 41.60 −→ 40.95

Rand. Ablation [LF20b] ←− 28.95 −→ 28.21

Rand. Ablation [Jia+22b] ←− 37.31 −→ 36.43

(De)Random. Smoothing 0.0 72.68 57.69

BagCert 43.11 60.17 59.95

Patch IBP — — 30.30

Table 5. Mean certification time
in seconds for FPA and Jia et al.’s
[Jia+22b] randomized ablation (RA).
FPA is 2 to 3 orders of magnitude faster
than baseline RA.

Dataset
RA [Jia+22b] FPA (ours)

Speedup

e Time L Time

CIFAR10 15 5.4E+0 115 7.3E−3 743×
MNIST 25 6.8E−1 60 2.9E−3 235×
Weather 45 3.1E−1 21 1.0E−4 3,134×
Ames 60 3.8E−1 21 3.5E−4 1,082×

Takeaway #3 FPA certifies predictions 2 to 3 orders of magnitude faster than RA.

Table 5 compares the mean certification times using the hyperparameter settings with

the best median robustness. To certify one prediction, Jia et al.’s [Jia+22b] improved

RA evaluates 100k ablated inputs. In contrast, FPA requires exactly L forward passes

per prediction (one per submodel).

Takeaway #4 FPA provides strong patch robustness without any assumptions

about patch shape or the number of patches. As Table 4 details, FPA certifies 41.6%

of CIFAR10 predictions at R = 24 perturbed pixels (2.3% of d) – regardless of patch

shape or the number of patches. In contrast, (de)randomized smoothing’s [LF20a]

(BS, s = 12) 24-pixel certified accuracy varies between 0% to 72.7% based on patch

shape alone. BagCert’s certified accuracy drops as low as 43.1% for 24-pixel column

and row patches – only 1.5pp better than FPA. Unlike FPA, patch defenses’ certified

accuracy guarantees decline further or even evaporate under (1) multiple patches,

(2) training data perturbations, and (3) amorphous shapes. While less effective in

some settings than dedicated patch defenses that make stronger assumptions and

103

weaker guarantees, FPA is still competitive, providing patch guarantees essentially for

free.

Takeaway #5 FPA is the first integrated defense to provide significant pointwise

robustness guarantees over the union of evasion, backdoor, and poisoning attacks –

ℓ0 or otherwise. Consider CIFAR10 (n = 50,000) where FPA feature robustness

R ≥ 25 (Table 4) certifies 41.0% of predictions’ robustness against 1.25M arbitrarily

perturbed pixels. In contrast, the only other certified defense robust over the union of

evasion, backdoor, and poisoning attacks [Web+23] certifies the equivalent of 3 or fewer

arbitrarily perturbed CIFAR10 pixels (i.e., a total training and test ℓ2 perturbation

distance of ≤3). Moreover, FPA certifies R ≥ 7 for 35.1% of Weather predictions

(n > 3M – Table C.27) – a pointwise guaranteed robustness of up to 21M arbitrarily

perturbed feature values.

5.6 Conclusions

This paper proposes feature partition aggregation – a certified defense against

the union of ℓ0 evasion, poisoning, and backdoor attacks. FPA provided stronger and

larger robustness guarantees than the state-of-the-art ℓ0 evasion defense, randomized

ablation. FPA’s certified feature guarantees are particularly important for vertically

partitioned data where a single compromised data source allows an attacker to

arbitrarily modify a limited number of features for all instances – training and test.

To our knowledge, FPA is the first integrated defense providing non-trivial pointwise

robustness guarantees against the union of evasion, poisoning, and backdoor attacks –

ℓ0 or otherwise [Web+23]. Future work remains to develop other ℓp certified defenses

over this union of attack types.

104

CHAPTER 6

IDENTIFYING POISONING AND BACKDOOR ATTACK TARGETS WHILE

MITIGATING THE ATTACK

This chapter contains previously published and unpublished coauthored

material [HL21; HL22a; HL22b; BHL23]. Hammoudeh developed the primary method,

developed all code, conducted all experiments, and wrote the manuscript. Lowd provided

supervision, editorial suggestions, and proposed some supplemental experiments.

Zayd Hammoudeh and Daniel Lowd. “Identifying a Training-Set Attack’s

Target Using Renormalized Influence Estimation”. In: Proceedings of the

29th ACM SIGSAC Conference on Computer and Communications Security.

CCS’22. Los Angeles, CA: Association for Computing Machinery, 2022. url:

https://arxiv.org/abs/2201.10055

Zayd Hammoudeh and Daniel Lowd. “Training Data Influence Analysis and

Estimation: A Survey”. In: arXiv (2022). arXiv: 2212.04612 [cs.LG]

Zayd Hammoudeh and Daniel Lowd. “Simple, Attack-Agnostic Defense

Against Targeted Training Set Attacks Using Cosine Similarity”. In:

Proceedings of the 3rd ICML Workshop on Uncertainty and Robustness

in Deep Learning. UDL’21. 2021

Jonathan Brophy et al. “Adapting and Evaluating Influence-Estimation

Methods for Gradient-Boosted Decision Trees”. In: Journal of Machine

Learning Research 24 (2023), pp. 1–48. url: http://jmlr.org/papers/

v24/22-0449.html

105

https://arxiv.org/abs/2201.10055
https://arxiv.org/abs/2212.04612
http://jmlr.org/papers/v24/22-0449.html
http://jmlr.org/papers/v24/22-0449.html

Targeted training set attacks manipulate an ML system’s prediction on one or

more target test instances by maliciously modifying the training data [Muñ+17;

Sha+18; Agh+20; Sal+20; Hua+20; Gei+21; Wal+21]. Targeted attacks require very

few corrupted instances [Wal+21], and their effect on the test error is quite small,

making them harder to detect [Che+17].

Existing poisoning and backdoor defenses (Sec. 3.2) change the training procedure

to mitigate the impact of an attack but provide little insight into an attacker’s goals,

methods, or identity. As Sec. 3.3 explains, knowledge about an attacker is essential to

anticipating attacks, designing targeted defenses, and building defenses outside the

ML system.

This chapter’s defense against training set attacks focuses on the related goals of

learning more about an attacker and stopping their attacks. We achieve this through

a pair of related tasks:

1. target identification: identifying the target of a training set attack, which may

provide insight into the attacker’s goals and how to defend against them; and

2. adversarial-instance identification: identifying the malicious instances that

constitute the training set attack.

We are not aware of any work that studies poisoning and backdoor attack target

identification beyond very simple settings.

Our key insight is the synergistic interplay between the two tasks above. If

attackers can add only a limited number of training instances (as is often the case)

[Che+17; Wal+21], then these malicious instances must be highly influential to change

target predictions. Thus, targets are those test instances with an unusual number of

highly influential training examples. In contrast, non-targets tend to have many weak

106

influences and few very strong ones. Thus, if we can (1) determine which training

instances influence which predictions and (2) detect anomalies in this distribution,

then we can jointly solve both tasks.

Unfortunately, determining which training instances are responsible for which

model behaviors is provably hard for black-box models like neural networks [BR92].

Influence estimators [KL17; Yeh+18; Pru+20; FZ20; Che+21; BHL23; HL22b] quantify

how much each training example contributes to a particular prediction. However,

current influence analysis methods often perform poorly [BPF21; HL22b; ZZ22].

This chapter identifies a weakness common to gradient-based influence estimators

[KL17; Yeh+18; Pru+20; Che+21; HL22b]: they induce a low-loss penalty that

implicitly ranks confidently-predicted training instances as uninfluential. As a

result, existing influence estimators can systematically overlook (groups of) highly

influential, low-loss instances. This chapter provides a simple fix – renormalization that

removes the low-loss penalty. Our new renormalized influence estimators consistently

outperform the original estimators in both adversarial and non-adversarial settings.

The most effective of these renormalized estimators, gradient aggregated similarity

(GAS), often detects 100% of malicious training instances with no clean-data false

positives.

Our framework for identifying targets of training set attacks, FIT, compares the

distribution of influence values across test instances checking for anomalies. More

concretely, FIT marks as potential targets those test instances with an unusual number

of highly influential instances as explained above. Next, FIT mitigates the attack’s

effect by removing exceptionally influential training instances associated with the

target(s). Since mitigation considers only targets, training instance outliers that are

“helpful” to non-targets are unaffected. This target-driven mitigation has a positive or

107

neutral effect on clean data yet is highly effective on adversarial data where finding

even a single target suffices to disable the attack on almost all other targets.

By relying influence estimation and not the properties of a particular attack or

domain, GAS and FIT are attack agnostic; GAS and FIT can apply equally well to

different attack types, including poisoning and backdoor attacks. Our approach works

across data domains from CNN image classifiers to speech recognition to even text

transformers.

In addition to learning more about the attack and attacker, target identification

enables targeted mitigation. Defenses against poisoning and backdoor attacks

implement countermeasures that affect predictions on all instances – not just the very

few targets. Certified defenses can substantially degrade performance, in some cases

causing up to 10× more errors on clean data [Fow+21; HL23c; LF21].

Our chapter’s contributions are enumerated below.

1. We identify a weakness common to all gradient-based influence estimators and

provide a simple renormalization correction that addresses this weakness.

2. Inspired by influence estimation, we propose GAS – a renormalized influence

estimator that is highly adept at identifying influential groups of training

instances.

3. Leveraging techniques from anomaly detection and robust statistics, we extend

GAS into a general framework for identifying targets of training set attacks,

FIT.

4. We use GAS in a target-driven data sanitizer that mitigates attacks while

removing very few clean instances.

108

5. We demonstrate the effectiveness and attack agnosticism of GAS and FIT on a

diverse set of attacks and data modalities, including speech recognition, vision,

and text – even against an adaptive attacker that attempts to evade our method.

Below, we first specify this chapter’s threat model and defender objective.

Section 6.2 reviews existing gradient-based influence estimators [HL22b]. Then in

Section 6.3, we show how existing gradient-based influence estimators are inadequate

for identifying (groups of) highly influential training instances. We also introduce our

renormalization fix for influence estimation and describe four renormalized influence

estimators. Section 6.4 builds on these improved influence estimates to define a

framework for identifying the targets of an attack and mitigating the attack’s effect.

Section 6.5 demonstrates the effectiveness of our methods.

6.1 Preliminaries

Notation Let ẑte := (xte, ŷte) be any a priori unknown test instance, where ŷte is

the final model’s predicted label for xte. Observe that ŷte may not be xte’s true label.

Notation ̂ (e.g., ẑ, ĝ) denotes that the final predicted label ŷ = f(x; θT) is used in

place of x’s true label y.

Threat Model. The attacker crafts an adversarial set of perturbed instances,

Dadv ⊂ D. Denote the clean training set Dcl := D \ Dadv. We only consider successful

attacks, as defined below.

Attacker Objective and Knowledge Let Xtarg := {xj}mj=1 be a set of target

feature vectors with shared true label ytarg ∈ Y . The attacker crafts Dadv to induce the

model to mislabel all of Xtarg as adversarial label yadv. Ẑtarg := {(xj, yadv) : xj ∈ Xtarg}

denotes the target set and ẑtarg := (xtarg, yadv) an arbitrary target instance. To

avoid detection, the attacked model’s clean-data performance should be (essentially)

109

unchanged. Data poisoning attacks only perturb adversarial set Dadv. Target feature

vectors are unperturbed/benign [BNL12; Muñ+17; Wal+21; Jag+21]. Clean-label

poisoning leaves labels unchanged when crafting Dadv from seed instances [Zhu+19;

YHL23a; YHL23b]. Backdoor attacks perturb the features of both Dadv and Xtarg

– often with the same adversarial trigger (e.g., change a specific pixel to maximum

value). Generally, these triggers can be inserted into any test example targeted by the

adversary, making most backdoor attacks multi-target (|Ẑtarg| > 1) [TLM18; Gu+19;

Lin+20; Web+23; YHL23a; YHL23b]. Dadv’s labels may also be changed.

To ensure the strongest adversary, the attacker knows any pre-trained initial

parameters. Where applicable, the attacker also knows the training hyperparameters

and clean dataset Dcl. Like previous work [Zhu+19; Web+23; Wal+21], the attacker

does not know the training procedure’s random seed, meaning the attack must be

robust to randomness in batch ordering or parameter initialization.

Defender Objective and Knowledge Let Ẑte denote the set of test instances

the defender is concerned enough about to analyze as potential targets.1 Our goals

are to (1) identify any attack targets in Ẑte, and (2) mitigate the attack by removing

the adversarial instances Dadv associated with those target(s). No assumptions are

made about the modality/domain (e.g., text, vision) or adversarial perturbation. We

do not assume access to clean validation data.

6.2 Review of Influence Analysis and Estimation

As Sec. 3.2.1 discusses, most existing defenses against poisoning and backdoor

attacks assume highly restricted threat models. In contrast, this section seeks a method

that is attack agnostic, to make it harder for an adversary to adapt against. We mitigate

1Generally, there are far fewer potential targets (Ẑte) than possible test examples.

110

Test

Example

ẑte

Method AUPRC Top-5 Highest Ranked

Representer Point 0.030± 0.009

Influence Functions 0.029± 0.018

TracIn 0.140± 0.098

TracInCP 0.309± 0.260

Representer Point

Renormalized (ours)
0.778 ± 0.144

Influence Functions

Renormalized (ours)
0.215 ± 0.191

TracIn

Renormalized (ours)
0.617 ± 0.115

GAS (ours)

(TracInCP Renormalized)
0.977 ± 0.001

Figure 9. Renormalized Influence: CIFAR10 & MNIST joint, binary classification
for [frog] vs. [airplane & MNIST 0] with |Dcl| = 10,000 & |Dadv| = 150. Existing
influence estimators (upper half) consistently failed to rank Dadv’s MNIST training
instances as highly influential on MNIST test instances. In contrast, all of our
renormalized influence estimators (Section 6.3.3) outperformed their unnormalized
version – with AUPRC improving up to 25×. Results averaged across 30 trials.

training set attacks by building upon influence estimation to identify the target(s)

and adversarial set. We achieve agnosticism by building upon existing methods that

are general and makes no assumption about the underlying attack. Specifically, we

leverage influence analysis, which we formalize below. For a more complete discussion

of influence analysis and estimation, see our detailed survey [HL22b].

Intuitively, in every successful attack, the inserted training instances change a

model’s prediction for specific input(s). If the attacker can only add a limited number

of instances (e.g., 1% of D), these inserted instances must be highly influential to

achieve the attacker’s objective.

111

Influence analysis’s goal is to determine which training instances are most

responsible for a model’s prediction for a particular input [HL22b]. Influence is

often viewed as a counterfactual: which instance (or group of instances) induces

the biggest change when removed from the training data? While there are multiple

definitions of influence, as detailed below, influence analysis methods can be broadly

viewed as quantifying the (relative) responsibility of each training instance zi ∈ D on

some test prediction f(xte; θT).

Static influence estimators consider only the final model parameters θT . For

example, Koh and Liang’s [KL17] seminal work defines influence, IIF (zi, ẑte), as

the change in risk L(ẑte; θT) if zi /∈ D, i.e., the leave-one-out (LOO) change in test

loss [CW82]. By assuming strict convexity and stationarity, Koh and Liang’s influence

functions estimator approximates the LOO influence as

IIF (zi, ẑte) ≈
1

n
∇θL(ẑte; θT)⊺H−1θ ∇θL(zi; θT), (6.1)

with H−1θ the inverse of risk Hessian Hθ :=
1
n

∑
zi∈D∇

2
θL(zi; θT).

Yeh et al. [Yeh+18]’s representer point static influence estimator exclusively

considers the model’s final, linear classification layer. All other model parameters

are treated as a fixed feature extractor. Given final parameters θT , let fi denote

xi’s penultimate feature representation (i.e., the input to the linear classification layer).

Then the representer point influence of zi ∈ D on ẑte is

IRP (zi, ẑte) := −
1

2λn

(
∂L(zi; θT)
∂ayi

)〈
fi, fte

〉
, (6.2)

where λ > 0 is the weight decay (L2) regularizer and ⟨·, ·⟩ denotes vector dot product.

Recall that a is the output of the model’s linear classification layer, specifically

here a = f(xi; θT). Scalar ∂L(zi;θT)
∂ayi

is then the partial derivative of risk L w.r.t. a’s

yi-th dimension.

112

Algorithm 1 TracIn, TracInCP, & GAS training phase

Input: Training set D, iteration subset T , iteration count T , learning rates η1, . . . ,ηT , and initial

parameters θ0

Output: Training parameters P
1: P ← ∅
2: for t← 1 to T do

3: if t ∈ T then

4: P ← P ∪ {(ηt,θt−1)}
5: Bt ∼ D
6: θt ← Update(ηt, θt−1,Bt)
7: return P

Dynamic influence estimators measure influence based on how losses change during

training. More formally, influence is quantified according to how batches B1, . . . ,BT

affect model parameters θ0, . . . ,θT and by consequence risks L(·; θ0), . . . ,L(·; θT). For

example, Pruthi et al.’s [Pru+20] TracIn estimates influence by “tracing” gradient

descent – aggregating changes in ẑte’s test loss each time training instance zi’s gradient

updates parameters θt. For stochastic gradient descent (batch size b = 1), zi’s TracIn

influence on ẑte is

ITracIn (zi, ẑte) :=
T∑
t=1

1[zi ∈ Bt]
(
L(ẑte; θt−1)− L(ẑte; θt)

)
, (6.3)

where 1[u] is the indicator function s.t. 1[u] = 1 if predicate u is true and 0 otherwise.

Pruthi et al. approximate Eq. (6.3) as,

ITracIn (zi, ẑte) ≈
∑
zi∈Bt

ηt
b

〈
∇θL(zi; θt−1), ∇θL(ẑte; θt−1)

〉
, (6.4)

where ηt is iteration t’s learning rate.

Alg. 1 details the minimal changes made to model training to support TracIn where

T ⊂ {1, . . . ,T} is a preselected training iteration subset and P := {(ηt,θt−1) : t ∈ T }

contains the serialized training parameters. Alg. 2 outlines TracIn’s influence estimation

procedure for a priori unknown test instance ẑte. Influence vector v (|v| = n) contains

113

Algorithm 2 TracIn influence estimation

Input: Training parameters P, iteration subset T , iteration count T , batches B1, . . . ,BT , batch
size b, and test example ẑte

Output: Influence vector v

1: v← 0⃗ ▷ Initialize

2: for t← 1 to T do

3: if t ∈ T then

4: (η, θ)← P[t] ▷ Equiv. to (ηt, θt−1)

5: ĝte ← ∇θL(ẑte; θ)
6: for each zi ∈ Bt do ▷ Batch examples

7: gi ← ∇θL(zi; θ)
8: vi ← vi +

η
b ⟨gi, ĝte⟩ ▷ Unnormalized

9: return v

the TracIn influence estimates for each zi ∈ D. In practice, |T | ≪ T , and T is

evenly-spaced in {1, . . . ,T}, meaning TracIn effectively treats multiple batches like a

single model update.

Pruthi et al. also propose TracIn Checkpoint (TracInCP) – a more heuristic

version of TracIn that considers all training examples at each checkpoint in T – not

just those instances in the intervening batches (see Alg. 3).2 Formally,

ITracInCP (zi, ẑte) :=
∑
t∈T

ηt
b

〈
∇θL(zi; θt−1), ∇θL(ẑte; θt−1)

〉
. (6.5)

TracInCP is more computationally expensive than TracIn – with the slowdown linear

w.r.t. the number of checkpoints per epoch.

A major advantage of TracIn and TracInCP over other estimators (e.g., influence

functions) is that their only hyperparameter is iteration set T , which we tuned based

only on compute availability.

2Algorithm 3 combines two different methods TracInCP as well as GAS – our renormalized version
of TracInCP discussed in Sec. 6.3.3.

114

6.3 Why Influence Estimation Often Fails and How to Fix It

Before addressing target identification, we first consider the related task of

adversarial-instance identification. In the simplest case, if the attack’s target is

known, then the malicious instances should be among the most influential instances

for that target instance. In other words, adversarial-instance identification reduces

to influence estimation. However, Sec. 6.2’s influence estimators share a common

weakness that makes them poorly suited for this task: they all consistently rank

confidently-predicted training instances as uninfluential. We illustrate this behavior

below using a toy experiment. We then explain this weakness’s cause and propose a

simple fix that addresses this limitation on adversarial and non-adversarial data, for

all preceding estimators. Our fix is needed to successfully identify adversarial set Dadv

and, as detailed in Sec. 6.4, attack targets.

6.3.1 A Simple Experiment. Consider binary classification where clean

set Dcl is all frog and airplane training images in CIFAR10 (|Dcl| = 10,000). To

simulate a naive backdoor attack, adversarial set Dadv is 150 randomly selected

MNIST 0 images labeled as airplane. Clean data’s overall influence can be estimated

indirectly by training only on Dcl and observing the target set’s misclassification

rate [FZ20]. This experiment used class pair frog and airplane because amongst the(
10
2

)
CIFAR10 class pairs, frog vs. airplane’s average MNIST test misclassification

rate was closest to random (47.5% vs. 50% ideal).In contrast, when training on

D :=Dadv ⊔ Dcl, MNIST 0 test instances were always classified as airplane, meaning

Dadv is overwhelmingly influential on MNIST predictions. MNIST is used instead of

other CIFAR10 classes because the large (and simple [Sha+20]) difference between

the data distributions leads to a strong signal that can be consistently learned from

relatively few examples – much like backdoor or poisoning attacks [Yu+21].

115

We use this simple setup to evaluate different influence estimation methods.

We trained 30 randomly-initialized state-of-the-art ResNet9 networks, and on each

network, we performed influence estimation for a random MNIST 0 test instance to

determine how well each estimator identified adversarial set Dadv provided a known

target.3 Given the large imbalance between the amount of clean and “adversarial”

data, i.e., |Dadv| ≪ |Dcl|, performance is measured using area under the precision-

recall curve (AUPRC), which quantifies how well Dadv’s influence ranks relative to Dcl.

Precision-recall curves are preferred for highly-skewed classification tasks since they

provide more insight into the false-positive rate [DG06].

Figure 9’s upper half shows how well each influence estimator in Section 6.2

identifies Dadv, both quantitatively and qualitatively. Dynamic estimators significantly

outperformed their static counterparts, with TracInCP the overall top performer.

However, no influence estimator consistently ranked MNIST instances (i.e., Dadv)

in the top-5 most influential, with influence functions marking instances from the

other class (frog) as most influential. Influence estimation’s poor performance here is

particularly noteworthy as the task was designed to be unrealistically easy.

6.3.2 Why Influence Estimation Performs Poorly. Intra-training

dynamics illuminate the primary cause of influence estimation’s poor performance

in our toy experiment. Fig. 10 visualizes the median training loss of Dadv and Dcl

at each training checkpoint. Also shown is the gradient norm ratio, which compares

the median gradient magnitude of the adversarial and clean sets at each iteration, or

formally

GNRt :=
med{∥L(z; θt)∥ : z ∈ Dadv}
med{∥L(z; θt)∥ : z ∈ Dcl}

. (6.6)

3See supplemental Section D.3 for the complete experimental setup details.

116

MNIST (Dadv) Loss CIFAR10 (Dcl) Loss Gradient Norm Ratio

0 2 4 6 8

10−9

10−7

10−5

10−3

0.1

10

Epoch

T
ra
in
in
g
L
o
ss

1

10

0.1

10−2

10−3

10−4

10−5

10−6

G
ra
d
ie
n
t
N
o
rm

R
a
ti
o

Figure 10. CIFAR10 and MNIST Intra-training Loss Tracking: Dadv’s ()
and Dcl’s () median cross-entropy losses (L) at each training checkpoint for binary
classification – frog vs. airplane & MNIST 0. The shaded regions correspond to
each training set loss’s interquartile range. MNIST’s training losses are generally
several orders of magnitude smaller than CIFAR10’s losses. Gradient norm ratio ()
shows the tight coupling of loss and training gradient magnitude.

The gradient norm ratio closely tracks both training sets’ loss values. Both during and

at the end of training, Dadv’s median loss is significantly smaller than many instances

in Dcl – often by several orders of magnitude.

The Low-Loss Penalty Observe that all influence methods in Sec. 6.2’s scale

their influence estimates by ∂L (a,y)
∂a

either directly (representer point (6.2)) or indirectly

via the chain rule (influence functions (6.1), TracIn (6.4), and TracInCP (6.5)) as

∇θL(z; θ) :=
∂L (f(x), y)

∂θ
=
∂L (a, y)

∂a
· ∂a
∂θ

. (6.7)

Therefore, gradient-based influence estimators implicitly penalizes all training

instances t with low training loss, including Dadv (MNIST 0) in our toy experiment

above.

117

Theorem 6.1 summarizes this relationship when there is a single output activation

(|a| = 1), e.g., binary classification and univariate regression. In short, when

Theorem 6.1’s conditions are met, loss induces a perfect ordering on the corresponding

norm.

Theorem 6.1. Let loss function L̃ : R→ R≥0 be twice-differentiable and strictly

convex as well as either even4 or monotonically decreasing. Then, it holds that

L̃ (a) < L̃ (a′) =⇒
∥∥∥∇aL̃ (a)

∥∥∥
2
<

∥∥∥∇aL̃ (a′)
∥∥∥
2
. (6.8)

Loss functions satisfying Theorem 6.1’s conditions include binary cross-entropy

(i.e., logistic) and quadratic losses. Theorem 6.1 generally applies to multiclass losses,

but there are cases where the ordering is not perfect. Although Theorem 6.1 primarily

relates to training instance gradients and losses, the theorem applies to test examples

as well since dynamic estimators also apply a low-loss penalty to any iteration where

test instance ẑte has low loss.

The preceding should not be interpreted to imply that large gradient magnitudes

are unimportant. Quite the opposite, large gradients have large influences on the

model. However, the approximations necessary to make influence estimation tractable

go too far by often focusing almost exclusively on training loss – and by extension

gradient magnitude – leading these estimators to systematically overlook training

instances with smaller gradients. This overemphasis of instances with large losses

and gradient magnitudes can also be viewed as a bias towards instances that are

globally influential — affecting many examples’ predictions — over those that are

locally influential – mainly affecting a small number of targets [BBD20].

4“Even” denotes that the function satisfies ∀a L̃ (a) = L̃ (−a).

118

Static Influence and the Low Loss Penalty Fig. 9’s static estimators

(representer point and influence functions) significantly underperformed dynamic

estimators (TracIn and TracInCP) by up to an order of magnitude. Static estimators

only consider final model parameters θT , meaning they may only see the low-loss case.

In contrast, dynamic estimators consider all of training, in particular iterations where

Dadv’s loss exceeds that of Dcl. This allows dynamic estimators to outperform static

methods, albeit still poorly.

Training Randomness and the Low-Loss Penalty TracInCP significantly

outperformed TracIn in Fig. 9 despite the TracIn being more theoretically sound. As

intuition why, imagine the training set contains two identical copies of some instance. In

expectation, these duplicates have equivalent influence on any test instance. However,

TracIn assigns identical training examples different influence estimates based on their

batch assignments; this difference can potentially be very large depending on training

dynamics.

Fig. 10 exhibits this behavior where training loss fluctuates considerably

intra-epoch. For example, Dadv’s median loss varies by seven orders of magnitude

across the third epoch. TracIn’s low-loss penalty attributes much more influence

to Dadv instances early in that epoch compared to those later despite all MNIST

instances having similar influence. By considering all examples at each checkpoint,

TracInCP removes batch randomization’s direct effect on influence estimation,5

meaning TracInCP simulates influence expectation without needing to train and

analyze multiple models.

5Batch randomization still indirectly affects TracInCP and GAS (Sec. 6.3.3) through the
model parameters. This effect could be mitigated by training multiple models and averaging
the (renormalized) influence, but that is beyond the scope of this work.

119

6.3.3 Renormalizing Influence Estimation. Our CIFAR10 and MNIST

joint classification experiment above demonstrates that a training example having low

loss does not imply that it and related instances are uninfluential. Most importantly

in the context of adversarial attacks, highly-related groups of (adversarial) training

instances may collectively cause those group members’ to have very low training losses

– so-called group effects. Generally, targeted attacks succeed by leveraging the group

effect of adversarial set Dadv on the target(s). We address these group effects via

renormalization, which is defined below.

Def. 6.2. For influence estimator I, the renormalized influence, Ĩ, replaces each

gradient g in I by its corresponding unit vector g
∥g∥ .

We refer to this computation as renormalization since rescaling gradients removes

the low-loss penalty. Renormalization places all training instances on equal footing

and ensures that gradient and/or feature similarity is prioritized – not loss.

Renormalization is related to the relative influence (RelatIF) method introduced

by Barshan et al. [BBD20], since both methods use a function of the gradient to

downweight training instances with high losses. However, RelatIF only applies to

influence functions and requires computing expensive Hessian-vector products, while

renormalization is more efficient and can be applied to many influence estimators,

as we show below. See the supplement of the original paper [HL22a] for additional

discussion of alternative renormalization schemes.

Renormalized versions of Section 6.2’s static influence estimators are below.

Renormalized influence functions in Eq. (6.9) does not include target gradient norm

∥ĝte∥ since it is a constant factor. For simplicity, Eq. (6.10)’s renormalized representer

point uses signum function sgn (·) since for any scalar u ̸= 0, sgn (u) = u
|u| , i.e., signum

120

is equivalent to normalizing by magnitude.

ĨIF (zi, ẑte) :=
1

n
∇θL(ẑte; θT)⊺H−1θ

(
∇θL(zi; θT)
∥∇θL(zi; θT)∥

)
(6.9)

ĨRP (zi, ẑte) :=−
1

2λn
sgn

(
∂L(zi; θT)
∂ayi

)〈
fi, fte

〉
(6.10)

Renormalized versions of Section 6.2’s dynamic influence estimators appear below.

Going forward, we refer to renormalized TracInCP (Eq. (6.12)) as gradient aggregated

similarity, GAS, since it is essentially the weighted, gradient cosine similarity averaged

across all of training. GAS’s procedure is detailed in Algorithm 3.6

ĨTracIn (zi, ẑte) :=
∑
zi∈Bt

ηt
b

〈
∇θL(zi; θt−1), ∇θL(ẑte; θt−1)

〉
∥∇θL(zi; θt−1)∥∥∇θL(ẑte; θt−1)∥

(6.11)

ĨTracInCP (zi, ẑte) :=
∑
t∈T

ηt
b

〈
∇θL(zi; θt−1), ∇θL(ẑte; θt−1)

〉
∥∇θL(zi; θt−1)∥∥∇θL(ẑte; θt−1)∥

=: GAS(zi, ẑte) (6.12)

Unlike static estimators, rescaling dynamic influence by target gradient norm ∥ĝte∥

is quite important as mentioned earlier. Intuitively, ∥ẑte∥ tends to be largest in

two cases: (1) early in training due to initial parameter randomness and (2) when

iteration t’s predicted label conflicts with final label ŷte. Both cases are consistent

with the features most responsible for predicting ŷte not yet dominating. Therefore,

rescaling dynamic influence by ∥ĝte∥ implicitly upweights iterations where ŷte is

predicted confidently. It also inhibits any single checkpoint dominating the estimate.

Applying Renormalization to CIFAR10 and MNIST Joint Classification

Figure 9’s lower half demonstrates renormalization’s significant performance advantage

over standard influence estimation – with the improvement in AUPRC as large as 25×.

6As shown in Algorithm 3, TracInCP’s procedure (Line 7) is identical to GAS (Line 9) other than
influence renormalization.

121

Algorithm 3 GAS vs. TracInCP

Input: Training parameters P, training set D, batch size b, & test example ẑte

Output: (Renormalized) influence vector v

1: v← 0⃗ ▷ Initialize

2: for each (ηt, θt−1) ∈ P do

3: ĝte ← ∇θL(ẑte; θt−1)

4: for each zi ∈ D do ▷ All examples

5: gi ← ∇θL(zi; θt−1)

6: if calculating TracInCP then

7: vi ← vi +
ηt

b ⟨gi, ĝte⟩ ▷ Unnormalized (Sec. 6.2)

8: else if calculating GAS then

9: vi ← vi +
ηt

b

〈
gi

∥gi∥ ,
ĝte

∥ĝte∥

〉
▷ Renormalized (Sec. 6.3.3)

10: return v

In particular, our renormalized estimators’ top-5 highest-ranked instances were all

consistently from MNIST, unlike any of the standard influence estimators. Overall,

GAS (renormalized TracInCP) was the top performer – even outperforming our other

renormalized estimators by a wide margin.

6.3.4 Renormalization and More Advanced Attacks. Section 6.3.2

illustrates why influence performs poorly under a naive backdoor-style attack where

the adversary does not optimize the adversarial set. Those concepts also generalize to

more sophisticated attacks. For example, recent work shows that deep networks often

predict the adversarial set with especially high confidence (i.e., low loss) due to shortcut

learning – even on advanced attacks [Yu+21; Gei+20]. Those findings reinforce the

need for renormalization. This can be viewed through the lens of simplicity bias where

neural networks tend to confidently learn simple features (shortcuts) – regardless of

whether those features actually generalize [Sha+20].

Dynamic estimators – both TracIn and GAS – outperform static ones for

Sec. 6.3.1’s naive attack. The same can be expected for sophisticated attacks including

ones that track adversarial-set gradients through simulated training [Hua+20; Wal+21].

122

For those attacks, adversaries can craft Dadv to exhibit particular gradient signatures

at the end of training to avoid static detection. Moreover, models learn adversarial

data faster than clean data meaning training loss often drops abruptly and significantly

early in training [Li+21]. For an attack to succeed, adversarial instances must align

with the target at some point during training, meaning dynamic methods can detect

them.

Lastly, our threat model specifies that attackers never know the random batch

sequence nor any randomly initialized parameters. Therefore, attackers can only

craft Dadv to be influential in expectation over that randomness. Influence is

stochastic, varying significantly across random seeds. However, estimating the true

expected influence is computationally expensive. GAS and TracInCP, which simulate

expectation, better align with how the adversary actually crafts the adversarial set,

resulting in better Dadv identification.

Below we detail how renormalization can be specialized further for better

adversarial-set identification.

Extending Renormalization Layerwise: In practice, gradient magnitudes are

often unevenly distributed across a neural network’s layers. For example, Figure 11

tracks an attack target’s average intra-training gradient magnitude for two different

backdoor adversarial triggers on CIFAR10 binary classification (ytarg = airplane and

yadv = bird).7 Specifically, target gradient norm, ∥∇θL(ẑtarg; θt)∥, is decomposed into

just the contributions of the network’s first convolutional layer (Conv1) and the final

linear layer. Despite being only 0.04% of the model parameters, these two layers

combined constitute >50% of the gradient norm. Therefore, the first and last layers’

7See supplemental Section D.3 for the complete experimental setup. The class pair and adversarial
triggers were proposed by Weber et al. [Web+23].

123

1 Pixel Conv1 1 Pixel Linear Blend Conv1 Blend Linear

0 2 4 6 8
0

20

40

60

Epoch

% of∥∥∥ĝ(t)targ

∥∥∥

Figure 11. Layerwise Decomposition of an Attack Target’s Intra-
Training Gradient Magnitude: One-pixel and blend backdoor adversarial
triggers (dashed and solid lines respectively) trained separately on CIFAR10 binary
classification (ytarg = airplane and yadv = bird) using ResNet9. The network’s first
convolutional (Conv1) and final linear layers are a small fraction of the parameters
(0.03% and 0.01% resp.) but constitute most of the target’s gradient magnitude (∥ĝtarg∥)
with the dominant layer attack dependent. Results are averaged over 20 trials.

parameters are, on average, weighted >2,000× more than other layers’ parameters.

With simple renormalization, important parameters in those other layers may go

undetected.

As an alternative to simply renormalizing by ∥∇θL(z; θt)∥, partition gradient

vector g by layer into L disjoint vectors (where L is model f ’s layer count) and then

independently renormalize each subvector separately. This layerwise renormalization

can be applied to any estimator that uses training gradient gi or test gradient ĝte,

including influence functions, TracIn, and TracInCP. Layerwise renormalization still

corrects for the low-loss penalty and does not change the asymptotic complexity. To

switch GAS to layerwise, the only modification to Algorithm 3 is on Line 10 where

124

each dimension is divided by its corresponding layer’s norm instead of the full gradient

norm.

Notation: “-L” denotes layerwise renormalization, e.g., layerwise GAS is

GAS-L. Suffix “(-L)”, e.g., GAS(-L), signifies that a statement applies irrespective

of whether the renormalization is layerwise.

6.3.5 Renormalization and Non-Adversarial Data. Renormalization

not only improves performance identifying an inserted adversarial set; it also improves

performance in non-adversarial settings. Sec. 6.2 defines influence w.r.t. a single

training example. Just as one instance may be more influential on a prediction than

another, a group of training instances may be more influential than a different group.

Renormalization improves identification of influential groups of examples, even on

non-adversarial data.

To empirically demonstrate this, consider CIFAR10 binary classification again.

In each trial, ResNet9 was pre-trained on eight (= 10− 2) held-out CIFAR10 classes.

From the other two classes, test example zfilt was selected u.a.r. from those test

instances with a moderate misclassification rate (10-20%) across multiple retrainings

(i.e., fine-tunings) of the pre-trained network.8 (Renormalized) influence was then

calculated for zfilt, with each estimator yielding a training set ranking. Each estimator’s

top p% ranked instances were removed from the training set and 20 models trained

from the pre-trained parameters using these reduced training sets. Performance is

measured using zfilt’s misclassification rate across those 20 models where a larger error

rate entails a better overall ranking.

Figure 12 compares influence estimation’s filtering performance, with and without

renormalization, against a random baseline averaged across five CIFAR10 class pairs,

8Using examples with a moderate misclassification rate ensures that dataset filtering’s effects are
measurable even with a small fraction of the training data removed.

125

Random Inf. Func. Inf. Func. Rn. (ours) Inf. Func. Rn.-L (ours)

TracIn TracInCP GAS (ours) GAS-L (ours)

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

% Training Set Removed

z fi
lt
M
is
cl
as
s.

R
a
te

(a) Influence functions-based methods

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

% Training Set Removed

z fi
lt
M
is
cl
as
s.

R
at
e

(b) TracIn-based methods

Figure 12. Effect of Removing Influential, Non-Adversarial Training Data:
Test example zfilt’s misclassification rate (larger is better) when filtering the training
set using influence rankings based on influence functions (top) and TracIn (bottom).
Renormalization (Rn.) always improved mean performance across all training set
filtering percentages. Results are averaged across five CIFAR10 class pairs with
30 trials per class pair and 20 models trained per method per trial. Results are
separated by the reference influence estimator.

126

namely the two pairs specified by Weber et al. [Web+23] and three additional

random pairs. Influence, irrespective of renormalization, significantly outperformed

random removal, meaning all of these estimators found influential subsets, albeit

of varying quality.9 In all cases, renormalized influence had better or equivalent

performance to the original estimator across all filtering fractions. This demonstrates

that renormalization generalizes across estimators even beyond adversarial settings.

