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I. Introduct.ion ,. to statistics and computing 

In this section some of the basic definitions and 
instructions needed ·for understanding -~he material in the course 
are presented. First we will examine material relevant to 
statistics, whether ·they are computed with the help of machines 
or by hand; and then we will discuss the basics of using a 
computer to ~nalyze data. 

Uses of Statistics and Basic Definitions 

Below the uses of statistics are discussed. Then types of 
statistics, levels of ~easurement, arithmetic operations relevant 
to our work, and, finally, topics related to measurement are 
briefly discussed. It is assumed that you have had some exposure 
to most of these topics, ·so they are reviewed only briefly. 

Uses of Statistics 

Statistics are a tool. They help social scientists analyze 
their data. In themselves, statistics can work no wonders. If a 
sociologist has poor theory or data that are unreliable or 
invalid, the best statistics in the world can not improve upon 
these basic problems. Moreover, there are many different 
statistics, but only certain ones are relevant for a given 
problem. Researchers, if they are to have useful results, must 
choose the appropriate statistics for the data and problem. 

The problem of choosing appropriate techniques has ·become 
compounded with the availability of easy statistical computations 
with computers. When statistical computations were done by hand 
they took many hours to complete and one would not embark upon a 
computation unless one usually was quite sure that it would be 
useful. Now one can get a myriad of statistics with the push of 
a button. Only some of those will be appropriate for a 
statistical problem and the researcher must think very carefully 
to make the correct choices. • 

Given these cautions, we may say that statistics do have 
many uses. They are a most useful means of summarizing the 
characteristics of large masses of data. They also allow us to 
describe the incidence of certain events or behaviors, to look at 
the associations among two or more variables, and to infer from 
small samples to large populations. Statistics are used by 
researchers who employ a whole range of data gathering 
techniques, for statistics may be used with the qualitative data 
that are often obtained by participant observ~rs as well as the 
more quantitative data often used by demographers. 

You may have heard the saying that one can "lie with 
statistics." To some extent this is true. However, one can also 
lie with words. A solid knowledge of socio~ogical methods and 
social statistics makes it more likely that. you will be able to 
detect sue~ "lies," if or when they occur. 
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Descriptive and Inferential Statistics 

Statistics may be divided·· into two basic groups: those that 
describe the characteristics of a sample or population 
(descriptive statistics) and those that allow us to generalize 
from a sample to a populationC,n~r~n-t,· 11,( sfa..i,~/i'c.~) • 

To understand this distinction it helps to review the nature 
of sampling. Remember that a population is the total group of 
units (people, organizations, cities, etc.) that one is studying. 
Only rarely does a social scientist study an entire population. 
Instead, we usually examine only a subset of the population. 
This subset is referred to as a sample. 

Samples may be selected in basically two ways. In one way, 
called a probability sample, the elements of the sample are 
selected so that we know the chance that each member of the 
population has of being included. The simplest type of 
probability sample is the simple random sample. Other types 
include the systematic sample, stratified random, and cluster 
sample. Samples that are not selected in a way in which we know 
the chance that each member has of being in the population are 
termed non-probability samples. These include availability 
samples, quota samples, and theoretical samples. 

Descriptive statistics can be used with either probability 
or non-probability samples. They describe certain 

• characteristics of the sample. Percentages, averages, and 
measures of association, such as correlation coefficients, are 
all examples of descriptive measures or statistics. Inferential 
statistics are used to infer information from a sample to a 
population. With inferential statistics we can find the 
probability that certain characteristics in a sample apply to the 
population. To make accurate inferences. we need, however, to 
have a probability sample, so inferential statistics are only 
appropriately used with probability samples. While descriptive 
and inferential statistics have different uses, they are related, 
for inferences can be made about descriptive statistics--if we 
have a probability sample. Thus, in this class, we will learn, 
amo·ng other things, how to make inferences about the average 
characteristics of a population from information about a sample. 

Levels of Measurement 

You may remember from your research ·methods classes that 
when variables are measured they may be measured in different 
ways. One way of describing the nature of this measurement is to 
say whether it is qualitative or quantitative--referring to the 
extent to which numbers may be assigned to the measure or • 
variable. A more exact distinction involves four levels of · 
measurement. These distinctions are very important to understand 
for they provide the basis of choosing appropriate statistics for 
a given data set. 
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The simplest and most all inclusive level is the nominal 
one. Variables measured on a nominal scale are placed only in 
categories. Thus the terms nominal and categorical are sometimes 
used interchangeably. Within this level no order is posited, we 
cannot say that one category is greater than or less than 
another. Examples of a nominally measured variable could include 
re1igious affiliation, marital status, race, etc. Any variable 
that has categories that are mutually exclusive and exhaustive is 
said to be measured on at least a nominal sca..LJ'ih----

nominal 

dinal • ---------/ interval _____ -·· 

'----- - . ---- -:- ..-

Figure 1-1: Representation of the relative 
restrictiveness of the four .levels of measurement 

Variables measured on an ordinal scale are essentially one 
step·up from nominal. The data ~re still categorical: they have 
no inherent numerical quality (thus they are still usually 
referred to as qualitative) ., but they can be ordered in some 
fashion~ For instance, it is often possible to order religious 
groups from those that are the most-conservative to those that 
are the most liberal. One can order political groups in the same 
way. Hair color can be ordered from the most to the least· • 

•common, etc. Some people claim that practically any variable can 
be at least ordinal in some theoretical sense. 

Interval scales are a step up from ordinal scales, and are 
the first to be termed quantitative, primarily because arithmetic 
operations are possible with them: • (See more below on this.) An 
interval scale is like an ordinal scale in the sense that the 
attributes are ordered. However, with an interval scale we are • 
able to say that the distance between point 1 and point 2 on the 
scale is the same as that between point 2 and point 3. That is, 
we can say that there are equal intervals between all points on 
the scale. Temperature, time, and IQ scores are variables 
commonly classified as interval. 

Ratio scales are the most restrictive. They not only 
involve ordered categories with equal intervals between them, but 
there is also a true zero point on the scale. This makes it 
possibie to say that the difference between point 2 and a, for 
example, is twice as large as the difference between 2 and 5 
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(That is, 6 is twise as l"arge as 3). More specifically, we could 
·say that someone who earns $4000/yr. earns twice as much as 
someone who earns $2000/yr. We cannot say that when it is 80 
degrees outside it is twice as hot as when it is 40 degrees, 
because if we were using different measurement scales (e.g. 
Celcius or Kelvin) we would have different. results than when we 
used the Farenheit scale. Similarly, grade point averages vary 
depending on whether we use a four point scale with A=4 or a five 
point scale with A=l. In each instance the intervals are equal 
between each letter grade, but the ratios ar~ not. 

These examples point to the fact that each level of 
measurement allows different types of arithmetic relationships or 
transformations. These in turn specify the types of statistics 
that can be used. With nominal scales we can employ only 
matching, or equivalence relations. For instance, if we know 
that both Mary and John are Catholics, but Beth is not, we can 
say that ~ary and John are in the same category and Beth is in 
another. Mary and John have equivalent attributes, Beth has a 
nonequivalent one. usia)Qcs:::::ttnlli!§~•ilreE (M=J: M~B; Jr/B). 

With ordinal scales we can not only have equivalence 
relations, we can have ordered relations. Suppose on a scale of 
political attitudes Mary has the most conservative scores; John 
has the next more conservative scores; and Beth has th·e most 
liberal scores. This tells us that Mary would score highest on a 
scale of conservatism: John would score lower than Mary, but 
higher than Beth; and Beth would score lowest (M>J>B and B<J<M). 

With interval scales we can have equivalence relations, 
ordered relations, and also the possibility of adding and 
multiplying. • For instance, we can add up all the high 
temperatures recorded in a city over a week and compute the 
average temperature for that week. Similarly, we can compute the 
average GPA that a student ea~ns in a term. This is possible 
because the difference between each interval on a temperature 
scale is equal and the difference between each interval on a 
grade point scale is equal. 

With ratio scales we can not only add and subtract, 'but we 
can also discuss ratios. Because there is a meaningful zero we 
can say that John earns twice as much as Mary or compare the 
average salaries of whites and blacks as a ratio. 

Both the distinction between descriptive and inferential 
statistics and that between the various levels of measurement 
will be important, even crucial, in detennining which statistics 
are appropriate for a given problem. 
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Arithmetic Operations 

It is assumed that all students taking this course have 
_taken. high school algebra. The following three comments are 
meant only as a brief review. Students who need a review of 
basic algeb~aic definitions and manipulations should consult a 
textbook. 

First, we will often work with rounded numbers or wiil have 
to round numbers off to a given point (nearest whole number, • 
nearest· ten, etc.). (We will discuss the latter topic m9re fully 
in the second part of the course.) When doing computations with 
rounded numbers, we always round the result to the same point as 
the original numbers. For instance, if we are doing computations 
with numbers rounded to the nearest hundredth, the result should 
be rounded to the nearest hundredth. 

e.g. (.36) (.02) = .0072 = .01 
or ( . 3 6) ( • 2Q) = . 07 2 = . 07 (note that the last significant 

digit is commonly underlined when 
it is a zero, to distinguish it 
from a zero which is not a 

-significant digit.) 

The term significant digit refers (as implied above) to how 
many digits remain in a number that have not been rounded off. 
That is, it tells us how many of the digits in a number were not 
rounded off. The ·chart below illustrates this concept. 

Number 

lQ 
350 

1400 
16QOO 

14.Q 

Table 1-l 

Number of 
Significant Digits 

2 
2 
2 
J 
3 

Rounded to the 
Nearest 

whole number 
ten 
hundred 
hundred 
tenth 

Finally, precision refers to how exact our measures are. 
For instance, a population figure of 43,976 is said to be more 
precise than a population figure of 44,000. While in areas, such 
as the physical sciences, very precise measures are both .p9ssible 
and desirable, this is often not the case in the social sciences. 
In· fact the population figure of 44,000 may well be more accurate 
and thus preferable to the more precise figure. 

Measurement Issues 

It is assumed that students have had an introduction to the 
logic involved in measurement in their basic research course. 
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The following comments then are made only to remind students of 
important distinctions and concepts. 

First, the distinction between discrete and continuous 
variables can be an important one when working with quantitative 
variables (those measured on an interval or ratio scale). 
Discrete variables are those where the values can be actually 
numbered or counted. Examples could be the number of children in 
a family, the size of a city or c~untry, etc. We cannot have 
one-half of a child or one-half of a person. continuous 
variables are those whose p9ssible v~lues form a continuum. 
Examples include age, height, time, etc. We are constantly 
growing_ older; people vary along a continuum of height and 
weight, etc. 

Note that we often round continuous variables and treat them 
as though they were discrete. For instance, we talk about all 
two years olds, all three year olds, etc. When placing data into 
tables this is often the preferable step, in order to make the 
date easier to understand. When doing statist'ical computations 
by hand, grouping continuous data also makes them easier to work 
with. However, as long as our measures are accurate, it is 
generally best to keep the measures as continuous as possible, 
especially if one has machines to do the computations. 

Secopd, it is important to briefly discuss measurement 
error. Measurement error is a very complex topic, well beyond 
the scope of this course. Here we can only note that errors in 
measurement do occur. The statistical treatments we will deal 
with all assume that this measurement error is random. For 
instance, in measuring income sometimes we may have a high 
estimate, sometimes our estimate is low--but in the long run 
these errors balance out. While we know that this is often not 
the case, the ways of dealing with this error (in a ·statistical 
manner) are too complex to be explained until you understand the 
material given in this course and probably your next statistics 
course. 

computer work 

· Almost all of the statistics we will do this term will be 
computed with the help of computers. Below we examine the 
advantages and disadvantages · of using the computer, an overview 
of the SPSS package that we will use, a description of the data 
file that may be analyzed, and an example of a run using these 
data. 

Computers vs. Hand Computations 

. Obviously, computers have many advantages over hand 
computations in doing statistical work. They are much faster and 
easier to use and they are also much more accurate (assuming the 
input data and computer prograltlll\ing are correct) than hand 
computations. Just a relatively few year~ ago social scientists 
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would spend literally hundreds of hours in data reduction 
(getting simple frequency counts) and computing the simplest of 
statistics. They can now accomplish this work in a few minutes. 

on the other hand, because it is now so easy to calcul~te a 
wealth of statistics at the literal touch of a finger there is a 
great danger of misusing statistics. Computers cannot decide .for 
you what kind of statistic is appropriate for a given problem or 
how to interpret a statistic once you have it. The researcher 
must give a good deal of thought to his or her analysis in order 
to choose the proper analysis method. Furthermore, we usually 
code our data when we use machines to analyze it and we must make 
sure that the measures that the machine is using are comparable 
to what we really want it to analyze. At all steps of the 
analysis process the researcher must think very carefully about 
what is happening. This was true, of course, when computations 
were done by hand. But, perhaps because it is so easy now to get 
all kinds of statistics from a machine in just a few minutes, it 
is especially important to remember how important this planning 
is now. 

Statisical Package for the Social Sciences (SPSS) 

In this class you will be JtSing SPSS/PC+ studentware to 
analyze data. The SPSS packagey.i.s a very widely used set of 
computer programs developed for both main frame and personal 
computers. It is probably the most flexible and widely used 
program for social scientists. You will be using a version of 
the program that has been specifically developed for the PC and 
for student use. The commands that you will be using are similar 
to those which are used in the mainframe and regular pc version, 
so it will be relatively easy for you to use other versions of 
SPSS once you have worked with this package. There are several 
other computer packages commonly used by social scientists 
(biomed ~nd SAS are perhaps the most common), and all are 
relatively easy to learn once you have some familiarity with 
using a computer for data analysis. The book by Norusis required 
for the class describes the SPSS/PC+ studentware program in great 
detail. Classes will also be held to introduce you to the use of 
the computer package (or software as it is commonly called). 

With SPSS we can take a group of data that has been coded 
and prepared in a form that is readable by the machine (say on 
cards, tape, or disk) and tell the computer (through ways define~ 
by.SPSS) what each of the variables are and where they reside on 
the cards, tape or disk. This set of data is referred to as our 
data 'file or as an SPSS system- file, once it has been defined 
within the SPSS system. A data file is generally arranged so 
that each case or unit of analysis (people, states, nations, 
organizations) .is in a row or set of rows and each variable is. in 
a different column. The data we will, use has already been 
defined within the SPSS system and· is such a dat~ file. (See 
below.) 
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Once our dat~ have been defined we can then ask the ·machine 
to perform various statistical manipulations with the data. For 
instance, we might ask the machine to look at a certain variable, 
tell us how many cases have each attribute of the variable, to 
compute the percentages associ~ted with these frequencies, and 
perhaps, if appropriate, to compute some type of average. This 
would be dc;me with various "tasks" or lines in the program where 
we define the "procedures" we want the computer to do and the 
associated statistics. The manuals associated with a given 
computer program give detailed instructions on how to ask the 
computer to perform these manipulations. 

The Bank Data File 

For this class you can use a variety of SPSS system files 
that have been developed by the s~ss company. One of these 
includes data on all the employees of a midwestern·bank that were 
hired in 1969, 1970, and f97l. The data were gathered in March, 
1977. Data are available on the subjects• sex, race, age, length 
of employment in the bank, current and beginning salary, 
educational attainment, and the category of job in which they 
currently work. The code· book for this data set is given below 
and is similar in format to all codebooks. In the codebook the 
left-hand column gives the SPSS variable name for each variable. 
This is the way that the variable is identified in the SPSS 
system file. Thus, if one wished to analyze the variable 
regarding job seniority one would ask the computer to look at the 
variable TIME. If one wanted to look at current salary, one 
would ask the computer to look at SALNOW. 

The right hand column describes each of these variables. 
For instance, SALBEG, the beginning salary of each employee, is 
coded as the actual salary, in dollars, at which the employee 
began work at the bank. SEX is coded with o meaning male, and l 
meaning female. Unlike many data sets, the bank data set has not 
grouped the quantitative data. Because it was possible to 
actually examine the exact data on salary and age and experience, 
instead of asking people to report these figures, the actual 
dollars earned, months worked, or age (in years and fraction of 
years) are coded. ' 

At the bottom o~ the page it is noted that N=474. This 
means that there are 474 people included in the data set. There 
are no missi~g data. 
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SPSS 
Variable Name 

' I 
' ID 

SALBEG 

SEX 

TIME 

AGE 

SALNOW 

EDLEVEL 

WORK 

JOBCAT 

MINORITY 

SEXRACE 

N = 474 

Figure l-2 
Sample of Codebook for Bank Data 

Bank Employment 

Description and Code 

Identification number of each employee 

Beginning salary when hired 
actual beginning salary is coded (5 digits) 
O -- missing 

Sex of employee 
o male 
~ -- female 
9 -- don't know, missing 

Job seniority, coded in number of months have 
worked at the bank 
o -- missing 

Employee's age, coded in actual years with two 
significant decimal points 

current Salary, in actual dollars (5 significant 
digits) 

Years of education attained (actual years are 
coded) • 

Years of work experience, with two sign~ficant 
digits beyond the decimal point 

Employment category 
1 clerical 
2 office trainee 
3 security officer 
4 college trainee 
5 exempt employee 
6 MBA trainee 
7 technical 

Minority classification 
O -- white 
1 -- nonwhite 

Sex and race classification 
1 white males 
2 minority males 

.3 white females 
4 minority females 
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A SamplP Rur, 

Yon might find it helpful to ask the computer to produce a 
listing of each of the variables in the file with the number of 
people holding each attribute and the associated descriptive 
statistics. You can ask SPSS to produce such output by using the 
subprogram or procedu~e FREQUENCIES. The manual gives details on 
the procedure, but it generally would involve giving the computer 
instructions like the following. 

get file= 'bank.sys•. 
frequencies variables .. salbeg to sexrace. 

The first line instructs the compute·r to access the bank 
data ·in what is known as a systems file. Thts

4
is the part of its 

memory where it has stored the.data. If youA"!ata of your own 
that you want t9 use you would need to tell the computer what the 
data were and how to find them. Note that the line ends in a 
period. That tells the computer that you are finished with the 
get file command. 

The second line asks the computer to run the procedure 
"frequencies" and count the number of cases for all of the 
variables from salbeg to sexrace. Note that ID is not included 
in the list. That would result in a waste of paper, simply 
listing each indiyidual case. Other commands c;an be added to ask 
the computer to compute various descriptive statistics such as 
those described in the next section. · 

11 



II. Descriptive Univariate Statistics 

We move now to examining ways of summarizing and describing 
distributions of single variables. We first discuss the 
construction of tables that·summarize data and then describe 
graphs that can be used to pictorially represent these data. We 
then descr.ibe various measures of central tendency and finally 
measures of dispersion. 

Tables 

Most of our discussion in this section will involve 
quantitative data (those measured on an interval or ratio scale), 
The procedures involved with qualitative data are essentially 
equivalent, but because one cannot "round off" qualitative data 
or "group" it in the same way one deals with quantitative data, 
the discussion regarding quantitative data is somewhat more 
complex and will be the focus of our discussion. 

When dealing with masses of quantitative data we usually start 
with a mass of numbers. For instance, with the bank data we 
might be interested in the subjects' ages. We could ask the 
computer to give us a listing of the subjects' ages and we would 
have a page of computer printout such as that shown on the 
following pages. Note that the computer has already arranged the 
numbers in chronological order, and that the computer tells us 
how many people have_each age. One person is 23 years old, 2 
people are 23.25 years old, l person is 23.33 years old, etc. 

Sometimes, we will want to round off the numbers to bring 
them to a more manageable size. This is especially true if the 
numbers are quite large or extend to several more decimal points 
than we desire. F~r instance, we might be more interested in age 
to the nearest year, rather than to the hundredth of a year. We 
would then round 23.25 years to 23 years: 23.58 years would 
become 24 years, etc. In arithmetic you might have learned that 
when rounding·to the nearest whole number and the original number 
ends in 5, you automatically round up. Thus 15 .. 5 would become 
16, 16,5 would become 17, 17.5 would become 18, etc. Note, 
however, that this introduces an upward bias. We are always 
rounding upward. To counteract this upward bias, the convention 
among social statisticians when rounding to the nearest number is 
to round to the nearest even number when the orig.inal number ends 
in 5. Thus 14.5 would become 14, 15.5 would become 16, 16.5 
would become lEi, 17.5 would become 18, etc. This produces 
somewhat higher groups at each of these even numbers, but it 
avoids the upward bias present in the other system and is thus 
more accurate. 

Note that we do not always round to the nearest whole number. 
In fact, with age, in our society, we actually round to the next 
clower number. One does not become one year of age until living 
.:- an entire year; one is then considered one year old until 
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'l'able 2-1 output from SPSS Frequencies 
Run for Age 

Adj Cur, Adj Cu1t A,jj Cur, 
Code Freq % % Code Freq % % Code Freq % % 

23.00 1 0 0 32.00 3 I so 46.58 2 0 77 
23.25 2 0 t 32.08 s 1 51 47.25 1 0 77 
23.33 1 0 1 32.17 1 0 51 47.33 2 0 77 
23. 4·2 3 1 1 32.25 3 1 52 47.58 2 0 78 
23.SB t 0 2 32.33 2 0 53 47.92 1 0 78 
23.67 3 1 2 32.SO 2 0 53 48.00 1 0 78 
23.75 I , 0 3 '32.67 4 1 54 48.25 1 0 78 
24.00 2 o· 3 32.93 2 0 54 48.33 1 0 79 
24.08 2 0 3 32.92 3 1 55 48.50 1 0 79 
24 .17 2 0 4 33.0B 1 0 55 48.67 t 0 79 
24.33 s 1 5 33.33 1 0 55 48.83 t· 0 79 
24.42 2 0 5 33.42 2 0 56 49.08 1 0 BO 
j4 .50 2 0 6 33.50 4 1 ,,..., 49.17 1 0 80 .. ,, 
24.58 2 0 6 33.67 t 0 57 49.58 1 0 80 
24.67 2 0 7 33.75 2 0 57 49.92 1 0 80 
24.75 3 1 7 33.83 2 0 58 50.00 1 0 80 
24.83 3 1 8 34.00 1 0 SB 50.17 t 0 81 
24,92 3 1 8 34 .17 3 1 58 50.25 2 0 81 
25.00 3 1 9 34.25 2 0 59 ,,.so. 33 t 0 81 
25.08 4 1 10 34.33 2 0 59 51.00 I 0 81 
25.17 1 0 t 0 34.50 1 0 59 51 . 17 1 0 82 
25.25 3 1 11 34.SB 2 0 60 51 . 42 2 0 82 
25.42 ·3 1 11 34.67 I 0 60 S 1 . so 3 1 83 

.... 25. so 3 1 12 34. 75 1 0 60 St.SB 2 0 83 
25;58 4 1 13 34.83 1 0 61 SI . 92 1 0 83 
25.75 2 0 13 34.92 1 0 61 s2.00 2 0 84 
2~--83 3 t 14 35. 17 2 0 61 52.17 1 0 84 
25.92 1 0 14 35.25 1 0 61 52.33 1 0 B-4 
26.08 t 0 14 35.33 1 0 62 52.50 t 0 84 
26,25 3 t Hi -~5. 42 2 0 62 52.92 1 0 85 
26.33 1 0 15 ' 35. 58 I 0 62 53.08 I 0 BS 
26.58 1 0 ts 35.67 t 0 62 53.33 1 0 as 
26.67 1 0 16 36.00 1 0 b3 53·. so 1 0 es 
2b.83 4 t 16 36.92 1 0 63 53.92 3 I 86 
26. 92 1 0 17 37.0B 1 0 63 54.08 I 0 86 
27.00 1 0 17 37. 17 1 0 63 54.17 2 0 86 
27.08 3 1 18 37.50 I 0 64 54.33 1 () 87 
27 .17 2 0 1 8 37.83 1 0 64 S4.42 I . 0 87 
27.2'5 3 1 19 38.00 0 64 54.92 1 0 87 
27.33 3 1 19 38.17 0 64 S5.oe I 0 87 
27.42 3 1 20 38.42 0 64 55.17 I 0 8B 
27.50 2 0 20 38.50 0 65 55.25 2 0 88 
27.58 4 I 21 38.67 0 65 yS . 33 1 0 88 
27.67 2 0 22 38. 92 0 65 55.50 1 0 88 
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27.83 ., 0 ..,., 39.00 0 65 55.58 3 1 89 .. .. , 
28.00 2 0 22 39.33 2 0 66 55.92 1 0 89 
2B.08 1 0 23 39.42 1 0 66 56.00 1 0 89 
28, 17 3 1 23 39;50 1 0 66 56.67 2 0 90 
28,33 4 1 24 39.67 3 1 67 56. 92 1 0 90 
28.42 4 1 25 39.75 1 0 67 57.17 1 0 90 
28.50 3 I 26 39.83 I 0 l:J7 57,42 1 0 91 
2B.67 s I 27 40.08 1 0 67 57.50 1 0 91 
20.75 4 1 27 40.17 1 0 68 57.83 2 0 91 
28.83 3 1 28 40.33 1 0 68 '5B.00 l 0 91 
29.00 2 0 2B >40.50 1 0 68 5B.08 I 0 92 
29.08 4 1 29 40.58 1 0 68 SB.50 1 0 92 
29.17 4 I 30 40.67 1 0 68 58,75 1 0 92 
29.25 3 1 31 41.00 I 0 69 59.08 2 0 92 
29.33 3 1 31 41.17 2 0 69 59.42 I 0 93 
29.42 1 0 32 41. 67 1 0 69 59.50 1 0 93 
29.50 6 1 33 41.92 2 0 70 59.75 1 0 93 
29, 58 4 I 34 42.08 1 0 70 59.83 3 1 94 
29.67 4 1 35 42.17 I 0 70 60,00 1 0 94 
29,75 4 1 35 42.33 1 0 70 )QO. 50 3 1 95 
29. 92 4 1 . 36 42.42 1 0 70 60.67 3 1 95 
30.00 1 0 36 42.5B 2 0 71 60,75 1 0 95 
30.08 j 1 37 43.25 1 0 71 61.33 1 0 96 
30.17 5 1 3B 43.33 1 0 71 61. 50 1 0 96 
30.25 4 1 39 43.42 1 0 72 61 . 6 7 2 0 96 
30.33 6 1 40 43.67 1 0 72 61.75 1 0 96 
30.42 4 1 41 43.92 1 0 n 62.00 1 0 97 

,30. 50 2 0 42 44. 00 1 0 72 62.08 I 0 97 
'30.58 I 0 42 44,42 I 0 72 62.33 1 0 97 
30.67 4 1 4:J 44.50 3 1 73 62.42 1 0 97 
30.75 C' 

.i 1 44 44,5B 1 0 73 62,50 I 0 97 
30,83 0 44 44.67 1 . 0 73 63.00 I 0 98 
30,92 2 0 44 44.83 1 0 74 63.25 1 0 9B 
31.00 2 0 45 44.92 1 0 74 63,42 1 0 98 
31. OB I 0 4S ')45.17 1 0 74 63.50 1 0 98 
31. 17 3 1 46 :45,so 2 0 74 63.58 I 0 99 
31 . 25 2 0 46 45.67 1 0 75 63,75 2 0 99 
31 . 33 1 0 46 45.92 1 0 75 63.83 1 0 99 
31.42 I 0 46 46.00 1 0 75 63.92 1 0 99 
31. 50 3 I 47 46, 17 1 0 75 64.25 2 0 100 
31. 67 3 1 4B 46 . 25 2 0 76 64.50 I 0 100 
31.75 4 1 49 46.42 I o· • 76 
31. 92 5 1 50 46,50 2 0 76 

11ean 37,186 Std err 0.541 11edi,,n 32,013 
Node 29 . 500 Std dev 11.787 V,,riance 138.939 
Kurtosis -0.562 Sr,ewness 0.864 Range 41.500 
Hiniriuri 23-. 000 H.ixiMll'I 64.S00 

Valid cases 474 Hissin3_ cases 0 
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one has lived a total of two years. In the grocery store all 
prices are rounded to the next higher number. So, if two cans 
cost $.49 and you buy one you would pay $.25 automatically. If 
the price is 3 for a dollar and you buy one, you.will pay $.34 
and not $.33. Table 2-2 illustrates these different rounding 
rules. · 

Whether or not one rounds off the numbers one is dealing 
with, one will then proceed to developing groups or intervals in 
which to place each of the ~ases. Suppose that we d~cided we 
wanted to group the bank employees into age categories that each 
included a span of five years. Remembering that we had rounded 
the ages to the nearest year we could say that we wanted to 
include all people with ages from 20.51 to 25.49 years (or 
rounded limits of 21 to 25 years) in the first category. Those 
from 25.5 to 30.5 (or rounded limits of 26 - 30 years) in the 
second category, and so on. These categories are displayed in 
Table 2-3. The rounded limits refer to the rounded numbers that 
define the ages. The true limits refer to the actual span of 
ages that is included within each interval. The interval width 
(i) refers to the total number of years included in each 
interval. Note that it is the difference between the upper and 
lower limits of each true interval (i=U-L). The midpoint of each 
interval is the lower limit of each true interval plus one~half 
of the interval width (M = L + (l/2)i). 

