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DISSERTATION ABSTRACT

Minh Nguyen

Doctor of Philosophy in Computer Science

Title: Enhancing Multilingual Information Extraction Towards Global Linguistic
Inclusivity

In our interconnected world, the diversity of around 7,000 languages

presents challenges and opportunities for bridging language barriers. Multilingual

information extraction (Multilingual IE) is crucial in natural language processing

(NLP) for extracting information from texts across languages, facilitating global

understanding and information equity. Despite advancements, the focus on

high-resource languages has marginalized speakers of less-represented languages.

Multilingual IE seeks to correct this by embracing linguistic diversity and

inclusivity. This dissertation enhances Multilingual IE to address challenges of

linguistic diversity, data scarcity, and model generalization, aiming to make IE

technologies more accessible. It focuses on developing sophisticated algorithms

for tasks like event trigger detection, event argument extraction, entity mention

recognition, and relation extraction. The goal is to create a system capable

of accurate information extraction across diverse languages, supporting global

communication and cultural preservation. Furthermore, the importance of IE in

the era of large language models (LLMs) remains significant. While LLMs have

broadened NLP’s capabilities, the precise, context-specific information provided

by IE is essential, especially in retrieval-augmented generation (RAG) settings.

This underscores IE’s ongoing relevance, ensuring LLMs retrieve accurate, relevant

information and highlighting IE’s critical role in advancing NLP.
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This dissertation includes both previously published and co-authored

material.
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CHAPTER I

INTRODUCTION

The majority of this chapter’s content is derived from my dissertation

proposal, where I served as the primary author, while Thien Huu Nguyen

contributed through editorial recommendations.

1.1 Overview

In our modern world, language plays a crucial role in shaping cultures

and identities. With about 7,000 languages spoken worldwide, each carrying its

unique expressions and meanings, we face a significant challenge in the field of

information technology, especially in communication and information access (Joshi,

Santy, Budhiraja, Bali, & Choudhury, 2020; Zaugg, 2020). As global interaction

intensifies, the demand for technologies that can overcome language barriers has

reached new heights. Among these technologies, multilingual information extraction

(Multilingual IE), a field within natural language processing (NLP), stands out as

a key player (Névéol et al., 2017; Poibeau, Saggion, Piskorski, & Yangarber, 2013;

Pouran Ben Veyseh, Nguyen, Dernoncourt, & Nguyen, 2022; Ro, Lee, & Kang,

2020).

Multilingual IE is a vital area within NLP tasked with extracting

structured information from unstructured text across a variety of languages

(Y. Lin, Ji, Huang, & Wu, 2020b; Luan et al., 2019b; M. V. Nguyen, Lai, &

Nguyen, 2021; M. V. Nguyen, Min, Dernoncourt, & Nguyen, 2022a, 2022b). This

capability is essential; in a time when information equates to power, being able

to understand and process information across languages is invaluable. This is

not just about technology but about bridging gaps in understanding, facilitating

cultural exchanges, and making knowledge accessible to all. However, reaching
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these goals is filled with challenges, complexities, and nuances that require a

thorough exploration of the field’s current state, its obstacles, and the potential

solutions it offers (V. Lai, Man, Ngo, Dernoncourt, & Nguyen, 2022; V. D. Lai,

Veyseh, Nguyen, Dernoncourt, & Nguyen, 2022; Pouran Ben Veyseh, Ebrahimi,

Dernoncourt, & Nguyen, 2022).

Traditionally, the bulk of NLP research has focused on a few high-resource

languages, with English being the primary focus (Hovy & Prabhumoye, 2021;

Søgaard, 2022). This concentration on a select few languages leaves speakers of

less-resourced languages at a disadvantage, missing out on the full benefits that

NLP technologies can provide (Adelani et al., 2021). This imbalance not only limits

global communication and information access but also contributes to inequality in

knowledge distribution and technological progress (Zaugg, 2020). The development

of Multilingual IE is a critical step towards addressing these issues. By aiming

to process text in a wide range of languages, Multilingual IE strives to ensure no

language community is overlooked in the digital era.

At the core of Multilingual IE are several interconnected challenges that

reflect the complexity of human language. Languages differ in their vocabulary,

grammar, meaning conveyance, information structure, and world conceptualization

(Blommaert, 2013; Evans, 2018; Giunchiglia, Batsuren, Bella, et al., 2017;

Pacheco Coelho et al., 2019). These differences pose significant challenges to

creating algorithms and models that can accurately extract information across

languages. The lack of digital resources and annotated datasets for many languages

further complicates the ability to train models with high precision and accuracy

(V. Lai et al., 2022; V. D. Lai et al., 2022; Pouran Ben Veyseh, Ebrahimi, et al.,

2022; Pouran Ben Veyseh, Nguyen, et al., 2022). Despite these challenges, the field
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of Multilingual IE has made considerable progress (Y. Lin et al., 2020b; Minh Tran,

Phung, & Nguyen, 2021; Pouran Ben Veyseh, Dernoncourt, Dou, & Nguyen, 2020),

driven by several factors. For example, multilingual transformer-based language

models have significantly improved text processing and understanding, laying the

groundwork for multilingual capabilities (Conneau et al., 2019; Devlin, Chang, Lee,

& Toutanova, 2019b). Additionally, advances in active learning and cross-lingual

model training have started to mitigate the issue of data scarcity, enabling efficient

development of IE models for low-resource languages (X. Chen, Awadallah, Hassan,

Wang, & Cardie, 2019; Huang, Ji, & May, 2019; Lange, Iurshina, Adel, & Strötgen,

2020b; Shelmanov et al., 2021).

This dissertation is set against this backdrop in NLP and Multilingual

IE research. It aims to contribute to Multilingual IE by tackling the main

challenges of linguistic diversity, data scarcity, and model generalizability. By

focusing on improving upstream models, developing language-agnostic downstream

architectures, and advancing cross-lingual transfer learning and active learning

for IE, this work seeks to extend the boundaries of Multilingual IE. In doing so,

the dissertation not only aims to push forward technical advancements but also to

contribute to a more inclusive, equitable, and linguistically diverse digital future.

Moreover, the dissertation underscores the potential of IE in the evolution of large

language models (LLMs) (Achiam et al., 2023; Brown et al., 2020; Chowdhery et

al., 2023; Chung et al., 2022) by introducing a novel retrieval-augmented generation

(RAG) framework, where IE has a pivotal contribution to improving the retrieval

system that ensures LLMs can offer accurate and reliable responses to user queries.

In conclusion, as we navigate the challenges and opportunities of

technological advancement and global linguistic diversity, the role of Multilingual
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Figure 1. An example with annotations for four main IE tasks: event trigger
detection, event argument extraction, entity mention recognition, and relation
extraction (M. V. Nguyen, Lai, & Nguyen, 2021).

IE has become increasingly important. This dissertation recognizes the complexity

of the tasks ahead but is driven by the potential impact that advancements in

this area could have on global communication, information accessibility, and

cultural preservation. Through dedicated research, innovative approaches, and

a commitment to inclusivity, this work intends to play a part in the ongoing

development of NLP technologies, ensuring they serve a wide and diverse global

audience.

1.2 Problem Definitions

The pivotal role of multilingual information extraction (Multilingual IE) is

underscored by the challenge of interpreting and structuring the vast and varied

information embedded in text. The complexity of the field is multiplied when

considering the diversity of the world’s languages and the nuances inherent in each.

To automate the understanding and extraction of information across languages,

Multilingual IE encompasses several key tasks, each with its unique challenges and

methodologies. These tasks include event trigger detection (ETD), event argument

extraction (EAE), entity mention recognition (EMR), and relation extraction (RE).

Figure 1 illustrates a sentence annotated with these tasks, showcasing the intricate

interplay between different elements within a text.
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– Event trigger detection (ETD): involves identifying words or phrases

that signal the occurrence of an event. In the figure, the word “came” serves

as a trigger for the transportation event, indicating the action of moving

towards a destination. The ability to detect such triggers is fundamental to

understanding the dynamics within a text, as it sets the stage for further

extraction tasks. The challenge lies in accurately pinpointing these triggers

across different contexts and linguistic structures, where the same word may

not always signify the same event type in every instance.

– Event argument extraction (EAE): is the process of identifying and

classifying the entities associated with an event trigger. Once an event trigger

is detected, EAE seeks to determine the participants, objects, and attributes

related to that event. For example, the man driving and the checkpoint in the

provided figure are arguments related to the transportation event triggered by

“came”. The difficulty in EAE is two-fold: correctly associating entities with

the correct event and correctly classifying their roles, which can vary widely

across languages and contexts.

– Entity mention recognition (EMR): focuses on identifying and

categorizing entities (persons, organizations, locations, etc.) within a text.

In the sentence from the figure, “a man” and “soldiers” are recognized as

persons, “taxicab” as a vehicle, and “checkpoint” as a facility. EMR is a

foundational task in NLP, as it allows systems to distinguish and categorize

the key components of information. The challenge with EMR, especially in

a multilingual context, is dealing with the vast array of entity types and the

subtleties of their mention, which can be heavily influenced by cultural and

linguistic factors.
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– Relation extraction (RE): involves identifying the relationships between

entities within a text. The figure shows several relationships: between the

man and the taxicab (the man is driving the taxicab), between the man and

the checkpoint (the man is moving towards the checkpoint), and between the

soldiers and the checkpoints (the soldiers are physically at the checkpoint).

RE is crucial for building a comprehensive picture of the interactions and

connections between entities, allowing for a deeper understanding of the text.

The primary challenge in RE is the complexity of relationships that can exist

and the subtlety with which they can be expressed, particularly in texts with

intricate sentence structures or in languages with less rigid syntax.

To address these challenges within Multilingual IE, we need models that

are not only robust and scalable but also nuanced and adaptable to the wide range

of linguistic cues and subtleties found across different languages. This involves

developing sophisticated algorithms that can handle the ambiguity and variability

of natural language, while also being sensitive to the cultural and contextual

elements that influence meaning. The overarching problem this dissertation

will tackle is developing a system that can integrate these tasks into a coherent

framework capable of accurately performing Multilingual IE across diverse linguistic

landscapes.

1.3 Research Questions

This dissertation is anchored on a set of research questions that aim to

address the intricacies and challenges of Multilingual IE. The forthcoming chapters

of the dissertation will delve into each question in detail, offering a thorough

exploration of our proposed methods and their implications for Multilingual IE.

In particular, the research questions that we would like to answer are:
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– RQ1: How can upstream models in Multilingual IE be enhanced to improve

linguistic feature extraction across languages?

– RQ2: What architecture can be developed for downstream IE models to be

effectively language-agnostic?

– RQ3: Given target languages with limited or no training data, how can we

build effective IE models?

The first question investigates the improvement of upstream processes that

form the foundation for accurate downstream information extraction, such as

sentence segmentation and part-of-speech tagging. The second question seeks

to establish a robust framework for downstream models that remain effective

regardless of the language input for the four main tasks of IE. The third will

explore methodologies for training IE models for low-resource languages through

either cross-lingual transfer learning or active learning. Furthermore, we would like

to explore the question:

– RQ4: What is the role of IE in recent advancements of LLMs?

The final question aims to identify how IE can be employed to enhance LLMs’

ability to provide accurate and reliable responses. Each of these questions will be

meticulously addressed in the dissertation, with dedicated chapters that provide

an in-depth analysis and discussion. These chapters will collectively form a

comprehensive approach to tackling the multifaceted challenges of Multilingual

IE, with the goal of contributing valuable knowledge and innovative solutions to the

field.
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1.4 Dissertation Outline

In the exploration of Multilingual IE, this dissertation delineates a

comprehensive approach across four distinct research directions (RDs) toward

answering the four research questions (RQ1, RQ2, RQ3, and RQ4) respectively.

Each direction targets a specific aspect of Multilingual IE, aiming to collectively

enhance the field’s capability and application across multiple languages:

1.4.1 RD1: Advancements in Linguistic Feature Processing for

Multilingual IE. The first direction delves into enhancing upstream models that

process fundamental linguistic features such as sentence boundaries, word tags, and

dependency trees, crucial for the performance of downstream IE models on the four

IE tasks (see Figure 1). Previous work such as those of Manning et al. (2014) and

Straka, Hajič, and Straková (2016) provide a foundation for understanding these

models.

To improve upstream models in terms of speed, performance, and linguistic

diversity, we propose Trankit (M. V. Nguyen, Lai, Pouran Ben Veyseh, &

Nguyen, 2021), a novel transformer-based toolkit designed for multilingual NLP.

Trankit provides a trainable NLP pipeline across over 100 languages, alongside

90 pretrained pipelines covering 56 languages. Anchored by a state-of-the-art

pretrained language model (Conneau et al., 2019), Trankit surpasses existing

multilingual NLP pipelines in performance across several key tasks, including

sentence segmentation, part-of-speech tagging, morphological feature tagging, and

dependency parsing. Despite incorporating a large pretrained transformer model,

Trankit maintains efficiency in terms of memory use and processing speed. This

efficiency is achieved through a novel plug-and-play mechanism featuring Adapters

(Pfeiffer, Vulić, Gurevych, & Ruder, 2020), allowing for a single multilingual
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pretrained transformer to be utilized across different language pipelines. Details

of Trankit are presented in chapter II.

1.4.2 RD2: Language-Agnostic Models for Joint Information

Extraction. Shifting the focus from linguistic feature processing to the

architecture of IE models themselves, this direction aims to develop models that

can be universally applied across languages without requiring language-specific

modifications. This includes a comparative analysis of traditional pipelined

approaches (T. H. Nguyen & Grishman, 2015b; G. Zhou, Su, Zhang, & Zhang,

2005b) against joint models, known as Joint Information Extraction (JointIE),

which perform a suite of IE tasks within a single model architecture. The

comparative study assesses how these models manage error propagation and

leverage the interdependencies between tasks, with references to the works of Luan

et al. (2019b), Y. Lin et al. (2020b), and Zhang and Ji (2021b). The development

and testing of new language-agnostic models are integral to this direction, with

a focus on models that minimize the need for language-specific adjustments.

Furthermore, enhancing the models’ ability to generalize across languages is crucial,

emphasizing the importance of leveraging language differences and similarities for

improved multilingual training and performance.

In this direction, chapter III introduces FourIE (M. V. Nguyen, Lai, &

Nguyen, 2021), our novel model developed to tackle the four tasks of IE within a

unified framework. Unlike previous efforts that have attempted to jointly address

these four IE tasks (Y. Lin et al., 2020b; Luan et al., 2019b; Zhang & Ji, 2021b),

FourIE stands out by offering two innovative contributions designed to capture

the interdependencies between tasks effectively. The first contribution is at the

representation level, where we introduce an interaction graph that connects
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instances across the four tasks. This graph is utilized to enhance the prediction

representation of one instance by incorporating insights from related instances of

the other tasks. The second contribution is at the label level, where we present

a dependency graph specifically for the information types involved in the four IE

tasks. This graph delineates the relationships between the types found within an

input sentence, thereby capturing the intricate connections among them. Following

this, we propose other innovative models that can jointly perform the four IE tasks,

namely, DepIE, and GraphIE that offer more advanced mechanisms to capture such

cross-task dependencies better.

1.4.3 RD3: Learning Methods for IE in Low-Resource

Languages. The third direction addresses the challenge of non-existent or limited

training data in target languages. In case the training data in target languages

do not exist, previous work tackles this by using multilingual word embeddings

(X. Chen & Cardie, 2018; Heyman, Verreet, Vulić, & Moens, 2019) and pre-

trained language models (Conneau et al., 2019; Devlin et al., 2019b) to generate

crosslingual representation vectors, examining their efficacy in adapting knowledge

from high-resource languages to improve IE in the target languages (J. Liu, Chen,

Liu, & Zhao, 2019a; M’hamdi, Freedman, & May, 2019; Subburathinam et al.,

2019). Moreover, addressing monolingual bias becomes a pivotal aspect of this

research direction, employing strategies such as language adversarial training

to combat biases originating from the predominance of source language data in

model training (X. Chen et al., 2019; Huang et al., 2019; Lange et al., 2020b).

In the other case where limited training data in target languages is available,

active learning can be employed to effectively annotate more training examples
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for maximizing the performance of the model in the target languages (Shen, Yun,

Lipton, Kronrod, & Anandkumar, 2017b).

To deal with the first scenario, chapter IV presents our novel learning

method called CCCAR for class- and word category-based crosslingual alignment

of representations (M. V. Nguyen, Nguyen, Min, & Nguyen, 2021). Our main

idea behind is to ensure similar representations of the same concepts (i.e., word

categories and class labels) across source and target languages for improving

the cross-lingual transferability of the model. If the training data for the target

languages is limitedly available, we offer our novel active learning framework called

FAMIE (M. V. Nguyen, Ngo, Min, & Nguyen, 2022). The framework employs

a small proxy model for fast training and data selection, effectively building

IE models for target languages through iterative annotations of more training

examples.

1.4.4 RD4: Potential Applications of Information Extraction

for Enhancing Large Language Models. Recent research (Achiam et al.,

2023; Brown et al., 2020; Chowdhery et al., 2023; Chung et al., 2022) highlights

the importance of large language models (LLMs) in the field of NLP, owing to their

exceptional capabilities across different tasks. While these LLMs have acquired

a degree of world knowledge through their training process (Petroni et al., 2019;

Roberts, Raffel, & Shazeer, 2020a), they are prone to generating false or imaginary

information (Maynez, Narayan, Bohnet, & McDonald, 2020; C. Zhou et al., 2021a).

To mitigate this issue, enhancing LLMs with the capability to retrieve accurate

information from external databases has been identified as a promising approach

(Izacard et al., 2022; Khandelwal, Levy, Jurafsky, Zettlemoyer, & Lewis, 2020).

This method suggests that the effectiveness of LLMs could significantly rely
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on the quality of the data retrieved. IE has proven to be an invaluable asset in

refining these retrieval processes by converting unstructured text into structured

data, thereby facilitating the development of more sophisticated retrieval systems

(Borisov, Aliannejadi, & Crestani, 2021; Corcoglioniti, Dragoni, Rospocher, &

Aprosio, 2016) that ultimately benefit retrieval-augmented generation (RAG)-based

LLMs.

In light of this, we introduce an innovative RAG framework - KARP

(M. Nguyen, C, Nguyen, Chadha, & Vu, 2023) in chapter V, comprising a novel

knowledge retrieval component and a LLM for open domain question answering.

Given a user question, our framework employs the knowledge retriever to

extract relevant words from each potential web context to assess their relevance

and determine the most suitable contexts for the LLM to generate answers.

Furthermore, we propose a novel finetuning method for training the LLM to

efficiently exploit both external and internal knowledge for answer generation.

This dissertation contains materials from published and co-authored

papers. We acknowledge all the co-authors: Thien Huu Nguyen, Amir Pouran Ben

Veyseh, Viet Dac Lai, Bonan Min, Tuan Ngo Nguyen, Nghia Trung Ngo, Franck

Dernoncourt, Toan Quoc Nguyen, Kishan KC, Ankit Chadha, and Thuy Vu.

34



CHAPTER II

ADVANCEMENTS IN LINGUISTIC FEATURE PROCESSING FOR

MULTILINGUAL IE

This chapter contains materials from the published paper “Minh Nguyen,

Viet Dac Lai, Amir Pouran Ben Veyseh, and Thien Huu Nguyen. ‘Trankit: A

Light-Weight Transformer-based Toolkit for Multilingual Natural

Language Processing’ In Proceedings of the 16th Conference of the European

Chapter of the Association for Computational Linguistics: System Demonstrations,

2021” (M. V. Nguyen, Lai, Pouran Ben Veyseh, & Nguyen, 2021). Minh was

responsible for the system design and implementation, experiments, evaluation and

writing as the first author. Thien, Viet and Amir provided meaningful discussion

and analysis. Thien provided editorial writing for the paper submission. The paper

was revised to comply with the dissertation format and purposes.