Overall, layerwise renormalization was the top performer across all setups except

for large filtering percentages where GAS surpassed it slightly. Renormalized(-L)

Influence functions and GAS(-L) performed similarly when filtering a small fraction

(e.g., ≤5%) of the training data. However, the performance of renormalized influence

functions plateaued for larger filtering fractions (≥10%) while GAS(-L)’s performance

continued to improve. In addition, renormalization’s performance advantage over

vanilla influence functions narrowed at larger filtering fractions. In contrast, GAS(-L)’s

advantage over TracIn and TracInCP remained consistent. Recall that dynamic

methods (e.g., GAS(-L) and TracIn) use significantly more gradient information than

static methods (e.g., influence functions). This experiment again demonstrates that

loss-based renormalization’s benefits increase as more gradient information is used.

6.4 Identifying Attack Targets

Recall that non-targets have primarily weak influences and few very strong ones.

Target instances are anomalous in that they have an unusual number of highly-

influential training instances (Figure 13). This idea is the core of our framework for

identifying targets of training set attacks, FIT. Alg. 4 formalizes FIT as an end-to-end

9Representer point (Eq. (6.2)) is excluded as it underperformed random filtering.

127

procedure to identify any targets in test example analysis set Ẑte.
10 Overall, FIT has

three sub-steps, described chronologically:

1. Inf: Calculates (renormalized) influence vector v for each test instance in

analysis set Ẑte.

2. AnomScore: Targets have an unusual number of highly-influential instances.

Leveraging ideas from anomaly detection, this step analyzes each test instance’s

influence vector v and ranks those instances based on how anomalous their

influence values are.

3. Mitigate: Target-driven mitigation sanitizes model parameters θT and training

set D to remove the attack’s influence on the most likely target ẑtarg (e.g., the

most anomalous misclassified instance).

FIT is referred to as a “framework” since these subroutines are general and their

underlying algorithms can change as new versions are developed. The next three

subsections describe our implementation of each of these methods. For reference,

suppl. Alg. 5 specializes Alg. 4 to more closely align with the implementation details

below. See the original paper [HL22a] for a complete discussion of FIT’s end-to-end

computational complexity.

6.4.1 Measuring (Renormalized) Influence. Algorithm 4 is agnostic

of the specific (renormalized) influence estimator used to calculate v, provided that

method is sufficiently adept at identifying adversarial set Dadv. We use GAS(-L) for

the reasons explained in Section 6.3 as well as its simplicity, computational efficiency,

and strong, consistent empirical performance.

10For simplicity, Alg. 4 considers a single identified target. If there are multiple identified targets,
Mitigate is invoked on each target serially with parameters θ̃T and D̃tr.

128

Algorithm 4 FIT target identification & mitigation

Input: Training set D, test example set Ẑte, and final params. θT

Output: Sanitized model parameters θ̃T & training set D̃tr

1: V ←
{
Inf(ẑ;D) : ẑ ∈ Ẑte

}
▷ (Renorm.) Inf. (Alg. 3)

2: Σ← {AnomScore(v, V) : v ∈ V} ▷ Anomaly score (Sec. 6.4.2)

3: Rank Ẑte by anomaly scores Σ

4: ẑtarg ← Most anomalous test example in Ẑte

5: θ̃T , D̃tr ← Mitigate(ẑtarg, θT , D) ▷ Sec. 6.4.3

6: return θ̃T , D̃tr

Dadv Dcl Theoretical Normal

V
is
io
n

P
o
is
o
n

D
en

si
ty

(a) GAS target
renormalized influence

(b) GAS non-target
renormalized influence

(c) Training set gradient
norm

S
p
e
e
ch

B
a
ck

d
o
o
r

D
en

si
ty

(d) GAS target
renormalized influence

(e) GAS non-target
renormalized influence

(f) Training set gradient
norm

Figure 13. GAS renormalized influence, v, density distributions for two training set
attacks: CIFAR10 vision poisoning [Zhu+19] (ytarg = dog and yadv = bird) and speech-
recognition backdoor [Liu+18] (ytarg = 4 and yadv = 5). Theoretical normal () is w.r.t.
D := Dadv ∪ D. Observe that target examples (Figs. 13a and 13d) have significant
Dadv mass () well to the right of Dcl’s mass (). This upper-mass phenomenon is
absent in non-targets (Figs. 13b and 13e). Training example gradient norms (Fig. 13c
and 13f) are poorly correlated with whether the training example is adversarial. For
example, speech recognition has Dcl mass well to the right of even the right-most Dadv

mass, necessitating renormalization. See Sections 6.5.1 and D.3 for more details on
these attacks.

129

Time and Space Complexity : Computing a gradient requires O(p) time and

space. For fixed T and p, TracInCP, GAS, and GAS-L require O(n) time and

space to calculate each test instance’s influence vector v. The next section explains

that FIT analyzes each test instance’s influence vector v meaning GAS(-L) can

be significantly sped-up by amortizing training gradient (g
(t)
i) computation across

multiple test examples – either on a single node or across multiple nodes (e.g., using

all-reduce).

6.4.2 Identifying Anomalous Influence. To change a prediction,

adversarial set Dadv must be highly influential on the target. When visualizing

ẑte’s influence vector v as a density distribution, an exceptionally influential Dadv

manifests as a distinct density mass at the distribution’s positive extreme.

Figures 13a and 13d each plot an attack target’s GAS influence as a density for

two different training set attacks – the first poisoning on vision [Zhu+19] and the

other a backdoor attack on speech recognition [Liu+18]. For both attacks, adversarial

set Dadv’s influence significantly exceeds that of Dcl. When compared to theoretical

normal (calculated11 w.r.t. complete training set D), Dadv’s target influence is highly

anomalous. In Figures 13b and 13e, which plot the GAS influence of non-targets for

the same two attacks, no extremely high influence instances are present.

Going forward, influence vectors v with exceptionally high influence instances

are referred to as having a heavy upper tail. Then, target identification simplifies to

identifying influence vectors whose values have anomalously heavy upper tails. The

preceding insight is relative and is w.r.t. to other test instances’ influence value

distributions. Non-target baseline anomaly quantities vary with model, dataset, and

11The plotted theoretical normal used robust statistics median and Q in place of mean and standard
deviation.

130

Algorithm 5 FIT target identification implementation

Input: Training set D, training set size n, test example set Ẑte, and upper-tail count κ

Output: Sanitized model parameters θ̃T & training set D̃tr

1: V ←
{
GAS(ẑj ;D) : ẑj ∈ Ẑte

}
▷ Renorm. Inf. (Alg. 3)

2: Σ←
{

v(j)−µ(j)

Q(j) : v(j) ∈ V
}

▷ Anomaly score (Sec. 6.4.2)

3: H ←
{
σ(n−κ) : σ ∈ Σ

}
▷ Upper-tail heaviness (Sec. 6.4.2)

4: Rank Ẑte by heaviness H
5: θ̃T , D̃tr ← θT , D
6: for each target ẑtarg identified using H do

7: θ̃T , D̃tr ← Mitigate(ẑtarg, θ̃T , D̃tr) ▷ Sec. 6.4.3

8: return θ̃T , D̃tr

hyperparameters. That is why suppl. Algorithm 5 ranks candidates in Ẑte based on

their upper-tail heaviness.

Quantifying Tail Heaviness: Determining whether ẑte’s influence vector v is

abnormal simplifies to univariate anomaly detection for which significant previous

work exists [BL78; RL87; HA04; RH17]. Observe in Figures 13b and 13e that Dcl’s

GAS influence vector v tends to be normally distributed (see the close alignment to

the dashed line). We, therefore, use the traditional anomaly score, σ := v−µ
s
, where

µ and s are each v’s center and dispersion statistics, resp.12 Mean and standard

deviation, the traditional center and dispersion statistics, resp., are not robust to

outliers. Both have an asymptotic breakdown point of 0 (one anomaly can shift the

estimator arbitrarily). Since Dadv instances are inherently outliers, robust statistics

are required.

Median serves as our center statistic µ given its optimal breakdown (50%).

Although median absolute deviation (MAD) is the best-known robust dispersion

statistic, we use Rousseeuw and Croux’s [RC93] Q estimator, which retains

12In suppl. Algorithm 5, statistics µ(j) and Q(j) are calculated separately for each test instance ẑj ’s
influence vector v(j).

131

MAD’s benefits while addressing its weaknesses. Specifically, both MAD and Q

have optimal breakdowns, but Q has better Gaussian data efficiency (82% vs. 37%).

Critically for our setting with one-sided anomalies, Q does not assume data symmetry

– unlike MAD. Formally,

Q := c{|vi − vl| : 1 ≤ i < l ≤ n}(r), (6.13)

where {·}(r) denotes the set’s r-th order statistic with r =
(⌊n2 ⌋+1

2

)
and c is a

distribution consistency constant which for Gaussian data, c ≈ 2.2219 [RH17].

Eq. (6.13) requires only O(n) space and O(n lg n) time as proven by Croux and

Rousseeuw [CR92]. Provided anomaly score vector σ, upper-tail heaviness is

simply σ(n−κ), which is σ’s (n− κ)th order statistic, i.e., ẑte’s κ
th largest anomaly

score value. The value of κ implicitly affects the size of the smallest detectable attack,

where any attack with |Dadv| < κ is much harder to detect.

Multiclass vs. Binary Classification Different classes are implicitly generated

from different data distributions. Each class’s data distribution may have different

influence tails – in particular in multiclass settings. Target identification performance

generally improves (1) when µ and Q are calculated w.r.t. only training instances

labeled ŷte and (2) ẑte’s upper-tail heaviness is ranked w.r.t. other test instances

labeled ŷte.

Faster FIT The execution time of TracInCP and by extension GAS(-L), depends

on parameter count |θ|. For very large models, target identification can be significantly

sped up via a two-phase strategy. In phase 1, GAS(-L) uses a very small iteration

subset (e.g., T = {T}) to coarsely rank analysis set Ẑte. Phase 2 then uses the

complete T but only on a small fraction (e.g., 10%) of Ẑte with the heaviest phase 1

132

tails. Section 6.5.3 applies this approach to natural-language data poisoning on

RoBERTaBASE [Liu+20b].

Computing each test instance’s (ẑte ∈ Ẑte) influence vector v is independent.

Each dimension vi is also independent and can be separately computed. Hence,

GAS(-L) is embarrassingly parallel allowing linear speed-up of target identification

via parallelization.

6.4.3 Target Driven Attack Mitigation. A primary benefit of target

identification is that attack mitigation becomes straightforward. Algorithm 6 mitigates

attacks by sanitizing training set D of adversarial set Dadv. Most importantly, target

identification solves data sanitization’s common pitfall (Sec. 3.2.1) of determining how

much data to remove. Sanitization stops when the target’s misprediction is eliminated.

Therefore, successfully identifying a target means sanitization is guaranteed to succeed

tautologically (i.e., attack success rate on any analyzed targets is 0).

More concretely, Alg. 6 iteratively filters D by thresholding anomaly score

vector, σ.13 Since adversarial instances are abnormally influential on targets, Alg. 6

filters Dadv instances first. After each iteration, influence is remeasured to account

for estimation stochasticity and because training dynamics may change with different

training sets. Data removal cutoff ζ is tuned based on computational constraints

– larger ζ results in less clean data removed but may take more iterations. Slowly

annealing ζ also results in less clean-data removal.

Given forensic or human analysis of the identified target(s), simpler mitigation

than Algorithm 6 is possible, e.g., a naive, rule-based, corrective lookup table that

entails no clean data removal at all.

13Alg. 6 considers the more general case of a single identified target but can be extended to consider
multiple targets. For instance, provided there is a single attack, average v across all targets, and
stop sanitizing once all targets are classified correctly.

133

Algorithm 6 Target-driven mitigation & sanitization

Input: Target ẑtarg := (xtarg,yadv), anomaly cutoff ζ, model f , initial params. θ0, final params. θT ,

and training set D
Output: Clean model parameters θ̃T & sanitized training set D̃tr

1: function Mitigate(ẑtarg, θT , D)
2: θ̃T , D̃tr ← θT , D
3: while argmax

(
f(xtarg; θ̃T)

)
= yadv do

4: v← Inf(ẑtarg;D) ▷ Renorm. Influence (Alg. 3)

5: σ ← v−µ
Q ▷ Anomaly score (Sec. 6.4.2)

6: D̃tr ← D̃tr \
{
zi : σi ≥ ζ ∧ zi ∈ D̃tr

}
▷ Sanitize

7: θ̃T ← Retrain(θ0, D̃tr)

8: Optionally anneal ζ

9: return θ̃T , D̃tr

For learning environments where certified training data deletion is possible

[Guo+20; MRA22], retraining (Alg. 6 Line 7) may not even be required — making

our method even more efficient.

Enhancing Mitigation’s Robustness An adversary could attack FIT by

injecting adversarial instances into D to specifically trigger excessive, unnecessary

sanitization. To mitigate such a risk, Alg. 6 could be tweaked to include a

maximum sanitization threshold14 that would trigger additional (e.g., human, forensic)

analysis. This threshold could be set empirically or using domain-specific knowledge

(e.g., maximum possible poisoning rate). See the supplement of the original

paper [HL22a] for further discussion.

6.5 Evaluation

We empirically demonstrate our method’s generality by evaluating training set

attacks on different data modalities, including text, vision, and speech recognition. We

14This threshold could be w.r.t. the number of examples removed or the change in held-out loss.
These quantities can be measured cumulatively or for targets individually.

134

consider both poisoning and backdoor attacks on pre-trained and randomly-initialized,

state-of-the-art models in binary and multiclass settings. For brevity, most evaluation

setup details (e.g., hyperparameters) are deferred to suppl. Section D.3. Additional

experimental results also appear in the original paper [HL22a].

6.5.1 Training-Set Attacks Evaluated. We evaluated our method on four

published training set attacks – two single-target data poisoning and two multi-target

backdoor. Below are brief details regarding how each attack crafts adversarial set Dadv,

with the full details in suppl. Sec. D.3.2.4. Representative clean and adversarial

training instances for each attack appear in the original paper [HL22a]. Table 6 lists

each attack’s mean success rate aggregated across all related setups. Full granular

results are in Section C.3.

Below, ytarg → yadv denotes the target’s true and adversarial labels, respectively.

When an attack considers multiple class pairs or setups, each is evaluated separately.

(1) Speech Backdoor : Liu et al.’s [Liu+18] speech recognition dataset contains

spectrograms of human speech pronouncing in English digits 0 to 9 (10 classes,

|Dcl| = 3,000 – 1% backdoors). Liu et al. also provide 300 backdoored training

instances evenly split between the 10 classes. Each class’s adversarial trigger – a

short burst of white noise at the recording’s beginning – induces the spoken digit

to be misclassified as the next largest digit (e.g., 0→ 1, 1→ 2, etc.). This small

input-space signal induces a large feature-space perturbation – too large for many

certified methods. Following Liu et al., our evaluation used a speech recognition CNN

trained from scratch.

(2) Vision Backdoor : Weber et al. [Web+23] consider three different backdoor

adversarial trigger patterns on CIFAR10 binary classification. Specifically, Weber

et al.’s “pixel” attack patterns increase the pixel value of either one or four central

135

pixel(s) by a specified maximum ℓ2 perturbation distance while their “blend” trigger

pattern adds fixed N (0, I) Gaussian noise across all perturbed images. We considered

the same class pairs as Weber et al. (auto→ dog and plane→ bird) on the state-of-

the-art ResNet9 [Pag20] CNN trained from scratch with |Dadv| = 150 and |D| = 10,000

(1.5% backdoors).

(3) Natural Language Poison: Wallace et al. [Wal+21] construct text-based

poison by simulating bilevel optimization via second-order gradients. Dadv’s instances

are crafted via iterative word-level substitution given a target phrase. We follow

Wallace et al.’s [Wal+21] experimental setup of poisoning the Stanford Sentiment

Treebank v2 (SST-2) sentiment analysis dataset [Soc+13] (|Dcl| = 67,349 & |Dadv| = 50

– 0.07% poison) on the RoBERTaBASE transformer architecture (125M parameters)

[Liu+20b].

(4) Vision Poison: Zhu et al.’s [Zhu+19] targeted, clean-label attack crafts

poisons by forming a convex polytope around a single target’s feature representation.

Following Zhu et al., the pre-train then fine-tune paradigm was used. In each trial,

ResNet9 was pre-trained using half the classes (none were ytarg or yadv). Targets

were selected uniformly at random (u.a.r.) from test examples labeled ytarg, and

50 poison instances (0.2% of D) were then crafted from seed examples labeled yadv.

The pre-trained network was fine-tuned using Dadv and the five held-out classes’

training data (|D| = 25,000). Like previous work [Sha+18; Hua+20], CIFAR10 class

pairs dog vs. bird and deer vs. frog were evaluated, where each class in a pair serves

alternately as ytarg and yadv.

While it is not feasible to evaluate our approach on every attack (as new attacks

are developed & published so frequently) we believe this diverse set of attacks is

representative of training set attacks in general and demonstrates our approach’s

136

broad applicability. In particular, our method is not tailored to these attacks and could

be used against future attacks as well, as long as the attack includes highly-influential

training examples that attack specific targets.

6.5.2 Identifying Adversarial Set Dadv. To identify the target (Alg. 4)

or mitigate the attack (Alg. 6), we must be able to identify the likely adversarial

instances Dadv associated with a possible target ẑtarg. Our approach is to use influence-

estimation methods, which should rank an actual adversarial attack Dadv as more

influential than clean instances Dcl on the target. In this section, we evaluate how

well different influence-estimation methods succeed at performing this ranking for a

given target.

We compare the performance of our renormalized estimators, GAS and GAS-L,

against Section 6.2’s four influence estimators: TracInCP, TracIn, influence functions,

and representer point. As an even stronger baseline, where applicable, we also compare

against Peri et al.’s [Per+20] Deep k-NN empirical training set defense specifically

designed for Zhu et al.’s [Zhu+19]’s vision, clean-label poisoning attack; described

briefly, Deep k-NN sanitizes the training set of instances whose nearest feature-

space neighbors have a different label. Like Section 6.3’s CIFAR10 & MNIST joint

classification experiment, class sizes are imbalanced (|Dadv| ≪ |Dcl|) so performance

is again measured using AUPRC.

For targets selected u.a.r., Figure 14 details each method’s averaged adversarial-

set identification AUPRC for Section 6.5.1’s four attacks. In summary, GAS and

GAS-L were each the top performer for one attack and had comparable performance

for the other two.

GAS and GAS-L identified the adversarial instances nearly perfectly for Liu

et al.’s speech backdoor and Wallace et al.’s text poisoning attacks. Standard influence

137

GAS (ours) GAS-L (ours) TracInCP TracIn

Influence Func. Representer Pt. Deep k-NN

Speech Vision NLP Vision

0

0.2

0.4

0.6

0.8

1

Backdoor Poison

D
a
d
v
A
U
P
R
C

Figure 14. Adversarial-Set Identification: Mean AUPRC identifying adversarial
set Dadv using a randomly selected target for Sec. 6.5.1’s four attacks. Results averaged
across related setups with ≥10 trials per setup. See supplemental Section C.3 for the
full granular results.

estimation performed poorly on the text poisoning attack (in particular the static

estimators) due to the large model, RoBERTaBASE, that Wallace et al.’s attack

considers. For the vision backdoor and poisoning attacks, our renormalized estimators

successfully identified most of Dadv – again, much better than the four original

estimators. While Peri et al.’s [Per+20] Deep k-NN defense can be effective at

stopping clean-label vision poisoning, it does so by removing a comparatively large

fraction of clean data (up to 4.3% on average) resulting in poor AUPRC.

For completeness, Figure 15 provides adversarial-set identification results for

our renormalized, static influence estimators. In all cases, renormalization improved

the estimator’s performance, generally by an order of magnitude with a maximum

improvement of 600×. These experiments highlight layerwise renormalization’s benefits.

Influence functions’ Hessian-vector product algorithm [Pea94] can assign a large

magnitude to some layers, and these layers then dominate the influence and GAS

138

Inf. Func. Rn. (ours) Inf. Func. Rn.-L (ours) Inf. Func.

Rep. Pt. Rn. (ours) Representer Pt.

Speech Vision NLP Vision

0

0.2

0.4

0.6

0.8

1

Backdoor Poison

D
a
d
v
A
U
P
R
C

Figure 15. Static Influence Adversarial-Set Identification: Comparing the
mean adversarial-set identification AUPRC of the static influence estimators and their
corresponding renormalized (Rn.) versions. For all attacks, renormalization improved
the static estimators’ mean performance by up to a factor of>600×. These experiments
also highlight layerwise renormalization’s performance gains, e.g., influence functions
on natural-language poison. Results are averaged across related experimental setups
with ≥10 trials per setup.

estimates. Layerwise renormalization addresses this, improving renormalized influence

function’s adversarial-set identification AUPRC by up to 3.5×.

6.5.3 Identifying Attack Targets. The previous experiments demonstrate

that knowledge of a target enables identification of the adversarial set when using

renormalization. This section demonstrates that the distribution of renormalized

influence values actually enables us to identify target(s) in the first place, through

the interplay foundational to our target identification framework, FIT. Since target

identification is a new task, we propose four target identification baselines. First,

inspired by Peri et al.’s [Per+20] Deep k-NN empirical defense, maximum k-NN

distance computes the distance from each test instance to its κth nearest neighbor

in the training data, as measured by the L2 distance between their penultimate

139

FIT w/ GAS (ours) FIT w/ GAS-L (ours) Max. k-NN Dist.

Min. k-NN Dist. Most Certain Least Certain

Speech Vision NLP Vision

0

0.2

0.4

0.6

0.8

1

Backdoor Poison

T
a
rg
et

A
U
P
R
C

Figure 16. Target Identification: Mean target identification AUPRC for Sec. 6.5.1’s
four attacks. “FIT w/ GAS” denotes GAS was FIT’s influence estimator with
matching notation for GAS-L. Results averaged across setups with ≥10 trials per
setup. See Sec. C.3 for the full granular results.

feature representations (f). It orders them by this distance, starting with the largest

distance to the κth neighbor, thus prioritizing outliers and instances in sparse regions

of the learned representation space. Minimum k-NN distance is the reverse ordering,

prioritizing instances in dense regions. The other two baselines are most certain, which

ranks test examples in ascending order by loss while least certain ranks by descending

loss.

There are far fewer targets than possible test examples so performance is again

measured using AUPRC. See suppl. Table D.58 for the number of targets and non-

targets analyzed for each attack. For single-target attacks (vision and natural language

poisoning), target identification AUPRC is equivalent to the target’s inverse rank,

causing AUPRC to decline geometrically.

Figure 16 shows that FIT – using eitherGAS orGAS-L as the influence estimator

– achieves near-perfect target identification for both backdoor attacks and natural

140

language poisoning. Overall, FIT with GAS was the top performer on two attacks,

and FIT with GAS-L was the best for the other two. Recall that the vision poisoning

attack is single target. Hence, GAS-based FIT’s mean AUPRC of >0.8 equates

to an average target rank better than 1.25 (1/0.8), i.e., three out of four times on

average ẑtarg was the top-ranked – also very strong target detection. FIT’s performance

degradation on vision poisoning is due to GAS and GAS-L identifying this attack’s

Dadv slightly worse (Fig. 14). Only maximum k-NN approached FIT’s performance

– specifically for Weber et al.’s vision backdoor attack. Note also that no baseline

consistently outperformed the others. Hence, these attacks affect network behavior

differently, further supporting that FIT is attack agnostic.

FIT’s performance is stable across a wide range of upper-tail cutoff thresholds κ

(see supplement of the original paper [HL22a]). For example, FIT’s natural language

target identification AUPRC varied only 0.2% and 2.1% when using GAS-L and GAS

respectively for κ ∈ [1, 25].

6.5.4 Target-Driven Mitigation. Section 6.4.3 explains that successfully

identifying the target(s) enables guaranteed attack mitigation on those instances. Here,

we evaluate GAS and GAS-L’s effectiveness in targeted data sanitization. Table 6

details our defense’s effectiveness against Sec. 6.5.1’s four attacks. As above, results

are averaged across each attack’s class pairs/setups. Section 14’s baselines all have

large false-positive rates when identifying Dadv (Fig. 14), which caused them to remove

a large fraction of Dcl and are not reported in these results.

For three of four attacks, clean test accuracy after sanitization either improved or

stayed the same. In the case of Weber et al.’s vision backdoor attack, the performance

degradation was very small – 0.1%. Similarly, owing to renormalized influence’s

effectiveness identifying Dadv (Fig. 16), our defense removes very little clean data when

141

mitigating the attack – generally <0.2% of the clean training set. For comparison, Peri

et al. [Per+20] report that their Deep k-NN clean-label, poisoning defense removes on

average 4.3% of Dcl on Zhu et al.’s [Zhu+19] vision poisoning attack. This is despite

Peri et al.’s method being specifically tuned for Zhu et al.’s attack and their evaluation

setup being both easier and less realistic by pre-training their model using a large

known-clean set that is identically distributed to their Dcl. In contrast, target-driven

mitigation removed at most 0.03% of clean data on this attack – better than Peri et al.

by two orders of magnitude.

Following Algorithm 6, Table 6’s experiments used only a single, randomly-

selected target when performing sanitization. No steps were taken to account for

additional potential targets, e.g., over-filtering the training set. Nonetheless, target-

driven mitigation still significantly degraded multi-target attacks’ performance on

other targets not considered when sanitizing. For example, despite considering one

target, speech backdoor’s overall attack success rate (ASR) across all targets decreased

from 100% to 4.7% and 6.5% for GAS and GAS-L, respectively – a 20× reduction.

For Weber et al.’s vision backdoor attack, ASR dropped from 90.5% to 11.9% and

6.7% with GAS and GAS-L, respectively. The key takeaway is that identifying a

single target almost entirely mitigates the attack everywhere.

6.6 Adaptive Attacks

We now consider how an attacker who knows about our defense could evade it or

otherwise exploit it. Our method relies on multiple attack instances having unusually

high influence on the target instance, as measured by model gradients during training.

As such, it may fail to detect an attack if (1) there are too few attack instances

(relative to upper-tail count κ); (2) the attack is a large fraction of the data (e.g., 10%),

in which case the instances are too common to be considered outliers; or (3) the attack

142

Table 6. Target Driven Attack Mitigation: Alg. 6’s target-driven, iterative
data sanitization applied to Sec. 6.5.1’s four attacks for randomly selected targets.
The attacks were neutralized with few clean instances removed and little change in
test accuracy. Attack success rate (ASR) is w.r.t. the analyzed target. Results are
averaged across related setups with ≥10 trials per setup. Detailed results appear in
Sec. C.3.1–C.3.4.

Dataset Method
% Removed ASR % Test Acc. %

Dadv Dcl Orig. Ours Orig. Chg.

B
a
ck

d
o
o
r

Speech
GAS 98.4 0.07

99.8
0

97.7
0.0

GAS-L 98.1 0.17 0 0.0

Vision
GAS 87.6 0.50

90.5
0

96.2
-0.1

GAS-L 92.3 0.73 0 -0.1

P
o
is
o
n NLP

GAS 99.6 0.02
97.9

0
94.2

+0.2

GAS-L 99.9 0.03 0 +0.1

Vision
GAS 65.1 0.02

77.9
0

87.1
0.0

GAS-L 58.6 0.03 0 0.0

instances appear no more influential on the target than clean instances. The first

case is only a risk when the target instance is “easy” enough to influence that the

attack can be carried out with very few instances. The second case requires a very

powerful attacker, one who would be hard to stop without additional constraints or

assumptions. The third case represents a possible weakness: if attackers can craft an

attack that successfully changes the target label without appearing unusual, then our

defense will fail. Whether or not the attacker can succeed is an empirical question,

which will depend on the dataset, the model, the choice of target instance, and the

attack method. Below, we provide evidence that FIT (and GAS in particular) remain

effective against an attacker who is trying to evade our defense.

Seed-Instance Optimization: Some training set attacks rely on a fixed, predefined

adversarial perturbation which is applied to clean seed instances [Liu+18; Web+23].

An attacker who is aware of our defense could choose seed instances that organically

appear uninfluential on some target, as estimated by GAS(-L). We apply this idea

143

to Weber et al.’s [Web+23] CIFAR10 backdoor attack and find that our method

continues to perform well against this simple, adaptive attacker: GAS(-L) achieve

0.93 AUPRC for adversarial-set identification, a 7% decline versus the baseline, even

when the attacker is given information beyond our threat model, e.g., knowledge of

the random, initial parameters. Overall, the attacker’s gains from choosing different

seed instances are limited. See the supplement of the original paper for additional

details [HL22a].

Perturbation Optimization: A stronger adaptive adversary actively optimizes

the adversarial perturbation to be both highly effective and have a low (GAS)

influence estimate. For attacks that find perturbations through gradient-based

optimization [Wal+21; Zhu+19], the most natural way to incorporate knowledge

of our method would be to add some estimate of GAS to the loss being optimized.

Since GAS – like poison – relies on the entire training trajectory of the model, which

in turn relies on the perturbations being crafted, computing GAS’s exact gradient is

intractable [BR92]. However, the attacker can still use a surrogate that approximates

GAS, such as by using fixed model checkpoints in the computation of GAS.

To evaluate the robustness of our methods to adaptive perturbations, we apply

this joint optimization idea to Zhu et al.’s [Zhu+19] vision poison attack. We focused

on Zhu et al.’s attack because (1) it is the attack on which our method performed the

worst and (2) the other optimized attack we consider [Wal+21] is restricted to only

discrete token replacements, which reduces the attacker’s flexibility.

Zhu et al. iteratively optimize a set of poison examples to minimize the adversarial

loss. To increase the likelihood of successfully changing the target’s label, Zhu et al.

compute this loss over multiple surrogate models. The perturbations of the poison

examples are constrained to an ℓ∞ ball so that they appear relatively natural to

144

humans. Our jointly optimized, adaptive attack adds a second term to Zhu et al.’s

adversarial loss. This new term estimates the GAS influence using the same surrogate

models. Hyperparameter β balances the two objectives. See suppl. Section C.4 for

the full details of this jointly-optimized, adaptive attack, including tuning of β.

Where possible, these adaptive experiments followed the same vision poison

evaluation setup detailed in Section 6.5.1. However, simultaneously optimizing

surrogate GAS has a much higher GPU memory cost, so we were forced to adjust the

poison size and number of surrogate checkpoints to 40 and four, respectively, which

degrades the attacker’s success rate from 77.9% in Table 6 to 64.3%.

Fig. 17 summarizes our adversarial-set identification performance on Zhu et al.’s

vision poisoning attack with and without the jointly optimized surrogate GAS loss

term.15 Observe that the attack degraded the performance of GAS(-L) and TracInCP,

albeit slightly. After accounting for all other factors, this joint optimization decreased

GAS’s mean adversarial-set identification from a baseline of 0.73 AUPRC to 0.68 (a

7% drop). Fig. 18 visualizes joint attack optimization’s effect on target identification.

Overall, joint optimization reduced FIT withGAS’s mean target identification AUPRC

from a baseline of 0.86 to 0.78 (9% drop). Since Zhu et al.’s attack is single-target,

this translates to the target’s average rank declining from 1.16 to 1.28 — still high

performance.

Table 7 details target-driven mitigation’s effectiveness under this jointly-optimized

attack. In summary, the attack results in very little clean data removal (at most 0.05%

of Dcl on average). Also, the average test accuracy after mitigation either improved or

stayed the same in all but one case where it decreased by only 0.1%.

15Both versions of the attack (i.e., with and without joint optimization) used the same evaluation
setup, including the reduced surrogate model count.

145

Table 7. Attack Mitigation for the Adaptive Vision Poison Attack:
Algorithm 6’s target-driven data sanitization where Zhu et al.’s [Zhu+19] vision
poison attack is jointly optimized with minimizing the GAS influence. The results
below consider exclusively the jointly-optimized attack with β = 10−2. Clean-data
removal remains low, and test accuracy either improved or stayed the same for in but
one setup. The performance is comparable to the results with Zhu et al.’s [Zhu+19]’s
standard vision poisoning attack (see Table C.40). Bold denotes the best mean
performance with ≥10 trials per class pair.

Classes
Method

% Removed ASR % Test Acc. %

ytarg yadv Dadv Dcl Orig. Ours Orig. Chg.

Bird Dog
GAS 36.0 0.02

76.2
0

87.0
+0.1

GAS-L 30.3 0.00 0 +0.1

Dog Bird
GAS 21.6 0.00

57.1
0

87.1
+0.1

GAS-L 21.9 0.00 0 –0.1

Frog Deer
GAS 17.5 0.00

38.1
0

87.1
0.0

GAS-L 19.4 0.00 0 0.0

Deer Frog
GAS 85.0 0.18

81.0
0

87.1
0.0

GAS-L 82.3 0.13 0 +0.1

In summary, even when the adversary specifically optimized for our defense, we

still effectively identify both the adversarial set and the target and then mitigate the

adaptive attack.

6.7 Discussion and Conclusions

This chapter explores two related tasks. First, we propose training set attack

target identification, which plays an important part in the protection of critical

ML systems but has thus far received relatively little attention. For example, it is

impossible to conduct a truly informed cost-benefit analysis of risk without knowing

the attacker’s target and by extension their objective. Knowledge of the target also

enables forensic and security analysts to reason about an attacker’s identity – a key

step to permanently stopping attacks by disabling the attacker. An open question is

whether target identification can be combined with certified guarantees, either building

on our FIT framework or creating an alternative to it.

146

FIT relies on identifying (groups of) highly influential training instances. To that

end, we propose renormalized influence. By addressing influence’s low-loss penalty,

renormalization significantly improves influence estimation in both adversarial and

non-adversarial settings – often by an order of magnitude or more [HL22b].

147

Baseline Adaptive Joint Optimization Attack with GAS

0 0.2 0.4 0.6 0.8

GAS (ours)

GAS-L (ours)

TracInCP

TracIn

Inf. Func.

Rep. Pt.

AUPRC

Figure 17. Adversarial-Set Identification for the Adaptive Vision Poison
Attack: Mean AUPRC identifying the adversarial set where Zhu et al.’s vision poison
attack is adapted to jointly minimize the adversarial loss and the GAS influence. The
baseline results (orange) used Zhu et al.’s standard attack. Our jointly-optimized
attack reduced the GAS similarity by 7% at the cost of a 19% decrease in ASR w.r.t.
Table 6. See suppl. Sec. C.4 for the granular results.

Baseline Adaptive Joint Optimization Attack with GAS

0 0.2 0.4 0.6 0.8

FIT w/ GAS (ours)

FIT w/ GAS-L (ours)

Max. k-NN Dist.

Min. k-NN Dist.

Most Certain

Least Certain

AUPRC

Figure 18. Target Identification for the Adaptive Vision Poison Attack:
Mean target identification AUPRC where Zhu et al.’s vision poison attack is jointly
optimized with minimizing GAS. FIT with GAS’s mean target identification AUPRC
declined only 9% versus the baseline – an average change in target rank of 1.16 to 1.28
– still strong performance. Results are averaged across related setups with ≥10 trials
per setup. See suppl. Sec. C.4 for the full results.148

CHAPTER 7

CONCLUSIONS AND FUTURE DIRECTIONS

With machine learning systems increasingly deployed in settings critical to human

well-being, the need for robust models similarly increases. Deploying models that

have been adversarially manipulated can harm human health, increase unfairness, and

degrade public trust in institutions. It is unlikely that the regulatory landscape will

continue to allow empirical performance to be prioritized over all else. While this

dissertation looks at model robustness through the lens of adversarial robustness, our

contributions should not be viewed as solely applying to malicious attacks.

“Honest poison” instances can be unintentionally and unknowingly inserted into

a model’s training data. For example, consider generative models trained on open-

source code. Countless instances of buggy or insecure code are posted to public

repositories like GitHub. Any model trained on this “dangerous” but non-malicious

code is vulnerable [Pea+22; Pea+23]. Methods like those proposed in this dissertation

not only provide robustness against adversarial poison but such honest poison as

well. Adversarial robustness simply provides a vehicle to study worst-case training set

perturbations.

In addition, while we propose and analyze GAS in the context of adversarial

robustness, understanding the causal relationship between training data and model

predictions generalizes to any setting where predictions must be interpretable. A

better understanding of why models misbehave should enable the development of

better models in the future. With algorithmic decision making increasingly common,

black-box decisions will no longer be tolerated by society or regulators [GF17]. Insights

into why poisoning attacks succeed may generalize to understanding why models learn

spurious correlations in non-malicious settings as well.

149

Future Directions

Despite decades of study [Coo77; CW82], existing methods to make models

(provably) robust to training set perturbations and spurious correlations remain

rudimentary. This dissertation takes a step towards improved model robustness, yet

significant work remains. Below, we briefly outline ideas for future research directions

to improve model training’s robustness.

Lowering Certification’s Performance Penalty As Chapters 4 and 5

demonstrate, certified robustness against poisoning and backdoor attacks is not

free. Non-trivial certified robustness against poisoning and backdoor attacks currently

entails a (significant) performance penalty [FZ20; Zha+19]. This weakness is common

to all existing certified methods that provide non-trivial robustness guarantees [LF21;

WLF22a; Rez+23]. Expecting certified robustness to be achieved without any decrease

in model performance is unrealistic. There are no free lunches. However, certified

methods will not be a realistic option in practice until their deleterious side effects are

substantially reduced. Without practical robust methods, society will bear the cost

when today’s brittle models inevitably fail in real-world, safety-critical applications.

Unifying Robustness to Training and Test Perturbations Conventional

wisdom treats training and test robustness as separate tasks with proposed methods

targeting one task or the other. Chapter 5’s feature partition aggregation (FPA) is

rather unique in that a single method simultaneously provides certified training and

test robustness. An obvious limitation of FPA is its restriction to a single perturbation

model, i.e., the ℓ0 ball. It remains an open question whether other effective defenses

over the union of training and test attacks exist. As Chapter 5 discusses, Weber

et al. [Web+23] propose a defense that provides robustness of ℓ2 training and test

150

attacks, but their robustness guarantees are very minimal. The more threat vectors

a (certified) defense effectively covers, the more likely that defense will be deployed

in practice. This broad statement includes defining defenses that are simultaneously

robust to both training and test attacks.

Efficient Influence Analysis and Estimation Put simply, GAS is slow [HL22a,

Sec. E.5]. Estimating the training set’s pointwise influence on a single prediction

can take hours, even for relatively simple models [HL22b]. For influence analysis

to be a practical tool, influence estimation must be at least one to two orders of

magnitude faster [HL22b]. Recently, more efficient influence analysis methods have

been proposed [Par+23], but significant work remains.