Table 2-3 Intervals & Midpoints for Grouped 
Age Data Levels 

Rounded True Interval 
Limits Limits Width Midpoint 

21-25 20.5-25.S 5 23 

26-30 25.5-30.5 5 28 

31-35 30.5-35.5 5 33 

36-40 35.5-40.5 5 38 

41-45 40.5-45.5 5 43 

46-50 45.5-50.5 5 48 

51-55 so·. 5-s·5. s 5 53 

56-60 55.5-60.5 5 58 

61-65 60.5-65.5 5- 63 
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Now that the intervals are established we can return to the 
distribution -from the computer printout that is in Table 2-1 and 
actually count up the number of people that fall into each 
interval. For instance., we can determine that 54 people fall in 
the first category with ages between 20.51 and 25.49 or 21 and 25 
rounded years. (Note that the first interval has a true lower 
limit that is substantially lower than the lowest age. This was 
done to allow for age intervals that were evenly spaced at points 
on the scale that were easy to comprehend.) In the second 
interval (true limits of 25.5 to 30.5 and rounded limits of 26 to 
30) there are-143 people. You may continue this process until_ 
you have determined how many people are within each of the 
interval~. Table 2-4 summarizes these frequency counts and is 
referred to as the frequency distribution for age for this sample 
of bank employees. 

Table 2-4 Age of Bank Employees 

"Less than" "More than" 
Cumulative Cumulative . 

Years Frequency Frequency Frequency 

21-25 54 54 474 
26-30 143 197 420 
31-35 97 294 277 
36-40 28 322 180 
41-45 29 351 152 
4G-so 34 385 123 
51-55 33 418 89 
56-60 30 448 56 
61-65 26 474 26 

Total 474 

Table 2.-4 also includes two columns that are called the 
cumulative frequency distributions. The first of these has the 
"less than" cumulative frequency distribution and tells us how 
many people are a given age or less. For instance, 54 people are 
25 years old or younger; 197 people are 30 years old or younger. 
The "more than" cumulative frequency distribution tells us how 
many people are a given age or older.. For instance, a l l 474 
employees are at least 21 years old; 420 employees are 26 years 
old or older. (Note that when reading the less than cumulative 
distribution we use the upper limit of the interval; when reading 
the more than cumulative distribution we use the lower limit for 
a reference point.) 

When your sample involves a hundred people (or cases) or 
more it is best to use percentages rather than raw frequencies . 
This allows for easy comparisons and is a method of 
standardization. Table 2-5 is equivalent to Table 2-4 except 
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that the distributions are percentage distributions rather than 
distributions of the raw frequency data. In reading this table 
we would know that 11.3% of the employees are between 21 and 25 
years of age and that 11.3% are 25 years old or younger. The 
percentages are given on the computer printout in the columns 
following the _codes and frequencies. The first two columns of 
percentages (relative and adjusted) give the percentage of cases 
associated with each code. The cumulative% frequency is a "less 
than" percentage frequency distribution. When adding these 
percentages together one should always check to make sure that 
the computer has ·rounded the numbers so they do add to 100. If 
they do not, you will either want to note that fact or redo the 
computations to make the needed corrections. 

Table 2-5 Age of Bank Employees 

"Less than" "More than" 
Frequency Cumulative Cumulative 

Years % Distribution Distribution 

21-25 11.3 11.3 •')" 100.01~ 
21-30 30.2 41.5 88.7 
31-35 20.5 62.0 58.5 
36-40 5.9 67.9 38.0 
41-45 6.1 74.0 32.l 
46-50 7.2 81.2 26.0 
51-55 7.0 88.2 18.8 
56-60 6.3 94,5 11.8 
61-65 5.5 100. 0~o s. s '70 

Total 100% 

n=474 

Finally, note the way in which the tables are labeled. 
Figure 2-1 contains instructions on the elements of a table that 
is properly constructed. These include labels for the tal;>le and 
each part of it. If percentages, as well as or instead of 
numbers, are used1 you should make sure that enough information is 
given about the sample size so·that the reader can reconstruct 
the actual numbers of people involved. 

Table 2-6 gives yet another example of a frequency 
distribution. This involves two groups: Native Alnerican and non­
Native Alnerican employees of the Bureau of Indian Affairs. The 
data examined are the grade level of employment. These grade 
levels are actually discrete variables, as opposed to the 
continuous variable of age. Note that when we have discrete 
variables we simply treat them as though they were continuous. 
(.Some may argue that grade level is ordinal, rather than . 
interval, but the levels correspond to pay increments, and at one 
time translated directly into dollars, so for the sake of example 
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we will treat these data as measured on an interval scale.) Note 
too that these data are rounded to the next lower number. A 
person is in grade four until he or she moves into grades. 

Note how the side-by-side arrangement of data for the two 
racial/ethnic groups helps in comparisons. (Remember that the 
lower grades are paid much less.) Most of the native Americans 
are at the lowest grades. The non-Native Americans are much more 
spread out and predominate at the higher grades. For instance, 
over half of the Native-Americans are in grades 3 and 4, but only 
9% of the non-Native Americans are at that level. Almost one­
fourth of the non-Native ~ericans are at grades 11 and 12 and 
one-third of the non-Native Americans are in grades 9 and 10. 
The comparable figures f~r Native Americans are 7% and 9% 
respectively. The cumulative distributions show similar results. 
75% of all the Native Americans are at grade 6. or lower, but only 
20% of the non-Native Americans fall in that range. 

Grade 

l 
2 

3 
4 
5 
6 

7 
8 
9 
10 
ll 
12 
13 
14 
15 
16 
17 

Tot~ls 

n 

Table 2-6 Grade Level of Native American and 
Non-Native American Employees of the 
Bureau of Indian Affairs, 1970 

Native Americans ) 
(lH111 '.Ban)C~ ~ 

Frequency Cum. Freg, 

o.os 
2.72 

21.36 
33.69 
15.50 
1.98 
6.44 
0.21 
8.95 
0.14 
4.51 
2.29 
1.14 
o.ao 
0.19 
0.03 
o,oo 

100.00% 

5853 

0.05 
2.77 

24.13 
57.82 
73.32 
75.30 
81.74 
81.95 
90.90 
91.04 
95.55 
97.84 
98.98 
99.78 
99.97 

100.00 
100.00 

Non-Native Americans 
(i: , ; M ar {e,., ~) 

frequency Cum, Freq. 

0.04 
0.34 
2.64 
6.19 
9.14 
1.61 

10.14 
0:21 

32.82 
3.40 

13.79 
l0.35 
4.88 
3.57 
0.79 
0.06 
0,03 

100.00% 

6697 

0.04 
0.38 
3.02 
9.21 

18.35 
19.96 
30.10 
30.31 
63.13 
66.53 
80.32 
90.67 
95.55 
99.12 
99.91 
99.97 

100.00 

Source: Congressional Record, Dec. 14, 1970 
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In general, when constructing tables with quantitative data 
one would want about 10 to 15 interva·1s for easiest 
understanding._ one usually uses equal-sized intervals, unless 
some of them contain very few people. For instance, there may be 
very few subjects with very high incomes or very low incomes in a 
sample and the intervals at these extremes may be made much 
larger or even open-ended (e.g. $75,000 +) to accommodate these 
people. Whenever one is comparing two groups, as in Table 2-6, 
it is important to use the same intervals for both groups so that 
one has valid comparisons. Also, when one is comparing two or 
more groups one would always use percentages, rather than raw 
frequencies, in order to have valid comparisons. 

With qualitative data the procedures in table construction 
are basically the same as those described above, except that one 
does not have intervals, but instead categories. T~ble 2-7 gives 
a hypothetical example of a table with qualitative data, the 
distribution of religious affiliation for a sample. 

Table 2-7 Religious Affiliation of 
Members of a Hypothetical Community 

Religious 
Affiliation Percentage 

Protestant 55 

catholic 25 

Jew 15 

Other s -
Total 100 

n 3·75 
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Graphs 

Graphical d'isplays of data are often a very helpful way to 
summarize and display the information provided in tables. The 
types of graphs appropriate for data depend on whether one's data 
are measured on an interval or ratio scale (quantitative data) or 
an ordinal or nominal scale (·qualitative data). We will deal 
with graphs for both types of data in turn. 

Graphs Appropriate for Quantitative Data 
I 

There are three basic graphs that are colllltlonly used to 
represent quantitative data: histograms, frequency polygons, and 
ogives (or cumulative frequency graphs). Each of these has a 
common form in that along the horizontal axis the intervals for 
the distribution ·are graphed. These would be the same intervals 
that one has used in the table d'isplaying the data, except that 
one would want to make sure that all the intervals were equal in 
size. That is, if one had doubled the size of some intervals in 
the table because they contained very few people, one would want 
to use the actual (uncollapsed) intervals in the graph. Along 
the v~rtical ax.is one plots frequencies or percentages, whichever 
one wishes to graph. When the sample size is large (over 100) 
one should use percentages. When comparing several groups 
percentages would also be more appropriate. 

A histogram for data on grade-levels of Native American 
Employees of .the BIA is shown in Figure 2-2. Note that the true 
limits of each interval are marked along the horizontal axis. 
Then within the boundaries of each interval a bar is drawn to the 
height that corresponds with the proportion of people in that 
interval. Thus, the height of the bar of the histogram for the 
first interval is at the 3% mark. The height of the bar for the 
second interval is at the 55% mark, and so on. Note that each 
bar of the histogram is adj~cent to the next. This is because 
the variable, grade levels, is measured on an interval scale, and 
we are treating it as though it were continuous. (Intervals are 
collapsed from those shown in Table 2-6. Percentages used are 
given in Figure 2-2.) 

A frequency polygon of grade levels of Native American 
employees and of grade levels of non-Native ·American employees is 
shown in Figure 2-3. The solid line- gives data for the Native­
Americans, the broken line gives data for the non-Native 
Americans. Note that again the base or horizontal axis includes 
the intervals of the variable grade levels. The percentages are 
placed along the vertical axis. With the frequency polygon one 
uses the midpoints of each interval and plots at the midpoint the 
percentage (or n if using raw data) of people who fall within 
that interval. Thus, the midpoint of the first interval is 2. 
For Native Americans the po~nt is plotted to correspond with 2 on 
the horizontal axis and 3 on the vertical axis, indicating that 
3% of· the tlative Americans fall in that category. For the second 
interval, the midpoint is 4. Corresponding to this point on the 
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horizontal axis, a point is marked corr~sponding to 55% on the 
vertical axis for Native.Americans and a point corresponding to 
9% on the vertical axis is marked for the non-Native Americans. 
This process is continued. The points are then connected and the 
polygons are closed by plotting zero on the vertical axis at the· 
midpoint of the interval that is theoretically below the first 
interval and the midpoint of the interval that is theoretically 
above the last interval. 

It was mentioned briefly above that if one has uneven 
intervals in a table, one needs to be careful in transferring 
these data to· a graph to ensure that one does not misrepresent 
the data. Figure 2~4 illµstrates how one could do this. Three 
interval~ are given in the data . The first two have a true 
interval width of 2 but the third has a true .:interval width of 4 . 
Because we do·not know the actual.underlying distribution of 
these data (if we did we would use the true distribution for this 
third interval), we simply divide the subjects within the third 
interval evenly into two intervals the same width as the earlier 
ones. This is shown in the second table in Figure 2-4. (If the 
uneven interval had been three times the size of the other ones 
we would divide it into three parts, etc.) The data with equal 
intervals are then plotted. A second graph shows how one would 
incorrectly have graphed the data if one had not divided the 
subjects up among equal intervals. This incorrect graph sh~ws a 
much greater proportion of subjects between 4.5 and 8.5 than in 
actuality are there. 

_Sometimes one will have data in a table that are open-ended. 
For instance, we will simply list the first category of income or 
age as all subjects at or below a certain point (55000 dollars, 
for example). At the upper end we might include all people who 
make above· a certain amount of money (e.g. $50,000+). When 
graphing these data we clearly ca:nnot continue the graph 
infinitely, so we must arbitrarily close it. At the lower end we 
would use zero, or whatever would be appropriate. At the upper 
end we would simply choose an arbitrary closing amount and then 
add a footnote to the table indicating that ·there were people in 
the last interval who made considerably more money or had 
considerably higher scores on the variable, but that this could 
not be represented on the graph. 

One final point on graph construction: Sometimes your 
horizontal axis ·or interval scale will begin at a point 
considerably above zero. When drawing a graph for these data, if 
you wish to include a zero point on the axis, you could inc_lude a 
little break mark to :indicate that a nwnber of points were • 
missing, as illustrated in Figure 2-5. 

The decision of whether to use a histogram or a frequency 
polygon is often anesthetic one . For. comparative purposes, as 
in Figure 2-3, the frequency polygon is often better~ However, 
-for exact representation of the data, a histogram might be 
preferable, for all of the data for a given interval are 
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represented within that interval. The data for a given interval 
within a frequency polygon:are actually spread across the area 
allocated to three intervals. 

Nev~rthel_ess, . the frequency polygon and the histogram both 
accurately reflect the data in that they both enclose the same 
amount of area. Consider the histogram drawn in Figure 2-6. 
This histogram and the associated frequency .polygon for the data 
are produced below in Figure 2-6 superimposed on one another. 
Note that the polygon and histogram enclose the same area except 
for several tr-iangles identified by letters. These triangles, 
however, are congruent to each other and thus hold the same 
amount of area. Consider the triangles labeled a' and a". The 
opposite angles are equal, the right angles are equal, and the 
distance from the base of the histogram bar to the midpoint of 
each interval is equal (l/2 i). Thus they have at least one 
equal side and two equal angles. This then implies that they 
have three equal sides and three equal angles and the two 
triangles are congruent. The area that is cut out of the 
histogram by the frequency polygon (a") is added onto the 
frequency polygon at another place (a'). The same argument could 
be made for all other pairs of triangles. 

The ogive is a graph designed to represent cumulative 
frequency data. Again the intervals are displayed along the 
horizontal axis and the percentages (or frequencies if using ·-:aw 
data) are displayed along the vertical axis. One can have og~ves 
for the "less than" and for the "more than" cumulative 
distributions. Both of these graphs are shown in Figure 2-7 for 
the data on BIA employees. In plotting points for the ogive one 
uses the end points of the intervals and one must think about 
what each distribution means. Consider first the "less than" 
distribution. 3% of the Native Americans are found at grade 2 or 
below. Thus, corresponding to grade 3 (the true upper limit of 
the first interval) the point is plotted at the line 
corresponding to 3% on the vertical axis. 58% of the Native 
Americans are in grade 4 or less, so the point is marked at the 
line corresponding to grade S (the true upper limit of this 
interval) on the horizontal axis and to 58% on the vertical axis. 
One then continues in this manner until one notes that 100% of 
the employees are found in grade 14 or lower and plot at the 100% 
point on the vertical axis at the points corresponding to 15 and 
to 17 on the horizontal axis. 

For the "more than" distribution, the logic is so~'$~at 
dif.ferent. • 100% of the employees are in grade one or •~!,~ so we 
plot a point that corresponds to l on the horizontal axis (the 
lower limit of the first interval) and 100% on the vertical axis. 
97% of thP. subjects are in grade 3 or higher so we plot a point 
that corresponds to grade 3 on the horizontal axis (the lower 
limit of the second interval) and 97% on the vertical axis. To 
complete the .graph each of the points plotted is connected. 
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Once one has drawn the appropriate graph for one's data one 
would then examine it to see how it helps deseribe the data. For 
instance, in looking at Figure 2-2, the histogram of grade levels 
for the Native-American employees, one would note that over half 
of the employees are found in only two grade levels (those that 
correspond to aide and janitorial posit-ions). The next highest 
category involves those in grades 5 and 6, low-lev~l supervisory 
positions, but relatively few are in the higher level posts and 
almost none at the highest levels. In looking at Figure 2-3, 
with the frequency polygons for both racial groups, one could 
make similar conclusions regarding the Native-Americans and 
compare their distribution with that of .the non-Native American 
employees. Here you could note the striking lack of overlap or 
correspondence between the two curves. Most of the Native· 
Americans are at the lower grade levels, most of the non-Native 
Americans are at the higher grade levels. The two groups of· 
employees appear to be in almost totally different job 
categories. One could continue with a more detailed examination 
of these differences, a task which would be good for students to 
pursue for practice. 

In examining the ogive we can see how quickly or how slowly 
subjects increase or decrease on a certain variable. For 
instance, in looking at the "less than" distribution in Figure 2-
7, we can see that there is a very steep slope, indicating that 
most of the subjects are included by the very lowest grade 
levels. The more than distribution also has a very steep slope 
indicating again that most of the subjects are found at the 
lowest levels. If one were to graph the ogive for the non-Native 
Americans (again a profitable exercise for students) one would 
find that the slope was much less steep, and informative 
comparisons could be made. 

Besides the comparisons noted above, the ogive p~ovides an 
easy way of finding what proportion (or how many, if using 
•frequencies) of a group fall at or below a certain point. 
conversely, we ,can also find out what point along the 
distribution or interval scale corresponds to a giv~n percentage 
or frequency. For example, if we want to know approximately how 
many subjects have jobs at grade 10 or higher we would locate 
grade 10 on the horizontal axis and follow that point until we 
hit the graph. It then appears that about 13% of the ,subjects 
are at grade 10 or above. One could alsc::> ask wh_at is the point 
at -which we find 50% of the subjects with less than a partic~lar 
grade and 50% with more. That is, what is the point on the scale 
that divides the group into two equal parts? One would then find 
50% on the vertical axis and follow that line across. Note that 
·this is the point where the "more than" and "less than" graphs 
cross. It appears that this point corresponds to appr.oximately 
grade 4.8. If we are interested in the 25% mark, the first • 
quartile, we may follow this line across and find that ·25% of the 
subjects appear to be at grade 3.8 or less (approximately) and 
that 25% of the subjects appear to be at grade 7 or higher. 
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students should also continue this exercise on their own until 
they feel confident in interpreting this graph. 

Graphs Appropriate for Qualitative Data 

.. There are a number of graphs that ar.e -used with qualitative 
data. We will focus on bar charts, which are the most common. 
You may consult various statistics texts for examples of other 
types. As with the quantitative data, the bar charts are 
designed to display the data found in the tables in a way that 
pictorially summarizes the data. 

The basic form of the bar chart involves a base line on 
which the categories of the variables are labelled. Note how the 
form is different from the histogram. With bar charts there are 
spaces between each of the categories because we are not dealing 
with interval data, but with categoric data. The second 
dimension of the chart involves either percentages or frequencies 
as with the quantitative data graphs. The length of the bars 
represents the frequencies or percentages within a given 
category. The bars may be displayed either vertically or 
horizontally, depending on the researcher's desires. With 
ordinal data one would usually want to haye the categories in the 
relevant order. With nominal data one might have an order of the 
categories that is theoretically important or one might want to 
display the data in order of frequency of occurr~nce (e.g. 
smallest to largest). 

Many varieties of bar graphs are possible. It is also 
possible to use a bar graph to display data for more than one 
group. Figures 2-8 through 2-~o display the data shown in Table 
2-8 on the type of descent system common in three different types 
of economies. (You might remember from your introductory 
research metho~s class that tables are percentaged in categories 
of th~ independent variable. We ~re assuming here that the 
economy of a society is the independent variable and that the 
type of descent system that a society adopts depends on the 
economic system of that soc_iety. ) 

Figure 2-s is a regular bar graph such as the general case 
described above, but includes data for the three different types 
of societ~es. The first sub-graph includes data for the hunting 
societies. It· is apparent that in these societies matrilineal 
desce~t·systems are most ~ommon, followed by bilateral and then 
by patrilineal descent systems. The second sub-graph gives the 
data for societies with a pastoral economy. These are most 
likely to have patrilineal descent systems; bilatera1 · systems are 
much less common and matrilineal descent systems are ~elatively 
rare. Among agricultural societies matrillneal and patrilineal 
descent systems are about equally likely to occur and bilateral 
descent systems appear less frequently. Because we have data for· 
the three types of societies here we can also make comparisons 
across the three types of societies (among the three categories 
of the independent variable - type of economr). It is apparent 
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that .matrilineal descent systems are about equally likely to 
occur in hunting and agricultural societies, but only rarely in 
pastoral societies·. Patrilineal descent systems most often occur 
in pastoral economies, next most often in agricultural economies 
and least often in hunting societies. Bilateral descent systems 
occur most often in hunting groups, next most often in pastoral . 
groups and least often in agricultural groups. 

Economic 
System 

Hunting 

Pastoral 

Table 2-8 Descent Systems Found in Societies 
with Different Economic Bases 

TYBe of Descent System 

Matrilineal Patrilineal Bilateral 

43 26 31 

7 72 21 

Agricuitural 40 43 17 

(Source: adapted from Mueller, et al, 1977; P• 47) 

Total 

100%(70) 

100%(14) 

100%(110) 

Figure 2-9 gives a version of a sliding bar graph. This 
type of graph is most useful when we want to distinguish between 
two types of attributes of the dependent variable. For instance, 
in Figure 2-9 we are distinguishing between matrilineal descent 
systems and the other two types. Within each economy (or sub­
graph) we have represented the family types on a long bar, all of 
equal length. These bars are then divided into segments to 
represent the different family types. Shading is used, as in 
Figure 2-8 to represent the different types of descent systems. 
A vertical axis is drawn down the middle of the graph to separate 
the matrilineal and other desc~nt types. The various graphs are 
then "slid" to the left or the.right to represent the proportion 
of societies within each group that have matrilineal descent 
systems. Clearly the pastoral societies are least likely to have 
this type while the hunting and agricultural societies appear 
about equally likely to have this type of system. One could have 
constructed this type of graph with either of the other types of 
desc;ent systems as the focus of interest, depending on one's 
theoretical point. • • 

Figure 2-10 gives another way of using bar graphs. Here 
again the relative representation of descent systems within each 
society is represented on a bar. A separate bar is drawn for • 
each society. Then to demonstrate the comparisons between the 
three types of societies dotted lines connect the various 
categories. These illustrate how the representation of 
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matrilineal types is much larger in hunting and agricultural 
societies, for instance, than in pastoral ~ocieties. 

A number of computer packages offer options for graphs. You 
should be very careful ln using these options. They are quite. 
nice if you have the appropriate data and it is coded and input 
in a way that you want. If not, however, the results are useless 
and often misleading. Therefore, you should think very carefully 
before automatically using material that a computer has spewed 
out in graph form. You also must be very careful when using a 
graphics program with a micro computer to ensure that the graphs 
are correctly drawn. 

Measures of Central Tendency 

While tables and graphs illustrate the dispersion of data 
and where most subjects or cases tend to be, they do not provide 
a single summary statistic of the location of most of the people. 
Measures of central tendency are designed to provide such a 
summary. Three measures of central tendency are commonly used: 
the mode, the median, and the mean. 

The Mode 

The mode is simply the most frequently .occurring value or . 
point. we can use the mode when talking about qualitative ·data 
if we refer to the modal category. For instance, in Table 2-7 we 
could say that the modal category is Protestant; it is the 
category with the greatest number of people. We can simply count 
the number of cases that have each attribute and find which 
attribute has-the most cases associated with it. 

