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I. Introduction.to Statistics and Computing

In this section some of the basic definitions and
instructions needed for understanding - -the material in the course
are presented. First we will examine material relevant to
statistics, whether they are computed with the help of machines
or by hand; and then we will discuss the basics of using a
computer to analyze data.

Uses of Statistics and Basic Definitions

Below the uses of statistics are discussed. Then types of
statistics, levels of measurement, arithmetic operations relevant
to our work, and, finally, topics related to measurement are
briefly discussed. It is assumed that you have had some exposure
to most of these topics, so they are reviewed only briefly.

Uses of Statisties

Statistics are a tool. They help social scientists analyze
their data. In themselves, statistics can work no wonders. 1If a
socioclogist has poor theory or data that are unreliable or
invalid, the best statistics in the world can not improve upon
these basic problems. Moreover, there are many different
statistics, but only certain ones are relevant for a given
problem. Researchers, if they are to have useful results, must
choose the appropriate statistics for the data and problen.

The problem of choosing appropriate techniques has become
compounded with the availability of easy statistical computations
with computers. When statistical computations were done by hand
they took many hours to complete and one would not embark upon a
computation unless one usually was guite sure that it would be
useful. Now one can get a myriad of statistics with the push of
a button. Only some of those will be appropriate for a
statistical problem and the researcher must think very carefully
to make the correct choices. ‘

Given these cautions, we may say that statistics do have
many uses. They are a most useful means of summarizing the
characteristies of large masses of data. They also allow us to
describe the incidence of certain events or behaviors, to look at
the associations among two or more variables, and to infer from
small samples to large populations. Statistics are used by
researchers who employ a whole range of data gathering
techniques, for statistics may be used with the gualitative data
that are often obtained by participant observers as well as the
more quantitative data often used by demographers.

You may have heard the saying that one can "lie with
statistics." To some extent this is true. However, one can also
lie with words. A solid knowledge of socioclogical methods and
social statistics makes it more likely that you will be able to
detect such "lies," if or when they occur.



Descriptive and Inferential Statistics

Statistics may be divided into two basic groups: those that
describe the characteristics of a sample or peopulation
(descriptive statistics) and those that allow us to generalize
from a sample to a populationCinferent) af statiches) .

To understand this distinction it helps to review the nature
of sampling. Remember that a population is the total group of
units (people, organizations, cities, etc.) that one is studying.
Only rarely does a social scientist study an entire population.
Instead, we usually examine only a subset of the population.

This subset is referred to as a sample.

Samples may be selected in basically two ways. In one way,
called a probability sample, the elements of the sample are
selected so that we know the chance that each member of the
population has of being included. The simplest type of
probability sample is the simple random sample. Other types
include the systematic sample, stratified random, and cluster
sample. Samples that are not selected in a way in which we know
the chance that each member has of being in the population are
termed non-probability samples. These include availability
samples, quota samples, and theoretical samples.

Descriptive statistics can be used with either probability
or non-probability samples. They describe certain

. characteristics of the sample. Percentages, averages, and

measures of association, such as correlation coefficients, are
all examples of descriptive measures or statistics. Inferential
statistics are used to infer information from a sample to a
population. With inferential statistics we can find the
probability that certain characteristics in a sample apply to the
population. To make accurate inferences we need, however, to
have a probability sample, so inferential statistics are only
appropriately used with probability samples. While descriptive
and inferential statistiecs have different uses, they are related,
for inferences can be made about descriptive statistics--if we
have a probability sample. Thus, in this class, we will learn,
among other things, how to make inferences about the average
characteristics of a population from information about a sample.

levels of Measurement

You may remember from your research methods classes that
when variables are measured they may be measured in different
ways. One way of describing the nature of this measurement is to
say whether it is qualitative or gquantitative--referring to the
extent to which numbers may be assigned to the measure or
variable. A more exact distinction involves four levels of’
measurement. These distinctions are very important to understand
for they provide the basis of choosing appropriate statistics for
a given data set.



The simplest and most all inclusive level is the nominal
one. Variables measured on a nominal scale are placed only in
categories. Thus the terms nominal and categorical are sometimes
used interchangeably. Within this level no order is posited, we
cannot say that one category is greater than or less than
another. Examples of a nominally measured variable could include
religious affiliation, marital status, race, etc. Any variable
that has categories that are mutually exclusive and exhaustive is
said to be measured on at least a nominal sca

ordinal

/ interval
-
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Figure 1-1: Representation of the relative
restrictiveness of the four levels of measurement

Variables measured on an ordinal scale are essentially one
step up from nominal. The data are still categorical; they have
no inherent numerical quality (thus they are still usually
referred to as qualitative), but they can be ordered in some
fashion: For instance, it is often possible to order religious
groups from those that are the most.conservative to those that
are the most liberal. One can order political groups in the same
way. Hair color can be ordered from the most to the least '

.common, etc. Some people claim that practically any variable can

be at least ordinal in some theoretical sense.

Interval scales are a step up from ordinal scales, and are
the first to be termed quantitative, primarily because arithmetic
operations are possible with them. ' (See more below on this.) An
interval scale is like an ordinal scale in the sense that the
attributes are ordered. However, with an interval scale we are
able to say that the distance between point 1 and point 2 on the
scale is the same as that between point 2 and point 3. That is,
we can say that there are egual intervals between all points on
the scale. Temperature, time, and IQ scores are variables
commonly classified as interval.

Ratio scales are the most restrictive. They not only .
involve ordered categories with equal intervals between them, but
there is also a true zero point on the scale. This makes it
possible to say that the difference between peint 2 and 8, for
example, is twice as large as the difference between 2 and 5



(That is, 6 is twise as large as 3). More specifically, we could

'say that someone who earns $4000/yr. earns twice as much as

someone who earns $2000/yr. We cannot say that when it is 80
degrees outside it is twice as hot as when it is 40 degrees,
because if we were using different measurement scales (e.g.
Celcius or Kelvin) we would have different results than when we
used the Farenheit scale. Similarly, grade point averages vary
depending on whether we use a four point scale with A=4 or a five
point scale with A=1. In each instance the intervals are equal
between each letter grade, but the ratios are not.

These examples point to the fact that each level of
measurement allows different types of arithmetic relationships or
transformations. These in turn specify the types of statistics
that can be used. With nominal scales we can employ only
matching, or equivalence relations. For instance, if we know
that both Mary and John are Catholics, but Beth is not, we can
say that Mary and John are in the same category and Beth is in
another. Mary and John have equivalent attributes, Beth has a
nonequivalent one. Witdeastineiwesades (M=J; M#B; J¥B).

With ordinal scales we can not only have equivalence
relations, we can have ordered relations. Suppose on a scale of
political attitudes Mary has the most conservative scores; John
has the next more conservative scores; and Beth has the most
liberal scores. This tells us that Mary would score highest on a
scale of conservatism; John would score lower than Mary, but
higher than Beth; and Beth would score lowest (M>J>B and B<J<M).

With interval scales we can have egquivalence relations,
ordered relations, and also the possibility of adding and
multiplying. ' For instance, we can add up all the high
temperatures recorded in a city over a week and compute the
average temperature for that week. Similarly, we can compute the
average GPA that a student earns in a term. This is possible
because the difference between each interval on a temperature
scale is equal and the difference between each interval on a
grade point scale is equal.

With ratio scales we can not only add and subtract, but we
can also discuss ratios. Because there is a meaningful zeroc we
can say that John earns twice as much as Mary or compare the
average salaries of whites and blacks as a ratio.

Both the distinction between descriptive and inferential
statistics and that between the various levels of measurement
will be important, even crucial, in determining which statistics
are appropriate for a given problem.



Arithmetic Operations

It is assumed that all students taking this course have

“taken high school algebra. The following three comments are

meant only as a brief review. Students who need a review of
basic algebraic definitions and manipulations should consult a
textbook.

First, we will often work with rounded numbers or will have
to round numbers off to a given point (nearest whole number,
nearest ten, etc.). (We will discuss the latter topic more fully
in the second part of the course.) When doing computations with
rounded numbers, we always round the result to the same point as
the original numbers. For instance, if we are doing computations
with numbers rounded to the nearest hundredth, the result should
be rounded to the nearest hundredth.

.0072 = .01

.072 = ,07 (note that the last significant
digit is commonly underlined when
it is a zero, to distinguish it
from a zero which is not a
-significant digit.)

e.g. (.36)(.02)
or (.36) (.20)

nn

The term significant digit refers (as implied above) to how
many digits remain in a number that have not been rounded off.
That is, it tells us how many of the digits in a number were not
rounded off. The chart below illustrates this concept.

Table 1-1
Nunber Number of Rounded to the
Significant Digits Nearest

10 2 whole number
350 2 ten

1400 2 hundred

16000 3 hundred

14.0 3 tenth

Finally, precision refers to how exact our measures are.
For instance, a population figure of 43,976 is said to be more
precise than a population figure of 44,000. While in areas, such
as the physical sciences, very precise measures are both .possible
and desirable, this is often not the case in the social sciences.
In fact the population figure of 44,000 may well be more accurate
and thus preferable to the more precise figure.

Measurement Issues

Tt is assumed that students have had an introduction to the
logic involved in measurement in their basic research course.



The following comments then are made only to remind students of
important distinctions and concepts.

First, the distinction between discrete and continuocus
variables can be an important one when working with quantitative
variables (those measured on an interval or ratio scale).
Discrete variables are those where the values can be actually
numbered or counted. Examples could be the number of children in
a family, the size of a city or country, etc. We cannot have
cne-half of a child or one-half of a person. Continuous
variables are those whose possible values form a continuum.
Examples include age, height, time, etc. We are constantly
growing older; people vary along a continuum of height and
weight, etc.

Note that we often round continuous variables and treat them
as though they were discrete. For instance, we talk about all
two years olds, all three year olds, etc. When placing data into
tables this 1s often the preferable step, in order to make the
date easier to understand. When doing statistical computations
by hand, grouping continuous data alsc makes them easier to work
with. However, as long as our measures are accurate, it is
generally best to keep the measures as continuous as possible,
especially if one has machines to do the computations.

Second, it is important to briefly discuss measurement
error. Measurement error is a very complex topic, well beyond
the scope of this course. Here we can only note that érrors in
measurement do occur. The statistical treatments we will deal
with all assume that this measurement error is random. For
instance, in measuring income sometimes we may have a high
estimate, sometimes our estimate is low=--=but in the long run
these errors balance out. While we know that this is often not
the case, the ways of dealing with this error (in a statistical
manner) are too complex to be explained until you understand the
material given in this course and probably your next statistics

course.

Computer Work

Almost all of the statistics we will do this term will be
computed with the help of computers. Below we examine the
advantages and disadvantages of using the computer, an overview
of the SPSS package that we will use, a description of the data
file that may be analyzed, and an example of a run using these
data.

Computers vs. Hand Computations

. Obviously, computers have many advantages over hand
computations in doing statistical work. They are much faster and
easier to use and they are also much more accurate (assuming the
input data and computer programmlng are correct) than hand
computations. Just a relatlvely few years ago social scientists



would spend literaily hundreds of hours in data reduction
(getting simple frequency counts) and computing the simplest of
statistics. They can now accomplish this work in a few minutes.

On the other hand, because it is now so easy to calculate a
wealth of statistics at the literal touch of a finger there is a
great danger of misusing statistics. Computers cannot decide for
you what kind of statistic is appropriate for a given problem or
how to interpret a statistic once you have it. The researcher
must give a good deal of thought to his or her analysis in order
to choose the proper analysis method. Furthermore, we usually
code our data when we use machines to analyze it and we must make
sure that the measures that the machine is using are comparable
to what we really want it to analyze. At all steps of the
analysis process the researcher must think very carefully about
what is happening. This was true, of course, when computatiens
were done by hand. But, perhaps because it is so easy now to get
all kinds of statistics from a machine in just a few minutes, it
is especially important to remember how important this planning
is now.

Statisical Package for the Social Sciences (SPSS)

In this class you will be using SPSS/PC+ studentware to
analyze data. The SPSS packaggis a very widely used set of
computer programs developed for both main frame and personal
computers. It is probably the most flexible and widely used
program for social scientists. You will be using a version of
the program that has been specifically developed for the PC and
for student use. The ccommands that you will be using are similar
to those which are used in the mainframe and regular pc version,
go it will be relatively easy for you to use other versions of
SPSS once you have worked with this package. There are several
other computer packages commonly used by social scientists
(biomed and SAS are perhaps the most common), and all are
relatively easy to learn once you have some familiarity with
using a computer for data analysis. The book by Norusis required
for the class describes the SPSS/PC+ studentware program in great
detail. Classes will also be held to introduce you to the use of
the computer package (or software as it is commonly called).

With SPSS we can take a group of data that has been coded
and prepared in a form that is readable by the machine (say on
cards, tape, or disk) and tell the computer (through ways defined
by SPSS) what each of the variables are and where they reside on
the cards, tape or disk. This set of data is referred to as our
data file or as an SPSS system- file, once it has been defined
within the SPSS system. A data file is generally arranged so
that each case or unit of analysis (people, states, nations,
organizations) is in a row or set of rows and each variable is in
a different column. The data we will use has alxready been
defined within the SP5S system and is such a data file. (See
below.) s B
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Once our data have been defined we can then ask the machine
to perform various statistical manipulations with the data. For
instance, we might ask the machine to look at a certain variable,
tell us how many cases have each attribute of the variable, to
compute the percentages associated with these frequencies, and
perhaps, 1f appropriate, to compute some type of average. This
would be done with various "tasks" or lines in the program where
we define the "procedures" we want the computer to do and the
associated statistics. The manuals associated with a given
computer program give detailed instructions on how to ask the
computer to perform these manipulations.

The Bank Data File

For this class you can use a variety of SPSS system files
that have been developed by the SPSS company. One of these
includes data on all the employees of a midwestern bank that were
hired in 1969, 1970, and 1571. The data were gathered in March,
1977. Data are available on the subjects' sex, race, age, length
of employment in the bank, current and beginning salary,
educational attainment, and the category of job in which they
currently work. The code book for this data set is given below
and is similar in format to all codebooks. In the cocdebook the
left-hand column gives the SPSS variable name for each variable.
This is the way that the variable is identified in the SPSS
system file. Thus, if one wished to analyze the variable
regarding job seniority one would ask the computer to look at the
variable TIME. If one wanted to look at current salary, one
would ask the computer to look at SALNOW.

The right hand column describes each of these variables.
For instance, SALBEG, the beginning salary of each employee, is
coded as the actual salary, in dollars, at which the employee

- began work at the bank. SEX is coded with 0 meaning male, and 1

meaning female. Unlike many data sets, the bank data set has not
grouped the quantitative data. Because it was possible to
actually examine the exact data on salary and age and experience,
instead of asking people to report these figures, the actual
dollars earned, months worked, or age (in years and fraction of
Years) are coded. '

‘At the bottom of the page it is noted that N=474. This
means that there are 474 people included in the data set. There
are no missing data.



SPSS _
Variable Name

ID

SALBEG

SEX

TIME

AGE

SALNOW

EDLEVEL

WORK

JOBCAT

MINORITY

SEXRACE

N = 474

Figure 1-2 .
Sample of Codebook for Bank Data
Bank Employment

Description and Code
Identification number of each employee

Beginning salary when hired
actual beginning salary is coded (5 digits)
0 -- missing

Sex of employee
0 == male
l -=- female
9 == don't know, missing

Job seniority, coded in number of months have
worked at the bank
0 -- missing

Employee‘s age, coded in actual years with two
significant decimal points

Current Salary, in actual deollars (S significant
digits)

Years of education attained (actual years are
coded)

Years of work experience, with two significant
digits beyond the decimal point

Employment category
1l -- clerical

-- office trainee

~- security officer
college trainee
-- exempt employee
-= MBA trainee
-=- technical

~SNas e
1
I

Minority classification
0 -- white
1 -- nonwhite

Sex and race classification
' -- white males
minority males
white females

-=- minority females

BWwN e
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A Sample Rur

You might find it helpful to ask the computer to produce a
listing of each of the variables in the file with the number of
people holding each attribute and the associated descriptive
statistics. You can ask SPSS to produce such output by using the
subprogram or procedure FREQUENCIES. The manual gives details on
the procedure, but it generally would involve giving the computer
instructions like the following.

get file = 'bank.sys'. _
frequencies variables = salbeg to sexrace.

The first line instructs the computer to access the bank
data in what is known as a systems file. This,kis the part of its
memory where it has stored the data. If yourdata of your own
that you want to use you would need to tell the computer what the
data were and how to find them. Note that the line ends in a
period. That tells the computer that you are finished with the
get file command.

The second line asks the computer to run the procedure
"frequencies" and count the number of cases for all of the
variables from salbeg to sexrace. Note that ID is not included
in the list. That would result in a waste of paper, simply
listing each individual case. Other commands can be added to ask
the computer to compute various descriptive statistics such as
those described in the next section.’

11



II. Descriptive Univariate Statistics

We move now to examining ways of summarizing and describing
distributions of single variables. We first discuss the
construction of tables that summarize data and then describe
graphs that can be used to pictorially represent these data. We
then describe various measures of central tendency and finally
measures of dispersion.

Tables

Most of our discussion in this section will involve
quantitative data (those measured on an interval or ratio scale).
The procedures involved with qualitative data are essentially
equivalent, but because one cannot "round off" gqualitative data
or "group" it in the same way one deals with quantitative data,
the discussion regarding quantitative data is somewhat more
complex and will be the focus of our discussion.

When dealing with masses of quantitative data we usually start
with a mass of numbers. For instance, with the bank data we
might be interested in the subjects' ages. We could ask the
computer to give us a listing of the subjects' ages and we would
have a page of computer printout such as that shown on the
following pages. Note that the computer has already arranged the
numbers in chronological order, and that the computer tells us
how many people have each age. One person is 23 years old, 2
people are 23.25 years old, 1 person is 23.33 years old, etc.

Sometimes, we will want to round off the numbers to bring
them to a more manageable size. This is especially true if the
nunmbers are quite large or extend to several more decimal points
than we desire. For instance, we might be more interested in age
to the nearest year, rather than to the hundredth of a year. We
would then round 23.25 years to 23 years; 23.58 years would
become 24 years, etc. In arithmetic you might have learned that
when rounding to the nearest whole number and the original number
ends in 5, you automatically round up. Thus 15.5 would become
16, 16.5 would become 17, 17.5 would become 18, etc. Note,
however, that this introduces an upward bias. We are always
rounding upward. To counteract this upward bias, the convention
among social statisticians when rounding to the nearest number is
to round to the nearest even number when the original number ends
in 5. Thus 14.5 would become 14, 15.5 would become 16, 16.5
would become 16, 17.5 would become 18, etc. This produces
somewhat higher groups at each of these even numbers, but it
avoids the upward bias present in the other system and is thus
more accurate. : 3

Note that we do not always round to the nearest whole number.
In fact, with age, in our society, we actually round to the next
<lower number. One does not become one year of age until living
~— an entire year; one is then considered one year old until

12



Table 2-1 Output from SPSS Frequencies
Run for Age

Adj Cun Adj Cunm : Adj Cun

88

Code Freq ¥ % Code Freq % % Code Freq I %
23.00 1 0 0 32.00 I 1 S0 46.58 2 0 77
23.25 2 0 1 32,08 5 1 51 47.25 1 0 77
23,33 10 1 32.17 10 51 47,33 2 0 77
23.42 3 1 1 3.5 I 1 52 47.%8 2 0 78
23.58 t 0 2 32.33 2 0 53 47.92 1 0 78
23,67 3 I 2 2.50 2 0 53 48.00 1t 0 73
23.75 1 .0 3 32,67 4 1 54  48.25 1 0 78
24,00 2 0 3 32.83 2 0 5S4 48,33 1 0 79
24,08 2 0 3 32.92 3 1 55 4B.50 1 0 79
24.17 2 0 4 33,08 1 0 55 48,67 1 0 79
24,33 5 1 5 33,33 1 0 S5 48.83 0 79
24,42 2 0 5 33.42 2 0 56 49.08 1 0 80
34.50 2 0 4 33,50 4 1 57 49.17 1 0 80
24.58 2 0 & 33,47 1 0 57 49.58 1 0 80
24,67 2 0 7 33.75 2 0 57 49.92 1 0 B9
24,75 3 1 7 33.82 2 0 58 50.00 1 0 80
24.83 3 1 B 34,00 1 0 58 50.17 1 0 81
24.92 It 8 34.17 3 1 58 50.25 2 0 B
25.00 I 19 34,25 2 0 59 _50.33 10 81
25.08 4 1 10 34.33 2 0 59 751.00 1 0 81
25.17 10 10 34,50 1 0 59 51,17 1 0 82
25.25 3t 11 34,58 2 0 &0 51.42 2 0 82

_25.42 3 1 11 34,87 1 0 60 51.50 3 1 83
25.50 I 1 12 34.75 1 0 40 51.58 2 ¢ 83
25.58 4 1 13 34.83 1 0 61 51.92 10 83
25.75 2 0 13 34,92 1t 0 61 52.00 2 0 84
2%.83 3 1 14 35,97 2 0 &1  52.17 1 0 84
25.92 1 0 14 35,25 1 0 &1 52.33 10 84
26.08 1 0 14 35,33 10 62 52.50 1 0 84
26.25 I 115 35.42 2 0 62 52.92 1 0 85
26.33 1 0 15 “35.58 1 0 42 53.08 1 0 85
26.58 1 0 15 35.67 1 0 62 53.33 1 0 85
26.47 t 0 16 36.00 1 0 83 53.50 1 0 B85
26.83 4 1 16 36.92 10 63  531.92 3 1 84
26,92 1 0 17 37,08 1 0 43 54.08 1 0 8
27,00 10 17 37.47 10 43 54.17 2 0 Bé
27.08 31 18 37,50 1 0 64 54.33 "1 0 87
2747 2 0 18 37.83 1. 0 44 354.42 1. 0 87
27.25 3 1 19 38.00 1 0 64 54,92 1 0 87
27.:33 31 19 38,17 1 0 &4 55.08 1 0 87
27.42 3 1 20 3B.42 1 0 64 55.17 1 0 88
27.50 2 0 20 38.50 1 0 65 55.29 2 0 88
27.58 4 121 3B.67 1 0 65 <55.33 ! 0 88
27.67 2 0 22 38.92 t 0 45 55.50 10