151

APPENDIX A

NOMENCLATURE REFERENCE

Table A.8. General Nomenclature Reference: This table contains symbols that
are relevant to one or more chapters in this dissertation. Related symbols are grouped
together with groups separated by dotted lines.

LightGBM Gradient-boosted decision tree model architecture by Ke et al. [Ke+17]

XGBoost Gradient-boosted decision tree model architecture by Chen and Guestrin [CG16]

DPA Deep partition aggregation certified poisoning defense proposed by Levine and
Feizi [LF21] (Sec. 3.2.2)

FA (Deterministic) finite aggregation certified poisoning defense proposed by Wang
et al. [WLF22a] (Sec. 3.2.2)

[k] Integer set {1, . . . , k}
2[k] Power set of integer set [k]

1[q] Indicator function where 1[q] = 1 if q is true and 0 otherwise

medA Median of (multi)set A

H(k) k-th harmonic number where H(k) =
∑k

i=1
1
i

pp Percentage points

X Feature domain where X ⊆ Rd

x Feature vector where ∀x x ∈ X
d Feature dimension where ∀x|x| = d

[d] Complete feature set

Y Label set where Y ⊆ R
y Instance label where ∀y y ∈ Y
Z Instance space where Z := X × Y
z Feature vector, label tuple where z := (x, y) ∈ Z
zte Arbitrary test instance zte := (xte, yte) ∈ Z with true label yte ∈ Y
n Number of training instances

zi i-training index where zi := (xi, yi) ∈ D
D Training set where D := {zi}ni=1

f A model (ensemble, instance-based learner, neural network, etc.) where f : X → Y
f(xte) Model f ’s prediction for test feature vector xte

L Number of submodels in ensemble f

fl l-th submodel in ensemble f where fl : X → Y and l ∈ [L]

θ Model parameters where θ ∈ Rp

L Loss function where L : Y × Y → R≥0

L(z; θt) Empirical risk of z = (x, y) w.r.t. model parameters θt where
L(z; θt) = L (f(x; θ), y)

152

Table A.9. Chapter 4 Nomenclature Reference: Notation specific to Chapter 4
with related symbols grouped together. Groups are separated by dotted lines. Note
that this table spans multiple pages.

kNN Vanilla k-nearest neighbors (Sec. 4.4.1)

kNN-m k-nearest neighbors with median as the decision function (Sec. 4.4.1)

kNN-CR Our kNN-based certified regressor (Sec. 4.4.1)

rNN Radius nearest neighbors (Sec. 4.4.2)

PCR Our partitioned certified regressor (Sec. 4.5.1)

W-PCR Our weighted-cost partitioned certified regressor (Sec. 4.5.2)

PCR Our overlapping certified regressor (Sec. 4.6.1)

W-PCR Our weighted-cost overlapping certified regressor (Sec. 4.6.2)

ξ One-sided upper bound for regression robustness certification where f(xte) ≤ ξ

ξl Two-sided lower bound for robustness certification where ξl ≤ f(xte) ≤ ξu

ξu Two-sided upper bound for robustness certification where ξl ≤ f(xte) ≤ ξu

m Number of training set blocks

htr Training set partitioning function where htr : Z → [m]

hf Overlapping training set block assignment function where hf : [m]→ 2[L]

j Training set block index where j ∈ [m]

D(j) j-th training set block where D(j) := {z ∈ D : htr(z) = j} and
∀j′ ̸=j D

(j) ∩D(j′) = ∅
N (xte) Nearest-neighbors neighborhood (multi)set for test feature vector xte

rl Number of training set modifications required to violate invariant ξl ≤ fl(xte) ≤ ξu.
Note that rl is one larger than fl’s certified robustness

rmax Maximum submodel modification requirement where rmax := maxl rl

Dl Submodel fl’s training set where for overlapping regression Dl =
⋃

j∈[m]
l∈hf (j)

D(j)

q Inverse of the fraction of the training set used to train each submodel, where
∀l q = n

|Dl|

d(j) Spread degree of training set block D(j) where d(j) := |hf (D
(j))|

dmax Maximum spread degree where dmax := maxj d
(j)

Tl Set of ensemble submodels predicting fl(xte) ≤ ξ where Tl ⊆ [L]

V Real-valued (multi)set, e.g., kNN neighborhood or ensemble submodel predictions,
where L = |V|

Vl Lower thresholded real-valued multiset where Vl := {νl ∈ V : νl ≤ ξ}
Vu Upper thresholded real-valued multiset where Vu := {νl ∈ V : νl > ξ}
V±1 Binarized multiset where V±1 := {sgn (νl) : νl ∈ V}
Ṽ Adversarially perturbed real-valued (multi)set formed from (multi)set V
R Weight set where R := {rl : l ∈ [L]}
Rl Weight set corresponding to values set Vl where Rl := {rl ∈ R : νl ∈ V}

(Continued . . .)

153

Table A.9. Chapter 4 Nomenclature Reference (Continued): Notation specific
to Chapter 4 with related symbols grouped together. Groups are separated by dotted
lines. Note that this table spans multiple pages.

∆ Midpoint distance where ∆ := |Vl| −
⌈
L
2

⌉
R̃l ∆ smallest values in Rl

ILP Integer linear program

ω(j) ILP integral variable representing the number of instance modifications made to
training set block D(j)

δl ILP binary variable which equals 1 if submodel fl has been perturbed such that
fl(xte) > ξ and 0 otherwise

σ ILP binary variable which equals 1 if in the case of weighted analysis and 0 otherwise

PSMC Partial set multicover

G Upper-bound on certified robustness R returned by a greedy algorithm

154

Table A.10. Chapter 5 Nomenclature Reference: Notation specific to Chapter 5
with related symbols grouped together. Groups are separated by dotted lines.Note
that this table spans multiple pages.

FPA Our certified defense, feature partition aggregation, against sparse poisoning,
backdoor, evasion, and patch attacks

RA Randomized ablation. Certified ℓ0-norm evasion defense. Proposed by Levine and
Feizi [LF20b] and subsequently improved by Jia et al. [Jia+22b]

DRS (De)randomized smoothing certified patch defense proposed by Levine and Feizi
[LF20a]. Based on randomized ablation

Patch IBP Certified patch defense based on interval bound propagation proposed by Chiang
et al. [Chi+20]

BagCert Certified patch defense proposed by Metzen and Yatsura [MY21]

RAB Robustness against backdoors certified defense proposed by Weber et al. [Web+23]

R Pointwise certified feature robustness – feature partition aggregation’s certification
objective (Def. 5.1)

Rmed Median certified feature robustness w.r.t. a dataset’s test set

ρ Pointwise ℓ0-norm certified evasion-only robustness (Def. 5.2). A weaker guarantee
than certified feature robustness.

ρmed Median ℓ0-norm certified evasion-only robustness w.r.t. a dataset’s test set

∥w∥0 ℓ0 norm for vector w, i.e., the number of non-zero elements in w

Xj j-th column of matrix X where j ∈ [d] and Xj ∈ Rn

X ⊖ X′ Set of column indices over which equal-size matrices X and X′ differ, where
X ⊖ X′ = {j ∈ [d] : Xj ̸= X′

j}
xj j-th dimension of vector x where j ∈ [d] and xj ∈ R

x ⊖ x′ Set of dimensions over which vectors x and x′ differ where
x ⊖ x′ = {j ∈ [d] : xj ̸= x′

j}
dsym(D,D′) Symmetric difference between sets D and D′

f Voting-based, ensemble classifier trained over partitioned feature sets where
f : X → Y

Sl Feature subset considered by the l-th submodel during training and test where
Sl ⊂ [d] and

⊔L
l=1 Sl = [d]

xSl
Subvector of x ∈ X restricted to feature subset Sl ⊂ [d]

Dl Training set for the l-th submodel

ċy(x) Submodel vote count for label y and feature vector x where
ċy(x) :=

∑L
l=1 1[fl(x) = y]

Gapvote(y, y
′;x) Submodel vote gap for instance x ∈ X and labels y, y′ ∈ Y where

Gapvote(y, y
′;x) := ċy(x)− ċy′(x)− 1[y′ < y]

ypl Submodel plurality label where ypl := argmaxy∈Y ċy(x) and ties broken by
preferring the smaller label. FPA ensemble prediction under the plurality label
decision function (Sec. 5.3.1)

(Continued . . .)

155

Table A.10. Chapter 5 Nomenclature Reference (Continued): Notation specific
to Chapter 5 with related symbols grouped together. Groups are separated by dotted
lines. Note that this table spans multiple pages.

yru Label with the second-most submodel votes (i.e., the “runner up”) where
yru := argmaxy′∈Y\ypl

ċy′(x)

gl(x, y) Logit value predicted by the l-th submodel for instance x ∈ X and label y ∈ Y
where gl(x, y) ∈ [0, 1]

yRO FPA ensemble prediction under the run-off decision function (Sec. 5.3.2).

ỹRO Label in the run-off decision function’s second round that is not selected as the
run-off prediction where ỹRO := {ypl, yru} \ yRO

c̈x(y; y
′) Pairwise logit count for instance x and label y ∈ Y w.r.t. label y′ ∈ Y where

c̈y(x; y
′) :=

∑L
l=1 1[gl(x, y) > gl(x, y

′)]

Gaplogit(y, y
′;x) Submodel logit vote gap for labels y, y′ ∈ Y where

Gaplogit(y, y
′;x) := c̈y(x; y

′)− c̈y′(x; y)− 1[y′ < y]

e Randomized ablation hyperparameter – number of kept features with the other
(d− e) ablated where e ∈ N.

BS Blocking smoothing ablation paradigm used by (de)randomized smoothing [LF20a]

156

Table A.11. Chapter 6 Nomenclature Reference: Notation specific to Chapter 6
with related symbols grouped together. Groups are separated by dotted lines. Note
that this table spans multiple pages.

GAS Gradient aggregated similarity – renormalized TracInCP (Sec. 6.3.3)

GAS-L Layerwise gradient aggregated similarity (Sec. 6.3.3)

FIT Our Framework for Identifying Targets of a poisoning and backdoor attack (Sec. 6.4)

TracIn Tracing gradient descent influence estimator by Pruthi et al. [Pru+20]

TracInCP TracIn Checkpoint – a heuristic version of TracIn by Pruthi et al. [Pru+20]

LOO Leave-one-out influence [CW82]

IF Influence functions estimator by Koh and Liang [KL17]

Rep. Pt. Representer point influence estimator by Yeh et al. [Yeh+18]

Rn. Renormalization for influence estimation (Sec. 6.3.3)

⟨·, ·⟩ Dot product

sgn (·) Signum function

I (zi, ẑte) Pointwise Influence of training instance zi ∈ D on test instance ẑte ∈ Z
Ĩ (zi, ẑte) Renormalized Influence of training instance zi ∈ D on test instance ẑte ∈ Z

ytarg Target (i.e., source) label the attacker seeks to have mislabeled

yadv Attacker’s adversarial (i.e., destination) label

zte Arbitrary test instance zte := (xte, yte) ∈ Z with true label yte ∈ Y
ẑte Arbitrary test instance where ẑte := (xte, ŷte) ∈ Z with predicted label ŷte := f(xte)

zi i-training index where zi := (xi, yi) ∈ D
D Training set where D := {zi}ni=1

Dadv Set of adversarially perturbed training instances where Dadv ⊆ D
Dcl Set of clean (unperturbed) training instances where Dcl := D \ Dadv

f(xte) Model f ’s prediction for test feature vector xte

ŷte Compact notation for predicted label for xte given parametric model f

T Number of iterations performed by the training algorithm

t Iteration number s.t. t ∈ {1, . . . , T}
T Subset of the training iterations considered by GAS and TracInCP where T ⊆ [T]

ηt Learning rate for iteration t ∈ [T] where ηt > 0

λ Weight decay hyperparameter

Bt Iteration t’s training batch where Bt ⊆ D
b Batch size where ∀t∈[T] b = |Bt|
θ Model parameters where θ ∈ Rp

θ0 Initial model parameters at the start of training

θt Model parameters for iteration t ∈ [T]

θT Model parameters at the end of training

P Serialized training parameters where P := {(ηt, θt−1)}Tt=1

(Continued . . .)

157

Table A.11. Chapter 6 Nomenclature Reference (Continued): Notation specific
to Chapter 6 with related symbols grouped together. Groups are separated by dotted
lines. Note that this table spans multiple pages.

fi Penultimate feature representation for training feature vector xi

fte Penultimate feature representation for test feature vector xte

g
(t)
i Gradient for zi ∈ D w.r.t. parameters θt where g

(t)
i := ∇θL(zi; θt)

ĝ
(t)
te Gradient for ẑte ∈ Z w.r.t. parameters θt where ĝ

(t)
te := ∇θL(ẑte; θt)

Hθ Training set empirical risk Hessian where Hθ := 1
n

∑
zi∈D∇2

θL(zi; θT)
H−1

θ Inverse of risk Hessian Hθ

ẑtarg Target test instance where ẑtarg := (xtarg, ŷtarg) ∈ Z
Ẑte Set of test instances to be analyzed for attack targets

v Influence vector where v ∈ Rn

µ Median influence score (Sec. 6.4.2)

Q Q-estimator Rousseeuw and Croux [RC93] for influence vector v (Sec. 6.4.2)

Mitigate Target-driven mitigation function (Sec. 6.4.3)

κ Heavy-tail influence cutoff count

σ Influence anomaly score

ζ Target driven sanitization cutoff score where ζ ∈ R
Retrain Model retrain method

β Adaptive attack tradeoff hyperparameter based on Zhu et al.’s [Zhu+19] vision
poison attack

158

APPENDIX B

PROOFS

This chapter contains previously published, coauthored material [HL22a; HL23c;

HL23a]. Hammoudeh designed and wrote all proofs in this section. Lowd provided

supervision and editorial suggestions.

Zayd Hammoudeh and Daniel Lowd. “Identifying a Training-Set Attack’s

Target Using Renormalized Influence Estimation”. In: Proceedings of the

29th ACM SIGSAC Conference on Computer and Communications Security.

CCS’22. Los Angeles, CA: Association for Computing Machinery, 2022. url:

https://arxiv.org/abs/2201.10055

Zayd Hammoudeh and Daniel Lowd. “Reducing Certified Regression

to Certified Classification for General Poisoning Attacks”. In: Proceedings

of the 1st IEEE Conference on Secure and Trustworthy Machine Learning.

SaTML’23. 2023. url: https://arxiv.org/abs/2208.13904

Zayd Hammoudeh and Daniel Lowd. “Feature Partition Aggregation:

A Fast Certified Defense Against a Union of ℓ0 Attacks”. In: Proceedings of

the 2nd ICML Workshop on New Frontiers in Adversarial Machine Learning.

AdvML-Frontiers’23. 2023. url: https://arxiv.org/abs/2302.11628

This section provides proofs for all theoretical contributions in this dissertation.

B.1 Proofs for Chapter 4

This section contains the proofs for the theoretical contributions that are either

in or relevant to Chapter 4.

Lemma B.1. For real multiset V of cardinality L > 1, if an arbitrarily-large value is

inserted into V or the smallest value in V is deleted, the resulting sets’ medians are

equivalent.

159

https://arxiv.org/abs/2201.10055
https://arxiv.org/abs/2208.13904
https://arxiv.org/abs/2302.11628

Proof. For simplicity and w.l.o.g., assume V is ordered where ν1 ≤ · · · ≤ νL. Let

α ∈ [1, L] denote the median’s index. If L is odd, α =
⌈
L
2

⌉
; otherwise, when L is even,

α = L
2
+ 1

2
, i.e., the midpoint between the L

2
-th and (L

2
+ 1)-th largest values in V .

Consider first an arbitrarily-large insertion when L odd. Each insertion increases

the set’s cardinality by 1. When V’s cardinality is odd, then the cardinality of this

new set after the first insertion is even. Therefore, this new set’s median has index

α′ :=
L+ 1

2
+

1

2
▷ Median’s index for new set of even size T + 1 (B.1)

=

⌈
L

2

⌉
+

1

2
(B.2)

= α +
1

2
. (B.3)

Since L ≥ α′ and the inserted element is larger than all values in V, the value

corresponding to index (
⌈
L
2

⌉
− 1

2
) is equivalent for both original set V and the new set

after the insertion.

Next, consider the deletion case for odd L. Similar to above, the cardinality of

the modified set after one deletion is even; therefore, this modified set’s median has

index

α′′ :=
L− 1

2
+

1

2
▷ Median’s index for new set of even size T − 1 (B.4)

=

⌈
L

2

⌉
− 1

2
(B.5)

= α− 1

2
. (B.6)

This new set’s cardinality is one smaller than the original set with the smallest element

removed. Hence, the value corresponding to index (
⌈
L
2

⌉
− 1

2
) in this shrunken set

equals the value at index (
⌈
L
2

⌉
+ 1

2
) in original set V .

Since indices α′ and α′′ correspond to the same value in V, the resulting sets’

medians are equivalent.

160

The primary takeaway from Lemma B.1 is that under the insertion/deletion

paradigm, worst-case insertions and deletions are interchangeable. Note that for

our purposes, there is an edge case where worst-case insertions and deletions exhibit

divergent behavior. Specifically, after L deletions (i.e., all elements in V are removed),

the median of an empty set is not generally defined. In contrast, the median after

L arbitrarily-large insertions is itself arbitrarily large. For consistency, we define the

empty set’s median as ∞ to match the insertion case.

Proof of Lemma 4.2

Proof. Let Vl be all elements in V that do not exceed ξ.

Under the swap paradigm, the optimal strategy to maximally increase a set’s

median is to iteratively replace the set’s smallest value with ∞. Apply this optimal

strategy to V. After one swap, the resulting set contains |Vl| − 1 elements that are

less than or equal to ξ. After two swaps, there are |Vl| − 2 such elements with each

subsequent swap’s effects proceeding inductively. Once the modified set contains

exactly
⌈
L
2

⌉
elements less than or equal to ξ, no additional swaps are possible without

causing the resulting set’s median to exceed ξ.

Therefore, by induction, the maximum number of swaps that can be performed

on V and it remains guaranteed that the resulting set’s median does not exceed ξ is

R = |Vl| −
⌈
L

2

⌉
. (B.7)

Proof of Lemma 4.3

Proof. For simplicity and w.l.o.g., assume V is ordered where ν1 ≤ · · · ≤ νL. An

attacker’s optimal insertion strategy is to insert arbitrarily-large values into V while

161

the optimal deletion strategy is to always delete V ’s smallest value. Lemma B.1 proves

that these worst-case operations perturb the median identically so we only consider

insertions below.

Let α denote the median’s index. If L is odd, α =
⌈
L
2

⌉
; otherwise, when L is even,

α = L
2
+ 1

2
, i.e., the midpoint between the L

2
-th and (L

2
+ 1)-th largest values in V .

Each insertion increases the set’s size by 1. When V’s size is odd, then the size

of this new set after the first insertion is even. Therefore, this new set’s median has

index

α′ :=
L+ 1

2
+

1

2
Median’s index for new even size T + 1 (B.8)

=

⌈
L

2

⌉
+

1

2
(B.9)

= α +
1

2
. (B.10)

The analysis is essentially identical when L is even and is excluded for brevity. Note

that each insertion always increases the median’s index α by 1
2
.

As long as α ≤ |Vl|, it is guaranteed that medV ≤ ξ. Since each insertion changes

α by 1
2
, then 2(|Vl| − α) arbitrary insertions can be made in V with it remaining

guaranteed that the modified set’s median does not exceed ξ. Regardless of whether

L is odd or even,1 it holds that

R ≥ 2(|Vl| − α) = 2|Vl| − 2α = 2|Vl| − L− 1. (B.11)

Proof of Lemma 4.4

Proof. The first portion of this proof follows the same argument as the proof of

Lemma 4.2, with one primary difference. There, the optimal strategy to perturb

1When L is odd, 2α = 2
⌈
L
2

⌉
= L+ 1 while in the even case 2α = 2

(
L
2 + 1

2

)
= L+ 1.

162

V’s median swapped out the smallest values in V first. For the weighted version,

the optimal (greedy) strategy swaps out whichever value in Vl ⊆ V has the smallest

weight.

To perturb V ’s median above ξ, it is sufficient to swap any |Vl| −
⌈
L
2

⌉
values in Vl

with an arbitrarily large replacement. For simplicity and without loss of generality, let

r̃1, . . . , r̃|Vl| be the weights of the elements in Vl arranged in ascending order. Define

∆ := |Vl| −
⌈
L
2

⌉
. Applying Lemma 4.2, up to ∆ values in V can be replaced without

perturbing the median. This entails a minimum cost of

R ≥
∆∑
l=1

r̃l. (B.12)

Denote the (∆ + 1)-th largest weight in Rl as r̃∆+1. Observe that adding r̃∆+1 − 1

to Eq. (B.12) is insufficient to swap out any remaining elements in Vl since all elements

with weight less than r̃∆+1 are already replaced and all remaining elements have weight

at least r̃∆+1. Therefore, the certified robustness is

R = (r̃∆+1 − 1) +
∆∑
l=1

r̃l (B.13)

=
∆+1∑
l=1

r̃l − 1 (B.14)

=

|Vl|−⌈L2 ⌉+1∑
l=1

r̃l − 1 (B.15)

=
∑
r∈R̃l

r − 1. (B.16)

Moreover, increasing Eq. (B.16) by one would allow for the (∆ + 1)-th largest

value in V to be swapped, which would in turn perturb the set’s median above ξ.

Therefore, Eq. (B.16)’s bound is tight.

Proof of Lemma 4.5

163

Proof. The median perturbation paradigms formalized in Lemmas 4.2, 4.3, and 4.4

calculate their certified robustness using three values, namely: L, |Vl|, and
⌈
L
2

⌉
. If these

three values are equivalent for V and V±1, then their associated certified robustness (R)

must also be equal.

Since |V| = |V±1|, they have equivalent L and
⌈
L
2

⌉
. By definition, the binarization

of V to V±1 does not change the value of |Vl| either. Therefore, for all three median

perturbation paradigms, binary multiset V±1 and real multiset V have equivalent

certified robustness R.

Proof of Theorem 4.6

Proof. For fixed-population IBLs, certifying that f(xte) ≤ ξ simplifies to median

perturbation under Sec. 4.2.1’s unweighted swap paradigm since all necessary criteria

are met, namely that

1. f ’s decision function is a median operation over a set of values,

i.e., f(xte) := medN (xte).

2. Neighborhood N (xte) has fixed cardinality L, and L is odd.

3. A worst-case modification to training set D causes an element in N (xte) to be

replaced with a different one.

Lemma 4.2, therefore, provides a (lower) bound on the number of training set

modifications that can be made without the resulting model violating the requirement

that f(xte) ≤ ξ. That is why certified robustness R in Eqs. (4.7) and (4.2) (Thm. 4.6

& Lem. 4.2, resp.) are equivalent.

Proof of Theorem 4.7

164

Proof. This proof follows a very similar structure as Theorem 4.6’s proof above. The

primary distinction is that a different median perturbation paradigm from Sec. 4.2 is

needed here.

For region-based IBLs, certifying that f(xte) ≤ ξ simplifies to median perturbation

under Sec. 4.2.2’s insertion/deletion paradigm since the three necessary criteria are

met:

1. f ’s decision function is a median operation over a set of values,

i.e., f(xte) := medN (xte).

2. Neighborhood cardinality L is not fixed but can increase and/or decrease.

3. Each modification of N (xte) takes the form of either an insertion or deletion,

i.e., not swaps.

Therefore, Lemma 4.3 bounds the total number of training set insertions/deletions

that can be performed without violating the requirement that f(xte) ≤ ξ. That is

why R’s definition in Eq. (4.8) is identical to Eq. (4.3).

Proof of Theorem 4.8

Proof. Certifying here that f(xte) ≤ ξ simplifies to median perturbation under the

unweighted swap paradigm since all necessary criteria are satisfied, specifically that

1. f ’s decision function is a median operation over a set of fixed, deterministic

values, i.e., f(xte) := med {fl(xte; 1), . . . , fl(xte;L)}.

2. Since the submodels are trained on disjoint data/feature regions, a change to

one submodel (i.e., value fl(xte)) has no effect on any other submodel (value).

165

3. Each submodel perturbation causes an existing value in the set to be replaced

by a new value.

4. L is fixed and odd-valued.

5. The cost to change any submodel (i.e., value) is one, i.e., ∀l rl = 1.

Lemma 4.2 provides a (lower) bound on the number of training set modifications

that can be performed without violating the requirement that f(xte) ≤ ξ. Certified

robustness R in Eq. (4.9) is then identical to Lemma 4.2’s Eq. (4.2).

Proof of Theorem 4.9

Proof. Here, we extend the argument in Theorem 4.8’s proof to the weighted case.

Four of the five criteria in Thm. 4.8’s proof still hold, specifically that

1. f ’s decision function is a median over a set of values.

2. Each submodel is independent and deterministic.

3. Modifications to the set of values take the form of swaps.

4. L is fixed and odd-valued.

The only difference is that the perturbations are weighted where each value fl(xte)

now has an associated cost rl ≥ 0. Therefore, Sec. 4.2.3’s weighted swap paradigm

applies. Certified robustness R in Eq. (4.10) follows directly from and is identical to

R in Lemma 4.4’s Eq. (4.5).

Proof of Lemma 4.10

166

Proof. To prove a problem is NP-hard, it suffices to show that there exists a polynomial

time reduction from a known NP-hard problem to it. As explained in Sec. 4.6.1, partial

set cover is NP-hard [Sla97b; Sla97a]. Below we map partial set cover to overlapping

certified regression.

Let U := [L′] be a ground set of L′ elements, and let Q := {Q1, . . . ,Qm} be a

collection of sets where each Qj ⊆ U and⋃
Q∈Q

Q = U .

The goal is to find the subcover F ⊆ Q of minimum cardinality s.t.

∆ ≤
∣∣∣∣ ⋃
Q∈F

Q
∣∣∣∣,

where ∆ ∈ [L′].

It is straightforward to map the above to overlapping certified regression. Let

the ensemble have (2L′ + 1) submodels. Function htr partitions the training set into

m blocks with the blocks denoted D(1), . . . , D(m). Define the block mapping function

as:

hf (j) :=


Qj, j ≤ L′

∅, Otherwise

. (B.17)

Intuitively, each of the first L′ submodels is trained on one of the subsets in Q, while

the remaining models are not trained on any data.

Let all submodels be constant a function. Define the submodel function as

fl(xte) :=


−∞, l ≤ ∆+

⌈
L
2

⌉
∞, Otherwise

. (B.18)

For any finite ξ, |Vl| = ∆+
⌈
L
2

⌉
. Applying Theorem 4.8, the number of submodels

overlapping certified regression perturbs is |Vl| −
⌈
L
2

⌉
= ∆.

167

Overlapping certified regression’s robustness R is the solution to the original

partial set cover problem because

1. Only models with index l ≤ L′ will be perturbed since all other submodels have

no training data.

2. The training set of each of these L′ submodels maps directly to a subset in Q.

3. Overlapping certified regression seeks to find the minimum number of dataset

blocks that must be modified to perturb the median prediction. In this

formulation, the number of blocks to be modified is ∆ – same as in the original

partial-set cover problem.

If overlapping certified regression were solvable in polynomial-time, then partial

set cover would also be solvable in polynomial time. However, partial set cover is

NP-hard, meaning overlapping certified regression must also be NP-hard.

Proof of Corollary 4.10.1

Proof. From Lemma 4.10 above, (unweighted) overlapping certified regression is

NP-hard. The unweighted case trivially maps to the weighted one where ∀l rl = 1.

Therefore, weighted OCR must be at least as hard as the unweighted case meaning

W-OCR is also NP-hard.

Proof of Lemma 4.11

Proof. By construction

Given a deterministic training algorithm, a model’s prediction can be certified

against the deletion of any subsetD ⊂ D by training a model on just datasetD \D and

verifying the prediction does not violate the associated invariant, i.e., fD\D(xte) ≤ ξ.

168

Consider training a separate model on each subset of D of size at least n− r + 1.

If all of those models also satisfy the invariant, then by construction, r − 1 deletions

or fewer are insufficient to violate the invariant. If r − 1 deletions are not enough,

then at least r deletions are required.

Lemma 4.11’s proof above only applies if model prediction and training is

deterministic, i.e., repeating training and then the prediction always yields the same

predicted value. Otherwise, proof by construction would require verifying all random

seeds for each subset of D.

B.2 Proofs for Chapter 5

This section contains the proofs for the theoretical contributions that are either

in or relevant to Chapter 5.

Theorem 5.3

Proof. Let

∆ := ċypl(x)− ċyru(x) ≤ ∀y′ /∈Y\{ypl,yru} ċypl(x)− ċy′(x). (B.19)

In words, vote-count difference ∆ between plurality label ypl and runner-up label yru

is at least as small as the gap between ypl and any other label.

In the worst case, a single feature perturbation changes a single submodel’s

vote from plurality label ypl to a label of the adversary’s choosing. Each perturbed

submodel prediction reduces the gap between the plurality label and the adversary’s

chosen label by two. By Eq. (B.19), it takes the fewest number of vote changes for yru

to overtake plurality label ypl with the proof following by induction. ∆ then lower

bounds the certified robustness. When determining R, ∆ may be even or odd. We

separately consider both cases below.

Case #1: ∆ is odd.

169

Since ∆ is odd, there can never be a tie between labels ypl and yru, simplifying

the analysis. Then, the maximum number of submodel predictions that can change

without changing the plurality label is any R ∈ N satisfying

ċyru(x) + 2R < ċypl(x)

R <
ċypl(x)− ċyru(x)

2

R =

⌊
ċypl(x)− ċyru(x)

2

⌋
▷ R must be a whole number

=

⌊
ċypl(x)− ċyru(x)− 1[yru < ypl]

2

⌋
▷ Subtract 1 no effect for odd ∆

=

⌊
Gapvote(ypl, yru;x)

2

⌋
▷ Eq. (5.1).

Case #2: ∆ is even.

For even-valued ∆, ties can occur. If yru < ypl, the tie between ypl and yru is

broken in favor of yru. Then, the number of submodel predictions that can change

without changing the plurality label is any R ∈ N satisfying

ċyru(x) + 1[yru < ypl] + 2R < ċypl(x)

R ≤
ċypl(x)− ċyru(x)− 1[yru < ypl]

2

R =

⌊
ċypl(x)− ċyru(x)− 1[yru < ypl]

2

⌋
▷ R is a whole number

=

⌊
Gapvote(ypl, yru;x)

2

⌋
▷ Eq. (5.1).

Theorem 5.3’s definition of R follows the same basic structure as that of deep

partition aggregation [LF21, Eq. (10)].

Claims Related to Theorem 5.4

Lemma B.2. Let f1, . . . , fL be a set of L models where ∀l∈[L] fl : X → Y. Under

submodel voting, label y ∈ Y is preferred over label y′ ∈ Y \ y w.r.t. instance x ∈ X if

and only if Gapvote(y, y
′;x) ≥ 0.

170

Proof. Label y is preferred over label y′ in only two cases:

1. y receives more (sub)model votes than y′, i.e., ċy(x) > ċy′(x).

2. y and y′ receive the same number of votes and y < y′.

In the first case,

Gapvote(y, y
′;x) := ċy(x)− ċy′(x)− 1[y′ < y]

≥ 1− 1[y′ < y]

≥ 1− 1 = 0.

In the second case,

Gapvote(y, y
′;x) := ċy(x)− ċy′(x)− 1[y′ < y]

= 0− 1[y′ < y]

= 0− 0 = 0.

The reverse direction where Gapvote(y, y
′;x) ≥ 0 =⇒ y is preferred over y′ can

be proven by contradiction using similar logic as above. If y′ receives more votes

than y, then Gapvote(y, y
′;x) < 0, a contradiction. Similarly, if ċy(x) = ċy′(x) then

necessarily y′ < y. This also leads to a contradiction as Gapvote(y, y
′;x) would be

negative.

Lemma B.3. Runoff Elections Case #1 Certified Feature Robustness Given

submodel feature partition S1, . . . ,SL, let f be a voting-based ensemble of L submodels,

where the l-th submodel uses only the features in Sl. For instance x ∈ X , let yRO be

the label selected by the run-off decision function. The certified feature robustness of

yRO getting overtaken in round #2 of the run-off election is

RCase1

RO
:= min

y∈Y\yRO

max

{⌊
Gapvote(ỹRO, y)

2

⌋
,

⌊
Gaplogit(yRO, y)

2

⌋}
171

Proof. For a label y ∈ Y \ yRO to overtake yRO, two requirements must be

simultaneously met:

– y and yRO must be round #1’s top-two labels, and

– y must be preferred over yRO in round #2.

Let ỹRO ∈ Y \ ypl denote the other top-two label in round #1. Note that ỹRO

may or may not be the same as y. The robustness of ỹRO to being overtaken by y in

round #1 follows directly from Theorem 5.3 and equals

R′ =

⌊
Gapvote(ỹRO, y;x)

2

⌋
. (B.20)

Concerning the second requirement, yRO is preferred over y in round #2 so long

as Gaplogit(yRO, y;x) ≥ 0. Following similar logic as above, yRO’s certified feature

robustness in round #2 is

R′′ =

⌊
Gaplogit(yRO, y;x)

2

⌋
. (B.21)

Since both requirements must hold, the certified feature robustness is lower

bounded by both (i.e., the maximum) of Eqs. (B.20) and (B.21). Moreover, the

optimal label y ∈ Y \ yRO is not determined a priori meaning all labels need to be

checked.

Lemma B.4. Runoff Elections Case #2 Certified Feature Robustness Given

submodel feature partition S1, . . . ,SL, let f be a voting-based ensemble of L submodels,

where the l-th submodel uses only the features in Sl. For instance x ∈ X , let yRO be

the label selected by the run-off decision function. Define recursive function dp as

dp[i, j] =


0 min{i, j} ≤ 1 and (i, j) ̸= (1, 1)

1 + min{dp[i− 2, j − 1], dp[i− 1, j − 2]} Otherwise

(B.22)

172

Then yRO’s certified feature robustness of remaining in the top-two round #1 labels

predicted by the submodels is

RCase2

RO
:= min

y,y′∈Y\yRO

dp
[
gapy, gapy′

]
where gapy∗ = max{0,Gapvote(yRO, y

∗)}.

Proof. Lemma B.2 proves that a label y is preferred over another label y′ iff

Gapvote(y, y
′;x) ≥ 0. For label yRO to be in round #1’s top two, no pair of labels can

have negative submodel vote gaps w.r.t. yRO. Determining yRO’s round #1 certified

feature robustness reduces to determining the maximum number of submodel votes

that can be perturbed with it remaining guaranteed that both labels do not have

negative submodel vote gaps.

In the best case for an attacker, perturbing a single submodel changes the

submodel’s predicted label from yRO to a label of the attacker’s choosing, e.g., y ̸= yRO;

this perturbation decreases Gapvote(yRO, y;x) by 2. For all other y′ ∈ Y \ {yRO, y},

this perturbation also decreases Gapvote(yRO, y
′;x) by 1.

By definition, yRO is in the top-two round #1 labels, meaning RCase2
RO ≥ 0. Consider

first when max{Gapvote(yRO, y),Gapvote(yRO, y
′)} ≤ 1 and (i, j) ̸= (1, 1). The attacker

perturbs whichever label y, y′ has the larger submodel vote gap. Since at most one

of these two labels has a positive gap, an additional submodel perturbation could

make both Gapvote(yRO, y) and Gapvote(yRO, y
′) negative meaning no further feature

perturbations are possible. In the special case of i = j = 1, perturbing a submodel

predicting either label y or y′ never causes the other label’s submodel vote gap to be

negative meaning one additional submodel feature perturbation is possible. When

max{Gapvote(yRO, y),Gapvote(yRO, y
′)} > 1, the proof follows by induction where

recursive function dp returns the fewest number of submodel perturbations required

given y, y′ ∈ Y .
173

Since the attacker’s optimal pair of labels y, y′ is not determined a priori,

Eq. (5.7)’s feature guarantee considers all pairs of labels and returns the robustness of

the pair most advantageous to the attacker.

Theorem 5.4

Proof. For a given x ∈ X , there are only two possible ways that run-off prediction

yRO ∈ Y can be perturbed, namely:

1. yRO loses in run-off’s second round.

2. yRO fails to qualify for the second round by not being in the top two labels in

round #1.

These two cases align directly with Lemmas B.3 and B.4, respectively. An optimal

attacker targets whichever of the two cases requires fewer feature perturbations.

Therefore, run-off’s certified feature robustness is the minimum of Eqs. (5.5) and (5.7).

B.3 Proof for Chapter 6

This section contains the proofs for the theorem in Chapter 6.

Theorem. Let loss function L̃ : R→ R≥0 be twice-differentiable and strictly convex

as well as either even2 or monotonically decreasing. Then, it holds that

L̃ (a) < L̃
(
a′
)

=⇒
∥∥∥∇aL̃ (a)

∥∥∥
2
<

∥∥∥∇aL̃ (
a′
)∥∥∥

2
. (B.23)

Proof.

Theorem 6.1 specifies that property,

L̃ (a) < L̃ (a′) =⇒
∥∥∥∇aL̃ (a)

∥∥∥
2
<

∥∥∥∇aL̃ (a′)
∥∥∥
2
,

2“Even” denotes that the function satisfies ∀a L̃ (a) = L̃ (−a).

174

holds when loss function L̃ is strictly convex (i.e., ∀a∈R ∇2
aL̃ (a) > 0) and either

monotonically decreasing or even. We prove the claim separately for these two disjoint

cases.

Case #1: Monotonically Decreasing For any monotonically decreasing L̃ ,

by definition

L̃ (a) < L̃ (a′) =⇒ a > a′.

Then, given ∀a∈R ∇2
aL̃ (a) > 0, it holds that

∇aL̃ (a) > ∇aL̃ (a′). (B.24)

For any scalar, monotonically decreasing function L̃ , it holds that ∇aL̃ (a′) ≤ 0

meaning Eq. (B.24)’s inequality flips w.r.t. L2 norms, i.e.,∥∥∥∇aL̃ (a)
∥∥∥
2
<

∥∥∥∇aL̃ (a′)
∥∥∥
2
, (B.25)

as for any x,x′ ∈ R≤0 it holds that x > x′ =⇒ ∥x∥2 < ∥x′∥2.