With quantitative data we must go beyond this simple 
counting procedure and would like to find the value within an 
interval (assuming that our data have been ·grouped into 
intervals) that corresponds to the modal point. There are two 
ways of doing this. The first is called the crude mode. The 
crude mode is simply the midpoint of the interval that has the 
largest number of cases in it. For instance, with the data on 
BIA employees that is again presented in Table 2-9, the modal • 
interval for Native Americans is that with true limits 3 and 5. 
The midpoint of this interval is 4.0, and this is the crude mode. 
students should verify that they understand this by demonstrating 
that the crude mode for the non-Native Americans is 10.0. 

The second way of computing the mode with grouped data 
results in what is called the refined mode. The refined mode is 
an adjusted value that is based on the relative size of the 
·frequencies in intervals adjacent to the modal interval. It is 
based on the idea that the true place of greatest density (the 
true location of the mode in an interval) will be closer to the 
interval with a higher frequency. The larger one adjacent 
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• interval is ·-than the other, the more that the mode will be 
shifted toward that larger_ interval. The formula for the refined 
mode is given below in equation 2-i. 

~efined Mode = L + ( • QJ_ x i) (2-1) 
• D1 + D2 

where L·= the true· lower limit of the modal interval; 
Di= the.-difference between the ·frequency in the modal interval 

and the frequency (number or% of cases) in the next lower 
interval; 

02 = the difference between the fre~ency in the modal interval 
and the frequency in the next higher interval; and 

i = the width of the interval. 

Computations in Table 2-9 show that for the Native Americans the 
refined mode• 4.16. For the non-Native Americans the refined 
mode is equal to 10.37~ 

Examining Formula 2-1 more closely it may be seen that when 
Di= D2, that is when the two· adjacent intervals have the same 
number of cases, the refined mode equals the crude mode. In this 
case we would add one-half of the interval width (i) to the lower 
limit of the interval, thus being at the midpoint of the 
interval. 

·If the adjacent lower interval had more people than the 
adjacent higher interval, Di would be less than D2 . That is, the 
size of the next lower interval would be closer to the modal 
interval than would the ~ext higher interval. When D1 is less 
than D2, D1/(D1 + D2) is less than one-half and the refined mode 
would oe smaller than the crude mode {i.e.. not as large as the 
midpoint of the interval). When, however, the next higher 
interval has more cases, D1 / (Di+ 02) would be greater·t~an 1/2 
and the refined mode would be larger than the crude mode. 

Graphically the mode appears as the high point of the graph. 
On the frequency polygon, the mode would be the highest point, 
the scale point that corresponds to the highest frequency or 
percentage found in any category of the data. Sometimes there 
will be more than one high point. We say·then that a 
distribution is bi-modal if there are two high points or trimodal · 
if there are three. This can result if there are basic divisions 
within the group. For instance, if we were to graph the grade 
level of all BIA employees, combining the two groups in Table 2-
9, we· might well have a bi-modal distribµtion. This, however, 
would be because the two racial groups have very different job 
level distributions. 
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Table 2-9 Example of Computing Mode and 
Median with BIA Data 

Grade Levels Percentage 

Rounded ·True Native non-Native 
Limits Limits Alllericans Alllericans 

1-2 1-3 3 0 
3-4 3-5 55 9 
5-6 5-7 17 11 
7-8 7-9 7 10 

9-10 9-11 9 36 
11-12 11-13 7 24 
13-14 13-15 2 9 
15-16 15-17 0 1 

Total 100% 100% 

Native Alllericans 

4. o ~· 3.,. I crude mode= 

refined mode = 3+ (-< .... 5::..::5._-_.3'-')'---- X 27_ 
(55-3)+(55-17) J. 

= 4.16 

= 3.0 + l.71 = 4.71 

36 

Cumulative % 

Native non-Native 
Alllericans Americans 

3 0 
58 9 
75 20 
82 30 
91 66 
98 90 

100 99 
100 100 

non-Native Americans • 

crude mode = 10. o :: t:?-t-1 

refin~d mode= J 
9.0+~(36-10) X2 

36-10)+(36-24) 
= 10. 7 

Median= 9.0+r~O ;
6

30 xj 

= 9.o + to;~o x 2] 
= 9.0 + 1.11 = 10.11 
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. The SPSS subprogram FREQUENCIES gives the mode as · one of its 
statistics. This is not a refined mode or a crude mode, for the 
program assumes that the actual values are given as input, at ·. 
least for this statistic. If you have data that are coded in 
intervals and input in such a way you wduld probably want to 
compute the refined or crude mode yourself. Also, if you have 
bimodal (or multi-modal) data, SPSS will not tell you this. 
Instead, it ·will automatically assign the mode to the lowest 
value on your scale or variable that has the highest frequency. 
(Say you are studying age and 35 people .fall at ages 29, 39, and 
491 SPSS will report only 29 as the mode. You will have to 
inspect the data to find the other modes.) 

The mode has cert,ain advantages. It can be used with 
qualitative data~· .. It is easy to calculate and it can be easily 
related to a graph. However, the mode does have certain 
disadvantages. It generally cannot be used in further 
calculations. While this is often not a problem with qualitative 
data, it can be a real disadvantage with quantitative data. The 
mode is also unstable and can be greatly influenced by how large 
the intervals ·are in a data set. Third, the mode is nonspecific. 
We don't know "how modal" a certain point is. We know from the 
mode what value most often occurs, but we don't know if this 
point occurs twice as often as all others, or just a tiny bit 
more often. 

The ·Median 

The median is a position average and is defined simply as 
the point in the distribution where one-half of the cases are 
above and one-half are below. It is strictly suitable only for 
variables measured on an interval or ratio scale, but it is 
sometimes used with variables measured on an ordinal scale. With 
an ordinal scale, however, we can only talk about the median 
ca~egory, the category in which the median is found. 

To compute the median with ungrouped data we simply arrange 
the data in order from the smallest to the largest and then take 
the middle case. If there are an even number of cases, as in 
Table 2-10 below, this would be the point halfway between the two 
middle points, as shown. If there are an odd nUil'lber of cases, as 
in Table 2-·11, we would use the point exactly in the middle, as 
shown. Table 2-12 gives an example with ordinal data. Here the 
median category is that of mild support. 

Very often we don't have ungrouped data, w~ have data that . 
have been grouped into intervals. Here we can find the median 
interval by examining the cu~ulative frequency distribution. 
But, as with the mode, we still must determine the point within 
that interval where the median falls. To do this we assume that 
the cases are evenly spread throughout the interval (note how 
this differs from the assumption involved in computing the 
refined mode where we assume they are more grouped toward the 
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Table 2-10 Example of computing Median With an 
Even Number of Cases 

Ages of People Referred to Clinic 

5 cases [ i 13 ·s 17 
19 5 cases 
21 

11 22 

Median = 11 + 13 
2 

= 24 
2 = 12 

Table 2-11 Example of Computing Median.with 
an Odd Number of Cases 

Ages of People Referred to Clinic 

Median= 11 

Table 2-12 Degree of Support Respondents 
Report for President 

Highly Supportive 
Mildly Supportive 
Neutral 
Mildly unsupportive 
Highly Unsupportive 

Total 

38 

!. 

20 
40~-Median Category 

ig J 'ID 7 1, 

£Q.j 

100% 



adjacent interval with more cases). We then see how far we need 
to go within ~hat interval to get to the median point. For 
instance, in Table 2-13 below, an imaginary distribution, there 
are 189 ·cases in all. The median ·case would be 189/2 = 94.5, or 
between the 94th and 95th case. We can see from examining the 
cumulative frequency distribution that this occurs in the 
interval with the true limits of 4,950 and 5,950. There .are 51 
cases in this interval and at the beginning of the interval we 
have 81 cases. To .get to the 94.Sth case we must go 13.5 cases 
beyond the lower limit of the interval. Since there are 51 cases 
in all in the interval we must go through 13.5/51 cases or about 
26.5% of the total interval. The .interval here is 1000 wide, so 
26.5% of 1000 is 265. If we add 265 to the lower limit of the 
interval we have 4950 + 265 = 5215, and this is the median. 

Table 2-13 Imaginary Income Data 

True Limits 

1,950-2,950 
2,950-3,950 
3,950-4,950 
4,950-5,950 
5,950-6,950 
6,950-67,950 

In general, the 

Median= L 

Frequency 
Cumulative 
Frequency 

17 
26 
38 
51 
36 
21 

formula for the median is 

+ [ :.:.N 1 .... 2=-;----=c~f X i J 

17 
43 
81 

132 
168 
189 

(2-2) 

where Lis the true lower limit of the interval containing the 
median, N/2 is one-half of the total sample size; cf is the 
cumulative frequency at the beginning of the median interval; f 
is the frequency in the median interval; and i is the width of 
the interval. ' 

For the example above, 

[
(94. 5 - 81) 

Median= 4950 + 51 X 100~ = 5215 (2-3) 

A procedure just like that outlined above is used with 
percentages except that we are looking for the 50th percentile 
(or N/2 • 50). Table 2-9 gives ar, example of finding the median 
for the BIA data. Students should work through these examples to 
make sure they are familiar with the procedure. If you nave 
discrete data you simply, as before, treat it as though it were 
continuous.. (A good example would be data on family size.) 

39 



The formula for a median can also be used to -compute· other 
position measures .. The most common ones are quartiles (25%, 75% 
points) , . deciles C 10%, 20%, ... ), and centiles (1%, 2%, etc.) . 
While you can use the cumulative frequency graph (ogive) to 
approximate these positions you can use a variation of the median 
formula to get the exact value. All one does is alter the N/2 
part of formula 2-2. For instance, if one is interested in the 
first quartile, the 25% 'point, one would want to look at N/4 
instead of N/2. For the third quartile, the 75% p·oint, one would 
want to look at 3N/4 instead of N/2. For the third decile one 
would- examine 3N/10, and so on.· Below, examples of computing 
various other positions are given using the BIA data. 

J ~ ,~d.T -h le_ 

0, • L + [8 x tj 
·t 

IJ~../-,',x., VJ nv-
/: ,«P"ie~J /Vt;.:fJo<- lllf<Rf1CtVtJ 

[
J..r-; .1 .r , o J 

3.t1 + -;=:F" ,(' l. _/ 7:() +[~ x.,l.-
J() . (.;_ ... q) 

: 7.0 :::- It. 7.r 

r. t) -f [ ~1 1C :;_) 

~ r. If 
Position measures such as the above are commonly used in 
comparisons of individuals (e.g. SAT scores, GRE's, height and 
weight percentile placements for children, etc.) 

Position measures have certain disadvantages as well as 
advantages. They cannot be used in algebraic manipulations and 
thus have limited utility for use in more advanced statistical 

1 manipulations. The median however is quite stable. It is not 
affected much by extremes and is usable with open-ended data. It 
is commonly used in describing income distributions because it is 
s~ unaffected by extreme 9ases. Graphically, the median i s the 
point where the less than and more than cumulative frequency 
distributions cross (See Figure 2-7). 

The median is part of the output given on the subprogram 
FREQpENCIES by SPSS. When computing the median SPSS assumes that 
data are grouped into intervals with an interval width of 1. It 
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then uses the type of formula described above to find the median 
point with the interval. 

Very often you will have data that have been grouped and 
have been coded with these grpups. In Table 2-14 are the codes 
in the National Opinion Research survey data for income that is 
self-reported. Note that the categories are quite large. Also, 
note that they have been coded. If SPSS were to report the mode 
tor this data it would give the value as 9. If it were to report 
the median, it would give the value as 6.61. Clearly, these 
values are not correct. one solution would be to recode the data 
within ~he computer (a minor procedure) to reflect the midpoints 
of each interval (l would become $500; 2 would become $2,000; 
etc.). The mode would then be given as 1112,soo11in the SPSS 
output. The median would then be computed within the interval of 
one dollar around the value of $7500 . In d~ciding what step to 
take, you would have to consider what purpose these various 
statistics would have for you. To have the most accurate resuits 
you should compute the median by hand using the full interval 
width of $1000. • 

Table 2-14 Example of Income Data from an 
NORC survey 

41. Did you earn ~ income from (JOB DESCRIBED IN Q. ·11) in 
1973? 

Yes . . . . . ( ) 
No . . . ' . . . ( ) 

A. IF YES: In which of these groups did your earnings from 
(JOB IN Q. 11), for the last year--1973 fall? That is, 
before taxes or other deductions. Just tell me the 
letter. 

COLS. 3§-J9" 
RESPONSE PUNCH Jf 

Under $1,000 . • • • • . . . • 01 69 
$ 1,000 to 2,999 • . . . . . 02 ll6 
$ 3,000 to 3,999 • • . . . . . . 03 49 
$ 4,000 to 4,999 • . . . . . • • 04 67 
$ 5,000 to 5,999 . . .• . . . . • 05 64 
$ 6,000 to 6,999 . . • . . . 06 48 
$ 7,000 to 7,999 . . • . . . . . 07 57 
$ 8,000 to 8,999 . . • . . . • • 08 89 
$10,000 to 14,999 . • . . . • 09 155 
$15,000 to 19,000 • . . • • • • . 10 60 
$20,000 to 24,999 . . . . . . . • 11 30 
$25,000 or over • . . • . . • 12 35 
Refused . . • • . . • • . . . . . 13 37 
Don't know · . . • • . • . • • • . . 98 15 
Not applicable • . . . . . . . . . BK 593 
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The Mean 

The arithmetic mean or the arithmetic average is probably 
the most common measure of central tendency. It is usable only 
with variables measured on an interval or a ratio scale. 
conceptually we should see the mean as the arithmetic average. 
If we think of all the cases in a distribution as spread out 
along a graph, such as a frequency polygon, the mean would be the 
center of gravity, the place along the base line that would be 
the balancing point for the distribution. 

The formula for the mean is simpiy: 

x g1Jii c 2-a) 
l't 

where n = the size of the sample, 
Xis the mean, 
Xi refers to each individual value of s, and 

lXi refers to the sum of all of the values of Xi 

The mean is used in many advanced statistics and its 
usefulness derives from the fact that it is the "center of 
gravity" of a distribution. More specifically, the mean is the 
only value from which the, sum of all deviations of scores will 
balance out or equal zero. That is, if we examine the deviations 
of all scores in a distribution from the mean anq add up these 
deviations, we will find that the sum equals zero. This means 
that the sum of the deviations of scores around the mean is lower 
than the sum of the ~aviations would be around any ot~er value. 

Table 2-15 illustrates this quality of the mean. Note that 
the mean of the distribution is 11. The median of the 
distribution is 9. The sum of the deviations around the mean is 
zero. The sum of the deviations around the median is 12. 
students may try substituting other numbers and will discover 
that only the mean will produce the sum of zero in adding 
deviations. 

Table 2-15 Example of Computing Deviation 

Ages 
Referred to 
Clinic 

6 • 
7 
B 

10 
16 
19 

Totals 66 )-;¥:;// 

/J(~,-(Ui ~ 9 

Around the Mean 

x-x - it 
6-ll a -5 
7-11 = -4 
B-11 - -3 
10-11 = -1 

,16-ll = 5 
19-11 = 8 

0 
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6-9 = -3 
7-9 = -2 
8-9 = -1 
10-9 ., 1 
16-9 = 7 
19-9 = 10 
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Table 2-15 showed how one would compute the mean if there 
were only one case with each value. If there is more ·than one 
case with a value in a distribution, as in Table 2-16, the 
computation of the mean is again quite simpie. We simply 
multiply the frequ~ncy (or number) of cases with each value times 
that value and add up all the products. For instance, in Table 
2-16 below, instead of adding 6+6+7+7+7+ .... we add 2(6) + 3(7) 
+ .... 

The general formula is 

where i is the mean, 
fi is the frequency associated with each value, 
Xi is each value of the variable X 
and n is the sample size. 

Table 2-16 Example of Computing Mean with 
Grouped Data 

X Fre~ency fx 
(f) 

6 2 12 
7 3 21 
9 l 9 

10 3 30 
12 .2 24 
15 1 - 15 -· 

Total 12 lll 

(2-9) 

x~ ~-
'1 

~ JjJ. 
ti.. 

~ 'f . .lJ 

If we have discrete data rather than continuous data we simply 
assume that our data are continuous and proceed as above. 

If our data are grouped into intervals we use the same 
procedure as in Table 2-16, but we use the midpoint of the 
interval in computing the mean. The relevant formula is given 
below: 

X -:: (2-10) 

Y is the mean, 
f is the number of cases in each interval, 
lf is the sample size, and • 
Xi is the midpoint of the interval. 

43 



Table 2-17 gives an example of computing the mean with 
the grouped da~a on the job lev~ls of BIA employees. 

Table 2-17 Computation of Mean for BIA Data 

Grade Level Frequencies (%) fx 
Midpoint of Native non-Native Native non-Native 
:Intervals Americans Americans Americans Americans 

2 3 0 6 0 
4 55 9 220 36 
6 17 11 102 66 
8 7 10 56 80 

10 9 36 90 360 
12 7 24 84 288 
14 2 9 28 126 
16 0 J. 0 16 - - -

Totals 100 100 586 972 

Native Americans 

non-Native Americans 

Before the days of computers and inexpensive calculators 
with memories we used fairly complex methods of computing the. 
mean with grouped data. These methods were designed to reduce 
errors when using large numbers and doing lengthy hand 
calculations such as multiplying frequencies by interval 
midpoints. Now that we have very cheap calculators with 
extensive memories these older techniques are not all that 
useful. To compute a mean with a calculator you could simply use 
the actual midpoint of the interval and formula 2-10 given above. 
SPSS uses formula 2-10 in computing the mean also. 

As long as you have submitted the actual raw data into the 
computer there will be no problem with SPSS using formula 
2-10. However, if you have put in your data coded in some 
manner, such as the NORC data on income shown in Table 2-14, you 
must be careful in interpreting the results. With the codes 
given in Table 2-14, the computer would tell you that the mean 
for the data is 6.17. You would want to instead tell the 
computer to regard each code as the midpoint of the interval. 
You could do this with a RECODE command, as in RECODE VAR22 (1 
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If we know the mean; median, and mode for a set of 
quantitative data we can draw a rough diagram of _the frequency _ 
distribution or frequency polygon. We know that the mode 
represents the highest point of the graph, the median represents 
the halfway point, and the mean is the center ,of gravity. 
Because the mean is more affected by extreme points th~n the 
median is, we can tell the nature of skew (unevenness) in the 
distribution by examining their relative values. If the mean is 
greater than median, .the distribut_ion has a positive skew,. as in 
Figure 2-11. If the mean is smaller than the median, the 
distribution has a negative skew as in Figure 2-12. If the mode, 
median, and mean are equal, we have a S¥J!lllletrical distribution, 
as in Figure 2-13. Finally, Figure 2-14 illustrates the 
situation where two distributions have identical means, but 
unequal modes and medians. This illustrates the importance of 
examining all three measures of central tendency when you have 
the appropriate level of measurement and the usefulness of 
graphing data. 

Figure 2-11 Example of a Positively Skewed Distribution 

-~ (tl~,l,(_ j ,,....:.: ... 'I\ 

Wl-\-t({_i .,_~ 
Figure 2-12 Example of a Negatively· Skewed Distribution 
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Figure 2-13 Example of ·a Symmetrical Distribution 
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Figure 2-14 Example of Distributions with Equal 
Means and Unequal Medians and Modes 



= 500 2 = 1500 )· . . . . The machine would then use these 
recoded values in computing the mean and would tell you that 
$6684 was the m~an. 

Sometimes you will want to combine the means from several 
groups. How you combine these means.depends on your purpose, 
what you want to accomplish. You might want to have the average 
(mean) of the groups. That is, if you are looking at the average 
GPA's of students in various schools and college in the 
university,· you might want to know the average GPA of these 
schools. Your unit of analysis is the school or coll$ge. Then 
you would simply add up the averages fo~ each of the~e schools . 
and compute the average of these averages. This is shown in part 
a of Table 2-18. 

Table 2-18 Combining Means from Several Groups 

School or Mean 
/!~' X ": -:: ~ t~· K,: College GPA= E_I~· ni ,., . 

" Journalism 2.9 30 (30) (2.9) = 87 
P.E. 2.8 40 (40) (2.8) = 112 
Education 2.7 60 (60) (2.7) .. 162 
AAA 3.2 40 ( 40) ( 3. 2) .. 128 
CAS L..l.Q lQQ (100) (3.l)= 310 

Totals 14.7 270 799 

-a) X m l.i.:.1 • 2.9 (unit of analysis is the school or college) 
5 

B) X ~ 799 • 2.96 = 3.0 (unit of analysis is the individual) 
270 

The Mean, Median or Mode? 

Finally, how do we decide which measure of central tendency 
to use? We would want to consider the level of measurement of 
our data, for some are appropriate for some t:Ypes of data only. 
We would also want to consider what we want to know about our 
data. We woul~ also want to consider the shape of our data . If 
we have a lot of extreme, values then the mean might be a less 
accurate summary measure of the central tendency than the median,. 
for it is more affected by extreme values. If we have a flat 
distribution, with no clear modal value, the mode might be very 
misleading. Finally, if we want to make further arithmetic 
calculations, the mean is usually the most useful statistic to 
have. Note that computer programs commonly give all three 
statistics, so the researcher must decide which ones to report. 
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Measures of Dispersion 

To this point we have been di.scussing measures of central 
tendency, statistics that describe.where most people are. 
However, we aren't always interested in these "central" points. 
sometimes we might be interested in the furthest ranges - e.g. 
How much money do the richest people make? How poor are the 
poorest people? or we might be interested in how spread out a 
distribution is. Consider the two income distributions graphed 
in Figure 2-15 below. In society A the mean income is $15,000 
and in society B the mean income is also $15,000. But in society 
A people are much more spread out around the mean than in society 
B. Which society would you rather take your chance of' li~ing in? 
Your decision would be much more informed if you knew not just 
the central tendency of the distribution but a·lso had some idea 
of its dispersion. That·is what we will look at now. We will 
first look at a measure of dispersion appropriate for qualitative 
data; then explore measures useful with quantitative d·ata: the 
range, average deviation, variance and standard deviation; and 
finally examine a measure that incorporates both measures of 
central tendency and measures of dispersion, the coefficient of 
relative variation. 

Figure 2-15 Hypothetical Income.Distributions 
in Two Societies 

ltr,m 

The Index of Qualitative Variation 

Because qualitative variables have no magnitude associated 
with them, they are categoric, we cannot examine dispersion as 
the amount of distance from a set measure of central tendency (as 
we will do below). Instead, we look. at how variable -- or how 
different~- are the ca~es in a given data set on the variable of 
interest. Consider the distribution of the hypothetical sample 
in Table 2-19 below. In part a the cases are distributed evenly 
among the four religious categories. In part b of Table 2-19, • 
the cases are all within one category of the religious 
affiliation variable. The subjects are much more diverse or 
varied in their religious affiliation in part a of ·the table than 
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in part b. We would say then that t~e variation . for ,subjects in 
part a is greater tha~ the variation for subjects in part b. In 
fact, since the subjects are equally distribu-t;ed among the four 
categories in part a, they show as much diversity as. they 
possibly could. That is, their diversity is at a maximum. Since . 
the subjects in part bare all grouped into one category, they 
show the least diversity that they possibly could and we would 
say .that tpeir diyersity is ~ta minimum. 

Table 2-19 Hypothetical Data on Religious 
Affiliation ,of 3 Samples 

Religious 
Affiliation J.._ ~ _g 

Protestant 25 100 40 
Catholic 25 0 30 
Jew 25 0 20 
Other --12 _Q ....lQ 

Totals 100% 100% 100% 

The Index of Qualitative Variation (IQV) has the very nice 
qual~ty of reporting th~s amount of diversity in a proportion. 
When a measured variable has th~ maximum variation or diversity 
possible, the IQV = 1.00. When the variable shows no diversity 
whatsoever, the IQV = o. 

To compute the IQV one determines how many differences - or 
how diverse - a set of cases could pos~ibly be. That is, one 
computes the maximum .number of . differences among cases within a 
data set. Tbis is called ·Sm. One then examines the actual 
variation in one's data set. 'This is called the -observed 
differences and. is called s0 • The IQV is then the ratio of these 
observed differences to the maximum possible number of 
differences: 

IQV = S0 / Srn (2-11) 

To compute the number of observed differences one multiplies 
every category frequency by every other category frequency and 
sums these products. This is repr~sented by the formula: 

. ~ k . 
S ::: .. l £ µ" ·AJ; t-. 1J • {;2. _-1.1.,J 

t t,:: I j• I 

N, 6 pl £ts-,/e,f /,t -1-LJ_ t° . .,JL C~"7 
where· ". ::-- ""M- ~ P • ..;iJ...J-~ (,L./<- il"7 

~ . ~ ,, t.,c.AI. /,-<. r 11T' t:: "'-"'.ll,,, ""'-. • 

~ -t' -I~ ltwJ~.,. ".r ~a.1~J,,.1~ 
()...r_V .. ,j • r t,.i,/'JO.,r) 

For part._. a of Table 2-19, S0 = (;..r,%;.rJ+ ~-

-1- c;..r;::,;..r) + t..,:i.,r );;;. rJ -1- o .. r~.r) ~ 3 7.f"o 
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For part b of Table 2-19, S0 = ICJ()lt)J -f 1~ tu J f ,~f.;J + tJCP} .;. Ct1)(.p } 
+~~) ~ i) . 

For part c of Table 2-19, s0 = &'t>~Zo) f (i.1}X,J..t)) -t '(~Cl"} r lJtJ)C,;.. ~) 

-f (J{)}(l(J)-,- {J..()){lb) ~ Jjt)f> 

To compute the maximum number of differences one uses the formula 

s~ :::-l (k~,>- N ;...) wt.a.,~ ;;-= f- (~- '3) 

For part a of Table 2-19, Sm= 

'I {,'1-t)(u)i-:: (.J..}C.S}(1,J..r):: J7 .f'() 
. ~ 

For part b of Table 2-19 Sm • ) ,-
;.. (.J ){., .2..r -;; J 7 "·0 

For part c of Table 2-19 Sm = (J..X. 3 J(,, ;,.r) !: J7JcJ 

The IQV's for these various tables are as follows: 

for part a of Table 2-19 

for part b of Table 2-19 

for part · c of Table ·2-19 

IQV = 3750/3750 = l.00 

IQV = 0/3750-= O 

IQV = 3500/3750 • .93 

Note that Sm= S0 for part a of Table 2-19 . This is as it should 
b~ because we Jcnew that those data were as diverse as they could 
possibly be. For part b, S0 = o, for there is no diversity. s0 for part c is .between those for parts a and b. 