In the exploration of Multilingual IE, this dissertation delineates a

comprehensive approach across four distinct research directions (RDs) toward

answering the four research questions (RQ1, RQ2, RQ3, and RQ4) stated in

chapter I. The first direction (RD1) delves into enhancing upstream models that

process fundamental linguistic features such as sentence boundaries, word tags, and

dependency trees, crucial for the performance of downstream IE models on the four

IE tasks.

To improve upstream models in terms of speed, performance, and linguistic

diversity, this chapter introduces Trankit, a novel transformer-based toolkit

designed for multilingual NLP. Trankit provides a trainable NLP pipeline across

over 100 languages, alongside 90 pretrained pipelines covering 56 languages.

Anchored by a state-of-the-art pretrained language model, Trankit surpasses
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existing multilingual NLP pipelines in performance across several key tasks,

including sentence segmentation, part-of-speech tagging, morphological feature

tagging, and dependency parsing. Despite incorporating a large pretrained

transformer model, Trankit maintains efficiency in terms of memory use and

processing speed. This efficiency is achieved through a novel plug-and-play

mechanism featuring Adapters, allowing for a single multilingual pretrained

transformer to be utilized across different language pipelines.

2.1 Introduction

Many efforts have been devoted to developing multilingual NLP systems

to overcome language barriers (Aharoni, Johnson, & Firat, 2019; Kanayama &

Iwamoto, 2020; J. Liu, Chen, Liu, & Zhao, 2019b; M. V. Nguyen & Nguyen, 2021a;

Taghizadeh & Faili, 2020; Zhu, 2020). A large portion of existing multilingual

systems has focused on downstream NLP tasks that critically depend on upstream

linguistic features, ranging from basic information such as token and sentence

boundaries for raw text to more sophisticated structures such as part-of-speech

tags, morphological features, and dependency trees of sentences (called fundamental

NLP tasks). As such, building effective multilingual systems/pipelines for

fundamental upstream NLP tasks to produce such information has the potentials to

transform multilingual downstream systems.

There have been several NLP toolkits that concerns multilingualism for

fundamental NLP tasks, featuring spaCy1, UDify (Kondratyuk & Straka, 2019),

Flair (Akbik et al., 2019), CoreNLP (Manning et al., 2014), UDPipe (Straka,

2018b), and Stanza (Qi, Zhang, Zhang, Bolton, & Manning, 2020b). However,

these toolkits have their own limitations. spaCy is designed to focus on speed, thus

1https://spacy.io/
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it needs to sacrifice the performance. UDify and Flair cannot process raw text

as they depend on external tokenizers. CoreNLP supports raw text, but it does

not offer state-of-the-art performance. UDPipe and Stanza are the recent toolkits

that leverage word embeddings, i.e., word2vec (Mikolov, Sutskever, Chen, Corrado,

& Dean, 2013) and fastText (Bojanowski, Grave, Joulin, & Mikolov, 2017), to

deliver current state-of-the-art performance for many languages. However, Stanza

and UDPipe’s pipelines for different languages are trained separately and do not

share any component, especially the embedding layers that account for most of

the model size. This makes their memory usage grow aggressively as pipelines for

more languages are simultaneously needed and loaded into the memory (e.g., for

language learning apps). Most importantly, none of such toolkits have explored

contextualized embeddings from pretrained transformer-based language models

that have the potentials to significantly improve the performance of the NLP tasks,

as demonstrated in many prior works (Conneau et al., 2020; Devlin et al., 2019b;

Y. Liu et al., 2019).

In this paper, we introduce Trankit, a multilingual Transformer-based

NLP Toolkit that overcomes such limitations. Our toolkit can process raw text for

fundamental NLP tasks, supporting 56 languages with 90 pre-trained pipelines on

90 treebanks of the Universal Dependency v2.5 (Zeman et al., 2019). By utilizing

the state-of-the-art multilingual pretrained transformer XLM-Roberta (Conneau et

al., 2020), Trankit advances state-of-the-art performance for sentence segmentation,

part-of-speech (POS) tagging, morphological feature tagging, and dependency

parsing while achieving competitive or better performance for tokenization, multi-

word token expansion, and lemmatization over the 90 treebanks. It also obtains
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Figure 2. Overall architecture of Trankit. A single multilingual pretrained
transformer is shared across three components (pointed by the red arrows) of
the pipeline for different languages.

competitive or better performance for named entity recognition (NER) on 11 public

datasets.

Unlike previous work, our token and sentence splitter is wordpiece-based

instead of character-based to better exploit contextual information, which are

beneficial in many languages. Considering the following sentence:

“John Donovan from Argghhh! has put out a excellent slide show on what was

actually found and fought for in Fallujah.”

As such, Trankit correctly recognizes this as a single sentence while character-based

sentence splitters of Stanza and UDPipe are easily fooled by the exclamation mark

“!”, treating it as two separate sentences. To our knowledge, this is the first work to

successfully build a wordpiece-based token and sentence splitter that works well for

56 languages.
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Figure 2 presents the overall architecture of Trankit pipeline that features

three novel transformer-based components for: (i) the joint token and sentence

splitter, (ii) the joint model for POS tagging, morphological tagging, dependency

parsing, and (iii) the named entity recognizer. One potential concern for our use

of a large pretrained transformer model (i.e., XML-Roberta) in Trankit involves

GPU memory where different transformer-based components in the pipeline for

one or multiple languages must be simultaneously loaded into the memory to serve

multilingual tasks. This could extensively consume the memory if different versions

of the large pre-trained transformer (finetuned for each component) are employed

in the pipeline. As such, we introduce a novel plug-and-play mechanism with

Adapters to address this memory issue. Adapters are small networks injected inside

all layers of the pretrained transformer model that have shown their effectiveness as

a light-weight alternative for the traditional finetuning of pretrained transformers

(Houlsby et al., 2019; Peters, Ruder, & Smith, 2019b; Pfeiffer, Rücklé, et al., 2020;

Pfeiffer, Vulić, et al., 2020). In Trankit, a set of adapters (for transfomer layers)

and task-specific weights (for final predictions) are created for each transformer-

based component for each language while only one single large multilingual

pretrained transformer is shared across components and languages. Adapters

allow us to learn language-specific features for tasks. During training, the shared

pretrained transformer is fixed while only the adapters and task-specific weights

are updated. At inference time, depending on the language of the input text and

the current active component, the corresponding trained adapter and task-specific

weights are activated and plugged into the pipeline to process the input. This

mechanism not only solves the memory problem but also substantially reduces the

training time.
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2.2 Related Work

There have been works using pre-trained transformers to build models for

character-based word segmentation for Chinese (Che, Feng, Qin, & Liu, 2020;

Tian et al., 2020; H. Yang, 2019); POS tagging for Dutch, English, Chinese, and

Vietnamese (Che et al., 2020; de Vries et al., 2019; D. Q. Nguyen & Tuan Nguyen,

2020; Tenney, Das, & Pavlick, 2019; Tian et al., 2020); morphological feature

tagging for Estonian and Persian (Kittask, Milintsevich, & Sirts, 2020; Mohseni

& Tebbifakhr, 2019); and dependency parsing for English and Chinese (Che et al.,

2020; Tenney et al., 2019). However, all of these works are only developed for some

specific language, thus potentially unable to support and scale to the multilingual

setting.

Some works have designed multilingual transformer-based systems via

multilingual training on the combined data of different languages (Kondratyuk

& Straka, 2019; Tsai et al., 2019; Üstün, Bisazza, Bouma, & van Noord, 2020).

However, multilingual training is suboptimal (see Section 2.5). Also, these systems

still rely on external resources to perform tokenization and sentence segmentation,

thus unable to consume raw text. To our knowedge, this is the first work to

successfully build a multilingual transformer-based NLP toolkit where different

transformer-based models for many languages can be simultaneously loaded into

GPU memory and process raw text inputs of different languages.

2.3 Design and Architecture

Adapters. Adapters play a critical role in making Trankit memory- and time-

efficient for training and inference. Figure 3 shows the architecture and the location

of an adapter inside a layer of transformer. We use the adapter architecture

proposed by (Pfeiffer, Rücklé, et al., 2020; Pfeiffer, Vulić, et al., 2020), which
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Figure 3. Left: location of an adapter (green box) inside a layer of the pretrained
transformer. Gray boxes represent the original components of a transformer layer.
Right: the network architecture of an adapter.

consists of two projection layers Up and Down (feed-forward networks), and a

residual connection.

ci = AddNorm(ri), hi = Up(ReLU(Down(ci))) + ri (2.1)

where ri is the input vector from the transformer layer for the adapter and hi is

the output vector for the transformer layer i. During training, all the weights of

the pretrained transformer (i.e., gray boxes) are fixed and only the adapter weights

of two projection layers and the task-specific weights outside the transformer (for

final predictions) are updated. As demonstrated in Figure 2, Trankit involves six

components described as follows.

Multilingual Encoder with Adapters. This is our core component that is

shared across different transformer-based components for different languages of

the system. Given an input raw text s, we first split it into substrings by spaces.

Afterward, Sentence Piece, a multilingual subword tokenizer (Kudo, 2018; Kudo

& Richardson, 2018), is used to further split each substring into wordpieces. By

concatenating wordpiece sequences for substrings, we obtain an overall sequence of

wordpieces w = [w1, w2, . . . , wK ] for s. In the next step, w is fed into the pretrained
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transformer, which is already integrated with adapters, to obtain the wordpiece

representations:

xl,m1:K = Transformer(w1:K ; θl,mAD) (2.2)

Here, θl,mAD represents the adapter weights for language l and component m of

the system. As such, we have specific adapters in all transformer layers for

each component m and language l. Note that if K is larger than the maximum

input length of the pretrained transformer (i.e., 512), we further divide w into

consecutive chunks; each has the length less than or equal to the maximum

length. The pretrained transformer is then applied over each chunk to obtain

a representation vector for each wordpiece in w. Finally, xl,m1:K will be sent to

component m to perform the corresponding task.

Joint Token and Sentence Splitter. Given the wordpiece representations xl,m1:K

for this component, each vector xl,mi for wi ∈ w will be consumed by a feed-forward

network with softmax in the end to predict if wi is the end of a single-word token,

the end of a multi-word token, or the end of a sentence. The predictions for all

wordpieces in w will then be aggregated to determine token, multi-word token, and

sentence boundaries for s.

Multi-word Token Expander. This component is responsible for expanding

each detected multi-word token (MWT) into multiple syntactic words2. We follow

Stanza to deploy a character-based seq2seq model for this component. This decision

is made based on our observation that the task is done best at character level, and

the character-based model (with character embeddings) is very small.

2For languages (e.g., English, Chinese) that do not require MWT expansion, tokens and words
are the same concepts.
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Treebank System Tokens Sents. Words UPOS XPOS UFeats Lemmas UAS LAS

Overall (90 treebanks)
Trankit 99.23 91.82 99.02 95.65 94.05 93.21 94.27 87.06 83.69
Stanza 99.26 88.58 98.90 94.21 92.50 91.75 94.15 83.06 78.68

Arabic-PADT
Trankit 99.93 96.59 99.22 96.31 94.08 94.28 94.65 88.39 84.68
Stanza 99.98 80.43 97.88 94.89 91.75 91.86 93.27 83.27 79.33
UDPipe 99.98 82.09 94.58 90.36 84.00 84.16 88.46 72.67 68.14

Chinese-GSD
Trankit 97.01 99.7 97.01 94.21 94.02 96.59 97.01 85.19 82.54
Stanza 92.83 98.80 92.83 89.12 88.93 92.11 92.83 72.88 69.82
UDPipe 90.27 99.10 90.27 84.13 84.04 89.05 90.26 61.60 57.81

English-EWT

Trankit 98.48 88.35 98.48 95.95 95.71 96.26 96.84 90.14 87.96
Stanza 99.01 81.13 99.01 95.40 95.12 96.11 97.21 86.22 83.59
UDPipe 98.90 77.40 98.90 93.26 92.75 94.23 95.45 80.22 77.03
spaCy 97.44 63.16 97.44 86.99 91.05 - 87.16 55.38 37.03

French-GSD

Trankit 99.7 96.63 99.66 97.85 - 97.16 97.80 94.00 92.34
Stanza 99.68 94.92 99.48 97.30 - 96.72 97.64 91.38 89.05
UDPipe 99.68 93.59 98.81 95.85 - 95.55 96.61 87.14 84.26
spaCy 99.02 89.73 94.81 89.67 - - 88.55 75.22 66.93

Spanish-Ancora

Trankit 99.94 99.13 99.93 99.02 98.94 98.8 99.17 94.11 92.41
Stanza 99.98 99.07 99.98 98.78 98.67 98.59 99.19 92.21 90.01
UDPipe 99.97 98.32 99.95 98.32 98.13 98.13 98.48 88.22 85.10
spaCy 99.95 97.54 99.43 93.43 - - 80.02 89.35 83.81

Table 1. Systems’ performance on test sets of the Universal Dependencies v2.5
treebanks. Performance for Stanza, UDPipe, and spaCy is obtained using their
public pretrained models. The overall performance for Trankit and Stanza is
computed as the macro-averaged F1 over 90 treebanks. Detailed performance of
Trankit for 90 supported treebanks can be found at our documentation page.

Joint Model for POS Tagging, Morphological Tagging and Dependency

Parsing. In Trankit, given the detected sentences and tokens/words, we use a

single model to jointly perform POS tagging, morphological feature tagging and

dependency parsing at sentence level. Joint modeling mitigates error propagation,

saves the memory, and speedups the system. In particular, given a sentence,

the representation for each word is computed as the average of its wordpieces’

transformer-based representations in xl,m1:K . Let t1:N = [t1, t2, . . . , tN ] be the

representations of the words in the sentence. We compute the following vectors

using feed-forward networks FFN∗:

rupos1:N = FFNupos(t1:N ), rxpos1:N = FFNxpos(t1:N )

rufeats1:N = FFNufeats(t1:N ), rdep0:N = [xcls; FFNdep(t1:N )]

Vectors for the words in rupos1:N , rxpos1:N , rufeats1:N are then passed to a softmax layer

to make predictions for UPOS, XPOS, and UFeats tags for each word. For
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dependency parsing, we use the classification token <s> to represent the root

node, and apply Deep Biaffine Attention (Dozat & Manning, 2017) and the Chu-

Liu/Edmonds algorithm (Chu, 1965; Edmonds, 1967) to assign a syntactic head

and the associated dependency relation to each word in the sentence.

Lemmatizer. This component receives sentences and their predicted UPOS tags

to produce the canonical form for each word. We also employ a character-based

seq2seq model for this component as in Stanza.

Named Entity Recognizer. Given a sentence, the named entity recognizer

determines spans of entity names by assigning a BIOES tag to each token in the

sentence. We deploy a standard sequence labeling architecture using transformer-

based representations for tokens, involving a feed-forward network followed by a

Conditional Random Field.

2.4 Usage

Detailed documentation for Trankit can be found at: https://trankit

.readthedocs.io.

Trankit Installation. Trankit is written in Python and available on PyPI:

https://pypi.org/project/trankit/. Users can install our toolkit via pip using:

pip install trankit

Initialize a Pipeline. Lines 1-4 in Figure 4 shows how to initialize a pretrained

pipeline for English; it is instructed to run on GPU and store downloaded

pretrained models to the specified cache directory. Trankit will not download

pretrained models if they already exist.
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Multilingual Usage. Figure 4 shows how to initialize a multilingual pipeline and

process inputs of different languages in Trankit:

from trankit import Pipeline

# initialize a multilingual pipeline
p = Pipeline(lang='english', gpu=True, cache_dir='./cache')
langs = ['arabic', 'chinese', 'dutch']
for lang in langs:

p.add(lang)

# tokenize English input
p.set_active('english')
en = p.tokenize('Rich was here before the scheduled time.')

# get ner tags for Arabic input
p.set_active('arabic')
ar = p.ner(' .وكان كنعان قبل ذلك رئيس جهاز الامن والاستطلاع للقوات السورية العاملة في لبنان ')

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Figure 4. Multilingual pipeline initialization.

Basic Functions. Trankit can process inputs which are untokenized (raw) or

pretokenized strings, at both sentence and document levels. Figure 5 illustrates

a simple code to perform all the supported tasks for an input text. We organize

Trankit’s outputs into hierarchical native Python dictionaries, which can be easily

inspected by users. Figure 6 demonstrates the outputs of the command line 6 in

Figure 5.

from trankit import Pipeline

p = Pipeline(lang='english', gpu=True, cache_dir='./cache')

doc = '''Hello! This is Trankit.'''
# perform all tasks on the input
all = p(doc)

1
2
3
4
5
6
7

Figure 5. A function performing all tasks on the input.

Training your own Pipelines. Trankit also provides a trainable pipeline for 100

languages via the class TPipeline. This ability is inherited from the XLM-Roberta

encoder which is pretrained on those languages. Figure 7 illustrates how to train a

token and sentence splitter with TPipeline.
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// Output
{

'text': 'Hello! This is Trankit.', // input string
'sentences': [ // list of sentences

{
'id': 1, 'text': 'Hello!', 'dspan': (0, 6), 'tokens': [...]

},
{
'id': 2, // sentence index
'text': 'This is Trankit.', 'dspan': (7, 23), // sentence span
'tokens’: [ // list of tokens

{
'id': 1, // token index
'text': 'This', 'upos': 'PRON', 'xpos': 'DT',
'feats': 'Number=Sing|PronType=Dem',
'head': 3, 'deprel': 'nsubj', 'lemma': 'this', 'ner': 'O',
'dspan': (7, 11), // document-level span of the token
'span': (0, 4)    // sentence-level span of the token

},
{'id': 2...},
{'id': 3...},
{'id': 4...}

]
}

]
}

Figure 6. Output from Trankit. Some parts are collapsed to improve visualization.

from trankit import TPipeline

tp = TPipeline(training_config={
'task': 'tokenize',
'save_dir': './saved_model',
'train_txt_fpath': './train.txt',
'train_conllu_fpath': './train.conllu',
'dev_txt_fpath': './dev.txt',
'dev_conllu_fpath': './dev.conllu'})

trainer.train()

1
2
3
4
5
6
7
8
9
10
11

Figure 7. Training a token and sentence splitter using the CONLL-U formatted
data (Nivre et al., 2020).

Demo Website. A demo website for Trankit to support 90 pretrained pipelines is

hosted at: http://nlp.uoregon.edu/trankit. Figure 8 shows its interface.

2.5 System Evaluation

2.5.1 Datasets & Hyper-parameters. To achieve a fair comparison,

we follow Stanza (Qi et al., 2020b) to train and evaluate all the models on the

same canonical data splits of 90 Universal Dependencies treebanks v2.5 (UD2.5)3

(Zeman et al., 2019), and 11 public NER datasets provided in the following corpora:

AQMAR (Mohit, Schneider, Bhowmick, Oflazer, & Smith, 2012), CoNLL02 (Tjong

Kim Sang, 2002), CoNLL03 (Tjong Kim Sang & De Meulder, 2003), GermEval14

3We skip 10 treebanks whose languages are not supported by XLM-Roberta.
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Figure 8. Demo website for Trankit.

(Benikova, Biemann, & Reznicek, 2014), OntoNotes (Weischedel et al., 2013),

and WikiNER (Nothman, Ringland, Radford, Murphy, & Curran, 2012). Hyper-

parameters for all models and datasets are selected based on the development data

in this work.