Case #2: Even Formally, a function L̃ is even if

∀a L̃ (a) = L̃ (−a). (B.26)

For even L̃ , it holds that ∇aL̃ (0) = 0 provided twice differentiability. Given

∀a∈R ∇2
aL̃ (a) > 0, then ∀a<0 ∇aL̃ (a) < 0. Hence over restricted domain R≤0, L̃ is

monotonically decreasing. Above it was shown that Eq. (6.8) holds for monotonically

decreasing functions so

L̃ (−|a|) < L̃ (−|a′|) =⇒
∥∥∥∇aL̃ (−|a|)

∥∥∥
2
<

∥∥∥∇aL̃ (−|a′|)
∥∥∥
2
. (B.27)

Evenness induces function symmetry about the origin so

∀a
∣∣∣∇aL̃ (a)

∣∣∣ = ∣∣∣∇aL̃ (−a)
∣∣∣, (B.28)

175

and by extension

∀a
∥∥∥∇aL̃ (a)

∥∥∥
2
=

∥∥∥∇aL̃ (−a)
∥∥∥
2
. (B.29)

Eqs. (B.26) and (B.29) allow Eq. (B.27)’s absolute values and negations to be dropped

completing the proof.

176

APPENDIX C

DETAILED EMPIRICAL RESULTS

This chapter contains previously published, coauthored material [HL21; HL22a;

HL23c; HL23a]. Hammoudeh wrote this complete section, coded all experiments,

designed the experiments, and analyzed all the results. Lowd provided supervision,

editorial suggestions, and input on experiment design.

Zayd Hammoudeh and Daniel Lowd. “Simple, Attack-Agnostic Defense

Against Targeted Training Set Attacks Using Cosine Similarity”. In:

Proceedings of the 3rd ICML Workshop on Uncertainty and Robustness

in Deep Learning. UDL’21. 2021

Zayd Hammoudeh and Daniel Lowd. “Identifying a Training-Set Attack’s

Target Using Renormalized Influence Estimation”. In: Proceedings of the

29th ACM SIGSAC Conference on Computer and Communications Security.

CCS’22. Los Angeles, CA: Association for Computing Machinery, 2022. url:

https://arxiv.org/abs/2201.10055

Zayd Hammoudeh and Daniel Lowd. “Reducing Certified Regression

to Certified Classification for General Poisoning Attacks”. In: Proceedings

of the 1st IEEE Conference on Secure and Trustworthy Machine Learning.

SaTML’23. 2023. url: https://arxiv.org/abs/2208.13904

Zayd Hammoudeh and Daniel Lowd. “Feature Partition Aggregation:

A Fast Certified Defense Against a Union of ℓ0 Attacks”. In: Proceedings of

the 2nd ICML Workshop on New Frontiers in Adversarial Machine Learning.

AdvML-Frontiers’23. 2023. url: https://arxiv.org/abs/2302.11628

177

https://arxiv.org/abs/2201.10055
https://arxiv.org/abs/2208.13904
https://arxiv.org/abs/2302.11628

This chapter provides detailed empirical results that were excluded from the main

body of the dissertation to improve readability and brevity. We break these detailed

results by the corresponding chapter in the main paper.

C.1 Chapter 4 Detailed Results

C.1.1 Baseline Accuracy. Table C.12 shows the baseline accuracy when

a model is trained on all of training set D (i.e., q = 1). For each dataset, the model

architecture (either ridge regression or XGBoost) aligns with those used for Sec. 4.8’s

ensembles. See Table 1.

Table C.12. Baseline Accuracy: Summary of the baseline (i.e., uncertified) accuracy
mean and standard deviation for Sec. 4.8’s six datasets. Submodels were trained on all
of training set D (i.e., q = 1). Beside each dataset’s name is the submodel architecture
used by the ensemble. Threshold ξ matches values in Table 1.

Dataset Submodel Base Acc. (%)

Ames XGBoost 90.4± 2.4
Austin XGBoost 71.3± 4.1
Diamonds Ridge 73.6± 4.0
Weather Ridge 85.9± 3.4
Life XGBoost 92.7± 3.1
Spambase Ridge 87.5± 2.9

C.1.2 Numerical Results. Fig. 7 visualizes our certified regressors’

certified robustness on six datasets – five regression and one binary classification. This

section provides the certified accuracy in numerical form, including the associated

variance.

178

Table C.13. Ames Housing Full Results: Certified accuracy mean and standard
deviation for the Ames Housing [Coc11] dataset. Each ensemble submodel was trained
on 1

q
-th of the training set with three q values tested per dataset, while kNN-CR was

always trained on the whole training set (i.e., q = 1). The certified accuracy results
of five robustness values (R) are reported per q value. Also reported as a baseline is
the uncertified accuracy (R = 0) when training a single model on all of training set D
(q = 1). Results are averaged across 10 trials per method, with each R’s best mean
certified accuracy in bold.

q R PCR OCR W-PCR W-OCR kNN-CR

1 0 90.4 ± 2.4 90.4 ± 2.4 90.4 ± 2.4 90.4 ± 2.4 54.3 ± 3.8

25

1 82.3 ± 3.1 86.8 ± 2.8 82.3 ± 3.1 85.2 ± 2.9 54.3 ± 3.8

4 76.3 ± 3.7 81.2 ± 2.9 76.3 ± 3.7 80.0 ± 2.7 54.0 ± 3.6

8 57.4 ± 3.8 69.6 ± 2.7 57.5 ± 3.7 70.1 ± 3.2 53.1 ± 3.5

12 11.0 ± 3.7 28.2 ± 3.8 23.7 ± 5.1 48.8 ± 4.4 52.2 ± 3.9

16 0.0 ± 0.0 0.0 ± 0.0 11.3 ± 3.8 15.3 ± 3.2 51.5 ± 3.8

125

1 70.4 ± 3.7 73.9 ± 1.7 70.4 ± 3.7 73.1 ± 1.6 54.3 ± 3.8

10 62.8 ± 3.4 66.5 ± 2.0 62.8 ± 3.4 65.9 ± 1.9 53.1 ± 3.5

20 44.9 ± 4.2 52.2 ± 2.9 44.9 ± 4.2 52.2 ± 3.0 51.2 ± 3.6

30 21.8 ± 4.2 28.7 ± 3.8 21.8 ± 4.2 31.1 ± 3.3 49.1 ± 3.7

40 2.5 ± 1.3 3.9 ± 1.7 2.5 ± 1.3 5.9 ± 2.3 48.5 ± 4.0

251

1 63.1 ± 3.4 66.3 ± 3.8 63.1 ± 3.4 66.0 ± 3.7 54.3 ± 3.8

20 51.8 ± 3.2 56.4 ± 2.9 51.8 ± 3.2 57.9 ± 2.9 51.2 ± 3.6

40 37.1 ± 3.2 42.5 ± 3.8 37.1 ± 3.2 45.3 ± 2.8 48.5 ± 4.0

60 15.3 ± 3.8 22.5 ± 3.4 15.3 ± 3.8 32.8 ± 3.7 44.1 ± 4.3

80 0.2 ± 0.4 0.6 ± 0.5 0.2 ± 0.4 10.9 ± 2.5 40.1 ± 3.9

179

Table C.14. Austin Housing Full Results: Certified accuracy mean and standard
deviation for the Austin Housing [Pie21] dataset. Each ensemble submodel was trained
on 1

q
-th of the training set with three q values tested per dataset, while kNN-CR was

always trained on the whole training set (i.e., q = 1). The certified accuracy results
of five robustness values (R) are reported per q value. Also reported as a baseline is
the uncertified accuracy (R = 0) when training a single model on all of training set D
(q = 1). Results are averaged across 10 trials per method, with each R’s best mean
certified accuracy in bold.

q R PCR OCR W-PCR W-OCR kNN-CR

1 0 71.3 ± 4.1 71.3 ± 4.1 71.3 ± 4.1 71.3 ± 4.1 35.3 ± 4.8

51

1 59.9 ± 4.5 63.7 ± 4.6 59.9 ± 4.5 61.7 ± 4.6 35.3 ± 4.8

5 49.6 ± 5.1 52.9 ± 3.4 49.6 ± 5.1 50.8 ± 4.2 35.2 ± 4.8

10 29.9 ± 3.7 35.3 ± 2.8 29.9 ± 3.7 31.8 ± 3.2 34.9 ± 4.9

15 9.2 ± 2.0 12.6 ± 2.8 9.2 ± 2.0 10.1 ± 2.7 34.7 ± 4.9

20 0.5 ± 0.5 0.3 ± 0.7 0.5 ± 0.5 0.0 ± 0.0 34.6 ± 4.6

301

1 51.0 ± 3.9 52.0 ± 4.1 51.0 ± 3.9 51.1 ± 4.1 35.3 ± 4.8

20 41.4 ± 3.6 43.3 ± 5.9 41.4 ± 3.6 43.3 ± 5.9 34.6 ± 4.6

40 29.7 ± 4.1 32.2 ± 5.2 29.7 ± 4.1 33.7 ± 5.7 34.3 ± 4.7

60 15.4 ± 3.0 19.1 ± 4.1 15.4 ± 3.0 22.7 ± 4.9 34.0 ± 4.5

80 3.2 ± 1.8 3.1 ± 1.2 3.2 ± 1.8 7.7 ± 3.4 32.9 ± 4.5

701

1 43.9 ± 5.0 42.7 ± 5.5 43.9 ± 5.0 43.6 ± 5.7 35.3 ± 4.8

40 34.5 ± 6.0 35.0 ± 6.2 34.5 ± 6.0 36.9 ± 5.9 34.3 ± 4.7

80 25.3 ± 4.8 24.7 ± 6.1 25.3 ± 4.8 27.0 ± 6.1 32.9 ± 4.5

120 13.1 ± 2.6 14.6 ± 5.0 13.1 ± 2.6 18.9 ± 4.4 31.6 ± 4.9

160 2.7 ± 0.9 4.8 ± 3.3 2.7 ± 0.9 9.1 ± 2.9 30.0 ± 4.7

180

Table C.15. Diamonds Full Results: Certified accuracy mean and standard deviation
for the Diamonds [Wic16] dataset. Each ensemble submodel was trained on 1

q
-th of

the training set with three q values tested per dataset, while kNN-CR was always
trained on the whole training set (i.e., q = 1). The certified accuracy results of five
robustness values (R) are reported per q value. Also reported as a baseline is the
uncertified accuracy (R = 0) when training a single model on all of training set D
(q = 1). Results are averaged across 10 trials per method, with each R’s best mean
certified accuracy in bold.

q R PCR OCR W-PCR W-OCR kNN-CR

1 0 73.6 ± 4.0 73.6 ± 4.0 73.6 ± 4.0 73.6 ± 4.0 15.7 ± 3.5

151

1 74.6 ± 3.8 74.8 ± 4.5 74.6 ± 3.8 74.7 ± 4.4 15.7 ± 3.5

35 64.4 ± 4.6 67.1 ± 4.8 67.2 ± 4.6 69.7 ± 4.1 15.6 ± 3.4

70 38.6 ± 5.7 42.2 ± 4.0 62.4 ± 4.3 64.7 ± 5.2 15.5 ± 3.4

105 0.0 ± 0.0 0.0 ± 0.0 54.5 ± 5.9 57.4 ± 5.2 15.2 ± 3.3

140 0.0 ± 0.0 0.0 ± 0.0 35.4 ± 5.8 34.3 ± 7.1 14.8 ± 3.4

501

1 77.3 ± 4.2 75.8 ± 3.9 77.3 ± 4.2 75.7 ± 4.1 15.7 ± 3.5

75 66.2 ± 4.0 65.0 ± 4.4 66.3 ± 4.0 68.7 ± 4.4 15.5 ± 3.4

150 50.7 ± 4.9 48.2 ± 4.5 57.8 ± 4.7 59.6 ± 4.9 14.8 ± 3.4

300 0.0 ± 0.0 0.0 ± 0.0 38.0 ± 6.1 36.2 ± 3.2 12.3 ± 3.4

450 0.0 ± 0.0 0.0 ± 0.0 8.8 ± 3.3 9.0 ± 2.1 10.7 ± 2.9

1001

1 75.2 ± 4.1 74.9 ± 5.5 75.2 ± 4.1 74.9 ± 5.5 15.7 ± 3.5

150 56.0 ± 4.9 56.3 ± 5.8 56.0 ± 4.9 62.8 ± 6.1 14.8 ± 3.4

300 24.7 ± 4.4 25.3 ± 4.8 29.5 ± 4.1 42.3 ± 6.4 12.3 ± 3.4

450 0.0 ± 0.0 0.0 ± 0.0 16.9 ± 4.0 17.9 ± 5.1 10.7 ± 2.9

600 0.0 ± 0.0 0.0 ± 0.0 4.2 ± 1.5 3.3 ± 3.1 9.6 ± 3.1

181

Table C.16. Weather Full Results: Certified accuracy mean and standard deviation
for the Weather [Mal+21] dataset. Each ensemble submodel was trained on 1

q
-th of

the training set with three q values tested per dataset, while kNN-CR was always
trained on the whole training set (i.e., q = 1). The certified accuracy results of five
robustness values (R) are reported per q value. Also reported as a baseline is the
uncertified accuracy (R = 0) when training a single model on all of training set D
(q = 1). Results are averaged across 10 trials per method, with each R’s best mean
certified accuracy in bold.

q R PCR OCR W-PCR W-OCR kNN-CR

1 0 85.9 ± 3.4 85.9 ± 3.4 85.9 ± 3.4 85.9 ± 3.4 23.8 ± 4.5

51

1 86.0 ± 3.1 86.5 ± 3.8 86.0 ± 3.1 86.5 ± 3.8 23.8 ± 4.5

10 83.9 ± 3.5 84.6 ± 3.8 83.9 ± 3.5 85.0 ± 3.8 23.8 ± 4.5

20 82.0 ± 3.5 82.3 ± 4.2 83.1 ± 3.4 84.0 ± 3.8 23.8 ± 4.5

35 0.0 ± 0.0 0.0 ± 0.0 81.8 ± 3.7 82.0 ± 4.4 23.8 ± 4.5

50 0.0 ± 0.0 0.0 ± 0.0 76.8 ± 5.1 75.8 ± 4.9 23.8 ± 4.5

1501

1 85.2 ± 3.9 85.2 ± 4.2 85.2 ± 3.9 85.2 ± 4.2 23.8 ± 4.5

300 75.8 ± 4.3 77.6 ± 4.2 76.8 ± 4.2 79.4 ± 4.2 23.4 ± 4.6

600 54.3 ± 4.7 55.1 ± 5.4 71.4 ± 3.7 72.2 ± 5.1 22.9 ± 4.3

1000 0.0 ± 0.0 0.0 ± 0.0 56.5 ± 5.1 57.4 ± 4.6 22.0 ± 4.6

1400 0.0 ± 0.0 0.0 ± 0.0 22.9 ± 2.6 22.5 ± 3.2 21.8 ± 4.8

3001

1 86.7 ± 2.7 84.6 ± 2.9 86.7 ± 2.7 84.6 ± 2.9 23.8 ± 4.5

600 67.7 ± 2.7 66.9 ± 4.0 68.1 ± 2.9 71.5 ± 4.0 22.9 ± 4.3

1200 25.7 ± 5.8 25.8 ± 4.9 55.0 ± 4.2 56.2 ± 3.8 21.9 ± 4.7

1800 0.0 ± 0.0 0.0 ± 0.0 35.8 ± 4.8 34.7 ± 4.0 21.5 ± 4.7

2400 0.0 ± 0.0 0.0 ± 0.0 9.3 ± 3.0 9.9 ± 2.5 20.5 ± 4.9

182

Table C.17. Life Full Results: Certified accuracy mean and standard deviation for
the Life [Raj21] dataset. Each ensemble submodel was trained on 1

q
-th of the training

set with three q values tested per dataset, while kNN-CR was always trained on
the whole training set (i.e., q = 1). The certified accuracy results of five robustness
values (R) are reported per q value. Also reported as a baseline is the uncertified
accuracy (R = 0) when training a single model on all of training set D (q = 1). Results
are averaged across 10 trials per method, with each R’s best mean certified accuracy
in bold.

q R PCR OCR W-PCR W-OCR kNN-CR

1 0 92.7 ± 3.1 92.7 ± 3.1 92.7 ± 3.1 92.7 ± 3.1 34.6 ± 3.1

25

1 77.7 ± 4.4 80.2 ± 4.0 77.7 ± 4.4 78.3 ± 5.2 34.6 ± 3.1

5 69.3 ± 4.9 71.5 ± 4.7 69.3 ± 4.9 71.4 ± 4.7 33.8 ± 2.8

10 43.3 ± 5.6 54.2 ± 6.0 47.3 ± 5.9 60.8 ± 4.9 32.9 ± 2.8

15 0.0 ± 0.0 0.0 ± 0.0 23.8 ± 4.0 33.1 ± 3.2 32.1 ± 2.9

20 0.0 ± 0.0 0.0 ± 0.0 9.5 ± 2.9 11.4 ± 3.2 31.1 ± 2.3

101

1 71.1 ± 3.8 71.5 ± 4.3 71.1 ± 3.8 70.8 ± 4.1 34.6 ± 3.1

10 58.9 ± 4.3 61.8 ± 5.1 58.9 ± 4.3 61.8 ± 5.1 32.9 ± 2.8

20 40.5 ± 5.8 43.9 ± 4.3 40.5 ± 5.8 45.4 ± 4.7 31.1 ± 2.3

30 20.7 ± 3.8 22.8 ± 4.4 20.7 ± 3.8 26.4 ± 3.9 28.5 ± 2.5

40 4.4 ± 2.4 3.5 ± 1.4 4.6 ± 2.5 10.1 ± 2.7 26.9 ± 2.4

201

1 62.9 ± 4.1 66.3 ± 3.0 62.9 ± 4.1 65.7 ± 2.4 34.6 ± 3.1

30 46.6 ± 3.8 49.0 ± 2.8 46.6 ± 3.8 52.9 ± 3.0 28.5 ± 2.5

60 23.3 ± 2.7 24.6 ± 4.1 24.4 ± 2.6 34.4 ± 3.9 23.4 ± 2.3

90 0.1 ± 0.3 0.6 ± 0.5 12.8 ± 2.9 18.0 ± 3.6 18.1 ± 2.1

120 0.0 ± 0.0 0.0 ± 0.0 4.1 ± 1.6 4.4 ± 2.2 8.5 ± 1.4

183

Table C.18. Spambase Full Results: Certified accuracy mean and standard deviation
for the Spambase [Hop+17] dataset. Each ensemble submodel was trained on 1

q
-th of

the training set with three q values tested per dataset, while kNN-CR was always
trained on the whole training set (i.e., q = 1). The certified accuracy results of five
robustness values (R) are reported per q value. Also reported as a baseline is the
uncertified accuracy (R = 0) when training a single model on all of training set D
(q = 1). Results are averaged across 10 trials per method, with each R’s best mean
certified accuracy in bold.

q R PCR OCR W-PCR W-OCR kNN-CR

1 0 87.5 ± 2.9 87.5 ± 2.9 87.5 ± 2.9 87.5 ± 2.9 64.0 ± 4.3

25

1 87.6 ± 3.5 87.1 ± 3.8 87.6 ± 3.5 85.8 ± 3.6 64.0 ± 4.3

5 80.3 ± 3.8 81.0 ± 3.4 81.1 ± 3.6 83.5 ± 3.7 63.6 ± 4.1

10 57.3 ± 4.5 65.0 ± 3.1 73.2 ± 3.8 76.4 ± 3.8 63.4 ± 4.3

15 0.0 ± 0.0 0.0 ± 0.0 61.5 ± 4.8 63.1 ± 2.4 63.2 ± 4.4

20 0.0 ± 0.0 0.0 ± 0.0 42.5 ± 4.4 38.7 ± 4.2 63.0 ± 4.4

151

1 87.4 ± 2.9 87.2 ± 2.2 87.4 ± 2.9 86.7 ± 2.6 64.0 ± 4.3

25 69.1 ± 4.3 70.2 ± 5.5 69.1 ± 4.3 75.7 ± 4.9 63.0 ± 4.4

50 22.8 ± 5.8 24.9 ± 4.0 35.4 ± 6.3 52.8 ± 4.0 62.0 ± 4.8

75 0.0 ± 0.0 0.0 ± 0.0 14.8 ± 3.0 23.0 ± 3.9 61.8 ± 4.7

100 0.0 ± 0.0 0.0 ± 0.0 3.4 ± 2.2 5.2 ± 2.4 61.3 ± 4.2

301

1 83.1 ± 2.8 86.2 ± 3.3 83.1 ± 2.8 86.0 ± 3.2 64.0 ± 4.3

45 65.1 ± 4.7 68.6 ± 3.9 65.1 ± 4.7 72.1 ± 3.9 62.3 ± 4.3

90 30.4 ± 3.5 34.6 ± 4.9 33.6 ± 3.2 53.7 ± 2.7 61.7 ± 4.6

135 0.5 ± 0.7 0.1 ± 0.3 23.7 ± 3.5 31.1 ± 4.6 60.2 ± 4.2

180 0.0 ± 0.0 0.0 ± 0.0 7.2 ± 2.5 11.3 ± 2.5 58.3 ± 4.3

184

C.1.3 kNN-CR Full Certified Accuracy Plots. To improve readability,

Fig. 7 does not show kNN-CR’s full certified accuracy trend. Instead, Fig. C.19 below

plots kNN-CR’s full mean certified accuracy against that of W-OCR (using each

dataset’s maximum q value) for each of Sec. 4.8’s six datasets. Fig. C.19 also visualizes

the variance of each method by showing one standard deviation of the certified accuracy

as a shaded region around the mean line. In summary, while W-OCR certifies more

instances (i.e., has larger peak certified accuracy), its maximum certified robustness R

is (significantly) smaller than that of kNN-CR.

Table C.19. W-OCR q Values: As detailed in Sec. 4.8.1, ensemble submodels were
trained on 1

q
-th of the training data where q varies by dataset. Below are the W-OCR

q values used in Fig. C.19.

Dataset Ames Austin Diamonds Weather Life Spambase

q 251 701 1,001 3,001 201 301

185

kNN-CR (q = 1) W-OCR (q Varies)

0 50 100 150 200 250

20

40

60

80

Certified Robustness (R)

C
er
ti
fi
ed

A
cc
.
(%

)

(a) Ames Housing

0 200 400 600 800

20

40

60

80

Certified Robustness (R)

C
er
ti
fi
ed

A
cc
.
(%

)

(b) Austin Housing

0 300 600 900 1,200

20

40

60

80

Certified Robustness (R)

C
er
ti
fi
ed

A
cc
.
(%

)

(c) Diamonds

0 0.3 0.6 0.9 1.2 1.5

·104

20

40

60

80

Certified Robustness (R)

C
er
ti
fi
ed

A
cc
.
(%

)

(d) Weather

0 40 80 120 160

20

40

60

80

Certified Robustness (R)

C
er
ti
fi
ed

A
cc
.
(%

)

(e) Life

0 100 200 300 400 500

20

40

60

80

Certified Robustness (R)

C
er
ti
fi
ed

A
cc
.
(%

)

(f) Spambase

Figure C.19. kNN-CR vs. W-OCR Certified Accuracy: Full plots of the mean
certified accuracy for Sec. 4.8’s six datasets. The shaded regions visualize one standard
deviation of the certified accuracy for each R value. W-OCR’s q value for each dataset
is in Table C.19.

186

C.2 Chapter 5 Detailed Results

Limited space prevents us from including all experimental results in the main

paper. We provide additional results below.

C.2.1 Non-Robust Accuracy. Table C.20 provides the non-robust

(i.e., uncertified) accuracy when training a single model (L = 1) on each of Sec. 5.5’s

four datasets. The non-robust accuracy provides an upper-bound reference for the

maximum achievable accuracy given the training set and the model architectures we

used.

For regression, the “non-robust accuracy” denotes the single model’s prediction

satisfies the error bounds, i.e., ξl ≤ f(x) ≤ ξu. Given arbitrary instance (x, y), we follow

Hammoudeh and Lowd [HL23c] and use for Weather ξl = y − 3◦C and ξu = y + 3◦C

as well as for Ames ξl = y − 15%y and ξu = y + 15%y.

Table C.20. Non-Robust Accuracy: Prediction accuracy when training a single
model on all model features, i.e., L = 1. These values represent an upper bound on
the potential accuracy of our method given the training set, model architecture, and
hyperparameters.

Dataset Accuracy

CIFAR10 95.40%

MNIST 99.57%

Weather 92.61%

Ames 88.05%

187

C.2.2 Detailed Median Certified Robustness Results. In Section 5.5.2

of the main paper, Tables 2 and 3 summarize the median certified robustness and

classification accuracies of feature partition aggregation (FPA) and baseline randomized

ablation [LF20b; Jia+22b]. In the tables, “[LF20b]” denotes Levine and Feizi’s [LF20b]

original version of RA, and “[Jia+22b]” denotes Jia et al.’s [Jia+22b] improved RA;

“Plural” denotes FPA using plurality voting as the decision function (Sec. 5.3.1) while

“Run-Off” denotes FPA with Sec. 5.3.2’s run-off elections.

Recall that FPA’s primary hyperparameter is L – the number of ensemble

submodels. RA’s primary hyperparameter is e – the number of kept (unchanged)

pixels in each ablated input. L and e control the corresponding method’s accuracy-

robustness trade-off where smaller L and larger e entail better accuracy. As a rule

of thumb, the fairest comparison across methods sets L ≈ d
e
, since this relationship

entails that each FPA and RA prediction uses approximately the same number of

features from instance x.

This section explores the relationship between each method’s hyperparameter

settings and the corresponding median robustness and classification accuracy. Each

dataset’s results are split into separate tables similar to Levine and Feizi’s [LF20b,

Tables 1 and 2] presentation in the original RA paper.

For CIFAR10 and MNIST, FPA uses deterministic partitioning. Specifically, we

use a striding strategy as Section 5.4.1 details. Depending on the image dimensions,

some stride lengths are substantially worse than others, leading to non-monotonic

changes in median robustness as a function of L. Tables C.21 and C.22 do not report

the particularly poor choices of L that severely degrade median robustness, e.g., when

L is evenly divisible by the image width.

188

Below, any misclassified prediction is assigned robustness of −∞, meaning the

median certified robustness can in some cases be negative.

Table C.21. CIFAR10 Detailed Results: Classification accuracy (%) and median
certified robustness (larger is better) for the CIFAR10 [KNH14] dataset (d = 1024)
for our certified sparse defense, feature partition aggregation (FPA), and baseline
randomized ablation (RA) across various hyperparameter settings. Each certification
method’s hyperparameter setting with the best median robustness is shown in bold.
The best overall median robustness is shown in blue.

(a) Feature Partition Aggregation (Ours)

L
Plural Run-Off

Acc. (%) Rmed Acc. (%) Rmed

5 91.46 2 91.77 2

10 86.09 4 86.20 4

20 81.38 7 81.40 7

25 78.65 8 78.58 8

40 74.74 9 74.95 10

55 70.44 10 70.34 11

70 67.46 9 67.47 11

85 66.24 10 66.61 12

105 63.55 10 63.61 12

115 62.39 11 62.35 13

140 60.35 10 60.57 12

165 57.91 8 58.48 10

185 56.08 7 56.39 9

200 55.80 7 56.43 9

225 56.27 6 56.56 8

250 53.30 4 53.46 5

(b) Randomized Ablation (RA – Baseline)

e
[LF20b] [Jia+22b]

Acc. (%) ρmed Acc. (%) ρmed

250 88.77 2 88.56 2

225 88.05 2 87.90 2

200 86.76 3 86.54 3

175 86.16 3 85.94 3

150 84.23 4 84.08 4

125 82.66 5 82.49 5

100 80.43 6 80.05 6

75 78.48 7 78.11 7

50 73.26 7 72.79 8

35 70.34 7 69.72 9

30 69.62 7 69.01 9

25 68.81 6 68.08 9

20 67.01 5 66.15 9

15 65.68 3 64.74 10

12 63.93 0 62.91 10

10 62.73 0 61.71 10

8 60.24 0 59.12 9

7 59.08 0 57.83 8

5 53.20 0 51.84 3

189

Table C.22. MNIST Detailed Results: Classification accuracy (%) and median
certified robustness (larger is better) for the MNIST [LeC+98] dataset (d = 784)
for our certified sparse defense, feature partition aggregation (FPA), and baseline
randomized ablation (RA) across various hyperparameter settings. Each certification
method’s hyperparameter setting with the best median robustness is shown in bold.
The best overall median robustness is shown in blue.

(a) Feature Partition Aggregation (Ours)

L
Plural Run-Off

Acc. (%) Rmed Acc. (%) Rmed

5 99.50 2 99.51 2

10 98.64 4 98.67 4

15 96.82 7 97.02 7

20 96.36 8 96.53 8

25 95.77 9 96.06 10

35 91.70 9 93.05 11

40 89.37 9 91.32 11

50 84.54 8 88.46 11

60 83.54 9 87.22 12

70 79.71 8 85.87 11

80 71.29 6 79.05 9

90 69.94 6 79.25 9

105 62.53 4 74.45 8

120 63.03 3 74.09 7

130 57.48 2 69.93 7

150 52.51 0 67.30 5

(b) Randomized Ablation (RA – Baseline)

e
[LF20b] [Jia+22b]

Acc. (%) ρmed Acc. (%) ρmed

100 98.78 4 98.75 4

95 98.75 5 98.72 5

90 98.62 5 98.56 5

85 98.60 5 98.52 5

80 98.46 6 98.40 6

75 98.35 6 98.27 6

70 98.14 6 98.07 6

65 98.04 7 97.98 7

60 97.85 7 97.78 7

55 97.58 7 97.39 8

50 97.26 7 97.07 8

45 96.88 8 96.68 8

40 96.42 8 96.13 9

35 95.69 8 95.32 9

30 94.87 7 94.47 9

25 93.55 6 93.09 10

20 90.99 3 90.07 9

15 86.71 0 85.24 8

10 76.78 0 74.69 6

5 35.54 −∞ 32.89 −∞

190

Table C.23. Weather Detailed Results: Classification accuracy (%) and median
certified robustness (larger is better) for the Weather [Mal+21] dataset (d = 128)
for our certified sparse defense, feature partition aggregation (FPA), and baseline
randomized ablation (RA) across various hyperparameter settings. FPA considers only
plurality voting-based certification (Sec. 5.3.1) since the reduction is from certified
regression to certified binary classification. FPA results are reported using both
GBDTs [Ke+17] and linear submodels. Median robustness “−∞” denotes that the
classification accuracy was less than 50%. Each approach’s hyperparameter setting
with the best median robustness is shown in bold. The best overall median robustness
is shown in blue.

(a) Feature Partition Aggregation (Ours)

L
LightGBM Linear

Acc. (%) Rmed Acc. (%) Rmed

1 92.70 0 86.05 0

5 85.29 2 83.34 2

11 82.48 3 79.55 2

15 81.09 3 76.15 3

21 76.10 4 67.09 2

25 71.40 3 64.77 2

31 67.06 3 58.71 2

35 62.56 3 55.95 1

41 60.19 2 51.57 0

51 55.34 1 45.84 −∞
75 42.20 −∞ 26.93 −∞
101 28.67 −∞ 21.26 −∞

(b) Randomized Ablation (RA – Baseline)

e
[LF20b] [Jia+22b]

Acc. (%) ρmed Acc. (%) ρmed

65 80.70 0 78.63 0

60 80.33 0 78.01 0

55 79.52 0 77.05 0

50 78.62 0 76.59 0

45 77.20 0 75.19 1

40 76.56 0 74.82 1

35 74.76 0 73.22 1

30 72.04 0 70.74 1

25 69.77 0 68.72 1

20 66.94 0 65.87 1

16 63.89 0 63.10 1

12 58.59 0 57.74 1

8 53.44 0 52.82 0

6 47.94 −∞ 47.25 −∞
4 40.70 −∞ 39.91 −∞

191

Table C.24. Ames Detailed Results: Classification accuracy (%) and median
certified robustness (larger is better) for the Ames [Coc11] dataset (d = 352) for our
certified sparse defense, feature partition aggregation (FPA), and baseline randomized
ablation (RA) across various hyperparameter settings. FPA considers only plurality
voting-based certification (Sec. 5.3.1) since the reduction is from certified regression to
certified binary classification. FPA results are reported using both GBDTs [Ke+17] and
linear submodels. Median robustness “−∞” denotes that the classification accuracy
was less than 50%. Each approach’s hyperparameter setting with the best median
robustness is shown in bold. The best overall median robustness is shown in blue.

(a) Feature Partition Aggregation (Ours)

L
LightGBM Linear

Acc. (%) Rmed Acc. (%) Rmed

1 88.05 0 89.25 0

5 84.64 1 82.08 1

11 78.50 2 74.40 1

15 73.04 2 66.55 2

21 65.53 3 61.60 2

25 61.77 2 57.34 1

31 57.68 2 53.58 0

35 55.97 1 50.34 0

41 52.90 1 46.42 −∞
51 47.10 −∞ 40.10 −∞
75 36.86 −∞ 35.15 −∞

(b) Randomized Ablation (RA – Baseline)

e
[LF20b] [Jia+22b]

Acc. (%) ρmed Acc. (%) ρmed

70 68.60 0 66.89 0

60 68.94 0 67.24 1

50 67.58 1 66.89 1

40 61.77 1 61.77 1

35 61.09 0 60.07 1

30 57.68 0 57.00 1

25 53.58 0 52.56 1

20 51.54 0 49.49 −∞
15 45.05 −∞ 44.37 −∞
10 37.20 −∞ 37.54 −∞
5 33.79 −∞ 33.79 −∞

192

C.2.3 Feature Partition Aggregation vs. Randomized Ablation

Certified Accuracy Detailed Comparison. Levine and Feizi [LF20b] use median

certified robustness and classification accuracy as the two primary metrics by which

they compare RA against previous work. In this section, we present an alternative

evaluation strategy comparing the methods’ certified accuracy across a range of

robustness levels.

Specifically, we consider the same four datasets from Section 5.5, namely

classification datasets CIFAR10 [KNH14] and MNIST [LeC+98] as well as regression

datasets Weather [Mal+21] and Ames [Coc11]. Like in Section 5.5, we report

FPA’s performance using both the plurality-voting and run-off decision functions

for classification and only plurality voting for regression. For baseline randomized

ablation (RA), we again report the performance of Levine and Feizi’s [LF20b] original

version of RA as well as the improved version by Jia et al. [Jia+22b].

This section also compares FPA and RA against a naive baseline that is generally

low accuracy but maximally robust. For classification, the naive baseline always

predicts f(x) = 1; for regression, the naive baseline always predicts the training set’s

median target value.

Recall that hyperparameters L for FPA and e for baseline randomized ablation

control the corresponding method’s accuracy versus robustness trade-off. Specifically,

a smaller value of L and a larger value of e entails better accuracy. As a rule of

thumb, the fairest comparison between FPA and RA is when L ≈ d
e
as each FPA and

RA prediction, in expectation, uses a comparable amount of information (i.e., number

of features). For each dataset, we report each method’s certified accuracy across

10 hyperparameter settings, roughly following the rule of thumb above. Section C.2.3.1

193

presents the experimental results in tabular form, and Section C.2.3.2 visualizes the

methods’ certified accuracy graphically.

C.2.3.1 Numerical Comparison of Feature Partition Aggregation

and Randomized Ablation. Certified accuracy w.r.t. ψ ∈ N quantifies the fraction

of correctly-classified test instances with certified robustness at least ψ.

Tables C.25, C.26, C.27, and C.28 numerically display the certified accuracies

for our certified feature defense, feature partition aggregation (FPA), and baseline

randomized ablation (RA) for CIFAR10, MNIST, Weather, and Ames, respectively.

For each dataset, the corresponding table lists the certified accuracy at 11 equally

spaced certified robustness levels.

Recall that RA’s ℓ0-norm robustness (Def. 5.2) is a strictly weaker guarantee than

FPA’s certified feature robustness (Def. 5.1). Put simply, a true direct comparison is

not possible here since FPA provides stronger certified guarantees than the baseline.

Despite that, FPA can achieve larger certified accuracies than the baseline while

simultaneously providing stronger guarantees.

194

Table C.25. CIFAR10 (d = 1024) certified accuracy for feature partition
aggregation (FPA) and baseline randomized ablation (RA). “Plurality” denotes FPA
with plurality voting as the decision function while “Run-Off” denotes FPA using
run-off elections as the decision function. “[LF20b]” denotes Levine and Feizi’s [LF20b]
original version of RA while “[Jia+22b]” denotes Jia et al.’s [Jia+22b] improved version
of RA. We also consider an additional naive baseline that always predicts f(x) = 1.
For each certified robustness level, each method’s best performing hyperparameter
setting is shown in bold with the overall best performing method shown in blue.

Method
Cert.
Alg.

Hyper.

Setting
Certified Robustness

0 13 26 39 52 65 78 91 104 117 130

Always f(x) = 1 N/A 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00

FPA
(ours)

Plural

5 91.46 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

25 78.65 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

35 69.62 36.35 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

55 70.44 44.06 10.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

85 66.24 46.67 26.87 7.77 0.00 0.00 0.00 0.00 0.00 0.00 0.00

115 62.39 47.74 33.48 19.67 6.97 0.00 0.00 0.00 0.00 0.00 0.00

160 60.94 42.27 27.77 16.95 9.00 3.89 0.52 0.00 0.00 0.00 0.00

250 53.30 43.98 35.63 28.37 21.54 15.57 10.91 7.04 4.02 1.62 0.00

500 43.79 38.75 33.63 28.86 24.65 20.86 17.56 14.32 11.56 9.38 7.66

1024 33.01 29.70 26.95 24.14 21.68 19.33 17.24 15.41 13.92 12.29 11.05

Run-Off

5 91.77 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

25 78.58 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

35 69.92 37.45 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

55 70.34 46.71 11.18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

85 66.61 49.26 30.25 8.91 0.00 0.00 0.00 0.00 0.00 0.00 0.00

115 62.35 50.04 36.76 22.64 8.21 0.00 0.00 0.00 0.00 0.00 0.00

160 61.34 45.54 32.71 21.16 11.96 5.06 0.56 0.00 0.00 0.00 0.00

250 53.46 45.48 38.40 31.70 25.24 19.02 13.48 8.94 4.99 1.88 0.00

500 44.58 39.58 35.25 31.17 27.60 24.21 20.57 17.62 14.74 12.33 10.25

1024 35.50 32.01 28.80 25.89 23.22 20.74 18.63 16.85 15.20 13.80 12.57

RA

[LF20b]

250 88.77 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

75 78.48 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

50 73.26 25.80 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

25 68.81 38.82 11.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

15 65.68 38.81 23.59 9.42 0.00 0.00 0.00 0.00 0.00 0.00 0.00

10 62.73 37.60 27.46 17.72 9.74 1.89 0.00 0.00 0.00 0.00 0.00

7 59.08 33.44 25.65 18.58 12.56 7.77 3.71 1.09 0.00 0.00 0.00

5 53.20 28.47 22.80 17.85 14.04 10.10 6.87 4.20 2.31 0.94 0.05

2 40.44 14.03 12.37 10.62 9.12 7.91 6.96 5.95 5.16 4.51 3.98

1 21.16 4.37 3.87 3.37 2.91 2.58 2.35 1.90 1.68 1.42 1.21

[Jia+22b]

250 88.56 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

75 78.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

50 72.79 26.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

25 68.08 43.10 12.28 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

15 64.74 46.17 28.17 11.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00

10 61.71 47.54 34.36 22.44 11.99 2.31 0.00 0.00 0.00 0.00 0.00

7 57.83 46.43 35.75 26.23 17.70 10.79 4.96 1.33 0.00 0.00 0.00

5 51.84 43.08 34.70 27.14 20.77 15.27 10.36 6.32 3.34 1.21 0.06

2 38.70 33.84 29.15 25.01 21.22 17.95 14.90 12.49 10.33 8.54 7.03

1 19.64 17.96 15.83 14.06 12.48 11.18 10.17 9.06 8.24 7.35 6.48

195

Table C.26. MNIST (d = 784) certified accuracy for feature partition
aggregation (FPA) and baseline randomized ablation (RA). “Plurality” denotes FPA
with plurality voting as the decision function while “Run-Off” denotes FPA using
run-off elections as the decision function. “[LF20b]” denotes Levine and Feizi’s [LF20b]
original version of RA while “[Jia+22b]” denotes Jia et al.’s [Jia+22b] improved version
of RA. We also consider an additional naive baseline that always predicts f(x) = 1.
For each certified robustness level, each method’s best performing hyperparameter
setting is shown in bold with the overall best performing method shown in blue.