The IQV can be used nicely for comparative purposes. 
Mueller , et al (1978) give an example in computing the relative 
amount ot racial homogeneity in two communities. The numbers of 
wh'ites and blacks in Indianapolis and Louisvi lle in 1970 ar~ 
shown in Table 2-20 below. The IQV for each city is also 
computed and it may be seen that they are quite similar in the 
amount of homogeneity. • 

If one has data that are given in proportions rather than in 
raw frequencies one can 'simply compute the IQV using the 
proportions rather than the frequencies, as shown with the data 
from Table 2-19. • 
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Table 2-20· Racial Composition of Indianapolis 
an9 Louisville, 1970 

Indianapolis 

Louisville 

For Indianapolis 

For Louisville 

The Range 

Number of Whites 

·967, 710 

724,120 

Number of Blacks' 

137,364 

100,683 

S 0 = (967,710) (137,364) = 13,292,851 
Sm = ( 5 5 3 , 5 3 7 ) ( 5 5 3 , 5 3 7 ) = • 3 0 , 6 4 O , 3 21 
I~V =So/Sm= .434 

s0 = (724,.120) (100,683) 2= 7i2906657 
Sm= 1 (2-1) (412,402) = 7,0 7,499 
IQV =So/Sm= .429 

While the ·rQV is suitable for qualitat.ive data the range is 
suited for quantitative data (and in a limited sense to data 
measured on an ordinal scale). The range is simply the smallest 
interval that encompasses all values. For instance, in Table 2-
1, the ages of the bank employees range from 23 to 64.5. This is 
a total range of 41.5 years. The SPSS computer printout gives 
the minimum value of this range (23.0), the maximum value • 
(64.50) and the total range (41.5 years). It assumes that we are 
dealing with quantitative data, • 

If we have data measured on an ordinal scale we can discuss 
its range in a theoretical sense. For instance, we may say that 
political organizations in a community range from the John Birch 
Society on the far right to a nee-Maoist organization on the 
left. This is a theoretical range, however, not a mathematical 
one; so it cannot be regarded as a statistic and is not used in 
computations. 

There are, of course, many problems with the range as a 
statistic. _It is crude, inexact and gives no hint as to the 
distribution of values between the extremes. We have no idea if 
the minimum and maximum are erratic cases or actually not that 
atypical. ·To counteract these problems you might want to report 
some type of intermediate range. These would use the position 
measures discussed earlier in conjunction with the computation of 
the median. For instance, you might report the interquartile 
range, the first and third quartile of a set of data (3.8 and 7.0 
for the BIA data for Native Alnericans). You might also report 
the middle 80% range (from ClO to C90) (3.25 to 10.78) for Native 
Alnericans. 
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Sometimes we might be interested in how the range is 
affected with changes in a frequency distributicn. Say we are 
examining the distribu~ion of incomes within a population. 
Suppose the minimum is $J·ooo; the maximum is $15,000; and the 
range is $12,000. If everyone earns $1000 more then the range is 
unchanged, even though the minimum and maximum both are 
increased. · If only the poor people earn more, the range would 
become smaller; if only the rich earn more, the range would 
become larger. This illustrates how the range can be useful in a 
limited sense. 

Averaged Deviations· 

The most ·common way of measuring dispersion within· a 
frequency distribution is to examine the deviations of scores 
from a measure of central tenden9y. There are three types of 
these measures and each will be considered below. They all 
involve summing the deviations of the scores from the mean or 
median and then averaging these deviations. 

The Average Deviation -- As noted above, the sum of 
deviations of scores a·round the mean equals zero. However, if we 
ignore the sign of these deviations and simply look at the 
absolute difference of scores from the measure of central 
tendency, the sum of deviations or absolute deviations around the 
median is smaller than the sum of absolute deviations around the 
mean. This is illustrated in Table 2-21 below with data from 
Table 2-15. 

Table 2-21 Example of Computing Absolute Deviations 
Around Mean and Median 

....x Ix-Mal tx-xl 
6 3 5 
7 2 4 
B 1 3 

10 1 1 
16 7 s · 
19 10 .§. 

24 26 

The average deviation around the median (ADmed) is simply 
the average of these absolute deviations of scores around the 
median. For the data in Table 2-21, ADmed = 24/6 = 4 • . o 
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In general, 

ADmed = £.(x -ttv.. l 
n 

where Xis a score, 
Md is Median,and (2-13) 
n is the sample size 

This is also referred to as the median deviation. The value can 
simply be interpreted as the average distance of values in the 
distribution from the median. 

one could also compute the·average deviation of scores from 
the mean, but because this value is consistently larger than the 
ADmed, it is seldom used. In fact, even though the A?m d has a 
very nice intuitive interpretation it is seldom reportea in the 
literature and is not coI!lll\only provided by computer programs, 
including SPSS. 

The AD can also be computed for grouped data. Table 2-22 
gives the computation of the ADmed for the BIA data. Note th~t 
the general formula is: 

ADmed 
= l~: ix~ -~~l 
~ 

where fi is frequency of an 
Xi is midpoint of that 
Md is the median, and 

interval LJ -14) 
interval' I 

fl )-IJ. 
Table 2-22 

1'1.P•l /'( A 

X"· fx,·-IKi( It·~ -~I 
2 2.7 8.1 
4 0.7 6.1 
6 1.3 4.1 
8 3.3 2,1 

18 5.3 0.1 
12 7.3 1.9 
14 9.3 3.9 
16 11.3 5.9 

fitd._;J.,1 ~ ~- 7 
>"'d.. ,v,dh~ ~ I tJ • I 

N is the sample size 

Competition of Average Deviation 
from Median for BIA Oat':{/ K.- Y?{t/ 

NA -6 ~ 1) • ~ ;J.,4 ;J lJ • btnt. /J Ii 

3 0 8.1 0 
55 9 38.5 54.9 
17 11 22.1 45,1 

7 10 23.1 21.0 
9 36 47.7 3.6 
7. 24 51.1 45.6 
2 9 14.6 35.1 
Q 1 o.o 5.9 

100 100 205.2 211.2 

for Native Americans ADmed = 205.2 = 2.05 
·100 

for non-Native Americans ADmed = 211.2 = 2.11 
100 
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The Variance -- Much more coll\lnon ~han the average deviation 
is the variance. The variance involves deviations around the 
mean. However, because the deviations around the mean sum to 
zero, it is necessary to somehow get rid of the negative signs. 
This is done by squaring each of the deviations. The variance is 
then computed by averaging these squared deviations. It is 
defined as follows: -

£lX - X)l. • ,t'= ~ 
~ ,!- :: ___ wl.eYe_ • , 1 . . 

.N IV~ 1 .. ,.L,IL'f') P'.-t_ s; le.. 

Note that we have used the Greek letter ~~n defining the 
variance. This indicates that the value is for the population. 
In talking about the sample we use the roman letter si. . 

The variance does not have an easy intuitive interpretation. 
It is the average of the squared deviations of scores around the 
mean, but this does not seem to mean much on an intuitive level, 
especially when you realize that we are talking about squared 
units. Table 2-23 gives the computations for the variance for 
the BIA data. Note that ~his says that the variance for Native 
.Americans is 8.18 squared grade levels; the variance for non­
Native American ~mployees is B.08 squared grade levels. 

The Standard Deviation -- The standard deviation is a 
translation of the variance into units that are more easily 
understood. The standard deviation is simply the square root of 
the variance: 

(2-16) 

for grouped data: 

(2-17) 
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Table 2-23 Computations of Variance and standard 

Frequencies 
NA non NA 

Deviation for 

(Y~ ✓I) 
BIA Data j, lX,: -x. )l, ex"· - x) :i.:-

Xi 

2 
4 
6 
8 
10 
12 
14 
16 

3 
55 
17 

7 
9 
7 
2 
0 

0 
9 

ll 
lO 
36 
24 

9 
! 

100 100 

NA 

-3,9 
-1.9 

0.1 
2.1 
4.1 

6 
8.1 

10.1 

non NA NA non NA 

-7,7 15.2 59.3 
-5.7 3,6 32.5 
-3.7 .01 13.7 
-1.7 4.4 2,9 

0.3 16.8 0.1 
2.3 37.2 5,3 
4.3 65.6 lB.5 
6.3 39.7 

X" (1..;:' S-: q (ruvA ~"'; r 1i, ·¾DZ> ~ ?. i r o ~.;,. ff L 
-x .,q,7 
~~A- . 

NA non NA 

45.6 0 
198.6 292.4 

.2 150.6 
30.9 28.9 

151.3 3,2 
260.5 127.0 
131.2 166,4 

.Q 39,7 

B18.3 808.2 

ft·( ~"'' N IJ o i~ J'tJ!'.-;,._/ilJt> •; i.lJ f ti = .}. • 'i' 'I 
71> c(,·~i.t~ r11tu,~1it.c • . d; 1 /" ~-,./.-,... O' ./ . I I} Lb~L£Tl';,..f r~,-......,._ ,-c.. • 

e-,,r#,.1, ku,J!. l4'»ftJlt-./<.,d.A ✓/<Pi,LIA ?~~.r~ u.¢..c.. a.. -- r (j 

For the BIA data, the standard deviation for the native 
Americans is 2.86; for the non-Native Americans it is 2.84. Note 
again, however, that the standard deviation does not really have 
an easy intuitive definition. It is the square root of the 
average of the squared deviations of scores around the mean. By 
comparing the standard deviation of the native Americans and non- . 
Native Americans we can see that they are essentially equally 
div~rse. They have approximately equal standard deviations. 

As noted above, we have used the Greek letters above in 
defining the standard deviation and the variance. This is 
because the values and formulas differ slightly if we are 
describing a population or a sample. Simply because we are 
taking a sample from a population any sample is less variable 
than the population it comes from. When the sample is small 
compared to the population this difference can be substantial, 
but with very large samples it is quite small. The formulas for 
the standard deviation and the variance of a sample take this 
into account, however, by altering the denominator .to be n-1 (or 
one less than the sample size) rather than n. For small samples 
this will produce greater differences between the formulas forcr 
ands than for larger samples. Some texts call this formula~ 
instead of s. You should understand the logic and look for the 
formula as it is defined. The formulas for the sample values of 
the standard deviation and variance are given below. 
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(2-l.8) 

(2-19) 

• The SPSS program assumes the data it is given are from a 
sample and uses the formulas given directly above in its 
computations. Sometimes the value of the variance is too large 
for the .computer to print (it has too many digits). When this 
happens you can compute it by simply squaring the value of the 
standard deviation. Just as with the measures of central 
tendency you must be careful in how you submit data to the 
computer for the results with the standard deviation and variance 
to be accurate. Your best bet is to simply recode the values, as 
with the income data in Table 2-14 from the NORC study, to the 
midpoints of the intervals. If you had used the unrecoded data 
the computer would give you a much smaller value as the standard 
deviation for these data then if you had recoded to the midpoint 
of each interval. 

The Coefficient of Relative Variation -- The.full utility of 
the standard deviation will only become clear after we discuss 
the normal distribution in the next section. The standard 
deviation and the average·deviation, however, both have ,a nice 
descriptive us~ in the Coefficient of Relative Variation, a 
measure that is used with ratio data. It is necessary to have 
data measured ·on a ratio scale when using the CRV because it 
involves looking at the relative size of the measure of 
dispersion and the measure of central tendency. If the size of 
the intervals were arbitrary (that is, if there were no true zer.o 
point), this ratio would be meaningless. 

The form of the CRV is simply the measure of dispersion 
divided by the measure of central tendency. For the median 

CRV .= ADmedfMed (2-20) 

and -for the mean 

-CRV = S/X (2-21) 

The CRV is used to compare the deviations of a group to the 
average for that group. You might remember that while the native 
American and non-Native American employees of the BIA have very 
dissimilar measures of central tendency in grade level, the 
measures of dispersion are quite similar. The CRVs for these 
da~a are given in Table 2-24 below. 
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It appears that the CRV for Native Americans is 
substantially 1arger than the CRV for non-Native Americans. This 
indicates that not only do the non~Native Americans have a larger 
mean, but that relative to this mean they vary much less. 

Table 2-24 Computation· of CRVs for BIA Data 

CRV median 

CRV mean 

Native American 

2.05/4.71 = 0.44 

2.86/5.86 = 0.49 

non-Native American 

2.11/10.ll = 0.21 

2.84/9.72 = 0.29 

Another example is given by Mueller et al, 1978. This 
involves the homicide rates in the New England and South Atlantic 
states. The AD for the New England states is .78, while the AD 
for the South Atlantic states is 3.60, suggesting that the states 
of the northeast are much more homogeneoU$ since their average 
divergence from the median is so much smaller. However, once we 
look at this average deviation relative to the median the picture 
changes. The median homicide rate for the New England states is 
2.75, while that for the South Atlantic States is much larger, 
12.15. The CRV's are computed below. 

New England States: CRV = .78/2.75 = .284 
South Atlantic states: CRV = 3.60/12.15 = .296 

It is now apparent that relative to their respect~ve medians, the 
two groups of states do not differ markedly in their relative 
variation. 

Yet, another example of the use of the CRV is in Tables 2-25 
and 2-26. These are taken from Christopher Jencks' book 
Inequality (1972). The first shows the coefficients of variation 
for education (years of regular schooling completed) for ·various 
groups of ·cohorts of individuals in the United States. The 
second gives the coefficients of variation for income. Note that 
the CRV's are much smaller for education tnan for income, a 
central point in Jencks' analysis. 

It must be mentioned again that the CRV is only usable when 
• ~e have ratio data. • It -involves computing ratios and this can 

only be done when we have a true zero point, when those ratios 
would make sense. 
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summary 

We have examined a number of ways of describing univariate 
distributions: frequency distributions d.fsplayed in tables, 
graphs of the data, measures of central tendency, and measures of 
disp~rsion. We have noted which forms or statistics a+e 
appropriate for variables measured on different levels. We have 
also cautioned students on the use of computers and calculators 
and their output. 

We have used one example throughout this chapter -- the 
grade.levels of employees of the Bureau of Indian Affairs in 
1970. We have assumed that this variable is .measured on a ratio 
scale (although this is admittedly stretching it unless we 
translate the grades into dollars earned, the origina~ reason for 
setting up the grade limits),. The frequency distribution for 
both Native American. and non-Native American employees is given 
in Table 2-6. Relevant graphs are given in Figures 2-2, 2-3, 
2-7. Statistics for these data are computed throughout the text 
and are summarized in Table 2-27. Note that. all of these results 
suggest that Native Americans are employed at much lower grade 
levels than non-Native Americans, even though it is the policy of . 
the Bureau (and has been for many years)' to give Native Americans· 
employee preference in hiring. All of the measures of central 
tepdency are much lower for the Native Americans than for the 
non-Native Americans. The range for the Native Americans is 
slightly smaller although the average deviation, variance and 
standard d.eviations are almost equal. However, the coefficients 
of relative variation are strikingly different, with that for the 
non-Native .Americans being much less. This suggests that, 
relative to their means, the non-Native Americans actually have 
much less variation than the Native Americans. 
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Table 2-27 Summary of Measu·res of central 
Tendency and Dispersion for BIA Data 

Measure 

Mode 
Crude 
Refined 

Median 
Mean 
Minimum* 
Maximum* 
Range• 
Average Deviation 

(median) 
Variance 
Standard Deviation 
CRV Median 
CRV Mean 

Native 
Americans 

4.0 
.4.16 
4.71 
5.86 

1 
16 
15 

2.05 
8.18 
2.86 
0.44 
0.49 

non-Native 
Americans 

10.00 
10.37 
10.11 

9.72 
l 

17 
16 

2.11 
8.08 
2.84 
0.21 
0.29 

•computed from data with interval lengths of 1 grade. 
All others computed from data with interval widths of 2 grades. 
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III. The Normal Distribution 

In this section we examine the characteristics of the 
normal distribution. The normal distribution is a special 
frequency distribution that.has very useful mathematical 
properties. It is SY11Jllletrical, that is both sides of the 
distribution are identical. This means that half the cases 
are above the mean and half the cases are below the mean. 
It is bell shaped, indicating that most of the cases are at 
the mean and relatively fewer are at the extremes. It is 
infinite1 that is the distribution keeps going out on either 
side infinitely. It is also unimodal: the mean, the mode, 
and the median are all the same value. Even though all 
normal curves share these characteristics, not all normal 
curves look alike. Some are relatively short and wide, 
others are taller and narrower. Some are more peaked, while 
others are more flat. Figures 3-1 and 3-2 give examples of 
the normal curve. In the first example three normal curves 
are shown. They all have the same standard deviation, but 
different means. In the second example the distributions 
are also both normal. They have the same mean, but they 
have different standard deviations .. 

Figure 3-l. 

Normal Distributions with Unequal Means and Equal Standard 
Deviations 
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, Figure 3-2 

Normal .Distributions with Equal Means and Unequal Standard 
Deviations 

Normal distributions are most commonly approximated in· 
natural situations. For instance, shoe size, height, 
weight, gestation periods, and other biological phenomena 
generally tend to assume a shape like a normal distribution. 
other distributions tend to approach the normal one, but, 
most importantly, theoretical distributions used in 
statistical inferences are often normally distributed. Many 
of our statistics are based on the properties of the normal 
curve. 

The most important aspect of the normal curve involves 
the area under or enclosed by the curve. Regardless of what 
the mean or the standard deviation is, the proportion of the 
ar'ea under the curve between the mean and a given distance 
in standard deviation units from the mean is constant. In 
other words, we could mark out the distance from the mean in 
standard deviation units, as is done in Table 3-2, and know 
what proportion of the area under the curve is in each part. 
Obviously, half of the area is above the mean and half is 
below the mean. About 34% of the area is between the mean 
and one standard deviation on each side. or about 68% of 
the area is between one standard deviation above and one 
standard deviation below the mean. About 95% of the· area is 
between two standard deviations above and below the mean. 

Because this is standard within all normal 
distributions, we can compute the area under the curve and 
corresponding information for any normal distribution 
(examples are given below}. This is done by using standard 
tables statisticians have developed that tell what 
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proportion of the area under the curve is between the mean 
and any standard deviation u , it from the mean. An example 
is Table 3-1, the table of the normal distribution which was 
handed out in class. Another example is Table A in Appendix 
C of Elifson, et al (pp. 463r465). To use this table for 
any normal distribution you need only convert your normal 
distribution to equal the on~ where the mean is zero and the 
standard deviation is one. pome tables, like the one in 
Elifson, also give the proportion of area found under the 
curve beyond a given standar~ deviation unit from the mean. 
Note that the two values (t~e proportion of the area between 
the mean and a given standard deviation unit and the 
proportion of area beyond a given standard deviation unit) 
must sum to .so. This is because half of the area under the 
normal curve lies on each side of the mean. 

Part one of Table 3-2 illustrates the use of this table 
with a normal distribution. For instance we know·from the 
properties of the normal distribution that the area on one 
side of the mean of zero is 50% of the total distribution 
(lines a and b). Suppose we were interested in the 
proportion of area under the normal curve between the mean 
and one standard deviation above the mean. To find what 
value corresponds to this area we look down the left hand 
column of Table 3-1 until we find 1.0, corresponding to 1 
standard deviation unit from the mean. We then move to the 
next column to the right headed .oo. (The columns headed by 
two decimal points [.OO, .01, .02, ... ] are used when 
finding the area under the curve at a point in standard 
deviation units measured to the nearest hundredth.) The 
value here is .3413, indicating that the area from the mean 
(0) to one standard deviation above the mean includes 34.13% 
of the total area (line c). Remembering that 50% of the 
area lies below the mean we can say that below 1 standard 
deviation above the mean there is 50% + 34.13% = 84.13% of 
the total area under the curve (lined). 

Again looking at Table 3-1 we can see that between the 
mean and two standard deviations above the mean we have 
.4772 of the total area (line e). If we remember that one­
half of the area is below the mean we can easily calculate 
that .9772 of the total area falls below two standard 
deviation units above the mean (line f), Then combining 
information in lines c and ewe can tell that between one 
standard deviation and two standard deviations above the 
mean is .1359 of the area (line g). Line i looks at the 
corresponding area below the mean. If we remember that the 
normal distribution is symmetrical, we can compute that 
.8185 of the total area is between one standard deviation 
below the mean and two standard deviations above the mean 
(line h). 

Part two of Table 3-2 illustrates how one finds the 
proportion of area under a normal curve when the mean is not 
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Table 3-2 

Examples of Using the Nonna.l Curve Table (3-1) 

N(O,l); X = 0,cr =l, a normal distribution 

X = 50;a = 10, normal 
distribution 

from to 

a) 
b) 
c) 
d) 
e) 
f) 
g) 
b) 
i) 

X 

60 
65 
40 
50 
25 

- to 0 
0 to+.,. 
0 to 1 a -- to 1 a 
0 to 2 a 

- to 2 a 
la to 2 a 

-la 
-2a 

to 2 a 
to-1 a 

1.0 
1.5, 

-LO 
o.o 

-2.5 

----..l.!;;eh7een between 

there is of the distri­
bution 

.5000 

.5000 

.3413 

.8413 

.4772 

.9772 

.4772 - .3413 = .1359 

.3413 + .4772 = .8185 
,4772 - .3413 = .1359 

Proportion of area under 
curve to that point X 

,5000 + .3413 ~ .8413 
.5000 + .4332 = .9332 
.5000 - .3413 ~ .1587 
.5000 + 0 = .5000 
.5000-::: .4938 = .0062 

(.5000 + .4772) -
I ! 

I 
I 

30 & 70 -2.0 & +2.0 [ .5000 + .47721 
= .9544 

50 • 60 70 80 
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equal to zero and the standard deviation is not equal to 
one. In the example the mean is 50 and the standard 
deviation is 10. To transform this distribution to one 
where it is N(O,l) we compute z-scores. This is a simple 
transformation that simply moves the mean of the 
distribution along to zero and stretches or compresses the 
standard deviation so that it is equal to one. The z 
transformation is simply 

2 = (X - X) /s or (X- j'-) / er (3-1} 

You may see in part_b of Table 3-2 that when the mean (50) 
is substituted for X in the z-transformation the z-score 
equals zero. When 40, one standard deviation below the mean 
is substituted, z = -1. When 60, one standard deviation 
above the mean is substituted, z = +l. The chart in part b 
of Table 3-2 gives the z-score for various values of X and 
then shows how one would compute the proportion of area 
under the curve up to that value of x. 

For instanpe, when X (the score under consideration) 
equals 60, the corresponding z-score is (60-50)/10 = +l.O. 
We can then refer to Table 3-1 and note that between the 
mean and one standard deviation above the mean there is 
.3413 of the total area. Since we know that .5000 of the 
area is below the mean, we can say that .5000+ .3413 = .8413 
of the area under the curve is at or below the score of 60. 
As another instance, consider X = 40. Here z = (40-50)/10 = 
-1.0 or one standard deviation unit below the mean. We know 
that between the mean and one standard deviation below the 
mean there is .3413 of the total area. Since there is .5000 
of the total area below the mean, below one standard 
deviation below the mean, there must be .5000 - .3413 or 
.1587 of the total area. students should work through 
remaining examples to assure they understand the procedures 
involved. 

+'o..-r 
So" we have only talked about "scores" and in rather 

abstract terms. Suppose instead, again considering part b 
of Table 3-2, that the scores· represent the number of items 
on a test that students had correctly answered. Assume. also 
that there were many students involved and that the 
distribution of scores was N (50, 10) (normally distributed 
with a mean of 50 and a standard deviation of ·10). The 
computations in part b of Table 3-2 would then tell us that 
84.13% of the students had scores of 60 or lower, 93% of 
the students had scores of 65 or lower, etc. In addition, 
95% of the students had scores between 30 and 70. 

Very few actual frequency distributions that 
sociologists work with are normally distributed. Y~t, 
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understanding the characteristics of the normal curve can 
help in interpretations of the standard deviation for all 
types of distributions. For instance, suppose one was 
interested in studying the distribution of income within a 
population and that one knew that the mean was $20,000 and 
the standard deviation was $3000. You could then know that 
if this distribution were shaped like a normal distribution, 
approximately 64% of the cases in the population would have 
incomes between $17,000 and $23,000 (+ or - one standard 
deviation from the mean). similarly, approximately 96% of 
the cases would have incomes between $14,000 and $26,000 (+ 
or - two standard deviations from the mean). similarly, you 
could compute a z-score to find that an income ofJ2l,500 
was .5 standard deviations above the mean (z= (X-X) /s = 
($21,500 - $20,000) / $3,000 = 1500/3000 = .5). Then you 
could consult the table of the normal curve to determine 
that, if the distribution were shaped like a normal curve, 
.3085 or 31% of the cases would have incomes higher than 
this value and 69% would have incomes lower than this value. 
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IV. Bivariate statistics Appropriate 
for Qualitative Variables 

The work in the last two sections has generally focused 
on measures appropriate only for variables measured on at 
least an interval scale. However, as we have noted earlier, 
many variables used in the soci~l sciences are qualitative 
in nature and are measured on only a nominal or ordinal 
level. In addition, the previous work has looked only at 
univariate distributions. It has involved looking at only 
one variable at a time. In this section we begin to look at 
how two variables are associated with each other, or go 
together. • 

We first review the basic rules involved in 
precentaging tables and displaying and interpreting data 
regarding the relationship between two qualitative variables 
and then examine two measures of association that can 
describe these relationships. 

Developing and Interpreting Bivariate Tables 

Suppose we were interested in the relation between 
subjects• religious preference and their political party 
identification. Our theo~etical and substantive readings 
had led us to conclude that religious preference has an 
influence on the type of political party with which people 
identify. one would then say that political party 
identification is the dependent variable and that religious 
preference is the independent variable. Each of these 
variables may be said to be measured on a nominal scale: 
Party Identification with three attributes (Democrat, 
Independent, and Republican) and Religous Preference with 
four attributes (Protestant, catholic, Jewish, and Other). 