System Tokens Sents. Words UPOS XPOS UFeats Lemmas UAS LAS
Trankit (with adapters) 99.05 95.12 98.96 95.43 89.02 92.69 93.46 86.20 82.51
Multilingual 96.69 88.95 96.35 91.19 84.64 88.10 90.02 72.96 68.66
No-adapters 95.06 89.57 94.08 88.79 82.54 83.76 88.33 66.63 63.11

Table 2. Model performance on 9 different treebanks (macro-averaged F1 score over
test sets).

2.5.2 Universal Dependencies performance. Table 1 compares the

performance of Trankit and the latest available versions of other popular toolkits,

including Stanza (v1.1.1) with current state-of-the-art performance, UDPipe

(v1.2), and spaCy (v2.3) on the UD2.5 test sets. The performance for all systems

is obtained using the official scorer of the CoNLL 2018 Shared Task4. On five

illustrated languages, Trankit achieves competitive performance on tokenization,

4https://universaldependencies.org/conll18/evaluation.html
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MWT expansion, and lemmatization. Importantly, Trankit outperforms other

toolkits over all remaining tasks (e.g., POS and morphological tagging) in which

the improvement boost is substantial and significant for sentence segmentation and

dependency parsing. For example, English enjoys a 7.22% improvement for sentence

segmentation, a 3.92% and 4.37% improvement for UAS and LAS in dependency

parsing. For Arabic, Trankit has a remarkable improvement of 16.16% for sentence

segmentation while Chinese observes 12.31% and 12.72% improvement of UAS and

LAS for dependency parsing.

Over all 90 treebanks, Trankit outperforms the previous state-of-the-art

framework Stanza in most of the tasks, particularly for sentence segmentation

(+3.24%), POS tagging (+1.44% for UPOS and +1.55% for XPOS), morphological

tagging (+1.46%), and dependency parsing (+4.0% for UAS and +5.01% for

LAS) while maintaining the competitive performance on tokenization, multi-word

expansion, and lemmatization.

2.5.3 NER results. Table 3 compares Trankit with Stanza (v1.1.1),

Flair (v0.7), and spaCy (v2.3) on the test sets of 11 considered NER datasets.

Following Stanza, we report the performance for other toolkits with their

pretrained models on the canonical data splits if they are available. Otherwise,

their best configurations are used to train the models on the same data splits

(inherited from Stanza). Also, for the Dutch datasets, we retrain the models

in Flair as those models (for Dutch) have been updated in version v0.7. As

can be seen, Trankit obtains competitive or better performance for most of the

languages, clearly demonstrating the benefit of using the pretrained transformer for

multilingual NER.
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Language Corpus Trankit Stanza Flair spaCy
Arabic AQMAR 74.8 74.3 74.0 -
Chinese OntoNotes 80.0 79.2 - 69.3

Dutch
CoNLL02 91.8 89.2 91.3 73.8
WikiNER 94.8 94.8 94.8 90.9

English
CoNLL03 92.1 92.1 92.7 81.0
OntoNotes 89.6 88.8 89.0 85.4

French WikiNER 92.3 92.9 92.5 88.8

German
CoNLL03 84.6 81.9 82.5 63.9
GermEval14 86.9 85.2 85.4 68.4

Russian WikiNER 92.8 92.9 - -
Spanish CoNLL02 88.9 88.1 87.3 77.5

Table 3. Performance (F1) on NER test sets.

System
GPU CPU

UD NER UD NER

Trankit 4.50× 1.36× 19.8× 31.5×
Stanza 3.22× 1.08× 10.3× 17.7×
UDPipe - - 4.30× -

Flair - 1.17× - 51.8×

Table 4. Run time on processing the English EWT treebank and the English
Ontonotes NER dataset. Measurements are done on an NVIDIA Titan RTX card.

2.5.4 Speed and Memory Usage. Table 4 reports the relative

processing time for UD and NER of the toolkits compared to spaCy’s CPU

processing time5. For memory usage comparison, we show the model sizes of

Trankit and Stanza for several languages in Table 5. As can be seen, besides the

multilingual transformer, model packages in Trankit only take dozens of megabytes

while Stanza consumes hundreds of megabytes for each package. This leads to

the Stanza’s usage of much more memory when the pipelines for these languages

are loaded at the same time. In fact, Trankit only takes 4.9GB to load all the 90

pretrained pipelines for the 56 supported languages.

2.5.5 Ablation Study. This section compares Trankit with two other

possible strategies to build a multilingual system for fundamental NLP tasks. In

5spaCy can process 8140 tokens and 5912 tokens per second for UD and NER, respectively.
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Model Package Trankit Stanza

Multilingual Transformer 1146.9MB -

Arabic 38.6MB 393.9MB

Chinese 40.6MB 225.2MB

English 47.9MB 383.5MB

French 39.6MB 561.9MB

Spanish 37.3MB 556.1MB

Total size 1350.9MB 2120.6MB

Table 5. Model sizes for five languages.

the first strategy (called “Multilingual”), we train a single pipeline where all the

components in the pipeline are trained with the combined training data of all

the languages. The second strategy (called “No-adapters”) involves eliminating

adapters from XLM-Roberta in Trankit. As such, in “No-adapters”, pipelines

are still trained separately for each language; the pretrained transformer is fixed;

and only task-specific weights (for predictions) in components are updated during

training.

For evaluation, we select 9 treebanks for 3 different groups, i.e., high-

resource, medium-resource, and low-resource, depending on the sizes of the

treebanks. In particular, the high-resource group includes Czech, Russian, and

Arabic; the medium-resource group includes French, English, and Chinese; and the

low-resource group involves Belarusian, Telugu, and Lithuanian. Table 2 compares

the average performance of Trankit, “Multilingual”, and “No-adapters”. As can be

seen, “Multilingual” and “No-adapters” are significantly worse than the proposed

adapter-based Trankit. We attribute this to the fact that multilingual training

might suffer from unbalanced sizes of treebanks, causing high-resource languages to

dominate others and impairing the overall performance. For “No-adapters”, fixing

pretrained transformer might significantly limit the models’ capacity for multiple

tasks and languages.
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2.6 Summary

We introduce Trankit, a transformer-based multilingual toolkit that

significantly improves the performance for fundamental NLP tasks, including

sentence segmentation, part-of-speech, morphological tagging, and dependency

parsing over 90 Universal Dependencies v2.5 treebanks of 56 different languages.

Our toolkit is fast on GPUs and efficient in memory use, making it usable for

general users.
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CHAPTER III

LANGUAGE-AGNOSTIC MODELS FOR JOINT INFORMATION

EXTRACTION

This chapter contains materials from the published papers: “Minh Nguyen,

Viet Dac Lai, and Thien Huu Nguyen. ‘Cross-Task Instance Representation

Interactions and Label Dependencies for Joint Information Extraction

with Graph Convolutional Networks’ In Proceedings of the 2021 Conference

of the North American Chapter of the Association for Computational Linguistics:

Human Language Technologies, 2021” (M. V. Nguyen, Lai, & Nguyen, 2021);

“Minh Nguyen, Bonan Min, Franck Dernoncourt, and Thien Nguyen. ‘Learning

Cross-Task Dependencies for Joint Extraction of Entities, Events,

Event Arguments, and Relations’ In Proceedings of the 2022 Conference

on Empirical Methods in Natural Language Processing, 2022” (M. V. Nguyen,

Min, et al., 2022b); and “Minh Nguyen, Bonan Min, Franck Dernoncourt, and

Thien Nguyen. ‘Joint Extraction of Entities, Relations, and Events via

Modeling Inter-Instance and Inter-Label Dependencies’ In Proceedings

of the 2022 Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies, 2022” (M. V. Nguyen,

Min, et al., 2022a). Minh was responsible for the model design, experiments,

evaluation and writing as the first author. Thien, Viet, Bonan, and Franck provided

meaningful discussion and analysis. Thien contributed to the model design and

editorial writing for the paper submissions. The papers were revised to comply with

the dissertation format and purposes.

After introducing Trankit to enhance the upstream models for multilingual

IE in chapter II, this chapter shifts the focus from linguistic feature processing to
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the architecture of IE models themselves (RD2). RD2 aims to develop models that

can be universally applied across languages without requiring language-specific

modifications. In this chapter, we introduce FourIE, DepIE, and GraphIE, our

novel language-agnostic models developed to tackle the four tasks of IE within a

unified framework. These models offer innovative contributions designed to capture

the interdependencies between tasks effectively, improving upon previous efforts

in joint IE. FourIE introduces an interaction graph and a dependency graph to

capture cross-task dependencies at both the representation and label levels. DepIE

improves upon FourIE by learning cross-task dependencies from data instead of

manually defining them based on heuristics. GraphIE addresses limitations in

prior joint IE models to better capture dependencies between task instances and

their labels, utilizing learned dependency graphs, Conditional Random Fields, and

Simulated Annealing for optimal performance. The models achieve state-of-the-art

performance for joint IE on both monolingual and multilingual learning settings

across various datasets and languages.

3.1 FourIE

3.1.1 Introduction. Information Extraction (IE) is an important

and challenging task in Natural Language Processing (NLP) that aims to extract

structured information from unstructured texts. Following the terminology for IE

in the popular ACE 2005 program (Walker, Strassel, Medero, & Maeda, 2006),

we focus on four major IE tasks in this work: entity mention extraction (EME),

relation extraction (RE), event trigger detection (ETD), and event argument

extraction (EAE).

Given an input sentence, a vast majority of prior work has solved the four

tasks in IE independently at both instance and task levels (called independent
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  Person																																																										Vehicle	Transport														Facility		
A man driving what appeared to be a taxicab came to the checkpoint , 
            Person
waved soldiers over , appeared to be having mechanical problems of 

some kind .

PHYS

ART

00Artifact
Destination

PHYS

Figure 9. A sentence example with the annotations for the four IE tasks. Blue
words corresponds to entity mentions while red words are event triggers. Also,
orange edges represent relations while green edges indicate argument roles.

prediction models). First, at the instance level, each IE task often requires

predictions/classifications for multiple instances in a single input sentence. For

instance, in RE, one often needs to predict relations for every pair of entity

mentions (called relation instances) in the sentence while multiple word spans in

the sentence can be viewed as multiple instances where event type predictions

have to be made in ETD (trigger instances). As such, most prior work on IE

has performed predictions for instances in a sentence separately by treating each

instance as one example in the dataset (Y. Chen, Xu, Liu, Zeng, & Zhao, 2015a;

V. D. Lai, Nguyen, & Nguyen, 2020; T. H. Nguyen & Grishman, 2015a, 2015c;

Santos & Guimaraes, 2015; G. Zhou, Su, Zhang, & Zhang, 2005a). Second, at

the task level, prior work on IE tends to perform the four tasks in a pipelined

approach where outputs from one task are used as inputs for other tasks (e.g., EAE

is followed by EME and ETD) (Y. Chen et al., 2015a; Q. Li, Ji, & Huang, 2013a;

Veyseh, Nguyen, & Nguyen, 2020a).

Despite its popularity, the main issue of the independent prediction models

is that they suffer from the error propagation between tasks and the failure to

exploit the cross-task and cross-instance inter-dependencies within an input

sentence to improve the performance for IE tasks. For instance, such systems are
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Span Detection

Mention

Trigger

A man driving what appeared to be a taxicab came to the checkpoint , waved soldiers over , …

BERT Encoder + Two Conditional Random Fields for event trigger and entity mention sequence labeling

Instance Interaction

A man driving what appeared to be a taxicab came to the checkpoint , waved soldiers over , …

came

man taxicab checkpoint soldiers

Event trigger

Entity mention

Event argument

Relation

(Candidates)

Type Prediction &
Regularization

Instance representations:

Soft predicted labels:

Gold labels:

Gumbel-Softmax

One-hot samples:

Figure 10. Overall architecture of our proposed model. At the representation level,
GCNinst is used to enrich the representations for instances of the four tasks. At the
label level, GCNtype is responsible for capturing the connections between the types
in the dependency graphs, thus helping the model learn the structural difference
between the gold graph Ggold and the predicted graph Gpred.
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unable to benefit from the dependency that the Victim of a Die event has a high

chance to also be the Victim of an Attack event in the same sentence (i.e., type or

label dependencies). To address these issues, some prior work has explored joint

inference models where multiple tasks of IE are performed simultaneously for all

task instances in a sentence, using both feature-based models (Q. Li et al., 2013a;

Miwa & Sasaki, 2014; Roth & Yih, 2004a; B. Yang & Mitchell, 2016a) and recent

deep learning models (Miwa & Bansal, 2016; Zhang, Qin, Zhang, Liu, & Ji, 2019).

However, such prior work has mostly considered joint models for a subset of the

four IE tasks (e.g., EME+RE or ETD+EAE), thus still suffering from the error

propagation issue (with the missing tasks) and failing to fully exploit potential

inter-dependencies between the four tasks. To this end, this work aims to design a

single model to simultaneously solve the four IE tasks for each input sentence (joint

four-task IE) to address the aforementioned issues of prior joint IE work.

Few recent work has considered joint four-task IE, using deep learning to

produce state-of-the-art (SOTA) performance for the tasks (Y. Lin, Ji, Huang,

& Wu, 2020a; Wadden, Wennberg, Luan, & Hajishirzi, 2019a). However, there

are still two problems that hinder further improvement of such models. First,

at the instance level, an important component of deep learning models for joint

IE involves the representation vectors of the instances that are used to perform

the corresponding prediction tasks for IE in an input sentence (called predictive

instance representations). For joint four-task IE, we argue that there are inter-

dependencies between predictive representation vectors of related instances for the

four tasks that should be modeled to improve the performance for IE. For instance,

the entity type information encoded in the predictive representation vector for an

entity mention can constrain the argument role that the representation vector for
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a related EAE instance (e.g., involving the same entity mention and some event

trigger in the same sentence) should capture and vice versa. As such, prior work for

joint four-task IE has only computed predictive representation vectors for instances

of the tasks independently using shared hidden vectors from some deep learning

layer (Y. Lin et al., 2020a; Wadden et al., 2019a). Although this shared mechanism

helps capture the interaction of predictive representation vectors to some extent,

it fails to explicitly present the connections between related instances of different

tasks and encode them into the representation learning process. Consequently, to

overcome this issue, we propose a novel deep learning model for joint four-task IE

(called FourIE) that creates a graph structure to explicitly capture the interactions

between related instances of the four IE tasks in a sentence. This graph will then

be consumed by a graph convolutional network (GCN) (Kipf & Welling, 2017;

T. H. Nguyen & Grishman, 2018a) to enrich the representation vector for an

instance with those from the related (neighboring) instances for IE.

Second, at the task level, existing joint four-task models for IE have only

exploited the cross-task type dependencies in the decoding step to constrain

predictions for the input sentence (by manually converting the type dependency

graphs of the input sentence into global feature vectors for scoring the predictions

in the beam search-based decoding) (Y. Lin et al., 2020a). The knowledge from

cross-task type dependencies thus cannot contribute to the training process of

the IE models. This is unfortunate as we expect that deeper integration of this

knowledge into the training process could provide useful information to enhance

representation learning for IE tasks. To this end, we propose to use the knowledge

from cross-task type dependencies to obtain an additional training signal for each

sentence to directly supervise our joint four-task IE model. In particular, our
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motivation is that the types expressed in a sentence for the four IE tasks can be

organized into a dependency graph between the types (global type dependencies

for the sentence). As such, in order for a joint model to perform well, the type

dependency graph generated by its predictions for a sentence should be similar

to the dependency graph obtained from the golden types (i.e., a global type

constraint on the predictions in the training step). A novel regularization term

is thus introduced into the training loss of our joint model to encode this constraint,

employing another GCN to learn representation vectors for the predicted and

golden dependency graphs to facilitate the graph similarity promotion. To

our knowledge, this is the first work that employs global type dependencies to

regularize joint models for IE.

Finally, our extensive experiments demonstrate the effectiveness of the

proposed model on benchmark datasets in three different languages (e.g., English,

Chinese, and Spanish), leading to state-of-the-art performance on different settings.

3.1.2 Problem Statement and Background. The joint four-task

IE problem in this work takes a sentence as the input and aims to jointly solve

four tasks EAE, ETD, RE, and EAE using an unified model. As such, the goal

of EME is to detect and classify entity mentions (names, nominals, pronouns)

according to a set of predefined (semantic) entity types (e.g., Person). Similarly,

ETD seeks to identify and classify event triggers (verbs or normalization) that

clearly evoke an event in some predefined set of event types (e.g., Attack). Note

that event triggers can involve multiple words. For RE, its concern is to predict

the semantic relationship between two entity mentions in the sentence. Here, the

set of relations of interest is also predefined and includes a special type of None to

indicate no-relation. Finally, in EAE, given an event trigger, the systems need to
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predict the roles (also in a predefined set with a special type None) that each entity

mention plays in the corresponding event. Entity mentions are thus also called

event argument candidates in this work. Figure 9 presents a sentence example

where the expected outputs for each IE task are illustrated.

Graph Convolutional Networks (GCN): As GCNs are used extensively in

our model, we present their computation process in this section to facilitate the

discussion. Given a graph G = (V,E) where V = {v1, . . . , vu} is the node set (with

u nodes) and E is the edge set. In GCN, the edges in G are often captured via the

adjacency matrix A ∈ Ru×u. Also, each node vi ∈ V is associated with an initial

hidden vector v0
i . As such, a GCN model involves multiple layers of abstraction in

which the hidden vector vl
i for the node vi ∈ V at the l-th layer is computed by

(l ≥ 1):

vl
i = ReLU(

∑u
j=1 AijW

lvl−1
j + bl∑u

j=1 Aij

)

where Wl and bl are trainable weight and bias at the l-th layer. Assuming N

GCN layers, the hidden vectors for the nodes in V at the last layer vN
1 , . . . ,v

N
u

would capture richer and more abstract information for the nodes, serving as

the outputs of the GCN model. This process is denoted by: vN
1 , . . . ,v

N
u =

GCN(A;v0
1, . . . ,v

0
u;N).

3.1.3 Model. Given an input sentence w = [w1, w2, . . . , wn] (with n

words), our model for joint four-task IE on w involves three major components:

(i) Span Detection, (ii) Instance Interaction, and (iii) Type Dependency-based

Regularization.

Span Detection: This component aims to identify spans of entity mentions and

event triggers in w that would be used to form the nodes in the interaction graph

between different instances of our four IE tasks for w. As such, we formulate the
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span detection problems as sequence labeling tasks where each word wi in w is

associated with two BIO tags to capture the span information for entity mentions

and event triggers in w. Note that we do not predict entity types and event types

at this step, leading to only three possible values (i.e., B, I, and O) for the tags of

the words.

In particular, following (Y. Lin et al., 2020a), we first feed w into the pre-

trained BERT encoder (Devlin, Chang, Lee, & Toutanova, 2019a) to obtain a

sequence of vectors X = [x1,x2, . . . ,xn] to represent w. Here, each vector xi serves

as the representation vector for the word wi ∈ w that is obtained by averaging the

hidden vectors of the word-pieces of wi returned by BERT. Afterward, X is fed into

two conditional random field (CRF) layers to determine the best BIO tag sequences

for event mentions and event triggers for w, following (Chiu & Nichols, 2016). As

such, the Viterbi algorithm is used to decode the input sentence while the negative

log-likelihood losses are employed as the training objectives for the span detection

component of the model. For convenience, let Lent
span and Ltrg

span be the negative

log-likelihoods of the gold tag sequences for entity mentions and event triggers

(respectively) for w. These terms will be included in the overall loss function of the

model later.