Method
Cert.
Alg.

Hyper.

Setting
Certified Robustness

0 4 8 12 16 20 24 28 32 36 40

Always f(x) = 1 N/A 11.35 11.35 11.35 11.35 11.35 11.35 11.35 11.35 11.35 11.35 11.35

FPA
(ours)

Plural

5 99.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

10 98.64 87.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

25 95.77 86.48 66.42 20.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00

35 91.70 79.49 59.53 35.95 13.18 0.00 0.00 0.00 0.00 0.00 0.00

60 83.54 70.30 54.72 39.10 26.26 16.08 7.95 1.78 0.00 0.00 0.00

75 74.99 61.44 47.75 34.97 25.34 17.90 12.43 8.11 3.89 0.42 0.00

90 69.94 57.11 43.89 33.01 24.52 17.89 12.99 9.16 6.24 3.22 0.71

105 62.53 50.33 39.10 29.27 22.13 16.52 13.04 10.51 8.42 6.61 4.63

130 57.48 46.68 36.45 28.38 22.70 18.52 15.23 12.54 10.45 8.38 6.30

240 28.13 24.67 21.81 19.57 17.63 16.33 15.16 14.40 13.79 13.00 12.30

Run-Off

5 99.51 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

10 98.67 87.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

25 96.06 88.72 71.52 20.28 0.00 0.00 0.00 0.00 0.00 0.00 0.00

35 93.05 83.56 67.58 44.72 14.36 0.00 0.00 0.00 0.00 0.00 0.00

60 87.22 76.59 63.67 50.52 37.10 23.91 12.14 2.97 0.00 0.00 0.00

75 81.74 68.54 56.44 44.65 34.68 25.48 17.82 11.09 5.28 0.45 0.00

90 79.25 66.38 53.93 43.35 33.92 26.20 20.14 14.71 9.98 6.02 2.34

105 74.45 61.76 50.73 40.32 31.38 24.57 19.00 14.85 11.80 9.05 6.46

130 69.93 58.88 48.44 38.73 31.04 25.06 20.82 17.47 14.69 12.00 9.85

240 48.33 40.31 33.37 28.30 24.57 21.29 18.71 17.17 15.82 14.82 13.81

RA

[LF20b]

100 98.78 84.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

85 98.60 86.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

60 97.85 84.30 35.32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

50 97.26 81.56 49.77 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

40 96.42 76.53 51.99 16.85 0.00 0.00 0.00 0.00 0.00 0.00 0.00

30 94.87 66.97 46.33 26.88 7.30 0.00 0.00 0.00 0.00 0.00 0.00

20 90.99 48.11 34.38 23.77 15.23 7.50 0.96 0.00 0.00 0.00 0.00

10 76.78 20.36 16.22 13.08 10.62 8.40 5.99 3.72 1.54 0.16 0.00

5 35.54 10.85 10.31 9.75 9.17 8.69 7.86 6.90 5.73 4.42 3.23

3 16.91 11.13 10.96 10.70 10.51 10.19 9.84 9.41 8.87 8.21 7.04

[Jia+22b]

100 98.75 86.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

85 98.52 88.21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

60 97.78 88.45 39.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

50 97.07 87.28 57.28 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

40 96.13 85.69 62.37 21.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00

30 94.47 82.47 62.32 36.45 11.20 0.00 0.00 0.00 0.00 0.00 0.00

20 90.07 76.29 58.26 39.39 24.36 12.98 2.70 0.00 0.00 0.00 0.00

10 74.69 59.11 44.55 32.87 23.94 17.91 13.49 10.38 7.33 3.73 0.80

5 32.89 26.17 21.19 17.56 15.76 14.46 13.43 12.52 11.51 10.77 10.05

3 15.91 14.97 13.90 13.10 12.46 12.01 11.71 11.50 11.40 11.30 11.30

196

Table C.27. Weather [Mal+21] dataset (d = 128) certified accuracy for feature partition
aggregation (FPA) and baseline randomized ablation (RA). “[LF20b]” denotes Levine
and Feizi’s [LF20b] original version of RA while “[Jia+22b]” denotes Jia et al.’s
[Jia+22b] improved version of RA. Hammoudeh and Lowd’s [HL23c] reduction is
from certified regression to certified binary classification. Run-off is identical to
plurality voting under binary classification, so we report only the plurality voting
results below. We also consider an additional naive baseline that always predicts
the median training set target value (i.e., f(x) = med{yi}ni=1). For each certified
robustness level, each method’s best performing hyperparameter setting is shown in
bold with the overall best performing method shown in blue. These numerical results
are visualized graphically as envelope plots in Figure C.21.

Method
Cert.
Alg.

Hyper.

Setting
Certified Robustness

0 1 2 3 4 5 6 7 8 9 10

Always f(x) = med{yi}ni=1 N/A 21.90 21.90 21.90 21.90 21.90 21.90 21.90 21.90 21.90 21.90 21.90

FPA
(ours)

Plural

5 85.29 77.38 62.69 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

11 82.48 76.34 67.59 55.50 39.02 18.42 0.00 0.00 0.00 0.00 0.00

15 81.09 75.23 68.16 58.98 48.08 35.81 19.92 7.77 0.00 0.00 0.00

21 76.10 70.78 64.73 57.69 50.01 41.48 33.04 23.78 14.30 6.47 0.91

25 71.40 66.29 60.70 55.03 49.17 42.93 35.88 28.92 21.58 14.29 7.12

31 67.06 62.80 58.18 53.39 48.76 43.85 38.49 32.77 27.12 21.51 15.81

35 62.56 58.84 54.93 50.72 46.54 42.03 37.62 33.08 28.10 22.76 17.18

41 60.19 56.83 53.34 49.72 45.99 42.34 38.55 34.60 30.44 26.09 21.47

45 57.96 54.99 51.94 48.81 45.57 42.26 38.78 35.11 31.29 27.23 22.91

127 23.43 22.95 22.49 22.04 21.61 21.19 20.77 20.38 20.00 19.61 19.23

RA

[LF20b]

50 78.62 22.32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

40 76.56 31.26 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

30 72.04 39.64 9.53 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

20 66.94 45.11 20.61 6.82 0.00 0.00 0.00 0.00 0.00 0.00 0.00

16 63.89 45.77 26.67 11.64 3.83 0.04 0.00 0.00 0.00 0.00 0.00

12 58.59 45.19 31.87 18.36 9.67 4.37 1.06 0.00 0.00 0.00 0.00

9 54.68 44.55 35.11 25.05 15.88 9.48 5.26 2.26 0.61 0.01 0.00

6 47.94 41.22 34.84 28.60 22.32 16.45 11.82 8.60 6.00 3.90 2.37

3 36.88 33.32 30.57 27.90 25.63 23.08 20.58 18.16 15.97 13.91 11.87

1 21.00 20.68 20.61 20.48 20.35 20.19 20.05 19.93 19.77 19.67 19.43

[Jia+22b]

50 76.59 47.32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

40 74.82 53.84 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

30 70.74 56.18 31.24 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

20 65.87 56.66 44.24 26.06 3.94 0.00 0.00 0.00 0.00 0.00 0.00

16 63.10 55.29 46.24 34.49 19.75 5.20 0.00 0.00 0.00 0.00 0.00

12 57.74 51.96 45.73 38.47 29.53 19.26 10.88 0.00 0.00 0.00 0.00

9 53.97 49.95 45.97 41.18 35.62 29.11 21.44 14.51 9.10 2.63 0.00

6 47.25 44.86 41.94 39.16 36.21 33.00 29.54 25.82 21.18 16.82 13.31

3 36.01 34.97 33.59 32.19 31.02 29.72 28.46 27.33 26.28 25.21 23.99

1 20.84 20.76 20.72 20.63 20.58 20.50 20.41 20.31 20.25 20.14 20.03

197

Table C.28. Ames [Coc11] dataset (d = 352) certified accuracy for feature partition
aggregation (FPA) and baseline randomized ablation (RA). “[LF20b]” denotes Levine
and Feizi’s [LF20b] original version of RA while “[Jia+22b]” denotes Jia et al.’s
[Jia+22b] improved version of RA. Hammoudeh and Lowd’s [HL23c] reduction is
from certified regression to certified binary classification. Run-off is identical to
plurality voting under binary classification, so we report only the plurality voting
results below. We also consider an additional naive baseline that always predicts
the median training set target value (i.e., f(x) = med{yi}ni=1). For each certified
robustness level, each method’s best performing hyperparameter setting is shown in
bold with the overall best performing method shown in blue. These numerical results
are visualized graphically as envelope plots in Figure C.21.

Method
Cert.
Alg.

Hyper.

Setting
Certified Robustness

0 1 2 3 4 5 6 7 8 9 10

Always f(x) = med{yi}ni=1 N/A 31.40 31.40 31.40 31.40 31.40 31.40 31.40 31.40 31.40 31.40 31.40

FPA
(ours)

Plural

5 84.64 72.01 39.93 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

11 78.50 70.99 58.70 40.96 22.53 5.12 0.00 0.00 0.00 0.00 0.00

21 65.53 60.41 54.95 50.17 41.64 32.42 22.87 12.63 5.46 1.37 0.00

25 61.77 58.36 54.27 49.83 43.69 35.84 28.67 20.82 12.63 6.14 2.39

31 57.68 54.95 51.54 48.12 42.66 37.20 32.08 26.28 20.82 15.02 10.24

35 55.97 52.56 48.81 45.73 42.32 38.23 33.79 29.01 24.57 19.45 14.68

41 52.90 50.51 47.10 43.34 40.96 37.20 34.47 31.06 27.65 24.23 20.82

51 47.10 44.37 41.98 39.25 37.88 35.49 34.13 32.08 30.03 28.33 26.28

65 41.64 39.25 37.88 37.20 36.01 34.47 33.45 32.42 31.40 30.38 29.69

101 33.45 33.11 32.76 32.76 32.42 32.08 32.08 31.74 31.74 31.74 31.40

RA

[LF20b]

60 68.94 43.34 11.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

50 67.58 52.56 32.08 7.85 0.00 0.00 0.00 0.00 0.00 0.00 0.00

40 61.77 50.17 38.23 18.09 4.10 0.00 0.00 0.00 0.00 0.00 0.00

35 61.09 49.49 39.93 20.48 10.24 1.71 0.00 0.00 0.00 0.00 0.00

30 57.68 48.46 39.59 26.96 16.38 5.46 0.00 0.00 0.00 0.00 0.00

25 53.58 47.78 38.91 27.65 20.82 15.02 4.10 0.34 0.00 0.00 0.00

20 51.54 43.34 38.23 32.76 26.28 20.48 15.02 7.85 2.39 0.00 0.00

15 45.05 39.25 36.18 34.81 29.69 27.99 23.21 19.45 13.99 9.90 5.80

10 37.20 36.18 35.15 33.11 32.76 31.40 28.67 26.62 25.26 24.57 22.87

5 33.79 33.11 32.76 32.08 32.08 32.08 31.74 31.40 31.06 30.38 30.38

[Jia+22b]

60 67.24 59.73 46.76 13.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00

50 66.89 59.73 48.81 31.40 7.17 0.00 0.00 0.00 0.00 0.00 0.00

40 61.77 55.63 49.49 38.57 25.60 6.48 0.00 0.00 0.00 0.00 0.00

35 60.07 52.90 48.12 38.91 31.06 16.38 2.39 0.00 0.00 0.00 0.00

30 57.00 51.88 47.10 41.30 34.81 26.96 15.36 2.39 0.00 0.00 0.00

25 52.56 50.17 45.39 40.27 35.84 31.06 24.91 17.06 6.48 0.34 0.00

20 49.49 45.73 44.03 41.30 37.54 33.79 30.38 25.94 22.53 13.99 6.83

15 44.37 42.32 40.96 39.93 35.84 35.49 32.76 30.72 27.65 24.91 22.18

10 37.54 36.52 35.84 33.79 33.79 33.45 32.42 31.06 30.38 29.35 29.01

5 33.79 33.45 33.45 33.11 33.11 33.11 32.76 32.76 32.42 32.08 32.08

198

C.2.3.2 Graphical Comparison of Feature Partition Aggregation

and Randomized Ablation. Recall that hyperparameters L for FPA and e for

baseline randomized ablation control the corresponding method’s accuracy-robustness

trade-off. Specifically, a smaller value of L and a larger value of e entails better

accuracy. This section emulates a defender that tunes FPA’s and randomized ablation’s

hyperparameters to maximize the certified accuracy at each individual robustness level

individually.

Tables C.25 through C.28 above report each method’s certified accuracy across

10 comparable hyperparameter settings. For a given method, each hyperparameter

setting provides a certified accuracy versus certified robustness curve. This section

considers each defense’s certified accuracy envelope. Specifically, an envelope in

mathematics represents the supremum of a set of curves. Intuitively, taking the

certified accuracy envelope emulates maximizing a method’s performance at each

certified robustness level individually across the 10 hyperparameter settings.

Figures C.20 and C.21 visualize the certified accuracy envelopes in two ways.

First, Figures C.20a, C.20b, C.21a, and C.21b visualize the envelope curves themselves.

These figures also visualize the same naive baselines considered in Sec. C.2.3.1 above

(e.g., always predict label 1 for classification and median med{yi}ni=1 for regression).

Second, Figures C.20c, C.20d, C.21c, and C.21d visualize the improvement in certified

accuracy between FPA and the two versions of randomized ablation across the range

of certified robustness levels. A positive value in these four subfigures entails that FPA

outperformed the corresponding baseline (i.e., FPA had a larger certified accuracy),

while a negative value entails the baseline outperformed FPA.

For CIFAR10 and MNIST, FPA with run-off’s envelope had larger certified

accuracy than the envelope of both versions of baseline RA across the entire certified

199

robustness range (x-axis). Specifically, for Levine and Feizi’s [LF20b] version of

RA, FPA with run-off’s certified accuracy advantage was as large as 14.17 and 24.28

percentage points (pp) for CIFAR10 and MNIST, respectively. For Jia et al.’s [Jia+22b]

version of RA, FPA with run-off’s certified accuracy advantage was as large as 6.54pp

and 12.74pp for CIFAR10 and MNIST, respectively.

For regression datasets Weather and Ames, FPA’s envelope had larger certified

accuracy than the envelope of both versions of baseline RA across most of the certified

accuracy range. At the largest robustness values, [Jia+22b] marginally outperformed

both FPA and the naive baseline by <2pp. At smaller certified robustness values,

FPA outperformed Jia et al.’s [Jia+22b] version of RA by up to 21.9pp and 17.4pp

for Weather and Ames, respectively.

200

Always f(x) = 1 FPA Plural (ours) FPA Run-Off (ours) RA [LF20b] RA [Jia+22b]

0 30 60 90 120 150

20

40

60

80

100

Certified Robustness

C
er
ti
fi
ed

A
cc
u
ra
cy

(%
)

(a) CIFAR10: Certified Accuracy
Envelope

0 10 20 30 40 50

20

40

60

80

100

Certified Robustness

C
er
ti
fi
ed

A
cc
u
ra
cy

(%
)

(b) MNIST: Certified Accuracy Envelope

FPA Run-Off vs. RA [LF20b] FPA Run-Off vs. RA [Jia+22b]

0 30 60 90 120 150
0

3

6

9

12

Certified Robustness

Im
p
ro
v
em

en
t
in

C
er
ti
fi
ed

A
cc
.
(%

)

(c) CIFAR10: FPA’s Certified Accuracy
Improvement over RA

0 10 20 30 40 50
0

4

8

12

16

20

24

Certified Robustness

Im
p
ro
v
em

en
t
in

C
er
ti
fi
ed

A
cc
.
(%

)

(d) MNIST: FPA’s Certified Accuracy
Improvement over RA

Figure C.20. Classification certified accuracy envelope for datasets CIFAR10
(d = 1024) and MNIST (d = 784) for feature partition aggregation (FPA) and baseline
randomized ablation (RA). Each method’s envelope considers the corresponding
hyperparameters in Tables C.25 and C.26, emulating a certified defense where
the hyperparameters are roughly tuned to maximize the certified accuracy at each
robustness level. Subfigures C.20a and C.20b visualize each method’s certified accuracy
envelope (larger is better); also shown in these subfigures is a naive baseline where
the decision function always predicts label f(x) = 1. Subfigures C.20c and C.20d
visualize the improvement in certified accuracy when using FPA with the run-off
decision function over the two randomized ablation baselines from Levine and Feizi
[LF20b] and Jia et al. [Jia+22b]. The envelope plots’ underlying numerical values are
provided in Table C.25 for CIFAR10 and Table C.26 for MNIST.

201

Always f(x) = med{yi}ni=1 FPA (Plural) (ours) RA [LF20b] RA [Jia+22b]

0 2 4 6 8 10 12

20

40

60

80

100

Certified Robustness

C
er
ti
fi
ed

A
cc
u
ra
cy

(%
)

(a) Weather: Certified Accuracy
Envelope

0 2 4 6 8

20

40

60

80

100

Certified Robustness

C
er
ti
fi
ed

A
cc
u
ra
cy

(%
)

(b) Ames: Certified Accuracy Envelope

FPA Plural vs. RA [LF20b] FPA Plural vs. RA [Jia+22b]

0 3 6 9 12
0

8

16

24

32

Certified Robustness

Im
p
ro
v
em

en
t
in

C
er
ti
fi
ed

A
cc
.
(%

)

(c) Weather: FPA’s Certified Accuracy
Improvement over RA

0 2 4 6 8
0

4

8

12

16

20

Certified Robustness

Im
p
ro
v
em

en
t
in

C
er
ti
fi
ed

A
cc
.
(%

)

(d) Ames: FPA’s Certified Accuracy
Improvement over RA

Figure C.21. Regression certified accuracy envelope for the Weather [Mal+21]
(d = 128) and Ames [Coc11] (d = 352) datasets for feature partition aggregation (FPA)
and baseline randomized ablation (RA). Each method’s envelope considers the
corresponding hyperparameters in Tables C.27 and C.28, emulating a certified defense
where the hyperparameters are tuned to maximize each robustness level’s certified
accuracy. Subfigures C.21a and C.21b visualize each method’s certified accuracy
envelope (larger is better); also shown in these subfigures is a naive baseline that
always predicts the median training data target value. Subfigures C.21c and C.21d
visualize the improvement in certified accuracy when using FPA (with plurality voting)
as the decision function over the two randomized ablation baselines from Levine
and Feizi [LF20b] and Jia et al. [Jia+22b]. FPA outperforms randomized ablation
for smaller certified robustness values, while Jia et al.’s [Jia+22b] version of RA
marginally outperformed both FPA and the naive baseline at larger robustness values.
The envelope plots’ underlying numerical values are provided in Table C.27 for Weather
and Table C.28 for Ames.

202

C.3 Chapter 6 Detailed Results

Section 6.5 provided averaged results for each related experimental setup. This

section provides detailed results for each attack setup individually (including variance).

C.3.1 Speech Recognition Backdoor Full Results.

GAS (ours) GAS-L (ours) TracInCP TracIn Influence Functions Representer Point

0→ 1 1→ 2 2→ 3 3→ 4 4→ 5 5→ 6 6→ 7 7→ 8 8→ 9 9→ 0

0

0.2

0.4

0.6

0.8

1

D
a
d
v
A
U
P
R
C

Figure C.22. Speech Backdoor Adversarial Set Identification: Mean backdoor
set (Dadv) identification AUPRC across 30 trials for all 10 class pairs with
21 ≤ |Dadv| ≤ 28 (varies by class pair, see Tab. D.57). GAS and GAS-L outperformed
all baselines in all experiments, with GAS-L the overall top performer on 6/10 class
pairs. See Table C.29 for the numerical results.

Table C.29. Speech Backdoor Adversarial Set Identification: Mean AUPRC
across 30 trials for speech backdoor dataset [Liu+18] with 21 ≤ |Dadv| ≤ 28. GAS(-L)
always outperformed the baselines. Bold denotes the best mean performance. Mean
results are shown graphically in Figs. 14 and C.22. Variance results appear in the
original paper [HL22a, Sec. F.1.1].

Digits Ours Baselines

ytarg → yadv GAS GAS-L TracInCP TracIn Inf. Func. Rep. Pt.

0 1 0.999 1.000 0.642 0.458 0.807 0.143

1 2 0.985 0.969 0.417 0.303 0.763 0.069

2 3 0.969 0.919 0.769 0.595 0.735 0.119

3 4 0.999 0.998 0.787 0.630 0.847 0.106

4 5 1.000 0.999 0.510 0.358 0.718 0.106

5 6 0.977 0.986 0.791 0.506 0.698 0.064

6 7 0.876 0.911 0.301 0.255 0.350 0.060

7 8 0.985 0.989 0.868 0.630 0.730 0.091

8 9 0.993 0.998 0.898 0.620 0.696 0.061

9 0 0.983 0.975 0.446 0.317 0.655 0.052

203

FIT w/ GAS (ours) FIT w/ GAS-L (ours) Max. k-NN Distance Min. k-NN Distance

Most Certain Least Certain Random

0→ 1 1→ 2 2→ 3 3→ 4 4→ 5

0

0.2

0.4

0.6

0.8

1

T
a
rg
et

A
U
P
R
C

Figure C.23. Speech Backdoor Target Identification: See Table C.30 for numerical
results.

Table C.30. Speech Backdoor Target Identification: Bold denotes the best mean
performance. Mean results are shown graphically in Figures 16 and C.23. Variance
results appear in the original paper [HL22a, Sec. F.1.1].

Digits Ours Baselines

ytarg → yadv GAS GAS-L Max k-NN Min k-NN Most Certain Least Certain Random

0 1 1 1 0.156 0.030 0.177 0.040 0.067

1 2 0.923 0.795 0.034 0.158 0.267 0.028 0.059

2 3 0.981 0.981 0.047 0.110 0.179 0.032 0.047

3 4 1 1 0.107 0.034 0.206 0.037 0.062

4 5 1 1 0.040 0.076 0.225 0.027 0.072

Table C.31. Speech Backdoor Attack Mitigation: Bold denotes the best mean
performance with 10 trials per class pair. Aggregated results are shown in Table 6.

Digits
Method

% Removed ASR % Test Acc. %

ytarg yadv Dadv Dcl Orig. Ours Orig. Chg.

0 1
GAS 100 0.06

100
0

97.7
0.0

GAS-L 100 0.03 0 0.0

1 2
GAS 100.0 0.02

100
0

97.7
0.0

GAS-L 99.8 0.09 0 0.0

2 3
GAS 93.7 0.08

99.9
0

97.8
–0.1

GAS-L 92.6 0.21 0 –0.1

3 4
GAS 98.7 0.10

99.4
0

97.7
–0.1

GAS-L 99.3 0.35 0 0.0

4 5
GAS 99.1 0.01

100
0

97.8
0.0

GAS-L 98.6 0.01 0 0.0

204

C.3.2 Vision Backdoor Full Results.

GAS (ours) GAS-L (ours) TracInCP TracIn Influence Functions Representer Point

1 Pixel 4 Pixel Blend1 Pixel 4 Pixel Blend

0

0.2

0.4

0.6

0.8

1

Plane→ BirdAuto→ Dog

D
a
d
v
A
U
P
R
C

Figure C.24. Vision Backdoor Adversarial-Set Identification: Backdoor set,
Dadv, identification mean AUPRC across >30 trials for Weber et al.’s [Web+23]
three CIFAR10 backdoor attack patterns with a randomly selected reference ẑtarg.
All experiments performed binary classification on randomly-initialized ResNet9.
|Dadv| = 150. Notation ytarg → yadv. See Table C.32 for the numerical results.

Table C.32. Vision Backdoor Adversarial-Set Identification: Backdoor set,
Dadv, identification mean AUPRC across >30 trials for Weber et al.’s [Web+23]
three CIFAR10 backdoor attack patterns with a randomly selected reference ẑtarg.
All experiments performed binary classification on randomly-initialized ResNet9.
|Dadv| = 150. Notation ytarg → yadv. Bold denotes the best mean performance. Mean
results are shown graphically in Figures 14 and C.24. Variance results appear in the
original paper [HL22a, Sec. F.1.2].

Classes Trigger

Pattern
Ours Baselines

ytarg → yadv GAS GAS-L TracInCP TracIn Inf. Func. Rep. Pt.

Auto → Dog

1 Pixel 0.977 0.987 0.742 0.435 0.051 0.033

4 Pixel 0.992 0.996 0.552 0.255 0.088 0.022

Blend 0.999 1.000 0.809 0.426 0.062 0.030

Plane → Bird

1 Pixel 0.738 0.805 0.389 0.237 0.132 0.026

4 Pixel 0.951 0.975 0.264 0.130 0.170 0.021

Blend 0.832 0.916 0.359 0.207 0.042 0.028

205

FIT w/ GAS (ours) FIT w/ GAS-L (ours) Max. k-NN Distance Min. k-NN Distance

Most Certain Least Certain Random

1 Pixel 4 Pixel Blend1 Pixel 4 Pixel Blend

0

0.2

0.4

0.6

0.8

1

Plane→ BirdAuto→ Dog

T
a
rg
et

A
U
P
R
C

Figure C.25. Vision Backdoor Target Identification: Mean target identification
AUPRC across 15 trials for Weber et al.’s [Web+23] three CIFAR10 backdoor attack
patterns and randomly selected reference ẑtarg. All experiments performed binary
classification on randomly-initialized ResNet9. |Dadv| = 150. Notation ytarg → yadv.
See Table C.33 for the numerical results.

206

Table C.33. Vision Backdoor Target Identification: Target identification mean
AUPRC across 15 trials for Weber et al.’s [Web+23] three CIFAR10 backdoor
attack patterns and randomly selected reference ẑtarg. All experiments performed
binary classification on randomly-initialized ResNet9. Bold denotes the best mean
performance. Mean results are shown graphically in Figures 16 and C.25. Variance
results appear in the original paper [HL22a, Sec. F.1.2].

Classes Trigger

Pattern
Ours Baselines

ytarg → yadv GAS GAS-L Max k-NN Min k-NN Most Certain Least Certain Random

Auto → Dog

1 Pixel 0.998 0.998 0.996 0.065 0.475 0.101 0.135

4 Pixel 0.999 0.998 0.987 0.062 0.263 0.105 0.116

Blend 0.987 1 0.429 0.275 0.092 0.192 0.142

Plane → Bird

1 Pixel 0.925 0.970 0.938 0.063 0.662 0.095 0.155

4 Pixel 0.987 0.992 0.849 0.070 0.631 0.099 0.135

Blend 0.782 0.979 0.300 0.097 0.119 0.153 0.141

Table C.34. Vision Backdoor Attack Mitigation: Bold denotes the best mean
performance with 15 trials per setup. Aggregated results are shown in Table 6.

Classes
Attack Method

% Removed ASR % Test Acc. %

ytarg → yadv Dadv Dcl Orig. Ours Orig. Chg.

Auto→ Dog

1 Pixel
GAS 92.6 0.28

87.7
0

98.8
0.0

GAS-L 94.4 0.08 0 0.0

4 Pixel
GAS 92.8 0.26

95.0
0

98.9
0.0

GAS-L 92.6 0.05 0 0.0

Blend
GAS 99.9 0.67

98.6
0

99.0
–0.1

GAS-L 100 0.41 0 –0.1

Plane→ Bird

1 Pixel
GAS 65.8 0.66

80.8
0

93.5
–0.1

GAS-L 75.5 0.84 0 0.0

4 Pixel
GAS 92.7 0.39

89.0
0

93.5
0.0

GAS-L 95.2 0.80 0 0.0

Blend
GAS 81.9 1.39

92.0
0

93.7
–0.4

GAS-L 95.9 1.55 0 –0.5

207

C.3.3 Natural Language Poisoning Full Results.

GAS (ours) GAS-L (ours) TracInCP TracIn

Influence Functions Representer Point

1 2 3 4 1 2 3 4

0

0.2

0.4

0.6

0.8

1

Positive Negative

D
a
d
v
A
U
P
R
C

Figure C.26. Natural Language Poisoning Adversarial-Set Identification: See
Table C.35 for the numerical results.

Table C.35. Natural Language Poisoning Adversarial-Set Identification:
Poison identification mean AUPRC across 10 trials for 4 positive and 4 negative
sentiment SST-2 movie reviews [Soc+13] with |Dadv| = 50. GAS-L perfectly identified
all poison in all but one trial. Bold denotes the best mean performance. Mean results
are shown graphically in Figures 14 and C.26. Variance results appear in the original
paper [HL22a, Sec. F.1.3].

Review Ours Baselines

Sentiment No. GAS GAS-L TracInCP TracIn Inf. Func. Rep. Pt.

↑
Positive

↓

1 1 1 0.245 0.113 0.005 0.002

2 1 1 0.382 0.117 0.007 0.001

3 1 1 0.072 0.043 0.003 0.001

4 1 1 0.021 0.010 0.003 0.001

↑
Negative

↓

1 0.985 0.996 0.009 0.006 0.002 0.001

2 1 1 0.628 0.245 0.006 0.001

3 0.998 1 0.224 0.109 0.004 0.001

4 1 1 0.017 0.008 0.005 0.001

208

FIT w/ GAS (ours) FIT w/ GAS-L (ours) Max. k-NN Distance Min. k-NN Distance

Most Certain Least Certain Random

1 2 3 4 1 2 3 4

0

0.2

0.4

0.6

0.8

1

Positive Negative

T
a
rg
et

A
U
P
R
C

Figure C.27. Natural Language Poisoning Target Identification: See Table C.36
for the numerical results.

209

Table C.36. Natural Language Poisoning Target Identification: Bold denotes the
best mean performance with 10 trials per review. Mean results are shown graphically in
Figures 16 and C.27. Variance results appear in the original paper [HL22a, Sec. F.1.3].

Review Ours Baselines

Sentiment No. GAS GAS-L Max k-NN Min k-NN Most Certain Least Certain Random

↑
Positive

↓

1 1 1 0.017 0.043 0.010 0.078 0.044

2 1 1 0.009 0.698 0.015 0.021 0.048

3 1 1 0.012 0.038 0.014 0.022 0.041

4 1 1 0.010 0.079 0.015 0.020 0.019

↑
Negative

↓

1 1 1 0.009 0.687 0.034 0.011 0.020

2 1 1 0.009 0.193 0.022 0.014 0.068

3 0.867 0.909 0.009 0.754 0.049 0.020 0.029

4 0.950 1 0.012 0.055 0.021 0.015 0.032

Table C.37. Natural Language Poisoning Attack Mitigation: Bold denotes the
best mean performance with 10 trials per review. Aggregated results are shown in
Table 6.

Review
Method

% Removed ASR % Test Acc. %

Sentiment No. Dadv Dcl Orig. Ours Orig. Chg.

↑
Positive

↓

1
GAS 100 0.01

100
0

94.1
0.0

GAS-L 100 0.01 0 +0.3

2
GAS 100 0.01

100
0

94.2
+0.1

GAS-L 100 0.02 0 +0.2

3
GAS 100 0.01

100
0

94.2
+0.1

GAS-L 100 0.00 0 0.0

4
GAS 99.9 0

100
0

94.3
–0.1

GAS-L 100 0.02 0 0.0

↑
Negative

↓

1
GAS 97.1 0.01

100
0

94.3
+0.3

GAS-L 99.5 0.02 0 +0.1

2
GAS 100 0.17

100
0

94.3
+0.1

GAS-L 100 0.04 0 +0.3

3
GAS 99.5 0.05

90
0

94.1
+0.3

GAS-L 100 0.01 0 +0.4

4
GAS 100 0

100
0

94.2
+0.1

GAS-L 100 0 0 +0.1

210

C.3.4 Vision Poisoning Full Results.

Section 6.5.2 considers Peri et al.’s [Per+20] dedicated, clean-label poison defense

Deep k-NN as an additional baseline. By default, nearest neighbor algorithms yield

a label, not a score. To be compatible with AUPRC, we modified Deep k-NN to

rank each training example by the difference between the size of the neighborhood’s

plurality class and the number of neighborhood instances that share the corresponding

example’s label.

GAS0 (ours) GAS-L0 (ours) GAS (ours) GAS-L (ours)

TracInCP TracIn Influence Func. Representer Pt.

Deep k-NN

Bird → Dog Dog → Bird Frog → Deer Deer → Frog

0

0.2

0.4

0.6

0.8

1

D
a
d
v
A
U
P
R
C

Figure C.28. Vision Poisoning Adversarial-Set Identification: Adversarial
set (Dadv) identification mean AUPRC across >15 trials for four CIFAR10 class pairs
with |Dadv| = 50. Our renormalized influence estimators, GAS and GAS-L, using just
initial parameters θ0 and with 5 subepoch checkpointing outperformed all baselines
for all class pairs.

211

Table C.38. Vision Poisoning Adversarial-Set Identification: Adversarial
set (Dadv) identification mean AUPRC across >15 trials for four CIFAR10 class
pairs with |Dadv| = 50. Our renormalized influence estimators, GAS and GAS-L,
using just initial parameters θ0 and with 5 subepoch checkpointing outperformed all
baselines for all class pairs. Bold denotes the best mean performance. Mean results
are shown graphically in Figure 14 and C.28. Variance results appear in the original
paper [HL22a, Sec. F.1.4].

Classes Ours Baselines

ytarg → yadv GAS0 GAS-L0 GAS GAS-L TracInCP TracIn Inf. Func. Rep. Pt. Deep k-NN

Bird → Dog 0.773 0.628 0.892 0.825 0.493 0.194 0.146 0.028 0.078

Dog → Bird 0.847 0.685 0.848 0.769 0.464 0.171 0.066 0.017 0.036

Frog → Deer 0.912 0.842 0.962 0.942 0.602 0.265 0.150 0.026 0.208

Deer → Frog 0.803 0.673 0.888 0.855 0.534 0.210 0.085 0.028 0.027

212

FIT w/ GAS (ours) FIT w/ GAS-L (ours) Max. k-NN Distance Min. k-NN Distance

Most Certain Least Certain Random

Bird → Dog Dog → Bird Frog → Deer Deer → Frog

0

0.2

0.4

0.6

0.8

1

T
a
rg
et

A
U
P
R
C

Figure C.29. Vision Poisoning Target Identification: See Table C.39 for the
numerical results.

Table C.39. Vision Poisoning Target Identification: Bold denotes the best mean
performance with ≥15 trials per class pair. Mean results are shown graphically in
Figures 16 and C.29. Variance results appear in the original paper [HL22a, Sec. F.1.4].

Classes Ours Baselines

ytarg yadv GAS GAS-L Max k-NN Min k-NN Most Certain Least Certain Random

Bird Dog 0.831 0.332 0.004 0.072 0.004 0.014 0.011

Dog Bird 0.896 0.601 0.004 0.068 0.003 0.015 0.008

Frog Deer 0.863 0.621 0.003 0.368 0.003 0.011 0.019

Deer Frog 0.723 0.382 0.005 0.122 0.004 0.010 0.010

Table C.40. Vision Poisoning Attack Mitigation: Bold denotes the best mean
performance with ≥15 trials per class pair. Aggregated results are shown in Table 6.

Classes
Method

% Removed ASR % Test Acc. %

ytarg yadv Dadv Dcl Orig. Ours Orig. Chg.

Bird Dog
GAS 72.1 0.04

91.4
0

87.0
0.0

GAS-L 65.2 0.04 0 +0.1

Dog Bird
GAS 54.1 0.01

80.0
0

87.1
–0.1

GAS-L 46.6 0.01 0 0.0

Frog Deer
GAS 36.0 0.01

60.0
0

87.1
0.0

GAS-L 30.2 0.03 0 0.0

Deer Frog
GAS 88.9 0.03

80.0
0

87.0
+0.1

GAS-L 83.5 0.03 0 +0.1

213

C.4 Convex Polytope Poisoning and GAS Joint Optimization

Zhu et al. [Zhu+19] prove that under specific assumptions (e.g., a linear classifier),

an adversarial set is guaranteed to alter a model’s prediction on a target if that target’s

feature vector lies inside a convex polytope of the adversarial instances’ feature vectors.

Overview of Zhu et al.’s Attack Intuitively, Zhu et al.’s attack attempts to

construct a convex hull of poison instances around a target – all within feature space.

By design, deep models are non-linear and non-convex, so Zhu et al.’s underlying

assumption does not directly apply. However, the convex-polytope attack will succeed

if the trained model’s penultimate feature representation (i.e., the input into the

final, linear classification layer) forms a convex hull around the target’s penultimate

representation.

To that end, Zhu et al.’s iterative, bilevel poison optimization considers solely this

feature representation. In the attacker’s ideal case, the adversarial set’s feature-space

representation would be optimized w.r.t. the final trained model. However, attackers

do not know training’s random seed. Moreover, any change to a training instance

necessarily affects the final model parameters (and thus the penultimate feature

representation as well), inducing a cyclic dependency that makes poison crafting

non-trivial.

To increase the likelihood that the attack succeeds, Zhu et al. optimize the poison’s

feature-space representation across a suite of m surrogate models. For each model f (j)

(j ∈ {1, . . . ,m}), denote the model’s penultimate-feature extraction function as ϕ(j)(·).

Zhu et al. specify a bilevel optimization to iteratively form these feature-space

convex hulls, where adversarial setDadv := {(xl,yadv)}Kl=1 is crafted from a set ofK clean

seed instances, denoted {xcll }Kl=1. Zhu et al. restrict the adversarial perturbations to

an ℓ∞ ball of radius ε around those clean seed instances. The feature-space convex

214

hull requirement is enforced coefficients via c
(j)
l ≥ 0. Zhu et al.’s bilevel optimization

is reproduced in Eq. (C.1), with an additional term, β ĜAS, that is explained below.