13
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27.83 | 2 0 22 J39.00 1 0 65 99.58 3 1. 89
28.00 2 0 22 39.33 2 0 646 9%.92 1 0 897
28.08 . 1 0 23 379.42 1 0 66 . 56.00 1 0 89
28,17 I 1 23 39.%50 1 0 4& 56.567 2 0 90
28.33 4 T 24 39.67 3 1 47 56.92 1 0 90
28.42 4 1 2%  39.7% 1 0 &7 57.17 1 0 90
28.50 3 1 26 3%.83 1 0 &7 97 .42 | 0 9
28,47 S 1 27 40.08 1 0 47 57.50 i 7 9
28.73 4 1 27 40.17 1 0 48 97 .83 2 0 91
28.83 I 1 2B 40.33 1 0 6B 5B.00 1 0 91
29.00 2 0 2B >¢0.50 1 0 éB 58.08 t 0 %2
29.08 4 1 29 40,58 i 0 68 58.50 1 0 72
29.17 4 1 30 40.47 1 0 4B 5B.75 1 0 92
29.25 3 1 3 41.00 1 ¢ 49 99.08 2 9 92
29.33 I 1 3 41.7 2 0 469 59.42 1 0 93
29.42 1 0 32 41.67 1 0 &9 59.90 1 9 93
29.50 8 1 33 41.92 2 0 70 59.75 1 ¢ 93
29.58 4§ } 34 42.08 1 0 70 59.B3 3 1 94
29.47 4 1 33 42.17 | 0 7 60,00 1 0 94
29,73 4 1 35 42,33 1 0 70 0.50 3 1 95
29.92 4 - 36 42.42 1 0 70 460.47 3 1 93
30.00 1 0 38 42.58 2 0 7 £0.79 1 ¢ 95
J0.08 3 1 37 43.25 { o 7 61.33 1 0 94
30.17 9 ! 38 43,33 1 0 71 $1.50 1 0 96
30,29 4 1 39 43,42 1 0 72 61.47 2 0 94
30.33 [ 1 40 43.467 { 0 72 &81.25 | 0 96
30.42 4 141 43,92 1 0 72 62,00 1 0 77
30.50 2 0 42 44,00 1 0 72 62,08 1 0 97
“30.58 10 42 44,42 10 72 62.33 10 97
30.47 4 1 3 44,50 3 1 73 62.42 1 0 97
30,75 9 1 44 44.58 1 0 73 62.50 1 0 97
30.83 1 0 44 44,47 1. ¢ 73 63.00 i 0 98
30.92 2 0 44  A4.B3 1 0 74 43.25 1 0 98
31,00 i 0 45 44,92 1 0 74 63,42 1 0 983
31.08 1 0 435 MG 17 1 0 74 $63.50 1 0 93
3117 3 1 46 745.50 2 0 74 63.58 | 0 99
31.25 2 0 44 45.47 1 0 7% 63.7% 2 9 99
31.33 1 0 4% 45,92 1 0 75 63.83 1 0 97
31.42 | 0 446 44.00 1 0 73 63.92 1 o 99
31.50 3 1 47 446,17 1 0 75 64.25 2 0 100
31.47 3 1 48 46,25 2 0 76 64.50 1 0 100
31.75 4 1 49 446.42 1 078
31.92 ] 1 50 45,50 2 0 76

Hean 37.184 Std err 0.541 Median 2.013

Node 29.300 Std dev 11.787 Variance 138.939

Kurtosis -0.562 Skewness 0.864 Range 41,500

Hininum 23.000 Haxinum 64.500

Valid cases 474 Nissing cases 0

14
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one has lived a total of two years. In the grocery store all
prices are rounded to the next higher number. So, if two cans
cost $.49 and you buy one you would pay $.25 automatically. If
the price is 3 for a dollar and you buy one, you will pay $.34
and not $.33. Table 2-2 illustrates these different rounding
rules. -

Whether or not one rounds off the numbers one is dealing
with, one will then proceed to developing groups or intérvals in
which to place each of the cases. Suppose that we decided we
wanted to group the bank employees into age categories that each
included a span of five years. Remembering that we had rounded
the ages to the nearest year we could say that we wanted to
include all people with ages from 20.51 to 25.49 years (or
rounded limits of 21 to 25 years) in the first category. Those
from 25.5 to 30.5 (or rounded limits of 26 - 30 years) in the
second category, and so on. These categories are displayed in
Table 2=-3. The rounded limits refer to the rounded numbers that
define the ages. The true limits refer to the actual span of
ages that is included within each interval. The interval width
(i) refers to the total number of years included in each
interval. Note that it is the difference between the upper and
- lower limits of each true interval (i=U-L). The midpoint of each
interval is the lower limit of each true interval plus one-half
of the interval width (M = L + (1/2)i).

Table 2-3 Intervals & Midpoints for Grouped
Age Data Levels

Rounded True Interval

Limits Linmits width Midpoint
21=25 20.5-25.5 5 23
26-30 25.5-30.5 5 28
31-35 30.5-35.5 5 33
36~40 35.5-40.5 5 38
41-45 40.5-45.5 5 43
46-50 45.5-50.5 5 48
51-55 50.5-55.5 5 53
56-60 55.5-60.5 5 58
61-65 ' 60.5=65.5 5. 63

16



Now that the intervals are established we can return to the
distribution from the computer printout that is in Table 2-1 and
actually count up the number of people that fall into each
interval. For instance, we can determine that 54 people fall in
the first category with ages between 20.51 and 25.49 or 21 and 25
rounded years. (Note that the first interval has a true lower
limit that is substantially lower than the lowest age. This was
done to allow for age intervals that were evenly spaced at points
on the scale that were easy to comprehend.) In the second
interval (true limits of 25.5 to 30.5 and rounded limits of 26 to
30) there are 143 people. You may continue this process until .
you have determined how many people are within each of the
intervals. Table 2-4 summarizes these frequency counts and is
referred to as the frequency distribution for age for this sample
of bank employees.

Table 2-4 Age of Bank Employees

"TLess than" "More than"

Cumulative Cumulative
Years Frequenc Frequency Fregquency
21-25 54 54 474
26=30 143 197 420
31-35 97 294 277
36=40 ’ 28 322 180
41-45 29 351 152
46-50 34 385 123
51-55 33 418 8%
56-60 30 448 56
61=-65 26 . 474 26

Total 474

Table 2-4 also includes two columns that are called the
cumulative frequency distributions. The first of these has the
"less than" cumulative frequency distribution and tells us how
many people are a given age or less. For instance, 54 people are
25 years old or younger; 197 pecple are 30 years old or younger.
The "more than" cumulative frequency distribution tells us how
many people are a given age or older. For instance, all 474
employees are at least 21 years old; 420 employees are 26 years
old or older. (Note that when reading the less than cumulative
distribution we use the upper limit of the interval; when reading
the more than cumulative distribution we use the lower limit for

a reference point.)

When your sample involves a hundred people (or cases) or
more it is best to use percentages rather than raw frequencies.
This allows for easy comparlsons and is a methed of
standardization. Table 2-5 is equivalent to Table 2-4 except
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that the distributions are percentage distributions rather than
distributions of the raw frequency data. In reading this table
we would know that 11.3% of the employees are between 21 and 25
years of age and that 11.3% are 25 years old or younger. The
percentages are given on the computer printout in the columns
following the codes and frequencies. The first two columns of
percentages (relative and adjusted) give the percentage of cases
associated with each code. The cumulative % fregquency is a "less
than" percentage freguency distributien. When adding these
percentages together one should always check toc make sure that
the computer has rounded the numbers so they do add to 100. If
they do not, you will either want to note that fact or redo the
computations to make the needed corrections.

Table 2-5 Age of Bank Employees

"Less than" "More than"

Frequency Cumulative Cumulative
Years % Distribution Distribution
21-25 11.3 B 11.3 Vs 100.0 77,
21-30 30.2 41.5 88.7
31-35 20.5 62.0 58.5
36-40 5.9 67.9 38.0
41-45 6.1 74.0 32.1
46=50 7.2 8l.2 . 26,0
51=55 7.0 88.2 18.8
56=60 6.3 %4,5 11.8
61-65 5.5 100.0%  Be8T,
Total 100%
n=474

Finally, note the way in which the tables are labeled.
Figure 2-1 contains instructions on the elements of a table that
is properly constructed. These include labels for the table and
each part of it, If percentages, as well as or instead of
numbers, are used, you should make sure that enough information is
given about the sample size so'that the reader can reconstruct
the actual numbers of people involved.

Table 2-6 gives yet another example of a frequency
distribution. This involves two groups: Native American and non-
Native American employees of the Bureau of Indian Affairs. The
data examined are the grade level of employment. These grade
levels are actually discrete variables, as copposed to the
continuous variable of age. Note that when we have discrete
variables we simply treat them as though they were continuous.
(Some may argue that grade level is ordinal, rather than )
interval, but the levels correspond to pay increments, and at one
time translated directly into dollars, so for the sake of example
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we will treat these data as measured on an interval scale.) Note
too that these data are rounded to the next lower number. A
person is in grade four until he or she moves into grade 5.

Note how the side-by-side arrangement of data for the two
racial/ethnic groups helps in comparisons. (Remember that the
lower grades are paid much less.) Most of the native Americans
are at the lowest grades. The non-Native Americans are much more
spread out and predominate at the higher grades. For instance,
over half of the Native-Americans are in grades 3 and 4, but only
9% of the non-Native Americans are at that level. Almost one-
fourth of the non-Native Americans are at grades 11 and 12 and
one-third of the non-Native Americans are in grades 9 and 10.

The comparable figures for Native Americans are 7% and 9%
respectively. The cumulative distributions show similar results.
75% of all the Native Americans are at grade 6 or lower, but only
20% of the non-Native Americans fall in that range.

Table 2-6 Grade Level of Native American and
Non-Native American Employees of the
Bureau of Indian Affairs, 1870

Native Americans Non=Native Americans

(reea—than) s Yan) Gesemthny (b Yiay)
Grade Frequency Cum. Freq. Frequency Cum, Freg.
0 E 0.05 0.05 0.04 0.04
2 2.72 277 0.34 0.38
3 21.36 i 24.13 2.64 3.02
4 33.69 57.82 6.19 9.21
5 15.50 73.32 - 9.14 18.35
6 l1.98 75.30 l.61 19.96
7 ) 6.44 81.74 10.14 30.10
8 .21 81.95 0.21 30.31
] 8.95 80.90 32.82 63.13
10 0.14 91.04 3.40 66.53
11 4.5 85,55 13.79 80.32
12 2.29 97.84 10.35 90.67
13 1.14 98.98 4.88 95.55
14 0.80 99.78 3.57 99.12
. 45 0.19 $9.97 0.79 - 99.91
16 0.03 100.00 0.06 99.97
17 0.00 100.00 0.03 100.00
Totals 100.00% . 100.00%
n 5853 6697

Source: Congressional Record, Dec. 14, 1970
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In general, when constructing tables with quantitative data
one would want about 10 to 15 intervals for easiest
understanding. One usually uses equal-sized intervals, unless
some of them contain very few people. For instance, there may be
very few subjects with very high incomes or very low incomes in a
sample and the intervals at these extremes may be made much
larger or even open-ended (e.g. $75,000 +) to accommodate these
people. Whenever one is comparing two groups, as in Table 2-6,
it is important to use the same intervals for both groups so that
one has valid comparisons. Also, when one is comparing two or
more groups one would always use percentages, rather than raw
frequencies, in order to have valid comparisons.

With qualitative data the procedures in table construction
are basically the same as those described above, except that one
does not have intervals, but instead categories. Table 2-7 gives
a hypothetical example of a table with gualitative data, the
distribution of religious affiliation for a sample.

Table 2-7 Religious Affiliation of
Members of a Hypothetical Community

Religious
Affiliation Percentage
Protestant— ) 55
Catholic 25
Jew 15
Other . ) B
Total 100

n 375
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Graphs

Graphical displays of data are often a very helpful way to
summarize and display the information provided in tables. The
types of graphs appropriate for data depend on whether one's data
are measured on an interval or ratio scale (quantitative data) or
an ordinal or nominal scale (qualitative data). We will deal
with graphs for both types of data in turn.

Graphs Appropriate for Quantitative Data

There are three basic graphs that are commonly used to
represent quantitative data: histograms, frequency polygons, and
ogives (or cumulative frequency graphs). Each of these has a
common form in that along the horizontal axis the intervals for
the distribution ‘are graphed. These would be the same intervals
that one has used in the table displaying the data, except that
one would want to make sure that all the intervals were equal in
size. That is, if one had doubled the size of some intervals in
the table because they contained very few people, one would want
to use the actual (uncollapsed) intervals in the graph. Along
the vertical axis one plots frequencies or percentages, whichever
one wishes to graph. When the sample size is large (over 100)
one should use percentages. When comparing several groups
percentages would also be more appropriate.

A histogram for data on grade-levels of Native American
Employees of the BIA is shown in Figure 2-2. Note that the true
limits of each interval are marked along the horizontal axis.
Then within the boundaries of each interval a bar is drawn to the
height that corresponds with the proportion of people in that
interval. Thus, the height of the bar of the histogram for the
first interval is at the 3% mark. The height of the bar for the
second interval is at the 55% mark, and so on. Note that each
bar of the histogram is adjacent to the next. This is because
the variable, grade levels, is measured on an interval scale, and
we are treating it as though it were continuous. (Intervals are
collapsed from those shown in Table 2-6. Percentages used are
given in Figure 2-2.)

A frequency polygon of grade levels of Native American
employees and of grade levels of non-Native American employees is
shown in Figure 2-3. The solid line gives data for the Native-
Americans, the broken line gives data for the non-Native
Americans. Note that again the base or horizontal axis includes
the intervals of the variable grade levels. The percentages are
placed along the vertical axis. With the frequency polygon one
uses the midpoints of each interval and plots at the midpoint the
percentage (or n if using raw data) of people who fall within
that interval. Thus, the midpoint of the first interval is 2.
For Native Americans the point is plotted to correspond with 2 on
the horizontal axis and 3 on the vertical axis, indicating that
3% of the fative Americans fall in that category. For the second
interval, the midpoint is 4. Corresponding to this point on the

.
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horizontal axis, a point is marked corresponding to 55% on the
vertical axis for Native Americans and a point corresponding to
9% on the vertical axis is marked for the non-Native Americans.
This process is continued. The points are then connected and the
polygons are closed by pletting zero on the vertical axis at the’
midpoint of the interval that is theoretically below the first
interval and the midpoint of the interval that is theoretically
above the last interval. :

It was mentioned briefly above that if one has uneven
intervals in a table, one needs to be careful in transferring
these data to a graph to ensure that one does not misrepresent
the data. Figure 2-4 illustrates how one could do this. Three
intervals are given in the data. The first two have a true
interval width of 2 but the third has a true interval width of 4.
Because we do not know the actual underlying distribution of
these data (if we did we would use the true distribution for this
third interval), we simply divide the subjects within the third
interval evenly into two intervals the same width as the earlier
ones. This is shown in the second table in Figure 2-4. (If the
uneven interval had been three times the size of the other ones
we would divide it into three parts, etc.) The data with equal
intervals are then plotted. A second graph shows how one would
incorrectly have graphed the data if one had not divided the
subjects up among equal intervals. This incorrect graph shows a
much greater proportion of subjects between 4.5 and 8.5 than in
actuality are there. . ¢

Sometimes one will have data in a table that are open-ended.
For instance, we will simply list the first category of income or
age as all subjects at or below a certain point (<5000 dollars,
for example). At the upper end we might include all people who
make above a certain amount of money (e.g. $50,000+). When
graphing these data we c¢learly cannot continue the graph
infinitely, so we must arbitrarily close it. At the lower end we
would use zero, or whatever would be appropriate. At the upper
end we would simply choose an arbitrary closing amount and then
add a footnote to the table indicating that there were people in
the last interval who made considerably more money or had
considerably higher scores on the variable, but that this could
not be represented on the graph.

One final point on graph construction: Sometimes your
horizontal axis or interval scale will begin at a point
considerably above zero. When drawing a graph for these data, if
you wish to include a zero point on the axis, you could include a
little break mark to indicate that a number of points were
missing, as illustrated in Figure 2-5.

The decision of whether to use a histogram or a frequency
polygon is often an esthetic one. For comparative purposes, as
in Figure 2-3, the freguency polygon is often better. However,
for exact representation of the data, a histogram might be
preferable, for all of the data for a given interval are
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represented within that interval. The data for a given interval
within a frequency polygon are actually spread across the area
allocated to three intervals.

Nevertheless, the frequency polygon and the histogram both
accurately reflect the data in that they both enclose the same
amount of area. Consider the histogram drawn in Figure 2-6.
This histogram and the associated frequency polygon for the data
are produced below in Figure 2-6 superimposed on one another.
Note that the polygon and histogram enclose the same area except
for several triangles identified by letters. These triangles,
however, are congruent to each other and thus hold the same
amount of area. Consider the triangles labeled a' and a". The
opposite angles are equal, the right angles are equal, and the
. distance from the base of the histogram bar to the midpeint of
each interval is equal (1/2 i). Thus they have at least one
equal side and two equal angles. This then implies that they
have three equal sides and three equal angles and the two
triangles are congruent. The area that is cut out of the
histogram by the frequency polygon (a") is added onto the
frequency polygon at another place (a'). The same argument could
be made for all other pairs of triangles.

The ogive is a graph designed to represent cumulative
frequency data. Again the intervals are displayed aleng the
horizontal axis and the percentages (or frequencies if using raw
data) are displayed along the vertical axis. One can have oguves
for the "less than" and for the "more than" cumulative
distributions. Both of these graphs are shown in Figure 2-7 for
the data on BIA employees. In plotting points for the ogive one
uses the end points of the intervals and one must think about
what each distribution means. Consider first the "less than"
distribution. 3% of the Native Americans are found at grade 2 or
below. Thus, corresponding to grade 3 (the true upper limit of -
the first interval) the point is plotted at the line
corresponding to 3% on the vertical axis. 58% of the Native
Anmericans are in grade 4 or less, so the point is marked at the
line corresponding to grade 5 (the true upper limit of this
interval) on the horizontal axis and to 58% on the vertical axis.
One then continues in this manner until one notes that 100% of
the employees are found in grade 14 or lower and plot at the 100%
point on the vertical axis at the points corresponding to 15 and
to 17 on the horizontal axis.

For the "more than" distribution, the logic is soge@hat
different. 100% of the employees are in grade one or , SO wWe
plot a point that corresponds to 1 on the horizontal axis (the
lower limit of the first interval) and 100% on the vertical axis.
97% of the subjects are in grade 3 or higher so we plot a point
that corresponds to grade 3 on the horizontal axis (the lower
limit of the second interval) and 97% on the vertical axis. To

. complete the graph each of the points plotted is connected.
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Figure 2-6
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Once one has drawn the appropriate graph for one's data one
would then examine it to see how it helps describe the data, For
instance, in looking at Figure 2-2, the histogram of grade levels
for the Native-American employees, one would note that over half
of the employees are found in only two grade levels (those that
correspond to aide and janitorial positions). The next highest
category involves those in grades 5 and 6, low-level supervisory
positions, but relatively few are in the higher level posts and
almost none at the highest levels. In loocking at Figure 2-3,
with the frequency polygons for both racial groups, one could
make similar conclusions regarding the Native-Americans and
compare their distribution with that of the non-Native American
employees. Here you could note the striking lack of overlap or
correspondence between the two curves. Most of the Native
Americans are at the lower grade levels, most of the non-Native
Americans are at the higher grade levels. The two groups of
employees appear to be in almost totally different job
categories. One could continue with a more detailed examination
of these differences, a task which would be good for students to
pursue for practice.

In examining the ogive we can see how quickly or how slowly
subjects increase or decrease on a certain variable. For
instance, in looking at the "less than" distribution in Figure 2-
7, we can see that there is a very steep slope, indicating that
most of the subjects are included by the very lowest grade
levels. The more than distribution also has a very steep slope
indicating again that most of the subjects are found at the
lowest levels. If one were to graph the ogive for the non-Native
Americans (again a profitable exercise for students) one would
find that the slope was much less steep, and informative
comparisons could be made.

Besides the comparisons noted above, the ogive provides an
easy way of finding what proportion (or how many, if using
frequencies) of a group fall at or below a certain point.
Conversely, we can also find out what point along the
distribution or interval scale corresponds to a given percentage
or frequency. For example, if we want to know approximately how
many subjects have jobs at grade 10 or higher we would locate
grade 10 on the horizontal axis and follow that point until we
hit the graph. It then appears that about 13% of the subjects
are at grade 10 or above. One could alsoc ask what is the point
at which we find 50% of the subjects with less than a particular
grade and 50% with more. That is, what is the point on the scale
that divides the group into two equal parts? oOne would then find
50% on the vertical axis and follow that line across. Note that
this is the point where the "more than" and "less than" graphs
cross. It appears that this point corresponds to approximately
grade 4.8. If we are interested in the 25% mark, the first
quartile, we may follow this line across and find that 25% of the
subjects appear to be at grade 3.8 or less {approximately) and
that 25% of the subjects appear to be at grade 7 or higher.
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Students should also continue this”exercise on their own until
they feel confident in interpreting this graph.

Graphs Appropriate for Qualitative Data

~ There are a number of graphs that are used with qualitative
data. We will focus on bar charts, which are the most common.
You may consult various statistics texts for examples of other
types. As with the quantitative data, the bar charts are
designed to display the data found in the tables in a way that
pictorially summarizes the data.

The basic form of the bar chart involves a base line on
which the categories of the variables are labelled. Note how the
form is different from the histogram. With bar charts there are
spaces between each of the categories because we are not dealing
with interval data, but with categoric data. The second
dimension of the chart involves either percentages or frequencies
as with the quantitative data graphs. The length of the bars
represents the frequencies or percentages within a given
category. The bars may be displayed either vertically or
horizontally, depending on the researcher's desires. With
ordinal data one would usually want to have the categories in the
relevant order. With nominal data one might have an order of the
categories that is theoretically important or one might want to
display the data in order of frequency of occurrence (e.g.
smallest to largest).

Many varieties of bar graphs are possible. It is also

" possible to use a bar graph to display data for more than one
group. Figures 2-8 through 2-10 display the data shown in Table
2=-8 on the type of descent system common in three different types
of economies. (You might remember from your introductory
research methods class that tables are percentaged in categories
of the independent variable. We are assuming here that the
economy of a society is the independent variable and that the
type of descent system that a society adopts depends on the
economic system of that society.)

Figure 2-8 is a regular bar graph such as the general case
described above, but includes data for the three different types
of societies. The first sub-graph includes data for the hunting
societies. It is apparent that in these societies matrilineal
descent systems are most common, followed by bilateral and then
by patrilineal descent systems. The second sub=-graph gives the
data for societies with a pastoral economy. These are most
likely to have patrilineal descent systems, bilateral systems are
much less common and matrilineal descent systems are relatively
rare. Among agricultural societies matrilineal and patrilineal
descent systems are about equally likely to occur and bilateral
descent systems appear less frequently. Because we have data for -
the three types of societies here we can alsoc make comparisons
across the three types of societies (among the three categories
of the independent variable - type of economy). It is apparent
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Figure 2-8
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that matrilineal descent systems are about equally likely to
occur in hunting and agricultural societies, but only rarely in
pastoral societies. Patrilineal descent systems most often occur
in pastoral economies, next most often in agricultural economies
and least often in hunting societies. Bilateral descent systems
occur most often in hunting groups, next most often in pastoral
groups and least often in agricultural groups.

Table 2-8 Descent Systems Found in Societies
with Different Economic Bases

Type of Descent System

Economic ) :

System Matrilineal Patrilineal Bilateral Total
Hunting 43 26 31 100%(70)
Pastoral 7 72 21 100%(14)
Agricultural 40 43 , 17 100%(110)

(Source: adapted from Mueller, et al, 1977; p. 47}

Figure 2-9 gives a version of a sliding bar graph. This
type of graph is most useful when we want to distinguish between
two types of attributes of the dependent variable. For instance,
in Figure 2-9 we are distinguishing between matrilineal descent
systems and the other two types. Within each economy (or sub-
graph) we have represented the family types on a long bar, all of
equal length. These bars are then divided into segments to
represent the different family types. Shading is used, as in
Figure 2-8 to represent the different types of descent systems.