Instance Interaction: Based on the tag sequences for w from the previous

component, we can obtain two separate span sets for the entity mentions and

event triggers in w (the golden spans are used in the training phase to avoid

noise). For the next computation, we first compute a representation vector for

each span (i, j) (1 ≤ i ≤ j ≤ n) in these two sets by averaging the BERT-based

representation vectors for the words in this span (i.e., xi, . . . ,xj). For convenience,

let Rent = {e1, e2, . . . , enent} (nent = |Rent|) and Rtrg = {t1, t2, . . . , tntrg}
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(ntrg = |Rtrg|) be the sets of span representation vectors for the entity mentions

and event triggers in w1. The goal of this component is to leverage such span

representation vectors to form instance representations and enrich them with

instance interactions to perform necessary predictions in IE.

Instance Representation: Prediction instances in our model amount to the

specific objects that we need to predict a type for one of the four IE tasks. As such,

the prediction instances for EME and ETD, called entity and trigger instances,

correspond directly to the entity mentions and event triggers in Rent and Rtrg

respectively (as we need to predict the entity types for ei ∈ Rent and the event

types for ti ∈ Rtrg in this step). Thus, we also use Rent and Rtrg as the sets of

initial representation vectors for the entity/event instances for EME and ETD in

the following. Next, for RE, the prediction instances (called relation instances)

involve pairs of entity mentions in Rent. To obtain the initial representation

vector for a relation instance, we concatenate the representation vectors of the

two corresponding entity mentions, leading to the set of representation vectors

relij for relation instances: Rrel = {relij = [ei, ej] | ei, ej ∈ Rent, i < j}

(|Rrel| = nent(nent − 1)/2). Finally, for EAE, we form the prediction instances (called

argument instances) by pairing each event trigger in Rtrg with each entity mention

in Rent (for the argument role predictions of the entity mentions with respect to the

event triggers/mentions). By concatenating the representation vectors of the paired

entity mentions and event triggers, we generate the initial representation vectors

argij for the corresponding argument instances: Rarg = {argij = [ti, ej] | ti ∈

1We will also refer to entity mentions and event triggers interchangeably with their span
representations ei and ti in this work.
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Rtrg, ej ∈ Rent} (|Rarg| = ntrgnent)
2. We also use the prediction instances and their

representation vectors interchangeably in this work.

Instance Interaction: The initial representation vectors for the instances so far

do not explicitly consider beneficial interactions between related instances. To

address this issue, we explicitly create an interaction graph between the prediction

instances for the four IE tasks to connect related instances to each other. This

graph will be consumed by a GCN model to enrich instance representations with

interaction information afterward. In particular, the node set Ninst in our instance

interaction graph Ginst = {Ninst,Einst} involves all prediction instances for the

four IE tasks, i.e., Ninst = Rent ∪ Rtrg ∪ Rrel ∪ Rarg. The edge set Einst then

captures instance interactions by connecting the instance nodes in Ninst that

involve the same entity mentions or event triggers (i.e., two instances are related if

they concern the same entity mention or event trigger). As such, the edges in Einst

are created as follows:

(i) An entity instance node ei is connected to all relation instance nodes of

the forms relij = [ei, ej] and relki = [ek, ei] (sharing entity mention ei).

(ii) An entity instance node ej is connected to all argument instance nodes

of the form argij = [ti, ej] (sharing entity mention ej).

(iii) A trigger node ti is connected to all argument instance nodes of the

form argij = [ti, ej] (i.e., sharing event trigger ti).

GCN: To enrich the representation vector for an instance in Ninst with the

information from the related (neighboring) nodes, we feed Ginst into a GCN model

(called GCNinst). For convenience, we rename the initial representation vectors of all

the instance nodes in Ninst by: Ninst = {r1, . . . , rni
} (ni = |Ninst|). Also, let Ainst ∈

2In our implementation, Rrel and Rarg are transformed into vectors of the same size with
those in Rent and Rtrg (using one-layer feed forward networks) for future computation.
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{0, 1}ni×ni be the adjacency matrix of the interaction graph Ginst where Ainst
ij = 1

if the instance nodes ri and rj are connected in Ginst or i = j (for self-connections).

The interaction-enriched representation vectors for the instances in Ninst are then

computed by the GCNinst model: rinst1 , . . . , rinstni
= GCNinst(Ainst; r1, . . . , rni

;Ni) where

Ni is the number of layers for the GCNinst model.

Type Embedding and Prediction: Finally, the enriched instance representation

vectors rinst1 , . . . , rinstni
will be used to perform the predictions for the four IE tasks.

In particular, let tk ∈ {ent, trg, rel, arg} be the corresponding task index and yk

be the ground-truth type (of the task tk) for the prediction instance rk in Ninst.

Also, let T = T ent ∪ T trg ∪ T rel ∪ T arg be the union of the possible entity types

(in T ent for EME), event types (in T trg for ETD), relations (in T rel for RE), and

argument roles (in T arg for EAE) in our problem (yk ∈ T tk). Note that T rel and

T arg contain the special types None. To prepare for the type predictions and the

type dependency modeling in the next steps, we associate each type in T with an

embedding vector (of the same size as ei and ti) that is initialized randomly and

updated during our training process. For convenience, let T = [t̄1, . . . , t̄nt ] where

t̄i is used interchangeably for both a type and its embedding vector in T (nt is the

total number of types). As such, to perform the prediction for an instance rk in

Ninst, we compute the dot products between rinstk and each type embedding vectors

in T tk ∩ T to estimate the possibilities that rk has a type in T tk . Afterward, these

scores are normalized by the softmax function to obtain the probability distribution

ŷk over the possible types in T tk for rk: ŷk = softmax(rinstk t̄
T |t̄ ∈ T tk ∩ T ).

In the decoding phase, the predicted type ŷk for rk is obtained via the argmax

function (greedy decoding): ŷk = argmax ŷk. The negative log-likelihood over all

the prediction instances is used to train the model: Ltype = −
∑ni

k=1 log ŷk[yk].
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Type Dependency-based Regularization: In this section, we aim to obtain

the type dependencies across tasks and use them to supervise the model in the

training process (to improve the representation vectors for IE). As presented in the

introduction, our motivation is to generate global dependency graphs between types

of different IE tasks for each input sentence whose representations are leveraged to

regularize the model during training. In particular, starting with the golden types

y = y1, y2, . . . , yni
and the predicted types ŷ = ŷ1, ŷ2, . . . , ŷni

for the instance nodes

in Ninst, we build two dependency graphs Ggold and Gpred to capture the global

type dependencies for the tasks (called the golden and predicted dependency graphs

respectively). Afterward, to supervise the training process, we seek to constrain

the model so the predicted dependency graph Gpred is similar to the golden graph

Ggold (i.e., using the dependency graphs as the bridges to inject the global type

dependency knowledge in Ggold into the model).

Dependency Graph Construction. Both Ggold and Gpred involve the types

of all the four IE tasks in T as the nodes. To encode the type dependencies,

the connections/edges in Ggold are computed based on the golden types y =

y1, y2, . . . , yni
for the instance nodes in Ninst as follows:

(i) For each relation instance node rk = [ei, ej] ∈ Ninst that has the

golden type yk ̸= None, the relation type node yk is connected to the nodes of

the golden entity types for the corresponding entity mentions ei and ej (called

entity relation type edges).

(ii) For each argument instance node rk = [ti, ej] that has the role type

yk ̸= None, the role type node yk is connected to both the node for the golden

event type of ti (called event argument type edges) and the node for the golden

entity type of ej (called entity argument type edges).
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The same procedure can be applied to build the predicted dependency graph

Gpred based on the predicted types ŷ = ŷ1, ŷ2, . . . , ŷni
. Also, for convenience, let

Agold and Apred (of size nt × nt) be the binary adjacency matrices of Ggold and Gpred

(including the self-loops) respectively.

Regularization: In the next step, we obtain the representation vectors for the

dependency graphs Ggold and Gpred by feeding them into a GCN model (called

GCNtype). This GCN model has Nt layers and uses the initial type embeddings

T = [t̄1, . . . , t̄nt ] as the inputs. In particular, the outputs of GCNtype for the two

graphs involve t̄
gold
1 , . . . , t̄

gold
nt

= GCNtype(Agold; t̄1, . . . , t̄nt ;Nt) and t̄
pred
1 , . . . , t̄

pred
nt

=

GCNtype(Apred; t̄1, . . . , t̄nt ;Nt) that encode the underlying information for the type

dependencies presented in Ggold and Gpred. Finally, to promote the similarity of

the type dependencies in Ggold and Gpred, we introduce the mean square difference

between their GCNtype-induced representation vectors into the overall loss function

for minimization: Ldep =
∑nt

i=1 ||t̄
gold
i − t̄

pred
i ||22.

Our final training loss is thus: L = Lent
span + Ltrg

span + Ltype + λLdep (λ is a

trade-off parameter).

Approximating Apred: We distinguish two types of parameters in our model

so far, i.e., the parameters used to compute instance representations, e.g., those

in BERT and Ginst (called θinst), and the parameters for type dependency

regularization, i.e., those for the type embeddings t̄1, . . . , t̄nt and Gtype (called θdep).

As such, the current implementation only enables the training signal from Ldep to

back-propagate to the parameters θdep and disallows Ldep to influence the instance

representation-related parameters θinst. To enrich the instance representation

vectors with type dependency information, we expect Ldep to be deeper integrated

into the model by also contributing to θinst. To achieve this goal, we note that the
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block of back-propagation between Ldep and θinst is due to their only connection

in the model via the adjacency matrix Apred, whose values are either one or zero.

As such, the values in Apred are not directly dependent on any parameter in θinst,

making it impossible for the back-propagation to flow. To this end, we propose

to approximate Apred with a new matrix Â
pred

that directly involves θinst in

its values. In particular, let Iinst be the index set of the non-zero cells in Apred:

Iinst = {(i, j)|Apred
ij = 1}. As the elements in Iinst are determined by the indexes

i1, . . . , ini
in T of the predicted types ŷ1, ŷ2, . . . , ŷni

(respectively), we also seek

to compute the values for the approximated matrix Â
pred

based on such indexes.

Accordingly, we first define the matrix B = {bij}i,j=1..nt where the element bij at the

i-th row and j-th column is set to bij = i ∗ nt + j. The approximated matrix Â
pred

is

then obtained by:

Â
pred

=
∑

(i,j)∈Iinst

exp
(
−β(B− int − j)2

)
(3.1)

Here, β > 0 is a large constant. For each element (i, j) ∈ Iinst, all the elements in

the matrix (B− int − j)2 are strictly positive, except for the element at (i, j), which

is zero. Thus, with a large value for β, the matrix exp(−β(B− int − j)2) has the

value of one at cell (i, j) and nearly zero at other cells. Consequently, the values

of Â
pred

at the positions in Iinst are close to one while those at other positions

are close to zero, thus approximating our expected matrix Apred and still directly

depending on the indexes i1, . . . , int .

Addressing the Discreteness of Indexes: Even with the approximation Â
pred

,

the back-propagation still cannot flow from Ldep to θinst due to the block of the

discrete and non-differentiable index variables i1, . . . , int . To address this issue, we

propose to apply the Gumbel-Softmax distribution (Jang, Gu, & Poole, 2017) that

enables the optimization of models with discrete random variables, by providing
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a method to approximate one-hot vectors sampled from a categorical distribution

with continuous ones.

In particular, we first rewrite each index ik by: ik = hkc
T
k , where ck is

a vector whose each dimension contains the index of a type in T tk in the joint

type set T , and hk is the binary one-hot vector whose dimensions correspond

to the types in T tk . hk is only turned on at the position corresponding to the

predicted type ŷk ∈ T tk (indexed at ik in T ). In our current implementation, ŷk

(thus the index ik and the one-hot vector hk) is obtained via the argmax function:

ŷk = argmax ŷk, which causes the discreteness. As such, the Gumbel-Softmax

distribution method helps to relax argmax by approximating hk with a sample

ĥk = ĥk,1, . . . , ĥk,|T tk | from the Gumbel-Softmax distribution:

ĥk,j =
exp((log(πk,j) + gj)/τ)∑|T tk |

j′=1 exp((log(πk,j′) + gj′)/τ)
(3.2)

where πk,j = ŷk,j = softmaxj(r
inst
k t̄

T |t̄ ∈ T tk ∩ T ), g1, . . . , g|T tk | are the i.i.d

samples drawn from Gumbel(0,1) distribution (Gumbel, 1948): gj = −log(−log(uj))

(uj ∼ Uniform(0, 1)), and τ is the temperature parameter. As τ → 0, the sample ĥk

would become close to our expected one-hot vector hk. Finally, we replace hk with

the approximation ĥk in the computation for ik: ik = ĥkc
T
k that directly depends

on rinstk and is applied in Â
pred

. This allows the gradients to flow from Ldep to the

parameters θinst and completes the description of our model.

3.1.4 Experiments. Datasets. Following the prior work on joint

four-task IE (Y. Lin et al., 2020a; Wadden et al., 2019a), we evaluate our joint IE

model (FourIE) on the ACE 2005 (Walker et al., 2006) and ERE datasets that

provide annotation for entity mentions, event triggers, relations, and argument

roles. In particular, we use three different versions of the ACE 2005 dataset

that focus on three major joint inference settings for IE: (i) ACE05-R for joint
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inference of EME and RE, (ii) ACE05-E for joint inference of EME, ETD and

EAE, and (iii) ACE05-E+ for joint inference of the four tasks EME, ETD, RE,

and EAE. ACE05-E+ is our main evaluation setting as it fits to our model design

with the four IE tasks of interest.

Datasets Split sents ents rels events

ACE05-R
Train 10,051 26,473 4,788 -
Dev 2,424 6,362 1,131 -
Test 2,050 5,476 1,151 -

ACE05-E
Train 17,172 29,006 4,664 4,202
Dev 923 2,451 560 450
Test 832 3,017 636 403

ACE05-E+
Train 19,240 47,525 7,152 4,419
Dev 902 3,422 728 468
Test 676 3,673 802 424

ERE-EN
Train 14,219 38,864 5,045 6,419
Dev 1,162 3,320 424 552
Test 1,129 3,291 477 559

ACE05-CN
Train 6,841 29,657 7,934 2,926
Dev 526 2,250 596 217
Test 547 2,388 672 190

ERE-ES
Train 7,067 11,839 1,698 3,272
Dev 556 886 120 210
Test 546 811 108 269

Table 6. Numbers of sentences (i.e., sents), entity mentions (i.e., ents), relations
(i.e., rels), and events (i.e., events) in the datasets.

For ERE, following (Y. Lin et al., 2020a), we combine the data from three

datasets for English (i.e., LDC2015E29, LDC2015E68, and LDC2015E78) that

are created under the Deep Exploration and Filtering of Test (DEFT) program

(called ERE-EN). Similar to ACE05-E+, ERE-EN is also used to evaluate the

joint models on four IE tasks.

To demonstrate the portability of our model to other languages, we also

apply FourIE to the joint four-IE datasets on Chinese and Spanish. Following

(Y. Lin et al., 2020a), we use the ACE 2005 dataset for the evaluation on Chinese

(called ACE05-CN) and the ERE dataset (LDC2015E107) for Spanish (called

ERE-ES).
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To ensure a fair comparison, we adopt the same data pre-processing and

splits (train/dev/test) in prior work (Y. Lin et al., 2020a) for all the datasets. As

such, ACE05-R, ACE05-E, ACE05-E+, and AC05-CN involve 7 entity types, 6

relation types, 33 event types, and 22 argument roles while ERE-ES and ERE-EN

include 7 entity types, 5 relation types, 38 event types, and 20 argument roles. The

statistics for the datasets are shown in Table 6.

Hyper-parameters and Evaluation Criteria. We fine-tune the hyper-

parameters for our model using the development data. The suggested values are

shown in the appendix. To achieve a fair comparison with (Y. Lin et al., 2020a), we

employ the bert-large-cased model for the English datasets and bert-multilingual-

cased model for the Chinese and Spanish datasets. Finally, we follow the same

evaluation script and correctness criteria for entity mentions, event triggers,

relations, and argument as in prior work (Y. Lin et al., 2020a). The reported

results are the average performance of 5 model runs using different random seeds.

Performance Comparison. We compare the proposed model FourIE with

two prior models for joint four-task IE: (i) DyGIE++ (Wadden et al., 2019a):

a BERT-based model with span graph propagation, and (ii) OneIE (Y. Lin

et al., 2020a): the current state-of-the-art (SOTA) model for joint four-task IE

based on BERT and type dependency constraint at the decoding step. Table

7 presents the performance (F1 scores) of the models on the test data of the

English datasets. Note that in the tables, the prefixes “Ent”, “Trg”, “Rel”,

and “Arg” represent the extraction tasks for entity mentions, event triggers,

relations, and arguments respectively while the suffixes “-I” and “-C” correspond

to the identification performance (only concerning the offset correctness) and

identification+classification performance (evaluating both offsets and types).
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Datasets Task DyGIE++ OneIE FourIE ∆%

ACE05-R
Ent-C 88.6 88.8 88.9 0.1
Rel-C 63.4 67.5 68.9† 1.4

ACE05-E

Ent-C 89.7 90.2 91.3† 1.1
Trg-I - 78.2 78.3 0.1
Trg-C 69.7 74.7 75.4† 0.7
Arg-I 53.0 59.2 60.7† 1.5
Arg-C 48.8 56.8 58.0† 1.2

ACE05-E+

Ent-C - 89.6 91.1† 1.5
Rel-C - 58.6 63.6† 5.0
Trg-I - 75.6 76.7† 1.1
Trg-C - 72.8 73.3† 0.5
Arg-I - 57.3 59.5† 2.2
Arg-C - 54.8 57.5† 2.7

ERE-EN

Ent-C - 87.0 87.4 0.4
Rel-C - 53.2 56.1† 2.9
Trg-I - 68.4 69.3† 0.9
Trg-C - 57.0 57.9† 0.9
Arg-I - 50.1 52.2† 2.1
Arg-C - 46.5 48.6† 2.1

Table 7. F1 scores of the models on the test data of English datasets. ∆ indicates
the performance difference between FourIE and OneIE. Rows with † designate the
significant improvement (p < 0.01) of FourIE over OneIE.

As can be seen from the table, FourIE is consistently better than the

two baseline models (DyGIE++ and OneIE) across different datasets and tasks.

The performance improvement is significant for almost all the cases and clearly

demonstrates the effectiveness of the proposed model.

Finally, Table 8 reports the performance of FourIE and OneIE on the

Chinese and Spanish datasets (i.e., ACE05-CN and ERE-ES). In addition to the

monolingual setting (i.e., trained and evaluated on the same languages), following

(Y. Lin et al., 2020a), we also evaluate the models on the multilingual training

settings where ACE05-CN and ERE-ES are combined with their corresponding

English datasets ACE05-E+ and EAE-EN (respectively) to train the models (for

the four IE tasks), and the performance is then evaluated on the test sets of the

corresponding languages (i.e., ACE05-CN and ERE-ES). It is clear from the table

that FourIE also significantly outperforms OneIE across nearly all the different
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setting combinations for languages, datasets and tasks. This further illustrates the

portability of FourIE to different languages.