Note that in Zhu et al.’s formulation β = 0.

min
{c(j)l }, Dadv

β ĜAS+
1

2

m∑
j=1

∥∥∥ϕ(j)(xtarg)−
∑K

l=1 c
(j)
l ϕ(j)(xl)

∥∥∥2

∥ϕ(j)(xtarg)∥2

s.t.
K∑
l=1

c
(j)
l = 1, ∀j

c
(j)
l ≥ 0, ∀l, j

∥xl − xcll ∥∞ ≤ ε, ∀l.

(C.1)

Joint Optimization Formulation An attacker may attempt to evade our defense

by optimizing adversarial set Dadv to appear uninfluential on target ẑtarg.
1 Eq. (C.1)

formalizes this idea by simultaneously optimizing for both poison effectiveness as well

as for low GAS influence where hyperparameter β > 0 trades off between these two

sub-objectives. Following Zhu et al.’s [Zhu+19] paradigm as described above, the

attacker uses surrogate models to estimate the GAS influence.

Specifically, the adversary trains a gray-box model2 using the same architecture,

hyperparameters, clean training data (Dcl), and pre-trained parameters as the target

model. The surrogate set is then formed from m model checkpoints evenly spaced

across this gray-box training. This quantity then estimates the GAS influence in the

final trained model. Formally,

ĜAS :=
m∑
j=1

K∑
l=1

〈
g
(j)
l , ĝ

(j)
targ

〉∥∥g(j)l ∥∥ ∥∥ĝ(j)targ

∥∥ . (C.2)

1Dadv must remain actually influential. Otherwise, the model’s prediction on ẑtarg would not
change.

2Gray-box attacks assume the attacker has access to detailed (but not complete) information
about the target model like our case above.

215

It is important to note that optimizations like Eq. (C.1) create an implicit tension.

Training-set attacks commonly attempt to make Dadv and ẑtarg have similar feature-

space representations [Sha+18; Zhu+19; Hua+20; Wal+21]. Since each example’s

features inform the model gradients (g), appearing less influential can affect the

attack’s effectiveness.

Practical Challenges of Joint Optimization In modern neural networks,

each parameter only directly affects or is directly affected by a subset of the other

parameters – specifically those in adjacent layers. This limited interdependency makes

back-propagation more tractable and efficient.

Recall that GAS normalizes by the gradient magnitude. When calculating

influence in practice, this does not change the memory or computational complexity.

However, when trying to optimize surrogate ĜAS (Eq. (C.2)), normalizing by the

gradient magnitude creates pairwise dependencies between all parameters, i.e., Θ(|θ|2)

memory complexity for automatic differentiation systems. Therefore, renormalized

estimators like GAS are significantly more memory intensive to optimize against in

practice than the baseline influence estimators where this quadratic memory complexity

is not induced.

Section 6.6’s experiments were affected by joint optimization’s increased memory

complexity, where the GPU VRAM requirements increased by ≥12×. This created

significant issues even for the comparatively small ResNet9 neural network [Pag20].

For example, when the adversarial set size was larger than 40, joint optimization

exceeded the GPU VRAM memory capacity.3 In contrast, our original paper includes

an ablation study tests more than 400 poison samples for Zhu et al.’s baseline attack

3Experiments were performed on Nvidia Tesla K80 GPUs with 11.5GB of VRAM.

216

using the same hardware [HL22a]. Furthermore, joint optimization’s larger memory

footprint necessitated that only a small number of surrogate checkpoints could be used

– specifically four checkpoints. This then increases the coarseness of ĜAS’s influence

estimate.

Setting Joint Optimization Hyperparameter β As detailed above,

hyperparameter β induces a trade-off between Zhu et al.’s convex-polytope loss

and the surrogate GAS estimate. Section 6.6’s “baseline” results used β = 0. To

ensure a strong adversary, Section 6.6’s “Adaptive Joint Optimization Attack with

GAS” results used β = 10−2 since that was the largest value of β that did not result

in a significant drop in attacker success rate as detailed in Table C.41.

Table 6 in Section 6.5.4 reports that the vision poisoning’s attack success rate

was 77.9%. Even when β = 0 (i.e., the surrogate GAS loss is ignored), there was

still a substantial decrease in ASR to 64.3%. Recall that joint optimization’s memory

complexity is Θ(|θ|2) which necessitated using fewer surrogate models (due to GPU

VRAM capacity). This, in turn, degraded attack performance.4 Put simply, joint

adversarial set optimization is not necessarily a free lunch. It may come at the cost of

a worse attacker success rate.

Table C.41. Effect of joint-optimization hyperparameter β on the attacker’s success
rate (ASR). Observe that even at β = 0, the attack success rate is significantly lower
than the 77.9% ASR in Table 6 due to the fewer surrogate models that could be used
during jointly-optimized poison crafting as explained above.

β ASR (%)

0 64.3

10−2 63.1

2 · 10−2 50.0

10−1 4.8

4We separately verified that reducing the adversarial-set size from 50 to 40 did not meaningfully
change the ASR.

217

Section 6.6 summarizes the adversarial-set and target identification results for

this jointly-optimized attack. Sections C.4.1 and C.4.2 (resp.) provide more granular

versions of those results.

Section C.4.3 provides additional results on target-driven attack mitigation’s

effectiveness on this jointly optimized attack.

C.4.1 Adversarial-Set Identification of the Jointly Optimized

Poisoning Attack.

Table C.42. Adversarial-Set Identification for the Adaptive Vision Poison
Attack: Adversarial-set identification mean AUPRC with ≥10 trials per setup as
described in Section C.4. Section 6.6’s baseline results set trade-off hyperparameter
β = 0, meaning the poison was not jointly optimized. The jointly optimized results
used β = 10−2 as explained in suppl. Section C.4. Bold denotes the best mean
performance. Mean results are shown graphically in Figures 17 and C.30.Variance
results appear in the original paper [HL22a, Sec. F.2.1].

Param. Classes Ours Baselines

β ytarg → yadv GAS0 GAS-L0 GAS GAS-L TracInCP TracIn Inf. Func. Rep. Pt.

0

Bird → Dog 0.567 0.418 0.766 0.690 0.275 0.085 0.081 0.032

Dog → Bird 0.663 0.532 0.660 0.560 0.272 0.098 0.035 0.017

Frog → Deer 0.755 0.680 0.827 0.787 0.393 0.135 0.079 0.020

Deer → Frog 0.610 0.477 0.669 0.617 0.243 0.119 0.059 0.018

10−2

Bird → Dog 0.611 0.470 0.646 0.590 0.282 0.093 0.067 0.026

Dog → Bird 0.708 0.553 0.558 0.479 0.180 0.072 0.030 0.014

Frog → Deer 0.823 0.753 0.858 0.818 0.404 0.173 0.077 0.021

Deer → Frog 0.790 0.625 0.660 0.640 0.189 0.106 0.063 0.022

218

GAS0 (ours) GAS-L0 (ours) GAS (ours) GAS-L (ours)

TracInCP TracIn Influence Func. Representer Pt.

Bird → Dog Dog → Bird Frog → Deer Deer → Frog

0

0.2

0.4

0.6

0.8

1

D
a
d
v
A
U
P
R
C

(a) Baseline with β = 0

Bird → Dog Dog → Bird Frog → Deer Deer → Frog

0

0.2

0.4

0.6

0.8

1

D
a
d
v
A
U
P
R
C

(b) Joint optimization with β = 10−2

Figure C.30. Adversarial-Set Identification for the Adaptive Vision Poison
Attack: Mean AUPRC identifying the adversarial set where Zhu et al.’s vision
poison attack is jointly optimized with minimizing GAS with ≥10 trials per setup as
described in Section C.4. Section 6.6’s baseline results set trade-off hyperparameter
β = 0, meaning the poison was not jointly optimized. The jointly optimized results
used β = 10−2 as explained in suppl. Section C.4. This joint optimization reduces
the GAS similarity by 7% at the cost of a 19% decrease in ASR w.r.t. Table 6. See
Table C.42 (below) for the numerical results.

219

C.4.2 Target Identification of the Jointly Optimized Poisoning

Attack.

Table C.43. Target Identification for the Adaptive Vision Poison Attack:
Target identification mean AUPRC where Zhu et al.’s [Zhu+19] vision poison attack is
jointly optimized with minimizing GAS. Section 6.6’s baseline results set trade-
off hyperparameter β = 0, meaning the poison was not jointly optimized. The
jointly optimized results used β = 10−2 as explained in suppl. Section C.4. Bold
denotes the best mean performance with ≥10 trials per class pair. Mean results are
shown graphically in Figures 18 and C.31. Variance results appear in the original
paper [HL22a, Sec. F.2.2].

Param. Classes Ours Baselines

β ytarg yadv GAS GAS-L Max k-NN Min k-NN Most Certain Least Certain Random

0

Bird Dog 0.789 0.350 0.357 0.011 0.082 0.014 0.025

Dog Bird 0.944 0.481 0.299 0.011 0.050 0.012 0.019

Frog Deer 0.958 0.806 0.538 0.013 0.171 0.012 0.115

Deer Frog 0.750 0.393 0.339 0.013 0.154 0.012 0.027

10−2

Bird Dog 0.775 0.204 0.422 0.010 0.046 0.012 0.088

Dog Bird 0.875 0.321 0.400 0.012 0.211 0.011 0.025

Frog Deer 0.784 0.586 0.387 0.010 0.108 0.012 0.076

Deer Frog 0.681 0.376 0.395 0.022 0.125 0.011 0.021

220

FIT w/ GAS (ours) FIT w/ GAS-L (ours) Max. k-NN Distance Min. k-NN Distance

Most Certain Least Certain Random

Bird → Dog Dog → Bird Frog → Deer Deer → Frog

0

0.2

0.4

0.6

0.8

1

T
a
rg
et

A
U
P
R
C

(a) Baseline with β = 0

Bird → Dog Dog → Bird Frog → Deer Deer → Frog

0

0.2

0.4

0.6

0.8

1

T
a
rg
et

A
U
P
R
C

(b) Joint optimization with β = 10−2

Figure C.31. Target Identification for the Adaptive Vision Poison Attack:
Mean target identification AUPRC where Zhu et al.’s [Zhu+19] vision poison attack
is jointly optimized with minimizing GAS. Section 6.6’s baseline results set trade-off
hyperparameter β = 0, meaning the poison was not jointly optimized. The jointly
optimized results used β = 10−2 as explained in suppl. Section C.4. See Table C.43
(below) for the numerical results.

221

C.4.3 Target-Driven Attack Mitigation of the Jointly Optimized

Poisoning Attack.

This section examines joint optimization’s effect on target-driven mitigation.

Averaging across all class pairs, target-driven mitigation using GAS and GAS-L

removed 0.05% and 0.03% (resp.) of the clean training data (Dcl). For comparison, Zhu

et al.’s [Zhu+19] baseline attack removed on average 0.02% and 0.03% of clean training

data for GAS and GAS-L respectively (see Table 6). Moreover, after mitigating this

jointly-optimized attack, average test accuracy either improved or stayed the same in

all but one case.

Table C.44. Target-Driven Attack Mitigation for the Adaptive Vision Poison
Attack: Algorithm 6’s target-driven data sanitization where Zhu et al.’s [Zhu+19]
vision poison attack is jointly optimized with minimizing the GAS influence. The
results below consider exclusively the jointly-optimized attack with β = 10−2. Clean-
data removal remains low, and test accuracy either improved or stayed the same for
in but one setup. The performance is comparable to the results with Zhu et al.’s
[Zhu+19]’s standard vision poisoning attack (see Table C.40). Bold denotes the best
mean performance with ≥10 trials per class pair.

Classes
Method

% Removed ASR % Test Acc. %

ytarg yadv Dadv Dcl Orig. Ours Orig. Chg.

Bird Dog
GAS 36.0 0.02

76.2
0

87.0
+0.1

GAS-L 30.3 0.00 0 +0.1

Dog Bird
GAS 21.6 0.00

57.1
0

87.1
+0.1

GAS-L 21.9 0.00 0 –0.1

Frog Deer
GAS 17.5 0.00

38.1
0

87.1
0.0

GAS-L 19.4 0.00 0 0.0

Deer Frog
GAS 85.0 0.18

81.0
0

87.1
0.0

GAS-L 82.3 0.13 0 +0.1

222

APPENDIX D

EVALUATION SETUPS

This chapter contains previously published, coauthored material [HL21; HL22a;

HL23c; HL23a]. Hammoudeh wrote this complete section and designed the experiments.

Lowd provided supervision, editorial suggestions, and input on experiment design.

Zayd Hammoudeh and Daniel Lowd. “Simple, Attack-Agnostic Defense

Against Targeted Training Set Attacks Using Cosine Similarity”. In:

Proceedings of the 3rd ICML Workshop on Uncertainty and Robustness

in Deep Learning. UDL’21. 2021

Zayd Hammoudeh and Daniel Lowd. “Identifying a Training-Set Attack’s

Target Using Renormalized Influence Estimation”. In: Proceedings of the

29th ACM SIGSAC Conference on Computer and Communications Security.

CCS’22. Los Angeles, CA: Association for Computing Machinery, 2022. url:

https://arxiv.org/abs/2201.10055

Zayd Hammoudeh and Daniel Lowd. “Reducing Certified Regression

to Certified Classification for General Poisoning Attacks”. In: Proceedings

of the 1st IEEE Conference on Secure and Trustworthy Machine Learning.

SaTML’23. 2023. url: https://arxiv.org/abs/2208.13904

Zayd Hammoudeh and Daniel Lowd. “Feature Partition Aggregation:

A Fast Certified Defense Against a Union of ℓ0 Attacks”. In: Proceedings of

the 2nd ICML Workshop on New Frontiers in Adversarial Machine Learning.

AdvML-Frontiers’23. 2023. url: https://arxiv.org/abs/2302.11628

This chapter details the evaluation setup for the experiments Chapters 4, 5, and 6.

Since each chapter has a different evaluation setup, we separate the setup of each

chapter in a different section below.

223

https://arxiv.org/abs/2201.10055
https://arxiv.org/abs/2208.13904
https://arxiv.org/abs/2302.11628

D.1 Evaluation Setup for the Experiments in Chapter 4

This section details the evaluation setup used in Section 4.8’s experiments,

including implementation details, dataset configuration, and hyperparameter

settings. Chapter 4’s source code can be downloaded from https://github.com/

ZaydH/certified-regression. All experiments were implemented and tested in

Python 3.7.1. Experiments were performed using one core of a fourteen-core Intel

E5-2690v4 CPU and 12GB of RAM. Ridge regression models were trained using

Scikit-Learn [Ped+11], while the decision forests used the XGBoost library [CG16].

The overlapping regressor ILPs (Fig. 6) were optimized using Gurobi [Gur22]

with a time limit of 1200s.

D.1.1 Dataset Configuration. Chapter 4’s source code automatically

downloads all necessary datasets. Regarding dataset preprocessing, categorical features

were transformed into one-hot-encoded features in line with previous work [BHL23].

Standardizing features by dataset mean/variance breaks submodel independence and

so was not performed. Minimal manual feature engineering was performed to improve

the housing datasets’ results, e.g., adding a home’s age, total square feet, total number

of bathrooms, etc.; this feature engineering was done based on existing features in

the dataset (e.g., total square feet equals the sum of the first and second-floor square

footage). None of the engineered features affect submodel independence.

Most of the six datasets in Sec. 4.8.1 do not have a dedicated test set. In such

cases, the data was split 90%/10% at random between training and test.

When training kNN-CR models, each feature dimension was normalized to the

range [0, 1]. Without feature normalization, kNN-CR generally prioritizes whichever

feature has the largest magnitude. This transformation implicitly restricts arbitrary

insertions to the feature range in the original dataset. Such normalization is implicitly

224

https://github.com/ZaydH/certified-regression
https://github.com/ZaydH/certified-regression

done in certified classifier evaluation on image datasets where each pixel has a consistent,

fixed range.

D.1.2 Dataset Target Value Statistics. Table D.45 summarizes the test

set’s target (y) value distribution statistics for Sec. 4.8’s five regression datasets.

Recall from Table 1 that the Ames, Austin, and Diamonds datasets set error

threshold ξ as a fixed percentage of yte. This choice was made because these three

datasets exhibit significant y variance. For example, for Diamonds, the largest

y value ($18.8k) is about two orders of magnitude larger than the smallest y value

($339). Using a fixed ξ value on these three datasets would have made certifying

instances with small y unrealistically easy while making certification of instances with

large y unreasonably difficult. Making the error threshold a fraction of yte allows the

certification difficulty to be more consistent across the range of y values.

Datasets Weather and Life used fixed ξ values of 3 degrees (Celsius) and 3 years

respectively. Both of these threshold values are less than one-third of each dataset’s y

standard deviation.

In the original paper [HL23c], we evaluate the performance of our certified

regressors on additional ξ values – both larger and smaller than the ξ values used in

Sec. 4.8.

Table D.45. Target Value Test Distribution Statistics: Mean (ȳ), standard
deviation (σy), minimum value (ymin) and maximum value (ymax) for the test instances’
target y value for Sec. 4.8’s five regression datasets.

Dataset ȳ σy ymin ymax

Ames $184k $83.4k $12.8k $585k
Austin $466k $266k $81.0k $2.6M
Diamonds $3.8k $3.9k $0.3k $18.8k
Weather 14.9◦C 10.3◦C −44.0◦C 54.0◦C

Life 69.3 years 9.6 years 36.3 years 89.0 years

225

D.1.3 Hyperparameters. Following Jia et al.’s [Jia+22a] certified kNN

classifier evaluation, kNN-CR’s neighborhood size, k, was set to the (larger) odd

integer nearest to n
2
. We use the Minkowski distance as the neighborhood’s distance

metric.

For our ensemble regressors, hyperparameters were tuned using Bayesian

optimization as implemented in the scikit-optimize library [Hea+21]. The

partitioned and overlapping certified regressors (unweighted and weighted) used

the same hyperparameter settings.

Ridge Regression Hyperparameters For three datasets – Diamonds [Wic16],

Weather [Mal+21], and Spambase [Hop+17] – our four ensemble regressors used ridge

regression as the submodel architecture. For each dataset and q value, we tuned three

ridge regression hyperparameters. Below, we list those hyperparameters along with

the set of values considered.

– Weight Decay (λ): L2 regularization strength. We considered values between 10−8

and 104.

– Error Tolerance (ε): Minimum validation error that defines when a model is

considered converged. The tested values were {10−8, 10−7, . . . , 10−3}.

– Maximum Number of Iterations (# Itr.): Defines the maximum number of

optimizer iterations. If the error tolerance is achieved before the iteration count

is met, the model is treated as converged, and optimization stops. The tested

values were {102, 103, . . . , 108}.

Table D.46 lists the final hyperparameters for each experimental setup that used ridge

regression as the submodel architecture.

226

XGBoost Hyperparameters For three datasets – Ames Housing [Coc11], Austin

Housing [Pie21], and Life [Raj21] – our four ensemble regressors used XGBoost [CG16]

as the submodel architecture. For each dataset and q value, we tuned seven XGBoost

hyperparameters. Below, we list those hyperparameters along with the set of values

considered.

– Number of Trees (τ): Number of trees in the ensemble. The tested values were

{50, 100, 250, 500, 1000}.

– Maximum Tree Depth (h): Maximum depth of each tree in the ensemble. The

tested values were {1, . . . , 4}.

– Evaluation Metric (L): Applied to the validation set and is the metric being

minimized. The tested values were root mean squared error (RMSE) and mean

absolute error (MAE).

– Weight Decay (λ): L2 regularization strength. We considered values between 10−3

and 105.

– Minimum Split Loss (γ): Minimum reduction in loss required to split

a node instead of making it a leaf. The values considered were

{0.005, 0.01, 0.05, 0.1, 0.3, 0.5, 1}.

– Learning Rate (η): Larger value makes the boosting more conservative. The

tested values were {0.01, 0.1, 0.3, 1}.

Table D.47 lists the final hyperparameters for each experimental setup that used

XGBoost as the submodel architecture. Mixup [Zha+18] data augmentation was used

to improve XGBoost’s performance.1

1Mixup does not apply to convex models like ridge regression.

227

Table D.46. Ridge Regression Hyperparameters: Hyperparameter settings for
the three datasets that used ridge regression as the ensemble submodel architecture.
Hyperparameters are reported for the three q values used in Fig. 7 and Sec. C.1. We
also report the hyperparameters for uncertified accuracy when q = 1.

Dataset q λ ε # Itr.

Diamonds

1 3.16E−3 1E−6 1E6

151 6.01E−2 1E−7 1E8

501 1.00E−8 1E−6 1E8

1001 1.38E−8 1E−6 1E2

Weather

1 3.16E−3 1E−8 1E7

51 1.00E+3 1E−5 1E6

1501 3.16E+2 1E−6 1E2

3001 3.16E+2 1E−6 1E3

Spambase

1 3.16E+2 1E−6 1E5

25 3.16E−3 1E−6 1E6

151 3.16E−6 1E−7 1E6

301 3.16E−3 1E−6 1E6

D.2 Evaluation Setup for the Experiments in Chapter 5

This section details the evaluation setup used in Section 5.5’s experiments,

including implementation details, dataset configuration, and hyperparameter settings.

Our source code can be downloaded from https://github.com/ZaydH/feature-

partition. All experiments were implemented and tested in either Python 3.7.13 or

3.10.10. All neural networks were implemented in PyTorch version 1.12.0 [Pas+19].

LightGBM decision forests were trained using the official lightgbm Python module,

version 3.3.3.99 [Ke+17].

D.2.1 Hardware Setup. Experiments were performed on a desktop system

with a single AMD 5950X 16-core CPU, 64GB of 3200MHz DDR4 RAM, and a single

NVIDIA 3090 GPU.

D.2.2 Baselines. To the extent of our knowledge, no existing method

considers certified feature robustness guarantees (Def. 5.1). Randomized ablation –

our most closely related method – considers ℓ0-norm certified robustness (Def. 5.2)

[LF20b]. RA is a specialized form of randomized smoothing [CRK19; LXL23] targeted

228

https://github.com/ZaydH/feature-partition
https://github.com/ZaydH/feature-partition

Table D.47. XGBoost Hyperparameters: Hyperparameter settings for the three
datasets that used XGBoost as the ensemble submodel architecture. Hyperparameters
are reported for the three q values used in Fig. 7 and Sec. C.1. We also report the
hyperparameters for uncertified accuracy when q = 1.

Dataset q τ h L λ γ η

Ames Housing

1 250 2 RMSE 1E−1 5E−3 0.3

25 500 2 MAE 1E−3 5E−3 0.3

125 500 3 RMSE 1E−2 5E−3 1.0

251 250 1 RMSE 1E−1 5E−3 1.0

Austin Housing

1 500 4 MAE 1E+2 1E−2 0.3

151 1000 1 RMSE 1E−2 5E−3 1.0

301 250 1 MAE 1E+0 1E−2 1.0

701 250 1 MAE 1E−2 1E−2 1.0

Life

1 500 5 RMSE 1E+1 1E−2 0.1

25 250 4 RMSE 0E+0 5E−2 0.3

101 250 3 MAE 1E+0 1E−2 1.0

201 250 4 RMSE 0E+0 5E−3 0.3

towards sparse evasion attacks. In terms of the state of the art, Jia et al. [Jia+22b]

provide the tightest certification analysis for randomized ablation.

Recall that feature partition aggregation (FPA) provides strictly stronger certified

guarantees than baseline RA. Put simply, FPA is solving a harder task than baseline

randomized ablation. Therefore, when FPA achieves the same certified accuracy as

the baseline, FPA is performing provably better, given FPA’s stronger guarantees.

We also compare FPA to three certified patch defenses, namely: (de)randomized

smoothing (DRS) [LF20a], patch interval bound propagation (IBP) [Chi+20], and

BagCert [MY21]. Note that BagCert’s implementation is not open source, and

Metzen and Yatsura [MY21] have indicated they do not plan to open source the code in

the future.2 As such, BagCert’s results in the main paper were provided by Metzen

and Yatsura via personal correspondence. BagCert’s closed source code prohibited

the collection of its certification time. Nonetheless, comparing FPA’s certification

2The author’s comments regarding open-sourcing their code can be found on BagCert’s
OpenReview page.

229

https://openreview.net/forum?id=hr-3PMvDpil
https://openreview.net/forum?id=hr-3PMvDpil

time to that of BagCert provides only limited insight since FPA and BagCert

certify very different types of guarantees.

D.2.3 Datasets. Our empirical evaluation considers four datasets. First,

MNIST [LeC+98] and CIFAR10 [KNH14] are vision classification datasets with

10 classes each.

Although all certified sparse defenses considered in this work are exclusively

proposed in the context of classification, Hammoudeh and Lowd [HL23c] prove

that certified regression reduces to voting-based certified classification. Hence, it

is straightforward to transform FPA and randomized ablation into certified regression

defenses. We reuse this reduction and evaluate two tabular regression datasets,

Weather [Mal+21] and Ames [Coc11].

For Weather, we follow Hammoudeh and Lowd’s [HL23c] empirical evaluation,

where the objective is to predict ground temperature within ±3◦C using features that

include the date, time of day, longitude, and latitude. Similarly, we follow Hammoudeh

and Lowd’s [HL23c]’s empirical evaluation for Ames, where the objective is to predict

a property’s sale price within ±15% of the actual price. Since ablated training requires

a custom feature encoding to differentiate ablated and non-ablated features, min-max

scaling was applied to both datasets’ features for RA to normalize all feature values

to the range [0, 1].

We chose these two regression datasets as a stand-in for vertically partitioned

data, which are commonly tabular and particularly vulnerable to sparse backdoor and

evasion attacks.

Table D.48 provides basic information about the four datasets, including their

sizes and feature dimension. Table D.49 provides summary statistics for the regression

datasets’ test target-value (i.e., y) distribution.

230

Table D.48. Evaluation dataset information

Dataset # Classes # Feats # Train # Test

CIFAR10 10 1,024 50,000 10,000

MNIST 10 784 60,000 10,000

Weather N/A 128 3,012,917 531,720

Ames N/A 352 2,637 293

Table D.49. Target Value Test Distribution Statistics: Mean (ȳ), standard
deviation (σy), minimum value (ymin) and maximum value (ymax) for the test instances’
target y value for regression datasets Weather and Ames.

ȳ σy ymin ymax

Weather 14.9◦C 10.3◦C −44.0◦C 54.0◦C

Ames $184k $83.4k $12.8k $585k

Our source code automatically downloads all necessary dataset files.

D.2.4 Network Architectures. Table D.50 details the CIFAR10 neural

network architecture. Specifically, we follow previous work on CIFAR10 data poisoning

[HL22a] and use Page’s [Pag20] ResNet9 architecture. ResNet9 is ideal for our

experiments since it is very fast to train, as ranked on DAWNBench [Col+17].

ResNet9’s fast training significantly reduces the overhead of training L submodels for

FPA.

We directly adapt Page’s [Pag20] published implementation3 including the use of

ghost batch normalization [SD20] and the CELU activation function with α = 0.075

[Bar17].

Three forms of data augmentation were also used in line with Page’s [Pag20]

implementation. First, a random crop with four pixels of padding was performed. Next,

the image was flipped horizontally with a 50% probability. Finally, a random 8× 8 pixel

portion of the image was randomly erased. Note that these transformations were

3Source code: https://github.com/davidcpage/cifar10-fast.

231

https://github.com/davidcpage/cifar10-fast

Table D.50. ResNet9 neural network architecture

Conv1 In=3 Out=64 Kernel=3× 3 Pad=1

BatchNorm2D Out=64

CELU

Conv2 In=64 Out=128 Kernel=3× 3 Pad=1

BatchNorm2D Out=128

CELU

MaxPool2D 2× 2

↑
ResNet1

↓

ConvA In=128 Out=128 Kernel=3× 3 Pad=1

BatchNorm2D Out=128

CELU

ConvB In=128 Out=128 Kernel=3× 3 Pad=1

BatchNorm2D Out=128

CELU

Conv3 In=128 Out=256 Kernel=3× 3 Pad=1

BatchNorm2D Out=256

CELU

MaxPool2D 2× 2

Conv4 In=256 Out=512 Kernel=3× 3 Pad=1

BatchNorm2D Out=512

CELU

MaxPool2D 2× 2

↑
ResNet2

↓

ConvA In=512 Out=512 Kernel=3× 3 Pad=1

BatchNorm2D Out=512

CELU

ConvB In=512 Out=512 Kernel=3× 3 Pad=1

BatchNorm2D Out=512

CELU

MaxPool2D 4× 4

Linear Out=10

performed after the pixels were disabled in the image, meaning these transformations

do not result in a network seeing additional pixel information.

In a separate paper, Levine and Feizi [LF21] propose deep partition aggregation

(DPA), a certified defense against poisoning attacks. Here, we follow Levine

and Feizi’s [LF21] public implementation4 and use the Network-in-Network (NiN)

4Source code: https://github.com/alevine0/DPA.

232

https://github.com/alevine0/DPA

Table D.51. Network-in-Network neural network architecture

Block 1

Conv1 In=3 Out=192 Kernel=5× 5 Pad=2

BatchNorm2D Out=192

ReLU

Conv2 In=192 Out=160 Kernel=1× 1 Pad=1

BatchNorm2D Out=160

ReLU

Conv3 In=160 Out=96 Kernel=1× 1 Pad=1

BatchNorm2D Out=96

ReLU

MaxPool2D 3× 3

Block 2

Conv1 In=96 Out=192 Kernel=5× 5 Pad=2

BatchNorm2D Out=192

ReLU

Conv2 In=192 Out=192 Kernel=1× 1 Pad=1

BatchNorm2D Out=192

ReLU

Conv3 In=192 Out=192 Kernel=1× 1 Pad=1

BatchNorm2D Out=192

ReLU

AvgPool2D 3× 3

Block 3

Conv1 In=192 Out=192 Kernel=3× 3 Pad=1

BatchNorm2D Out=192

ReLU

Conv2 In=192 Out=192 Kernel=1× 1 Pad=1

BatchNorm2D Out=192

ReLU

Conv3 In=192 Out=192 Kernel=1× 1 Pad=1

BatchNorm2D Out=192

ReLU

GlobalAvgPool2D Out=192

Linear Out=10

architecture [LCY14] when evaluating our method on MNIST. Table D.51 visualizes

the MNIST NiN architecture.

D.2.5 Hyperparameters. For simplicity, FPA used the same

hyperparameter settings for a given dataset irrespective of L. Therefore, FPA’s

results could be further improved in practice by tuning the hyperparameter settings

to optimize the ensemble’s performance for a specific submodel count.

233

Table D.52 details the CIFAR10 and MNIST hyperparameter settings for feature

partition aggregation.

Table D.52. FPA’s neural network training hyperparameters

CIFAR10 MNIST

Data Augmentation? ✓

Validation Split N/A 5%

Optimizer SGD AdamW

Batch Size 512 128

Epochs 80 25

Learning Rate (Peak) 1 · 10−3 3.16 · 10−4

Learning Rate Scheduler One cycle Cosine

Weight Decay (L2) 1 · 10−1 1 · 10−3

For CIFAR10 and MNIST, we directly used Levine and Feizi’s [LF20b] published

randomized ablation training source code, which includes pre-specified hyperparameter

settings for the learning rate, weight decay, and optimizer hyperparameters.

Recall from Sec. 5.5 that for the Weather and Ames datasets, FPA’s submodels

are LightGBM [Ke+17] gradient-boosted decision tree (GBDT) regressors. Table D.53

details FPA’s LightGBM hyperparameter settings. For a more direct comparison with

randomized ablation which cannot use a GBDT, we also evaluated FPA with linear

submodels. FPA’s linear submodel hyperparameter settings for the regression datasets

are in Table D.54.

Table D.53. Regression datasets LightGBM submodel training hyperparameters

Weather Ames

Boosting Type GBDT GBDT

Estimators 500 1,000

Max. Depth 10 6

Min. Child Samples 20 5

Max. # Leaves 127 127

L1 Regularizer 0 1 · 10−3

L2 Regularizer 0 1 · 102

Objective Huber MAE

Learning Rate 0.5 1 · 102

Subsampling 0.9 0.9

234

Table D.54. Regression datasets linear submodel training hyperparameters

Weather Ames

L1 Regularizer 3.16 · 10−3 4.15 · 10−5

Max. # Iterations 1 · 104 1 · 106

Tolerance 1 · 10−3 1 · 10−8

Levine and Feizi [LF20b] only evaluate classification datasets in their original

paper. As such, there are no existing hyperparameter settings for randomized ablation

on Weather and Ames. We manually tuned randomized ablation’s learning rate for

the regression datasets considering all values in the set {10−2, 10−3, 10−4}. We also

tested numerous different settings for the number of training epochs. To ensure a

strong baseline, we report the best performing randomized ablation hyperparameter

settings.

Recall from Sec. 5.2 that randomized ablation only provides probabilistic

guarantees. By contrast, feature partition aggregation provides deterministic

guarantees. To facilitate a more direct comparison between certified feature and

ℓ0-norm guarantees, α = 0.0001 in all experiments.

D.3 Evaluation Setup for the Experiments in Chapter 6

This section details the evaluation setup used in Section 6.3 and 6.5’s experiments,

including dataset specifics, hyperparameters, and the neural network architectures.

Our source code can be downloaded from https://github.com/ZaydH/target_

identification. All experiments used the PyTorch automatic differentiation

framework [Pas+19] and were tested with Python 3.6.5. Wallace et al.’s [Wal+21]

sentiment analysis data poisoning source code will be published by its authors

at https://github.com/Eric-Wallace/data-poisoning.

D.3.1 Dataset Configurations. This subsection provides details related

to dataset configurations.

235

https://github.com/ZaydH/target_identification
https://github.com/ZaydH/target_identification
https://github.com/Eric-Wallace/data-poisoning

Section 6.3.1 performs binary classification of frog vs. airplane from CIFAR10.

Added as a small adversarial set (Dadv) is 150 MNIST 0 training instances selected

at random. We considered this class pair specifically since among the
(
10
2

)
possible

CIFAR10 class pairs, the MNIST test misclassification rate was closest to uniformly

at random (u.a.r.) for frog vs. airplane (47.5% actual vs. 50% u.a.r. – uniformly

at random). Hence, on average, neither frog nor airplane is overly influential on

MNIST. Note that no external constraints induced this near u.a.r. misclassification

rate.

Section 6.3.5 compares the ability of influence estimators, with and without

renormalization, to identify influential groups of training examples on non-adversarial,

CIFAR10, binary classification with Figure 12’s results averaged across five class pairs.

Two of the class pairs, airplane vs. bird and automobile vs. dog, were studied by

Weber et al. [Web+23] in relation to certified defenses. The three other class pairs –

cat vs. ship, frog vs. horse, and frog vs. truck – were selected at random.

Wallace et al.’s [Wal+21] poisoning method attacks the SST-2 dataset [Soc+13].

We consider detection on 8 short movie reviews – four positive and four negative – all

selected at random by Wallace et al.’s implementation. The specific reviews considered

appear in Table D.55.

Table D.55. SST-2 movie reviews selected by Wallace et al.’s [Wal+21] poisoning
attack implementation.

Sentiment No. Text

↑
Positive

↓

1 a delightful coming-of-age story .

2 a smart , witty follow-up .

3 ahhhh ... revenge is sweet !

4 a giggle a minute .

↑
Negative

↓

1 oh come on .

2 do not see this film .

3 it ’s a buggy drag .

4 or emptying rat traps .

236

The next section provides details regarding the adversarial datasets sizes.

D.3.1.1 Training Set Sizes. Table D.56 details the dataset sizes used to

train all evaluated models in Section 6.5.

Table D.56. Chapter 6 target identification dataset sizes

Dataset Attack # Classes # Train # Test

CIFAR10 [KNH14] Poison 5 25,000 5,000

SST-25 [Soc+13] Poison 2 67,349 N/A

Speech [Liu+18] Backdoor 10 3,0006 1,184

CIFAR10 [KNH14] Backdoor 2 10,000 2

Liu et al.’s [Liu+18] speech backdoor dataset includes training and test examples

with their associated adversarial trigger already embedded. We used their adversarial

dataset unchanged. Table D.57 details |Dadv| (i.e., adversarial training set size) for

each speech digit pair after a fixed, random train-validation split.

Table D.57. Number of backdoor training examples for each speech backdoor digit
pair. As detailed above, Liu et al.’s [Liu+18] dataset provides 30 backdoored instances
for each digit pair. The remainder of the 30 instances for each digit pair are part of
the fixed, validation set.

Digit Pair 0→ 1 1→ 2 2→ 3 3→ 4 4→ 5 5→ 6 6→ 7 7→ 8 8→ 9 8→ 9

|Dadv| 26 27 24 24 26 28 26 26 22 21

D.3.1.2 Target Set Sizes. Table D.58 details the sizes of the target and

non-target sets considered in Section 6.5.3’s target identification experiments. Davis

and Goadrich [DG06] explain that the class imbalance ratio between classes defines

the unattainable regions in the precision-recall curve. By extension, this ratio also

dictates the baseline AUPRC value if examples are labeled randomly.

5Stanford Sentiment Treebank dataset (SST-2) is used for sentiment analysis

6Clean only. Dataset also has 300 backdoored samples divided evenly among the 10 attack class
pairs (e.g., 0→ 1, 1→ 2, etc.).

237

Table D.58. Target and non-target set sizes used in Section 6.5.3’s target identification
experiments.

Attack Type # Targets # Non-Targets

Backdoor
Speech 10 220

Vision 35 250

Poison
NLP 1 125

Vision 1 450

D.3.2 Hyperparameters. This section details three primary hyperparameter

types, namely: hyperparameters used to create adversarial set Dadv (if any),

hyperparameter used when training model f , and influence estimator hyperparameters.

D.3.2.1 Model Training. Table D.59 enumerates the hyperparameters

used when training the models analyzed in Section 6.3.

Table D.59. Renormalized influence model training hyperparameter settings

Hyperparameter CIFAR10 & MNIST Filtering

θ0 Pretrained? ✓*

Data Augmentation? ✓

Validation Split 1
6

1
6

Optimizer Adam Adam

|Dadv| 150 N/A

Batch Size 64 64

Epochs 10 10

Subepochs (ω)7 5 3

η (Peak) 1 · 10−3 1 · 10−3

η Scheduler One cycle One cycle

λ (Weight Decay) 1 · 10−3 1 · 10−3

Table D.60 enumerates the hyperparameters used when training the adversarially-

attacked models analyzed in Sections 6.5.

D.3.2.2 Upper-Tail Heaviness Hyperparameters. Section 6.4.2 defines

the upper-tail heaviness of influence vector v as the κ-th largest anomaly score in

7We use the term “ω subepoch checkpointing” (ω ∈ Z+) to denote that iteration subset T is
formed from ω evenly-spaced checkpoints within each epoch. ω was not tuned, and was selected
based on overall execution time and compute availability.