A vertical axis is drawn down the middle of the graph to separate
the matrilineal and other descent types. The various graphs are
then "slid" to the left or the right to represent the proportion
of societies within each group that have matrilineal descent
systems. Clearly the pastoral societies are least likely to have
this type while the hunting and agricultural societies appear
about equally likely to have this type of system. One could have
constructed this type of graph with either of the other types of
descent systems as the focus of interest, depending on one's
theoretical point. : E

Figure 2-10 gives another way of using bar graphs. Here
again the relative representation of descent systems within each
society is represented on a bar. A separate bar is drawn for
each society. Then to demonstrate the comparisons between the
three types of societies dotted lines connect the various
categories. These illustrate how the representation of
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matrilineal types is much larger in hunting and agricultural
societies, for instance, than in pastoral $ocieties.

A number of computer packages offer options for graphs. You
should be very careful in using these options. They are quite
nice if you have the appropriate data and it is coded and input
in a way that you want. If not, however, the results are useless
and often misleading. Therefore, you should think very carefully
before automatically using material that a computer has spewed
out in graph form. You also must be very careful when using a
graphics program with a micro computer to ensure that the graphs
are correctly drawn.

Measures of Central Tendency

While tables and graphs illustrate the dispersion of data
and where most subjects or cases tend to be, they do not provide
a single summary statistic of the location of most of the peocple.
Measures of central tendency are designed to provide such a
summary. Three measures of central tendency are commonly used:
the mode, the median, and the mean. :

The Mcde

The mode is simply the most frequently occurring value or .
point. We can use the mode when talking about qualitative ‘data
if we refer to the modal category. For instance, in Table 2-7 we
could say that the modal category is Protestant; it is the
category with the greatest number of people. We can simply count
the number of cases that have each attribute and find which
attribute has the most cases associated with it.

With quantitative data we must go beyond this simple
counting procedure and would like to find the value within an
interval (assuming that our data have been grouped into
intervals) that corresponds to the modal point. There are two
ways of doing this. The first is called the crude mode. The
crude mode is simply the midpoint of the interval that has the
largest number of cases in it. For instance, with the data on
BIA employees that is again presented in Table 2-9, the modal -
interval for Native Americans is that with true limits 3 and S.
The midpoint of this interval is 4.0, and this is the crude mode.
Students should verify that they understand this by demonstrating
that the crude mode for the non-Native Americans is 10.0.

The second way of computing the mode with grouped data
results in what is called the refined mode. The refined mode is
an adjusted value that is based on the relative size of the
‘frequencies in intervals adjacent to the modal interval. It is
based on the idea that the true place of greatest density (the
true location of the mode in an interval) will be closer to the
interval with a higher freguency. The larger one adjacent
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“interval is ‘than the other, the more that the mode will be
shifted toward that larger interval. The formula for the refined
mode is given below in equation 2-1.

Refined Mode = L + 0 x i (2-1)
: D1 +7D2

where L = the true lower limit of the modal interval:

D; = the 'difference between the fregquency in the modal interval
and the fregquency (number or % of cases) in the next lower

interval;

D, = the difference between the frequency in the modal interval
and the frequency in the next higher interval; and

i = the width of the interval. p i

Computations in Table 2-9 show that for the Native Americans the
refined mode = 4.16. For the non-Native Americans the refined
mode is equal to 10.37.

Examining Formula 2-1 more closely it may be seen that when

D; = Dy, that is when the two adjacent intervals have the same
number of cases, the refined mode equals the crude mode. In this

case we would add one-half of the interval width (i) to the lower
limit eof the interval, thus being at the midpoint of th
interval. :

-If the adﬁacent lower interval had more people than the
adjacent higher interval, Dj would be less than D;. That is, the
size of the next lower inte¥rval would be closer to the modal

interval than would the next higher interval. When D is less
than Dy, D1/(D1 + D3) is less than one-half and the refined mode
would ge smaller than the crude mode (i.e. not as large as the

midpeoint of the interval). When, however, the next higher

interval has more cases, Dy / (D + D % would be greater'than 1/2
and the refined mode would be larger % an the crude mode.

Graphically the modée appears as the high peoint of the graph.
On the frequency polygon, the mode would be the highest point,
the scale point that corresponds to the highest fregquency or
percentage found in any category of the data. Sometimes there
will be more than one high point. We say then that a
distribution is bi-modal if there are two high points or trimedal -
if there are three. This can result if there are basic divisions
within the group. For instance, if we were to graph the grade
level of all BIA employees, combining the two groups in Table 2-
9, we might well have a bi-modal distribution. This, however,
would be because the two racial groups have very different job
level distributions. :
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Table 2-9 Example of Computing Mode and
Median with BIA Data

Grade lLevels Percentage Cumulative %
Rounded True Native  non-Native Native non-Native

Limits Limits Americans Americans Americans Americans

1=-2 1-3 3 0 3 0
3-4 3-5 BES5 ] 58 9
5=6 5=7 17 11 75 20
7-8 7=-9 7 10 : B2 30
9=-10 9-11 9 36 91 66
l11-12 11-13 7 24 98 S0
13-14 13-15 2 S 100 . 99
15=16 15=17 0 1 100 100
Total 100% 100%
Native Americans non=-Native Americans
-
crude mode = 4.0=’3f/ crude meode = 10.0 = 743
refined mode = 3+ [ (55-3) X 2 refined mode =
(55=3)+(55-17) 9.0+ {(36-10) %2
= 4,16 (36=10)+(36-24)
= 10.37
oo 100 '
Median = 3.04 2 =3.0 x2 Median = 9,0+ 2 = 30 x2
BEE 36

= 3.0 +{47 x 2:l = 9.0 +(50=30 x 2
5 . 36
= 3.0 + 1.71 = 4.71 = 9.0 + 1.11 = 10.11
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~ The SPSS subprogram FREQUENCIES gives the mode as one of its
statistics. This is not a refined mode or a crude mode, for the
program assumes that the actual values are given as input, at .
least for this statistic. If you have data that are coded in
intervals and input in such a way you would probably want to
compute the refined or crude mode yourself. Also, if you have
bimodal (or multi=-modal) data, SPSS will not tell you this.
Instead, it will automatically assign the mode to the lowest
value on your scale or variable that has the highest frequency.
(Say you are studying age and 35 people fall at ages 29, 39, and
49, SPSS will report only 29 as the mode. You will have to '
inspect the data to find the other modes.) : :

The mode has certain advantages. It can be used with
qualitative data. It is easy to calculate and it can be easily
related to a graph. However, the mode does have certain
disadvantages. It generally cannot be used in further
calculations. While this is often not a problem with qualitative
data, it can be a real disadvantage with quantitative data. The
mode is also unstable and can be greatly influenced by how large
the intervals are in a data set. Third, the mode is nonspecific.
We don't know "how modal" a certain point is. We know from the
mode what value most often occurs, but we don't know if this
point occurs twice as often as all others, or just a tiny bit
more often.

The ‘Median

The median is a position average and is defined simply as
the point in the distribution where one-half of the cases are
above and one-half are below. It is strictly suitable only for
variables measured on an interval or ratio scale, but it is
sometimes used with variables measured on an ordinal scale. With
an ordinal scale, however, we can only talk about the median
category, the category in which the median is found.

To compute the median with ungrouped data we simply arrange
the data in order from the smallest to the largest and then take
the middle case. If there are an even number of cases, as in
Table 2-10 below, this would be the point halfway between the two
middle points, as shown. If there are an odd number of cases, as
in Table 2-11, we would use the point exactly in the middle, as
shown. Table 2-12 gives an example with ordinal data. Here the
median category is that of mild support.

Very often we don't have ungrouped data, we have data that.
have been grouped into intervals. Here we can find the median
interval by examining the cumulative frequency distributioen.

But, as with the mode, we still must determine the point within
that interval where the median falls. To do this we assume that
the cases are evenly spread throughout the interval (note how
this differs from the assumption involved in computing the
refined mode where we assume they are more grouped toward the
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Table 2-10 Example of Computing Medlan Wlth an
Even Number of Cases

Ages of People Referred to Clinic

6 13"
7 17
5 cases 8 19 g cases
9 21
11 22
Median = 11 _+ 13
2
= 24
2 = 12

Table 2=-11 Example of cOmputing Median with
an 0dd Number of Cases

Ages of People Referred to Clinic

6 13°
% 98 & 19
Cearo | O \ 21
el o
Median = 11 Vo-laz

Table 2-12 Degree of Support Respondents
Report for President

i
Highly Supportive 20
Mildly Supportive 40<4~Median Category
Neutral ) 10
Mildly Unsupportive ° 103 40713
Highly Unsupportive 20
Total 100%
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adjacent interval with more cases). We then see how far we need
to go within that interval to get to the median point. For
instance, in Table 2-13 below, an imaginary distribution, there
are 189 cases in all. The median case would be 189/2 = 94.5, or
between the 94th and 95th case. We can see from examining the
cumulative frequency distribution that this occurs in the
interval with the true limits of 4,950 and 5,950. There .are 51
cases in this interval and at the beginning of the interval we
have 81 cases. To get to the 94.5th case we must go 13.5 cases
beyond the lower limit of the interval. Since there are 51 cases
in all in the interval we must go through 13.5/51 cases or about
26.5% of the total interval. The .interval here is 1000 wide, so
26.5% of 1000 is 265. If we add 265 to the lower limit of the
interval we have 4950 + 265 = 5215, and this is the median.

Table 2-13 Imaginary Income Data

Cumulative
True Limits Frequen Frequency
1,950=2,950 17 17
2,950-3,950 26 43
3,950-4,950 38 8l
4,950~5,950 51 132
5,950-6,950 36 168
6,950-67,950 21 189

In general, the formula for the median is

Median = L + [sz - cf x ii} (5-2)

where L is the true lower limit of the interval containing the
median, N/2 is one-half of the total sample size; cf is the
cumulative frequency at the beginning of the median interval; £
is the frequency in the median interval; and 1 is the width of
the interval. '

For the example above, ‘
{94.5 - 81) -
Median = 4950 + a2l X 1000\ = 5215 (2=3)

A procedure just like that outlined above is used with
percentages except that we are looking for the 50th percentile
(or N/2 = 50). Table 2-9 gives an example of finding the median
for the BIA data. Students should work through these examples to
make sure they are familiar with the procedure. If you have
discrete data you simply, as before, treat it as though it were
continuous. (A good example would be data on family size.)
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The formula for a median can also be used to compute other
position measures. . The most common ones are quartiles (25%, 75%
points), deciles (10%, 20%,...), and centiles (1%, 2%, etc.).
While you can use the cumulative frequency graph (ogive) to
approximate these positions you can use a variation of the median
formula to get the exact value. All one does is alter the N/2
part of formula 2-2. For instance, if one is interested in the
first quartile, the 25% point, one would want to look at N/4
instead of N/2. For the third quartile, the 75% point, one would
want to look at 3N/4 instead of N/2. For the third decile ocne
would examine 3N/10, and so on. Below, examples of computing
various other positions are given using the BIA data.

A} ﬁ‘n, 8-
;.a.r{" fe /‘:::rfta_».f Matoe Americand

Lﬁ;[féé:;gg X é:] 3{p-+[jv—" X:%;Z 7:0 4 A!.laix”pgz (Ai~4)

4
= 3.§ = §.0

3,4?6“,,4/(3 |
7854
5“[7:';-; .0 < [—I:f Xo?-] (i-5)

03 /J‘F_ﬁ_’ﬁ{ J {//'- -

/ .ﬁl ﬂec:

-
-

10-7
3.0+ -7 — o L
z.%uﬂﬂf /Zx{/ Jay 504 .ff/y“ 3l
= 5~

Position measures such as the above are commonly used in
comparisons of individuals (e.g. SAT scores, GRE's, height and
weight percentile placements for children, etc.)

Position measures have certain disadvantages as well as
advantages. They cannot be used in algebraic manipulations and
thus have limited utility for use in more advanced statistical
manipulations. The median however is quite stable. It is not
affected much by extremes and is usable with open-ended data. It
is commonly used in describing income distributions because it is
s0 unaffected by extreme cases. Graphically, the median is the
point where the less than and more than cumulative frequency
distributions cross (See Figure 2-7).

The median is part of the output given on the subprogram
FREQUENCIES by SPSS. When computing the median SPSS assumes that
data are grouped into intervals with an interval width of 1. It



' then uses the type of formula described above to find the median
point with the interval.

Very often you will have data that have been grouped and
have been coded with these groups. In Table 2-14 are the codes
in the Naticnal Opinion Research Survey data for income that is
self-reported. Note that the categories are quite large. Also,
note that they have been coded. If SPSS were to report the mode
for this data it would give the value as 9. If it were to report
the median, it would give the value as 6.61. Clearly, these
values are not correct. One solution would be to recode the data
within the computer (a minor procedure) to reflect the midpoints
of each interval (1 would become $500; 2 would become $2,000;
etc.). The mode would then be given as "12,500”in the SPsS
output. The median would then be computed within the interval of
one dollar around the value of $7500. In deciding what step to
take, you would have to consider what purpose these various A
statistics would have for you. To have the most accurate results
you should compute the median by hand using the full interval
width of $1000.

Table 2-14 Example of Income Data from an
NORC Survey

41. Did you earn any income from (JOB DESCRIBED IN Q. 1l1) in
19737
Yes . « « « o ( )
NO - - L] II. - L] ( )

A. JIF YES: In which of these groups did your earnings from
(JOB IN Q. 1l1), for the last year=--1973 fall? That is,
before taxes or other deductions. Just tell me the

letter.
CQLS. 38-39
RESPONSE PUNC _N
Under $1,000 + « « o o o « « « « o 01 69
S 1,000 Lo 2,998 4 « « % & & % » 02 © 116
$ 3,000 to 3,999 . . .« . . & o . 03 49
$ 4,000 to 4,999 . . . . . . . . 04 67
$ 5,000 t0 5,999 . .« 4 4 o o o o 05 64
$ 6,000 to 6,999 . . i « 4« o & 06 48
$ 7,000 to 7,999 . & s & & & % @ 07 57
$ 8,000 to 8,999 . . . . .« . . . 08 89
$10,000 to 14,999 .+ ¢« « < + o o 09 155
$15,000 to 19,000 . + « « o & o o 10 . 60
$20,000 €0 24,999 . . + & « & . 11 30
$25,000 cr over . . « o = & & 12 35
Refused - L] L] . - s e . . . . . . 13 37
Don't KNOW « « « & & o o s s s = & o8 15
Not applicable . . . . « « .+ . = BK 593
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The Mean

The arithmetic mean or the arithmetic average is probably
the most common measure of central tendency. It is usable only
with variables measured on an interval or a ratio scale.
Conceptually we should see the mean as the arithmetic average.

If we think of all the cases in a distribution as spread out
along a graph, such as a frequency polygon, the mean would be the
center of gravity, the place along the base line that would be
the balancing point for the distribution. ;

The formula for the mean is simply:
X =& ‘ (2-8)
fi :
where n = the size of the sample,

X is the mean,
Xy refers to each individual value of S, and

£Xji refers to the sum of all of the values of Xj

The mean is used in many advanced statistics and its
usefulness derives from the fact that it is the "center of
gravity" of a distribution. More specifically, the mean is the
only value from which the sum of all deviations of scores will
balance out or equal zero. That is, if we examine the deviations
of all scores in a distribution from the mean and add up these
deviations, we will find that the sum equals zero. This means
that the sum of the deviations of scores around the mean is lower
than the sum of the deviations would be around any other value.

Table 2-15 illustrates this quality of the mean. Note that
the mean of the distribution is 11. The median of the
distribution is 9. The sum of the deviations around the mean is
zero. The sum of the deviations around the median is 12.
Students may try substituting other numbers and will discover
that only the mean will produce the sum of zero in adding
deviations.

Table 2-15 Example of Computing Deviation
Around the Mean

Ages

Referred to -

Clinic X-X =y X - Md
6 - 6-11 = =5 6=9 = =3
7 7=11 = =4 7=9 = =2
8 8-11 = -3 . 8-9 = -1

- 10 10-11 = -1 10-9 = 1
16 :16=11 = 5 16=-9 = 7

i A 19=11 =8 199 = 10
Totals 66 . &5 .0 % 12
xX=—=z1

Mecliay ¢ 9
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Table 2-15 showed how one would compute the mean if there
were only one case with each value. If there is more than one
case with a value in a distribution, as in Table 2-16, the
computation of the mean is again quite simple. We simply
multiply the fregquency (or number) of cases with each value times
that value and add up all the products. For instance, in Table
2-16 below, instead of adding 6+6+7+7+7+....we add 2(6) + 3(7)

[ IR -

The general formula is vi f{ X
L5

X = (2-9)
n
where ¥ is the mean,
f{ is the fre%uency associated with each value,
Xj is each value of the variable X
afid n is the sample size.
Table 2-16 Example of Computing Mean with
Grouped Data
X Frequency fx
(£)
6 2 12 Y- ‘f_‘ﬁ_"
7 3 21 q
9 1 o e 4l
10 3 30 12
12 2 24
15 1 FEA
Total - - ' 111

If we have discrete data rather than continuous data we simply
assume that our data are continuous and proceed as above.

If our data are grouped into intervals we use the same
procedure as in Table 2-16, but we use the midpoint of the
interval in computing the mean. The relevant formula is given

below: .
)?-z zag,YE
71 o (2=10)
X is the mean,

f is the number of cases in each interval,

N is the sample size, and
Xi is the midpoint of the interval.
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Table 2-17 gives an example of computing the mean with
the grouped data on the job levels of BIA employees.

Table 2-17 Computation of Mean for BIA Data

Grade Level Frequencies (%) £fx
Midpoint of Native non-Native Native non-Native
Intervals Americans Americans Americans Americans
2 3 0 6 0
4 55 9 220 36
6 17 11 lo2 66
8 7 10 56 80
10 ) 36 90 360
12 7 24 84 288
14 2 ) 28 : 126
16 0 A _0 16
Totals ’ 100 100 . 586 972

Native Americans

b X &
X‘ %":—!Et J.£E

100
non-Native Americans _— 5 Yo 9 ‘};.?. 2 7L
N 7 - - s I’ -
R B

Before the days of computers and inexpensive calculators
with memories we used fairly complex methods of computing the.
mean with grouped data. These methods were designed to reduce
errors when using large numbers and deing lengthy hand
calculations such as multiplying frequencies by interval
midpoints. Now that we have very cheap calculators with
extensive memories these older techniques are not all that
useful. To compute a mean with a calculator you could simply use
the actual midpoint of the interval and formula 2-10 given above.
SPSS uses formula 2-10 in computing the mean also.

As long as you have submitted the actual raw data into the
computer there will be no problem with SPSS using formula
2=-10. However, if you have put in your data coded in some
manner, such as the NORC data on income shown in Table 2-14, you
must be careful in interpreting the results. With the codes
given in Table 2-14, the computer would tell you that the mean
for the data is 6.17. You would want to instead tell the
computer to regard each code as the midpoint of the interval.
You could do this with a RECODE command, as in RECODE VAR22 (1



If we know the mean,; median, and mode for a set of
quantltatlve data we can draw a rough diagram of the frequency
distribution or frequency polygon. We know that the mode )
represents the highest point of the graph, the median represents
the halfway peoint, and the mean is the center .of gravity.
Because the mean is more affected by extreme points than the
median is, we can tell the nature of skew (unevenness) in the
distribution by examining their relative values. If the mean is
greater than median, the distribution has a positive skew, as in
Figure 2-11. If the mean is smaller than the median, the
distribution has a negative skew as in Figure 2-12. If the mode,
median, and mean are equal, we have a symmetrical distribution,
as in Figure 2-13. Finally, Figure 2-14 illustrates the
situation where two distributions have identical means, but
unequal modes and medians. This illustrates the importance of
examining all three measures of central tendency when you have
the appropriate level of measurement and the usefulness of
graphing data.

Figure 2-11 Example of a Positively Skewed Distribution

Mode "" (L 6"

Median ’
Figure 2-12 Example of a Negatively Skewed Distribution

wmﬁwl Mol
Figure 2-13 Example of a Symmetrical Distribution

——
e

—i— weeda
i) X
Figure 2-14 Example of Distributions with Equal

Means and Unequal Medians and Modes




= 500 2 = 1500) . . . . The machine would then use these
recoded values in computing the mean and would tell you that
$6684 was the mean. ‘

Sometimes you will want to combine the means from several
groups. How you combine these means depends on your purpose,
what you want to accomplish. You might want to have the average
(mean) of the groups. That is, if you are looking at the average
GPA's of students in various schools and college in the -
university, you might want to know the average GPA of these
schools. Your unit of analysis is the school or college. Then
you would simply add up the averages for each of these schools
and compute the average of these averages. This is shown in part
a of Table 2-18.

Table 2-18 Combining Means from Several Groups

School or Mean —- .
College GPA= [{X: ni a X = ZE&’*Q
P
Journalism 2.9 30 (30) (2.9) = 87
P.E. 2.8 40 (40) (2.8) = 112
Education 2.7 60 (60) (2.7) = 162
AAA 3.2 40 (40) (3.2) = 128
CAS 3.10 ‘ 100 (100) (3.1)= 310
Totals - 14,7 - 270 ' 799

a) X = 14.7 = 2.9 (unit of analysis is the school or college)
5

B) X =799 = 2.96 = 3.0 (unit of analysis is the individual)
270

The Mean, Median or Mode?

Finally, how do we decide which measure of central tendency
to use? We would want to consider the level of measurement of
our data, for some are appropriate for some types of data only.
We would also want to consider what we want to know about our
data. We would also want to consider the shape of our data. If
we have a lot of extreme.values then the mean might be a less
accurate summary measure of the central tendency than the median,
for it is more affected by extreme values. If we have a flat
distribution, with no clear modal value, the mode might be very
misleading. Finally, if we want to make further arithmetic
calculations, the mean is usually the most useful statistic to
have. Note that computer programs commonly give all three
statistics, so the researcher must decide which ones to report.
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Measures of Dispersion

To this point we have been discussing measures of central
tendency, statistics that describe where most people are.
However, we aren't always interested in these "central® points.
Sometimes we might be interested in the furthest ranges - e.g.
How much money do the richest people make? How poor are the
poorest people? Or we might be interested in how spread out a
distribution is. Consider the two income distributions graphed
in Flgure 2-15 below. In society A the mean income is $15,000
and in society B the mean income is also $15,000. But in society
A people are much more spread out around the mean than in society
B. Which society would you rather take your chance of living in?
Your decision would be much more informed if you knew not just
the central tendency of the distribution but alsc had some idea
of its dispersion. That is what we will look at now. We will
first look at a measure of dispersion appropriate for gualitative
data; then explore measures useful with guantitative data: the
range, average deviation, variance and standard deviation; and
finally examine a measure that incorporates both measures of
central tendency and measures of disper51on, the coefficient of
relative variation.

Figure 2-15 Hypothetical Income Distributions
in Two Societies

Saa'g,\'-c‘ fq Sv c_.i{-'Lt( ‘3

//(\\ . J/

10600 41 frp .