Test Data Train Data Task OneIE FourIE ∆%

ACE05-CN

ACE05-CN

Ent-C 88.5 88.7 0.2
Rel-C 62.4 65.1† 2.7
Trg-C 65.6 66.5† 0.9
Arg-C 52.0 54.9† 2.9

ACE05-CN
ACE05-E+

Ent-C 89.8 89.1 -0.7
Rel-C 62.9 65.9† 3.0
Trg-C 67.7 70.3† 2.6
Arg-C 53.2 56.1† 2.9

ERE-ES

ERE-ES

Ent-C 81.3 82.2† 0.9
Rel-C 48.1 57.9† 9.8
Trg-C 56.8 57.1 0.3
Arg-C 40.3 42.3† 2.0

ERE-ES
ERE-EN

Ent-C 81.8 82.7† 0.9
Rel-C 52.9 59.1† 6.2
Trg-C 59.1 61.3† 2.2
Arg-C 42.3 45.4† 3.1

Table 8. F1 scores on Chinese and Spanish test sets. † marks the significant
improvement (p < 0.01) of FourIE over OneIE.

Effects of GCNinst and GCNtype. This section evaluates the contributions of the two

important components in our proposed model FourIE, i.e., the instance interaction

graph with GCNinst and the type dependency graph with GCNtype. In particular, we

examine the following ablated/varied models for FourIE: (i) “FourIE-GCNinst”: this

model excludes the instance interaction graph and the GCN model GCNinst from

FourIE so the initial instance representations rk are directly used to predict the

types for the instances (replacing the enriched vectors rinstk ), (ii) “FourIE-GCNtype”:

this model eliminates the type dependency graph and the GCN model GCNtype (thus

the loss term Ldep as well) from FourIE, (iii) “FourIE-GCNinst-GCNtype”: this model

removes both the instance interaction and type dependency graphs from FourIE,

(iv) “FourIE-GCNtype+TDDecode”: this model also excludes GCNtype; however,

it additionally applies the global type dependencies features to score the joint

predictions for the beam search in the decoding step (the implementation for this
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beam search is inherited from (Y. Lin et al., 2020a) for a fair comparison), and (v)

“FourIE-Â
pred

”: instead of employing the approximation matrix Â
pred

in FourIE,

this model directly uses the adjacency matrix Apred in the Ldep regularizer (Ldep

thus does not influence the instance representation-related parameters θinst). Table

9 shows the performance of the models on the development dataset of ACE05-E+

for four IE tasks.

Models Ent-C Rel-C Trg-C Arg-C

FourIE 89.6 64.3 71.0 59.0

FourIE-GCNinst 89.1 62.3 70.3 57.5

FourIE-GCNtype 88.5 61.8 69.9 56.6

FourIE-GCNinst-GCNtype 88.2 59.3 68.9 56.1

FourIE-GCNtype+TDDecode 88.8 59.6 70.8 56.8

FourIE-Â
pred

89.0 62.3 70.2 57.6

Table 9. F1 scores of the models on the ACE05-E+ dev data.

The most important observation from the table is that both GCNinst and

GCNtype are necessary for FourIE to achieve the highest performance for the

four IE tasks. Importantly, replacing GCNtype in FourIE with the global type

dependency features for decoding (i.e., “FourIE-GCNtype+TDDecode”) as in

(Y. Lin et al., 2020a) or eliminating the approximation Â
pred

for Ldep produces

inferior performance, especially for relation and argument extraction. This clearly

demonstrates the benefits for deeply integrating knowledge from type dependencies

to influence representation learning parameters with Ldep for joint four-task IE.

Contributions of Type Dependency Edges. Our type dependency

graphs Ggold and Gpred involves three categories of edges, i.e., entity relation,

entity argument, and event argument type edges. Table 10 presents the

performance of FourIE (on the development data of ACE05-E+) when each of

these edge categories is excluded from our type dependency graph construction.
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Models Ent-C Rel-C Trg-C Arg-C

FourIE 89.6 64.3 71.0 59.0

FourIE - entity relation 88.7 61.9 71.0 57.5

FourIE - entity argument 89.3 63.2 70.0 56.9

FourIE - event argument 89.5 64.1 69.8 57.7

Table 10. F1 scores of the ablated models for type dependency edges on the ACE05-
E+ dev data.

The table clearly shows the importance of different categories of type

dependency edges for FourIE as the elimination of any category would generally

hurt the performance of the model. In addition, we see that the contribution

level of the type dependency edges intuitively varies according to the tasks of

consideration. For instance, entity relation type edges are helpful mainly for entity

mention, relation and argument extraction. Finally, an error analysis is conducted

in the appendix to provide insights about the benefits of the type dependency

graphs Ggold and Gpred for FourIE (i.e., by comparing the outputs of FourIE and

“FourIE-GCNtype”).

3.1.5 Related Work. The early joint methods for IE have employed

feature engineering to capture the dependencies between IE tasks, including Integer

Linear Programming for Global Constraints (Q. Li, Anzaroot, Lin, Li, & Ji, 2011;

Roth & Yih, 2004a), Markov Logic Networks (Riedel, Chun, Takagi, & Tsujii, 2009;

Venugopal, Chen, Gogate, & Ng, 2014), Structured Perceptron (Judea & Strube,

2016; Q. Li, Ji, Hong, & Li, 2014; Q. Li et al., 2013a; Miwa & Sasaki, 2014), and

Graphical Models (B. Yang & Mitchell, 2016a; Yu & Lam, 2010a).

Recently, the application of deep learning has facilitated the joint modeling

for IE via shared parameter mechanisms across tasks. These joint models have

focused on different subsets of the IE tasks, including EME and RE (Bekoulis,

Deleu, Demeester, & Develder, 2018a; T.-J. Fu, Li, & Ma, 2019; Katiyar &
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Cardie, 2017; Luan et al., 2019a; C. Sun et al., 2019; Veyseh, Dernoncourt, Dou,

& Nguyen, 2020a; Veyseh, Dernoncourt, Thai, Dou, & Nguyen, 2020a; Zheng et

al., 2017a), event and temporal RE (Han, Ning, & Peng, 2019), and ETD and

EAE (T. H. Nguyen, Cho, & Grishman, 2016a; T. M. Nguyen & Nguyen, 2019a;

Zhang et al., 2019). However, none of these work has explored joint inference for

four IE tasks EME, ETD, RE, and EAE as we do. The two most related works to

ours include (Wadden et al., 2019a) that leverages the BERT-based information

propagation via dynamic span graphs, and (Y. Lin et al., 2020a) that exploits

BERT and global type dependency features to constrain the decoding step. Our

model is different from these works in that we introduce a novel interaction graph

for instance representations for four IE tasks and a global type dependency graph

to directly inject the knowledge into the training process.

3.1.6 Summary. We present a novel deep learning framework to

jointly solve four IE tasks (EME, ETD, RE, and EAE). Our model attempts

to capture the inter-dependencies between instances of the four tasks and their

types based on instance interaction and type dependency graphs. GCN models

are employed to induce representation vectors to perform type predictions for task

instances and regularize the training process. The experiments demonstrate the

effectiveness of the proposed model, leading to SOTA performance over multiple

datasets on English, Chinese, and Spanish.

3.2 DepIE

3.2.1 Introduction. Entity mention recognition (EMR), event trigger

detection (ETD), event argument extraction (EAE), and relation extraction (RE)

are four main challenging tasks in information extraction (IE), which aim to extract

entities (e.g., a person), events (e.g., an attack), event arguments (e.g., a victim
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in an attack), and relations (e.g., work-for) mentioned in text. These IE tasks

have been solved mostly in pipelined approaches (Y. Chen, Xu, Liu, Zeng, & Zhao,

2015c; Du & Cardie, 2020; V. D. Lai et al., 2020; F. Li et al., 2020b; Q. Li, Ji, &

Huang, 2013b; M. V. Nguyen, Nguyen, et al., 2021; T. H. Nguyen & Grishman,

2015a; Pouran Ben Veyseh, Lai, Dernoncourt, & Nguyen, 2021; Veyseh, Nguyen, &

Nguyen, 2020a), where input to a model performing an IE task involves predictions

from other models performing other IE tasks. As a result, errors in predictions by

a model can be propagated to subsequent models in the pipeline to hurt overall

performance.

To avoid error propagation, the four IE tasks can be solved jointly (JointIE)

in a single model (Y. Lin et al., 2020b; M. V. Nguyen, Lai, & Nguyen, 2021; Zhang

& Ji, 2021b). As such, a key challenge for JointIE models is to effectively capture

dependencies between the IE tasks to boost overall extraction performance. In

particular, two types of task dependencies are important for JointIE, i.e., cross-

instance and cross-type dependencies. First, for cross-instance dependencies,

JointIE models use instances to refer to word spans for event triggers/entity

mentions (for EMR and ETD) or pair of word spans of event triggers/entity

mentions (for EAE and RE) that should be classified according to predefined

information types for IE. Accordingly, an important insight from previous JointIE

models is to enrich the representation for one instance with those from related

instances in different IE tasks to facilitate the type prediction (Y. Lin et al., 2020b;

M. V. Nguyen, Lai, & Nguyen, 2021). To this end, a typical approach to encode

cross-instance dependencies for representation learning in previous work involves

creating dependency graphs between instances to connect related instances to

facilitate representation learning (M. V. Nguyen, Lai, & Nguyen, 2021; Zhang &
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Ji, 2021b). However, as the instance dependency graphs in previous work are only

created manually using some heuristics, e.g., connecting instances that share an

entity mention or event trigger (M. V. Nguyen, Lai, & Nguyen, 2021), they might

be suboptimal for a given dataset and hinder further performance improvement for

IE.

Consequently, to improve representation enrichment with information from

related instances for JointIE, our work proposes to automatically learn cross-

instance dependency graphs for IE tasks from data. To enable maximal flexibility,

we explore a fully connected graph between all task instances in a sentence where

a dependency weight is assigned to each edge to quantify the relatedness between

two instances. In our method, we argue that dependency weights between task

instances should be computed over multiple sources of information to produce

optimal and comprehensive dependency graphs. To this end, motivated by the

encoding of different linguistic structures (e.g., semantics, syntax) in the layers of

pre-trained language models (PLMs), e.g., BERT (Devlin et al., 2019b; Jawahar,

Sagot, & Seddah, 2019), we propose to leverage the representations of instances

at different layers of PLMs to compute dependency weights for the instances. In

particular, given two instances for JointIE, their representation vectors at each

layer of a PLM are consumed to produce a layer-specific dependency weight, which

will be combined across layers to obtain an overall weight for our dependency graph.

Graph Convolutional Networks (GCNs) (Kipf & Welling, 2017; T. H. Nguyen &

Grishman, 2018a) will then be used to induce enriched representations for the

instances based on the computed cross-instance dependency graph.

In addition, cross-type dependencies/patterns in JointIE systems

characterize co-occurrences/co-relations of information types of different IE
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tasks (e.g., entity/event types and argument roles) in a single input sentence. For

instance, in the ACE 2005 dataset (Walker et al., 2006), a “Victim” argument for

an “Attack” event is likely to be the “Victim” argument for a “Die” event in the

same sentence. Accordingly, previous JointIE models have leveraged cross-type

dependencies either in the decoding phase, i.e., to form global type patterns/graphs

to constrain the type prediction (Y. Lin et al., 2020b), or in the training phase,

i.e., to form type dependency graphs to aid consistency regularization of golden

and predicted types (M. V. Nguyen, Lai, & Nguyen, 2021). However, as in cross-

instance dependencies, the dependency graphs between information types in IE in

previous work are also designed manually, e.g., by linking types that are involved

in the same instance for some IE task (M. V. Nguyen, Lai, & Nguyen, 2021). This

is not desirable as manual designs might miss important cross-type patterns that

cannot guarantee optimal performance for JointIE.

To this end, we propose to further learn cross-type dependencies/patterns

from data to better support type predictions of JointIE instances. As such, we view

each information type in our IE tasks as a binary random variable, which is 1 if

the type appears in the sentence, and 0 otherwise. This formulation enables us

to employ Bayesian structure learning algorithms to infer dependency structures

from data. In particular, we propose to leverage the Chow-Liu algorithm (Chow

& Liu, 1968) that measures mutual information between any two types (variables)

in training data to learn a first-order dependency tree, aiming to approximate

the underlying joint distribution of the information types (types) for JointIE.

Afterward, the resulting Chow-Liu tree containing induced dependencies between

information types will be used to generate global cross-type patterns for JointIE.

77



To incorporate the learned cross-type dependencies into the JointIE model,

our goal is to leverage such global patterns to obtain additional features to further

enrich the GCN-induced representations for type prediction. Our intuition is to

treat the induced cross-type patterns as anchor knowledge to which the information

types, representations, and dependencies of IE instances in a sentence should

adhere to exploit consistency and improve predictions for JointIE in the data.

To this end, for each learned cross-type pattern, we seek to compute a similarity

score between the computed cross-instance dependency graph for an input sentence

and the cross-type pattern that can be included into the representations for the

instances to predict types. Accordingly, we propose to leverage random walk graph

kernels (Feng, You, Wang, & Tassiulas, 2022; Gärtner, Flach, & Wrobel, 2003)

that facilitate similarity computation between two graphs (i.e., the cross-instance

dependency graph and cross-type pattern) via counting common random walks on

the graphs to enrich representations for JointIE. Finally, we evaluate the proposed

model with induced cross-task and cross-type dependencies for JointIE in both

monolingual and cross-lingual learning settings. Experimental results show that

our model consistently outperforms strong baselines in all the settings across four

different datasets and languages.

3.2.2 Model. There are four tasks in our IE pipeline, i.e., entity

mention recognition (EMR), event detection (ED), event argument extraction

(EAE), and relation extraction (RE). EMR and ED seek to identify word spans

and types for entities (e.g., a “Person”) and events (e.g., an “Attack”) in text,

respectively. On the other hand, EAE aims to identify whether each entity mention

plays an argument role (e.g., an “Attacker”) in a given event mention. A special

type “Other-role” is used to indicate that an entity does not play any role in a
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Figure 11. Overview of our JointIE model.

given event. For RE, the task is to determine if a relation (e.g., an “Affiliation”

relation) exists between two given entity mentions. Similar to EAE, an special

type “Other-relation” is used in RE to indicate no relation between two given

entities. Joint information extraction (JointIE) is the joint task of EMR, ED, EAE,

and RE (Y. Lin et al., 2020b; M. V. Nguyen, Lai, & Nguyen, 2021; Zhang & Ji,

2021b), which aims to simultaneously predict entity mentions, event triggers, event

arguments and relations for an input text in an end-to-end fashion.

Our proposed model (called “DepIE”) for JointIE consists of three main

components: (i) Instance Detection, (ii) Cross-Instance Dependencies, and (iii)

Cross-type Dependencies. Figure 11 presents an overview for our model.

3.2.2.1 Instance Detection. The first step in our model is to identify

candidate instances for all the four IE tasks. In particular, candidate instances for
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EMR and ED involve spans of words for entity mentions and event triggers in text.

For EAE, a candidate instance is formed by a pair of an event trigger span and

an entity mention span. Similarly, we can obtain candidate instances for RE by

pairing entity mention spans. Note that this step only performs candidate instance

identification. Information types for the instances will be predicted in the next

steps.

Event Triggers and Entity Mentions: Given an input sentence w =

[w1, . . . , wN ] with N words, we employ a pretrained language model (PLM),

e.g., RoBERTa (Y. Liu et al., 2019), to produce a sequence of contextualized

embeddings X = [x1, . . . ,xN ] for the words (using average of hidden vectors for

word-pieces in the last layer of the PLM). The vector sequence X is then consumed

by two different conditional random fields (CRFs) layers to predict two BIO

tag sequences; each sequence aims to captures spans of event triggers (or entity

mentions) for ED (or EMR). The negative log-likelihoods Lt and Le returned by

the CRFs for the ground-truth tag sequences of the spans for EMR and ED will

then be included into the overall loss function. At test time, Viterbi algorithm

is used to search for most probable tag sequences to find spans for event triggers

Vt = {vt} and entity mentions Ve = {ve} (i.e., candidate instances) in the sentence.

Each event trigger/entity mention is represented by a vector v∗ (∗ ∈ {t, e}),

computed via the average of contextualized embeddings for the words inside its

corresponding spans v∗.

Event Arguments and Relations: While it is possible to use all pairs of

entity mention and event trigger spans for the candidate instances of EAE and

RE for type prediction, the large number of possible pairs will increase necessary

computational resources. To this end, we first send the pairs into binary classifiers
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to determine if they are positive examples (i.e., corresponding to some actual types

of interest for EAE and RE). In particular, to decide if an entity mention ve ∈ Ve

plays any role with an event trigger vt ∈ Vt, we concatenate their span vectors (i.e.,

ve and vt) and feed the concatenation into a feed-forward network (FFN) with a

sigmoid function in the end: pa = σ(FFNa([ve;vt])). Here, the score pa ∈ (0, 1)

represents the likelihood for ve to be an argument of some role for vt. Similarly,

we can compute a score pr ∈ (0, 1) for all pairs of entity mentions ve1 , ve2 ∈ Ve to

estimate the likelihood that there exists a relation between the entity mentions. In

the training process, we obtain the binary cross-entropy losses La and Lr computed

with the probability scores pa, pr to include in the overall loss function. In test

time, we employ a threshold of 0.5 for the scores pa, pr to determine positive

pairs Va = {va = (vt, ve)} for event arguments and Vr = {vr = (ve1 , ve2)} for

relations. Only positive pairs are retained for our next steps of type prediction.

Finally, each positive event argument/relation is also represented by the average of

representations of the involving event trigger and entity mention instances, called

va and vr.

3.2.2.2 Cross-Instance Dependencies. Given the detected

instances for the four IE tasks in w, we aim to enrich the representation for

each instance with information from other related instances to facilitate type

prediction. As such, our model first learns a dependency graph Ginst = (V,E)

to capture the relatedness for the instances (called cross-instance dependency

graph). In particular, the node set V of Ginst involves all the detected instances,

i.e., V = Vt ∪ Ve ∪ Va ∪ Vr. To enable information flow across different instances, our

edge set E will include an edge for each possible pair of instances in V ; a weight αij
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will be assigned to each pair (vi, vj) to quantify the dependency between vi and vj

in V .

To learn the dependency weights αij, our intuition is to exploit information

from different sources (e.g., semantics, syntax) to ensure comprehensive coverage of

relatedness aspects for JointIE. Motivated by different linguistic features encoded in

different transformer layers of PLMs (Jawahar et al., 2019), we propose to treat

each layer of BERT (with L layers) as a source of information. In particular,

each word in the input sentence will be represented by L different embeddings

returned by each layer of the PLM. In this way, for each node in V , we can obtain

L different node representations computed at each layer of BERT (by averaging

representations for word-pieces). Let vl
i,v

l
j be the representations for the nodes

vi, vj ∈ V at layer l of the PLM. The dependency weight αl
ij ∈ (0, 1) between the

instance nodes vi, vj at layer l of BERT is computed by: αl
ij = FFN l

σ([v
l
i;v

l
j]),

where FFN l
σ is a feed-forward network with a sigmoid function in the end.

To this end, each instance vi ∈ V is associated with L sets of weights

{αl
ij} capturing its dependencies on the other instances according to L different

sources of information from BERT. The importance of the l-th information

source to representation learning of vi is then measured by sending its l-th

representation vl
i to a feed-forward network FFNsrc(v

l
i). Afterward, we normalize

the layer-specific importance scores for vi across layers with softmax, leading to

sli = softmaxl(FFNsrc(v
1:L
i )). The dependency weight between vi and vj in our

cross-instance graph is then determined via: αij =
∑

l s
l
iα

l
ij.

Finally, the induced dependency graph with weights αij is used to enhance

the representations for vi ∈ V via a Graph Convolutional Network (GCN) (Kipf &
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Welling, 2017; T. H. Nguyen & Grishman, 2018a) with K layers:

hk
i = ReLU(

∑
vj∈V αijW

khk−1
j + bk∑

vj∈V αij

), 1 ≤ k ≤ K

where hk
i is the representation for vi at the k-th layer of GCN (h0

i = vi). For

convenience, let hi be the representation for the instance vi at the final layer of the

GCN, i.e., hi = hK
i .