8Varies by digit pair. See Table D.57.

238

Table D.60. Training-set attack model training hyperparameter settings

Hyperparameter
Poison Backdoor

CIFAR10 SST-2 Speech CIFAR10

θ0 Pretrained? ✓ ✓

Existing Adv. Dataset ✓

Data Augmentation? ✓

Validation Split 1
6

Predefined 1
6

1
6

Optimizer SGD Adam SGD Adam

|Dadv| 50 50 21–288 150

|Dcl| 24,950 67,349 3,000 9,850

Poisoning Rate
(

|Dadv|
|D|

)
0.20% 0.07% 0.99% 1.50%

Batch Size 256 32 32 64

Epochs 30 4 30 10

Subepochs (ω) 5 3 3 5

η (Peak) 1 · 10−3 1 · 10−5 1 · 10−3 1 · 10−3

η Scheduler One cycle Poly. decay One cycle One cycle

λ (Weight Decay) 1 · 10−1 1 · 10−1 1 · 10−3 1 · 10−3

Dropout Rate N/A 0.1 N/A N/A

vector σ. Table D.61 defines the hyperparameter value κ used for each of Section 6.5.1’s

four attacks.

Table D.61. Upper-tail heaviness cutoff count (κ)

Attack Type Tail Count (κ)

Backdoor
Speech 10

Vision 10

Poison
NLP 10

Vision 2

D.3.2.3 Target-Driven Mitigation Hyperparameters. Algorithm 6

details our target-driven attack mitigation algorithm, which uses filtering cutoff

hyperparameter ζ to tune how much data to filter in each filtering iteration.

Table D.62 details the hyperparameter settings used in Section 6.5.4’s attack mitigation

experiments.

For each attack, multiple trials were performed with different target examples,

class pairs, attack triggers, etc. For each such trial, we repeated the mitigation

239

experiment multiple times to ensure the most representative numbers with the number

of repeats enumerated in Table D.62.

In addition, cutoff threshold ζ was set to an initial value. After a specified number

of iterations l, ζ was decreased by a specified step-size. This process continued until

the attack had been mitigated. To summarize, iteration l’s mitigation cutoff value ζ is

ζl = ζinitial − ψ
⌊

l

StepCount

⌋
, (D.1)

with the corresponding value of each parameter in Table D.62.

Table D.62. Target-driven attack mitigation hyperparameters

Hyperparameter
Poison Backdoor

CIFAR10 SST-2 Speech CIFAR10

Repeats Per Trial 3 3 5 5

ζinitial Initial Cutoff 3 4 3 2

Anneal Step Size (ψ) 0.25 0.5 0.25 0.25

Anneal Step Count 1 1 4 4

D.3.2.4 Adversarial Set Dadv Crafting. Liu et al.’s [Liu+18] speech

recognition dataset comes bundled with 300 backdoor training examples. The

adversarial trigger takes the form of white noise inserted at the beginning of the speech

recording. We used the dataset unchanged except for a fixed training/validation split

used in all experiments. Only one backdoor digit pair (e.g, 0→ 1, 1→ 2, etc.) is

considered at a time.

Weber et al. [Web+23] consider backdoor three different backdoor adversarial

trigger types on CIFAR10 binary classification. The three attack patterns are:

1. 1 Pixel : The image’s center pixel is perturbed to the maximum value.

2. 4 Pixel : Four specific pixels near the image’s center had their pixel value increased

a fixed amount.

3. Blend : A fixed isotropic Gaussian-noise pattern (N (0,I)) across the entire image.

240

Table D.63 defines each attack pattern’s maximum L2 perturbation distance. Any

perturbation that exceeded the pixel minimum/maximum values was clipped to the

valid range.

Table D.63. CIFAR10 vision backdoor adversarial trigger maximum ℓ2-norm
perturbation distance

Pattern Max. ℓ2

1 Pixel
√
3

4 Pixel 2

Blend 4

Wallace et al. [Wal+21] construct single-target natural language poison using the

traditional poisoning bilevel optimization,

argmin
Dadv

Ladv
(
ẑtarg; argmin

θ

∑
z∈Dcl∪Dadv

L(zi; θ)
)
, (D.2)

where Ladv uses the attacker’s adversarial loss function, Ladv : A× Y → R≥0, in

place of training loss function L [BNL12; Muñ+17]. To make the computation

tractable, Wallace et al. approximate inner minimizer, argminθ
∑

z∈Dcl∪Dadv
L(zi; θ),

using second-order gradients similar to [FAL17; Wan+18; Hua+20]. Wallace et al.’s

method initializes each poison instance from a seed phrase, and tokens are iteratively

replaced with alternates that align well with the poison example’s gradient.

Like Wallace et al., our experiments attacked sentiment analysis on the Stanford

Sentiment Treebank v2 (SST-2) dataset [Soc+13]. We targeted 8 (4 positive &

4 negative – see Table D.55) reviews selected by Wallace et al.’s implementation and

generated |Dadv| = 50 new poison in each trial.

Zhu et al.’s [Zhu+19] targeted, clean-label attack crafts a set of poisons by

forming a convex polytope around the target’s feature representation. Our experiments

used the author’s open-source implementation when crafting the poison. Their

241

implementation is gray-box and assumes access to a known pre-trained network

(excluding the randomly-initialized, linear classification layer).

Both Zhu et al.’s [Zhu+19] andWallace et al.’s [Wal+21] poison crafting algorithms

have their own dedicated hyperparameters, which are detailed in Tables D.64 and D.65

respectively. Note that Table D.65’s hyperparameters are taken unchanged from the

original source code provided by Wallace et al.

Table D.64. Convex polytope poison crafting [Zhu+19] hyperparameter settings

Hyperparameter Value

Iterations 1,000

Learning Rate 4 · 10−2

Weight Decay 0

Max. Perturb. (ϵ) 0.1

Table D.65. SST-2 sentiment analysis poison crafting hyperparameter settings. These
are identical to Wallace et al.’s [Wal+21] hyperparameter settings.

Hyperparameter Value

Optimizer Adam

Total Num. Updates 20,935

Warmup Updates 1,256

Max. Sentence Len. 512

Max. Batch Size 7

Learning Rate 1 · 10−5

LR Scheduler Polynomial Decay

D.3.2.5 Baselines.

Baselines for Identifying Adversarial Set Dadv We exclusively considered

influence-estimation methods applicable to neural models and excluded influence

methods specific to alternate architectures [BHL23].

Koh and Liang’s [KL17] influence functions estimator uses Pearlmutter’s [Pea94]

stochastic Hessian-vector product (HVP) estimation algorithm. Pearlmutter’s

242

algorithm requires 5 hyperparameters, and we follow Koh and Liang’s notation for

these parameters below.

Influence functions’ five hyperparameters are required to ensure estimator quality

and to prevent numerical instability/divergence. Table D.66 details the influence

functions hyperparameters used for each of Section 6.5’s datasets. t and r were selected

to make a single pass through the training set in accordance with the procedure specified

by Koh and Liang.

As noted by Basu et al. [BPF21], influence functions can be fragile on deep

networks. We tuned β and γ to prevent HVP divergence, which is common with

influence functions.

Our influence functions implementation was adapted from the versions published

by [Guo+21] and in the Python package pytorch influence functions.9

Table D.66. Influence functions hyperparameter settings

Hyperparameter
Renormalization Poison Backdoor

CIFAR10 & MNIST Non-adv. CIFAR10 SST-2 Speech CIFAR10

Batch Size 1 1 1 1 1 1

Damp (β) 1 · 10−2 5 · 10−3 1 · 10−2 1 · 10−2 5 · 10−3 1 · 10−2

Scale (γ) 3 · 107 1 · 104 3 · 107 1 · 106 1 · 104 3 · 107

Recursion Depth (t) 1,000 1,000 2,500 6,740 1,000 1,000

Repeats (r) 10 10 10 10 10 10

Second-order influence functions [BYF20] are more brittle and computationally

expensive than the first-order version. Renormalization is intended as a first-order

correction and addresses our two tasks without the costs/issues related to second-order

methods.

Chen et al.’s [Che+21] HyDRA is an additional dynamic influence estimator.

However, HyDRA’s O(np) memory complexity makes it impractical in most modern

9Package source code: https://github.com/nimarb/pytorch_influence_functions.

243

https://github.com/nimarb/pytorch_influence_functions

applications with large models and datasets. We focus on TracIn as its memory

complexity is only O(n). HyDRA and TracIn were published contemporaneously and

share the same core idea.10

Peri et al.’s [Per+20] Deep k-NN defense labels a training example as poison if

its label does not match the plurality of its neighbors. For Deep k-NN to accurately

identify poison, it must generally hold that k > 2|Dadv|. Peri et al. propose selecting

k using the normalized k-ratio, k/N , where N is the size of the largest class in D.

Peri et al.’s ablation study showed that Deep k-NN generally performed best

when the normalized k-ratio was in the range [0.2, 2]. To ensure a strong baseline,

our experiments tested Deep k-NN with three normalized k-ratio values, {0.2, 1, 2},11

and we report the top-performing k’s result.

Baselines Identifying the Attack Target(s) Target identification baselines

maximum and minimum k-NN distance depend on k in order to generate target

rankings. Given k’s similarity to our tail cutoff count κ, we use the same

hyperparameter settings for both with the values in Table D.61.

D.3.3 Network Architectures. Table D.67 details the CIFAR10 neural

network architecture. Specifically, we used Page’s [Pag20] ResNet9 architecture,

which is the state-of-the-art for fast, high-accuracy (>94%) CIFAR10 classification on

DAWNBench [Col+17] at the time of writing.

Following Wallace et al. [Wal+21], natural language poisoning attacked Liu et al.’s

[Liu+20b] RoBERTaBASE pre-trained parameters. All language model training used

Facebook AI Research’s fairseq sequence-to-sequence toolkit [Ott+19] as specified

10Our influence renormalization – proposed in Section 6.3 – also applies to HyDRA.

11This corresponds to k ∈ {833, 4167, 8333} for 25,000 CIFAR10 training examples and a
1
6 validation split ratio.

244

by Wallace et al. The text was encoded using Radford et al.’s [Rad+19] byte-pair

encoding (BPE) scheme.

The speech classification convolutional neural network is identical to that used

by Liu et al. [Liu+18] except for two minor changes. First, batch normalization [IS15]

was used instead of dropout to expedite training convergence. In addition, each

convolutional layer’s kernel count was halved to allow the model to be trained on a

single NVIDIA Tesla K80 GPU.

Table D.67. Simplified ResNet9 neural network architecture used for Sec. 6.5’s
CIFAR10 binary classification

Conv1 In=3 Out=64 Kernel=3× 3 Pad=1

BatchNorm2D Out=64

ReLU

Conv2 In=64 Out=128 Kernel=3× 3 Pad=1

BatchNorm2D Out=128

ReLU

MaxPool2D 2× 2

↑
ResNet1

↓

ConvA In=128 Out=128 Kernel=3× 3 Pad=1

BatchNorm2D Out=128

ReLU

ConvB In=128 Out=128 Kernel=3× 3 Pad=1

BatchNorm2D Out=128

ReLU

Conv3 In=128 Out=256 Kernel=3× 3 Pad=1

BatchNorm2D Out=256

ReLU

MaxPool2D 2× 2

Conv4 In=256 Out=512 Kernel=3× 3 Pad=1

BatchNorm2D Out=512

ReLU

MaxPool2D 2× 2

↑
ResNet2

↓

ConvA In=512 Out=512 Kernel=3× 3 Pad=1

BatchNorm2D Out=512

ReLU

ConvB In=512 Out=512 Kernel=3× 3 Pad=1

BatchNorm2D Out=512

ReLU

MaxPool2D 2× 2

Linear Out=10

245

Table D.68. Speech recognition convolutional neural network

Conv1 In=3 Out=48 Kernel=11× 11 Pad=1

MaxPool2D 3× 3

BatchNorm2D Out=48

Conv2 In=48 Out=128 Kernel=5× 5 Pad=2

MaxPool2D 3× 3

BatchNorm2D Out=128

Conv3 In=128 Out=192 Kernel=3× 3 Pad=1

ReLU

BatchNorm2D Out=192

Conv4 In=192 Out=192 Kernel=3× 3 Pad=1

ReLU

BatchNorm2D Out=192

Conv5 In=192 Out=128 Kernel=3× 3 Pad=1

ReLU

MaxPool2D 3× 3

BatchNorm2D Out=128

Linear Out=10

246

REFERENCES CITED

[Aga+19] Shruti Agarwal, Hany Farid, Yuming Gu, Mingming He, Koki Nagano,
and Hao Li. “Protecting World Leaders Against Deep Fakes”. In:
Proceedings of the CVPR Workshop on Media Forensics. Long Beach,
California, 2019.

[Agh+20] Hojjat Aghakhani, Thorsten Eisenhofer, Lea Schönherr, Dorothea Kolossa,
Thorsten Holz, Christopher Kruegel, and Giovanni Vigna. “VENOMAVE:
Clean-Label Poisoning Against Speech Recognition”. In: (2020). arXiv:
2010.10682 [cs.SD].

[AKA91] David W. Aha, Dennis Kibler, and Marc K. Albert. “Instance-Based
Learning Algorithms”. In: Machine Learning 6.1 (1991), pp. 37–66.

[ACW18] Anish Athalye, Nicholas Carlini, and David A. Wagner. “Obfuscated
Gradients Give a False Sense of Security: Circumventing Defenses to
Adversarial Examples”. In: ICML’18 (2018). url: https://arxiv.
org/abs/1802.00420.

[Awa+18] Edmond Awad, Sohan Dsouza, Richard Kim, Jonathan Schulz,
Joseph Henrich, Azim Shariff, Jean-François Bonnefon, and Iyad Rahwan.
“The Moral Machine Experiment”. In: Nature 563.7729 (2018),
pp. 59–64.

[Bai+21] Tao Bai, Jinqi Luo, Jun Zhao, Bihan Wen, and Qian Wang. “Recent
Advances in Adversarial Training for Adversarial Robustness”. In:
Proceedings of the Thirtieth International Joint Conference on Artificial
Intelligence. IJCAI’21. 2021. doi: 10.24963/ijcai.2021/591. url:
https://arxiv.org/abs/2102.01356.

[BL78] Vic Barnett and Toby Lewis. Outliers in Statistical Data. 2nd edition.
Hoboken, New Jersey, USA: John Wiley & Sons Ltd., 1978.

[Bar17] Jonathan T. Barron. Continuously Differentiable Exponential Linear
Units. 2017. arXiv: 1704.07483 [cs.LG].

[BBD20] Elnaz Barshan, Marc-Etienne Brunet, and Gintare Karolina Dziugaite.
“RelatIF: Identifying Explanatory Training Samples via Relative
Influence”. In: Proceedings of the 23rd International Conference on
Artificial Intelligence and Statistics. AISTATS’20. 2020.

[BPF21] Samyadeep Basu, Phil Pope, and Soheil Feizi. “Influence Functions in
Deep Learning Are Fragile”. In: Proceedings of the 9th International
Conference on Learning Representations. ICLR’21. Virtual Only, 2021.

247

https://arxiv.org/abs/2010.10682
https://arxiv.org/abs/1802.00420
https://arxiv.org/abs/1802.00420
https://doi.org/10.24963/ijcai.2021/591
https://arxiv.org/abs/2102.01356
https://arxiv.org/abs/1704.07483

[BYF20] Samyadeep Basu, Xuchen You, and Soheil Feizi. “On Second-Order
Group Influence Functions for Black-Box Predictions”. In: Proceedings
of the 37th International Conference on Machine Learning. ICML’20.
Virtual Only: PMLR, 2020.

[BT74] Albert E. Beaton and John W. Tukey. “The Fitting of Power Series,
Meaning Polynomials, Illustrated on Band-Spectroscopic Data”. In:
Technometrics 16.2 (1974), pp. 147–185.

[Ben75] Jon L. Bentley. A Survey of Techniques for Fixed Radius Near Neighbor
Searching. Tech. rep. Stanford, CA, USA: Stanford University, 1975.

[BNL12] Battista Biggio, Blaine Nelson, and Pavel Laskov. “Poisoning Attacks
against Support Vector Machines”. In: Proceedings of the 29th
International Conference on Machine Learning. ICML’12. Edinburgh,
Great Britain: PMLR, 2012. url: https://arxiv.org/abs/1206.
6389.

[BR92] Avrim L. Blum and Ronald L. Rivest. “Training a 3-Node Neural
Network is NP-Complete”. In: Neural Networks 5.1 (1992), pp. 117–127.

[Blu+73] Manuel Blum, Robert W. Floyd, Vaughan Pratt, Ronald L. Rivest,
and Robert E. Tarjan. “Time Bounds for Selection”. In: Journal of
Computer and System Sciences 7.4 (1973), pp. 448–461. issn: 0022-
0000.

[BHL23] Jonathan Brophy, Zayd Hammoudeh, and Daniel Lowd. “Adapting
and Evaluating Influence-Estimation Methods for Gradient-Boosted
Decision Trees”. In: Journal of Machine Learning Research 24 (2023),
pp. 1–48. url: http://jmlr.org/papers/v24/22-0449.html.

[Buc+18] Jacob Buckman, Aurko Roy, Colin Raffel, and Ian Goodfellow.
“Thermometer Encoding: One Hot Way To Resist Adversarial
Examples”. In: Proceedings of the 6th International Conference on
Learning Representations. ICLR’18. 2018. url: https://openreview.
net/forum?id=S18Su--CW.

[Cal+21] Stefano Calzavara, Claudio Lucchese, Federico Marcuzzi, and
Salvatore Orlando. “Feature Partitioning for Robust Tree Ensembles
and their Certification in Adversarial Scenarios”. In: EURASIP Journal
on Information Security (Dec. 2021), pp. 245–317.

[Car19] Nicholas Carlini. On Evaluating Adversarial Robustness. 2019. url:
https://youtu.be/-p2il-V-0fk?t=1574.

248

https://arxiv.org/abs/1206.6389
https://arxiv.org/abs/1206.6389
http://jmlr.org/papers/v24/22-0449.html
https://openreview.net/forum?id=S18Su--CW
https://openreview.net/forum?id=S18Su--CW
https://youtu.be/-p2il-V-0fk?t=1574

[Car+23] Nicholas Carlini, Matthew Jagielski, Christopher A. Choquette-
Choo, Daniel Paleka, Will Pearce, Hyrum Anderson, Andreas Terzis,
Kurt Thomas, and Florian Tramèr. Poisoning Web-Scale Training
Datasets is Practical. arXiv. 2023. eprint: 2302.10149 (cs.CR). url:
https://arxiv.org/abs/2302.10149.

[CW17] Nicholas Carlini and David Wagner. “Towards Evaluating the
Robustness of Neural Networks”. In: Proceedings of the 2017 IEEE
Symposium on Security and Privacy. SP’17. IEEE Computer Society,
2017. doi: 10 . 1109 / SP . 2017 . 49. url: https : / / doi .

ieeecomputersociety.org/10.1109/SP.2017.49.

[Che+19] Bryant Chen, Wilka Carvalho, Nathalie Baracaldo, Heiko Ludwig,
Benjamin Edwards, Taesung Lee, Ian Molloy, and Biplav Srivastava.
“Detecting Backdoor Attacks on Deep Neural Networks by Activation
Clustering”. In: Proceedings of the AAAI Workshop on Artificial
Intelligence Safety. SafeAI’19. Honolulu, Hawaii, USA: Association
for the Advancement of Artificial Intelligence, 2019.

[Che+22] Ruoxin Chen, Zenan Li, Jie Li, Chentao Wu, and Junchi Yan.
“On Collective Robustness of Bagging Against Data Poisoning”. In:
Proceedings of the 39th International Conference on Machine Learning.
ICML’22. PMLR, 2022.

[CG16] Tianqi Chen and Carlos Guestrin. “XGBoost: A Scalable Tree Boosting
System”. In: Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. KDD’16. New
York, NY, USA: Association for Computing Machinery, 2016.

[Che+17] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song.
Targeted Backdoor Attacks on Deep Learning Systems Using Data
Poisoning. 2017. arXiv: 1712.05526 [cs.CR].

[Che+21] Yuanyuan Chen, Boyang Li, Han Yu, Pengcheng Wu, and
Chunyan Miao. “HyDRA: Hypergradient Data Relevance Analysis
for Interpreting Deep Neural Networks”. In: Proceedings of the 35th
AAAI Conference on Artificial Intelligence. AAAI’21. Virtual Only:
Association for the Advancement of Artificial Intelligence, 2021.

[CCM13] Yudong Chen, Constantine Caramanis, and Shie Mannor. Robust High
Dimensional Sparse Regression and Matching Pursuit. arXiv. 2013.
eprint: 1301.2725 (stat.ML).

[Chi+20] Ping-yeh Chiang, Renkun Ni, Ahmed Abdelkader, Chen Zhu,
Christoph Studor, and Tom Goldstein. “Certified Defenses for

249

2302.10149
https://arxiv.org/abs/2302.10149
https://doi.org/10.1109/SP.2017.49
https://doi.ieeecomputersociety.org/10.1109/SP.2017.49
https://doi.ieeecomputersociety.org/10.1109/SP.2017.49
https://arxiv.org/abs/1712.05526
1301.2725

Adversarial Patches”. In: Proceedings of the 8th International
Conference on Learning Representations. ICLR’20. Virtual Only, 2020.
url: https://openreview.net/forum?id=HyeaSkrYPH.

[Chv79] Vasek Chvatal. “A Greedy Heuristic for the Set-Covering Problem”.
In: Mathematics of Operations Research 4.3 (1979), pp. 233–235. issn:
0364-765X.

[Coc11] Dean De Cock. “Ames, Iowa: Alternative to the Boston Housing Data
as an End of Semester Regression Project”. In: Journal of Statistics
Education 19.3 (2011).

[CRK19] Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. “Certified Adversarial
Robustness via Randomized Smoothing”. In: Proceedings of the 36th
International Conference on Machine Learning. ICML’19. PMLR, 2019.
url: https://arxiv.org/abs/1902.02918.

[Col+17] Cody A. Coleman, Deepak Narayanan, Daniel Kang, Tian Zhao,
Jian Zhang, Luigi Nardi, Peter Bailis, Kunle Olukotun, Chris Ré,
and Matei Zaharia. “DAWNBench: An End-to-End Deep Learning
Benchmark and Competition”. In: Proceedings of the 2017 NeurIPS
Workshop on Machine Learning Systems. Long Beach, California, USA:
Curran Associates, Inc., 2017.

[Col22] Kevin Collier. Former Twitter Employee Sentenced to More than Three
Years in Prison for spying for Saudi Arabia. Dec. 2022. url: https:
//www.nbcnews.com/tech/security/former-twitter-employee-

sentenced-three-years-prison-spying-saudi-arab-rcna61384.

[Coo77] R. Dennis Cook. “Detection of Influential Observation in Linear
Regression”. In: Technometrics 19.1 (1977), pp. 15–18.

[CW82] R. Dennis Cook and Sanford Weisberg. Residuals and Influence in
Regression. New York: Chapman and Hall, 1982. isbn: 041224280X.

[CR92] Christophe Croux and Peter J. Rousseeuw. “A Class of High-
Breakdown Scale Estimators Based on Subranges”. In: Communications
in Statistics - Theory and Methods 21.7 (1992), pp. 1935–1951.

[DAm+20] Alexander D’Amour, Katherine A. Heller, Dan Moldovan, Ben Adlam,
Babak Alipanahi, Alex Beutel, Christina Chen, Jonathan Deaton,
Jacob Eisenstein, Matthew D. Hoffman, Farhad Hormozdiari,
Neil Houlsby, Shaobo Hou, Ghassen Jerfel, Alan Karthikesalingam,
Mario Lucic, Yi-An Ma, Cory Y. McLean, Diana Mincu, Akinori Mitani,
Andrea Montanari, Zachary Nado, Vivek Natarajan, Christopher Nielson,

250

https://openreview.net/forum?id=HyeaSkrYPH
https://arxiv.org/abs/1902.02918
https://www.nbcnews.com/tech/security/former-twitter-employee-sentenced-three-years-prison-spying-saudi-arab-rcna61384
https://www.nbcnews.com/tech/security/former-twitter-employee-sentenced-three-years-prison-spying-saudi-arab-rcna61384
https://www.nbcnews.com/tech/security/former-twitter-employee-sentenced-three-years-prison-spying-saudi-arab-rcna61384

Thomas F. Osborne, Rajiv Raman, Kim Ramasamy, Rory Sayres,
Jessica Schrouff, Martin Seneviratne, Shannon Sequeira, Harini Suresh,
Victor Veitch, Max Vladymyrov, Xuezhi Wang, Kellie Webster,
Steve Yadlowsky, Taedong Yun, Xiaohua Zhai, and D. Sculley.
Underspecification Presents Challenges for Credibility in Modern
Machine Learning. 2020. arXiv: 2011.03395 [cs.LG].

[DPV08] Sanjoy Dasgupta, Christos H. Papadimitriou, and Umesh V. Vazirani.
Algorithms. McGraw-Hill, 2008. isbn: 978-0-07-352340-8.

[DG06] Jesse Davis and Mark Goadrich. “The Relationship Between Precision-
Recall and ROC Curves”. In: Proceedings of the 23rd International
Conference on Machine Learning. ICML’06. Pittsburgh, Pennsylvania:
PMLR, 2006.

[Dhi+18] Guneet S. Dhillon, Kamyar Azizzadenesheli, Jeremy D. Bernstein,
Jean Kossaifi, Aran Khanna, Zachary C. Lipton, and Animashree Anandkumar.
“Stochastic Activation Pruning for Robust Adversarial Defense”.
In: Proceedings of the 6th International Conference on Learning
Representations. ICLR’18. 2018. url: https://openreview.net/
forum?id=H1uR4GZRZ.

[Ebr+18] Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing Dou. “HotFlip:
White-Box Adversarial Examples for Text Classification”. In:
Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics. ACL’18. 2018.

[EK10] Tapio Elomaa and Jussi Kujala. “Covering Analysis of the Greedy
Algorithm for Partial Cover”. In: Algorithms and Applications: Essays
Dedicated to Esko Ukkonen on the Occasion of His 60th Birthday. Berlin,
Heidelberg: Springer-Verlag, 2010, pp. 102–113. isbn: 3642124755.

[Fel20] Vitaly Feldman. “Does Learning Require Memorization? A Short Tale
about a Long Tail”. In: Proceedings of the 52nd Annual ACM SIGACT
Symposium on Theory of Computing. STOC’20. 2020.

[FZ20] Vitaly Feldman and Chiyuan Zhang. “What Neural Networks Memorize
and Why: Discovering the Long Tail via Influence Estimation”. In:
Proceedings of the 34th Conference on Neural Information Processing
Systems. NeurIPS’20. Virtual Only: Curran Associates, Inc., 2020.

[FAL17] Chelsea Finn, Pieter Abbeel, and Sergey Levine. “Model-Agnostic
Meta-Learning for Fast Adaptation of Deep Networks”. In: Proceedings
of the 34th International Conference on Machine Learning. ICML’17.
Sydney, Australia: PMLR, 2017.

251

https://arxiv.org/abs/2011.03395
https://openreview.net/forum?id=H1uR4GZRZ
https://openreview.net/forum?id=H1uR4GZRZ

[FB81] Martin A. Fischler and Robert C. Bolles. “Random Sample Consensus:
A Paradigm for Model Fitting with Applications to Image Analysis
and Automated Cartography”. In: Communications of the ACM 24.6
(1981), pp. 381–395. issn: 0001-0782.

[Fow+21] Liam Fowl, Micah Goldblum, Ping-yeh Chiang, Jonas Geiping,
Wojtek Czaja, and Tom Goldstein. “Adversarial Examples Make Strong
Poisons”. In: Proceedings of the 35th Conference on Neural Information
Processing Systems. NeurIPS’21. Virtual Only: Curran Associates, Inc.,
2021.

[Gao+19] Yansong Gao, Change Xu, Derui Wang, Shiping Chen, Damith C. Ranasinghe,
and Surya Nepal. “STRIP: A Defence against Trojan Attacks on
Deep Neural Networks”. In: Proceedings of the 35th Annual Computer
Security Applications Conference. ACSAC’19. San Juan, Puerto Rico,
USA: Association for Computing Machinery, 2019.

[Gei+21] Jonas Geiping, Liam Fowl, W. Ronny Huang, Wojciech Czaja,
Gavin Taylor, Michael Moeller, and Tom Goldstein. “Witches’
Brew: Industrial Scale Data Poisoning via Gradient Matching”.
In: Proceedings of the 9th International Conference on Learning
Representations. ICLR’21. Virtual Only, 2021.

[Gei+20] Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel,
Wieland Brendel, Matthias Bethge, and Felix A. Wichmann. “Shortcut
Learning in Deep Neural Networks”. In: Nature Machine Intelligence
2.11 (2020), pp. 665–673.

[GEW06] Pierre Geurts, Damien Ernst, and Louis Wehenkel. “Extremely
Randomized Trees”. In: Machine Learning 63.1 (2006), pp. 3–42. issn:
1573-0565.

[GSS15] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. “Explaining
and Harnessing Adversarial Examples”. In: Proceedings of the
3rd International Conference on Learning Representations. ICLR’15.
2015. url: https://arxiv.org/abs/1412.6572.

[GF17] Bryce Goodman and Seth Flaxman. “European Union Regulations on
Algorithmic Decision-Making and a ‘Right to Explanation’”. In: AI
Magazine 38.3 (Oct. 2017), pp. 50–57.

[Gow+19] Sven Gowal, Krishnamurthy Dvijotham, Robert Stanforth, Rudy Bunel,
Chongli Qin, Jonathan Uesato, Relja Arandjelovic, Timothy Arthur Mann,
and Pushmeet Kohli. “Scalable Verified Training for Provably
Robust Image Classification”. In: Proceedings of the 2019 IEEE/CVF

252

https://arxiv.org/abs/1412.6572

International Conference on Computer Vision. ICCV’19. 2019. doi:
10.1109/ICCV.2019.00494.

[Gu+19] Tianyu Gu, Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg.
“BadNets: Evaluating Backdooring Attacks on Deep Neural Networks”.
In: IEEE Access 7 (2019), pp. 47230–47244. url: https : / /

ieeexplore.ieee.org/document/8685687.

[Guo+20] Chuan Guo, Tom Goldstein, Awni Y. Hannun, and Laurens van der Maaten.
“Certified Data Removal from Machine Learning Models”. In:
Proceedings of the 37th International Conference on Machine Learning.
Vol. 119. ICML’20. 2020, pp. 3832–3842.

[Guo+18] Chuan Guo, Mayank Rana, Moustapha Cisse, and Laurens van der Maaten.
“Countering Adversarial Images using Input Transformations”.
In: Proceedings of the 6th International Conference on Learning
Representations. ICLR’18. 2018. url: https://openreview.net/
forum?id=SyJ7ClWCb.

[Guo+21] Han Guo, Nazneen Rajani, Peter Hase, Mohit Bansal, and
Caiming Xiong. “FastIF: Scalable Influence Functions for Efficient
Model Interpretation and Debugging”. In: Proceedings of the 2021
Conference on Empirical Methods in Natural Language Processing.
EMNLP’21. 2021.

[Gur22] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual. 2022.
url: https://www.gurobi.com.

[HL21] Zayd Hammoudeh and Daniel Lowd. “Simple, Attack-Agnostic Defense
Against Targeted Training Set Attacks Using Cosine Similarity”. In:
Proceedings of the 3rd ICML Workshop on Uncertainty and Robustness
in Deep Learning. UDL’21. 2021.

[HL22a] Zayd Hammoudeh and Daniel Lowd. “Identifying a Training-Set
Attack’s Target Using Renormalized Influence Estimation”. In:
Proceedings of the 29th ACM SIGSAC Conference on Computer and
Communications Security. CCS’22. Los Angeles, CA: Association for
Computing Machinery, 2022. url: https://arxiv.org/abs/2201.
10055.

[HL22b] Zayd Hammoudeh and Daniel Lowd. “Training Data Influence Analysis
and Estimation: A Survey”. In: arXiv (2022). arXiv: 2212.04612
[cs.LG].

253

https://doi.org/10.1109/ICCV.2019.00494
https://ieeexplore.ieee.org/document/8685687
https://ieeexplore.ieee.org/document/8685687
https://openreview.net/forum?id=SyJ7ClWCb
https://openreview.net/forum?id=SyJ7ClWCb
https://www.gurobi.com
https://arxiv.org/abs/2201.10055
https://arxiv.org/abs/2201.10055
https://arxiv.org/abs/2212.04612
https://arxiv.org/abs/2212.04612

[HL23a] Zayd Hammoudeh and Daniel Lowd. “Feature Partition Aggregation: A
Fast Certified Defense Against a Union of ℓ0 Attacks”. In: Proceedings
of the 2nd ICML Workshop on New Frontiers in Adversarial Machine
Learning. AdvML-Frontiers’23. 2023. url: https://arxiv.org/abs/
2302.11628.

[HL23b] Zayd Hammoudeh and Daniel Lowd. Feature Partition Aggregation: A
Fast Certified Defense Against a Union of Sparse Adversarial Attacks.
2023. arXiv: 2302.11628 [cs.LG].

[HL23c] Zayd Hammoudeh and Daniel Lowd. “Reducing Certified Regression to
Certified Classification for General Poisoning Attacks”. In: Proceedings
of the 1st IEEE Conference on Secure and Trustworthy Machine
Learning. SaTML’23. 2023. url: https://arxiv.org/abs/2208.
13904.

[HNM19] Satoshi Hara, Atsushi Nitanda, and Takanori Maehara. “Data
Cleansing for Models Trained with SGD”. In: Proceedings of
the 33rd Conference on Neural Information Processing Systems.
NeurIPS’19. Vancouver, Canada: Curran Associates, Inc., 2019.

[Hea+21] Tim Head, Manoj Kumar, Holger Nahrstaedt, Gilles Louppe,
and Iaroslav Shcherbatyi. scikit-optimize: Sequential model-based
optimization in Python. Version v0.9.0. 2021.

[HA04] Victoria J. Hodge and Jim Austin. “A Survey of Outlier Detection
Methodologies”. In: Artificial Intelligence Review 22.2 (Oct. 2004),
pp. 85–126.

[Hop+17] Mark Hopkins, Erik Reeber, George Forman, and Jaap Suermondt. UCI
Machine Learning Repository: Spambase Dataset. 2017. url: https:
//archive.ics.uci.edu/ml/datasets/spambase.

[Hua+20] W. Ronny Huang, Jonas Geiping, Liam Fowl, Gavin Taylor, and
Tom Goldstein. “MetaPoison: Practical General-purpose Clean-label
Data Poisoning”. In: Proceedings of the 34th Conference on Neural
Information Processing Systems. NeurIPS’20. Virtual Only: Curran
Associates, Inc., 2020. url: https://arxiv.org/abs/2004.00225.

[Hub64] Peter J. Huber. “Robust Estimation of a Location Parameter”. In:
Annals of Mathematical Statistics 35.1 (1964), pp. 73–101.

[Ily+19] Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom,
Brandon Tran, and Aleksander Madry. “Adversarial Examples Are Not
Bugs, They Are Features”. In: Proceedings of the 33rd International

254

https://arxiv.org/abs/2302.11628
https://arxiv.org/abs/2302.11628
https://arxiv.org/abs/2302.11628
https://arxiv.org/abs/2208.13904
https://arxiv.org/abs/2208.13904
https://archive.ics.uci.edu/ml/datasets/spambase
https://archive.ics.uci.edu/ml/datasets/spambase
https://arxiv.org/abs/2004.00225

Conference on Neural Information Processing Systems. NeurIPS’19.
Red Hook, NY, USA: Curran Associates Inc., 2019.

[IS15] Sergey Ioffe and Christian Szegedy. “Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift”. In:
Proceedings of the 32nd International Conference on Machine Learning.
ICML’15. Lille, France: PMLR, 2015.

[Jag+18] Matthew Jagielski, Alina Oprea, Battista Biggio, Chang Liu,
Cristina Nita-Rotaru, and Bo Li. “Manipulating Machine Learning:
Poisoning Attacks and Countermeasures for Regression Learning”. In:
Proceedings of the 2018 IEEE Symposium on Security and Privacy.
SP’18. 2018.

[Jag+21] Matthew Jagielski, Giorgio Severi, Niklas Pousette Harger, and
Alina Oprea. “Subpopulation Data Poisoning Attacks”. In: Proceedings
of the 28th ACM SIGSAC Conference on Computer and Communications
Security. CCS’21. Virtual Only: Association for Computing Machinery,
2021.

[JCG21] Jinyuan Jia, Xiaoyu Cao, and Neil Zhenqiang Gong. “Intrinsic Certified
Robustness of Bagging against Data Poisoning Attacks”. In: Proceedings
of the 35th AAAI Conference on Artificial Intelligence. AAAI’21. 2021.

[Jia+22a] Jinyuan Jia, Yupei Liu, Xiaoyu Cao, and Neil Zhenqiang Gong.
“Certified Robustness of Nearest Neighbors against Data Poisoning
and Backdoor Attacks”. In: Proceedings of the 36th AAAI Conference
on Artificial Intelligence. AAAI’22. 2022. url: https://arxiv.org/
abs/2012.03765.

[Jia+22b] Jinyuan Jia, Binghui Wang, Xiaoyu Cao, Hongbin Liu, and
Neil Zhenqiang Gong. “Almost Tight ℓ0-norm Certified Robustness of
Top-k Predictions against Adversarial Perturbations”. In: Proceedings
of the 10th International Conference on Learning Representations.
ICLR’22. 2022. url: https : / / openreview . net / forum ? id =

gJLEXy3ySpu.

[Jin+20] Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter Szolovits. “Is BERT
Really Robust? A Strong Baseline for Natural Language Attack on
Text Classification and Entailment”. In: Proceedings of the 34th AAAI
Conference on Artificial Intelligence. AAAI’20. 2020.

[Joh74] David S Johnson. “Approximation Algorithms for Combinatorial
Problems”. In: Journal of Computer and System Sciences 9.3 (1974),
pp. 256–278.

255

https://arxiv.org/abs/2012.03765
https://arxiv.org/abs/2012.03765
https://openreview.net/forum?id=gJLEXy3ySpu
https://openreview.net/forum?id=gJLEXy3ySpu

[JW78] John E. Dennis Jr. and Roy E. Welsch. “Techniques for nonlinear least
squares and robust regression”. In: Communications in Statistics -
Simulation and Computation 7.4 (1978), pp. 345–359.

[Ke+17] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen,
Weidong Ma, Qiwei Ye, and Tie-Yan Liu. “LightGBM: A Highly
Efficient Gradient Boosting Decision Tree”. In: Proceedings of the 31st
International Conference on Neural Information Processing Systems.
NeurIPS’17. 2017.