The most appropriate way to display these data would be 
a table that was percentaged to show the relationship 
between the two variables. Such a table is Table 4-1. Note 
that the table includes a title, subheads, and notes as 
described in an earlier section. Note also that the 
percentages are computed within categories of the 
independent variable and that the percentage distribution 
for the total group on the dependent variable is also 
included. This distribution for the total ,group is referred 
to as the marginal distribution. The distributions within 
each category of the independent variable are called the 
conditional distributions (conditional upon the categories 
of the independent variable). The entire table, the whole 
set of colwnns and comparisons, is referred to as the joint 
distribution of religious preference and party affiliation. 
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Table 4-1 
Percentage Crosstabulation of Religious Preference 

and Party Identification 

Party 
Identification Religious Preferences 

~rotestant Catholic Jewish 
Democratic 42.5% 53.5% 
Independent 31.1 32.6 
Republican 26.5 13.9 

TOTAL 100.1%* 100.0% 

N 998 368 

• Does net add tc 100% due to rounding 
Source: ·1977 General Social Survey 

61.8% 
29.4 
8.8 

100.0% 

34 

Other 
30.6% 
56.5 
12.9 

100.0% 

108 

The fact that the table is percentaged within 

Total 
44.8 
33. 2· 
22.0 

:l00.0% 

1508 

categories of the independent variable is very important. 
This is necessary to allow for meaningful comparisons across 
the categories of the independent variable, to tell what 
kind of effect the independent variable has on the dependent 
variable. By percentaging within each category of the 
independent variable the data within each of those 
categories is standardized. In Table 4-1 we are interested 
in the effect that religious preference, the independent 
varible, has on political party 'identification, the 
dependent variable. In reading or interpreting percentaged 
tables such as this, we compare the percentages across the 
dependent variable, whether the dependent variable is placed 
in the columns or the rows of the table. Another way of 
describing this is to say that we compare the marginal 
distribution of the dependent variable with the conditional 
distributions. 

In examining Table 4-1 we would first look at the 
marginal distribution (the total figures), noting th.at close 
to half (44%) of the respondents are Democrats, about one­
third (33.2%) are Independents, and only slightly more than 
one-fifth (22%) are Republicans. we would then look at the 
conditional distributions, comparing these to the marginal 
distributions. We see then that religious preference (the 
independent variable) appears to be related to political 
identification {the dependent variable). With regard to 
democratic affiliation, those with a Jewish preference are 
most likely to be in this group, followed by catholics. 
Those in the Protestant category are slightly less likely 
than those in the total group to be Democrats and those with 
the 11other11 religious preference are least likely to be 
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Democrats. Those with the "Other" preference are much more 
likely than Protestants, 'Catholics, or Jews to identify with 
the Independents; Protestants, Catholics and Jews have about 
equal tendencies to identify with the Independents. 
Finally, Protestants are much more likely than those who 
prefer the other religious groups to identify with the 
Republicans. Jews are least likely to identify with the 
Republicans: but, catholics, Jews and those with an "other" 
preference all identify with the Republicans far less often 
than the total group. Note that in these comparisons we are 
essentially reading across or comparing the values of the 
dependent variable in the categories of the independent 
variable. 

The information contained in a simple bivariate table 
will usually be insufficient to answer a research question. 
we will want to introduce one or more control variables to 
further examine the relationship apparent in the bivariate 
(or zero-order) table. Table 4-2 illustrates the 
introduction of the control variable "annual family income" 
(dichotomized as below $20,000 annually and $20,000 and 
above). Note that in this table the original bivariate 
table is reproduced for those from families earning less 
than $20,000 ~ually and for those with a family income of 
$20,000 ·and higher. Note also that percentages are computed 
within each category of the independent variable-within each 
sub-table. 

Here we would first compare the marginal distributions 
in the two partial tables. We would note that those with 
lower family incomes are much more likely to be Democrats, 
those with higher incomes are much more likely to b~ 
Independents and those in the two income groups are equally 
likely to be Republicans. 

We would then look at the conditional distributions in 
each partial table. Within both income groups Jews and 
Catholics are more likely than Protestants and those with 
other religious preferences to identify with the Democrats. 
This result parallels that found in the zero order table. 
Among those earning less than $20,000 both those with an 
11 other" preference and Catholics are more likely than 
Protestants and Jews to identify with the Independents. 
Among those. with a family income of $20,000 or more only 
those with an "other" religious preference are more likely 
than the total group to identify with the Independents. 
Only the results with this higher income group parallel 
those found in the zero-order table. Finally, among those 
with a family income of less than $20,000, only Protestants 
are more likely than the total group to indicate a 
Republican preference and no Jews in this income category 
and only 8% of the Catholics indicate a Republican 
preference. Among those with a higher family income both 
Protestants and Catholics indicate a Republican 
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identification more often than the total group. In the zero 
order tal:)le only Protestants were more likely than those in 
the total group to identify with the Republicans. 

Table 4-2 
Percentage Crosstabulation of Religious Preference 

and Party Identification by Annual Family Income 

Annual Family Income: Less Than $20,000 

Party 
Identification 

Democratic 
Independent 
Repl,11:>lican 

TOTAL 

N 

Protestant 

50% 
20 
~ 
100 

450 

Religious Preferences·· 

Catholic ' Jewish Other 

60% 80% 40% 
32 20 40 

__ a __ o ~ 
100% 100% 100% 

2'50 l.O 50 

Annual Family Income: S20 .• ooo and More 

Party 
Identification 

Democratic 
Independent 
Republican 

TOTAL 

N 

Protestant 

36% 
40 

_li 
100 

548 

Source: Hypothetical 

Religious Preferences 

Catholic Jewish Other 

40% 54% 22% 
34 33 71. 
~ _ll _7 
100% 100% 100% 

118 24 58 

Total 

53% 
25 
~ 
100% 

760 

Total 

37% 
41 

_ii 
100% 

748 

These results suggest that even when we control for 
family income, religious preference seems to be related to 
party identification. However, some differences do appear 
b~tween the zero order and partial tables, especially with 
respect to Catholics I identification with Independents.and 
Republicans. While ·the .zero order table indicates that 
catholics .identify with the Independents about as often as 
the total group and with the Republicans less often than the 
total group, the partial tables indicate that low-income, 
but not high-income, Catholics are more likely than their 
total income group to identify with the Independents.., 
High-income, but not low-income Catholics, are more likely 
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than their total income group to identify with the 
Republicans. 

Measures of Association 
-----·--··--

Measures of association swnmarize the extent to which 
one variable depends upon or is related to another. While 
one can examine the percentage differenc~s found in tables, 
such as 4-l and 4-2, to determine the extent to which a 
relationship exists between two variables, such computations 
can become tedious and confusing when there are more than 
two categories within a variable. Thus, researchers have 
developed single measures which summarize the degree to 
which two variables are associated with each other. 

There are many measures of association, the most useful 
of which have what is called a proportionate-reduction-of­
error (PRE) interpretation. Below we first describe the 
basic elements of a PRE statistic and then describe two such 
measures of association, one appropriate for variables 
measured on a ~ominal scale and the second appropriate for 
variables measured on an ordinal scale. 

PRE Measures of Association 

The designation of PRE measures of association was 
first proposed by the sociologist Herbert Costner to 
describe a large variety of measures of association. PRE 
measures have four common elements: 

First, they have a rule for predicting the 
classification of each subject on the dependent variable, 
ignoring information about the classification of that member 
on the independent variable. For this rule we generally 
look only at the marginal distribution of the dependent 
variable. The basis for the prediction often involves 
measures of central tendency such as a mode or a mean. 

Second, we need a rule for predicting the 
classification of each subject on the dependent variable 
using the information about the classification of that 
member on the independent variable. In other words, when 
using the second rule we take information about both the 
independent and dependent variable into account. 

Third, we need a definition of what is meant by a 
prediction error. This definition varies by the level of 
measurement of our variables. With nominally measured 
variables an error is usually a misclassification. With 
ordinally measured variables, an error involves a wrong 
prediction of relative order of a pair of variables. With 
intervally measured variables, an error can involve 
deviations from a central value such as the mean. The 
nwnber of errors in classifying the dependent variable when 
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using rule one is termed E1. The number of errors in 
classifying the dependent variable when using rule two is· 
termed E2. 

Fourth, a PRE measure of association is defined as 

(4-1) 

The term in the numerator (E1 - E2) essentially tells us how 
much knowing the independent variable reduces our error in 
predicting the dependent variable. The term in the 
denominator (E1) is simply our total error in predicting the 
dependent variable when we don't know the independent 
variable. Th\l,s the PRE measure tells how much our knowledge 
of the independent variable has reduced our error in 
predicting the dependent variable as a proportion of the 
total error we have if we don't know the independent 
variable. In other words, a PRE measure tells us how much 
our error in predicting the dependent variable is reduced 
once we know the independent variable. 

The definition of error used varies from one type of 
measure to another. The result however, is always a 
proportion. When a PRE measure equals owe could say that 
there is no association -- we have had no reduction in our 
error in predicting the dependent variable as a result of 
knowing the independent variable. When a PRE measure equals - "v­
+ 1.00, we would say that there is perfect association -- a 
total reduction of error in predicting the dependent 
variable when we ·know the independent variable. 

Lambda: A Measure for Variables on a Nominal Scale 

Lambda ( ~ ) is a PRE measure appropriate for variables 
measured on a nominal scale. Error is defined in this case 
as a misclassification, not predicting the correct category 
of the dependent variable. 

Rule l, the rule for predicting categories of the 
dependent variable when we do not take the independent 
variable into account, involves simply examining the 
marginal distribution of the dependent variable. If we know 
nothing a.bout the joint distribution, we would be most often 
correct if we predicted that a case fell into the modal 
category. Our errors by rule one would then be computed by 

E 1 = N - max N. j ( 4-2 ) 

where N.j are the marginal frequencies of the dependent 
variable. In other words, E1 is the total of the 
frequenci~s not found in the modal category. { 

Rule 2 is the rule for pr~dicting categories of the 
dependent variable when we take ·the knowledge of the 
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independent variable into account. In this case, we could 
use as our best prediction of categories of the dependent 
variable, if we know the joint distribution, the modal 
category of the dependent variable within each category of 
the independent variable . The nwnber of errors then 
corresponds to the total nUJilber of cases not found in these 
modal categories. This may be represented as: 

E2 = N - (MaxN1j + MaxN2j + ... + MaxNkj) 

where Nij = cell frequencies in each category of the 
independent variable i. 

Table 4-3 
Joint Distribution of Race/Ethnicity and 

Unemployment Status for a Hypothetical Sample 
of Teenagers 

Race/Ethnicity 

Employment White African- Hispanic Other 
status American 

Employed 250 50 100 75 

Unemployed 50 150 100 25 

Totals 300 200 200 100 

(4-2) 

Total 

475 

325 

800 

Consider the data given in Table 4-3 regarding the 
association between race/ethnicity and unemployment status 
for a hypothetical group of teenagers. Within this table 
race/ethnicity must clearly be the independent variable. 
Then, looking at the distribution of marginals for the 
dependent variable, employment status, it may be seen that 
the modal category is "employed," which contains 475 of the 
800 cases. Thus, if 1we were to guess, based on this 
marginal distribution, that teenagers were employed we would 
be right in our prediction 475 times and wrong 800 - 475 or 
325 times (800 - 475 = 325). In other words, our errors by 
rule 1 would be 325. 

Now, however, if we took into account the distribution 
of the teenagers across the 4 categories of race-ethnicity, 
we would have a different picture. For the whites, we would 
predict that they were employed, and we would be right 250 
times. For the African-Alnericans, we would guess that they 
would be unemployed, and we would be right in this guess 150 
times. For the Hispanics, we could guess that they would be 
either employed or unemployed and be right 100 times with 
either guess. Finally, for the 11 other11 group we would guess 
that they were employed, and be correct 75 times. Thus, if 
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we knew the race-ethnicity of the teenagers we would be 
right 575 times (250 + 150 + 100 + 75 = 575). Given that 
there are 800 people all together we would be wrong 225 
times. Thus, our errors by rule 2 would be 225. 

We can now compute lambda ( ). ) fo~ this association. 

lambda= (E1 - E2) / E1 

= (325 - 225)/ 325 = 100 / 325 = .31 

This indicates that we can reduce our error in predicting 
teenagers' employment status by 31% (almost one-third) if we 
know their race and ethnicity. 

Table 4-4 gives the actual frequencies for the data 
given in percentage form in Table 4-1 for the relationship 
of religious preference and party identification. Remember 
that Religious Preference is the independent variable and 
Party Identification is the dependent variable. The 
computations for la:nwda for these data are shown in Table 4-
5. 

Party 

Table 4-4 
Frequency cross-Tabulation of Religious 

Preference and Party Identification 

Religious Preference 
Identification Protestant Catholic Jewish Other 

Democratic 424 197 21 33 
Independent 31.0 120 10 61 
Republican 264 51 3 14 

Totals 998 ~68 34 108 

Table 4-5 
Computation of Lambda for Data in Table 4-4 

E1 == N - Max N· 
= 1508 - 67~ = 833 

E2 = (Max N1j + Max N2j + Max N3j + Max N4j) 
= 1508 - (424 + 197 + 21 + 61) 
= 1508 - 703 = 805 
= E1 - E2 = 833 - 805 = 28 = .034 
---- 833 833 

E1 

14 

Total 

675 
501 
332 

1508 



Th lambda value of .034 indicates that we reduce our errors 
in predicting the respondents' party identification by .034, 
or 3.4%, once we know their religious preference. 

Table 4-6 gives the frequencies corresponding to the 
percentage distribution given in Table 4-2 for the 
relationship between religious preference and party 
identification for those with annual family income under 
$20,000 and $20,000 and over. 

Table 4-6 
Crosstabulation of Religious Preference 

and Party Identification by Annual Family Income 

Annual Family Income: Less Than $20 1 000 

Party 
Identification Religious Preferences 

Protestant Catholic Jewish Other 

Democratic 225 150 8 20 
Independent 90 80 2 20 
Republican 135 20 _Q 10 
TOTAL 450 250 10 50 

Annual Family Income: $20 1 000 and More 

Party 
Identification Religious Preferences 

Protestant Catholic Jewish Other 

Democratic 
Independent 
Republican 

TOTAL 

199 
220 
129 
548 

Source: Hypothetical 

47 
40 
31 
118 

15 

13 
8 
~ 

24 

13 
41 
....i 
58 

Total 

403 
192 
165 
760 

Total 

272 
309 
167 

748 



Table 4-7 

computation of Lambda for Data in Table 4-6 

For those with Family Income< $20,00~: 

E1 = N - Max Nj 

= 760 - 403 = 357 

E2 = N - (Max N1j + Max N2j + Max N3j + Max N4j) 

= 760 - (225 + 150 + 8 + 2-0) 

= 760 - 403 = 357 

= E1 - E2 = 357 - 357 = 0 
357 

For those with family incomes $20,000 and more: 

E1 = N - Max Nj 

= 748 - 309 = 439 

E2 = N - (Max M1j + Max N2j + Max N3j + Max N4j) 

748 - (220 + 47 + 13 + 41) 

= 748 - 321 = 427 

= E1 - E2 = 439 - 427 = ---1£ = .027 
439 439 

The calculations in Table 4-13 indicate that lambda 
equals zero for those with incomes lower than $20,000. For 
all of the religious groups, the modal political 
identification party is Democrat. This would indicate that 
knowing the :respondents' religious preference does not 
reduce our error at all in predicting their party 
identification. Remember, however, that our earlier 
analysis of this partial table indicated that there were 
patterns of differences among the conditional distributions. 
This low value of lambda undoubtedly reflects the skewed 
marginal distribution of the table. over half of the 
respondents identify with the Democrats and so, even though 
the conditional distributions vary from one category of the 
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independent variable to another, the variation is not large 
enough to counteract these skewed marginals. This is an 
example of when lambda actually produces misleading results 
and when we should rely upon examination of percentages 
instead (as well as inferential statistics we will discuss 
later in the term). 

The lambda value for respondents with a family income 
of $20,000 or more is .027, indicating that we may reduce 
our error in predicting the respondents• party 
identification by about 2.7% if we know their religious 
preference. 

Most computer programs provide lambda. While our -
discussion has involved a designation of one of the two 
variables as dependent, there is a form of lambda that does 
not designate either variable as dependent, but simply tells 
us the extent to which knowing the categories of one 
variable helps predict the categories of the other. This is 
referred to as symmetric lambda. 

When computing lambda by hand it is often easier to use 
computing formulas rather than the definitional formulas 
given here. The computing formula may be easily derived 
from the definitional formula used above. Remember that 

(4-4) 

where N.j are the marginal frequencies of the dependent 
variable1 and that 

(4-5) 

where Nij are the cell frequencies in each category of the 
independent variable i. Lambda is defined as 

(4-6) 

Substituting the values in 4-4 and 4-5 into 4-6 we obtain 

== 
[ (N - Max N. j) - (N - (MaxN1j + MaxN2j + •. . . + MaxNkj) 

(N - max N. j) 

The term 11N11 in the numerator of the above expression 
cancels out and, taking into account the changing of terms 
required by multiplying a negative times the second term in 
the numerator, we are left with 

= - - - - - - - - - - - - - - - (4-7) 
(N - max N,j) 
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The first term in the numerator of 4-7 is the sum of the 
modal frequencies of the dependent variable within each 
category of the dependent variable. The second term in the 
numerator is simply the modal frequency of the dependent 
variable. 

To briefly summarize, lambda is a useful measure of 
association when one is examining the relationship between 
two variables measured on a nominal scale. It varies from o 
to 1. A lambda of o indicates that knowing categories of 
the independent variable does not help in predicting 
categories of the dependent variable. A score of 1 
indicates that knowing the independent variable allows us to 
perfectly predict the dependent variable (our reduction in 
error is total). Lambda has a useful proportionate 
reduction of error interpretation, telling us the 
proportionate improvement in prediction of the dependent 
variable that results once we know the independent variable. 

Lambda is inappropriate and has misleading results when 
the dependent variable has a skewed marginal distribution as 
seen in Table 4-8, illustrating the relationship between the 
length of coupl~s• marriages and the presence of 
communication problems. Assuming that communication 
problems are the dependent variable, we are interested in 
how length of marriage affects these problems. The computed 
lambda is equal to zero, but an examination of the table 
quickly indicates that there is indeed a relationship. 

Table 4-8 
Length of Marriage by Presence of 

communication Problems 

Length of Marriage in Months 

0-36 37-47 48-59 60+ Total 

Report 40 28 16 9 93 
Communi-
cation 
Problem 60 72 84 91. 307 

Totals 100 100 100 100 400 

18 



Table 4-8 (continued) 

E1 == N - Max Nj 

= 400 - 307 = 93 

E2 = N (Max N1j + Max N2j + Max N3j + Max N4j) 

c 400 - (60 + 72 + 84 +91) 

= 400 - 307 = 93 

= E1 - E2 :::: 93 - 93 :::: 0 
------- 93 

E1 

Those with longer marriages are much less likely than those 
with shorter marriages to report communication problems. 
This is not reflected in the lambda because of the skewed 
marginals. The modal category is the same, no matter what 
category of the independent variable is examined. When you 
have skewed marginals you should always carefully examine 
the percentage distributions, for there might indeed be 
substantively important results that are not reflected in 
the value of lambda. Later we will also examine an 
inferential statistic. that will help us deal with such 
situations. 

Gamma: A PRE Statistic for Ordinally Measured Variables 

Gamma is a PRE measure of association designed for use 
with variables measured on an ordinal scale. It is most 
useful when the variables have a relatively small number of 
categories. (While lambda could be used with ordinally 
measured variables, in doing so we would be wasting 
information on the order of the subjects.) 

With gamma, error is defined as occuring when we fail 
to correctly predict the relative order of two cases. We 
essentially examine all pairs of cases in the sample and 
look at their relative order on the two variables that are 
being studied. Gamma tells us how accurately we can predict 
the order of a pair of cases on one variable once we know 
their relative order on the other variable. (Gamma does not 
differentiate between independent and dependent variables.) 

A simple example is given in Table 4-9 below. Here we 
examine the responses four subjects have given to two 
questions: 1) attitudes toward the women's movement and 2) 
attitudes toward voting for a woman president. Suppose that 
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their responses may range along the following continuum: l) 
strongly disapprove, 2) disapprove, 3) approve, and 4) 
strongly approve. Suppose also that we have arbitrarily 
assigned the eodes noted above (l, 2, 3, 4) to eaeh of the 
categories. These maintain the order of the possible 
responses. 

Subject 

w 
X 
y 
z 

Subject 
Pair 

wx 
WY 
wz 
XY 
xz 
yz 

Table 4-9 
Example of Data on Two Ordinally Measured 

Variables for Four Subjects 

Attitude Toward 
Women's Movement 

.strongly Agree (4) 
Disagree (2) 
Agree (3) 
Strongly Disagree (1) 

Relative Order Relative 
on Women's Move. on Woman 

SA> D SA> A 
SA> A SA> SD 
SA> SD SA> D 
D <· A ·A. > SD 
D > SD A > D 
A> SD SD< D 

Attitude Toward 
Woman President 

Strongly Agree (4) 
Agree (3) 
strongly Disagree (l) 
Disagree (2) 

Order Concordant 
Pres. or Discordant 

C (same) 
C (same) 
C (same) 
D (different) 
C (same) 
D (different) 

Also give~ ,in Table 4-9 is the joint distribution of 
responses. This compares the scores of eaeh pair of 
subjects on each variable, giving their relative order, For 
instance, when subjects Wand X are compared it may be seen 
that they stand in the same relative order on the woman's 
movement question as on the woman for president question. 
In both cases Wis more in favor than x. The ordering of 
this pair on these two variables is the same, or is called 
concordant. When Wis compared to Y we again see that on 
both variables. W has more favorable attitudes than Y. When 
wand z are compared it is seen that on both variables W has 
more favora·ble attitudes than z. When X and Y are compared 
we see that on attitudes toward the women's movement X has 
less favorable attitudes than Y. on attitudes toward a 
woman president X .has more favorable attitudes than Y, This 
is a case of different or reverse ordering for the pair of 
cases on the two variables. This can be called discordant 
order. In all, of the total of 6 pairs of cases, 4 have the 
same ordering on both variables and 2 have reverse orders. 
Four are said to be concordant pairs, while 2 are said to be 
discordant pairs. 
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Gamma is defined as 

gamma c O ) = cc - o > 1 cc + o > (4-8) 

where C is the number of concordant pairs, the number of 
pairs of cases with the same relative order on each 
variable, and Dis the number of discordant pairs, the 
number of pairs of cases with the reverse order on each 
variable. 

GalDma tells us the extent ~o which same ordered, or 
concordant, pairs predominate over reverse order, or 
discordant, pairs. as a proportion of the total number of 
pairs on which order can be determined. 

In our example c = 4, D = 2 and gamma= (4-2)/(4+2) = 
2/6 = .33. This indicates that our errors in predicting the 
relative order of pairs of cases on one variable within this 
sample is reduced by .33 once we know their relative order 
on the other variable. 

Usually we have sample sizes larger than those in the 
last example, and we display our data in contingency tables 
or crosstabulations such as those used earlier in this 
section.· When both of the variables in these contingency 
tables are measured on an ordinal. scale we may talk about 
the relationship between these variables in terms of their 
relative order. we are essentially interested in how the 
two variables covary. When subjects have higher scores on 
one variable do they also have higher scores on the other 
variable? This situation is described as monotonic 
increasing and illustrated in part a of Table 4-10. 'or when 
subjects have higher scores on one variable do they have 
lower scores on the other? This is called a monotonic 
decreasing relationship and is illustrated in part b of 
Table 4-10. Or is there no relationship between the two 
variables? This is shown in part c of Table 4-10. 

Gamma describes the extent to which the relationship 
between two variables is monotonically increasing, 
monotonically decreasing;or non-existent. It does this by 
looking at all- pairs of cases in a sample in which we can 
determine order (i.e., in which one is greater than or less 
than the other on the variables being studied) and examines 
the extent to which our ability to predict the relative 
order of any pair of cases is improved by knowing the 
relative order of that pair on the -other variable. In other 
words, gamma te~ls us how much our error in predicting order 
of subjects on one variable is reduced once we know their 
relative order on the other variable. For part a in Table 
4-10, our error would be reduced 100% and our gamma would be 
+1.00, indicating a perfect monotonic increasing function. 
For part bin Table 4-10, our error would also be reduced 
100%, but gamma would be -1.00, indicating a perfect 
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Table 4-10 
Examples of Possible Relationships 

Between Variables Measured 
on Ordinal Scale 

a: A Monotonic Increasing Relationship 

Variable A 
variable 
B l 2 3 4 total 

l 25 0 0 0 25 

2 0 25 0 0 25 

3 0 0 25 a 25 

4 0 0 0 25 25 

total 25 25 25 25 100 

gamma= +LOO 

b: A Monotonic Decreasing Relationship 

Variable A 

Variable l 2 3 4 total 
B 

l 0 0 0 25 25 

2 0 0 25 0 25 

3 0 25 0 0 25 

4 25 0 0 0 25 

total 25 25 25 25 100 

gamma= -1.00 
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Table 4-10 (continued) 

c: No Association 

Variable A 
Variable 
B 1 2 3 4 total 

1 5 10 10 5 30 

2 5 10 10 5 30 

3 5 10 10 5 30 

4 5 10 10 5 30 

total 20 40 40 20 120 

gamma= 0.00 

monotonic decreasing funct~on. For part c in Table 4-10, 
our error in predicting order would not be reduced at all, 
and gamma would be zero. 

To expQnd upon these conclusions we may return to the 
formula for gamma given in line 4-8. If there are no 
discordant or reverse order pairs, D = o, and 

gamma= (C - D) / (C + D) 

= (C - O) / (C + 0) 

= C / C = 1.00, 

and we have a perfect monotonic increasing function. 

and 
If there are no same order or concordant pairs, c = o, 

gamma= (C - D) / (C + D) 

= (0 - D) / (0 + D) 

= -D / D = - 1.00, 

and we have a perfect monotonic decreasing function. 
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Finally, if there are the same number of discordant and 
concordant pairs, C=D, and 

gamna = (C - D) I (C 

= (D - D) I (D 

= 0 / D = 0.0, 

and gamna equals zero. 

+ 

+ 

D) 

D) 

It is important to note that the formula does not 
include any cases where the scores or ranks are tied. In 
computing gamma we simply ignore cases where subjects are 
tied on either of the two variables. 