The Index of ualitative Variation

Because qualltative variables have no magnltude associated
with them, they are categoric, we cannot examine dispersion as
the amount of distance from a set measure of central tendency (as
we will do below). Instead, we look at how variable -- or how
different =- are the cases in a given data set on the variable of
interest. Consider the distribution of the hypothetical sample
in Table 2-19 below. In part a the cases are distributed evenly
among the four rellglous categories. In part b of Table 2-19, .
the cases are all within one category of the religious
affiliation variable. The subjects are much more diverse or
varied in their religious affiliation in part a of ‘the table than

47



in part b. We would say then that the variation for subjects in
part a is greater than the variation for subjects in part b. 1In
fact, since the subjects are equally distributed among the four
categories in part a, they show as much diversity as. they
possibly could. That is, their diversity is at a maximum. Since.
the subjects in part b are all grouped into one category, they
show the least diversity that they possibly could and we would
say that their diversity is at a minimum.

Table 2-19 Hypothetical Data on Religious
Afflliatlon of 3 samples

Réeligious

Affiliation a b i
Protestant 25 100 40
Catholic 25 0 30
Jew 25 0 20
Other 25 0 10
Totals 100% 100% 100%

The Index of Qualitative Variation (IQV) has the very nice
quality of reporting this amount of diversity in a proportion.
When a measured variable has the maximum variation or diversity
possible, the IQV = 1.00. When the variable shows no diversity
whatsoever, the IQV = 0.

To compute the IQV one determines how many differences - or
how diverse - a set of cases could possibly be. That is, one
computes the maximum number of differences among cases within a

data set. This is called Sp One then examines the actual
variation in one's data set. This is called the observed
differences and is called S, The IQV is then the ratio of these

observed differences to the maximum possible number of
differences:

IQV = Sg / Sy (2-11)

To compute the number of observed differences one multiplies
every category frequency by every other category frequency and
sums these Pi?dECts' This is represented by the formula:

Sez, 0 L Wiy €4f - (-1
S L .
Ny = number o cases [n tie £""c‘ fr7
= number o conar m"‘(‘LJ cats iy
¥ cate rh;r
M ér 'fb: nu./«ﬁ:,. r-d e g;
Y2s r
For part a of Table 2-19, Sp = élfilkfyf-chf ¢ 6Lf}§1_/

F CASHAS )+ 2T + Cvdar) « 375U

where
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For part b of Table 2- 19, 8¢ = 100co) + 199L0) ¢ 102(2) + 0(s) + (20 )
+wko) 20 |

For part c of Table 2-19, So =@2X30) + G2X20) + 90(10) ¢ (30)(20)
4 (30)i0) + (20)is) = 3500

To computZ.the maximum number of differences one uses the formula
' iy - _ N
= 2 . M
DUV wdape V= (2-13)
For part a of Table 2-19, Sp =
L (4-1)02c)" = axs)pas) = 3759

For part b of Table 2~19 S5y = 1CJ)C£AIJ = 374D

For part c of Table 2-19 Sp = (;J{3)((;Ji)=.?7579

r

The IQV's for these various tables are as follows:

for part a of Table 2-19% IQV = 3750/3750 = 1.00
for part b of Table 2-19 IQV = 0/3750 = 0O
for part c of Table 2-19%9 IQV = 3500/3750 = ,93

Note that Sy = Sy for part a of Table 2-19. This is as it should
be because we knew that those data were as diverse as they could
possibly be. For part b, §5 = 0, for there 15 no diversity. S§g
for part c is between those for parts a and b

The IQV can be used nicely for comparative purposes.
Mueller, et al (1978) give an example in computing the relative
amount of racial homogeneity in two communities. The numbers of
whites and blacks in Indianapolis and Louisville in 1970 are
shown in Table 2-20 below. The IQV for each city is also
computed and it may be seen that they are quite similar in the
amount of homogeneity.

If one has data that are given in proportions rather than in
raw frequencies one can simply compute the IQV using the
proportions rather than the frequencxes, as shown with the data
from Table 2-19.

49



Table 2-20- Racial Composition of Indianapolis
and Louisville, 1970

Number of Whites ‘ Number of Blacks
Indianapolis 967,710 137,364
Louisville 724,120 100,683
For Indianapolis So = 957,710;{157,354 = 13,292,851

S = (553,537)(553,537) = 30,640,321
For Louisville Se = (724,120;{100,6833 = 7,290,657

S 277121 (412,402)2 = 17,007,499

IV = §o/8q = .429

The Range

While the 'IQV is suitable for gqualitative data the range is
suited for quantitative data (and in a limited sense to data
measured on an ordinal scale). The range is simply the smallest
interval that encompasses all values. For instance, in Table 2-
1, the ages of the bank employees range from 23 to 64.5. This is
a total range of 41.5 years. The SPSS computer printout gives
the minimum wvalue of this range (23.0), the maximum value
(64.50) and the total range (41.5 years). It assumes that we are
dealing with quantitative data. '

If we have data measured on an ordinal scale we can discuss
its range in a theoretical sense. For instance, we may say that
political organizations in a community range from the John Birch
Society on the far right to a nec-Maoist organization on the
left. This is a theoretical range, however, not a mathematical
one; so it cannot be regarded as a statistic and is not used in
computations.

There are, of course, many problems with the range as a
statistic. It is crude, inexact and gives no hint as to the
distribution of values between the extremes. We have no idea if
the minimum and maximum are erratic cases or actually not that
atypical. To counteract these problems you might want to report
gsome type of intermediate range. These would use the position
measures discussed earlier in conjunction with the computation of
the median. For instance, you might report the interquartile
range, the first and third quartile of a set of data (3.8 and 7.0
for the BIA data for Native Americans). You might also report
the middle 80% range (from €10 to €90) (3.25 to 10.78) for Native
Americans. '
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Sometimes we might be interested in how the range is
affected with changes in a frequency distributicn. Say we are
examining the distribution of incomes within a population.
Suppose the minimum is $3000; the maximum is $15,000; and the
range is $12,000. If everycne earns $1000 more then the range is
unchanged, even though the minimum and maximum both are
increased. If only the poor people earn more, the range would
become smaller; if only the rich earn more, the range would
become larger. This 1llustrates how the range can be useful in a
limited sense.

Averaged Deviations-

The most ‘common way of measuring dispersion within a
frequency distribution is to examine the deviations of scores
from a measure of central tendency. There are three types of
these measures and each will be considered below. They all
involve summing the deviations of the scores from the mean or
median and then averaging these deviations.

The Average Deviation =-- As noted above, the sum of
deviations of scores around the mean equals zero. However, if we
ignore the sign of these deviations and simply look at the
absolute difference of scores from the measure of central
tendency, the sum of deviations or absolute deviations around the
median is smaller than the sum of absolute deviations around the
mean. This is illustrated in Table 2-21 below with data from
Table 2-15.

Table 2-21 Example of Computing Absolute Deviations
Around Mean and Median

X Ix-mal (x=x|
6 3 5
7 2 4
8 1 3
10 iy \ 1

16 7 5
19 10 g
24 26

The average deviation around the median (ADpeg) is simﬁly
the average of these absolute deviations of scores around the

median. For the data in Table 2-21, ADpeq = 24/6 = 4.0
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In general,

i —Ma|

ADped = —— where X is a score
Md is Median,and  (2-13)

n is the sample size

This is also referred to as the median deviation. The value can
simply be interpreted as the average distance of values in the
distribution from the median.

One could also compute the average deviation of scores from
the mean, but because this value is consistently larger than the

ADpeg, it is seldom used. In fact, even though the ADpeg has a
very nice intuitive interpretation it is seldom reporteg in the

literature and is not commonly provided by computer programs,
including SPSS.

The AD can also be computed.for grouped data. Table 2-22
gives the computation of the ADpeg for the BIA data. Note that
the general formula is: ’

e 214
Zé“x“ ﬁ&l where f£fi is frecquency of an interval,L 4)
'_“Er’#‘— Xi is midpoint of that interval,

Md is the median, and
N is the sample size

ADpeg =

M Table 2-22 Competition of Average Deviation
% moi Y4 from Median for BIA Data

. ' [ K- MA]
5 re & s

o [Nl pemel AR M%’ o A
8 2.7 8.1 3 0 8.1 0
4 0.7 6.1 55 9 18.5 54.9
& 1.3 4.1 17 11 22.1 45.1
g 3.3 % 7 10 23.1 21.0
18 5.3 0.1 9 36 £7.7 3.6
12 7.3 1.9 7 24 51.1 45.6
14 9.3 3.9 2 9 14.6 35,1
16 11.3 5.9 0 1 0.0 5.9
ek MA = 4. 100 100 205.2 9112

el nen NA <40, [

for Native Americans ADpeq = 205.2 = 2.05
100

for non-Native Americans ADpeg = 211.2 = 2.11
100
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The Variance =-- Much more common than the average deviation
is the variance. The variance involves deviations around the
mean. However, because the deviations around the mean sum to
zero, it is necessary to somehow get rid of the negative signs.
This is done by squaring each of the deviations. The variance is
then computed by averaging these squared deviations. It is
defined as follows:

X -X)* X mr 2t
w:(uc_ sl ﬁ!"b/& ’() 5 Y ( . ;

G *+

-

Note that we have used the Greek letter $ ‘in defining the

variance. This indicates_that the value is for the pgpulation.
In talking about the sample we use the roman letter s<. .

The variance does not have an easy intuitive interpretation.
It is the average of the squared deviations of scores around the
mean, but this does not seem to mean much on an intuitive level,
especially when you realize that we are talking about squared
units. Table 2-23 gives the computations for the variance for
the BIA data. Note that this says that the variance for Native
Americans is 8.18 sguared grade levels; the variance for non-
Native American employees is 8.08 squared grade levels.

The Standard Deviation == The standard deviation is a
translation of the variance into units that are more easily
understood. The standard deviation is simply the square root of

the variance: ; —

A (2-16)
for grouped data: '
" i
— _ [k D)
/\_/ (2~17)
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Table 2-23 Computations of Variance and Standard
Deviation for BIA Data

2
e _3)= Xo -X)
Frequencies O(b ’K7 O ’X) { _
Xi NA non_NA NA non NA N2A non_N2a NA non NA
4 55 9 -1.9 -5.7 3.6 32.5 198.6 292.4
6 17 11 0.1 -3.7 .01 13.7 2 150.6
2] 7 10 2.1 -1.7 4.4 2.9 30.9 28.9
10 9 36 4.1 0.3 16.8 0.1 151.3 342
12 7 24 6 2.3 37.2 5.3 260.5 127.0
14 2 9 8.1 4.3 65.6 18.5 131.2 l66.4
16 0 1 10.1 6.3 39.7 o 39.7
100 100 8l18.3 808.2
Xnaz$9 fruAs VE 919 e =28l
= 4Q'7
XmA)A' .
T;H non NA & *= fﬂ’ﬂ-l/wp c£.08 ¢€ = 3.4 )
To ¢ (mnale reandics gkl .

Errerd, d-ﬂ-*f (beuglko;cn .rb‘,./;ﬁ aareja% tede a éohﬁf‘ulé'ig

For the BIA data, the standard deviation for the native
Americans is 2.86; for the non-Native Americans it is 2.84. Note
again, however, that the standard deviation does not really have
an easy intuitive definition. It is the square root of the
average of the squared deviations of scores around the mean. By
comparing the standard deviation of the native Americans and non-.
Native Americans we can see that they are essentially equally
diverse. They have approximately equal standard deviations.

As noted above, we have used the Greek letters above in
defining the standard deviation and the variance. This is
because the values and formulas differ slightly if we are
describing a population or a sample. Simply because we are
taking a sample from a population any sample is less variable
than the population it comes from. When the sample is small
compared to the population this difference can be substantial,
but with very large samples it is quite small. The formulas for
the standard deviation and the variance of a sample take this
into account, however, by altering the denominator to be n-1 (or
one less than the sample size) rather than n. For small samples
this will produce greater differences between the formulas forg-
and s than for larger samples. Some texts call this formulag—
instead of s. You should understand the logic and look for the
formula as it is defined. The formulas for the sample values of
the standard deviation and variance are given below.
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& ..
Cgalt b n-| (2-18)
A [zeeX)”
be & % - | (2-19)

The SPSS program assumes the data it is given are from a
sample and uses the formulas given directly above in its
computations. Sometimes the value of the variance is too large
for the computer to print (it has too many digits). When this
happens you can compute it by simply squaring the value of the
standard deviation. Just as with the measures of central
tendency you must be careful in how you submit data to the
computer for the results with the standard deviation and variance
to be accurate. Your best bet is to simply recode the values, as
with the income data in Table 2-14 from the NORC study, to the
midpoints of the intervals. If you had used the unrecoded data
the computer would give you a much smaller value as the standard
deviation for these data then if you had recoded to the midpoint
of each interval. :

The Coefficient of Relative Variation =-- The_ full utility of

the standard deviation will only become clear after we discuss
the normal distribution in the next section. The standard
deviation and the average deviation, however, both have a nice
descriptive use in the Coefficient of Relative Variation, a
measure that is used with ratio data. It is necessary to have
data measured on a ratio scale when using the CRV because it
involves looking at the relative size of the measure of
dispersion and the measure of central tendency. If the size of
the intervals were arbitrary (that is, if there were no true zero
point), this ratio would be meaningless.

The form of the CRV is simply the measure of dispersion
divided by the measure of central tendency. For the median

CRV = ADpeq/Med (2=20)
and for the mean
CRV = 5/X (2-21)

The CRV is used to compare the deviations of a group to the
average for that group. You might remember that while the native
American and non-Native American employees of the BIA have very
dissimilar measures of central tendency in grade level, the
measures of dispersion are guite similar. The CRVs for these
data are given in Table 2-24 below.
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It appears that the CRV for Native Americans is
substantially larger than the CRV for non-Native Americans. This
indicates that not only do the non-Native Americans have a larger
mean, but that relative to this mean they vary much less.

Table 2-24 Computation of CRVs for BIA Data

Native American non-Native American
CRV median 2.05/4.71 = 0.44 2.11/10.11 = 0.21
CRV mean 2.86/5.86 = 0.49 2.84/9.72 = 0.29

Another example is given by Mueller et al, 1978. This
involves the homicide rates in the New England and South Atlantic
states. The AD for the New England states is .78, while the AD
for the South Atlantic states is 3.60, suggesting that the states
of the northeast are much more homogeneous since their average
divergence from the median is so much smaller. However, once we
look at this average deviation relative to the median the picture
changes. The median homicide rate for the New England states is
2.75, while that for the South Atlantic States is much larger,
12.15. The CRV's are computed below.

New England States: CRV = .78/2.75 = .28B4
South Atlantic States: CRV = 3.60/12.15 = .296

It is now apparent that relative to their respective medians, the
two groups of states do not differ markedly in their relative
variation.

Yet, another example of the use of the CRV is in Tables 2-25
and 2-26. These are taken from Christopher Jencks' book
Inequality (1972). The first shows the coefficients of variation
for education (years of regular schooling completed) for various
groups of cohorts of individuals in the United States. The
second gives the coefficients of variation for income. Note that
the CRV's are much smaller for education than for income, a
central peoint in Jencks' analysis.

: It must be mentioned again that the CRV is only usable when
" we have ratio data. It invelves computing ratios and this can
only be done when we have a true zero point, when those ratiocs
would make sense.



Summary

We have examined a number of ways of describing univariate
distributions: frequency distributions displayed in tables,
graphs of the data, measures of central tendency, and measures of
disper51on. We have noted which forms or statistics are
appropriate for variables measured on different levels. We have
also cautioned students on the use of computers and calculators
and their output.

We have used one example throughout this chapter =-=- the
grade levels of employees of the Bureau of Indian Affairs in )
1970. We have assumed that this variable is measured on a ratio
scale (although this is admittedly stretching it unless we
translate the grades into dollars earned, the original reason for
setting up the grade limits).. The frequency distribution for
both Native American and non-Native American employees is given
in Table 2-6. Relevant graphs are given in Figures 2-2, 2-3,

2-7. Statistics for these data are computed throughout the text
and are summarized in Table 2-27. ©Note that:- all of these results
suggest that Native Americans are employed at much lower grade
levels than non-Native Americans, even though it is the policy of
the Bureau (and has been for many years) to give Native Americans
employee preference in hiring. All of the measures of central
tendency are much lower for the Native Americans than for the
non-Native Americans. The range for the Native Americans is
elightly smaller although the average deviation, variance and
standard deviations are almost equal. However, the coefficients
of relative variation are strikingly different, with that for the
non-Native Amerjicans being much less. This suggests that,
relative to their means, the non-Native Americans actually have
much less variation than the Native Americans.
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Table 2~27 Summary of Measures of Central
Tendency and Dispersion for BIA Data

Native non-Native

Measure Americans Americans
Mode -

Crude 4.0 10.00

Refined . 4,186 10.37
Median 4,71 10.11
Mean 5.86 9.72
Minimum#* 1 !
Maximum#* 16 ; 17
Range# 15 16
Average Deviation

{median) 2.05 2.11

variance 8.18 8.08
Standard Deviation 2.86 2.84
CRV Median 0.44 0.21

CRV Mean 0.49 ' 0.29

*Computed from data with interval lengths of 1 grade.
All others computed from data with interval widths of 2 grades.
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IZI. The Normal Distribution

In this section we examine the characteristics of the
normal distribution. The normal distribution is a special
frequency distribution that has very useful mathematical
properties. It is symmetrical, that is both sides of the
distribution are identical. This means that half the cases
are above the mean and half the cases are below the mean.

It is bell shaped, indicating that most of the cases are at
the mean and relatively fewer are at the extremes. It is
infinite; that is the distribution keeps going out on either
side infinitely. It is also unimodal; the mean, the mode,
and the median are all the same value. Even though all
normal curves share these characteristics, not all normal
curves look alike. Some are relatively short and wide,
others are taller and narrower. Some are more peaked, while
others are more flat. Figures 3-1 and 3~-2 give examples of
the normal curve. In the first example three normal curves
are shown. They all have the same standard deviation, but
different means. In the second example the distributions
are also both normal. They have the same mean, but they
have different standard deviations.

Figure 3-1

Normal Distributions with Unequal Means and Equal Standard
Deviations




- Figure 3-2

Normal Distributions with Equal Means and Unequal Standard
Deviations
1
e

-
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Normal distributions are most commonly approximated in -
natural situations. For instance, shoe size, height,
weight, gestation periods, and other biological phenomena
generally tend to assume a shape like a normal distribution.
Other distributions tend to approach the normal one, but,
most importantly, theoretical distributions used in
statistical inferences are often normally distributed. Many

of our statistics are based on the propertles of the normal
curve.

The most important aspect of the normal curve involves
the area under or enclosed by the curve. Regardless of what
the mean or the standard deviation is, the proportlon of the
area under the curve between the mean and a given distance
in standard deviation units from the mean is constant. In
other words, we could mark out the distance from the mean in
standard deviation units, as is done in Table 3-2, and know
what proportion of the area under the curve is in each part.
Obviously, half of the area is above the mean and half is
below the mean. About 34% of the area is between the mean
and one standard deviation on each side. Or about 68% of
the area is between one standard deviation above and one
standard deviation below the mean. About 95% of the area is
between two standard deviations above and below the mean.

Because this is standard within all normal
distributions, we can compute the area under the curve and
corresponding information for any normal distribution
(examples are given bkelow). This is done by using standard
tables statisticians have developed that tell what



proportion of the area under|the curve is between the mean
and any standard deviation unit from the mean. An example
is Table 3-1, the table of the normal distribution which was
handed out in class. Another example is Table A in Appendix
C of Elifson, et al (pp. 463 465). To use this table for
any normal distribution you need only convert your normal
distribution to equal the ong where the mean is zero and the
standard deviation is one. ome tables, like the one in
Elifson, also glve the proportlon of area found under the
curve beyond a given standard deviation unit from the mean.
Note that the two values (thb proportion of the area between
the mean and a given standaxrd deviation unit and the
proportion of area beyond a given standard deviation unit)
must sum to .50. This is because half of the area under the
normal curve lies on each side of the mean.

Part one of Table 3-2 illustrates the use of this table
with a normal distribution. For instance we know from the
properties of the normal distribution that the area on one
side of the mean of zero is 50% of the total distribution
(lines a and b). Suppose we were interested in the
proportion of area under the normal curve between the mean
and one standard deviation above the mean. To find what
value corresponds to this area we look down the left hand
column of Table 3-1 until we find 1.0, corresponding to 1
standard deviation unit from the mean. We then move to the
next column to the right headed .00. (The columns headed by
two decimal points [.00, .01, .02, ...] are used when
finding the area under the curve at a point in standard
deviation units measured to the nearest hundredth.) The
value here is .3413, indicating that the area from the mean
(0) to one standard deviation above the mean includes 34.13%
of the total area (line c). Remembering that 50% of the
area lies below the mean we <an say that below 1 standard
deviation above the mean there is 50% + 34.13% = 84.13% of
the total area under the curve (line 4d).

Again loocking at Table 3~1 we can see that between the
mean and two standard deviations above the mean we have
.4772 of the total area (line e). If we remember that one-
half of the area is below the mean we can easily calculate
that .9772 of the total area falls below two standard
deviation units above the mean (line £). Then combining
information in lines ¢ and e we can tell that between one
standard deviation and two standard deviations above the
mean is .1359 of the area (line g). Line i1 looks at the
corresponding area below the mean. If we remember that the
normal distribution is symmetrical, we can compute that

.8185 of the total area is between one standard deviation
below the mean and two standard deviations above the mean
(line h).

Part two of Table 3-2 illustrates how one finds the
proportion of area under a nermal curve when the mean is not



Table 3-2
Examples of Using the Normal Curve Table {(3-1)

N(0,1): X = 0,0=1, a normal discribution

{ | from __ to __ there is of the distri-
! [ bution
I
I ! a) — to 0 .5000
{ ] B) O to+ = .5000
| | ¢) Otolg .3413
I : d) =tolog .8413
| | | ! e) Oto2o 4772
— i l l ) —to20 .9772
: ; l I . g) loto2o 4772 - .3413 = 1359
i [ ! ! f h) =lo to 2 @ .3413 + .4772 = .8185
-3¢ -20 -lo 0 1o 20 30 i) =20 to-l ¢ 4772 - L3413 = .1359
X = 5030 = 10, normal
distribution
g o X=X Proportion of area under
a X =z curve to that point X
: 60 5 .5000 + .3413 = .8413
; i t 65 1.5 .5000 + .4332 = ,9332
| ! 40 ~1.0 ,5000 - .3413 = ,1587
' ‘ 1 50 0.0 .5000 + 0 = .5000
l ; : 25 3.5 .5000 = .4938 = .0062
i : ( :, ~hetween between [.5000 + .4772] -
Lo I S 130 & 70 -2.0 & +2.0 (.5000 + .4772]
{1 1 ! ! ! = ,9544
=0 30 40  S50° 60 70 80



equal to zero and the standard deviation is not equal to
one. In the example the mean is 50 and the standard
deviation is 10. To transform this distribution to one
where it is N(0,1l) we compute z-scores. This is a simple
transformation that simply moves the mean of the
distribution along to zero and stretches or compresses the
standard deviation so that it is equal to one. The z
transformation is simply

z=(X~-X)/s or (x-/a.)/a— (3-1)

You may see in part b of Table 3-2 that when the mean (50)
is substituted for X in the z-transformation the z-score
equals zero. When 40, one standard deviation below the mean
is substituted, z = -1. When 60, one standard deviation
above the mean is substituted, z = +1. The chart in part b
of Table 3-2 gives the z-score for various values of X and
then shows how one would compute the proportion of area
under the curve up to that value of X.