3.2.2.3 Cross-Type Dependencies. As discussed in the introduction,

to further improve the representations for the instances vi for type prediction,

our method proposes to induce global dependencies between information types

for different IE tasks (called cross-type dependencies) from data and use them as

knowledge to generate additional features for instance representations.

Cross-type Dependency Induction: For convenience, let T be the set of all

information types for our four IE tasks, i.e., including entity types, event types,

event argument roles, and relations. To infer dependencies/patterns between the

types in T , our goal is to leverage their co-occurrences in the sentences of training

data for the computation. As such, we consider the information types in T as

random variables and leverage the well-known Chow-Liu algorithm (Chow & Liu,

1968) in Bayesian structure learning to find meaningful relationships/patterns

among the types. The Chow-Liu algorithm approximates the underlying joint

distribution of random variables by finding a first-order dependency tree among the

variables (i.e., tree nodes correspond to the variables).

Let Xi ∈ {0, 1} be the binary random variable for the information type

ti ∈ T where Xi = 1 if there exists one instance with type ti in the current sentence,

and Xi = 0 otherwise. The algorithm then computes mutual information (MI)
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scores between any two random variables Xi, Xj via:

I(Xi, Xj) =
∑

xi,xj∈{0,1}

P̂ (xi, xj)log
P̂ (xi, xj)

P̂ (xi)P̂ (xj)

where P̂ (xi, xj) =
count(Xi=xi,Xj=xj)

M
is the empirical joint distribution between

Xi and Xj computed by counting across training data (M is the total number

of sentences in the training data). Similarly, we can compute the marginal

distributions P̂ (xi) and P̂ (xj). Afterwards, we construct a cross-type dependency

tree Gctp for information types as the spanning tree over the random variables that

achieves maximum sum of the MI scores. The maximum spanning tree can be

solved via Kruskal (Kruskal, 1956) or Prim (Prim, 1957) algorithms.

To make it more manageable, we collect the set of connected sub-graphs

(i.e., trees) U that have at least two nodes and less than n nodes in Gctp (2 ≤ n ≤

|T | is a hyper-parameter) to serve as the global cross-type patterns/dependencies

induced by our method for JointIE.

Feature Generation with Graph Kernels: Using the induced cross-type

patterns Gctp
d ∈ U from data as anchor knowledge, we expect the information

types, instance representations, and instance dependencies in an input sentence w

to follow the patterns to exploit consistency in the data. In particular, instance

representations and dependencies in an input sentence will have higher quality

for type prediction if they are more similar to the induced cross-type patterns

from data. Accordingly, we propose to leverage similarity scores between the cross-

instance dependency graph for w and the cross-type patterns in U as additional

features to improve representations for JointIE. Here, we can employ the cross-

instance dependency graph Ginst with dependency weights αij computed in the

previous step for the feature computation.

84



As such, to compute the similarity between Ginst and Gctp
d , we propose

to employ random walk graph kernels (Gärtner et al., 2003) that can facilitate

similarity measurement between two graphs with different number of nodes.

In particular, the random walk kernel is computed by counting the number of

common random walks on the two graphs, which has been shown to be equivalent

to performing a random walk on the direct product of the graphs (Vishwanathan,

Borgwardt, Schraudolph, et al., 2006). This enables the p-step random walk kernel

between two graphs G1 and G2 to be efficiently computed via: (Feng et al., 2022;

Vishwanathan et al., 2006):

Kp(G1, G2) =
∑
i,j

[
(V1V

T
2 )⊙ (Ap

1V1(A
p
2V2)

T )
]
ij

where V1 and V2 are the node embedding matrices for the node sets; A1 and A2

are adjacency matrices for the graphs G1 and G2 respectively; ⊙ is the element-wise

product, and Ap
∗ is the p-th power of the matrix A∗ (∗ ∈ {1, 2}).

To adapt this random walk kernel for Ginst and Gctp
d , we can obtain the

adjacency matrix Ainst for Ginst from the dependency weights αij, i.e., A
inst
ij = αij.

The node embedding matrix Vinst for Ginst can leverage the GCN-induced vectors

by setting the i-th row of Vinst to hi for instance vi ∈ V . Also, for each induced

cross-type pattern/tree Gctp
d ∈ U , we can use its binary adjacency matrix Actp

d

for the kernel computation. Its node embedding matrix Vctp
d will be produced by

looking up the corresponding types in a type embedding matrix T for all types in

T . In our method, T is initialized randomly so its embedding dimension is equal

to those for the instance representation hi. In this way, we can compute a kernel-

based similarity score ksd = Kp(G
inst, Gctp

d ) between the cross-instance dependency

graph Ginst and each cross-type pattern in U . Finally, the concatenation of such

similarity scores, i.e., mctp = [ks1, ks2, . . . , ks|U |], can be used to provide additional
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Model
ACE05-E+ (English) ACE05-CN (Chinese) ACE05-AR (Arabic) ERE-ES (Spanish)
Ent Rel Trg Arg Ent Rel Trg Arg Ent Rel Trg Arg Ent Rel Trg Arg

Text2event - - 71.8 54.4 - - - - - - - - - - - -

DEGREE-E2E - - 71.7 56.8 - - - - - - - - - - - -

Query&Extract - - 73.6 55.1 - - - - - - - - - - - -

GTEE-DYNPREF - - 74.3 54.7 - - - - - - - - - - - -

OneIE 90.8 60.4 72.5 56.3 88.5 64.9 67.3 54.8 81.2 59.0 56.6 37.2 83.7 57.5 58.3 42.5

AMRIE 91.0 62.8 72.7 57.7 - - - - - - - - - - - -

FourIE 91.1 63.1 72.8 58.3 88.8 66.0 69.1 57.5 81.7 61.4 57.9 42.1 83.8 59.0 63.4 45.1

DepIE (Ours) 91.7 64.9 74.6 61.2 89.2 68.3 74.3 60.0 82.7 63.5 63.1 46.4 86.5 61.2 65.9 51.9

Table 11. Monolingual performance on test data of the datasets. “Ent”, “Rel”,
“Trg”, and “Arg” indicate F1 scores for identification and classification of entity
mentions, relations, event triggers, and arguments respectively. All results are
reported by the original papers or produced by running the official code. All
JointIE models use large RoBERTa. Underlined numbers indicate that DepIE is
significantly better than the baselines (p < 0.01).

global features for the instance representations for type predictions. Note that in

this way, our cross-type patterns can support both training and test phases for

JointIE models. This is in contrast to previous methods that can only utilize

manually designed patterns in either training (e.g., FourIE) or decoding (e.g.,

OneIE) phase.

Training: To predict type for each instance vi ∈ V , we compute an overall

representation vector ri for vi by concatenating its GCN-induced representation

hi and the global features mptn: ri = FFNpred(concat(hi,m
ptn)). Here, FFNpred

is a feed-forward network to ensure that ri has the same dimension as the type

embeddings T. The type distribution vi is then estimated by normalizing the

similarity of ri and the type embeddings: ŷi = softmax(rit
T |t ∈ Ti) where Ti is the

set of embeddings for all possible types Ti for vi in T . The negative log-likelihood of

the ground-truth types ti is then used to train our model: Lcls = −
∑

vi∈V log(ŷi[ti]).

In summary, the overall training loss for our model is: L = Lt + Le + La + Lr + Lcls.

3.2.3 Experiments. Datasets: Following previous work (Y. Lin

et al., 2020b; M. V. Nguyen, Lai, & Nguyen, 2021), we conduct experiments on
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four datasets with different languages, i.e., ACE05-E+ (English), ACE05-CN

(Chinese), ACE05-AR (Arabic), and ERE-ES (Spanish). The three ACE05 datasets

are created by the Automatic Content Extraction program (Walker et al., 2006)

with 33 event types, 7 entity types, 6 relation types, and 22 argument roles; and

the ERE-ES dataset is from the Deep Exploration and Filtering of Text program

(DEFT) (Song et al., 2015) with a similar schema to ACE05 datasets. For a fair

comparison, we use the same preprocessing and train/dev/test splits for ACE05-

E+, ACE05-CN, and ERE-ES as provided by prior work (Y. Lin et al., 2020b;

M. V. Nguyen, Lai, & Nguyen, 2021). The ACE05-AR dataset does not have a

standard split for JointIE so we follow the data split by (M’hamdi et al., 2019) for

ETD in Arabic and apply the same preprocessing code from previous work (Y. Lin

et al., 2020b) to produce the train/dev/test sets for ACE05-AR. Additionally, we

perform experiments on the IARPA BETTER program3’s Basic Event Extraction

datasets, which feature 118 event types, 3 mention types, and 3 argument roles.

The BETTER-EN dataset is obtained by respectively combining the official

training, development, and test parts of Phase 1, 2, and 3 English data. For the

BETTER-FA dataset, we randomly split the Phase 2 Farsi evaluation data into

training, development, and test portions with a ratio of 70/15/15 as no standard

split is provided. Statistics for all the datasets are shown in Table 12.

Hyper-Parameters: For the PLMs, we use RoBERTa large (Y. Liu et al., 2019)

and its multilingual version XLM-RoBERTa large (Conneau et al., 2020) for

English and non-English datasets respectively. We tune hyper-parameters for our

model on ACE05-E+ development data and apply the best hyper-parameters to

the other datasets for consistency. In particular, we select: 5e-6 for learning rate

3https://www.iarpa.gov/index.php/research-programs/better
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Datasets Split #sents #ents #rels #events

ACE05-E+
Train 19,240 47,525 7,152 4,419
Dev 902 3,422 728 468
Test 676 3,673 802 424

ACE05-CN
Train 6,841 29,657 7,934 2,926
Dev 526 2,250 596 217
Test 547 2,388 672 190

ACE05-AR
Train 1,915 28,113 4,063 1,198
Dev 108 1,892 275 112
Test 152 2,495 374 169

ERE-ES
Train 7,067 11,839 1,698 3,272
Dev 556 886 120 210
Test 546 811 108 269

BETTER-EN
Train 5,617 18,815 - 16,594
Dev 1,163 3,958 - 3,177
Test 1,173 3,707 - 3,311

BETTER-FA
Train 2,932 11,612 - 10,100
Dev 592 2,377 - 2,061
Test 658 2,468 - 2,054

Table 12. Dataset statistics. #sents, #ent, #rels, and #events represent the
numbers of sentences, entity mentions, relations, and events respectively.

with Adam optimizer; 10 for batch size; 300 for the hidden vector sizes for all the

feed-forward networks and the GCN model; 2 for the number of layers for the feed-

forward and GCN networks; n = 4 for the sizes of cross-type patterns in U ; and

p = 2 for the kernel computation. The model performance is obtained by averaging

over three runs with different random seeds.

Baselines: We compare our method (i.e., DepIE) with recent models that jointly

perform our four IE tasks, including OneIE (Y. Lin et al., 2020b), AMRIE

(Zhang & Ji, 2021b), and FourIE (M. V. Nguyen, Lai, & Nguyen, 2021). FourIE

is the current state-of-the-art method for JointIE. Among models, OneIE, FourIE,

and our model DepIE are language-agnostic so they can be directly applied to non-

English datasets. In contrast, AMRIE is only designed for English as it requires an

English AMR parser. To be comprehensive, we also consider recent event extraction

methods, i.e., Text2event (Lu et al., 2021b), DEGREE-E2E (I. Hsu et al.,

2021), Query&Extract (S. Wang, Yu, Chang, Sun, & Huang, 2022), GTEE-
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DYNPREF (X. Liu, Huang, Shi, & Wang, 2022), which perform only ETD and

EAE.

Datasets Task OneIE FourIE DepIE (Ours)

BETTER-EN
(English)

Ent 75.1 75.3 76.5
Trg 63.6 63.9 65.6
Arg 62.4 64.5 65.6

BETTER-FA
(Farsi)

Ent 65.1 65.7 66.5
Trg 57.0 57.6 59.1
Arg 55.2 56.3 58.1

Table 13. Monolingual performance (F1 scores) on test data of BETTER datasets.

Test Data Task OneIE FourIE DepIE (Ours)

ACE05-CN

Ent 70.2 70.8 71.8
Rel 31.1 32.6 35.7
Trg 58.4 60.5 62.1
Arg 37.9 39.2 41.5

ACE05-AR

Ent 64.2 65.4 66.5
Rel 27.1 30.6 31.7
Trg 35.4 36.9 40.6
Arg 25.0 26.5 28.0

ERE-ES

Ent 75.5 76.5 76.6
Rel 27.7 28.6 33.0
Trg 45.3 47.0 49.9
Arg 34.2 35.4 37.4

BETTER-FA
Ent 74.1 74.2 74.8
Trg 56.5 57.3 58.7
Arg 59.8 61.7 63.0

Table 14. Cross-lingual performance (F1 scores) on test data of non-English
datasets. For the BETTER-FA setting, the models are trained on training data of
BETTER-EN only. For the other settings, only training data of ACE05-E+ is used
for training.

Monolingual Performance: We first compare the models in monolingual settings

across the four datasets in Tables 11 and 13 where models are trained and tested

on data of the same language. As can be seen, our model performs significantly

better than the baselines across the datasets. Among the four IE tasks, the EAE

and RE tasks appear to gain largest performance improvements. Further, as the

improvements are consistent across languages, it highlights the portability to
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different languages of the induced cross-instance and cross-task dependencies in

our proposed model for JointIE.

Crosslingual Performance: To further investigate the cross-lingual

generalization of the JointIE models, we compare OneIE, FourIE, and DepIE in

the cross-lingual transfer learning settings where the models are trained on training

data of English datasets and evaluated on the test data of the other languages. As

shown in Table 14, our model DepIE is still the best performer in the crosslingual

settings over different tasks and test languages. The performance improvement is

significant on almost all tasks (p < 0.01), thus demonstrating language-invariant

advantages of our designed cross-task dependencies for JointIE. In addition, we

note that this is the first comprehensive evaluation of JointIE models in cross-

lingual transfer learning. As the performance of the current models is still not

satisfactory, it emphasizes the challenges of JointIE with cross-lingual transfer

learning and call for future research efforts in this important direction.

Models
ACE05-E+

Ent Rel Trg Arg
DepIE 89.1 65.6 73.3 65.3
- cross-instance 87.4 62.7 71.7 62.0
+ single-source graph 88.6 64.3 72.7 63.7
+ heuristic graph 88.1 63.1 72.2 62.9
- GCN 88.3 63.8 72.4 63.1

- cross-type 88.2 64.1 72.0 64.1
+ naive cross-type 87.8 63.5 71.6 63.7
+ cosine similarity 88.4 64.5 72.8 64.3
+ type regularization 88.2 64.6 72.4 64.5
+ global features 87.7 63.1 72.0 64.0

Table 15. Model performance (F1) of ablated models.

Ablation Study: To study the impact of each proposed component for DepIE,

Table 15 evaluates the ablated models over ACE05-E+ development data.
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Example DepIE FourIE

In the January attack, two Palestinian suicide bombers blew themselves
up in central Tel Aviv, killing 23 other people.

Analysis: DepIE can successfully predict “blew” as a “Die” event trigger
due to the recognized connections with “suicide” and “themselves” while
FourIE fails to do so.

A second rocket landed in farmlands and the other hit a house inside
the refugee camp, …

Analysis: DepIE can successfully predict “other” as an “Instrument” for
the event trigger “hit” due to its ability to connect to the important
related instance “rocket” while FourIE fails to do so.

themselves

suicide

(blew, bombers)

(blew, Tel Aviv)

Event:Die

blew

themselves

suicide

(blew, bombers)

(blew, Tel Aviv)

Event:Attack

blew

Argument:Instrument
hit

other
rocket

(hit, other)

Argument:Attacker
hit

other
rocket

(hit, other)

Figure 12. Some task instances along with their dependency connections produced
by DepIE and FourIE.

In particular, for cross-instance dependencies, we first remove the cross-

instance dependency graph from DepIE. The ablated model “- cross-instance”

shows significant performance drops across all the four IE tasks, demonstrating

the importance of the cross-instance dependency component to our model. In

addition, we evaluate a simplified version of this component where a single source

of information is used to induce dependencies between instances. Particularly, the

cross-instance dependency weights αij in this case are computed with only the last

layer of the PLM instead of all the layers. As the performance of the ablated model

“+single-source graph” is substantially worse than the full model, it confirms the

benefits of using multiple information sources from PLM to compute cross-instance

dependencies for FourIE. Moreover, we replace our induced dependency weights

for instances with the heuristic-based dependency weights produced by the best

baseline model FourIE (i.e., αij = 1 if instances vi and vj share an event trigger

or entity mention). The inferior performance of the resulting model “+heuristic

graph” compared to “+single-source graph” and DepIE strongly indicates the

strength of automatically learned dependency graphs for JointIE. Finally, we

report the performance of DepIE where the GCN model is removed while still
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preserving the cross-instance and cross-type dependencies (i.e., “- GCN”). As such,

the contextualized embeddings xi will replace the GCN-induced vectors hi in the

computation. It is clear from the table that the GCN model is necessary for DepIE

as “- GCN” has significantly worse performance.

Next, we study the effect of the cross-type dependency component for

DepIE. As shown in the table, removing cross-type dependencies from DepIE (i.e.,

“- cross-type”) significantly hurts model performance. To understand the benefit of

the Chow-Liu algorithm, we examine a simpler method to produce the cross-type

dependency graph Gctp where two information types in T are connected if they

are both expressed in a sentence in training data. The resulting model (i.e., “+

naive cross-type”) performs much poorer than our full model with the Chow-Liw

tree. To investigate the effectiveness of the random walk kernels, we examine a

similar method to the type dependency regularization in FourIE to compute the

similarity between the cross-instance graph Ginst and the cross-type patterns Gcpt
d

for the global features mcpt. In particular, we use a GCN model to consume the

graphs Ginst and Gcpt
d along with their node embeddings; the resulting vectors for

each graph are then max-pooled to obtain a representation vector for the graph.

The similarity between the two graphs is then computed via the cosine similarity

between their representations. As the corresponding model “+ cosine similarity” is

worse than the full model over different tasks, it demonstrates the necessity of the

random walk kernels for DepIE.

Finally, we remove the cross-type dependency component (i.e., with Chow-

Liu and graph kernels) and integrate alternative methods to generate and apply

cross-type dependencies from previous JointIE methods into DepIE, i.e., the type

regularization in FourIE for training or the global type features for decoding in
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Event:Attack Role:Instrument

Role:Defendant Role:Adjudicator

Role:Instrument Entity:Weapon

Relation:Affiliation Entity:Organization

Event:End-Organization Entity:Organization

Event:Declare-Bankruptcy

Role:Defendant Event:Charge-Indict

Event:Trial-HearingEvent:Convict

Figure 13. Cross-type patterns learned DepIE on ACE05-E+. Blue, red, green, and
orange circles represent entity, event, argument role, and relation types respectively.

OneIE. Both the models “+type regularization” and “+global features” in Table 15

observe large decreased performance, further confirming the benefit of the cross-

type dependency components for JointIE in DepIE.

Analysis: To understand the effect of the cross-instance dependency graph learned

by DepIE compared to the heuristic-based dependency graph produced by FourIE,

we examine examples on the ACE05-E+ development data for which DepIE can

have correct predictions while FourIE fails to do so. Figure 12 presents some

examples of this type. As can be seen, by computing dependency weights for all

possible pairs of instances, DepIE can discover important related instances that

do not share any entity mentions/event triggers with the instance of interest (e.g.,

the related instance “suicide” for “blew”), thus allow DepIE to correct the wrong

predictions in FourIE to improve the performance.