Table 4-11 
Example of a Contingency Table for Computation of Gamma 

Attitude Toward a Woman President 
Attitude 
Toward 
Women's 1-Strongly 2-Dis-
Movement 'ul_sApprove approve 

l) strongly n11 
q) i r Approve 3 

2) Dis- n21 
approve 2 

3) Approve n31 
1 

4) strongly n41 
Approve o 

Total 6 5 

3-
Approve 

6 

4-Strongly 
Approve Total 

3 

5 

5 

5 

5 

20 

Table 4-ll gives another example, with the same 
variables used in Table 4-9, but with more cases. The data 
are displayed in a contingency table or cross-tabulation. 
suppose that we wished to compute the number of same order 
pairs involved in this data set. Let us begin first with 
n11, the cell in the upper left hand corner. There are 3 
subjects in this cell. These people hold the same attitude 
on the women's movement as all the subjects in the first row 
and the same attitude on women presidents as all subjects in 
the first colwnn. We say then that they are tied with those 
subjects and we cannot determine their relative order with 
these subjects. However, comparing these subjects with the 
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two cases in cell 22 produces a total of 6 (3 x 2 = 6) pairs 
of cases with the same relative ordering on both variables. 
Then comparing subjects in cell ll with subjects in cell 23 
we can see that those in cell ll have lower scores on both 
variables. Because there is one subject in cell 23 this 
produces a total of 3 ( 3xl = 3) _pairs of cases with the same 
relative order. In general, if ,we compare the subjects in 
cell 11 with subjects in all cells below and to the right we 
will see that those in cell 11 always have lower scores. 
This produces 
n11 (n22 + n23 + n24 + n32 + n33 + n34 + n42 + n43 + n44) = 

= 3 (2 + l + 0 + 1 + 2 + 1 + 1 + 2 + 2) = 3 (12) = 36 
pairs of cases involving n11 with the same relative 
ordering. 

We can now move to cell n12 and repeat the process 
finding that there are n12 (n23 + N24 + n33 + N34 + n43 + 
n44) = 1(1 + O + 2 + l + 2 + 2) = 1 (8) = 8 pairs of cases 
including n12 with the same relative ordering. 

Using cell·n13 we find that there are n13 (n24 + n34 
+n44) = l (O + 1 + 2) = 1 (3) = 3. pairs of cases including 
n13 with the same relative ordering. 

If we work through the entire table in this manner, we 
find that there are a total of 36 + 8 + 3 + n21 (n32 +n33 
+34 + n42 + n43 + n44) + n22 (n33 + n34 + n43 + n44) + n23 
(n34 + n44) + n31 (n42 + n43 + n44) + n32(n43 + n44) + n33 
(n44) = 36 + 8 + 3 + 2 (1 + 2 + 1 + 1 + 2 + 2) + 2 (2 + l + 
2 + 2) + l (1 + 2) + l (1 + 2 + 2) + 1 (2 + 2) + 2 (2) = 36 
+ 8 + 3 + 2 (9) + 2 (7) + 1 (3) + 1 (5) + 1 (4) + 2 (2) = 36 
+ 8 + 3 + 18 + 14 + 3 + s + 4 + 4 = 95 pairs of cases with· 
the same relative ordering (concordant pairs). 

To find the number of pairs of cases with reverse 
ordering (discordant pairs) we repeat the same procedure, 
but begin in the upper right hand corner of the table. Here 
we will use cell n13 since cell n14 has no cases. We may 
note that all subjects in the first row and the third column 
are tied with subjects in cell n13 and may be ignored. If, 
however, we compare subjects in cell n22 with those in cell 
n13 we will find that those in n22 have a lower score on 
attitudes toward women presidents but a higher score on 
attitudes toward the women's movement. This is a case of 
reverse ordering. Similarily, comparing n13 with n21, we 
find that subjects in these two cells produce a case of 
reverse ordering. In general, there are n13 (n22 + n21 + 
n32 + n31 + n42 + n41) = 1 (2 + 2 + 1 + 1 + 1 + O) = 1 (7) = 
7 pairs of cases with reverse ordering involving cell n13• 
There are n12 (n21 + n31 + n41) = 1 (2 + 1 + O) = 1 (3) = 3 
pairs of cases with reverse ordering involving cell n12• 
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In general, to compute the number of reverse order 
(discordant) pairs for the table we would follow this 
procedure for all cells. . }A , + hu_(. V\J ( T r,tj f J 

D = 7 + 3 + n24 (n33 + n3~J+ n31 + n43 + n42 + n41) + n23 
(n32 + n31 + n42 + n41)~n34 (n43 + n42 + n41) n33 (n42 + 
n41) + n32 (n41) = 7 + 3 + 0 + l (l + l + l + O) + 2(1 + 0) 
+ l (2 + l) + 2 (1) + l (0) = 7 + 3 + (3) + 2~{3) + 2 = 20 

We may now use our general formula to compute gamma: 

(C-D)/(C+D) = (95 - 20)/ (95 + 20) = 75 / 115 = .65 

This tells us that there are 75 more concordant or same 
ordered pairs than discordant or reverse ordered pairs in 
this table and that there are 115 pairs all together in 
which order can be determined. The gamma value of .65 tells 
us that we reduce our error in predicting the order of a 
pair of cases on one variable by 65% if we know their 
relative order on the other variable. The fact that the 
value of gamma is positive indicates that this is ~n 
increasing function and that subjects who score highly on 
one variable tend to score highly on the other. 

To review the characteristics of gamma: Gamma is a 
symmetric measure, that is, no differentiation is made 
between the independent and dependent variable. We need at 
least an ordinal level of measurement for our variables in 
order to compute gamma. Gamma varies from -1 to + 1. When 
it holds a value of zero we say that there is no association 
between the two variables, in the sense that the number of 
like-ordered or concordant pairs of cases equals the numl:ler 
of reverse ordered or discord~t pairs of cases. A gamma of 
minus one indicates a perfect monotonic decreasing function; 
a gamma of positive one indicates a perfect monotonic 
increasing, function. Gamma does not take the relative 
ranking of the variables into account, but only their 
relative order. Thus, a pair of cases where one subject 
~trongly agreed and the other strongly disagreed and a pair 
where one strongly agreed and the other agreed would both be 
treated in the same way. Finally, gamma has a PRE 
interpretation. This is not immediately apparent from the 
formula and the proof is a little too complex for this 
class. Suffice it to say that a value of gamma may be seen 
as indicating the percentage of errors in predicting the 
relative order of a pair of scores on one variable that are 
eliminated when we know their relative order on a second 
variable. 

It should be noted that there are many measures of 
association designed for variables measured on an ordinal 
scale. They all use the difference of the number of 
concordant and discordant pairs in the numerator, but tend 
to differ in what is placed in the denominator. This 
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generally involves the n'Ulllber of pairs on which variables 
are tied, either on the independent or dependent variable or 
both, plus the total number of pairs on which order can be 
determined. Because this denominator is larger than that 
used for galnlna, these other measures of association are 
usually smaller than gamma for the same table. 
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v. Simple Bivariate correlation 

Quantitative analyses are always linked with research 
designs. We use statistics to help answer research 
questions, and we must always adapt our analysis to fit the 
characteristics of our measures. When we are intere·sted in 
the degree to which two variables measured on a nominal 
scale are associated, we use lambda; to examin~ the 
association between two ordinally measured variables we use 
galllllla. What, however, if we were interested in the 
association between two variables, which were both measured 
on an interval scale? For instance, one could be interested 
in the association between income and education. What 
happens to peoples• income as their level of education 
rises? When studying a question such as this, where both 
the dependent and the independent variable are measured on 
an interval scale, we may use regression or correlation 
techniques. • 

Below we explore the elements of basic bivariate 
correlation. We develop the use of the r!gression line, 
explain the PRE measure

2
of association, r, and also discuss 

r, the square root of r, which is often called the Pearson 
product ,moment correlation. 

r 2 as a Measure of Association 

Consider a case when you have two variables, each 
measured on an interval scale. What if you thought there 
were some pattern in the association between the two 
variables? suppose they had a positive linear association, 
as one variable went up, so did the other (as in the example 
of income and education above) or what if as one variable 
went up the other went down (say as in an association 
between educational level and amount of superstitious 
beliefs), a negative linear association. Figure 
5-1 below illustrates the possible association between the 
income and education of a group of people. On the 
horizontal axis the amount of education is represented from 
high to low. on the vertical axis the amount of income is 
shown. Each dot represents one person. It is apparent that 
people with low amounts of education tend to have lower 
incomes, people with higher educations tend to have incomes. 

It is possible to draw a straight line through ' this 
diagram so that it falls as close to each element of the 
sample as possible. Such a line is drawn through Figure 5-
1. 

From elementary algebra you will remember that the 
equation for a line is ' 

Y = a + b X (5-1) 
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where Y is the dependent variable, the variable on the 
vertical axisi and Xis the independent variable, on the 
horizontal axis. The value "a" is the Y-intercept, the 
value of Y when X = O or the point where the line crosses 
the vertical axis. The value 11b 11 is the slope of the line, 
the amount of changes in Y for each unit change in x. 

Income 

(Y) 

Figure 5-1 
Relationship between Income and Education 

for a Hypothetical Group of People 

X : Education 

Based on the actual data on two variables for a sample 
it is possible to constr11ct a line that best predicts the 
scores of Y, the dependent variable, from the scores of X, 
the independent variable. This equation is. called the 
regression equation and is written 

" Y = ayx + byx X (5-2) 

where~ is the predicted value of Y for any x, a~ is the 
y - intercept, byx is the slope of the line, and Xis any 
value of the independent variable. The subscripts, yx, 
indicate that the coefficients in the equation are 
predicting the variable Y from the values of X. 

Now, because it is possible to construct this line so 
that it is the best line that predicts values of Y f.;_om 
those of X, we can use these predicted values of Y, Y, as 
our best predictors of the dependent variable when we know 
the values of the independent variable and when we assume 
the two variables have a linear association. Because -Y- is 
our best predictor of Y when we a~sume -that the assox_i~tion 
between X and Y is linear, t:._(Y - Y) = o, and l:,_(Y - Y) is a 
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minimum for any value of~ that can be developed through an 
equation of the form ayx + byx X (where Xis the value 
corresponding to that X in tne scatter diagram). 

Remember that L ·(Y - Y) 2 is our measure of error when 
all we know is the dependent variable, for the mean is 
always the best predictor of an intervally measured 
variable. 

Note that we now have all the elements of a PRE 
measure. We have a rule for classifying subjects on.the 
dependent variable when we only know the dependent variable: 
We simply would give them the score of the mean, for our 
deviations around the mean are at a -minimum for any value. 
our rule for classifying subjects on the dependent variable 
when we know the independent variable is the regression 
line, for deviations of scores around the regression line 
are also at a minimum. ·Our definition of error can simply 
be squared deviations of scores around these points (we 
square to get rid ·of negative values.) 

I 

For the first rule 

E1 = L(Y-Y) 2 

or the squared deviations of scores aro~d the mean. 
(5-3) 

For the second rule 

. E2 = £(Y-2) 2 (5-4) 
or the squared deviations of scores around the regression 
line. 

Remember that .a PRE measure is (E1 - E2)/E1- From the 
definitions of Ei and E2 above we can then construct the 
following measure of association: 

"' f; (Y-Y) 2 

= ...• ------------
C, (Y-Y) 2 

= r2 (5-5) 

In.this·measure the total variation to be explained, or 
the error when we only know the dependent variable is 
~(Y -Y) 2 . The variation unexplained or left around the 
regression line, the error when we also know the line2r

2 association with the independent variable, is ~(Y - Y) . 
The difference between the total variation and the 
unexplained variation is the variation of the dependent 
variable that is explained by the regression line or by the 
line~.~ association between ~he dependent and i..nde~ndent 
variable. This measure ..rs"" r . It rs the square of the 
Pearson product moment correlation. It is .simply 
interpreted as the proportion of the variation in the 
dependent variable (or one variable) that is explained by 
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its linear association with the independent (or other) 
variable. It may also be seen as the proportionate 
reduction of error in predicting values of the dependent 
variable when we know the linear association between the two 
variables compared with our error when we only know the 
dependent variable. 

An Example 

A simple example can illustrate the meaning of .r2 and 
its relation to the regression line. Figure 5-2 shows a 
scatter diagram of data representing the reported monthly 
church attep.dance of pairs of mothers and daughters.. 'I'hese 
data are· also summarized in Table 5-1. Note that in family 
A both mother and daughter attend~d once in the month; in 
family B mother attended twice, daughter 3 times; in family 
c mother attended four times and daughter 3, and ·so on. 

Figure s-2 

Scatter Diagram of Hypothetical Data Regarding the Monthly 
Church Attendance of a Sample of Mothers and Daughters 

Aw 
8 y =-0.3-f.~7~ • (F) 

7 

6 1 . (E) 

5 

4 . (D) 
Daughters' 
Attendance 3 • (C} 
(Y) 

2 

1 2 3 4 5 6 7 8 

Mothers' Attendance (X) 
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Computations Needed to 
Table s-~ 
computer for data in Figure 5-2 

- (X-X) 2 - - -Family Mother Daughter (X-X) (y-Y) (X-Y) (Y-Y) 
(X) (Y) 

A 1 l -3.5 12.25 -3.2 ll.2 
B 2 3 -2.s 6.25 -1.2 +3.0 
C 4 3 -o.s 0.25 -1.2 +0.6 
D 5 4 - .s 0.25 -0.2 -0.1 
E 7 6 2.5 6.25 l.8 +4.5 
F ....H. ....H. ~ 12.25 -2.:..]. +13.3 

Totals 27 25 
31,S-

32.5 

-X = 27 = 4.5; y = 25 == 4.2 
6 6 

A scatter diagram, as in Figure 5-2 is a device used to 
illustrate the nature of the association between two 
variables. From the scatter diagram in Figure 5-2 it 
appears that there'is a positive linear association between 
the daughter's church attendance and the mother's church 
attendance. As the mother has higher church attendance, so 
does the daughter. 

Now we want to construct a line that can be drawn 
through this scatter diagram that will best predict values 
of Y (the daughter's attendance) from our knowledge ~f the 
mother•s attendance (X). I will not here go through the 
derivation of the formulas used to get values of byx and 
ayx• They involve a knowledge of elementary calculus. 
Suffice it to say that mathematicians have figured out the 
equations that will produce these best predictors. 

However, an intuitive explanation of the formula for b 
is possible. 

byx = L (X - X) (Y - Y) / £ (X - X) 2 ( 5-4) 

This is simply the covariation of X ~n~ Y [t:..(X-X) {Y-Y)] 
divided by the variation of X ( £ (X-X) ] , the predictor or 
independent variable. 

Remember that byx is the slope of the regression line. 
When it is greater tnan zero there is a positive 
association; when it is less than zero there is a negative 
association (as one variable goes up the other goes down) 
and when there is no association the slope is approximately 
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equal to zero. The variation of Xis always greater than 
zero (if it were equal to zero there would be no use in 
conducting an analysis). Thus, to understand how this 
formula .for the slope can result in a positive, negative, or 
zero value, we need look only at the covariation of X and Y. 

' 
We can see that the covariation includes information 

about the mean of X, which is our best predictor of X when 
we only know X, and about the mean of Y, our best predictor 
of Y when we only know about that variable. The covariation 
takes into account how the actual pairs of scores yary 
around the best two predictors· for each variable. Figures 
5-3, 5-4, and 5-5 illustrate situations that will result in 
different values of b. 

Figure 5-3 
A Posit'ive Value of rand b 

y 

-;( X 
In Figure 5-3, because the relation is positive ~ost of 

the pairs of scores fall into the quadrant where both Y-Y 
and x-x are greater than zero, or in the quadrant where both 
of these values are less than zero. In both these cases the 
product of (Y -Y) (X - X) would be positive (positive times 
positive= positive; negative times negative= positive) and 
thus the covariation would be positive;and b or the slope 
would be positive. 

In Figure 5-4 the association is negative. In this 
case most of the cases fall into the quadrant where (X -X) 
is less than zero and (Y_- Y) is greater than zero, or into 
the quadrant where (X - X) is greater than zero and. (Y - Y) 
is less than zero. 'In this case the product of (Y - Y) (X -
X) would usually be negative and thus band the slope would 
be negative. 
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Figure 5-4 
A Negative Value of rand b 

li-x x~ --9 )<o 

-

~ 
Finally, in Figure 5-5, tl1ere is no association. In 

this case the pairs of cases generally fall equally between 
the four quadrants. Thus the number of times the product of 
(X-X) and (Y-Y) is positive should about balance off the 
number of times the product is negative and thus the overall 
sum of these products over all cases would be close to zero. 

Figure 5-5 
A zero value of rand b 

l'l---x)L'i-Y)<D ... "i" 
\ ' i ,., ... 

. ' \ 

~ 

If the variation in X ( ((X-X) 2) is about equal 'to the 
covariation of X and Y [ C (X-!') (Y-Y)], then b would be 
approximately equal to one. This means that the changes in 
X and Y are about equal, as X moves one unit, Y is predicted 
to move about one unit. When bis greater than one, the 
covariation of X and Y is greater than the variation in X, 
and when X changes one unit Y is predicted to change by more 
than one unit. Conversely, when bis less than one, the 
covariation of X and Y is less than the variation in X, and 
the predicted changes in Y .are less than the unit changes in 
x. Each of these situations is illustrated in Figure 5-6. 
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Figure 5-6 

Given this intuitive feel for the meaning of b~, let 
us return to the example involving mothers• and daughters' 
church attendance. Using the information given in Table 5-1 
we can calculate: 

bxy = Lcx-xl .(,Y2Y} = 32.5 = .87 
(X - X) 37..5 

(5-5) 

-
ayx = y - byx X = 4.2-3.9 = 0.3 (5-6) 

= 4.2 - 3.9 = 0.3 

The regression line that best predicts the values of Y, the 
daughter's attendance, from the values of X, the mothers' 
attendance is:"-

Y = 0.3 + .87 X (5-7) 

• In Table 5-2 we present the dat~ that can be used to 
develop the measure of association r. This measure tells 
us how much of the variation in daughters' church attendance 
can be accounted for by its linear association with mothers' 
attendijace. 
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Data 
Ta.b~e 5-2 

for Calculating r for data in Figure 5-2 

Family X y A. y Y. - (Y-Y) 2 ,-
(Y-~)2 - ":I. (Y-Y) 

A 1 1 1.17 -3.2 10.24 -.17 .03 
B 2 3 2.04 -1.2 1.44 +.96 .92 
C 4 3 3.78 -1.2 1.44 -.78 .. 61 
E 5 4 4.65 -0.2 .04 -.65 .42 
D 7 6 6.39 1.a 3.24 -.39 .14 
F 8 8 7.26 ~ 14.44 .74 .55 

-5.B 30.84 -1.99 2.67 
Totals ±2&. +1.70 

-.02 -.29 

Note that the simple sum of deviations of the scores of the 
dependent variable around the mean are approximately equal 
to zero. Thus the sum of the squared deviations around the 
mean are also at a minimum. The predicted values of Y shown 
in the table are those computed when the given value of X, 
the mothers• attendance for each family, is substituted in 
the prediction equation. The simple sum of the scores of 
the dependent variable around the predicted values of Y from 
this regression line are approximately equal to zero, and 
the sum of the squared deviations around the regression line 
are at a minimum. 

We may now use the sum of the squ!red deviat!ons around 
these two .best predictors to computer. t:'CY-Y) = the 
variation of scores around the mean, the best ~redictor when 
we only know the dependent variable. ~ (Y-i) = the 
variation of scores around the point on the regression line 
that is predicted for that family or pair of scores. This 
is our best predictor of the dependent variable when we know 
the independent variable and assume that the association 
between the two variables is linear. 

£(Y-Y)2 - L(Y - Y)2 

E(Y-Y) 2 

= 30.84 - 2.67 = 28.17 = .91 
30. 84 jc.l.2'-/ 

(5-7) 

Thus, for this sample, when we know the mother's 
frequency of church attendance we can reduce our error in 
predicting the daughter's attendance by 91% when we assume 
that the association between the two variables is linear 
(can be represented by a straight line). Another way of 
saying this is that 91% of the total variation in the 
daughter's church attendance can be explained by its linear 
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association with the mothers' frequency of church 
attendance. 

Note that r 2 is a symmetric measure. In fact, we could 
work out ~he equation predicting X from values of Y and 
computer that way and come up with the same figure. We 
could also say then that 91% of the variation in mothers• 
church attendance is explained by its linear association 
with daughters' frequency of church attendance. 

r 2 is sometimes called the coefficient of 
determination, representing the !xtent to which one variable 
is determined by another. 1 - r (in this case= .09) is 
called the coefficient of alienation, the proportion of 
variation that is not explained by this linear association. 

Because our way of computing r 2 above used the IL 
definitional formulafinvolved a number of subtractions, ea~ 
1liNe is b~und to introduce rounding errors. When you 
computer by hand it is preferable to use a computational 
formula.

2 
This is usually written for the value of r itself. 

To get r we simply square this value. The computational 
formula ~orris simply 

,Al£ X Y - C£X X c, Y) 

in our example r = 

= 195 
(225][185] 

6 (145) - (27) (25) 

= 195 = 
41,625 

r 2 = (95) (. 95) = . 90 

195 = .95 
204.02 

The Pearson Product Moment correlation. r 

(5-8) 

While r 2 has an easily understood interpretation in the 
PRE format, the pearson produc~ moment correlation, r, is 
more frequently used. While r varies between o and l {with 
o indicating no association and l indicating perfe~t 
association), r varies from -1.0 to +1.0. rand r are 
obviously related in that r 2 is simply the value of r 
multiplied by itself. Yet, the interpretation o! r is 
somewhat different than the interpretation for r. Below we 
go through four interpretations related tor after exploring 
more the formula for r itself. 
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I 
r 

Above we gave the computational formula for r. It is 
also instructive to examine the definitional formula. The 
definition of r is 

r = Z:cx - X) (Y - Y) = covariation of X and Y 

Vcvariaticn of X) (variation of Y) 

Note that this is closely related to the definitional 
formula of the slopes: 

byx = covariation (XY) 
variation X 

bxy ~ covariation XY (S-10) 
variation Y 

While the slope always has the covariation cf X and Yin the 
numerator, the denominator is either the variation of X or 
the variation of Y depending on whether X or Y is the 
predictor variable. 

r2 = byx bxy and thus r = Vi,yx bxy (5-11) 

The various possible interpretations of r follow these 
observations. First, by observing the sign associated with 
the correlation coefficient, we may ascertain whether the 
association between the two variables is positive or 
negative. This follows from the logic associated with the 
sign associated with the slope as explained earlier. 

second, we may silnply square the value of r to get r 2 , 
which tells us the proportion of variation in one variable 
explained by its linear association with· the other. This 
was fully discussed above. 

Third, we may remember that r is equal to the square 
root of the product of the two slopes. This is called a 
geometric mean, one type of measure a:ar □• 4+- of central 
tendency. The correlation coefficient then is the geometric 
mean or geometric average of the two different slopes byx 
and bxy• 

Fourth, r may be interpreted as the slope of the 
regression line when standard deviation units are used as 
scores rather than the raw scores. Figure 5-8 illustrates 
this interpretation for the example used in the previous 
section. As shown in Table 5-3, each of the scores may be 
transformed to its corresponding z-score or standard 
deviation unit score. Based on these scores we may compute 
byx and bxy. Note, however, that bz z = bz z = rz z . 

yx xy xy 

In other words, r is simply the change in standard deviation 
units in y for every standard deviation unit change in x. 
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Also, r = .L( zyzx) / N, or the average of the cross­
product of the stanaard errors. This occurs because when 
standard scores are used the standard deviation of the 
standard scores is automatically one and the mean is o. 
(Remember that the definition of standard scores or z-scores 
is a distribution where the mean is a and the standard 
deviation isl). This then means that the sum of the 
squared deviations of scores from the mean simply equals the 
sample size, as shown in equations 5-12 and 5-13. 

Szx2 = l. = 
~ - 2 <.. (Zx - Zx) 

= (5-1.2) 
N 

and by multiplying N by each side of the equation: 

N = 2:(Zx - Zx) 2 = c(Zx - O) 2 =~x2 (5-13) 

Thus, the sum of the squareldeviations around the mean are 
simpl.y equal to the sam~le size. This means that ~s­
~~ -· _ N , and, the square root of the product 
of the variations is equal to the sample size. 

Family X 

A 1 
B 2 
C 4 
D 5 
E 7 
F ......e.. 

27 

Zx = x-x Zy 
Sx 

... 

V (N) (N) ... (N) 

Table 5-3 
Calculations of rand r 2 for Data 
in Table 5-1 Using standard Scores 

y zx Zy zxzy 

1 -1.3 -1.33 +l.73 
3 - .92 - .49 + .45 
3 - .18 - .49 + .09 
4 + .18 - .07 - .01 
6 + .92 + .77 + .71 

......e.. +1.3 +1.61 +2.09 
25 a 0 5.1 

= Y-Y r = ["zxzy = 5.1 = .85 
Sy 6 

N 

(5-14) 

-i. = 4.5 
y = 4 .17 
Sx = 2.7 
Sy = 2.38 
n = 6 

- .9 -
And these results are equal, when rounding errors are taken 
into account, to those found through other computation 
methods above 

This final interpretation of r is the one that will be 
the most useful. From it, one can interpret r as being the 
standard deviation unit change~he other variable. This 
is analagous to the interpretation}of the slopes, but 

,.;J, ~ u"--,,·cJlc. r~e/l,U-~ 6y i,'?<-(; 

3~ ,e.,,,,-.di;,,,,, w,;t c,~e, i ' 



involves the use of standard scores rather than actual 
scores. That is, the value of r tells us how many standard 
deviation units we would expect one variable to change when 
the other changes one standard deviation unit. The result 
above says that we would expect daughters to have church 
attendance patterns that were .as of a standard deviation 
higher than the average when mothers' church attendance was 
one standard deviation above the average. Similarly, if 
mothers had church attendance patterns that. were one 
standard deviation below the average for mothers, we would 
expect daughters' church attendance patterns to be .as of a 
standard deviation below the average. • 

Figure 5-8 
Illustration of rand b when using standard scores 

with data from Figure 5-2 

• (F) 

r:.r;­
bi:: .fC"' 

Zy=O 

Daughters' 
Attendance 
(Zy) 

zu== .ff"i< 
• '-rl(~ o ______ ~_..___._ ______ r_ 

. (B) 

Zx=O 
Mothers' Attendance (Zx) 

The term Pearson product moment correlation also comes 
from the definition of r as ~zxzy / N. A moment is an 
average. The mean is the first moment (the average of the 
scores). The variance is the second moment (the average of 
the squared deviations of the scores around the mean). Here 
we are averaging the products of standard scores, thus, the 
product moment correlation. Karl Pearson is the 
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mathematician who developed the statistic, and thus the na10.e 
Pearson. 