For instance, when X (the score under consideration)
equals 60, the corresponding z-score is (60-50)/10 = +1.0.
We can then refer to Table 3-1 and note that between the
mean and one standard deviation above the mean there is
.3413 of the total area. Since we know that .5000 of the
area is below the mean, we can say that .5000+ .3413 = .8413
of the area under the curve is at or below the score of 60.
As another instance, consider X = 40. Here z = (40-50)/10 =
-=1.0 or one standard deviation unit below the mean. We know
that between the mean and one standard deviation below the
mean there is .3413 of the total area. Since there is .5000
of the total area below the mean, below one standard
deviation below the mean, there must be .5000 - .3413 or
.1587 of the total area. Students should work through
remaining examples to assure they understand the procedures
invelved.

-

Soihhe have only talked about "scores" and in rather
abstract terms. Suppose instead, again considering part b
of Table 3-2, that the scores represent the number of items
on a test that students had correctly answered. Assume also
that there were many students involved and that the
distribution of scores was N (50, 10) (normally distributed
with a mean of 50 and a standard deviation of 10). The
computations in part b of Table 3-2 would then tell us that
84.13% of the students had scores of 60 or lower, 93% of
the students had scores of 65 or lower, etc. In addition,
95% of the students had scores between 30 and 70.

Very few actual frequency distributions that
soclologists work with are normally distributed. Yet,



understanding the characteristics of the normal curve can
help in interpretations of the standard deviation for all
types of distributions. For instance, suppose one was
interested in studying the distribution of income within a
population and that one knew that the mean was $20,000 and
the standard deviation was $3000. You could then know that
if this distribution were shaped like a normal distribution,
approximately 64% of the cases in the population would have
incomes between $17,000 and $23,000 (+ or = one standard
deviation from the mean). Similarly, approximately 96% of
the cases would have incomes between $14,000 and $26,000 (+
or - two standard deviations from the mean). Similarly, you
could compute a z-score to find that an income of_$21,500
was .5 standard deviations above the mean (z= (X-X) /s =
($21,500 - $20,000) / $3,000 = 1500/3000 = .5). Then you
could consult the table of the normal curve to determine
that, if the distribution were shaped like a normal curve,
.3085 or 31% of the cases would have incomes higher than
this value and 69% would have incomes lower than this value.



IV. Bivariate Statistics Appropriate
for Qualitative Variables

The work in the last two sections has generally focused
on measures appropriate only for variables measured on at
least an interval scale. However, as we have noted earlier,
many variables used in the social sciences are qualitative
in nature and are measured on only a nominal or ordinal
level. In addition, the previous work has looked only at
univariate distributions. It has involved looking at only
one variable at a time. In this section we begin to lock at
how two variables are associated with each other, or go
together. '

We first review the basic rules involved in
precentaging tables and displaying and interpreting data
regarding the relationship between two qualitative variables
and then examine two measures of association that can
describe these relationships.

Developing and Interpreting Bivariate Tables

Suppose we were interested in the relation between
subjects' religious preference and their political party
identification. Our theoretical and substantive readings
had led us to conclude that religious preference has an
influence on the type of political party with which people
identify. One would then say that political party
identification is the dependent variable and that religious
preference is the independent variable. Each of these
variables may be said to be measured on a nominal scale:
Party Identification with three attributes (Democrat,
Independent, and Republican) and Religous Preference with
four attributes (Protestant, Catholie, Jewish, and Other).

The most appropriate way to display these data would be
a table that was percentaged to show the relationship
between the two variables. Such a table is Table 4-1. Note
that the table includes a title, subheads, and notes as
described in an earlier section. Note also that the
percentages are computed within categories of the
independent variable and that the percentage distribution
for the total group on the dependent variable is also
included. This distribution for the total group is referred
to as the marginal distribution. The distributions within
each category of the independent variable are called the
conditional distributions (conditional upon the categories
of the independent variable). The entire table, the whole
set of columns and comparisons, is referred to as the joint
distribution of religious preference and party affiliation.



Table 4-1
Percentage Crosstabulation of Religious Preference
and Party Identification

Party
Identification Religious Preferences
Protestant Catholic Jewish Other Total
Democratic 42.5% 53.5% 61.8% 30.6% 44.8
Independent 31.1 32.6 29 .4 56.5 33.2
Republican 26.5 13.9 - 8.8 12.9 22.0
TOTAL 100,1%* 100.0% 100:0% 100.0% 100.0%

N 998 368 34 108 1508

* Does not add to 100% due to rounding
Source: 1977 General Social Survey

The fact that the table is percentaged within
categories of the independent variable is very important.
This is necessary to allow for meaningful comparisons across
the categories of the independent variable, to tell what
kind of effect the independent variable has on the dependent
variable. By percentaging within each category of the
independent variable the data within each of those
categories is standardized. 1In Table 4-1 we are interested
in the effect that religious preference, the independent
varible, has on political party identification, the
dependent variable. In reading or interpreting percentaged
tables such as this, we compare the percentages across the
dependent variable, whether the dependent variable is placed
in the columns or the rows of the table. Another way of
describing this is to say that we compare the marginal
distribution of the dependent variable with the conditional
distributions.

In examining Table 4-1 we would first look at the
marginal distribution (the total figqures), noting that close
to half (44%) of the respondents are Democrats, about one-
third (33.2%) are Independents, and only slightly more than
one-fifth (22%) are Republicans. We would then look at the
conditional distributions, comparing these to the marginal
distributions. We see then that religious preference (the
independent variable) appears to be related to political
identification (the dependent variable). With regard to
democratic affiliation, those with a Jewish preference are
most likely to be in this group, followed by Catholics.
Those in the Protestant category are slightly less likely
than those in the total group to be Democrats and those with
the "Other" religious preference are least likely to be



Democrats. Those with the "Other" preference are much more
likely than Protestants, ‘Catholics, or Jews to identify with
the Independents; Protestants, Catholics and Jews have about
equal tendencies to identify with the Independents.

Finally, Protestants are much more likely than those who
prefer the other religious groups to identify with the
Republicans. Jews are least likely to identify with the
Republicans; but, Catholics, Jews and those with an "other"
preference all identify with the Republicans far less often
than the total group. Note that in these comparisons we are
essentially reading across or comparing the values of the
dependent variable in the categories of the independent
variable.

The information contained in a simple bivariate table
will usually be insufficient to answer a research question.
We will want to introduce one or more control variables to
further examine the relationship apparent in the bivariate
(or zero-order) table. Table 4-2 illustrates the
introduction of the control variable "annual family income"
{dichotomized as below $20,000 annually and $20,000 and
above). Note that in this table the original bivariate
table is reproduced for those from families earning less
than $20,000 annually and for those with a family income of
$20,000 ‘and higher. Note also that percentages are computed
within each category of the independent variable .within each
sub-table.

Here we would first compare the marginal distributions
in the two partial tables. We would note that those with
lower family incomes are much more likely to be Demccrats,
those with higher incomes are much more likely to be
Independents and those in the two income groups are equally
likely to be Republicans.

We would then look at the conditional distributions in
each partial table. Within both income groups Jews and
Catholics are more likely than Protestants and those with
other religious preferences to identify with the Democrats.
This result parallels that found in the zero order table.
Among those earning less than $20,000 both those with an
"other" preference and Catholics are more likely than
Protestants and Jews to identify with the Independents.
Among those. with a family income of $20,000 or more only
those with an "other" religious preference are more likely
than the total group to identify with the Independents.
only the results with this higher income group parallel
those found in the zero=-order table. Finally, among those
with a family income of less than $20,000, only Protestants
are more likely than the total group to indicate a
Republican preference and no Jews in this income category
and only 8% of the Catholics indicate a Republican
preference. Among those with a higher family income both
Protestants and Catholics indicate a Republican )



identification more often than the total group. In the zero
order table only Protestants were more likely than those in
the total group to identify with the Republicans,

Table 4-2
Percentage Crosstabulation of Religiocus Preference
and Party Identification by Annual Family Income

Annmual Family Income: Less Than $20,000

Party
Identification Religious Preferences
Protestant Catholic Jewish Other Total
Democratic 50% 60% 80% 40% . 53%
Independent 20 32 20 40 25
Republican 30 8 0 20 22
TOTAL 100 100% 100% 100% 100%
N 450 250 10 50 760
Annual Family Income: $20,000 and More
Party
Identification Religious Preferences
Protestant Catholic Jewish Other Total
Democratic 36% 40% 54% 22% 37%
Independent 40 34 33 71 41
Republican 24 26 13 7 22

TOTAL 100 100% 100% l00% 100%

N 548 118 24 58 748
Source: Hypothetical

These results suggest that even when we control for
family income, religious preference seems to be related to
party identification. However, some differences do appear
between the zero order and partial tables, especially with
respect to Catholics' identification with Independentsand
Republicans. While the zero order table indicates that
Catholics identify with the Independents about as often as
the total group and with the Republicans less often than the
total group, the partial tables indicate that low-income,
but not high-income, Catholics are more likely than their
total income group to identify with the Independents.
High-income, but not low-income Catholics, are more likely
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than their total income group to identify with the
Republicans.

Measuras of Associagipn

Measures of association summarize the extent to which
one variable depends upon or is related to another. While
one can examine the percentage differences found in tables,
such as 4~1 and 4-2, to determine the extent to which a
relationship exists between two variables, such computations
can become tedious and confusing when there are more than
two categories within a variable. Thus, researchers have
developed single measures which summarize the degree to
which two variables are associated with each other.

There are many measures of association, the most useful
of which have what is called a proportionate-reduction-of-
error (PRE) interpretation. Below we first describe the
basic elements of a PRE statistic and then describe two such
measures of association, one appropriate for variables
measured on a nominal scale and the second appropriate for
variables measured on an ordinal scale.

PRE Measures of Association

The designation of PRE measures of association was
first proposed by the sociologist Herbert Costner to
describe a large variety of measures of association. PRE
measures have four common elements:

First, they have a rule for predicting the
classification of each subject on the dependent variable,
ignoring information about the classification of that menber
on the independent variable. For this rule we generally
look only at the marginal distribution of the dependent
variable. The basis for the prediction often involves
measures of central tendency such as a mode or a mean.

Second, we need a rule for predicting the
classification of each subject on the dependent variable
using the information about the classification of that
member on the independent variable. In other words, when
using the second rule we take information about both the
independent and dependent variable into account.

Third, we need a definition of what is meant by a
prediction error. This definition varies by the level of
measurement of our variables. With nominally measured
variables an error is usually a misclassification. With
ordinally measured variables, an error involves a wrong
prediction of relative order of a pair of variables. With
intervally measured variables, an error can involve
deviations from a central value such as the mean. The
number of errors in classifying the dependent variable when
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using rule one is termed Ej;. The number of errors in
¢lassifying the dependent variable when using rule two is’
termed E;.

Fourth, a PRE measure of association is defined as
PRE = (Ej - E2)/E1 (4-1)

The term in the numerator (E; - E3) essentially tells us how
much knowing the independent variable reduces our error in
predicting the dependent variable. The term in the
denominator (Ej) 1is simply our total error in predicting the
dependent variable when we don't know the independent
variable. Thus the PRE measure tells how much our knowledge
of the independent variable has reduced our error in
predicting the dependent variable as a proportion of the
total error we have if we don't know the independent
variable. In other words, a PRE measure tells us how much
our error in predicting the dependent variable is reduced
once we know the independent variable.

The definition of error used varies from one type of
measure to another. The result however, is always a
proportion. When a PRE measure equals 0 we could say that
there is no association -~ we have had no reduction in our
error in predicting the dependent variable as a result of
knowing the independent variable. When a PRE measure equals = gvr
+ 1.00, we would say that there is perfect association =-- a
total reduction of error in predicting the dependent
variable when we know the independent variable.

Lambda: A Measure for Varijiables on a Nominal Scale

Lambda ( 1 ) is a PRE measure appropriate for variables
measured on a nominal scale. Error is defined in this case
as a misclassification, not predicting the correct category
of the dependent variable.

Rule 1, the rule for predicting categories of the
dependent variable when we do not take the independent
variable into account, involves simply examining the
marginal distribution of the dependent variable. If we know
nothing about the joint distribution, we would be most often
correct if we predicted that a case fell into the modal
category. Our errors by rule one would then be computed by

E; = N - max N.4 (4=2)
where N.4 are the marginal frecquencies of the dependent
variable, In other words, E; is the total of the
frequencies not found in the modal category.

Rule 2 is the rule for predicting categories of the
dependent variable when we take the knowledge of the
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independent variable into account. In this case, we could
use as our best prediction of categories of the dependent
variable, if we know the joint distribution, the modal
category of the dependent variable within each category of
the independent variable. The number of errors then
corresponds to the total number of cases not found in these
modal categories. This may be represented as:

Ep = N = (MaxNiy + MaxNpy + ... + MaxNpsy) (4-2)

where Nij4 = cell frequencies in each category of the
independent variable i.

Table 4-3
Joint Distribution of Race/Ethnicity and
Unemployment Status for a Hypothetical Sample
of Teenagers

Race/Ethnicity

Employment White  African- Hispanic Other  Total
Status American

Employed 250 50 100 75 475
Unenployed 50 150 100 25 325
Totals 300 200 200 100 800

Consider the data given in Table 4-3 regarding the
association between race/ethnicity and unemployment status
for a hypothetical group of teenagers. Within this table
race/ethnicity must clearly be the independent variable.
Then, looking at the distribution of marginals for the
dependent variable, employment status, it may be seen that
the modal category is "employed," which contains 475 of the
800 cases., Thus, if.we were to guess, based on this
marginal distribution, that teenagers were employed we would
be right in our prediction 475 times and wrong 800 - 475 or
325 times (800 = 475 = 325). 1In other words, our errors by
rule 1 would be 325,

Now, however, if we took intoc account the distribution
of the teenagers across the 4 categories of race-ethnicity,
we would have a different picture. For the whites, we would
predict that they were employed, and we would be right 250
times. For the African-Americans, we would guess that they
would be unemployed, and we would be right in this guess 150
times. For the Hispanics, we could guess that they would be
either emploved or unemployed and be right 100 times with
either guess. Finally, for the "other" group we would guess
that they were employed, and be correct 75 times. Thus, if
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we knew the race-ethnicity of the teenagers we would be
right 575 times (250 + 150 + 100 + 75 = 575). Given that
there are 800 people all together we would be wrong 225
times. Thus, our errors by rule 2 would be 225.

We can now compute lambda ( A_) for this association.
lambda = (Ej - E2) / E;
= (325 - 225)/ 325 = 100 / 325 = .31

This indicates that we can reduce our error in predicting
teenagers' employment status by 31% (almost one-third) if we
know their race and ethnicity.

Table 4-4 gives the actual frequencies for the data
given in percentage form in Table 4-1 for the relationship
of religious preference and party identification. Remember
that Religious Preference is the independent wvariable and
Party Identification is the dependent variable. The
computations for lambda for these data are shown in Table 4~
5'

Table 4-4
Frequency Cross-Tabulation of Religious
Preference and Party Identification

Party Religious Preference
Identification Protestant Catholic Jewish Other Total
Democratic 424 197 21 33 675
Independent 310 120 10 61 501
Republican 264 51 3 14 332
Totals 598 368 34 108 1508
Table 4-5 !
Computation of Lambda for Data in Table 4-4
E;j = N - Max Ns
= 1508 ~ §75 = 833
E2

(Max N14 + Max Naj + Max N3§ + Max Ngq)
1508 - %424 + 1977+ 21 + 61
1508 = 703 = 805
Ey - E5 = 833 - 805 = 28 = .034
e S 833 833
Ey
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Th lambda value of .034 indicates that we reduce our errors
in predicting the respondents' party identification by .034,
or 3.4%, once we know their religious preference.

Table 4~6 gives the frequencies corresponding to the
percentage distribution given in Table 4-2 for the
relationship between religious preference and party
identification for those with annual family income under
$20,000 and $20,000 and over.

Table 4-6
Crosstabulation of Religious Preference
and Party Identification by Annual Family Income

Annual Family Income: Less Than $20,000

Party

Identification Religious Preferences
Protestant Catholic Jewish Other Total

Democratic 225 150 8 20 403

Independent 90 80 2 20 192

Republican 135 20 N _0 10 165

TOTAL 450 250 10 50 760

Annual Family Income: $20,000 and More

Party

Identification : Religious Preferences
Protestant Catholic Jewish Other Total

Democratic 199 47 13 13 272

Independent 220 40 B 41 309

Republican 129 31 -3 _4 167

TOTAL 548 118 24 58 748

Source: Hypothetical
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Table 4=7

Computation of Lambda for Data in Table 4=-6

For those with Family Income < $20,000:
E; = N - Max Ny
= 760 = 403 = 357
Eg = N - (Max Nj;4 + Max Npy + Max N3§ + Max N44)
= 760 = (225 + 150 + 8 + 20)

= 760 = 403 = 357

It

Ey - E; = 357 = 357 = 0

Ex
For those with family incomes $20,000 and more:
E; = N - Max Ny
= 748 - 309 = 439

Ez = N - (Max Mjy + Max Np4 + Max N34y + Max Ngy)

748 - (220 + 47 + 13 + 41)
= 748 - 321 = 427

=E] - Ep = 439 = 427 = _12 = .027

439 39
Ej

The calculations in Table 4-13 indicate that lambda
equals zero for those with incomes lower than $20,000. For
all of the religious groups, the modal political
identification party is Democrat. This would indicate that
knoewing the respondents' religious preference does not
reduce our error at all in predicting their party
identification. Remember, however, that our earlier
analysis of this partial table indicated that there were
patterns of differences among the conditional distributions.
This low value of lambda undoubtedly reflects the skewed
marginal distribution of the table. Over half of the
respondents identify with the Democrats and so, even though
the conditional distributions vary from one category of the
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independent variable to another, the variation is not large
enough to counteract these skewed marginals. This is an
example of when lambda actually produces misleading results
and when we should rely upon examination of percentages
instead (as well as inferential statistics we will discuss
later in the term).

The lambda value for respondents with a family income
of $20,000 or more is .027, indicating that we may reduce
our error in predicting the respondents' party
identification by about 2.7% if we know their religious
preference.

Most computer programs provide lambda. While our -
discussion has involved a designation of one of the two
variables as dependent, there is a form of lambda that doces
not designate either variable as dependent, but simply tells
us the extent to which knowing the categories of one
variable helps predict the categories of the other. This is
referred to as symmetric lambda.

When computing lambda by hand it is often easier to use
computing formulas rather than the definitional formulas
given here. The computing formula may be easily derived
from the definitional formula used above. Remember that

where N.4 are the marginal frequencies of the dependent
variable} and that

Es = N - (MaxNj< + MaxNos + ... + MaxNp4), (4-5)
2 13 23 Xj

where Njj are the cell frequencies in each category of the
independént variable i. Lambda is defined as

= (E1 - E3) / Ea (4-6)
Substituting the values in 4-4 and 4-5 into 4-6 we obtain

B [(N - Max N.j) = (N = (MaxNi4 + MaxNp4 + ... + MaxNgq)

p—

(N = max N.j)

The term "N" in the numerator of the above expression
cancels out and, taking into account the changing of terms
required by multiplying a negative times the second term in
the numerator, we are left with

_ (MaxNyj + MaxNaj * ... ¥ MaxNiy) - Max N.j e
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The first term in the numerator of 4-7 is the sum of the
modal frequencies of the dependent variable within each
category of the dependent variabkle. The second term in the
numerator is simply the modal frequency of the dependent
variable.

To briefly summarize, lambda is a useful measure of
association when one is examining the relationship between
two variables measured on a nominal scale. It varies from 0O
to 1. A lambda of 0 indicates that knowing categories of
the independent variable does not help in predicting
categories of the dependent variable. A score of 1
indicates that knowing the independent variable allows us to
perfectly predict the dependent variable (our reduction in
error is total). Lambda has a useful propcrtionate
reduction of error interpretation, telling us the
proportionate improvement in prediction of the dependent
variable that results once we know the independent variable.

Lambda is inappropriate and has misleading results when
the dependent variable has a skewed marginal distribution as
seen in Table 4-8, illustrating the relationship between the
length of couples' marriages and the presence of
communication problems. Assuming that communication
problems are the dependent variable, we are interested in
how length of marriage affects these problems. The computed
lambda is equal to zero, but an examination of the table
quickly indicates that there is indeed a relationship.

Table 4-8
Length of Marriage by Presence of
Communication Problems

Length of Marriage in Months

0-36 37-47 48-59 60+ Total
Report 40 28 16 9 93
Communi- .
cation
Prcblem &80 72 84 91 107
Totals 100 100 100 100 400
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Table 4=8 (continued)

E] = N - Max Ny
= 400 - 307 = 93

E3 = N (Max Nij + Max Np§y + Max N34 + Max N45)

400 - (60 + 72 + 84 +951)

400 - 307 = 93

Those with longer marriages are much less likely than those
with shorter marriages to report communication problems.
This is not reflected in the lambda because of the skewed
marginals. The modal category is the same, no matter what
category of the independent variable is examined. When you
have skewed marginals you should always carefully examine
the percentage distributions, for there might indeed be
substantively important results that are not reflected in
the value of lambda. Later we will also examine an
inferential statistie. that will help us deal with such
situations.

Gamma: A PRE Statistic for Ordinally Measured Variables

Gamma is a PRE measure of association designed for use
with variables measured on an ordinal scale. It is most
useful when the variables have a relatively small number of
categories. (While lambda could be used with ordinally
measured variables, in doing so we would be wasting
information on the order of the subjects.)

'With gamma, error is defined as occuring when we fail
to correctly predict the relative order of two cases. We
essentially examine all pairs of cases in the sample and
look at their relative order on the two variables that are
being studied. Gamma tells us how accurately we can predict
the order of a pair of cases on one variable once we know
their relative order on the other variable. (Gamma does not
differentiate between independent and dependent variables.)

A simple example is given in Table 4-9 below. Here we
examine the responses four subjects have given to two
questions: 1) attitudes toward the women's movement and 2)
attitudes toward voting for a woman president. Suppose that
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their responses may range along the following continuum: 1)
strongly disapprove, 2) disapprove, 3) approve, and 4)
strongly approve. Suppose alsc that we have arbitrarily
assigned the codes noted above (1, 2, 3, 4) to each of the
categories. These maintain the order of the possible
responses.

Table 4-9
Example of Data on Two Ordinally Measured
Variables for Four Subjects

Attitude Toward Attitude Toward
Subject Women's Movement Woman President
W . Strongly Agree (4) Strongly Agree (4)
X Disagree (2) Agree (3)
Y Agree (3) ' Strongly Disagree (1)
pA Strongly Dlsagree (1) Disagree (2)
Subject Relative Order Relative Order Concordant
Pair on Women's Move. on Woman Pres. or Discordant
wX SA > D . SA > A C (same)
WY _ SA > A SA > 8D C (same)
w2 SA > SD SA > D € (same)
XY D<A -A > 8D D (different)
Xz D > 8D A>D C (same)
Y2 A > SD ) SD < D D (different)

Also given in Table 4~9 is the joint distribution of
responses. This compares the scores of each pair of
subjects on each variable, giving their relative order. For
instance, when subjects W and X are compared it may be seen
that they stand in the same relative order on the woman's
movement question as on the woman for president question.