[KB15] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic
Optimization”. In: Proceedings of the 3rd International Conference on
Learning Representations. ICLR’15. 2015.

[KKM18] Adam R. Klivans, Pravesh K. Kothari, and Raghu Meka. “Efficient
Algorithms for Outlier-Robust Regression”. In: Proceedings of the 31st
Conference on Learning Theory. COLT’18. PMLR, 2018.

[KL17] Pang Wei Koh and Percy Liang. “Understanding Black-box Predictions
via Influence Functions”. In: Proceedings of the 34th International
Conference on Machine Learning. ICML’17. Sydney, Australia: PMLR,
2017.

[Kol+19] Soheil Kolouri, Aniruddha Saha, Hamed Pirsiavash, and Heiko Hoffmann.
“Universal Litmus Patterns: Revealing Backdoor Attacks in CNNs”. In:
Proceedings of the 32nd Conference on Computer Vision and Pattern
Recognition. CVPR’19. Long Beach, California, USA, 2019.

[KNH14] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. The CIFAR-10
Dataset. 2014.

[Kum+20] Ram Shankar Siva Kumar, Magnus Nyström, John Lambert,
Andrew Marshall, Mario Goertzel, Andi Comissoneru, Matt Swann, and
Sharon Xia. “Adversarial Machine Learning – Industry Perspectives”.
In: Proceedings of the 2020 IEEE Security and Privacy Workshops.
SPW’20. 2020. url: https://arxiv.org/abs/2002.05646.

[KGB16] Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. “Adversarial
Examples in the Physical World”. In: (2016). arXiv: 1607.02533. url:
http://arxiv.org/abs/1607.02533.

[LSF21] Cassidy Laidlaw, Sahil Singla, and Soheil Feizi. “Perceptual Adversarial
Robustness: Defense Against Unseen Threat Models”. In: Proceedings
of the 9th International Conference on Learning Representations.

256

https://arxiv.org/abs/2002.05646
https://arxiv.org/abs/1607.02533
http://arxiv.org/abs/1607.02533

ICLR’21. Virtual Only, 2021. url: https://arxiv.org/abs/2006.
12655.

[Lec89] Yvan G. Leclerc. “Constructing Simple Stable Descriptions for Image
Partitioning”. In: International Journal of Computer Vision 3.1 (1989),
pp. 73–102.

[LeC+98] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner.
“Gradient-Based Learning Applied to Document Recognition”. In:
Proceedings of the IEEE. Vol. 86. 1998, pp. 2278–2324.

[Léc+19] Mathias Lécuyer, Vaggelis Atlidakis, Roxana Geambasu, Daniel Hsu,
and Suman Jana. “Certified Robustness to Adversarial Examples with
Differential Privacy”. In: Proceedings of the 2019 IEEE Symposium on
Security and Privacy. SP’19. IEEE, 2019. url: https://arxiv.org/
abs/1802.03471.

[Lee+19] Guang-He Lee, Yang Yuan, Shiyu Chang, and Tommi Jaakkola.
“Tight Certificates of Adversarial Robustness for Randomly Smoothed
Classifiers”. In: Proceedings of the 33rd Conference on Neural
Information Processing Systems. NeurIPS’19. 2019. url: https://
arxiv.org/abs/1906.04948.

[Lee16] Peter Lee. Learning from Tay’s Introduction. Mar. 2016. url: https:
/ / blogs . microsoft . com / blog / 2016 / 03 / 25 / learning - tays -

introduction/.

[LLP20] Sungyoon Lee, Jaewook Lee, and Saerom Park. “Lipschitz-Certifiable
Training with a Tight Outer Bound”. In: Proceedings of the 34th
International Conference on Neural Information Processing Systems.
NeurIPS’20. Red Hook, NY, USA: Curran Associates Inc., 2020.

[Lev+11] Kirill Levchenko, Andreas Pitsillidis, Neha Chachra, Brandon Enright,
Márk Félegyházi, Chris Grier, Tristan Halvorson, Chris Kanich,
Christian Kreibich, He Liu, Damon McCoy, Nicholas C. Weaver,
Vern Paxson, Geoffrey M. Voelker, and Stefan Savage. “Click
Trajectories: End-to-End Analysis of the Spam Value Chain”. In: 2011
IEEE Symposium on Security and Privacy. SP’11 (2011), pp. 431–446.

[LF20a] Alexander Levine and Soheil Feizi. “(De)Randomized Smoothing for
Certifiable Defense against Patch Attacks”. In: Proceedings of the 34th
International Conference on Neural Information Processing Systems.
NeurIPS’20. Red Hook, NY, USA: Curran Associates Inc., 2020. url:
https://arxiv.org/abs/2002.10733.

257

https://arxiv.org/abs/2006.12655
https://arxiv.org/abs/2006.12655
https://arxiv.org/abs/1802.03471
https://arxiv.org/abs/1802.03471
https://arxiv.org/abs/1906.04948
https://arxiv.org/abs/1906.04948
https://blogs.microsoft.com/blog/2016/03/25/learning-tays-introduction/
https://blogs.microsoft.com/blog/2016/03/25/learning-tays-introduction/
https://blogs.microsoft.com/blog/2016/03/25/learning-tays-introduction/
https://arxiv.org/abs/2002.10733

[LF20b] Alexander Levine and Soheil Feizi. “Robustness Certificates for Sparse
Adversarial Attacks by Randomized Ablation”. In: Proceedings of the
34th AAAI Conference on Artificial Intelligence. AAAI Press, 2020.
url: https://arxiv.org/abs/1911.09272.

[LF21] Alexander Levine and Soheil Feizi. “Deep Partition Aggregation:
Provable Defenses against General Poisoning Attacks”. In: Proceedings
of the 9th International Conference on Learning Representations.
ICLR’21. Virtual Only, 2021. url: https://arxiv.org/abs/2006.
14768.

[Li+19] Bai Li, Changyou Chen, Wenlin Wang, and Lawrence Carin. “Certified
Adversarial Robustness with Additive Noise”. In: Proceedings of
the 33rd International Conference on Neural Information Processing
Systems. NeurIPS’19. Red Hook, NY, USA: Curran Associates Inc.,
2019. url: https://arxiv.org/abs/1809.03113.

[LXL23] Linyi Li, Tao Xie, and Bo Li. “SoK: Certified Robustness for Deep
Neural Networks”. In: Proceedings of the 44th IEEE Symposium on
Security and Privacy. SP’23. IEEE, 2023. url: https://arxiv.org/
abs/2009.04131.

[LDD21] Xiling Li, Rafael Dowsley, and Martine De Cock. “Privacy-
Preserving Feature Selection with Secure Multiparty Computation”. In:
Proceedings of the 38th International Conference on Machine Learning.
ICML’21. 2021. url: https://arxiv.org/abs/2102.03517.

[Li+21] Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan Lyu, Bo Li, and
Xingjun Ma. “Anti-Backdoor Learning: Training Clean Models on
Poisoned Data”. In: Proceedings of the 35th Conference on Neural
Information Processing Systems. NeurIPS’21. Virtual Only: Curran
Associates, Inc., 2021.

[Li+22] Yiming Li, Baoyuan Wu, Yong Jiang, Zhifeng Li, and Shu-Tao Xia.
“Backdoor Learning: A Survey”. In: IEEE Transactions on Neural
Networks and Learning Systems (2022). doi: 10.1109/TNNLS.2022.
3182979. url: https://arxiv.org/abs/2007.08745.

[Lin+20] Junyu Lin, Lei Xu, Yingqi Liu, and Xiangyu Zhang. “Composite
Backdoor Attack for Deep Neural Network by Mixing Existing Benign
Features”. In: Proceedings of the 2020 ACM SIGSAC Conference
on Computer and Communications Security. CCS’20. Virtual Only:
Association for Computing Machinery, 2020.

258

https://arxiv.org/abs/1911.09272
https://arxiv.org/abs/2006.14768
https://arxiv.org/abs/2006.14768
https://arxiv.org/abs/1809.03113
https://arxiv.org/abs/2009.04131
https://arxiv.org/abs/2009.04131
https://arxiv.org/abs/2102.03517
https://doi.org/10.1109/TNNLS.2022.3182979
https://doi.org/10.1109/TNNLS.2022.3182979
https://arxiv.org/abs/2007.08745

[LCY14] Min Lin, Qiang Chen, and Shuicheng Yan. “Network in Network”.
In: Proceedings of the 2nd International Conference on Learning
Representations. ICLR’14. 2014. url: https://arxiv.org/abs/
1312.4400.

[Liu+17] Chang Liu, Bo Li, Yevgeniy Vorobeychik, and Alina Oprea. “Robust
Linear Regression Against Training Data Poisoning”. In: Proceedings
of the 10th ACM Workshop on Artificial Intelligence and Security.
AISec’17. New York, NY, USA: Association for Computing Machinery,
2017.

[LDG18] Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. “Fine-Pruning:
Defending Against Backdooring Attacks on Deep Neural Networks”.
In: Proceedings of the International Symposium on Research in Attacks,
Intrusions, and Defenses. RAID’18. Heraklion, Crete, Greece: Springer,
2018, pp. 273–294.

[Liu+20a] Liu Liu, Yanyao Shen, Tianyang Li, and Constantine Caramanis.
“High Dimensional Robust Sparse Regression”. In: Proceedings of the
23rd International Conference on Artificial Intelligence and Statistics.
AISTATS’20. 2020.

[Liu+18] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai,
Weihang Wang, and Xiangyu Zhang. “Trojaning Attack on Neural
Networks”. In: Proceedings of the 25th Annual Network and Distributed
System Security Symposium. NDSS’18. San Diego, California, USA,
2018.

[Liu+20b] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi,
Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and
Veselin Stoyanov. “RoBERTa: A Robustly Optimized BERT
Pretraining Approach”. In: Proceedings of the 8th International
Conference on Learning Representations. ICLR’20. Virtual Only, 2020.

[LXS17] Yuntao Liu, Yang Xie, and Ankur Srivastava. “Neural Trojans”. In:
Proceedings of the 2017 IEEE International Conference on Computer
Design. ICCD’17. 2017. doi: 10.1109/ICCD.2017.16. url: https:
//ieeexplore.ieee.org/document/8119189.

[Lov75] László Lovász. “On the Ratio of Optimal Integral and Fractional
Covers”. In: Discrete Mathematics 13.4 (1975), pp. 383–390.

[Ma+18] Xingjun Ma, Bo Li, YisenWang, Sarah M. Erfani, Sudanthi Wijewickrema,
Grant Schoenebeck, Michael E. Houle, Dawn Song, and James Bailey.
“Characterizing Adversarial Subspaces Using Local Intrinsic Dimensionality”.

259

https://arxiv.org/abs/1312.4400
https://arxiv.org/abs/1312.4400
https://doi.org/10.1109/ICCD.2017.16
https://ieeexplore.ieee.org/document/8119189
https://ieeexplore.ieee.org/document/8119189

In: Proceedings of the 6th International Conference on Learning
Representations. ICLR’18. 2018. url: https://arxiv.org/abs/
1801.02613.

[Mad+18] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras,
and Adrian Vladu. “Towards Deep Learning Models Resistant
to Adversarial Attacks”. In: Proceedings of the 6th International
Conference on Learning Representations. ICLR’18. 2018. url: https:
//arxiv.org/abs/1706.06083.

[MWK20] Pratyush Maini, Eric Wong, and J. Zico Kolter. “Adversarial
Robustness Against the Union of Multiple Perturbation Models”. In:
International Conference on Machine Learning. ICML’20. 2020. url:
https://arxiv.org/abs/1909.04068.

[Mal+21] Andrey Malinin, Neil Band, Yarin Gal, Mark Gales, Alexander Ganshin,
German Chesnokov, Alexey Noskov, Andrey Ploskonosov, Liudmila Prokhorenkova,
Ivan Provilkov, Vatsal Raina, Vyas Raina, Denis Roginskiy,
Mariya Shmatova, Panagiotis Tigas, and Boris Yangel. “Shifts: A
Dataset of Real Distributional Shift Across Multiple Large-Scale
Tasks”. In: Proceedings of the 35th Conference on Neural Information
Processing Systems. NeurIPS’21. Curran Associates, Inc., 2021.

[MRA22] Neil G. Marchant, Benjamin I. P. Rubinstein, and Scott Alfeld. “Hard
to Forget: Poisoning Attacks on Certified Machine Unlearning”. In:
Proceedings of the 36th AAAI Conference on Artificial Intelligence.
AAAI’22. 2022.

[MY21] Jan Hendrik Metzen and Maksym Yatsura. “Efficient Certified Defenses
Against Patch Attacks on Image Classifiers”. In: Proceedings of the 9th
International Conference on Learning Representations. ICLR’21. 2021.
url: https://openreview.net/forum?id=hr-3PMvDpil.

[Muñ+17] Luis Muñoz-González, Battista Biggio, Ambra Demontis, Andrea Paudice,
Vasin Wongrassamee, Emil C Lupu, and Fabio Roli. “Towards
Poisoning of Deep Learning Algorithms with Back-gradient Optimization”.
In: Proceedings of the 10th ACM Workshop on Artificial Intelligence
and Security. AISec’17. Dallas, Texas, USA: Association for Computing
Machinery, 2017.

[Mur16] Madhumita Murgia. “Microsoft’s Racist Bot Shows We Must Teach
AI to Play Nice and Police Themselves”. In: The Telegraph (Mar.
2016). url: https://www.telegraph.co.uk/technology/2016/
03/25/we-must-teach-ai-machines-to-play-nice-and-police-

themselves/.

260

https://arxiv.org/abs/1801.02613
https://arxiv.org/abs/1801.02613
https://arxiv.org/abs/1706.06083
https://arxiv.org/abs/1706.06083
https://arxiv.org/abs/1909.04068
https://openreview.net/forum?id=hr-3PMvDpil
https://www.telegraph.co.uk/technology/2016/03/25/we-must-teach-ai-machines-to-play-nice-and-police-themselves/
https://www.telegraph.co.uk/technology/2016/03/25/we-must-teach-ai-machines-to-play-nice-and-police-themselves/
https://www.telegraph.co.uk/technology/2016/03/25/we-must-teach-ai-machines-to-play-nice-and-police-themselves/

[NP33] Jerzy Neyman and Egon S. Pearson. “On the Problem of the
Most Efficient Tests of Statistical Hypotheses”. In: Philosophical
Transactions of the Royal Society of London. Series A, Containing
Papers of a Mathematical or Physical Character 231 (1933),
pp. 289–337. issn: 02643952. url: http://www.jstor.org/stable/
91247.

[Ott+19] Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross,
Nathan Ng, David Grangier, and Michael Auli. “fairseq: A Fast,
Extensible Toolkit for Sequence Modeling”. In: Proceedings of NAACL-
HLT 2019: Demonstrations. 2019.

[Pag20] David Page. How to Train Your ResNet. May 2020. url: https:
//myrtle.ai/learn/how-to-train-your-resnet/.

[Par+23] Sung Min Park, Kristian Georgiev, Andrew Ilyas, Guillaume Leclerc,
and Aleksander Madry. “TRAK: Attributing Model Behavior at Scale”.
In: Proceedings of the 40th International Conference on Machine
Learning. ICML’23. 2023. url: https://arxiv.org/abs/2303.
14186.

[Pas+19] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,
Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang,
Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. “PyTorch:
An Imperative Style, High-Performance Deep Learning Library”. In:
Proceedings of the 33rd Conference on Neural Information Processing
Systems. NeurIPS’19. Vancouver, Canada: Curran Associates, Inc.,
2019. url: https://arxiv.org/abs/1912.01703.

[Pea+22] Hammond Pearce, Baleegh Ahmad, Benjamin Tan, Brendan Dolan-
Gavitt, and Ramesh Karri. “Asleep at the Keyboard? Assessing the
Security of GitHub Copilot’s Code Contributions”. In: Proceedings of
the 43rd IEEE Symposium on Security and Privacy. SP’22. IEEE, 2022.
url: https://arxiv.org/abs/2108.09293.

[Pea+23] Hammond Pearce, Benjamin Tan, Baleegh Ahmad, Ramesh Karri, and
Brendan Dolan-Gavitt. “Examining Zero-Shot Vulnerability Repair
with Large Language Models”. In: Proceedings of the 44th IEEE
Symposium on Security and Privacy. SP’23. IEEE, 2023. url: https:
//arxiv.org/abs/2112.02125.

[Pea94] Barak A. Pearlmutter. “Fast Exact Multiplication by the Hessian”. In:
Neural Computation 6 (1994), pp. 147–160.

261

http://www.jstor.org/stable/91247
http://www.jstor.org/stable/91247
https://myrtle.ai/learn/how-to-train-your-resnet/
https://myrtle.ai/learn/how-to-train-your-resnet/
https://arxiv.org/abs/2303.14186
https://arxiv.org/abs/2303.14186
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/2108.09293
https://arxiv.org/abs/2112.02125
https://arxiv.org/abs/2112.02125

[Ped+11] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer,
Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos,
David Cournapeau, Matthieu Brucher, Matthieu Perrot, and
Édouard Duchesnay. “Scikit-learn: Machine Learning in Python”. In:
Journal of Machine Learning Research 12 (2011), pp. 2825–2830.

[Per+20] Neehar Peri, Neal Gupta, W. Ronny Huang, Liam Fowl, Chen Zhu,
Soheil Feizi, Tom Goldstein, and John P. Dickerson. “Deep k-NN
Defense Against Clean-label Data Poisoning Attacks”. In: Proceedings
of the ECCV Workshop on Adversarial Robustness in the Real World.
AROW’20. Virtual Only, 2020. url: https://arxiv.org/abs/1909.
13374.

[Pie21] Eric Pierce. Austin, TX House Listings. 2021. url: https://www.
kaggle.com/datasets/ericpierce/austinhousingprices.

[Pit+09] James Pita, Manish Jain, Fernando Ordóñez, Christopher Portway,
Milind Tambe, Craig Western, Praveen Paruchuri, and Sarit Kraus.
“Using Game Theory for Los Angeles Airport Security”. In: AI Magazine
30 (2009), pp. 43–57.

[Pru+20] Garima Pruthi, Frederick Liu, Satyen Kale, and Mukund Sundararajan.
“Estimating Training Data Influence by Tracing Gradient Descent”. In:
Proceedings of the 34th Conference on Neural Information Processing
Systems. NeurIPS’20. Virtual Only: Curran Associates, Inc., 2020.

[Rad+19] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and
Ilya Sutskever. Language Models are Unsupervised Multitask Learners.
2019.

[Raj21] Kumar Rajarshi. Life Expectancy (WHO). 2021. url: https://www.
kaggle.com/datasets/kumarajarshi/life-expectancy-who.

[Ran+21] Yingli Ran, Zhao Zhang, Shaojie Tang, and Ding-Zhu Du. “Breaking
the rmax Barrier: Enhanced Approximation Algorithms for Partial
Set Multicover Problem”. In: INFORMS Journal on Computing 33.2
(2021), pp. 774–784.

[Rez+23] Keivan Rezaei, Kiarash Banihashem, Atoosa Chegini, and Soheil Feizi.
“Run-Off Election: Improved Provable Defense against Data Poisoning
Attacks”. In: Proceedings of the 40th International Conference on
Machine Learning. ICML’23. 2023. url: https://arxiv.org/abs/
2302.02300.

262

https://arxiv.org/abs/1909.13374
https://arxiv.org/abs/1909.13374
https://www.kaggle.com/datasets/ericpierce/austinhousingprices
https://www.kaggle.com/datasets/ericpierce/austinhousingprices
https://www.kaggle.com/datasets/kumarajarshi/life-expectancy-who
https://www.kaggle.com/datasets/kumarajarshi/life-expectancy-who
https://arxiv.org/abs/2302.02300
https://arxiv.org/abs/2302.02300

[Ric22] Terry Richards. Ex-Hospital Worker Arrested in SGMC Data Breach.
Jan. 2022. url: https://www.valdostadailytimes.com/news/
local _ news / ex - hospital - worker - arrested - in - sgmc - data -

breach/article_7ca92b22-a2e5-5541-b3b3-38472d3706b1.html.

[Ros+20] Elan Rosenfeld, Ezra Winston, Pradeep Ravikumar, and J. Zico Kolter.
“Certified Robustness to Label-Flipping Attacks via Randomized
Smoothing”. In: Proceedings of the 37th International Conference on
Machine Learning. Vol. 119. ICML’20. PMLR, 2020, pp. 8230–8241.

[RC93] Peter Rousseeuw and Christophe Croux. “Alternatives to the
Median Absolute Deviation”. In: Journal of the American Statistical
Association (1993).

[RH11] Peter J. Rousseeuw and Mia Hubert. “Robust statistics for outlier
detection”. In: WIREs Data Mining and Knowledge Discovery 1.1
(2011), pp. 73–79.

[RH17] Peter J. Rousseeuw and Mia Hubert. “Anomaly Detection by Robust
Statistics”. In: WIREs Data Mining and Knowledge Discovery 8.2
(Nov. 2017).

[RL87] Peter J. Rousseeuw and Annick. M. Leroy. Robust Regression and
Outlier Detection. USA: John Wiley & Sons, Inc., 1987. isbn:
0471852333.

[Sal+20] Ahmed Salem, Rui Wen, Michael Backes, Shiqing Ma, and Yang Zhang.
“Dynamic Backdoor Attacks Against Machine Learning Models”. In:
(2020). arXiv: 2003.03675 [cs.CR].

[Sch+19] Lukas Schott, Jonas Rauber, Matthias Bethge, and Wieland Brendel.
“Towards the first adversarially robust neural network model on
MNIST”. In: Proceedings of the 7th International Conference on
Learning Representations. ICLR’19. 2019. url: https://openreview.
net/forum?id=S1EHOsC9tX.

[Sha+18] Ali Shafahi, W. Ronny Huang, Mahyar Najibi, Octavian Suciu,
Christoph Studer, Tudor Dumitras, and Tom Goldstein. “Poison Frogs!
Targeted Clean-Label Poisoning Attacks on Neural Networks”. In:
Proceedings of the 32nd Conference on Neural Information Processing
Systems. NeurIPS’18. Montreal, Canada: Curran Associates, Inc., 2018.
url: https://arxiv.org/abs/1804.00792.

[Sha+20] Harshay Shah, Kaustav Tamuly, Aditi Raghunathan, Prateek Jain,
and Praneeth Netrapalli. “The Pitfalls of Simplicity Bias in Neural

263

https://www.valdostadailytimes.com/news/local_news/ex-hospital-worker-arrested-in-sgmc-data-breach/article_7ca92b22-a2e5-5541-b3b3-38472d3706b1.html
https://www.valdostadailytimes.com/news/local_news/ex-hospital-worker-arrested-in-sgmc-data-breach/article_7ca92b22-a2e5-5541-b3b3-38472d3706b1.html
https://www.valdostadailytimes.com/news/local_news/ex-hospital-worker-arrested-in-sgmc-data-breach/article_7ca92b22-a2e5-5541-b3b3-38472d3706b1.html
https://arxiv.org/abs/2003.03675
https://openreview.net/forum?id=S1EHOsC9tX
https://openreview.net/forum?id=S1EHOsC9tX
https://arxiv.org/abs/1804.00792

Networks”. In: Proceedings of the 34th Conference on Neural
Information Processing Systems. NeurIPS’20. 2020.

[Shi+19] Yishuo Shi, Yingli Ran, Zhao Zhang, James Willson, Guangmo Tong,
and Ding-Zhu Du. “Approximation algorithm for the partial set
multi-cover problem”. In: Journal of Global Optimization 75.4 (2019),
pp. 1133–1146.

[Sla97a] Petr Slav́ık. “A Tight Analysis of the Greedy Algorithm for Set Cover”.
In: Journal of Algorithms (1997), pp. 237–254.

[Sla97b] Petr Slav́ık. “Improved Performance of the Greedy Algorithm for
Partial Cover”. In: Information Processing Letters 64.5 (1997),
pp. 251–254. issn: 0020-0190.

[Soc+13] Richard Socher, Alex Perelygin, JeanWu, Jason Chuang, Christopher Manning,
Andrew Ng, and Christopher Potts. “Recursive Deep Models
for Semantic Compositionality Over a Sentiment Treebank”. In:
Proceedings of the 8th Conference on Empirical Methods in Natural
Language Processing. EMNLP’13. 2013.

[Sor+20] Ezekiel O. Soremekun, Sakshi Udeshi, Sudipta Chattopadhyay, and
Andreas Zeller. Exposing Backdoors in Robust Machine Learning
Models. 2020. arXiv: 2003.00865 [cs.LG].

[SGF22] Gaurang Sriramanan, Maharshi Gor, and Soheil Feizi. “Toward Efficient
Robust Training against Union of ℓp Threat Models”. In: Proceedings
of the 36th Conference on Neural Information Processing Systems.
NeurIPS’22. 2022. url: https : / / openreview . net / forum ? id =

6qdUJblMHqy.

[SKL17] Jacob Steinhardt, Pang Wei Koh, and Percy Liang. “Certified Defenses
for Data Poisoning Attacks”. In: Proceedings of the 31st Conference
on Neural Information Processing Systems. NeurIPS’17. Long Beach,
California, USA: Curran Associates, Inc., 2017.

[SD20] Cecilia Summers and Michael J. Dinneen. “Four Things Everyone
Should Know to Improve Batch Normalization”. In: Proceedings of the
8th International Conference on Learning Representations. ICLR’20.
Virtual Only, 2020.

[TZ00] Philip H. S. Torr and Andrew Zisserman. “MLESAC: A New Robust
Estimator with Application to Estimating Image Geometry.” In:
Computer Vision and Image Understanding 78.1 (2000), pp. 138–156.

264

https://arxiv.org/abs/2003.00865
https://openreview.net/forum?id=6qdUJblMHqy
https://openreview.net/forum?id=6qdUJblMHqy

[TB19] Florian Tramer and Dan Boneh. “Adversarial Training and Robustness
for Multiple Perturbations”. In: Proceedings of the 33rd Conference on
Neural Information Processing Systems. NeurIPS’19. Curran Associates,
Inc., 2019. url: https://arxiv.org/abs/1904.13000.

[Tra+20] Florian Tramer, Nicholas Carlini, Wieland Brendel, and Aleksander Madry.
“On Adaptive Attacks to Adversarial Example Defenses”. In:
Proceedings of the 34th Conference on Neural Information Processing
Systems. NeurIPS’20. Curran Associates, Inc., 2020. url: https://
arxiv.org/abs/2002.08347.

[TLM18] Brandon Tran, Jerry Li, and Aleksander Madry. “Spectral Signatures
in Backdoor Attacks”. In: Proceedings of the 32nd Conference on
Neural Information Processing Systems. NeurIPS’18. Montreal, Canada:
Curran Associates, Inc., 2018.

[Tur20] Matt Turek. Artificial Intelligence Exploration Opportunity DARPA-
PA-19-03-09 Reverse Engineering of Deceptions (RED) Amendment
#1. United States Defense Advanced Research Projects Agency
(DARPA). 2020.

[Ude+19] Sakshi Udeshi, Shanshan Peng, Gerald Woo, Lionell Loh, Louth Rawshan,
and Sudipta Chattopadhyay. Model Agnostic Defence against Backdoor
Attacks in Machine Learning. 2019. arXiv: 1908.02203 [cs.LG].

[Van14] Robert J. Vanderbei. Linear Programming: Foundations and
Extensions. Boston, MA: Springer, 2014. isbn: 978-3-030-39414-1.

[VB20] Miguel Villarreal-Vasquez and Bharat K. Bhargava. ConFoc: Content-
Focus Protection Against Trojan Attacks on Neural Networks. 2020.
arXiv: 2007.00711 [cs.CV].

[Wal+21] Eric Wallace, Tony Z. Zhao, Shi Feng, and Sameer Singh. “Concealed
Data Poisoning Attacks on NLP Models”. In: Proceedings of the North
American Chapter of the Association for Computational Linguistics.
NAACL’21. 2021.

[Wan+18] Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A. Efros.
Dataset Distillation. 2018. arXiv: 1811.10959 [cs].

[WF23] Wenxiao Wang and Soheil Feizi. Temporal Robustness Against Data
Poisoning. 2023. arXiv: 2302.03684 [cs.LG]. url: https://arxiv.
org/abs/2302.03684.

[WLF22a] Wenxiao Wang, Alexander Levine, and Soheil Feizi. “Improved
Certified Defenses against Data Poisoning with (Deterministic) Finite

265

https://arxiv.org/abs/1904.13000
https://arxiv.org/abs/2002.08347
https://arxiv.org/abs/2002.08347
https://arxiv.org/abs/1908.02203
https://arxiv.org/abs/2007.00711
https://arxiv.org/abs/1811.10959
https://arxiv.org/abs/2302.03684
https://arxiv.org/abs/2302.03684
https://arxiv.org/abs/2302.03684

Aggregation”. In: Proceedings of the 39th International Conference on
Machine Learning. ICML’22. 2022. url: https://arxiv.org/abs/
2202.02628.

[WLF22b] Wenxiao Wang, Alexander Levine, and Soheil Feizi. “Lethal Dose
Conjecture on Data Poisoning”. In: Proceedings of the 36th Conference
on Neural Information Processing Systems. NeurIPS’22. Curran
Associates, Inc., 2022. url: https://arxiv.org/abs/2208.03309.

[Web+23] Maurice Weber, Xiaojun Xu, Bojan Karlaš, Ce Zhang, and Bo Li.
“RAB: Provable Robustness Against Backdoor Attacks”. In: Proceedings
of the 44th IEEE Symposium on Security and Privacy. SP’23. IEEE,
2023. url: https://arxiv.org/abs/2003.08904.

[Wei+22] Kang Wei, Jun Li, Chuan Ma, Ming Ding, Sha Wei, Fan Wu,
Guihai Chen, and Thilina Ranbaduge. Vertical Federated Learning:
Challenges, Methodologies and Experiments. 2022. arXiv: 2202.04309
[cs.LG]. url: https://arxiv.org/abs/2202.04309.

[Wen+18] Lily Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-Jui Hsieh,
Luca Daniel, Duane Boning, and Inderjit Dhillon. “Towards Fast
Computation of Certified Robustness for ReLU Networks”. In:
Proceedings of the 35th International Conference on Machine Learning.
ICML’18. PMLR, 2018. url: https://arxiv.org/abs/1804.09699.

[Wic16] Hadley Wickham. ggplot2: Elegant Graphics for Data Analysis. New
York, NY: Springer-Verlag, 2016. isbn: 978-3-319-24277-4.

[XZZ20] Chang Xiao, Peilin Zhong, and Changxi Zheng. “Enhancing
Adversarial Defense by k-Winners-Take-All”. In: Proceedings of the
8th International Conference on Learning Representations. ICLR’20.
Virtual Only, 2020. url: https://arxiv.org/abs/1905.10510.

[Xia+15] Huang Xiao, Battista Biggio, Gavin Brown, Giorgio Fumera,
Claudia Eckert, and Fabio Roli. “Is Feature Selection Secure against
Training Data Poisoning?” In: Proceedings of the 32nd International
Conference on Machine Learning. ICML’15. Lille, France: PMLR, 2015.

[Yeh+18] Chih-Kuan Yeh, Joon Sik Kim, Ian E.H. Yen, and Pradeep Ravikumar.
“Representer Point Selection for Explaining Deep Neural Networks”. In:
Proceedings of the 32nd Conference on Neural Information Processing
Systems. NeurIPS’18. Montreal, Canada: Curran Associates, Inc., 2018.

[YHL23a] Wencong You, Zayd Hammoudeh, and Daniel Lowd. “Large Language
Models Are Better Adversaries: Exploring Generative Clean-Label

266

https://arxiv.org/abs/2202.02628
https://arxiv.org/abs/2202.02628
https://arxiv.org/abs/2208.03309
https://arxiv.org/abs/2003.08904
https://arxiv.org/abs/2202.04309
https://arxiv.org/abs/2202.04309
https://arxiv.org/abs/2202.04309
https://arxiv.org/abs/1804.09699
https://arxiv.org/abs/1905.10510

Backdoor Attacks Against Text Classifiers”. In: Proceedings of the
2nd ICML Workshop on New Frontiers in Adversarial Machine
Learning. AdvML-Frontiers’23. 2023.

[YHL23b] Wencong You, Zayd Hammoudeh, and Daniel Lowd. “Large Language
Models Are Better Adversaries: Exploring Generative Clean-Label
Backdoor Attacks Against Text Classifiers”. In: Findings of the
Association for Computational Linguistics. ELMNLP’23. 2023.

[Yu+21] Da Yu, Huishuai Zhang, Wei Chen, Jian Yin, and Tie-Yan Liu.
Indiscriminate Poisoning Attacks are Shortcuts. 2021. arXiv: 2111.
00898 [cs.LG].

[Zha+19] Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric P. Xing,
Laurent El Ghaoui, and Michael I. Jordan. “Theoretically Principled
Trade-off between Robustness and Accuracy”. In: Proceedings of the
36th International Conference on Machine Learning. ICML’19. PMLR,
2019. url: https://arxiv.org/abs/1901.08573.

[Zha+18] Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-
Paz. “mixup: Beyond Empirical Risk Minimization”. In: Proceedings of
the 6th International Conference on Learning Representations. ICLR’18.
2018.

[ZZ22] Rui Zhang and Shihua Zhang. “Rethinking Influence Functions of
Neural Networks in the Over-Parameterized Regime”. In: Proceedings
of the 36th AAAI Conference on Artificial Intelligence. AAAI’22.
Vancouver, Canada: Association for the Advancement of Artificial
Intelligence, 2022.

[Zhu+19] Chen Zhu, W Ronny Huang, Ali Shafahi, Hengduo Li, Gavin Taylor,
Christoph Studer, and Tom Goldstein. “Transferable Clean-Label
Poisoning Attacks on Deep Neural Nets”. In: Proceedings of the
36th International Conference on Machine Learning. ICML’19. Los
Angeles, CA: PMLR, 2019.

[Zhu+21] Liuwan Zhu, Rui Ning, Chunsheng Xin, Chonggang Wang, and
Hongyi Wu. “CLEAR: Clean-up Sample-Targeted Backdoor in Neural
Networks”. In: Proceedings of the 18th International Conference on
Computer Vision. ICCV’21. 2021.

267

https://arxiv.org/abs/2111.00898
https://arxiv.org/abs/2111.00898
https://arxiv.org/abs/1901.08573

	 Introduction
	 Preliminaries
	Nomenclature
	On Attacker Threat Models
	On the Defender Objectives

	 Related Work
	Defenses Against Evasion Attacks
	Empirical Defenses
	Certified Evasion Defenses

	Defenses Against Poisoning and Backdoor Attacks
	Empirical Classification Defenses
	Certified Pointwise Classifiers
	Robust Regression
	Resilient Regression
	Certified Regression

	Defenses Outside the ML System

	 Reducing Certified Regression to Certified Classification
	Preliminaries
	One-Sided vs. Two-Sided Certification Bounds
	Relating Regression and Binary Classification

	Warmup: Perturbing a Set's Median
	Unweighted Swap Paradigm
	Insertion/Deletion Paradigm
	Weighted Swap Paradigm

	Reducing Regression to Voting-Based Binary Classification
	Certified Instance-Based Regression
	Fixed-Population Neighborhood
	Region-Based Neighborhood
	Computational Complexity

	Certified Regression for General Models
	Partitioned Certified Regression
	Weighted Partitioned Certified Regression
	Computational Complexity

	Certified Regression Using Overlapping Training Data
	Overlapping Certified Regression
	Weighted Overlapping Certified Regression
	Computational Cost

	Certifying Any Model Beyond Unit Cost
	Combining Instance-Based Learners & Ensembles
	Certifying Non-Unit Costs by Construction
	More Submodels vs. Weighted Costs

	Evaluation
	Experimental Setup
	Analyzing the Certified Accuracy

	Conclusions

	 Certified Defense Against a Union of 0 Attacks
	Preliminaries
	Related Work
	Certifying Feature Robustness
	Feature Robustness Under Plurality Voting
	Feature Robustness Under Run-Off Elections
	Advantages of Feature Partition Aggregation

	Feature Partitioning Strategies
	Feature Partitioning Paradigms

	Evaluation
	Experimental Setup
	Main Results

	Conclusions

	 Identifying Poisoning and Backdoor Attack Targets while Mitigating the Attack
	Preliminaries
	Review of Influence Analysis and Estimation
	Why Influence Estimation Often Fails and How to Fix It
	A Simple Experiment
	Why Influence Estimation Performs Poorly
	Renormalizing Influence Estimation
	Renormalization and More Advanced Attacks
	Renormalization and Non-Adversarial Data

	Identifying Attack Targets
	Measuring (Renormalized) Influence
	Identifying Anomalous Influence
	Target Driven Attack Mitigation

	Evaluation
	Training-Set Attacks Evaluated
	Identifying the Adversarial Set
	Identifying Attack Targets
	Target-Driven Mitigation

	Adaptive Attacks
	Discussion and Conclusions

	 Conclusions and Future Directions
	 Nomenclature Reference
	 Proofs
	Proofs for Chapter 4
	Proofs for Chapter 5
	Proof for Chapter 6

	 Detailed Empirical Results
	Chapter 4 Detailed Results
	Baseline Accuracy
	Numerical Results
	kNN/CR Full Certified Accuracy Plots

	Chapter 5 Detailed Results
	Non-Robust Accuracy
	Detailed Median Certified Robustness Results
	Feature Partition Aggregation vs. Randomized Ablation Certified Accuracy Detailed Comparison
	Numerical Comparison of Feature Partition Aggregation and Randomized Ablation
	Graphical Comparison of Feature Partition Aggregation and Randomized Ablation

	Chapter 6 Detailed Results
	Speech Recognition Backdoor Full Results
	Vision Backdoor Full Results
	Natural Language Poisoning Full Results
	Vision Poisoning Full Results

	Convex Polytope Poisoning and GAS Joint Optimization
	Adversarial-Set Identification of the Jointly Optimized Poisoning Attack
	Target Identification of the Jointly Optimized Poisoning Attack
	Target-Driven Attack Mitigation of the Jointly Optimized Poisoning Attack

	 Evaluation Setups
	Evaluation Setup for the Experiments in Chapter 4
	Dataset Configuration
	Dataset Target Value Statistics
	Hyperparameters

	Evaluation Setup for the Experiments in Chapter 5
	Hardware Setup
	Baselines
	Datasets
	Network Architectures
	Hyperparameters

	Evaluation Setup for the Experiments in Chapter 6
	Dataset Configurations
	Training Set Sizes
	Target Set Sizes

	Hyperparameters
	Model Training
	Upper-Tail Heaviness Hyperparameters
	Target-Driven Mitigation Hyperparameters
	Adversarial Set Crafting
	Baselines

	Network Architectures

	REFERENCES CITED