Computer Work 

Various computer prog;ams can provide scatter diagrams 
and ccmpuations of rand r. The output shown below in 
Figures 5-9 and 5-10 come from data from a western Oregon 
high school. I requested two scatter diagrams, both looking 
at the association between scores on a general achievement 
test taken in the eleventh grade (called VARll by the 
computer) and the students' average grades in the seventh 
grade (called VAR15). I posited that the grades were 
dependent upon achievement. These calculations were 
requested for each social class group.. Results for the 
middle class are given first, results for the working class 
are given second. Each* on the table represents one person 
at the intersections of those points. If more than one 
person falls at a point the computer prints the number of 
people involved. Note that the cases cluster around the 
regression line. [In asking for this output I asked the 
computer to have the plot lines be_ equal to integer values. 
This makes it somewhat easier to draw the regression line, 
but it also results in all of the data being in the lower 
half of the table (because gpa was measured to two decimal 
points, but spans only 4 integer values).] 

The associated regression line is drawn on both 
printouts. To draw the line the values for a and b were 
taken from the printout and the equation for the line 
developed. Then predicted values of Y were computed for 3 
separate values of X and resulting points were plotted. For 
the middle class students 

A 

Y = 2.322 + .Ol3X. 

For the working class students 
A. 
Y = 2.202 + .012 x. 

(5-15) 

(5-16) 

Note again that this is the regression line predicting gpa 
from achievement. GPA is the variable on the vertical axis 
of the scatter diagram. ·Note also that both they-intercept 
and the slope are lower for the working class students than 
for the middle class students. 

41 



EXAHPLg □ F C~OSSTlliS fOH 326 

··- .. file COLEMAN 
Scattergram ot 

(Creation date 
(I.lawn) VlRll 

10.00 20.00 

= 01/19/79 ) .... REPLICATION, SPiUNCfIELD 7IS DUA 
11TH CPA (across) VAR15 

30.00 40.0D 50.00 60.~0 70.00 

Page 2 

_. .. - . ··- ·-----
11 TH ITEO COMPOSITE 
eo.ao 90.,0 100.00 

----- -··· --·i1 •• o·o·o - : ♦----♦- --:.-♦ -:--.---•-:~ --:-♦ -=---- +----.-♦-- - ~•----:-.•----♦ ----+~-.---:t~~'.'"..': +--.-:--:1' ~--.-~-·-=~-.:-.. +-.-~.-~ t=-=-~~-· ':'.~-=~t=-=~-=--♦:=~ ... ~ ♦ ;---11. 0 0O ___ l ·. 
---------- - --- ---------------•----- ----------•--------------------------------, 

: 
____ 10. 0 00 ___ t _________________ ; ---· ♦ lO.QQ!L __ _ 

. 
- --------··-

9.000 • + 9.000 . --------·,''--------------------------------'-----~---_; 
a 

I: : ___ ;_ ________________ _ I . _...___ -. e.ooo + : ♦ u.ooo . . 
. ____ :-----------------------------------------~----~-------------------------------------------------------.~----~-----

a 
: : i 

___ 7."00 __ ~------------------•'---------------- -------------------♦ 
p 

---1~°-~Q ____ __, ' 

----~----~-~o~~---I·-----------------;------~-j-Jjl\~ _______ ;__ : 6.000 i; 

; _____________ ~· ____ (1~~~14-g_~-~---~--------------·:----------+ 

. : , . 
-------·-·-·- - -----· 

. 
-·• ---·-- -· ···-···- -----------' - - : 

--------''-------- .. -------
5. 000 + i ♦ s.ooo 

. ·--~------------------------
. . 

_,; ··---- ·-----···----- ___________ ; ________________________ --'; _____________ __, 

:---------------------------------------------;:------------------------------------------------------1 1: 

______ '.'l_,_c_••~:__ : • •-------~-----! _ :.f,,_Y ~~-3

-

1

-~~ -

0

~•~-~ -L~ __ ; __ : -~t- L~t~-----••m _) 
i 

3-00(1 + • • • . :! • .I.-J.- • 2 : 2 • • + 3.000 ,., 
-------------· : ··------ 2 2 ______ • __________ ; __ J -------·2 ____ 2_ • __ ).___ * • * ______ L ____________ !-

: • • 4 2 I • 2 • • 2 * : i,, 
• 2 • : • 2 • 2 : l" 

• • * ____ 2 __ :t _____ • -·; _}!. .. -----· • • : • : .-:. 
2.000 ♦- 2 2 • * : * * : + 2.0~!) f•, 

l * 2 : 
----------·----' _________________________ .,_ _________ • _________ t ----

' r· . I I i' 
_________ 1.()00 -•..... ------·'--------·· -··----· ..... ---·---------- ·•----'-------·· -----,----- __ + _____ J.(H)O ______ l1·; 

•♦----♦----·----♦----♦-~--♦----♦•---♦----♦----•----♦----♦----·----♦----♦----♦----♦----♦----♦----+----+. ;·, 
;·, s.oo 15.00 25.00 35.00 45.00 55.00 65.00 75.00 85.00 95,00 _105.00 

-·------· -----·· •··-- ••••• --------------



-----·· ----- -· -·-- --------·-----------··---·- - __ , ·-· . -··- • ----··- -- ----------------
146 

EXlHrLe Of CROSSTABS FOR 326 Page 5 

_ flle ___ COl.E~AH _(Creat1on_date-: .. Dl/19/79._).__R£PL1CUION, SPRINGFI~LD .. 18 .. DUl. -----------·-----···------------------H 
Scattergram ot (oo.n) VAWll llTH GPA (acros5) VARlS 11TH ITEO COHPOSITE ' : 

l 6.00 16.00 2b.OO 36.00 46.00 56.00 b6.0O 76.00 B6.00 96.00 
11.000 ~t-'."!'.=-:•.-:.~--== ... -=--=-=-':t:--=-~==·t!'!~-!'!!!.t.".'!:..~~ .... ~.-.~~:t:~!'"..-:--.+-~~~:t~-"'!~~+-~~:..~-t!"~.-.-:t.~~~-=!!.=1-~=-±=---•----t:----:t-"" ..... -..;;.-""-"'+c.,•,_ ___ 1_1_._o_o_o ____ ~: 

Z : I 
: 
I 

___ ________ : ___________________ ; ____________ ---,----·-
--• 

' 
-------------------=----------~! ' ; 

: J : J t 

____ 10. uOO. ___ + -------------------~----------------' ___ __.. ____________________ +x._ ___ __.
11 
..... n • ..o.on.._ ___ ~• 

I :. 
• 
: 

' : I . 

--·-------··· _:_ ____________________ :._ ___________ ~-----" ·--------------,,--------1------.-------i'' 
• • :.:.J --~ .. • I 1 " 

. -
: + 9.ooo :~ 

----L-------------------•··-·-----------------·.:.:.'·'_'· ..,:_;__ __ •,..__ __________________ _._t _________ -j,~ 

---------- .... : ! : ' : i~ 
9.0D0 + 

___ 8_. o_,, _:~:=s~c-----~--------------------j ___ ~J~~~~~~:~~c.~i~~~-L ___ :c _______ =-~-------------~---8-. o-o-o ----;li 
I I ~ 
I I i •I 

- --- -------------- :•----·--------,-,,....~•~: -,.,-----1.L ------------------1• ___ __._7. QQJ)•-----1:1 

; . :.: :·· .. 
·-7t- ·---:-------------------=•,-________ _,_.:...__...;·:..:·•:.;._· _ •• --'--___ .,_,:--''---:...:· ·;_· ---------~------':L....--·---------l~ 

----- ~~o_o_o_; ___________________ ! ____________ ,--..,... ____ ; : 6.Coo :~ : ! ~ .. ~:----__ ----------------':'----------~:1 

s .o co·- !-·-- ------------·!;_ ----/---Y- .. _t._~U:..:.c1t __ ~j-~ '--------- - --- !- --s-.-o-o a---~:~ 
J ·.~ 

__________ , ___ ; _________________ __.. ____ - - .. ! t ~ 

------------------------------------------------------------':'----- ---- -~,i 
' j -------------------------------------------. . : 