In both cases W is more in favor than ¥X. The ordering of
this pair on these two variables is the same, or is called
concordant. When W is compared to Y we again see that on
both variables W has more favorable attitudes than Y. When
W and Z are compared it is seen that on both variables W has
more favorable attitudes than Z. When X and Y are compared
we see that on attitudes toward the women's movement X has
less favorable attitudes than ¥. On attitudes toward a
woman president X has more favorable attitudes than ¥. This
is a case of different or reverse ordering for the pair of
cases on the two variables. This can be called discordant
order. In all, of the total of 6 pairs of cases, 4 have the
same ordering on both variables and 2 have reverse orders.
Four are said to be concordant pairs, while 2 are said to be
discordant pairs.
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Gamma is defined as

gamma ( 5') = (C=-D) / (C + D) (4=8)

where C is the number of concordant pairs, the number of
pairs of cases with the same relative order on each
variable, and D is the number of discordant pairs, the
number of pairs of cases with the reverse order on each
variable.

Gamma tells us the extent to which same ordered, or
concordant, palrs predominate over reverse order, or
dlscordant, pairs as a proportion of the total number of
pairs on which order can be determined.

In our example C = 4, D = 2 and gamma = (4~2)/(4+2)
2/6 = .33, This indicates that our errors in predicting the
relative order of pairs of cases on one variable within this
sample is reduced by .33 once we know their relative order
on the other variable.

Usually we have sample sizes larger than those in the
last example, and we display our data in contingency tables
or crosstabulations such as those used earlier in this
section. When both of the variables in these contingency
tables are measured on an ordinal scale we may talk about
the relationship between these variables in terms of their
relative order. We are essentially interested in how the
two variables covary. When subjects have higher scores on
one variable do they also have higher scores on the other
variable? This situation is described as monotonic
increasing and illustrated in part a of Table 4-10. 'Or when
subjects have higher scores on one variable do they have
lower scores on the other? This is called a monotonic
decreasing relationship and is illustrated in part b of
Table 4-10. Or is there no relationship between the two
variables? This is shown in part c of Table 4-10.

Gamma describes the extent to which the relationship
between two variables is monotonically increasing,
monctonically decrea51ng or non-existent. It does this by
looking at all pairs of cases in a sample in which we can
determine order (i.e., in which one is greater than or less
than the other on the variables being studied) and examines
the extent to which our ability to predict the relative
order of any pair of cases is improved by knowing the
relative order of that pair on the other variable. In other
words, gamma tells us how much our error in predicting order
of subjects on one variable is reduced once we know their
relative order on the other variable. For part a in Table
4-10, our error would be reduced 100% and our gamma would be
+1.00, 1nd1cat1ng a perfect monotonic increasing function.
For part b in Table 4-10, our error would also be reduced
100%, but gamma would be -1.00, indicating a perfect

21



Table 4-10
Exanples of Possible Relationships
Between Variables Measured
on Ordinal Scale

a: A Monotonic Increasing Relationship

Variable A

Variable
B 1l 2 3 4
1 25 0 0 0
2 0 25 0 0
3 0 0 25 o]
4 0 o 0 25
total 25 25 25 25

gamma = +1.00

b: A Monotonic Decreasing Relationship

Variable A

Variable 1 2 3 4
2 1, 0 0 0 25
2 o 0 25 0
3 0 25 0 0
4 25 0 0 0
total “25 25 25 25

gamma = =-1.00

total

25

25
25
25

100

total

25

25
25
25

100



Table 4-10 (continued)

c¢: No Association

Variable A
Variable
B 1 2 3 4 total
1 5 10 10 5 30
2 5 10 10 5 30
3 5 10 10 5 30
4 5 10 10 5 30
total 20 40 40 20 120

gamma = 0.00

monotonic decreasing function. For part ¢ in Table 4-10,
our error in predicting order would not be reduced at all,
and gamma would be zero.

To expand upon these conclusions we may return to the
formula for gamma given in line 4-8. If there are no
discordant or reverse order pairs, D = 0, and

Il

gamma (Cc -D) / (C+ D)

(C - 0) / (C+ Q)
=C/ C=1.00,
and we have a perfect monotonic increasing function.

If there are no same order or concordant pairs, C = 0,
and

gamma (C-D) / (C + D)

(0 - D) / (0 + D)
=-D/ D= - 1.00,

and we have a perfect monotonic decreasing function.



Dis

Finally, 1f there are the same number of discordant and
concordant pairs, ¢=D, and

gamma (C-D) / (C+ D)

(D-D) / (D + D)
=0/ D= 0.0,
and gamma equals zero.

It is important to note that the formula does not
include any cases where the scores or ranks are tied. 1In
computing gamma we simply ignore cases where subjects are
tied on either of the two variables.

Table 4-11
Example of a Contingency Table for Computation of Gamma

Attitude Toward a Woman President

Attitude
Toward
Women's l-Strongly 2-Dis- 3= 4=-Strongly
Movement@MsApprove approve Approve Approve Total
1) strongly nj3 ni2 nis3 ni4
Approve 3 1 1l 0 5
2) Dis- na1 na2 nas Na4
approve 2 2 1 0 5
3) Approve njj nzz n33 N34

1 1 2 1 5
4) Strongly ny43 n42 N43 N44
Approve 0 1 2 2 5
Total 6 5 6 3 20

Table 4-11 gives anocther example, with the same
variables used in Table 4-9, but with more cases. The data
are displayed in a contingency table or cross-tabulation.
Suppose that we wished to compute the number of same order
pairs invelved in this data set. Let us begin first with
niy, the cell in the upper left hand corner. There are 3
subjects in this cell. These people hold the same attitude
on the women's movement as all the subjects in the first row
and the same attitude on women presidents as all subjects in
the first column. We say then that they are tied with those
subjects and we cannot determine their relative order with
these subjects. However, comparing these subjects with the
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two cases 1in cell 22 preoduces a total of 6 (3 x 2 = 6) pairs
of cases with the same relative ordering on both variables.
Then comparing subjects in cell 11 with subjects in cell 23
we can see that those in cell 11 have lower scores on both
variables. Because there is one subject in cell 23 this
produces a total of 3 (3x1 = 3) pairs of cases with the same
relative order. 1In general, 1f we compare the subjects in
cell 11 with subjects in all cells below and to the right we
will see that those in cell 11 always have lower scores.
This produces

nii (nga + na3 + ng4 + N3z + N33 + nNzg + N4z + 43 + Ngy) =

=3 (2+1+0+1+2+1+1+2+2) =3 (1l2) = 36
pairs of cases involving njj; with the same relative
ordering.

We can now move to cell njp; and repeat the process
finding that there are njs (nz3 + Nog + ng3 + N3g + ng3 +
Nga) = 1(L + 0+ 2+ 1+ 2+ 2) =1 (8) = 8 pairs of cases
including njs with the same relative ordering.

Using cell nj;3 we find that there are nj3 (nag + nag
+ng44) =1 (0 + 1+ 2) =1 (3) = 3 pairs of cases including
ni3 with the same relative ordering.

If we work through the entire table in this manner, we
find that there are a total of 36 + 8 + 3 + n2l (n3s +ni33
+34 + N4z + N43 + N44) + N2z (N33 + N3zq + n4g3 + ngq) + np3
(n3g4 + n44) + n31 (Mg + nNg3 + ngq) + n33(ng3 + n44) + nas
(Ngg) = 36 + 8 + 3 +2 (L +2+1+1+2+2)+2(2+1+
2+ 2) +1 (1 +2) +1(1+2+2)+1(2+2)+2 (2) =236
+ 84+ 3+2 (9) +2 (7)+1(3)+1(5) +1 (4 +2 (2) =36
+ 8+ 3+ 18 + 14 + 3 + 5 + 4 + 4 = 85 pairs of cases with-
the same relative ordering (concordant pairs).

To find the number of pairs of cases with reverse
ordering (discordant pairs) we repeat the same procedure,
but begin in the upper right hand corner of the table. Here
we will use cell njy3 since cell nj4 has no cases. We may
note that all subjects in the first row and the third column
are tied with subjects in cell nj; and may be ignored. If,
however, we compare subjects in cell njys; with those in cell
n13 we will find that those in nys have a lower score on
attitudes toward women presidents but a higher score on
attitudes toward the women's movement. This is a case of
reverse ordering. Similarily, comparing njs3 with njp;, we
find that subjects in these two cells produce a case of
reverse ordering. In general, there are nj3 (nzz + nazjy +
nqg + n3p +tngy +ng1) =1l (2+2+1+1+1+0)=1(7)=
7 pairs of cases with reverse ordering involving cell njj.
There are njs (ng; + n3; + ng31) =1 (2 +1+0) =1 (3) =3
pairs of cases with reverse ordering involving cell nj3.



In general, to compute the number of reverse order
(discordant) pairs for the table we would follow this
procedure for all cells. ,

+ hay (Na20TNa))

D=7+ 3 + nag (n3as + nag/+ nap + nga + ngs + ng1) + naz
(n3z #+ n31 + ngz + n41) n34 (ngs + ng2 + ngi) nasz (ngs +
ngy) + N3z (ngy) =7+ 3 +0+1 (1 + 1+ 1+ 0) + 2(L + 0)
+ 1 (2+1) +2 (1) +1 (0) =7+ 3+ (3) + 23(3) +2 =20

We may now use our general formula to compute gamma:
(c-D)/(C+D) = (95 - 20}/ (95 + 20) = 75 / 115 = .65

This tells us that there are 75 more concordant or same
ordered pairs than discordant or reverse ordered pairs in
this table and that there are 115 pairs all together in
which order can be determined. The gamma value of .65 tells
us that wa reduce our error in predicting the order of a
pair of cases on one variable by 65% if we know their
relative order on the other variable. The fact that the
value of gamma is positive indicates that this is an
increasing function and that subjects who score highly on
one variable tend to score highly on the other.

To review the characteristics of gamma: Gamma is a
symmetric measure, that is, no differentiation is made
between the independent and dependent variable. We need at
least an ordinal level of measurement for our variables in
order to compute gamma. Gamma varies from -1 to +1. When
it holds a value of zerc we say that there is no association
between the two variables, in the sense that the number of
like~-ordered or concordant pairs of cases equals the number
of reverse ordered or discordant pairs of cases. A gamma of
minus one indicates a perfect monotonic decreasing function:
a gamma of positive one indicates a perfect monotonic
increasing, function. Gamma does not take the relative
ranking of the variables into account, but only their
relative order. Thus, a pair of cases where one subject
strongly agreed and the other strongly disagreed and a pair
where one strongly agreed and the other agreed would both be
treated in the same way. Finally, gamma has a PRE
interpretation. This is not immediately apparent from the
formula and the proof is a little too complex for this
class. Suffice it to say that a value of gamma may be seen
as indicating the percentage of errors in predicting the
relative order of a pair of scores on one variable that are
eliminated when we know their relative order on a secocnd
variable.

It should be noted that there are many measures of
association designed for variables measured on an ordinal
scale. They all use the difference of the number of
concordant and discordant pairs in the numerator, but tend
to differ in what is placed in the denominator. This
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generally involves the number of pairs on which variables
are tied, either on the independent or dependent variable or
both, plus the total number of pairs on which order can be
determined. Because this denominator is larger than that
used for gamma, these other measures of association are
usually smaller than gamma for the same table.
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V. Simple Bivariate Correlation

Quantitative analyses are always linked with research
designs. We use statistics to help answer research
questions, and we must always adapt our analysis to fit the
characteristics of our measures. When we are interested in
the degree to which two variables measured on a nominal
scale are associated, we use lambda; to examine the
association between two ordinally measured variables we use
gamma. What, however, if we were interested in the
association between two variables, which were both measured
on an interval scale? For instance, ocne could be interested
in the association bhetween income and education. What
happens to peoples' income as their level of education
rises? When studying a question such as this, where both
the dependent and the independent variable are measured on
an interval scale, we may use regression or correlation
techniques.

Below we explore the elements of basic bivariate
correlation. We develop the use of the rggress;on line,
explain the PRE measure_of association, r“, and also discuss
r, the square root of r“, which is often called the Pearson
product moment correlation.

2

r“ as a Measure of Asscciation

Consider a case when you have two variables, each
measured on an interval scale. What if you thought there
were some pattern in the association between the two
variables? Suppose they had a positive linear association,
as one variable went up, so did the other (as in the exanmple
of income and education above) or what if as one variable
went up the other went down (say as in an association
between educational level and amount of superstitious
beliefs), a negative linear association. Figure
5~1 below illustrates the possible association between the
income and education of a group of people. On the
horizontal axis the amount of education is represented from
high to low. On the vertical axis the amount of income is
shown. Each dot represents one person. It is apparent that
people with low amounts of education tend to have lower
incomes, people with higher educations tend to have incomes.

It is possible to draw a straight line through' this
diagram so that it falls as close to each element of the

sample as possible. Such a line is drawn through Figure 5-
ll

From elementary algebra you will remember that the
equation for a line is

Y=a+bxX (5-1)
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where Y is the dependent variable, the variable on the
vertical axis; and X is the independent variable, on the
horizontal axis. The value "a" is the ¥Y-intercept, the
value of Y when X = 0 or the point where the line crosses
the vertical axis. The wvalue "b" is the slope of the line,
the amount of changes in Y for each unit change in X.

Figure 5-1
Relationship between Income and Education
for a Hypothetical Group of People

Income

(y)

X : Education

Based on the actual data on two variables for a sample
it is possible to construct a line that best predicts the
scores of ¥, the dependent variable, from the scores of X,
the independent variable. This equation is called the
reqression ecuation and is written

A,
Y = ayy + byx X (5-2)

where ?‘is the predicted value of ¥ for any X, a is the
y - intercept, byy 1s the slope of the line, and X is any
value of the independent variable. The subscripts, yx,
indicate that the coefficients in the equation are
predicting the variable Y from the values of X.

Now, because it is possible to construct this line so
that it is the best line that predicts values of Y from
those of X, we can use these predicted values of ¥, ¥, as
our best predictors of the dependent variable when we know
the values of the independent variable and when we assume
the two variables have a linear association. Because Y is
our best predictor of ¥ when we qgsume~that the asso istion
between X and ¥ is linear, (Y - ¥) = 0, and Z(Y - % is a
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minimum for any'value of'? that can be developed through an
equation of the form a + b X (where X is the value
corresponding to that ;xin the scatter diagram).

Remember that IS (Y -'?)2 is our measure of error when
all we know is the dependent variable, for the mean is
always the best predictor of an intervally measured
variable.

Note that we now have all the elements of a PRE
measure. We have a rule for classifying subjects on the
dependent variable when we only know the dependent variable:
We simply would give them the score of the mean, for our
deviations around the mean are at a minimum for any value.
our rule for classifying subjects on the dependent variable
when we know the independent variable is the regression
line, for deviations of scores around the regression line
are also at a minimum. Our definition of error can simply
be squared deviations of scores around these points (we
scquare te get rid of negativeivalues.)

For the first rule

E; = J(¥-Y)2 (5-3)
or the squared deviations of scores around the mean.

For the second rule

A,
By = 7 (¥-¥)?2 (5-4)
or the scuared deviations of scores around the regression
line.

Remember that a PRE measure is (E; - E3)/E;. From the
definitions of E; and E; above we can then construct the
following measure of association:

. A
(Ey - E3) S(¥x-N2 - Z(y-v)?

E o (x=-1)2

= r2 (5-5)

In this measure the total variation to be explained, or
the error when we only know the dependent variable is
3 (Y - ¥)°. The variation unexplained or left around the
regression line, the error when we also know the linear
association with the independent variable, is =(Y - ¥)2.
The difference between the total variaticn and the
unexplained variation is the variation of the dependent
variable that is explained by the regression line or by the
lineg r association between the dependent a i endent

variable. This measwuxre As r“., It 1s the square of e (=2 Lu;,
Pearson product moment correlation. It is simply Yoz
interpreted as the proportion of the variation in the Ib] n,

dependent variable (or one variable) that is explained by
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its linear association with the independent (or other)
variable. It may also be seen as the proporticnate
reduction of error in predicting values of the dependent
variable when we know the linear association between the two
variables compared with our error when we only know the
dependent variable.

An Example

A simple example can illustrate the meaning of r? and
its relation to the regression line. Figure 5-2 shows a
scatter diagram of data representing the reported monthly
church attendance of pairs of mothers and daughters. These
data are also summarized in Table 5-1. Note that in family
A both mother and daughter attended once in the month; in
family B mother attended twice, daughter 3 times; in family
¢ mother attended four times and daughter 3, and 'so on.

Figure 5-2

Scatter Diagram of Hypothetical Data Regarding the'Monthly
Church Attendance of a Sample of Mothers and Daughters

. :
8 Y:0|3+.37K - (F)

§

N~

4
Daughters'
Attendance 3
(Y)

1l 2 3 4 5 6 7 8

Mothers' Attendance (X)
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Table 5-
Computations Needed to Compute r< for data in Figure 5-2

Family Mother Daughter (X-X) (X-X)2 (y-Y) (X-Y) (¥-Y)
(X) (Y)

-3.5 12.25 -3.2 11l.2

A 1 1
B 2 3 -2.5 6.25 ~l.2 +3.0
C 4 3 -0.5 0.25 =1.2 +0.6
D 5 4 - .5 0.25 -0.2 -0.1
E 7 6 2.5 6.25 1.8 +4.5
F _8 _8 3.5 12.25 3.8 +13.3

317.5
Totals 27 25 32.5

ol
[4)]

A scatter diagram, as in Figure 5-2 is a device used to
illustrate the nature of the association between two
variables. From the scatter diagram in Figure 5-2 it
appears that there‘is a positive linear association between
the daughter's church attendance and the mother's church
attendance. As the mother has higher church attendance, so
does the daughter.

Now we want to construct a line that can be drawn
through this scatter diagram that will best predict values
of ¥ (the daughtexr's attendance) from our knowledge of the
mother's attendance (X). I will not here go through the
derivation of the formulas used to get values of b and
ayyx. They involve a knowledge of elementary calcuX%s
suffice it to say that mathematicians have figured out the
equations that will prodice these best predictors.

However, an intuitive explanation of the formula for b
is possible.

Jx-% (x-S x-52 (5-4)

This is 51mply the covariation of X ang b4 [Z:(XQE)(YJfﬁl
divided by the wvariation of X [Z'(X-X) ; the predictor or
independent variable.

Remember that byy is the slope of the regression line.
When it is greater tgan zero there is a p051t1ve
association; when it is less than zero there is a negative
association (as one variable goes up the other goes down)
and when there is no association the slope is approximately
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equal to zero. The variation of X is always greater than
zero (if it were equal to zero there would be no use in
conducting an analysis). Thus, to understand how this
formula for the slope can result in a positive, negative, or
zero value, we need look only at the covariation of X and Y.

We can see that the covariation includes information
about the mean of X, which is our best predictor of X when
we only know X, and about the mean of Y, our best predictor
of ¥ when we only know about that variable. The covariation
takes into account how the actual pairs of scores vary
around the best two predictors for each variable. Figures
§=3, 5=4, and 5-~5 illustrate situations that will result in
different values of b, -

Figqure 5-3
A Positive Value of r and b
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In Figure 5-3, because the relation is positive most of
the pairs of scores fall into the quadrant where both Y-Y
and X-X are greater than zero, or in the guadrant where both
of these values_are less than zero. In both these cases the
product of (Y =Y) (X - X) would be positive (positive times
positive = positive; negative times negative = positive) and
thus the covariation would be positive,and b or the slope
would be positive.

In Figure 5-4 the association is negative. In this__
case most of the cases fall into the quadrant where (X -X)
is less than zero and (Y_- Y) is greater than zero, or into
the quadrant where (X - X) is greater than zero and (¥ - )
is less than zero. 1In this case the product of (Y - ¥) (X -
X) would usually be negative and thus b and the slope would
be negative.
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Figure 5-4¢
A Negative Value of r and b
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Finally, in Figqure 5-5, there is no association. 1In
this case the pairs of cases generally fall equally between
the four quadrants. Thus the number of times the product of
(X=X) and (¥-Y) is positive should about balance off the
number of times the product is negative and thus the overall
sum of these products over all cases would be close to zero.

Figure 5-=5
A zerc value of r and b _
(% INFICO N (X-XXY-YI>0
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e Ly W ~ el '\. \I‘ \\ ~ * )
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(x-XYA-FI 707 N
I

iy
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If the variation in X (&x-X)2) is about equal to the
covariation of X and Y [ /(X-X) (¥Y-¥)], then b would be
approximately equal to dne. This means that the changes in
X and Y are about equal, as X moves one unit, ¥ is predicted
to move about one unit. When b is greater than one, the
covariation of X and Y is greater than the variation in X,
and when X changes one unit Y is predicted to change by more
than one unit. Conversely, when b is less than one, the
covariation of X and ¥ is less than the variation in X, and
the predicted changes in Y are less than the unit changes in
X. Each of these situations is illustrated in Figure 5-6.
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Figure 5-6

b <]

P

Given this intuitive feel for the meaning of bys, let
us return to the example involving mothers' and daughters!
church attendance. Using the information given in Table 5-1
we can calculate:

. Tl S . |
byy = (X=X) (Y-¥} = 32.5 = .87 (5=5)
Xy X - %) 37.5 -

It

Y - byx X = 4.2-3.9 = 0.3 (5-6)

a.yx
= 4.2 - 3.9 = 0.3

The regression line that best predicts the values of ¥, the
daughter's attendance, from the values of X, the mothers!
attendance is: A

Y =0,3 + .87 X (5-7)

In Table 5-2 we present the datg that can be used to
develop the measure of association r<. This measure tells
us how much of the variation in daughters' church attendance
can be accounted for by its linear association with mothers'
attendndce.
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Table 5-2
Data for Calculating r“ for data in Figure 5-2

i A, - =2 - - A~ 2
Family X Y ¥ v -%F (¥-T) (x-¥y (=%
A 1 1 1.17 =3.2 10.24 -.17 .03
B 2 3 2.04 -1.2 1l.44 +.96 .92
C 4 3 3.78 -1.2 1l.44 -.78 .61
E 5 4 4.565 =0.2 .04 =.65 .42
D 7 6 6.39 1.8 3.24 -.39 14
F 8 8 7.26 3.8 14.44 + 74 .55
-5.8 30.84 -1l.99 2.67
Totals . +5.6 +1.70
-,02 -,29

Note that the simple sum of deviations of the scores of the
dependent variable around the mean are appreoximately equal
to zero. Thus the sum of the squared deviations around the
mean are also at a minimum. The predicted values of Y shown
in the table are those computed when the given value of X,
the mothers' attendance for each family, is substituted in
the prediction equation. The simple sum of the scores of
the dependent variable around the predicted values of Y from
this regression line are approximately equal to zero, and
the sum of the squared deviations around the regression line
are at a minimum.

We may now use the sum of the squgred devrgt%ons around
these two best predictors to compute r<. s (¥=-Y)“ = the
variation of scores around the mean, the best gredictor when
we only know the dependent variable. 5 x-% the
variation of scores around the point on the regression line
that is predicted for that family or pair of scores. This
is our best predictor of the dependent variable when we know
the independent variable and assume that the association
between the two variables is linear.