Finally, Figure 13 presents some cross-type patterns learned DepIE. We

observe that 3-node and 4-node patterns can capture subtle structures between

information types for JointIE (e.g., the “Charge-Indict”, “Convict”, and “Trial-

Hearring” event types and the “Defendant” argument role).
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3.2.4 Related Work. IE tasks have been performed jointly to capture

dependency between the tasks via feature engineering (Q. Li et al., 2013b; Roth

& Yih, 2004b; B. Yang & Mitchell, 2016b; Yu & Lam, 2010b) or deep learning

(Bekoulis, Deleu, Demeester, & Develder, 2018b; Luan et al., 2019b; T. H. Nguyen,

Cho, & Grishman, 2016b; Zheng et al., 2017b) methods. However, most previous

work only jointly solves two or three IE tasks (Lu et al., 2021b; T. M. Nguyen &

Nguyen, 2019a). Recently, there have been growing interest in performing all the

four IE tasks jointly (i.e., JointIE) (M. V. Nguyen, Min, et al., 2022a; Wadden,

Wennberg, Luan, & Hajishirzi, 2019b; Zhang & Ji, 2021b) to exploit manually

designed dependency graphs for IE instances (M. V. Nguyen, Lai, & Nguyen, 2021)

or handcrafted global features for information types (Y. Lin et al., 2020b). Our

work is different from previous JointIE models as we learn cross-instance and

cross-type dependencies from data to provide better structures for representation

learning. Finally, we note that our cross-type dependency component is related

to structure learning methods for Bayesian networks (Banerjee & Ghosal, 2015;

Eaton & Murphy, 2012; Scutari, Graafland, & Gutiérrez, 2019) and graph kernels

to compute graph similarity (Feng et al., 2022; Gärtner et al., 2003; Kondor &

Pan, 2016; Shervashidze, Vishwanathan, Petri, Mehlhorn, & Borgwardt, 2009;

Vishwanathan et al., 2006). However, these approaches have not been explored for

JointIE.

3.2.5 Summary. We present a novel model to jointly solve four IE

tasks (EMR, ETD, EAE, and RE). Our model learns cross-instance dependencies

through different layers of a PLM and cross-type dependencies via the Chow-Liu

algorithm. The cross-task dependencies are exploited via GCNs and random walk

kernels to improve representation learning. Extensive experiments demonstrate
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the state-of-the-art performance of our model across four datasets with different

languages and settings.

3.3 GraphIE

3.3.1 Introduction. To extract structured information from

unstructured text, a typical information extraction (IE) pipeline involves four

major tasks: event trigger detection (ETD), event argument extraction (EAE),

entity mention recognition (EMR), and relation extraction (RE). Previous work

has performed such IE tasks via pipelined approaches (Y. Chen et al., 2015a; Du

& Cardie, 2020; F. Li et al., 2020a; Q. Li et al., 2013a), where a model for one task

uses output predictions from other models performing other tasks. Consequently,

errors from the predictions can be propagated between the models in the pipeline.

Recently, ETD, EMR, EAE, and RE have been solved jointly in a

single model, i.e., Joint Information Extraction - JointIE (Y. Lin et al., 2020a;

M. V. Nguyen, Lai, & Nguyen, 2021; Wadden et al., 2019a; Zhang & Ji, 2021a), to

avoid error propagation and leverage dependency between prediction instances of

the four IE tasks (i.e., event trigger, entity mention, relation, and event argument

candidates in a sentence). For example, if a Person entity mention is a Victim

argument for a Die event, it is likely that the same entity mention is also a Target

argument for an Attack event in the same sentence. To implicitly exploit instance

dependency for representation learning, Wadden et al. (2019a) and Y. Lin et

al. (2020a) employ a shared encoder to obtain representation vectors to classify

instances of different IE tasks. Later work heuristically captures dependency

between IE task instances via explicitly connecting the task instances that share

an entity mention or event trigger (M. V. Nguyen, Lai, & Nguyen, 2021) or

aligning the task instances that share text spans with some nodes on a semantic

95



One 

house

was 

destroyed 

during 

the 

strike

and 

casualties

have 

been 

removed 

from 

the 

area

.

house

casualties

area

strike

(house, casualties)

(house, area)

(casualties, area)

(strike, house)

(strike, casualties)

(strike, area)

Indentifying Task Instances
Joint Modeling and Decoding 

of Instance Labels
Inducing Instance Dependency

area

(strike, house)

strike

house

(house, area)

casualties

(casualties, area)(strike, area)

Event:Attack

EventArgument:Place

EventArgument:Target

Relation:Part-Whole

Relation:Physical

Entity:Facility

Entity:Person

Entity:GPE
area

(strike, house)

strike

house

(house, area)

casualties

(casualties, area)(strike, area)

Figure 14. Overview of the three stages in our proposed model: i) identifying task
instances, ii) inducing instance dependency, and iii) joint modeling and decoding of
instance labels. Each node represents an instance for one of the four IE tasks, and
edges (with weights ¿ 0.3) between nodes represent induced instance dependency.

graph (Zhang & Ji, 2021a) to aid representation learning. While natural, these

manual designs for dependency between task instances might not be optimal for

representation learning of JointIE.

In addition to representation learning, at the prediction level, previous work

tends to factorize the joint distribution of labels for all the task instances in JointIE

into the product of label distributions for each individual instance (i.e., performing

local normalization), thus hindering the ability to fully exploit the interactions

of instance labels across IE tasks. (Y. Lin et al., 2020a) and (Zhang & Ji, 2021a)

mitigate this problem by decoding instance labels with handcrafted global features

while (M. V. Nguyen, Lai, & Nguyen, 2021) focuses on encoding label interactions

via consistency regularization over global type dependency graphs. However, these

approaches still assume a factorization of the joint label distribution for prediction

instances, thus unable to fundamentally address the label dependency encoding

issue. Recently, some works have attempted to directly model the joint distribution

of instance labels by reformulating JointIE tasks as text generation problems using

state-of-the-art pre-trained seq2seq models, e.g., BART or T5 (Lewis et al., 2020;
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Raffel et al., 2020a). In such generative models, text spans and labels for task

instances are generated by the decoder in an autoregressive fashion to encode label

dependency for joint distribution computation (I. Hsu et al., 2021; Lu et al., 2021a).

Unfortunately, this approach needs to assume an order of the task instances to

be decoded (e.g., from left to right) that disallows later instances in the order to

interfere/correct predictions for earlier instances, causing suboptimal performance

for JointIE.

In this work, we aim to overcome these issues by inducing dependency

between the task instances for JointIE from data to boost representation learning,

and directly modeling the joint distribution of the labels for all the task instances

to fully enable label interactions. To this end, we consider each task instance as

a node in a fully connected dependency graph; the weight for each edge is then

learned to capture the dependency level between two corresponding instances.

Note that this is different from prior work (M. V. Nguyen, Lai, & Nguyen, 2021;

Zhang & Ji, 2021a) that heuristically designs sparser dependency graphs with

disconnected task instance pairs, thus failing to explore all possible interactions

between instance pairs for optimal representations. In our method, the induced

dependency graph for instance nodes is then employed by Graph Convolutional

Networks (GCNs) (Kipf & Welling, 2017; T. H. Nguyen & Grishman, 2018a)

to enhance the representation for each instance node with information from all

the other nodes according to their dependency levels. Afterwards, the enhanced

instance representations and the induced dependency graph are utilized to

estimate the joint distribution of instance labels via Conditional Random Fields

(CRFs) (Lafferty, McCallum, & Pereira, 2001). This formulation enables us to

approximately maximize the intractable joint likelihood of the ground-truth
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instance labels via Noise Contrastive Estimation (NCE) (Gutmann & Hyvärinen,

2012), which converts the maximization problem into the nonlinear logistic

regression discriminating between the true labels and the noise labels.

Finally, previous work for JointIE has employed a greedy or beam search

for decoding instance labels, which is not optimal due to their greedy nature.

In this work, we propose a novel decoding algorithm for JointIE via Simulated

Annealing (SA) (Kirkpatrick, Gelatt Jr, & Vecchi, 1983), which has been shown to

be able to approximate the global optimum of a function (Kirkpatrick et al., 1983;

Van Laarhoven & Aarts, 1987). Experimental results show that our proposed model

for JointIE significantly outperforms previous models on multiple tasks with large

margins across 5 datasets and 2 languages.

3.3.2 Problem Statement. Given an input sentence, ETD aims

to predict text spans and event types for event triggers based on a predefined

set of event types, e.g., “Attack” and “Transport” (V. D. Lai et al., 2020).

Similarly, EMR seeks to determine text spans and entity types (e.g., “Person”,

“Organization”) for entity mentions in the sentence (T. H. Nguyen, Sil, Dinu, &

Florian, 2016). Different from the first two tasks, EAE and RE involves predictions

for a pair of objects at a time. Given an event trigger and an entity mention, EAE

aims to predict the argument role (e.g, “Victim”) of the entity mention for the

event trigger (Veyseh, Nguyen, & Nguyen, 2020a). An argument role can be “Not-

an-argument” indicating that the entity mention is not an argument for the trigger.

For RE (Veyseh, Dernoncourt, Dou, & Nguyen, 2020a; Veyseh, Dernoncourt, Thai,

et al., 2020a), the task focuses on the classification of relation (e.g, “Work for”)

for a given pair of entity mentions. There is also a special type “No-relation” to

specify no relation between two entity mentions. As such, we call the union set C
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of the predefined event types, entity types, argument roles, and relation types as

the information types (excluding “Not-an-argument” and “No-relation”).

3.3.3 Model. To capture dependency among task instances for

JointIE, an approach is to obtain all text spans for entity/event mention candidates

along with their possible pairs to form the nodes for a dependency graph to

improve representation learning. However, this approach will retain many text

spans for non-entity/event mentions to introduce noise into the modeling. It

will also entail a large dependency graph that can hinder the efficiency of the

model. To this end, our model for JointIE first identifies text spans for entity

mentions and event triggers. Afterwards, all possible pairs of event-entity and

entity-entity mentions are considered to identify positive pairs for event arguments

and relations respectively. The detected entity mentions, event triggers, event

arguments, and relations are called task instances that should be classified to

obtain corresponding information types in C. In our model, a dependency graph

among the detected task instances will be learned to provide inputs for GCNs to

compute dependency-enhanced representations for the task instances. Finally, the

enhanced representations will be used to compute a joint distribution over labels for

all the task instances to train our model. We will also employ Simulated Annealing

to achieve the global optimum for label assignment of the task instances in the

decoding phase.

3.3.3.1 Identifying event and entity mentions. Given an input

sentence w = [w1, . . . , wN ] with N words, we identify its event triggers and entity

mentions by solving two corresponding sequence tagging problems for event and

entity mentions. In particular, we use the BIO tagging schema to assign two

labels to each word in w to mark the text spans of event triggers and entity
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mentions, i.e., {“B-TRIGGER”, “I-TRIGGER”, “O”} labels for event triggers,

and {“B-ENTITY”, “I-ENTITY”, “O”} labels for entity mentions. The pre-

trained transformer-based language model BERT (Devlin et al., 2019a) is first

utilized to obtain the contextualized embeddings for the words in the sentence:

X = x1, . . . ,xN = BERT([w1, . . . , wN ]).

Next, the vector sequence X is sent to two different CRF layers (Chiu

& Nichols, 2016; Lafferty et al., 2001) to compute two distributions for the tag

sequences of w for event triggers and event mentions. The negative log-likelihoods

Lt and Le for golden trigger and entity tag sequences are then obtained to be

included in the overall training loss. At test time, the Viterbi algorithm (Forney,

1973) is employed to determine the best tag sequences for event triggers and event

mentions in w.

Let V t and V e be the sets of text spans for event triggers and entity

mentions respectively in w (i.e., golden spans in the training time and predicted

spans in the test time). To prepare for the next components, we compute the

representations vectors zti and zej for each event trigger/instance ti ∈ V t and

entity mention/instance ej ∈ V e respectively by averaging over the contextualized

embeddings of the words inside the spans.

3.3.3.2 Identifying event arguments and relations. Given the

detected event triggers and entity mentions, we obtain a representation vector zaij

for each pair of event-entity mentions aij = (ti, ej) (i.e., ti ∈ V t, ej ∈ V e), and a

representation vector zrij for each pair of entity-entity mentions rij = (ei, ej) (i.e.,

ei, ej ∈ V e) via:

zaij = FFNdown
a (concat(zti, z

e
j)) and zrij = FFNdown

r (concat(zei , z
e
j)).
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Here, we use the feed-forward networks FFNdown
a and FFNdown

r to

make sure that zti, z
e
j , z

a
ij, and zrij have the same dimensionality. Next, the

pair representation vectors zaij and zrij are sent into two different feed-forward

networks followed by sigmoid activations to compute the possibilities for being

positive examples for event arguments and relations of aij and rij respectively:

paij = σ(FFNa(zaij)), and p
r
ij = σ(FFNr(zrij)). Here, p

a
ij ∈ (0, 1) is the probability

for the entity mention ej being an actual argument for the event trigger ti while

prij ∈ (0, 1) is the likelihood that there exists a relation of interest between

the entity mentions ei and ej. At training time, we obtain the the negative log-

likelihoods La and Lr for the golden event argument and relation identification to

be included in the overall loss function for minimization. At test time, the event-

entity pair aij and entity-entity pair rij are retained as positive examples for event

arguments and relations if their likelihooods paij and p
r
ij are greater than 0.5.

For convenience, let V a and V r be the sets of positive event-entity pairs aij

(called argument instances) and entity-entity pairs rij (called relation instances)

respectively. Also, let V = V t ∪ V e ∪ V a ∪ V r be the set of all detected event, entity,

argument, and relation instances. For each instance vi ∈ V , we will use vi for its

corresponding instance representation (i.e., from zti, z
e
j , z

a
ij, or z

r
ij).

3.3.3.3 Inducing Instance Dependency. Given the detected event,

entity, argument, and relation instances in V , it remains to predict the information

types in C for the instances to solve JointIE. While it is possible to directly employ

the instance representations vi for label prediction, our goal is to exploit instance

dependency in IE to enhance the representation vector for one instance with the

information from other instances to facilitate type prediction. In particular, using

the instances vi in V as the nodes in a dependency graph G, we aim to enrich
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instance representations by feeding them into a GCN model. As such, instead of

assuming a heuristic manually-designed dependency graph among the instances

as in previous work (M. V. Nguyen, Lai, & Nguyen, 2021; Zhang & Ji, 2021a),

we propose to automatically learn the dependency graph G for the instances in

V . To this end, our dependency graph G is a fully connected graph among the

nodes in V where a weight αij ∈ (0, 1) is learned for each edge to quantify the

dependency between the instances vi and vj in V . In this work, we present two

sources of information that can be used for determining the dependency between

the task instances: (i) semantic and (ii) syntactic information.

Semantic Information: The semantic-based weight αsem
ij for the edge between

vi and vj quantifies their relatedness/dependency based on semantic information,

i.e., via the representation vectors vi and vj: α
sem
ij = FFN sem(concat(vi,vi)). Here,

FFN sem is a feed-forward network with the sigmoid function in the end.

Syntactic Information: The syntax-based weight αsyn
ij for the edge between

vi and vj is computed in a similar way as αsem
ij . In particular, for each word

wk ∈ w, we retrieve the dependency relation dk between wk and its governor

in the dependency tree of w, which is generated by the Trankit’s dependency

parser (M. V. Nguyen, Lai, Veyseh, & Nguyen, 2021). We then obtain the

embedding mk of dk for wk by looking up the learnable dependency embedding

matrix M. Afterwards, the syntax-based representation vector ui for the instance

vi ∈ V is computed via: ui = max-poolwk∈SPANvi
(mk). Here, SPANvi involves

the words in the corresponding text span of vi in w if vi is an event trigger or

entity mention instance. Otherwise, SPANvi contains the words inside the text

spans of the involving event triggers and entity mentions in the pair for vi. As

such, we compute the syntax-based dependency weight αsyn
ij for vi and vj via:
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αsyn
ij = FFN syn(concat(ui,ui)) where FFN

syn is also a feed-forward network

with the sigmoid function in the end. Finally, we combine the semantic- and

syntax-based weights to obtain the overall dependency weight αij for vi and vj

in V : αij = (αsem
ij + αsyn

ij )/2.

3.3.3.4 Enhancing Representations with GCNs. To enhance the

representation vectors for the instances vi ∈ V , a GCN model with K layers is

applied over the induced dependency graph G to compute richer representations for

the instances:

hk
i = ReLU(

∑
vj∈V αijW

khk−1
j + bk∑

vj∈V αij
), 1 ≤ k ≤ K (3.3)

Here, hki is the representation for the instance vi at the k-th layer of the GCN

(h0
i ≡ vi), and Wk,bk are trainable weight and bias for the layer.

In this way, representation information from all the other instances vj (j ̸= i)

will be incorporated into the enhanced representation vector for vi according to

their learned dependency weights. Finally, the last layer’s representation hK
i ≡ hi

(we omit K for simplicity) is used to compute the score vector si ∈ R|C| for vi,

where si[c] measure the possibility for vi to have the c-th label in the label set C:

si = FFN score(hi) (FFN
score is a scoring feed-forward network). The score vectors

si will later be used for modeling the joint distribution of the labels for all the

instances in V .

3.3.3.5 Computing Joint Distribution of Labels. Let Y be the

set of labels yi for the instances vi in V . To infer the labels for the instances in V ,

we need to estimate the joint distribution P (Y |w, V ). In previous work (Y. Lin

et al., 2020a; M. V. Nguyen, Lai, & Nguyen, 2021; Wadden et al., 2019a; Zhang

& Ji, 2021a), JointIE methods mostly focus on learning representations for the

task instances to compute a label distribution for each instance vi for prediction:
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P (yi|w, V ) := softmax(si) . This practice essentially implies the following

factorization for P (Y |w, V ): P (Y |w, V ) =
∏

yi∈Y P (yi|w, V ). As a result, this

factorization assumes the independence of the instance labels, thus unable to fully

capture beneficial label dependency for IE tasks.

To address this issue, we directly estimate the joint distribution P (Y |w, V )

so that the dependency between instance labels can be facilitated to improve

prediction performance. To this end, we formulate the joint distribution P (Y |w, V )

with Conditional Random Fields (Lafferty et al., 2001):

P (Y |w, V ) =
1

Z(V )

∏
(vi,vj)

ψij(yi, yj , V ) (3.4)

where ψij(yi, yj, V ) is a positive potential function defined on the edge (vi, vj) of the

dependency graph G, and Z(V ) =
∑

Y ′∈CV

∏
(vi,vj)

ψij(y
′
i, y

′
j, V ) is the normalization

term to make sure that P (Y |w, V ) is a valid probability distribution (CV is the set

of all possible label assignments Y for the instances in V ). Considering the instance

information, the instance dependency, and the label dependency, we propose the

potential function as:

ψij(yi, yj , V ) := exp(si[yi] + sj [yj ] + αijπyi↔yj ) (3.5)

where si[yi] is the local score for instance vi being assigned with the label yi, αij is

the induced dependency weight for the edge (vi, vj) in G, and πyi↔yj is a learnable

transition score indicating the dependency between the labels yi and yj. With this

formulation, we can derive the joint distribution P (Y |w, V ):

P (Y |w, V ) =
exp(s(Y ))∑

Y ′∈CV
exp(s(Y ′))

(3.6)

where:

s(Y ) = γ
∑
vi∈V

si[yi] +
∑

(vi,vj)

αijπyi↔yj (3.7)
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is the global score for the label assignment/configuration Y of the instances. γ is a

hyper-parameter to balance the local and transition scores.