____ 4..()00 __ t ___________________ ---------~:.____,11 _ _ _ _;; __ ..=... ___ ::_ ___ _::::....._ _ _ ~ ___ __.!14.ll.01). ____ -11• 

~~~~:~
3
--~--0- ~-~-_--; __ • _: _ • ] Ji[~-=1==11;J~;j~~==;====i•=~1-;~~:·t:t==~-~~:~~~--------_-_-_-_-,•,----~---_-_-_-3~•~0~0~D~~~~~~~~-l~ 

1 * • • •• 
2 2 

* ♦ 

2.000 

.1. 0 00 

. • • . * 3 * • • * _I 

* • • * • * • • -- : 

* • • 
• • • * • .. . ·•-- ·-

2 4 • 2 
5 . ... - ., 2 •• 
■ • • • 

2 .,. . , , ,. t 
: 

• 3 
-

• 2~ 4 • • • • 2 
• * 

4 2 ♦ . 
: • • * * J • • s 2 • 2 2 1•:~.l • •• 2 2 3 3 4 2 2 

. _____ 2 ____ 2_ * • 2 ____ l ____ 2 ··--·· * .... _ _ 3 ___ • _ _ __ ; -~----•-___ _:•.:..._- ~-------- ·------ ---- ~ 
• • 2 • * 2 5 3 4 * 2 '" I • 2 2. 00 0 

* ir * • * • • 3 • 3 * * I * * ,,~ 

• 2 2 • 4 , . .. . - - - - J. - 2 . 2--~ 
* 
* 

I 

I I 
: 
J 
♦ 

I r.-J· 
·• • ··-· _ ___ _ ____ __2 ___ .l.__ 2 - --• • _ ;_ ------- ---- · . - ·· _ _ ._ -- ___ !,__ _____ ,: .. ------------------- ________ _ _ -j 

• • " 1 00" ~::~]'. 

. • 

. . --·· -- -·-------- . . ···- -·-· . -··- . ·- . -·· ' ····--·-·--·- -·······-·---·- ----·----'----------+ ~ ~ • 
• ♦----♦----♦----♦----♦----♦~---♦----♦----♦----+----♦----♦----♦----♦----♦-----♦----♦----♦----♦----♦----♦~---- - · · - - -', 
1.00 11.co 21.00 31.00 41.00 s1.oo -61.00 11.00 a1.oo 91.00 101.00 1 

·4 



Table 5-4 
Calculation of Grades predicted for Middle Class and Working 

Class students at Various Levels of Achievement 

Achievement Predicted Grades 
Test Scores Middle Working 
(Percentiles) Class Class Difference 

j\ I\ A A 
X Ymc Ywc Ymc - Ywc 

0 2.322 2.202 0.102 

25 2.647 2-. 502 0.145 

50 2.972 2.802 0.170 

75 3.297 3.102 0.195 

Table 5-4 shows the results of using the regression 
. equation to gompute predicted values of the gpa for working 
·and middle class students using their respective regression 
equations. It may easily be seen that at all values of 
achievement middle class students have higher predicted 
grades than working class students. Because the slope in 
the regression equation is larger for middle class students 
than for working class students the gap or difference 
between the predicted grades becomes larger with higher 
achievement scores, reaching almost .2 of a grade point for 
students with achievement test scores at the 75th 
percentile. 

Looki~g again at the printout results it may be seen 
that the r between achievement and grades is .36 for middle 
class students, but .26 for working class students. If we 
know the linear association of students' achievement scores 
with their grades we may account for over one-third of the 
variation in middle class students' grades but only about 
one-fourth of the variation in working class students' 
grades. Not only do middle class students receive higher 
scores than working class students when they have equal 
achievement, but the variation of scores around the 
regression line is much smaller for middle class students 
than for working class students. 
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Study Guide - Midterm Two 
Sociology 326 
Winter, 1992 

You should understand each of the following: 

The characteristics of the normal curve, and how to sketch 
one given its mean and standard deviation 

How to read the table of the normal curve 

How to compute z-scores and what they mean 

How to determine the proportion and number of cases within a 
certain range of values in a normal distribution 

What a measure of association is 

What a PRE measure of association is, and what various 
values of a PRE measure would indicate regarding a 
distribution 

How to percentage a bivariate table and interpret the 
results 

When to use, how to compute, and how to interpret lambda, 
gamma, r, and r2 

How to put data into a scatter diagram, how to determine and 
compute a regression line, how to compute r2 and r, and 
how to interpret these values 

The exam will be at the regular class time, Friday, Feb. 21. 
You may use all of your books and notes during the exam. In 
fact, be sure to bring your text so that you have the table 
of the normal curve with you. It might also be helpful to 
bring a calculator. 
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VI. Probability and Statistical Inference 

In this section_we examine issues related to probablity 
and statistical inference-. Remember that there are two 
types of statistics: Descriptive statistics tell us about 
the nature of a sample or a population. Inferential 
statistics allow us to see how typical or true a given 
descriptive statistic from a sample is of a population from 
which it came. That is, inferential statistics help us 
generalize from samples to populations. Throughout the 
first part of this class we have explored various 
descriptive statistics. Now we are going to look at 
inferential statistics. 

The notions of probability and randomness are basic to 
this discussion and thus in the first sections below we 
discuss these concepts. We then move to basic definitions 
which underlie inferential statistics, and then present 
examples of the two basic types of inferential statistics: 
confidence intervals (or point estimation) and hypothesis 
testing. 

Probability 

We use the idea of probability all of the time, .often 
without even thinking about it. For instance, we look out 
the window each morning and wonder how likely it is that it 
will rain so that we will know whether or not to carry an 
umbrella. If it is dark and cloudy you will probably take 
an umbrella; if it is bright and sunny you probably won't 
take an Ulllbrella. Similarly, in stbdying how much to study 
.for an exam students decide how probable or likely it is 
that certain material will be included on the test., If they 
are certain some material will be on the exam they will 
study that material much more thoroughly than material they 
will not be tested on. In both of these cases you are 
interested in probabilities or likelihoods that certain 
events will occur. 

The term probability simply refers to the possible 
outcomes of a situation -- how likely or unlikely is it that 
a given situation will occur. For instance, if you know 
that it will rain 3 out of the next 10 days, the probability 
is 3/10 = .30 that it will rain on any one day. similarly, 
if a teacher gives you 20 questions that may be on the test, 
but will choose only 5 of those for the actual exam, the 
probability that any one question of the 20 will be on the 
test, is 5/20 = .20 . In general the probability that an 
event A will occur is symbolize~ as p(A) and equals ' the 
actual nUlllber of times the eventoccurs divided by the total 
number of events (see equation 6-1). A probability varies 
from O (which would indicate no chance of occurance) to 1.00 
(which would indicate than an event would always occur). 
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number of times A occurs 
p(A) = ~ (6-l.) 

total number of events 

Consider the data given in Table 6-l. (seen earlier as 
Table 4-3 in discussion of lambda). Using equation 6-1 it 
may be seen that in this distribution the probability that a 
given teenager will be unemployed is 

p (unemployed) = 325/800 = .41 (6-2) 

The probability that a teenager will be employed is 

p (employed)= 475/800 = .59 (6-3) 

The probability that a teenager will be Anglo is 

p (Anglo) = 300/800 = .375 (6-4) 

The probability that a teenager will be African American or 
Hispanic is 

p (African-American) = p (Hispanic)= 
200/800 = .25 (6-5) 

The probability that a teenager will be in the "Other" 
category is 

p (Other)= 100/800 = .125 (6-6) 

Table 6-1 
Joint Distribution of Race/Ethnicity and 

Unemployment status for a Hypothetical Sample 
of Teenagers 

Race/Ethnicity 

Employment Anglo African- Hispanic Other Total 
status American 

Employed 250 50 100 75 475 

Unemployed 50 150 100 25 325 

Totals 300 200 200 100 800 
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Note that the probability of being in a minority group 
(i.e .. non-Anglo) is equal to 

p(minority) = p (African-American or Hispanic or Other) 
= .25 + .25 + .125 = .675 (6-7) 

This illustrates the addition rule of probability, which 
states that the probability of bei~g in any of a group of. 
mutually exclusive (non-overlapping) events or situations is 
simply equal to the sum of the probability of being in each 
of them. 

similarly note that 

p (unemployed)+ p (employed) = .41 + .59 = 1.00' 

and that 

p (Anglo)+ p (African-American)+ p (Hispanic) 
+ p (Other)= .375 + .25 + .25 + .125 = 1.00 

(6-8) 

(6-9) 

These two equations illustrate the exhaustive principle of 
probability, which simply says that the sum of the 
probabiity of all of the events (all of the employment 
statuses or all of the race/ethnic groups.) must equal 1.0. 

The figures given above in equations 6-2 through 6-6 
are called marginal probabilities, corresponding to the 
marginal frequencies of a table. They are also called 
unconditional probabilities, indicating that they aren't 
conditional on, or don't depend on, any other event or 
attribute. 

In contrast, the probabilities which correspond to the 
cells in the interior of Table·6-1 are called the joint 
probabilities, corresponding to the joint distribution of 
race/ethnicity and employment status and indicating the 
probability that an individual falls into any given 
combination of two categories or events. For instance, the 
probability that a teenager in the sample is an employed 
Anglo is 

p (Anglo and Employed) = 250/800 = .3125 (6-10) 

The probability that a teenager is an unemployed Anglo is 

p (Anglo and Unemployed) = 50/800 = .0625 (6-11) 

Note, following the addition rule, that equations 6-10 and 
6-ll sum to equation 6-4, the probability of being Anglo. 
That is, the joint probabilities sum to the marginal 
probabilities. 
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The data in Table 6-1 suggest that race-ethnicity and 
employment status are quite likely related to each other. 
we might then be interested in trying to compute the 
probability tha~ a teenager of any particular racial-ethnic 
group·would be employed or unemployed. This is called a 
conditional probability, the probability of employment or 
unemployment conditional upon one's racial-ethnic heritage. 

Consider, for instance, the situation of African­
American teenager~. The probability that a teenager is both 
unemployed and African-American (the joint probability) is 

p {African-American and Unemployed) = 150/800 = .19 (6-12) 

We know from equation 6-5 that the probability that any 
teenager in the sample is African-American is .2s. The 
probability then that an African-American teenager is 
unemployed is 

p (African-American and Unemployed) .19 
== --p (African-American) 

= -~-- = .76 (6-13) 
.25 

This is referred to asp (Unemployed!African-American) or 
the conditional probability cf unemployment given that one 
is African-American. In general 

p (BIA) = . 
p (A and B) 

p (A) 
(6-14) 

The conditional probability of an event B occurring given 
situation A is equal to the joint probability of A and B 
occurring divided by the probability of A occurring within 
the total group. 

Note that the conditional probability is simply equal 
to the proportions one obtains when one computes proportions 
within the categories of the independent variable. That is, 
the conditional probabilities are simply~ equal to the 
proportions (or .01 times the percentages) one obtains when . 
one percentages a table within the categories of th~fr~fbri1 b""­

independent variable. In Table 6-1, the pe~esntage of all 
African-American teenagers who are unemployed= 150/200 = 
.75, which is equal, given rounding error, to the figure 
obtained in 6-13 above. 

This can be proved in general by noting that the joint 
probability of A and B equals 

nij / n •• 

and the general probability of A occurring equals 
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n.j / n ... 

Substituting these values into equation 6-14 we- can obtain 

(nij / n •. ) / (n. j / n .• ) = nij / n.j, which is simply the 

proportion of cases within a given category of A. 

Randomness 

Inferential statistics depend heavily upon the notion 
of randomness and the idea of random samples. Random 
samples are one~ in which all elements of a given population 
have an equal chance of being selected. Non random samples, 
also called biased samples, are ones in which all elements 
of the population do not have an equal chance of being 
selected. Some stand a greater chance of being included 
than others. The inf ere·ntial techniques we discuss .here all 
assume that samples have been randomly selected. They also 
assume that samples have been independently selected, that 
is, that choosing one person does not automatically result 
in oth~r people also being chosen. Each person or case has 
an equal chance of being selected. 

Now, even though ~vents or people we may study:have 
been randomly selected or gathered, the statistics we derive 
from these samples turn out to be quite predictable. The 
text by Elifson, et al, gives an example of counting the 
number of times "heads" appear when a group of people 
flit,p • 119' coins. I-f the people in this group continue to 
flip coins over a long period of time, the number of people 
getting "heads" each time will average out to simply half of 
the group. Moreover, if one plots the number of people 
getting heads in each of these tries over a long period of 
time, the frequency polygon will begin to look like a normal 
distribution.. It will be unimodal, symmetrical, and bell­
shaped~ with a mean at the point indicating half of the 
people. 

The exercise conducted in class illustrated this 
principle. In fact, the normal curve and its 
characteristics will be central to all of our later 
discussions of inferential statistics. students should make 
sure that they understand all aspects of the discussion of 
the normal curve presented earlier before progressing 
further. 
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Basic Definitions 

The following definitions are basic to the use of 
inferential statistics. students should be familiar with 
all of them. 

A population is the entire set or group of scores, 
peop18! animals, whatever the elements that are being 
studied. 

A sample is a subset of the population, part of the 
population. 

A random sample is a sample that is selected in such a 
way that each element of the population has an equal chance 
of being in the sample. 

A representative sample may also be used in making 
inferences. This is a sample where the researcher knows how 
the sample was c~llected and in what way it is 
representative of the total population. Both random and 
representative samples, as noted earlier, are probability 
samples. In this course we will assume, when using 
inferential statistics, that all our probability samples are 
simple random samples. (The procedures involved in making 
inferences are slightly more complex when other types of 
probability samples ar~ involved.) 

A parameter is a specified value of the population, 
such as the mean or variance. Parameters are generally 
designated by Greek symbols. 

A statistic is a specified value of the sample, such as 
the mean or variance. Statistics are usually designated by 
Roman letters. 

The sampling error refers to the difference of . the true 
population value and the sample value, the difference 
l:letween the parameter and statistic. For any ·given sample 
taken from a population, a statistic (such as a mean) may 
differ from the corresponding parameter in the population. 
The difference between the statistic and parameter is the 
sampling error, the error introduced by looking at the 
sample instead of the total population. 

The sampling distribution is a distribution of sample 
statistics obtained by drawing an infinite number of samples 
from a population. For example, given a large population 
one would draw one sample from the population, obtain the 
mean and standard deviation of that sample and plot it. The 
sample is then replaced and the procedure is repeated an 
infinite number of times. The eventual result is the 
sampling distribution. 
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Tables 6-2, 6-3, amd 6-4 illustrate the development of 
a sampling distribution. Table 6-2 gives data for a total 
population: the suicide rate~ for 220 SMSA's in 1970. Table 
6-3 gives the results obtained when samples, each sized 30, 
were taken from this population and the average suicide rate 
was computed. Table 6-4 gives a tally of these sample means 
and Figure 6-1 displays this tally in a histogram. Only 100 
samples were drawn in this example, but we could repeat the 
procedures an infinite number of times. (Data are taken · 
from Mll!ler, et al.) 

Sampling theory tells us that WQen we have an infinite 
number of samples in our sampling distribution, the mean 
(average) of the sampling distribution of the means (the 
mean of the sample means) will equal the population mean. 
As the samples drawn get larger the distribution assumes the 
shape of the normal curve. 

Table 6-4 and Figure 6-1 illustrate this result. It 
may be seen that the majority of sample means in the 
distribution cluster aroun~ the true population mean of 
11.7. While the distribution of these actual sample means 
around the population mean of 11.7 is not exactly shaped 
like a normal distribution (this is called the empirical 
sampling distribution), if we drew an infinite number of 
samples, we would expect the sampling ~istribution around 
the population mean·to be n9rmally distributed. Because we 
could never draw an infinite number of samples this is 
referred to as a theoretical sampling distribution. It is 
this theoretical sampling distribution that we use in making 
inferences from samples to populations. 

The discussion immediately above refers to the'most 
typical value of the means"(i.e., the central tendency of 
the sampling distribution). We are also concerned1 however, 
with how far away from this central tendency most samples 
are. That is, we know that the values tend to cluster 
around the population mean, but how much do they vary? What 
is the sampling error, the difference of the sample mean and 
the population mean? Tal:>le 6-5 gives the distribution of 
sampling errors for the group of samples in Table 6~3. It 
is clear that the majority of errors are very small. More 
extreme errors are relatively less frequent. 

It turns out that the standard deviation of the 
theoretical sampling distribution of means is equal to the 
standard deviation of the population divided by the· square 
root of the sample size. This standard deviation of the 
sampling distribution is referred to as the standard error 
and has the formula: 

(6-15) 
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Table 6-2 
Suicide Rates for 229 United states standard Metropolitan 

Statistical Areas, 1970 
I ' 

I 

Rate Freq. Rate Freq. Rate Freq. Rate Freq ~- 2.7 l 8.8 3 ll..7 3 l.5.6 l 
3.3 l 8.9 3 . 11.8 3· 16.0 2 
3.8 l. 9.0 2 11.9 2 16.l 4 
4.6 l 9.1 2 12.0 4 16.2 l 
5.0 l 9.2 3 12.1 1 16,3 1 
5.2 2 9.3 2 12.2 3 16.4 1 
5.5 l 9.4 5 12.3 2 16.5 1 
6.0 l 9.5 3 12.4 2 16.7 l 
6.3 2 9.6 3 12.5 l. 16.9 2 
6.4 1 9.7 3 12. 7 4 17.0 l 
6.5 2 9.8 3 12.8 6 17.2 1 
6.6 2 9.9 4 12.9 2 17.5 1 
6.7 3 10.0 4 13.0 2 l.7.8 l 
6.9 2 10.1 l. 13.l l 17.9 1 
7. 1 l 10.2 1 13.2 3 18.3 1 
7.2 2 10.3 2 13.5 1 18.4 1 
7.3 3 10.4 1 13.6 2 18.6 l 
7.4 4 10.5 3 13.7 l 18.7 1 

l 7.5 2 10.6 2 14.0 4 19.0 l 
~ 

7.6 2 10.7 4 14.l 2 19.4 1 
7.7 3 10.8 1 14.3 2 20.0 1 
7.8 1 10.9 2 14.5 1 20.1 1 
7.9 2 11.0 2 14.6 l 20.6 l 
8.0 1 11.1 2 14.7 l. 20.9 l. 
8.2 1 11.2 3 14.9 1 21.0 1 
8.4 2 11.3 3 15.1 2 21.8 1 
8.5 3 11.4 2 15.2 2 22.0 1 
8.6 2 11.5 3 l.5.4 1 22.l l 
8.7 3 11.6 6 15.5 l 22.5 2 

24.8 l 
24.9 1 
25.0 l 

·-
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Table 6-3 
100 Sample Means, n=30, Taken from oistribution in Table 6-2 

sample Means 

10.3 
l0.4 
10.5 
10.6 
10.8 
10.9 
11.0 
11.1 
11.2 
11.3 
11.4 
11.5 
11.6 
11.7 
11.8 
11.9 
12.1 
12.2 
12.3 
12.4 
12.5 
12.9 
13.0 
13.2 

Fregyencv 

l 
4 
1 
7 
9 
3 
3 
1 
3 
7 
1 
6 
1 
6 
g 
9 
3 
6 
2 
6 
3 
2 
5 
2 

-;; I~ J~lJ 
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Table 6-4 
Frequency Distribution of Sample Means -- The Empirical 

Sampling Distribution for Data in Table 6-3 

Range of Means 

10.0 - 10.9 
11.0 - 11.9 
12.0 - 12.9 
13.0 - 13.9 

Frequency 

25 
46 
22 

7 

Figure 6-1 
Histogram of the 100 Sample Means, 

n=30, in Tables 6-3 and 6-4 
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Table 6-5 

' 
1 

' ' 1'2-.<fJ J'J.~J 

Sampling Errors, 100 Samples given in Tables 6-3 and 6-4 

Error Frequency Error Frequency 
-1.4 1 .1 9 
-1.3 4 .2 9 
-1.2 1 .4 3 
-1.1 7 .5 6 
-.9 9 • 6 2 
-.a 3 .7 6 
-.7 3 .a 3 
-.6 l 1.2 2 
-.5 3 1.3 5 
-.4 7 1.5 2 
-.3 1 
-.2 6 
-.1 l 
0 6 
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Note what each part of this formula implies. First, as the 
population becomes more variable, the samples are less 
likely to have means like those of the population. Thus 
samples from more heterogeneous populations will have larger 
standard errors. Second, as the sample sizes become larger, 
the standard error decreases and the sample means are likely 
to be closer to the population mean. This means that if you 
were to take two samples of different sizes from the same 
population, the larger sample would have a smaller standard 
error. 

Because one usually does not know the standard 
deviation of the population we must arrive at some estimate 
of this standard error. We use the standard deviation of 
the sample for this estimate, but make sure that the 
standard deviation is defined as 

\~ v-~ (6-16) 

various compu~er programs routinely compute the standard 
deviation with this formula, but some statistics books refer 
to it not ass, but as r, to denote that it is the best 
estimate of the population standard deviation. (As 
explained earlier, the denominator of n-1, rather than n, is 
used in equation 6-16 because samples tend to vary less than 
populations and this corrects for this smaller variance.) 
Using this sample estimate of the population standard 
deviation, the formula for the standard error becomes 

where 

-1- :: ~s~ S".; :: .r=-n ,.,., 
" VII r, (6-17) 

i:CX-X)~ ~ 
h- J 

It should be stressed that the sampling distribution of 
the mean is normally distributed even when the frequency 
distribution for the population is not. No matter what the 
shape of the population distribution. the sampling 
distribution of the means will assume the shape of the 
normal distribution when samples are greater than 100 or so. 
(We'll discuss the case of smaller samples later. 
Essentially they have an "almost normal" distribution, 
called the t distribution.) It is crucial that students 
understand the difference between a frequency distr~bution, 
such as those discussed in the second section, and a 
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sampling distribution, the hypothetical distribution of 
sample statistics. 

The sampling distribution and the standard error are 
the basis of all inferential statistics. Above, we mainly 
referred to the sampling distribution of means. However, 
sampling distributions can be constructed (and have been) 
for many other statistics. The basic procedure used with 
all inferential statistics is the same logically, and so in 
the discussion below we will focus on inferences regarding 
means. 

The important things to remember in the discussion 
below are the nature of the normal distribution; the fact 
that with large samples the sampling distribution of the 
means is-normal (with smaller samples it is the t­
distribution whose nature is also known and which we wiil 
discuss below); and that when we know the mean ·and standard 
deviation of the sample we can estimate what the sampling 
distribution looks like for that population (assuming that 
the sample is represe~t~tive of the population). This basic 
information is used in computing all inferences regarding 
means. 

Confidence Intervals 

confidence intervals are a way of estimating population 
parameters given knowledge of the related sample statistics. 
These are also referred to as point estimations. This is 
done by using knowledge of the sampling distribution. Thus, 
it is essential that random or representative samples be 
used. Basically, the statistics from the sample are used as 
estimates of the population parameters. From these 
estimates the sampling distribution is reconstructed. Then, 
using the table giving the area under the normal curve, 
assuming we have a large sample, the probability of the 
parameter being within certain ranges may be computed. An 
example will illustrate this. 

Given a random sample of 169 cases from a very large 

Lt)l-x 
population. ~~)L 

X =- ->O I, s ~ - ),i - ,- :::-

This information may be used to estimate the form of the 
sampling distribution. As explained above, Xis our best 
estimate of t,1.,, the population mean, X = 50. 

/ • ll- )..1. 
5 1 1 1J s--- -=-~2.D 5- : ~ ,.: txU te✓ -f an·~ J7 o;: f(u._ S~vf.. &,tn- ' x- lffl:, l 3 )( vn ..., '() it, 

Thus, we may estimate the sampling distribution to be 
normally distributed with a mean of 50 and a standard error 
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of 2 based on our knowledge of the random sample from this 
popuiation. This sampling distribution is pictured in 
Figure 6-2. Note that this is a theoretical distr.ibution of 
means of samples that could be drawn from the population. 
Because the sample we do have has been randomly drawn, we 
may assume that it is representative of the population and 
we use these characteristics to estimate the nature of the 
sampling distribution. 

rz ~ ,i -- - - - -). 
.. 

' 

- :;...= s-o .;.l.. .f.J- </)-, 
<11,.08 '-I~ 

We can assume that the sampling distribution is 
normally distributed because the sample size is relatively 
large. Using the knowledge of the characteristics of the 
normal curve we know that between one standard error below 
the mean and one standard error above the mean there is 
.6826 of the total area under the curve. In this case the 
scores in the distribution are sample means and we can say 
that .6826 of all the sample means in this sampling' 
distribution are between 48 and 52. That is, they are in 
the area plus or minus one standard error from the mean. If 
we take these sample means as estimates of the popu~ation 
mean we can say that .6826 of the estimates of the· 
population mean are between 48 and 52. Another, easier, way 
,of saying that is that the probability that the true 
population mean is between 48 and 52 is equal to .6826. 

This can be written symbolically as 

P [48 < /< 52J = . 6826 (6-18) 

This may be referred to as a 68% confidence interval around 
the mean. This means that we can be 68% confident that the 
true population mean lies between 48 and 52. 

Note that we switched from talking about the proportion 
of estimates of the mean of the population that were within 
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a given range to discussing the probability -that the 
population mean was within a given range. 'l'his is the 
essence of statistical inference. We are concerned with the 
chances of being correct (the probability of being correct) 
in estimating the value of a population parameter. We use 
the sampling distribution estimated from the sample values 
to compute these chances or probabilities. 

Confidence intervals or bands equal to 95% or 99% are 
commonly used. With intervals of this width we are finding 
the range of values in which 95% (or 99%) of the estimates 
of the population value fall. For a 95% confidence "interval 
only .025% of the area under the curve would not be· included 
within the interval on each side of the mean. Refe~ring 
again to the table of the normal curve we can see that .025 
of the area under the curve is remaining (.475 on one side 
of xis included) when we are 1.96 standard errors from the 
mean. Thus, to enciose the area encompassing 95% of the 
possible means in this theoretical distribution we must go 
both 1.96 standard errors above the mean and 1.96 standard 
errors below the ~ean. • 

In the present example the estimated mean is 50 and the 
estimate .of the standard error is 2. 1.96 standard' errors 
is equal to 3.92. Thus, we may conclude that 95% of .the 
means in the estimated sampling distribution are included 
between (50 - 3.92) and (50 + 3.92). This may be written 
symbolically as 

P[46.08 < _/ < 53.92] = .95 (6-19) 

This means that we can be 95% confident that the true 
population mean lies between 46.08 and 53.92 or that the 
probability that the population mean lies between 46.08 and· 
53.92 is .95. 

For a· ninety-nine percent confidence interval we would 
need to enclose all but .005 of the area on each side of the 
mean. This corresponds to an area of .495 between the mean 
and the given point, which corresponds to a z-score._ of about 
2.ss. The computations below and the figures show how the 
99% confidence interval would be computed. 
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These results indicate that 99% of the means in the 
estimated sampling distribution fall between 44.85 and 
55.15. There is a 99% probability that the population mean 
falls between 44.85 and 55.15. We can be 99% confident that 
the populat~on mean lies between 44.85 and 55.15. A general 
formula for computing confidence intervals is often used. 
For the 95% confidence interval around the mean, when 
samples are large, we may use 

(6-20) 

and, for the 99% confidence interval, we may use 

(6-21) 

where Xis the sample mean and 5xis the estimated standard 
error. 

The logic underlying confidence intervals may also be 
used in computing the probability that the population 
parameter is greater than or less than-a certain score. For 
instance, in the example above, we may compute the 
probability that_)-(, the population mean, is greater than 45. 
To do this we mu·st first determine how far this X = 4 s is 
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from the mean of the theoretical sampling distribution. We 
may do this using standard scores. 

~r-S"'c> x.,,. f - r ;'-2 - -- - - ., - ., -..2..;, 
- ;i_ - :;- -- d- - • 

. X. 

That is, a score of 45 is 2.5 standard errors below the mean 
in the sampling distribution. 

Figure 6-4 

f~ • t./'?J J :) l .!~ , ,>0 _ 

'tr to 
~ ~ ... ;;__ s-

Using the table of areas under the normal curve we can 
see that the proportion of area under the curve from the 
mean to X = 45 is .4938. Thus, P [45 <./.':--< 50] = .4398. We 
know that P [A,~ .50] = .5000 as SO is the best estimate of 
the mean of the sampling distribution. Thus, P Efa-,<. 45] = 
. 4983 + .5000 = .9938. , 

Similarly, to compute the probability that .,,)t-,< 53 we 
must determine how far away 53 is from the estimated mean of 
the sampling distribution, 50. z = (X -~)/S-~ = (53-50)/ 2 
= 1.s. This indicates that 53 is 1.5 standard errors above 
the~stimated sampling distribution . 

~1 
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Figure 6-5 
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Using the table of area under the normal curve we can find 
that 
P [;-<-- < 50] = . 5000 

P [5 0 < /--< 5 3 ] = . 4 3 3 2 

and thus P [ /" < 53 J = . 5000 + . 4332 = . 9332. 

There is a 93% probability that the population mean is less 
than 53. Similarly, P [ A > 53 J = . 5000 - • 4332 = ! 0668. 
students should work through several more examples of 
varying types to ensure that they totally understand the 
logic of confidence intervals. 

I 

Note that all of these computations have been based on 
the theoretical sampling distribution of the mean. 'If the 
sample size were different or if the observed mean or 
standard deviation of the sample were different, the results 
would have been altered. 

Computer output commonly gives the standard error for a 
distribution. consider the distribution of ages of ·the bank 
employees shown in Table 2-1. Assume the sample has been 
randomly selected from some larger population of bank 
employees. The sample mean is given as 37.186, and'the 
standard error is o.541. The sampling distribution of the 
means may be estimated as shown in Figure 6-6 below. 
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We may conclude, based on our sample information, that about 
96% of the sample means lie between 36.l and 38.3 years; 68% 
of the sample means lie between 36.6 and 37.7 years. 

Further calculations indicate that 

P[37.l9 -
= P[37 .19 
= P[36.13 

P[37.19 -
= P[37.19 
= P[35.80 

C • 54) C 1. 9 6) < .r < 3 7. 19 + C • 54) C 1. 9 6 > J = 
- 1.06 <.)A-< 37.19 + 1.06] = .95 
< r-< 38. 25] = • 95 

.95 

( . 54) ( 2 . 5 7 5) 
- 1.39 <.,,..U-< 
< ~< 38.58] 

<},'- < 37.19 + (.54) (2.575)] = 
37.19 + 1.39] = .99 
= .99 

(6-22) 

.99 

(6-23) 

We can be 95% confident that the average age of bank 
employees in the total population lies between 36.13 and 
38.25 years. We can be 99% confident that the average age 
of the bank employees in the population lies between 35.80 
and 38.58 years. 

To find the probability that the average age is less 
than 39 years we need first to compute the z-score that 
corresponds to 39: z = (X - X)/Sf =(39-37 .• 19)/.54 = 3.35. 
Consulting Table 2-1 and interpoiating we find that. 
approximately .49959 of the area under the curve lies 
between the mean and 3.35 standard errors above the mean. 
Since .5000 of the area lies below the mean we can reach the 
following conclusions 
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P[37.19 < ?-< 39] = .49959 

P[ /-< 37.19] = .5000 (6-24) 

pc r < 39 J = . 49959 + . 5000 = . 99959 

We can be 99.959% confident that the average age of the bank 
employees in the population is less than 39 years. 

Hypothesis Testing 

Hypothesis testing, the other major inferential 
technique, is somewhat more common than confidence 
intervals. Here, instead of using sample statistics to make 
inferences about the nature of a parameter, we start with an 
idea about the population parameters. We then draw out the 
implications of this idea and test the truth of the 
implications with the data from the sample. 

The null hypothesis is the hypothesis to be tested. It 
is symbolized as H0 • 

The alternative or substantive or research hypothesis 
is the alternative to the null hypothesis. For example, if 
the null hypothesis, H0 is that µ. = o; H1 (the alternative 
hypothesis) may be r.t-o t>r /- '::,~ Pr r<t)" 

The null and alternative hypotheses are phrased so that 
we can reject the null hypothesis with certain probabilities 
of being wrong and that by rejecting the null hypothesis we 
can put corresponding confidence in the truth of the 
alternative hypothesis. The null hypothesis is always 
phrased in the format of the population parameter equaling 
some constant (either zero or some other number). The 
alternative hypothesis is phrased so that the population 
parameter is either unequal to that constant or greater or 
less than that constant. 

Note that we can never prove the truth of the null or 
alternative hypotheses. We fail to reject or we reject the 
null hypothesis with a certain degree of confidence that our 
decision is correct. We do this by assuming that the null 
hypothesis is true and then drawing implications from this 
assumption .. Using the sampling distribution we determine 
the probability of certain sample values appearing. This is 
the logic of falsification that is basic to work in the 
social sciences. 

The level of significance refers to the decision of how 
rare a sample outcome must be if it is to cast doubt on the 
null hypothesis. Usually researchers use levels such as 
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.os, .01, or .001. However, these are arbitrary levels1 and 
I recommend always noting the actual probability that a 
given result would occur. This is especially important when 
we consider what would happen if we consistently received 
results that were in the same direction, but only marginally 
significant. For instance, suppose we found that we could 
reject the null hypothesis in favor of the alternative with 
a .20 probability of being wrong. Normally, we would fail 
to reject the null hypothesis. But, suppose we repeated the 
study and found identical results with a second sample. The 
chance of finding this same result two times in a row is 
(.20) (.20) = .04. This is a result that would be acceptable 
at standard levels of significance, but if we simply 
reported n.s. (not significant) in our write-up, no one 
would know how important the results really were. 

The zone of rejection is the sample values which lie in 
the area where their probability of occurrence equals or is 
lower than the level of significance~ Another way of seeing 
this is as the sample values whose occurrence is so 'rare 
that they would occur (given the truth of the null 
hypothesis) only as frequently as the level of significance. 

An example may help to make this clearer. Suppose we 
had the following null and alternative hypotheses 

Ho: f= 100 
H1: ;p.. f 100 

Suppose we draw a random sample from the population 
involved. In this sample X:: 9r) 5 ~ /'J J n ~ /i, 9 

Now we shall suppose that Ho is actually true, that the 
population mean really equals. 100. Then we shall use 100 as 
the mean of the sampling distribution of the means. Given 
that the sample is a random one of the population, we may 
use Sx as the estimate of the standard error . 

.s i - ~ - 1.3 - iJn -~-

Because then is large, the sampling distribution is 
normally distributed. The theoretical sampling distribution 
that would occur given that Ho is true and with the standard 
error estimated by the sample value of the standard 
deviation, is drawn in Figure 6-7 below. 
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This- is the theoretical. sampling distribution with a mean of 
100, standard error of 1.0~ ~-It is normally distributed. 
This distribution would be the true~sampling distribution 
for the population if H0 were true. -es11·~ , 

suppos~ we choose a level of significance of .05. That 
is, we decide that to reject the null hypothesis we must 
have a sample value that would occur only 5 times out of one 
hundred. 

our alternativA_hypothesis is that.J--4-ljf_D We have not 
hypothesized thatr-is less than or greater than 100. 
Thus, our zone of rejection may be on either side of 100. 
Because our level of significance is equal to .05 the 
combined probability of scores in the zone of rejection must 
equal .05. Thus, the probability of scores in the zone of 
rejection on both sides of the mean must equal . 0·25 + . 025 = 
.050. 

Referring again to the table of area under the normal 
curve we can find that the score or z value marking off this 
zone of rejection will be 1.96 standard errors away from the 
mean on either side. Thus, if a sample value falls'either 
1.96 standard errors above the mean or 1.96 standard errors 
below the mean, given that H0 is true, it will fall in the 
zone of rejection. That is, if the sample value falls into 
the zone of rejection the probability of that actually 
occurring if the null hypothesis were true is less than the 
level of significance, less than .os. 

In this. example, the standard error is equal to 1.0. 
Thus, the zone of rejection equals all values below (100) -
(1.96) (1.0) = 98.04 and all values above 100 + (l.~6) (1.0) 
= 101.96. All scores less than 98.04 or greater than 101.96 
fall into the zone of rejection. 
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We return now to the sample chosen. In this sample the 
mean was 95. This value clearly falls into the zone of 
rejection. The probability of this value occurring when H0 
is true is less than .os. In other words, we may reject the 
null hypothesis that the population mean does not equal 100 
with less than 5 chances out of one hundred of being wrong. 

Note that quite likely the probability of being able to 
reject H0 in favor of H1 is much lower than .cs. In actual 
practice it is much more useful to give the actual level of 
the probability of occurrence. As noted above, this is most 
useful for replication. The computer generally prints the 
exact probability. We can easily calculate the exact 
probability .of an event occurring simply by finding the z­
value that corresponds to the actual sample value on the 
sampling distribution that assumes that Ho is true. In this 
case lll-£) tor-111P) 

~ -- t,""--·-- - -s:o 
z~ ~ ~ I -

Locating this z-value on the table of the normal curve we 
see that the actual probability of this value occurring is< 
2 (.0001) = < .0002. We had to multiply the proportion 
times 2 because our hypothesis did not specify a zone of 
rejection on just one side of the mean, but on both sides. 

Sometimes a researcher may have reason to suspect that 
the true population mean fell above or below a certain 
level. In this case the researcher would use what is called 
a directional alternative hypothesis instead of the non­
directional hypothesis specified above. For instance, 
suppose in the example above the hypotheses had been 

H0 : j- = 100 or)<- t100 

H1: f-< 100 

Again assume that a random sample was drawn, with X = 95, s 
= 13, n = 169. The theoretical sampling distribution 
assuming that H0 is true is given below in Figure 6-B. 

e tn'L o+ 
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The zone of rejection in this case would fall only below the 
mean. That is, we are only concerned with samples in this 
sampling distribution with means less than 100. With a .05 
ievel of probability, this means that all means less than 
1.645 standard errors below the hypothesized mean would fall 
into the zone of rejection. In this distribution this 
corresponds to all sample scores less than or equal to (100) 
- (1.645) (1.0) = 98.355. Thus, if a sample mean were be 
98.355, or less, we could reject H0 : A~._ 100 in favor of 
H1: A< 100 at the .os level of significance. Note, 
however, that the exact probability of getting the sample 
value of 95 when the null hypothesis is true and the 
alternative hypothesis is true and the alternative 
hypothesis is directional is <.0001. 

This basic logic of testing hypotheses can be extended 
in many ways. Always the format of the null and alternative 
or research hypothesis is used. Also, the sampling 
distribution, assuming that Ho is true is developed and the 
sample values are compared against the "critical values" on 
that sampling distribution. The critical value is the value 
on the sampling distribution that denotes the start of the 
zone of rejection. It is important to note that the nature 
of the alternative hypothesis depends on the theory, what 
you as a researcher are interested in. For instance, 
someone interested in the IQ scores of college students 
would likely have as the research hypothesis that fa•>100. 
Note that the null hypothesis includes all values of 100 and 
below. 

The theory of inferential statistics has been developed 
with the assumption that the populations involved are 
infinitely large. Sampling is usually done with replacement 
(that is once a sample has been drawn it is replaced). In 
real sociological research we will sometimes have samples 
that are relatively large in relation to the population. As 
your sample approaches the size of the population your 
sampling error and also your standard error tend to go down. 
If you are i~volved in having to make inferences in cases 
where the sample approaches the population size you should 
consult a textbook for the rather simple calculations 
involved in correcting the size of the standard error. In 
essence, these calculations make it even easier to reject 
the null hypothesis. 

In general, all tests of hypotheses involve the basic 
steps we have followed here. First one determines a null 
hypothesis, then one determines an alternative or research 
hypothesis. Third, one sketches the sampling distribution 
one would have if the null hypothesis were true. Fourth, 
one determines the probability level at which one wishes to 
reject the null hypothesis and the associated critical value 
and zone of rejection. Fifth, one computes the test 
statistic, here the z-value, that corresponds to the sample 
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value. Sixth, one compares the sample test statistic with 
the critical value and decides whether one should reject or 
fail to reject the null hypothesis. Finally, one computes 
the actual probability of being wrong if one were to reject 
the null hypothesis. 

Inferences About Means with Small Samples 

In the discussion above it has been stressed that the 
sampling distribution of the means is normally distributed 
when samples are large, generally over 100 or so. What 
about smaller samples? 

It is possible to make inferences about means when you 
have samples smaller than 100 using the same procedure as 
that outlined above. The only difference is in the shape of 
the sampling distribution. It assumes the shape of the 
t-distribution. The t-distribution is similar to the normal 
distribution in that it is symmetrical, unimodal, and 
infinite. It, however,·varies depending on what is called 
"degrees of freedom. 11 These correspond to the size of the 
samples being studied. With very small samples the t­
distribution, is much broader and shorter than the normal 
distribution, but as the degrees of freedom (or sample size) 
become larger (n's over about 150) the shape of the t­
distribution becomes more like the normal distribution until 
with large samples they are identical. 

When making inferences about means with small samples 
you calculate the degrees of freedom by subtracting one from 
the sample size (n-1). You can then look up the critical 
values for the sampling distribution on the table 
summarizing these for the t-distribution and use these 
critical values in your analysis. 

There is not just one t-distribution, but a whole 
family of distributions. The t-distribution is essentially 
flatter and wider than the normal distribution, and as then 
gets larger it approaches the normal shape more and·more. 
Because there are so many different t-distributions; the 
table describing the t-distribution does not give all the 
values. Instead, the table gives the critical values (the 
values oft found at the edge of the zone of rejection) for 
a number of levels of significance. This is given for both 
the case when the alternative hypothesis is two-tailed (no 
direction given) and when it is one-tailed (directional). 
These values then can also be used for confidence intervals. 
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The formula used to calculate the t-value for any value 
along the distribution is directly analogous to the 
computation of the z-score. 

What this formula does is to locate the sample value along 
the sampling distribution. It tells us how far the sample 
value is from the estimated or hypothesized mean of the 
sampling distribution, which is shaped like at­
distribution. 

A simple example can illustrate this. Say we had the 
following hypotheses: 

Ho:/= 40; Hr: jt < 40; s =tf(X-X)_2/n-l = 5; n = 25; X = 38; 

sx = 5/ 25 = 5/5 = 1.0. 
Say we had chosen a significance level of .os. 

We turn now to the t-distribution. To read this table 
you need to understand the nature of degrees of freedom. 
Degrees of freedom are related to the size of the sample. 
In one sample tests, such as this, the degrees of freedom 
simply equal n-1. Degrees of freedom come from the number 
of free guesses one has in determining the value being 
examined. In this case that value is the mean. In choosing 
sample values for a particular mean we can choose values 
randomly for all the cases except one. To m~ke the mean 
correct, or equal to a particular value, we must set one 
score equal to some specific number. Thus, we lose one 
degree of freedom. Here, our df = n-1 = 25-1 = 24. 

Now, reading the table for a one-tailed test (from our 
directional hypothesis), for 24 degrees of freedom, for a 
.os level of significance, the critical value is 1.711 for 
us to reject the null hypothesis in favor of the alternative 
that ~ is less than 40. Because the alternative 
hypothesis is worded so that the expected population mean is 
less than that in the null hypothesis, our t-value will also 
need to be negative. 

To compute t we simply substitute in the formula that ~Q 
is so similar to the formula for z-scores. t = X-r-/ !~ :: 32::..--~ -1..D 
In other words, along the t-distribution, as shown below, 
our sample value falls at two standard errors below the 
hypothesized mean in the null hypothesis. This is indeed in 
the zone of rejection and we can reject the null hypothesis 
in favor of the alternative at the .os level of 
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significance. By examining the t-table we see that this t­
value is not large enough to reject the null hypothesis at 
the .025 level of significance. Therefore, the probability 
of being wrong in rejecting H0 is less than .OS, but greater 
than .025. 

Figure 6-9 
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