J(¥-Ty2 - (¥ - $)2 = 30.84 ~ 2.67 = 28.17 = .91
ré = = 30.84 30.34
Z(y-v)2 (5=7)

Thus, for this sample, when we know the mother's
frecquency of church attendance we can reduce our error in
predicting the daughter s attendance by 91% when we assume
that the association between the two variables is linear
(can be represented by a straight line). Another way of
saying this is that 91% of the total variation in the
daughter's church attendance can be explained by its linear
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association with the mothers' frequency of church
attendance.

Note that r? is a symmetric measure. In fact, we could
work out Ehe equation predicting X from values of Y and
compute r“ that way and come up with the same figqure. We
could alsc say then that 91% of the variation in mothers!
church attendance is explained by its linear association
with daughters' frequency of church attendance.

r?2 is sometimes called the coefficient of
determination, representing the Sxtent to which one variable
is determined by another. 1 - r“ (in this case = ,09) is
called the coefficient of alienation, the proportion of
variation that is not explained by this linear association.

Because our way of computing r? above used the .
definitional formula¢involved a number of subtractions, asétjp
bles is bgund to introduce rounding errors. When you

compute r“ by hand it is preferable to use a computatiocnal
formula., This is usually written for the value of r itself.
To get r“ we simply square this value. The computational
formula for r is simply

N LY - (EXXEY)

r= (5-8)

WA/ Eke == (ex)> ][N EY™ -2 Y j>]

in our example r = 6(145) - (27)(25)
[6(159) = (27)21[6(135) = (25)2%]

= 195 = 185 = 195 = «95
[225][185] 41,625 204.02
r? = (95)(.95) = .90

The Pearson Product Moment Correlation, r

Wwhile r? has an easily understood interpretation in the
PRE format, the pearson producE moment correlation, r, is
more frequently used. While r“ varies between 0 and 1 (with
0 indicating no association and 1 indicating perfegt
association), r varies from_-1.0 to +1.0. r and r“ are
cbviously related in that r is simply the value of r
multiplied by itself. Yet, the interpretation of r is
somewhat different than the interpretation for r<. Below we
go through four interpretations related to r after exploring
more the formula for r itself.
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Above we gave the computational formula for r. It is
also instructive to examine the definitional formula. The
definition of r is

= Z%X - X) (Y = ) covariation of X and ¥

k(x - X)2 (¥ - Y)z VQvariaticn of X) (variation of Y)

Note that this is closely related to the definitional
formula of the slopes:

byy = covariation (XY) byy = covardation XY (5-10)
¥ : xy
variation X variation Y

While the slope always has the covariation of X and ¥ in the
numerator, the denominator is either the variation of X or
the variation of Y depending on whether X or ¥ is the
predictor variable.
r? = byy byy and thus r = byx bxy (5-11)
The various possible interpretations of r follow these
observations. First, by observing the sign associated with
the correlation coefficient, we may ascertain whether the
association between the two variables is positive or
negative. This follows from the logic associated with the
sign associated with the slope as explained earlier.

Second, we may simply square the value of r to get r2,
which tells us the proportion cof variation in one variable
explained by its linear association with the other. This
was fully discussed above.

Third, we may remember that r is equal to the square
root of the product of the two slopes. This is called a
geometric mean, one type of measure 6==5=====ne of central
tendency. The correlation coefficient then is the geometric
mean or geometric average of the two different slopes byx
and Dbyy.

Fourth, r may be interpreted as the slope of the
regression line when standard deviation units are used as
scores rather than the raw scores. Figure 5-8 illustrates
this interpretation for the example used in the previous
section. As shown in Table 5=-3, each of the scores may be
transformed to its corresponding z-score or standard
deviation unit score. Based on these scores we may compute
byy and byy. Note, however, that bz ; = bz 3 =rz gz

Yy x XYy XYy

In other words, r is simply the change in standard dgviation
units in y for every standard deviation unit change in X.
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Also, r = Zkz zy¢) / N, or the average of the cross-
product of the standard errors. This occurs because when
standard scores are used the standard deviation of the
standard scores is automatically one and the mean is 0.
(Remember that the definition of standard scores or z-scores
is a distribution where the mean is 0 and the standard
deviation is 1). This then means that the sum of the
squared deviations of scores from the mean simply equals the
sample size, as shown in equations 5-12 and 5-13.

(Zx - Zx)2 (Zx - 0)2
- S ZEx -2 g (% (5-12)
N N

Szx

and by multiplying N by each side of the equation:

N = F(2x - Zx)2 = Tlox = 002 =Sz (5-13)

Thus, the sum of the squareg.deviations around the mean are

simply equal to the samgle size. This means that thé&sFTuss-
yrod t gl Sl and the square root of the product
of the variations is equal to the sample size.

( fxm2 ocam? = fomm = (5-14)

Table 5-3
Calculations of r and r? for Data
in Table 5-1 Using Standard Scores

Family X b Zx 2y -~ ZxXZy
A 1 1 -1.3 -1.33  +1.73 X = 4.5
B 2 3 = .92 = .49 + .45 Y = 4,17
C 4 3 = .18 = .49 + .09 Sy = 2.7
D 5 4 + .18 =~ .07 = .01 Sy = 2.38
E 7 6 + .92 + .77 + .71 nn =6
F 8 .8 1.3 +1.61 +2.09

7 25 0 0 5.1
Iy = X=X 2y = Y=Y r = i:hxzy = 5.1 = .85 = .9
N

And these results are equal, when rounding errors are taken
into account, to those found through other computation
methods above

This final interpretation of r is the one that will be
the most useful. From it, one can interpret r as being the
standard deviation unit changegin the other variable. This
is analagous to the interpretation)of the slopes, but

m dxa.oMLhﬁzéAZ ;maa€u4442 é%/ Ty
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invelves the use of standard scores rather than actual
scores. That is, the value of r tells us how many standard
deviation units we would expect one wvariable to change when
the other changes one standard deviation unit. The result
above says that we would expect daughters to have church
attendance patterns that were .85 of a standard deviation
higher than the average when mothers'! church attendance was
one standard deviation above the average. Similarly, if
mothers had church attendance patterns that were one
standard deviation below the average for mothers, we would
expect daughters' church attendance patterns to be .85 of a
standard deviation below the average. '

Figure 5-8
Illustration of r and b when using standard scores
with data from Figure 5-2

ZL=O
« (F)
r=.95
<TE) be .55
_ 5 = 95K
Zy=0 Z‘f g5
2,0 (D)
Daughters' 4
Attendance . (B) . {C)
(Zy)
(A

Zy=0
Mothers' Attendance (2Zy)

The term Pearson product mement correlation also comes
from the definition of r as &.zy4zy / N. A moment is an
average. The mean is the first moment (the average of the
scores). The variance is the second mement (the average of
the squared deviations of the scores around the mean). Here
we are averaging the products of standard scores, thus, the
product moment correlation. Xarl Pearson is the



P

mathematician who developed the statistic, and thus the name
Pearson.

Computer Work

Various computer programs can provide scatter diagrams
and ccmpuations of r and r“. The output shown below in
Figures 5-9 and 5-10 come from data from a western Oregon
high school. I requested two scatter diagrams, both looking
at the association between scores on a general achievement
test taken in the eleventh grade (called VAR1l by the
computer) and the students' average grades in the seventh
grade (called VAR15). I posited that the grades were
dependent upon achievement. These calculations were
recquested for each social class group. Results for the
niddle class are given first, results for the working class
are given second. Each * on the table represents one person
at the intersections of those points. If more than one
person falls at a point the computer prints the number of
people involved. Note that the cases cluster around the
regression line. [In asking for this output I asked the
computer to have the plot lines be equal to integer values.
This makes it somewhat easier to draw the regression line,
but it also results in all of the data being in the lower
half of the table (because gpa was measured to two decimal
points, but spans only 4 integer values).]

The assoclated regression line is drawn on both
printouts. To draw the line the values for a and b were
taken from the printout and the equation for the line
developed. Then predicted values of Y were computed for 3
separate values of X and resulting peoints were plotted. For
the middle class students

M

Y = 2.322 + .013X. (5-15)
For the working class students

A

¥ = 2.202 + .012 X. (5-16)

Note again that this is the regression line predicting gpa
from achievement. GPA is the variable on the vertical axis
of the scatter diagram. 'Note also that both the y-intercept
and the slope are lower for the working class students than
for the middle class students.
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EXAMPLE OF CrOSSTABS FOR 326 F-F‘Z"“""- ;-9 13-Nay-83 Page 2
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Table 5=-4
Calculation of Grades predicted for Middle Class and Working
Class Students at Various Levels of Achievement

Achievement Predicted Grades
Test Scores Middle Working
(Percentiles) Class Class Difference
A A A A
X Ine Yye ¥me = Ywe
0 2.322 . 2.202 0.102
25 2.647 2.502 0.145
50 2.972 2.802 0.170

75 3.297 3.102 0.195

Table 5-4 shows the results of using the regression
_equation to compute predicted values of the gpa for working
and middle class students using their respective regression
equations. It may easily be seen that at all values of
achievement middle class students have higher predicted
grades than working class students. Because the slope in
the regression equation is larger for middle class students
than for working class students the gap or difference
between the predicted grades becomes larger with higher
achievement scores, reaching almest .2 of a grade point for
students with achievement test scores at the 75th
percentile.

Lookigg again at the printout results it may be seen
that the r“ between achievement and grades is .36 for middle
class students, but .26 for working class students. If we
know the linear association of students' achievement scores
with their grades we may account for over cne-third of the
variation in middle class students' grades but only about
one-~-fourth of the variation in working class students'
grades. Not only do middle class students receive higher
scores than working class students when they have equal
achievement, but the variation of scores around the
regression line is much smaller for middle class students
than for working class students.
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You should understand esach of the following:

The characteristics of the normal curve, and how to sketch
one given its mean and standard deviation

How to read the table of the normal curve
How to compute z-scores and what they mean

How to determine the proportion and number of cases within a
certain range of values in a normal distribution

What a measure of association is

What a PRE measure of association is, and what various
values of a PRE measure would indicate regarding a
distribution

How to percentage a bivariate table and intexpret the
results
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How to put data into a scatter diagram, how to determine and
compute a regression line, how to compute rZ2 and r, and
how to interpret these values

The exam will be at the regular class time, Friday, Feb. 21.
You may use all of vour books and notes during the exam. In
fact, be sure to bring your text so that you have the table
of the normal curve with vou. It might also be helpful to
bring a calculator.
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VI. Probability and Statistical Inference

In this section_we examine issues related to probablity
and statistical inference. Remember that there are two
types of statistics: Descriptive statistics tell us about
the nature of a sample or a population. Inferential
statistics allow us to see how typical or true a given
descriptive statistic from a sample is of a population from
which it came. That is, inferential statistics help us
generalize from samples to populations. Throughout the
first part of this class we have explored various
descriptive statistics. Now we are going to look at
inferential statistics.

The notions of probability and randomness are basic to
this discussion and thus in the first sections below we
discuss these concepts. We then move to basic definitions
which underlie inferential statistics, and then present
examples of the two basic types of inferential statistics:
confidence intervals (or point estimatlon) and hypothesis
testing.

Probability

We use the idea of probability all of the time, often
without even thinking about it. For instance, we look out
the window each morning and wonder how likely it is that it
will rain so that we will know whether or not to carry an
umbrella. If it is dark and cloudy you will probably take
an umbrella; if it is bright and sunny you probably won't
take an umbrella. Similarly, in studying how much to study
for an exam students decide how probable or likely it is
that certain material will be included on the test. If they
are certain some material will be on the exam they will
study that material much more thoroughly than material they
will not be tested on. In both of these cases you are
interested in probabilities or likelihoods that certain
events will occur.

The term probability simply refers to the possible
outcomes of a situation == how likely or unlikely is it that
a given situation will occur. For instance, if you know
that it will rain 3 out of the next 10 days, the probability
is 3/10 = .30 that it will rain on any one day. Similarly,
if a teacher gives you 20 questions that may be on the test,
but will choose only 5 of those for the actual exam, the
probability that any one question of the 20 will be on the
test. is 5/20 = .20. In general the probability that an
event A will occur is symbolizig as p(A) and equals' the
actual number of times the evenl occurs divided by the total
number of events (see equation 6-1). A probability varies
from 0 (which would indicate no chance of occurance) to 1.00
(which would indicate than an event would always occur).



number of times A occurs
pP(A) = e . o (6-1)
total number of events

Consider the data given in Table 6-1. (seen earlier as
Table 4-3 in discussion of lambda). Using equation 6-1 it
may be seen that in this distribution the probability that a
given teenager will be unemployed is

P (unemployed) = 325/800 = .41 (6-2)
The probability that a teenager will be employed is
p (employed) =  475/800 = .59 (6-3)

The probability that a teenager wili be Anglo is

1]

P (Anglo) 300/800 = ,375 (6-4)

The probabkility that a teenager will be African American or
Hispanic is

p (African-American) = p {(Hispanic) =
200/800 = .25 (6=5)

The probability that a teenager will be in the "Other"
category is

p (Other) = 100/800 = .125 (6-6)

Table 6-1
Joint Distribution of Race/Ethnicity and
Unemployment Status for a Hypothetical Sample
of Teenagers

Race/Ethnicity

Employment Anglo African- Hispanic Other Total
Status American

Employed 250 50 100 75 475
Unemployed 50 150 100 25 325
Totals 300 200 200 100 800



Note that the probability of being in a minority group
(i.e. non-Anglo) is ecqual to

p{minority) = p (African-American or Hispanic or Other)
= .25 4+ .25 + .125 = ,675 (6-7)

This illustrates the addition rule of probability, which
states that the probability of being in any of a group of.
mutually exclusive (non-overlapping) events or situations is
simply equal to the sum of the probability of being in each
of them.

Similarly note that
P (unemployed) + p (employed) = .41 + .59 = 1.00" (6-8)
and that

P (Anglo} + p (African-American) + p (Hispanic)
+ p (Other) = .375 + .25 + .25 + ,125 = 1.00 (6=9)

These two equations illustrate the exhaustive principle of
probability, which simply says that the sum of the
probabiity of all of the events (all of the employment
statuses or all of the race/ethnic groups) must equal 1.0.

The figures given above in equations 6-2 through 6-6
are called marginal probabilities, corresponding to the
marginal frequencies of a table. They are also called
unconditional probabilities, indicating that they aren't
conditional on, or don't depend on, any other event or
attribute.

In contrast, the probabilities which correspond to the
cells in the interior of Table 6-1 are called the joint
probabilities, corresponding to the joint distribution of
race/ethnicity and employment status and 1ndicat1ng the
probability that an individual falls into any given
combination of tweo categories or events. For instance, the
probabillty that a teenager in the sample is an employed
Anglo is

p (Anglo and Employed) = 250/800 = .3125 (6-10)
The probability that a teenager is an unemployed Anglo is

P (Anglo and Unemployed) = 50/800 = .0625 (6-=11)
Note, following the additlion rule, that equations 6-10 and
6-11 sum to equation 6-4, the probability of being Anglo.

That is, the joint probabilities sum to the marginal
probabilities.



The data in Table 6-1 suggest that race=-ethnicity and
enployment status are quite likely related to each other.
We might then be interested in trying to compute the
probability that a teenager of any particular racial-ethnic
group ‘would be employed or unemployed. This is called a
conditional probability, the probability of employment or
unemployment conditional upon one's racial-ethnic heritage.

Consider, for instance, the situation of African-
American teenagers. The probability that a teenager is both
unemployed and African-American (the joint probability) is

p (African-American and Unemployed) = 150/800 = ,19 (6-12)

We know from equation 6-5 that the probability that any
teenager in the sample is African-American is .25. The
probability then that an African-American teenager is
unemployed is

p (African-American and Unemployed) .19
- o = mxmesawr = 76 (6-13)
p (African-American) .25

This is referred to as p (Unemployed|African-American) or
the conditional probability of unemployment given that one
is African-American. 1In general

p (A and B)
p (B|A) =  e=wwww v (6-14)
p (Aa) : 0

The conditional probability of an event B occurring given
situation A is ecqual to the joint probability of A and B
occurring divided by the probability of A occurring within
the total group.

Note that the conditional probability is simply equal
to the proportions one obtains when one computes proportions
within the categories of the independent variable. That is,
the conditional probabilities are simply “Wes equal to the
proportions (or .0l times the percentages) one obtains when )
one percentages a table within the categories of thg,,_____pnywrf'bh—
independent variable. In Table 6-1, the = of all
African-American teenagers who are unemployed = 150/200 =
.75, which is equal, given rounding error, to the figure
obtained in 6é-13 above.

This can be proved in general by noting that the joint
probability of A and B equals

nj§ / N..

and the general probability of A occurring equals



n.j / Neae
Substituting these values into equation 6-14 we can obtain
(ni4 / ne.) / (ney / n..) =nj4 / nzi, which is simply the

proportion of cases within a given category of A.

Randomness

Inferential statistics depend heavily upon the notion
of randomness and the idea of random samples. Random
samples are ones in which all elements of a given population
have an equal chance of being selected. Non random samples,
also called biased samples, are ones in which all elements
of the population do not have an ecual chance of being
selected. Scme stand a greater chance of being included
than others. The inferential techniques we discuss here all
- assume that samples have been randomly selected. They also
agsume that samples have been independently selected, that
ls, that choosing one person does not automatically result
in other people also being chosen. Each person or case has
an equal chance of being selected.

Now, even though events or people we may study 'have
been randomly selected or gathered, the statistics we derive
from these samples turn out to be quite predictable. The
text by Elifson, et al, gives an example of counting the
number of times "heads" appear when a group of people
flipwpaeay coins. If the people in this group continue to
flip coins over a long period of time, the number of people
getting "heads" each time will average out to simply half of
the group. Moreover, if one plots the number of people
getting heads in each of these tries over a long period of
time, the frequency polygon will begin to look like a normal
distribution. It will be unimodal, symmetrical, and bell-
shaped, with a mean at the point indicating half of the
people.

The exercise conducted in class illustrated this
principle. 1In fact, the normal curve and its
characteristics will be central to all of our later
discussions of inferential statistics. Students should make
sure that they understand all aspects of the discussion of
the normal curve presented earlier before progressing
further.



Basic Definitions

The following definitions are basic to the use of
inferential statistics. Students should be familiar with
all of them,

A population is the entire set or group of scores,
people, animals, whatever the elements that are being
studied.

A sample is a subset of the population, part of the
population.

A random sample is a sample that is selected in such a
way that each element of the population has an equal chance
of being in the sample.

A representative sample may also be used in making
inferences. This is a sample where the researcher knows how
the sample was collected and in what way it is
representative of the total population. Both randem and
representative samples, as noted earlier, are probability
samples. In this course we will assume, when using
inferential statistics, that all our probability samples are
simple random samples. (The procedures involved in making
inferences are slightly more complex when other types of
probability samples are involved.)

A parameter is a specified value of the population,
such as the mean or variance. Parameters are generally
designated by Greek symbols.

A statistic is a specified value of the sample, such as
the mean or variance. Statistics are usually designated by
Roman letters.

The sampling error refers to the difference of.the true
population value and the sample value, the difference
between the parameter and statistic. For any given sample
taken from a population, a statistic (such as a mean) may
differ from the corresponding parameter in the population.
The difference between the statistic and parameter is the
sampling error, the error introduced by loocking at the
sample instead of the total population.

The sampling distribution is a distribution of sample
statistics obtained by drawing an infinite number of samples
from a population. For example, given a large population
one would draw one sample from the population, obtain the
mean and standard deviation of that sample and plot it. The
sample is then replaced and the procedure is repeated an
infinite number of times. The eventual result is the
sampling distribution.



Tables 6-2, 6-3, amd 6-4 illustrate the development of
a sampling distribution. Table 6-2 gives data for a total
population: the suicide rates for 220 SMSA's in 1970. Table
6-3 gives the results obtained when samples, each sized 30,
were taken from this population and the average suicide rate
was computed. Table 6-4 gives a tally of these sample means
and Figure 6-1 displays this tally in a histogram. Only 100
samples were drawn in this example, but we could repeat the
procedures an infinite number of times. (Data are taken
from Mudler, et al.)

Sampling theory tells us that when we have an infinite
number of samples in our sampling distribution, the mean
(average) of the sampling distribution of the means (the
mean of the sample means) will equal the population mean.

As the samples drawn get larger the distribution assumes the
shape of the normal curve.

Table 6-4 and Figure 6-1 illustrate this result. It
may be seen that the majority of sample means in the
distribution cluster around the true population mean of
11.7. While the distribution of these actual sample means
around the population mean of 11.7 is not exactly shaped
like a2 normal distribution (this is called the empirical
sampling distribution), if we drew an infinite number of
samples, we would expect the sampling distribution around
the pcopulation mean to be normally distributed. Because we
could never draw an infinite number of samples this is
referred to as a theoretical sampling distribution. It is

this theoretical sampling distribution that we use in making
inferences from samples to populations. ,

The discussion immediately above refers to the most
typical value of the means (i.e., the central tendency of
the sampling distribution). We are also concerned, however,
with how far away from this central tendency most samples
are. That is, we know that the values tend to cluster
around the population mean, but how much do they vary? What
is the sampling error, the difference of the sample mean and
the population mean? Table 6-5 gives the distribution of
sampling errors for the group of samples in Table 6-3. It
is clear that the majority of errors are very small. More
extreme errors are relatively less frequent.

It turns out that the standard deviation of the
theoretical sampling distribution of means is equal to the
standard deviation of the population divided by the square
root of the sample size. This standard deviation of the
sampling distribution is referred to as the standard error
and has the formula:

s7 - o 3
X V'f’?_ (6-15)



Table 6-=2
Suicide Rates for 229 United States Standard Metropolitan
Statistical Areas, 1970

VOXODOANNNNdNNIdIOIOOOOATIOIOIEWW NS

ate Freq. Rate Freq. Rate Freq. Rate ' Freq
7 1 8.8 3 11.7 3 15.86 1
«3 1 8.9 3 .11.8 3 16.0 2
.8 1 8.0 2 11.9% 2 l6.1 4
.6 1l 9.1 2 12.0 4 16.2 1
.0 1l 9.2 3 12.1 1 16,3 1
2 2 9.3 2 12.2 3 16.4 1
5 1 9.4 B 12.3 2 16.5 1
.0 1 9.5 3 12.4 2 16.7 1
o3 2 9.6 3 12.5 1 16.9 2
-4 a i 9.7 3 12.7 4 17.0 1
5 2 9.8 3 12.8 6 17.2 1
.6 2 9.9 4 12.9 2 17.5 1
o7 3 10.0 4 13.0 2 17.8 1
.9 2 10.1 1 13.1 1 17.9 1
.1 1l 10.2 1l 13.2 3 18.3 1
.2 2 10.3 2 13.5 1 18.4 1
3 3 10.4 1 13.6 2 18.6 1l
.4 4 10.5 3 13.7 1 18.7 1l
5 2 10.6 2 14.0 4 19.0 1
.6 2 10.7 4 14.1 2 19.4 1
7 3 lo0.8 1 14.3 2 20.0 1
.8 1 l0.9 2 14.5 1 20.1 1
.9 2 11.0 2 14.6 1 20.6 1
.0 1 1l.1 2 14.7 1 20.9 a0
2 1 11.2 3 14.9 1 21.0 1
Y 2 11.3 3 15.1 2 21.8 1
«5 3 11l.4 2 15.2 2 22.0 1
6 2 11.5 3 15.4 1 22.1 1
-7 3 11l.6 6 15.5 1 22.5 2
24.8 1
24.9 1
25.0 1l



Table 6-3 )
100 Sample Means, n=30, Taken from Distribution in Table 6-2

Sample Means Frequency

10.3
10.4
10.5
10.6
10.8
10.9
11.0
11.1
11.2
11.3
11.4
11.5
11.6
11.7
1l.8
1l.9
12.1
12.2
12.3
12.4
12.5
12.9
13.0
13.2

b
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Table 6-4
Frequency Distribution of Sample Means -- The Empirical
Sampling Distribution for Data in Table 6-3

Range of Means Frequency

10.0 - 10.9 25
11.0 - 11.9 46
12.0 - 12.9 22
13.0 - 13.9 7
Figure 6-1

Histogram of the 100 Sample Means,
n=30, in Tables 6-3 and 6-4
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Table 6-5
Sampling Errors, 100 Samples given in Tables 6-3 and 6-4

Error Fregquency Error Frequency
-1l.4 1 ok 9
—1-3 4 02 g
-1.2 1 .4 3
-1-1 7 15 6
-8 9 .6 2
--B 3 l7 6
_-7 3 l8 3
-.6 1 1.2 2
--5 3 1.3 5
-4 7 1:5 2
-.3 1
-2 6
=51 1
0 6
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Note what each part of this formula implies. PFirst, as the
population becomes more variable, the samples are less
likely to have means like those of the population. Thus
samples from more heterogeneous populations will have larger
standard errors. Second, as the sample sizes become larger,
the standard error decreases and the sample means are likely
to be closer to the population mean. This means that if you
were to take two samples of different sizes from the same
population, the larger sample would have a smaller standard
error.

Because one usually does not know the standard
deviation of the population we must arrive at some estimate
of this standard error. We use the standard deviation of
the sample for this estimate, but make sure that the
standard deviation is defined as

Fc’,ﬁ?—)”'
S= n-{ (6-16)

Various computer programs routinely compute the standard
deviation with this formula, but some statistics books refer
to it not as s, but as ¥, to denote that it is the best
estimate of the population standard deviation. (As
explained earlier, the denominator of n-1, rather than n, is
used in eguation 6-16 because samples tend to vary less than
populations and this corrects for this smaller variance.)
Using this sample estimate of the population standard
deviation, the formula for the standard error becomes

s.. S -
x = [j?}— n (6-17)

. Ty wie I
- g(k-X) ,W’c?, %)’
ST g e U

It should be stressed that the sampling distribution of
the mean is normally distributed even when the frequency
distribution for the population is not. No matter what the
shape of the population distribution, the samplin
distribution of the means will assume the shape of the
normal distribution when samples are greater than 100 or so.
(We'll discuss the case of smaller samples later.
Essentially they have an "almost normal" distribution,
called the t distribution.) It is crucial that students
understand the difference between a frequency distribution,
such as those discussed in the second section, and a

where
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sampling distribution, the hypothetical distribution of
sample statistics.

The sampling distribution and the standard error are
the basis of all inferential statistics. BAbove, we mainly
referred to the sampling distribution of means. However,
sampling distributions can be constructed (and have been)
for many other statistics. The basic procedure used with
all inferential statistics is the same logically, and so in
the discussion below we will focus on inferences regarding
means.

The important things to remember in the discussion
below are the nature of the normal distribution; the fact
that with large samples the sampling distribution of the
means is- normal (with smaller samples it is the t- .
distribution whose nature is also known and which we will
discuss below); and that when we know the mean and standard
deviation of the sample we can estimate what the sampling
distribution looks like for that population (assuming that
the sample is representative of the population). This basic
information is used in computing all inferences regarding
means.

Confidence Intervals

Confidence intervals are a way of estimating population
parameters given knowledge of the related sample statistics.
These are also referred to as point estimations. This is
done by using knowledge of the sampling distribution. Thus,
it is essential that random or representative samples be
used. Basically, the statistics from the sample are used as
estimates of the population parameters. From these
estimates the sampling distribution is reconstructed. Then,
using the table giving the area under the normal curve,
assuning we have a large sample, the probability of the
parameter being within certain ranges may be computed. An
example will illustrate this.

Given a random sample of 169 cases from a very large
population. //—7’771
— . _ z[x_x’ _ 4
XS0, s= V=57 725

This information may be used to estimate the form of the
sampling distribution. As explained_above, X is our best
estimate of the population mean, X = 50.

S 26 2L

T e

Sg ¢ %n L o bert extmate /Zo,g‘%nsréau&viﬂ'f"’-- X7 i T 13

Thus, we may estimate the sampling distribution to be
normally distributed with a mean of 50 and a standard error

12



of 2,based on our knowledge of the randoem sample from this

’ pepulation. This sampling distribution is pictured in

A Figure 6-2. Note that this is a theoretical distribution of

means of samples that could be drawn from the population.
Because the sample we do have has been randomly drawn, we
may assume that it is representative of the population and
we use these characteristics to estimate the nature of the

; sampling distribution.

o ' Figure 6-2

's Thesrchie Q. sanpling Airdoibiteoss s X0V, SgE2

~
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We can assume that the sampling distribution is
normally distributed because the sample size is relatively
large. Using the knowledge of the characteristics of the
' normal curve we know that between one standard error below
o the mean and one standard error above the mean there is

.6826 of the total area under the curve. In this case the
' scores in the distribution are sample means and we can say
i that .6826 of all the sample means in this sampling’
distribution are between 48 and 52. That is, they are in
the area plus or minus one standard error from the mean. If
we take these sample means as estimates of the population
mean we can say that .6826 of the estimates of the -
population mean are between 48 and 52. Another, easier, way
of saying that is that the probability that the true
population mean is between 48 and 52 is equal to .6826.

This can be written symbolically as
P [48 </u-< 52] = .6826 (6-18)
- This may be referred to as a 68% confidence interval around
. the mean. This means that we can be 68% confident that the
true population mean lies between 48 and 52.

Note that we switched from talking about the proportion
of estimates of the mean of the population that were within
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a given range to discussing the preobability that the
population mean was within a given range. This is the
essence of statistical inference. We are concerned with the
chances of being correct (the probability of being correct)
in estimating the value of a population parameter. We use
the sampling distribution estimated from the sample values
to compute these chances or probabilities.

Confidence intervals or bands equal to 95% or 99% are
commonly used. With intervals of this width we are finding
the range of values in which 95% (or 99%) of the estimates
of the population value fall. For a 95% confidence interval
only .025% of the area under the curve would not be included
within the interval on each side of the mean. Referring
again to the table of the normal curve we can see that .025
of the area under the curve is remaining (.475 on one side
of X is included) when we are 1.96 standard errors from the
mean. Thus, to enclose the area encompassing 95% of the
possible means in this theoretical distribution we must go
both 1.96 standard errors above the mean and 1.96 standard
errors below the mean.

In the present example the estimated mean is 50 and the
estimate of the standard error is 2. 1.96 standard errors
is equal to 3.92. Thus, we may conclude that 95% of the
means in the estimated sampling distribution are included
between (50 - 3.92) and (50 + 3.92). This may be written
symbolically as

P[46.08 </u- < 53.92] = .95 (6-19)

This means that we can be 95% confident that the true
population mean lies between 46.08 and 53.92 or that the _
probability that the population mean lies between 46.08 and
53.92 is .95.

For a ninety-nine percent confidence interval we would
need to enclose all but .005 of the area on each side of the
mean. This corresponds to an area of .495 between the mean
and the given point, which corresponds to a z-score of about
2.59. The computations below and the figures show how the
99% confidence interval would be computed. -

p [K-(1.58Xsz) </~ < @R F(ag XSz )] -7T

| - = - .99
- ¢ S0+ (.5g)r) T

pLso - 72

S W
,01'_'_44{?5-{/& <.ff./f.7 .79
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Figure 6-3
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These results indicate that 99% of the means in the
estimated sampling distribution fall between 44.85 and
55.15. There is a 99% probability that the population mean
falls between 44.85 and 55.15. We can be 99% confident that
the population mean lies between 44.85 and 55.15. A general
formula for computing confidence intervals is often used.
For the 95% confidence interval around the mean, when
samples are large, we may use

and, for the 99% confidence interval, we may use

p[¥-25¢ 5 </b5 < X 1258 55 .—}’ﬁ?t (6-21)

where X is the sample mean and Séls the estimated standard
error.

The logic underlying confidence intervals may also be
used in computing the probability that the population
parameter is greater than or less than-a certain score. For
instance, in the example above, we may compute the
probability that « the population mean, is greater than 45.
To do this we must first determine how far this X = 45 is
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from the mean of the theoretical sampling distribution. We
may do this using standard scores.

Y550 -X - §
g M8, HIU . Loy f

That is, a score of 45 is 2.5 standard errors below the mean
in the sampling distribution.

Figure 6-4

2:’.2-5_

Using the table of areas under the normal curve we can
see that the proportion of area under the curve from the
mean to X = 45 is .4938. Thus, P [45 <jAb< 50] = .4398. We
know that P éﬁQJz .50] = .5000 as 50 is” the best estimate of
the mean of e sampling distribution. Thus, P [f{< . 45] =
.4983 + .,5000 = ,9938. ;

Similarly, to compute the probability that //°< 53 we
must determine how far away 53 is from the estimated mean of
the sampling distribution, 50. z = (X =¥ )/5z = (53-50)/ 2
= 1.5. This indicates that 53 is 1.5 standard errors above
the estimated sampling distribution.

’“‘f‘”@
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Figure 6-5
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Using the table of area under the normal curve we can find
that .
P E/x,< 50] = .5000

P [50 < K< 53] = .4332
and thus P [ tc< 53] = .5000 + .4332 = .9332.

There is a 93% probability that the population mean is less
than 53. Similarly, P [ > 53] = .5000 - .4332 = |0668.
Students should work through several more examples of
varying types to ensure that they totally understand the
logic of confidence intervals.

Note that all of these computations have been based on
the theoretical sampling distribution of the mean. 'If the
sample size were different or if the observed mean or
standard deviation of the sample were different, the results
would have been altered.

Computer output commonly gives the standard error for a
distribution. Consider the distribution of ages of ' the bank
employees shown in Table 2-1. Assume the sample has been
randomly selected from some larger population of bank
employees. The sample mean is given as 37.186, and the
standard error is 0.541. The sampling distribution of the
means may be estimated as shown in Figure 6-6 below.
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Figure 6-6
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We may conclude, based on our sample information, that about
96% of the sample means lie between 36.1 and 38.3 years; 68%
of the sample means lie between 36.6 and 37.7 years.

Further calculations indicate that

P[37.19 = (.54)(1.96)< /< 37,19 + (.54)(1.96)] = .95
= P[37.19 = 1.06 < << 37.19 + 1.06] = .95 (6=-22)
= P[36.13 < 4 < 38.25] = .95

P[37.19 = 1.39 < _M< 37.19 + 1.39] = .99

We can be 95% confident that the average age of bank
employees in the total population lies between 36.13 and
38.25 years. We can be 99% confident that the average age
of the bank employees in the population lies between 35.80
and 38.58 years.

To find the probability that the average age is less
than 39 years we need first to compute the z-score that
corresponds to 39: z = (X - X)/Sy =(39-37.19)/.54 = 3.35.
Consulting Table 2-1 and interpolating we find that.
approximately .49959 of the area under the curve lies
between the mean and 3.35 standard errors above the mean.
Since .5000 of the area lies below the mean we can reach the
following conclusions
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P[37.19 < fc< 39] = .49959
P[ /< 37.19] = .5000 (6-24)
P[ fo< 39] = .49959 + .5000 = .99959

We can be 99.959% confident that the average age of the bank
employees in the population is less than 39 years.

Hypothesis Testing

Hypothesis testing, the other major inferential
technique, is somewhat more common than confidence
intervals. Here, instead of using sample statistics to make
inferences about the nature of a parameter, we start with an
idea about the population parameters. We then draw out the
implications of this idea and test the truth of the
implications with the data from the sample.

The null hypothesis is the hypothesis to be tested. It
is symbolized as H,.

The alternative or substantive or research hypothesis
is the alternative to the null hypothesis. For example, if
the null hypothesis, Hgy is that /= O; H; (the alternative

hypothesis) may be teép ;r/bbé ,,,./ugp,

The null and alternative hypotheses are phrased so that
we can reject the null hypothesis with certain probabilities
of being wrong and that by rejecting the null hypothesis we
can put corresponding confidence in the truth of the
alternative hypothesis. The null hypothesis is always
phrased in the format of the population parameter equaling
some constant (either zero or some other number). The
alternative hypothesis is phrased so that the population
parameter is either unequal to that constant or greater or
less than that constant.

Note that we can never prove the truth of the null or
alternative hypotheses. We fail to reject or we reject the
null hypothesis with a certain degree of confidence that our
decision is correct. We do this by assuming that the null
hypothesis is true and then drawing implications from this
assumption. Using the sampling distribution we determine
the probability of certain sample values appearing. This is
the logic of falsification that is basic to work in the
social sciences.

The level of significance refers to the decision of how

rare a sample outcome must be if it is to cast doubt on the
null hypothesis. Usually researchers use levels such as
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.05, .01, or .00l. However, these are arbitrary levels,and
I recommend always noting the actual probability that a
given result would occur. This is especially important when
we consider what would happen if we consistently received
results that were in the same direction, but only marginally
significant. For instance, suppose we found that we could
reject the null hypothesis in favor of the alternative with
a .20 probability of being wrong. Normally, we would fail
to reject the null hypothesis. But, suppdse we repeated the
study and found identical results with a second sample. The
chance of finding this same result two times in a row is
(.20)(.20) = .04. This is a result that would be acceptable
at standard levels of significance, but if we simply
reported n.s. (not significant) in our write~up, no one
would know how important the results really were.

The zone of rejection is the sample values which lie in
the area where their probability of occurrence equals or is
lower than the level of significance. Ancother way of seeing
this is as the sample values whose occurrence is so 'rare
that they would occur (given the truth of the null
hypothesis) only as frequently as the level of significance.

An example may help to make this clearer. Suppose we
had the following null and alternative hypotheses

Ho: = 100

Hi: A # 100

Suppose we draw a random sample from the populatlon
involved. In this sample x P, SELZ, N=149

Now we shall suppose that Hy is actually true, that the
population mean really eguals 100. Then we shall use 100 as
the mean of the sampling distribution of the means. Given
that the sample is a random one of the population, we may
use Sy as the estimate of the standard error.

£ - i3 {3
S U—' r‘q-l3—£l-0

Because the n is large, the sampling distribution is
normally distributed. The theoretical sampling distribution
that would occur given that Hgy is true and with the standard
error estimated by the sample value of the standard
deviation, is drawn in Figure 6-7 below.



Figure 6-7
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This is the theoretical sampling distribution with a mean of
100, standard error of 1.0, t=d Jdt is normally distributed.
This distribution would be the truekgampling dlstributlon
for the population if H, were true. es

Suppose we choose a level of significance of .05. That
is, we decide that to reject the null hypothesis we must
have a sample value that would occur only 5 times out of one
hundred.

>

Our alternative hypothesis is that/Lbféf We have not
hypothesized that /“ “is less than or greater than 100.
Thus, our zone of rejection may be on either side of 100.
Because our level of significance is equal to .05 the
combined probability of scores in the zone of rejection must
equal .05. Thus, the probability of scores in the zone of
rejection on both sides of the mean must equal .025 + .025 =
.050.

Referring again to the table of area under the normal
curve we can find that the score or z value marking off this
zone of rejection will be 1.96 standard errors away from the
mean on either side. Thus, if a sample value falls 'either
1.96 standard errors above the mean or 1.96 standard errors
below the mean, given that Hgy is true, it will fall in the
zone of rejection. That is, if the sample value falls into
the zone of rejection the probability of that actually
occurring if the null hypothesis were true is less than the
level of significance, less than .05.

In this example, the standard error is equal to 1.0.
Thus, the zone of rejection equals all values below (100) -
(1.96) (1.0) = 98.04 and all values above 100 + (1.96) (1.0)
= 101.96. All scores less than 98.04 or greater than 101.96
fall into the zone of rejection.
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We return now to the sample chosen. In this sample the
mean was 95, This value clearly falls into the zone of
rejection. The probability of this value occurring when Hy
is true is less than .05. In other words, we may reject the
null hypothesis that the population mean does not equal 100
with less than 5 chances out of one hundred of being wrong.

Note that quite likely the probability of being able to
reject Hy in favor of H; is much lower than .05. In actual
practice it is much more useful to give the actual level of
the probability of occurrence. As noted above, this is most
useful for replication. The computer generally prints the
exact probability. We can easily calculate the exact
probability of an event occurring simply by finding the z-
value that corresponds to the actual sample value on the
sampling distribution that assumes that Hy is true. In this
case -X)  (gr-100) -

Z= QE?" = —7"”' = ~5:0
X

Locating this z-value on the table of the normal curve we
see that the actual probability of this value occurring is <
2 (.0001) = < .0002. We had to multiply the proportion
times 2 because our hypothesis did not specify a zone of
rejection on just one side of the mean, but on both sides.

Sometimes a researcher may have reason to suspect that
the true population mean fell above or below a certain
level. In this case the researcher would use what is called
a directional alternative hypothesis instead of the non-
directional hypothesis specified above. For instance,
suppose in the example above the hypotheses had been

Hot J« = 100 or [ 2100
H1:/¢< 100

Again assume that a random sample was drawn, with X = 95, s
= 13, n = 169. The theoretical sampling distribution
assuming that Ho is true is given below in Figure 6-8.

Figure 6-8




' The zone of rejection in this case would fall only below the

mean. That is, we are only concerned with samples in this
sampling distribution with means less than 100. With a .05
level of probability, this means that all means less than
l1.645 standard errors below the hypothesized mean would fall
into the zone of rejection. In this distribution this
corresponds to all sample scores less than or equal to (100)
- (l1.645) (1.0) = 98.355. Thus, if a sample mean were be
98.355, or less, we could reject Hy: A% 100 in favor of
His < 100 at the .05 level of significance. Note,
however, that the exact probability of getting the sample
value of 95 when the null hypothesis is true and the
alternative hypothesis is true and the alternative
hypothesis is directional is <.0001.

This basic logic of testing hypotheses can be extended
in many ways. Always the format of the null and alternative
or research hypothesis 1s used. Also, the sampling
distribution, assuming that Hy is true is developed and the
sample values are compared against the "critical values" on
that sampling distribution. The critical wvalue is the value
on the sampling distribution that denotes the start of the
zone of rejection. It is important to note that the nature
of the alternative hypothesis depends on the theory, what
you as a researcher are Iinterested in. For instance,
someone interested in the IQ scores of college students
would likely have as the research hypothesis that _4«43>100.
Note that the null hypothesis includes all values of 100 and
below.

The theory of inferential statistics has been developed
with the assumption that the populations involved are
infinitely large. Sampling is usually done with replacement
(that is once a sample has been drawn it is replaced). In
real sociological research we will sometimes have samples
that are relatively large in relation to the population. As
your sample approaches the size of the population your
sampling error and also your standard error tend to go down.
If you are involved in having to make inferences in cases
where the sample approaches the population size you should
consult a textbook for the rather simple calculations
involved in correcting the size of the standard error. 1In
essence, these calculations make it even easier to reject
the null hypothesis.

In general, all tests of hypotheses involve the basic
steps we have followed here. First one determines a null
hypothesis, then one determines an alternative or research
hypothesis. Third, one sketches the sampling distribution
one would have if the null hypothesis were true. Fourth,
one determines the probability level at which one wishes to
reject the null hypothesis and the associated critical wvalue
and zone of rejection. Fifth, one computes the test
statistic, here the z-value, that corresponds to the sample
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value. Sixth, one compares the sample test statistic with
the critical value and decides whether one should reject or
fail to reject the null hypothesis. Finally, one computes
the actual probability of being wrong if one were to reject
the null hypothesis.

Inferences About Means with Small Samples

In the discussion above it has been stressed that the
sampling distribution of the means is normally distributed
when samples are large, generally over 100 or so. What
about smaller samples?

It is possible to make inferences about means when you
have samples smaller than 100 using the same procedure as
that outlined above. The only difference is in the shape of
the sampling distribution. It assumes the shape of the
t-distribution. The t-distribution is similar to the normal
distribution in that it is symmetrical, unimodal, and
infinite. 1It, however, varies depending on what is called
"degrees of freedom." These correspond to the size of the
samples being studied. With very small samples the t-
distribution, is much broader and shorter than the normal
distribution, but as the degrees of freedom (or sample size)
become larger (n's over about 150) the shape of the t-
distribution becomes more like the normal distribution until
with large samples they are identical.

When making inferences about means with small samples
you calculate the degrees of freedom by subtracting one from
the sample size (n-l1). You can then look up the critical
values for the sampling distribution on the table
summarizing these for the t-distribution and use these
critical values in your analysis.

There is not just one t-distribution, but a whole
family of distributions. The t~distribution is essentially
flatter and wider than the normal distribution, and as the n
gets larger it approaches the normal shape more and more.
Because there are so many different t-distributions; the
table describing the t-distribution does not give all the
values. Instead, the table gives the critical values (the
values of t found at the edge of the zone of rejection) for
a number of levels of significance. This is given for both
the case when the alternative hypothesis is two-tailed (no
direction given) and when it is one-tailed (directional).
These values then can also be used for confidence intervals.
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The formula used to calculate the t-value for any value
along the distribution is directly analogous to the
computation of the z-score.

What this formula does is to locate the sample value along
the sampling distribution. It tells us how far the sample
value is from the estimated or hypothesized mean of the
sampling distribution, which is shaped like a t-
distribution.

A simple example can illustrate this. Say we had the
following hypotheses: '

Hot Jt= 40; Hl':/‘< 40; s =V£(x-x12/n-1 = 5; n=25; X = 38;
s

X =5/ 25 =5/5 = 1.0.
Say we had chosen a significance level of .05.

We turn now to the t-distribution. To read this table
you need to understand the nature of degrees of freedomn.
Degrees of freedom are related to the size of the sample.
In one sample tests, such as this, the degrees of freedom
simply equal n-l. Degrees of freedom come from the number
of free guesses one has in determining the value being
examined. In this case that value is the mean. 1In choosing
sample values for a particular mean we can choose values
randomly for all the cases except one. To make the mean
correct, or egqual to a particular value, we must set one
score eqgual to some specific number. Thus, we lose one
degree of freedom. Here, our df = n-1 = 25-1 = 24.

Now, reading the table for a one-tailed test (from our
directional hypothesis), for 24 degrees of freedom, for a
.05 level of significance, the critical value is 1.711 for
us to reject the null hypothesis in favor of the alternative
that /4 is less than 40. Because the alternative
hypothesis is worded so that the expected population mean is
less than that in the null hypothesis, our t-value will also
need to be negative.

To compute t we simply substitute in the formula that

is so similar to the formula for z-scores. t = X-s~/sg = 1£¥ﬁ2

In other words, along the t-distribution, as shown below,
our sample value falls at two standard errors below the
hypothesized mean in the null hypothesis. This is indeed in
the zone of rejection and we can reject the null hypothesis
in favor of the alternative at the .05 level of
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significance. By examining the t-table we see that this t-
value is not large enough to reject the null hypothesis at
the .025 level of significance. Therefore, the probability
of being wrong in rejecting H, is less than .05, but greater

than .025.
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