To train the model, we need to maximize the joint likelihood in Equation

(3.6) for the golden label configuration Y ∗. However, this requires the computation

of the normalization term
∑

Y ′∈CV
exp(s(Y ′)), which is intractable. To overcome

this issue, we employ Noise Contrastive Estimation (NCE) (Gutmann & Hyvärinen,

2012; Mikolov et al., 2013). NCE converts the maximization problem into

the nonlinear logistic regression that discriminates between the golden label

configurations and the noise label configurations. In particular, the maximization of

P (Y ∗|w, V ) is done with NCE via minimizing the contrastive loss:

LNC = −logσ(s(Y ∗))−
Nnoi∑
n=1

EY ′
n∼Pnoi

[
logσ(−s(Y ′

n))
]

(3.8)

where σ is the sigmoid function and Nnoi is the number of noise configurations

Y ′
n drawn from Pnoi, assumed to be a uniform distribution. Intuitively, the

minimization of LNC increases the global score s(Y ∗) for the true label

configuration Y ∗ while decreasing the global scores s(Y ′) for the noise label

configurations Y ′ to appropriately train the model. To the end, the overall loss

function to train our model is: L = Lt + Le + La + Lr + LNC .

3.3.3.6 Joint Decoding via Simulated Annealing. At inference

time, we need to search for the configuration Ŷ that has the highest global score

s(Ŷ ) in CV : Ŷ = argmaxY ′∈CV
s(Y ′). A brute-force search for Ŷ cannot be done as

the search space CV is exponentially large (|CV | = |C||V |). Previous work has made

several attempts to deal with this issue. (Wadden et al., 2019a) and (M. V. Nguyen,

Lai, & Nguyen, 2021) simply perform greedy decoding for each instance label

independently, thus unable to exploit the label dependency. (Y. Lin et al., 2020a)

and (Zhang & Ji, 2021a) resort to beam search that step by step constructs a
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Algorithm 1: Simulated Annealing Search

Input : Ŷ0 where ŷi,0 = argmaxc∈Csi[c].
1 Ŷcur ← Ŷ0; n← 1;
2 while n ≤ Niter do
3 t← T/n;
4 if t < ϵ then

5 return Ŷcur;
6 else

7 Ŷnew = random successor(Ŷcur);

8 δn = s(Ŷnew)− s(Ŷcur);
9 if δn > 0 then

10 Ŷcur ← Ŷnew;
11 else

12 Ŷcur ← Ŷnew with p = exp( δnt ) ;
13 end

14 end
15 n← n+ 1;

16 end

17 return Ŷcur.

complete decoding assignment Y for the instances in V by expanding an initially

empty assignment. Each step corresponds to an instance in V where only top

candidate labels for the instance are considered for assignment expansion and only

top partial assignments produced so far are kept for the next step. Unfortunately,

the selection of top candidate labels for expansion at each step is based only on the

local scores si, which might discard the candidates that can eventually provide

greater global scores. To overcome this issue, we propose to apply Simulated

Annealing (SA) (Kirkpatrick et al., 1983) to search for the optimal assignment

Ŷ for V . SA is a probabilistic algorithm that is able to approximately find the

global optimum of a function (Kirkpatrick et al., 1983; Van Laarhoven & Aarts,

1987). Algorithm 1 presents our implementation for SA to find Ŷ .

The input for the algorithm is the initial configuration Ŷcur = Ŷ0 = {ŷi,0},

which contains the greedily predicted labels for each instance: ŷi,0 = argmaxc∈Csi[c].

106



Datasets Split #sents #ents #rels #events

ACE05-R
Train 10,051 26,473 4,788 -
Dev 2,424 6,362 1,131 -
Test 2,050 5,476 1,151 -

ACE05-E
Train 17,172 29,006 4,664 4,202
Dev 923 2,451 560 450
Test 832 3,017 636 403

ACE05-E+
Train 19,240 47,525 7,152 4,419
Dev 902 3,422 728 468
Test 676 3,673 802 424

ERE-EN
Train 14,219 38,864 5,045 6,419
Dev 1,162 3,320 424 552
Test 1,129 3,291 477 559

ERE-ES
Train 7,067 11,839 1,698 3,272
Dev 556 886 120 210
Test 546 811 108 269

Table 16. Data statistics. #sents, #ent, #rels, and #events indicate the
number of sentences, entity mentions, relations, and events respectively.

The algorithm then runs over Niter iterations to improve the global score s(Ŷcur)

for the current label configuration Ŷcur. This is done via updating the current

configuration to a successor configuration Ŷnew that gives a higher global score (i.e.,

δn > 0). A successor configuration is obtained via the function random successor()

by randomly changing some label ŷi ∈ Ŷcur. Different from beam search decoding

with partial assignments, each searching step in SA examines a complete label

assignment for the instances in V to provide complete information to measure the

global scores/quality of the assignments. Importantly, SA sometimes allows the

current configuration to transition to a successor configuration with a lower global

score (i.e., δn ≤ 0) with an acceptance probability of p = exp( δn
t
). Here, t is the

temperature of the algorithm, gradually decreased via t ← T/n (T is a hyper-

parameter). This exploration property enables SA to escape from local optimum

configurations, thus increasing the chance to find the globally optimal configuration

Ŷ .
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PLMs Model
ACE05-R ACE05-E ACE05-E+ ERE-EN ERE-ES
Ent Rel Ent Trg Arg Ent Rel Trg Arg Ent Rel Trg Arg Ent Rel Trg Arg

T5 Text2event - - - 71.9 53.8 - - 71.8 54.4 - - 59.4 48.3 - - - -

BART DEGREE - - - 72.2 56.0 - - 71.7 58.0 - - 56.6 51.1 - - - -

BERT

OneIE 88.6 63.4 90.2 74.7 56.8 89.6 58.6 72.8 54.8 87.0 53.2 57.0 46.5 81.3 48.1 56.8 40.3
AMRIE* 88.7 67.2 90.8 75.3 58.2 90.4 62.9 72.8 56.3 86.9 55.5 58.3 44.2 - - - -
FourIE 88.9 68.9 91.3 75.4 58.0 91.1 63.6 73.3 57.5 87.4 56.1 57.9 48.6 82.2 57.9 57.1 42.3
GraphIE 88.9 69.5 90.6 75.7 58.8 91.0 65.4 74.8 59.9 87.2 57.8 61.4 52.2 81.4 58.9 61.3 45.7

RoBERTa

OneIE* 89.0 65.2 90.2 74.7 55.6 90.8 60.4 72.5 56.3 86.3 52.8 57.1 47.1 83.7 57.5 58.3 42.5
AMRIE 89.2* 66.8* 92.1 75.0 58.6 91.0* 62.8* 72.7* 57.7* 87.9 55.2 61.4 45.0 - - - -
FourIE* 89.1 67.5 91.6 74.9 58.7 91.1 63.1 72.8 58.3 88.0 56.2 61.5 49.1 83.9 61.0 62.3 44.2
GraphIE 89.3 68.5 91.4 75.1 59.4 91.6 66.0 73.3 60.2 87.7 57.0 62.0 54.7 84.3 62.3 65.7 46.9

Table 17. Model performance on the test data of 5 datasets. “Ent”, “Rel”, “Trg”,
and “Arg” are the F1 scores for identification and classification of entity mentions,
event triggers, relations, and event arguments respectively. * indicates results
that are not reported in the original papers but produced by their official code.
Underlined numbers designate the tasks where GraphIE is significantly better (p ¡
0.01) than the baselines.

3.3.4 Experiments. Datasets: Following previous work (I. Hsu et

al., 2021; Y. Lin et al., 2020a; Lu et al., 2021a; M. V. Nguyen, Lai, & Nguyen,

2021; Wadden et al., 2019a; Zhang & Ji, 2021a), we conduct experiments on 5

different datasets created by the 2005 Automatic Content Extraction (ACE05)

(Walker et al., 2006) and Entity Relation Event (ERE) (Song et al., 2015) programs.

The three ACE05 datasets feature ACE05-R, ACE05-E, and ACE-E+, all in

English, involving 33 event types, 7 entity types, 6 relation types, and 22 argument

roles. The two ERE datasets are ERE-EN (English portion) and ERE-ES

(Spanish portion), introducing 38 event types, 7 entity types, 5 relation types, and

20 argument roles. We use the same data processing and train/dev/test splits as

the prior work for a fair comparison. Detailed statistics for the datasets are shown

in Table 16.

Baselines: We compare our method, called GraphIE, with the following baselines

for JointIE:

Generative baselines: Text2event (Lu et al., 2021a) and DEGREE (I. Hsu

et al., 2021). The generative baselines perform ETD and EAE via formulating the
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tasks as text generation. The models receive an input sentence and generate an

output text containing text spans and labels for event triggers and event arguments,

structured in a way that a post-processing step can be used to extract ETD and

EAE predictions for the models.

Classification baselines: OneIE (Y. Lin et al., 2020a), AMRIE (Zhang &

Ji, 2021a), and FourIE (M. V. Nguyen, Lai, & Nguyen, 2021). The classification

baselines represent the instances for ETD, EMR, EAE, and RE via a shared

encoder and perform classification for the instances based on task-specific label

distributions. AMRIE and FourIE employ a heuristic dependency graph among

task instances to improve representation learning. Dependency between instance

labels is exploited in OneIE and AMRIE via a beam search decoding with

manually-designed global features, and in FourIE via global type dependency

regularization. FourIE and AMRIE are the current state-of-the-art models for

JointIE.

Hyper-parameters: Prior work for JointIE employs two different versions of pre-

trained language models (PLM), i.e., BERT (Devlin et al., 2019a; Y. Lin et al.,

2020a; M. V. Nguyen, Lai, & Nguyen, 2021) and RoBERTa (Y. Liu et al., 2019;

Zhang & Ji, 2021a), which might cause incompatible compassion. To this end,

we explore both BERT and RoBERTa to obtain the word representations xi for

GraphIE for a fair comparison. For the Spanish ERE-ES dataset, following prior

work (Y. Lin et al., 2020a; M. V. Nguyen, Lai, & Nguyen, 2021), we utilize the

multilingual versions of BERT and RoBERTa. For each PLM, we fine-tune the

hyper-parameter for GraphIE on the development data.

In particular, the best values for the hyper-parameters of the proposed

model are reported as follows. We employ the learning rate of 1e− 5 for the models
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with the BERT-based PLM (i.e., using bert-large-cased and bert-multilingual-cased)

and the learning rate of 5e− 6 for the RoBERTa-based PLM (i.e., using roberta-large

and xlm-roberta-large). For other hyper-parameters, our tuning process results in

the same values for BERT-based and RoBERT-based models: Adam (Kingma &

Ba, 2014) for the optimizer, batch size of 10, 100 for the size of the dependency

relation embeddings, 400 for the size of the hidden vector for the feed-forward

networks, 200 for the hidden vector size in the GCN model, 2 for the number of

layers for the feed-forward networks and GCN model, γ = 1 for the trade-off hyper-

parameter for the global score, Nnoi = 5 for the number of noise examples for the

contrastive loss (we re-sample the noise examples every epoch), T = 5 for the initial

temperature, Niter = 50 for the number of iterations of Simulated Annealing (SA),

and ϵ = 0.1 for the temperature threshold for the SA decoding.

Comparison with Baselines: We compare the proposed model GraphIE with the

baselines on test data of the 5 datasets in Table 17. As can be seen, the generative

baselines perform worse than the classification models on most of the settings. This

might be due the implicit modeling of the label distributions and the assumption

of a decoding order for task instances that limit the interactions of instance

labels. Comparing OneIE, FourIE and AMRIE, it is clear that the exploitation

of instance and label dependency in the training phase in FourIE can lead to better

performance for JointIE than using such dependency in the decoding phase as done

by OneIE and AMRIE over most tasks and PLMs. Most importantly, the proposed

GraphIE significantly outperforms all the baselines across a majority of settings for

tasks, datasets and PLMs, thus demonstrating the benefits of induced dependency

graph, joint label distribution estimation, and simulated annealing for decoding in

our method.

110



Model (all use Roberta)
ACE05-E+

Ent Rel Trg Arg

GraphIE 89.8 67.2 72.6 66.3

- induced dep 89.3 65.8 71.3 65.0

- semantic-based dep 89.0 66.4 71.6 65.9

- syntactic-based dep 89.4 66.3 72.0 65.4

- induced dep + heuristic dep 89.3 66.2 71.7 65.5

- GCN 89.4 65.6 70.9 64.6

Table 18. Performance (F1) on the ACE05-E+ development data.

Ablation Study: To understand the contributions of each proposed component to

GraphIE, we conduct ablation experiments where we remove each component from

the full model and evaluate the performance of the remaining models.

The first three ablated models in Table 18 are “- induced dep”, “- semantic

dep”, and “- syntactic dep”, formed by excluding the dependency weight induction

of αij (i.e., setting αij = 1), the semantic-based dependency αsem
ij , and the

syntactic-based dependency αsyn
ij (respectively) from the model computation. In

each case, the performance of GraphIE decreases significantly; the removal of both

semantic- and syntactic-based dependency in “- induced dep” leads to the largest

performance drop. This shows that the semantic and syntactic weighting captures

complementary information for instance dependency induction that is useful for

our model. The next ablated model “- induced dep + heuristic dep” is obtained

by replacing the induced dependency graph represented by αij with the heuristic

dependency graph for instances from the best baseline FourIE. The decrease in the

performance of this model suggests that the induced dependency graph is better

than the heuristic graph for JointIE. The final ablated model “- GCN” in Table 18

eliminates the GCN component from our full model. The result shows that GCN

is beneficial to exploit the induced dependency graph to improve representation

learning.
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Model (all use Roberta)
ACE05-E+

Ent Rel Trg Arg

GraphIE 89.8 67.2 72.6 66.3

- joint distribution 89.3 65.5 70.9 64.5

- SA + greedy 89.2 65.9 71.2 65.2

- SA + beam 89.5 66.0 71.5 65.4

- SA + hill climbing 89.5 66.8 71.7 65.3

OneIE 88.7 64.2 69.5 63.2

- beam + SA 88.1 63.9 69.1 62.7

AMRIE 89.4 65.4 71.2 64.4

- beam + SA 88.8 65.1 70.5 64.1

Table 19. Performance (F1) on the ACE05-E+ development data.

In Table 19, we first eliminate the computation of the joint label distribution

P (Y |w, V ) from GraphIE. As such, the “- joint distribution” model employs the

local label distributions P (yi|w, V ) to train models and infer labels (with greedy

decoding). Due to the significantly worse performance of “- joint distribution”,

it is clear that directly estimating the joint label distribution is helpful for

JointIE. To evaluate the benefit of the proposed SA, we replace it with other

decoding algorithms for GraphIE, including greedy search, beam search and

hill climbing. The beam search is implemented with our global score function

s(Y ) and follows those in (Y. Lin et al., 2020a; Zhang & Ji, 2021a) while hill

climbing is implemented by removing the configuration exploration in lines 11-

12 of Algorithm 1. As reported in Table 19, SA performs much better than other

decoding algorithms for GraphIE, thus demonstrating SA’s ability to find globally

optimal labels. In addition, we also attempt to replace the beam search decoding

in OneIE and AMRIE with SA, which indeed leads to worse performance for such

models as shown in the last four rows of Table 19. We attribute this to the learning

of the global scores for configurations in OneIE and AMRIE that involves a limited

set of predefined global features. Such features do not exist for many possible
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assignments Y for V , thus causing poor global score computation and hindering the

configuration ranking critically required by SA.

Label pair Transition score

(Argument:Origin, Argument:Place) 10.02

(Event:Transport, Relation:Physical) 4.33

(Relation:Org-Aff, Relation:Part-Whole) 3.58

(Event:Execute, Event:Sentence) 2.58

(Event:Die, Event:Be-Born) -2.34

(Event:Attack, Argument:Origin) -87.07

(Relation:Per-Soc, Entity:Facility) -93.93

(Transport, Attacker) -99.91

Table 20. Transition scores for some label pairs learned by our model on ACE05-
E+.

Analysis: To further understand the advantages of GraphIE over baseline models,

we manually analyze the instances on the ACE05-E+ development data where

GraphIE can make correct predictions, but the best baseline model FourIE fails.

Figure 15 presents some instances along with their edges and weights in the

dependency graphs. The most important insight from our analysis is that GraphIE

is able to connect an instance (e.g., blew) with other supporting instances (e.g.,

suicide) in the dependency graph to provide vital information to facilitate correct

prediction. Such supporting instances do not share any event trigger or entity

mention with the current instance that cannot establish links in FourIE and lead to

failure predictions.

Finally, Table 20 shows the transition scores πyi↔yj learned by GraphIE for

some label pairs in ACE05-E+. The table show that our model is able to learn high

scores for correlated label pairs (e.g., the Execute and Sentence event types) and

very low scores for uncorrelated label pairs (e.g., an argument for a Transport event

cannot play the role Attacker).
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Example GraphIE FourIE

In the January attack, two Palestinian suicide bombers blew themselves 

up in central Tel Aviv, killing 23 other people.

Explanation: “blew” is correctly predicted by GraphIE as a “Die” 

event trigger while FourIE incorrectly predicted it as an “Attack” event 

trigger.

We pretty much know that Marinello, while on the board, has arranged to 

get future money from the USCF.

Explanation: The relation between “Marinello” and “USCF” is 

correctly predicted by GraphIE as a “ORG-AFF” relation while FourIE 

incorrectly predicted it as a “GEN-AFF” relation.

A second rocket landed in farmlands and the other hit a house inside the 

refugee camp, …

Explanation: “other” is correctly predicted by GraphIE as an 

“Instrument” for the event trigger “hit” while FourIE incorrectly 

predicted it as an “Attacker” for the event trigger “hit”.

(blew, themselves)

suicide

(blew, bombers)

(blew, Tel Aviv)

Event:Die

blew

(blew, themselves)

suicide

(blew, bombers)

(blew, Tel Aviv)

Event:Attack

blew

0.49

0.56

0.74

0.33

1.0

1.0
1.0

Marinello USCF

board

(Marinello, USCF)

Relation:ORG-AFF

Marinello USCF

board

(Marinello, USCF)

Relation:GEN-AFF

1.0 1.00.86 0.85
0.61

EventArgument:Instrument

hit

other
rocket

(hit, other)

EventArgument:Attacker

hit

other
rocket

(hit, other)

0.75
0.82

0.64

1.0 1.0

1.0

1.0

Figure 15. Instances along with their dependency subgraphs in ACE05-E+.
Supporting instances are underlined.

3.3.5 Related Work. Capturing dependency between IE tasks

has been a main focus of previous work on Joint IE. Early work employed

feature engineering methods (Q. Li et al., 2013a; Roth & Yih, 2004a; B. Yang

& Mitchell, 2016a; Yu & Lam, 2010a). Later work applied deep learning via shared

parameters to facilitate joint modeling for IE, however, for only two or three tasks

(Bekoulis et al., 2018a; Luan et al., 2019a; T. H. Nguyen, Cho, & Grishman, 2016a;

T. M. Nguyen & Nguyen, 2019a; Zhang et al., 2019; Zheng et al., 2017a). Recently,

the four IE tasks have been solved jointly (Y. Lin et al., 2020a; Lu et al., 2021a;

M. V. Nguyen, Lai, & Nguyen, 2021; Paolini et al., 2021; Wadden et al., 2019a;

Zhang & Ji, 2021a). However, such recent works only employ heuristics to manually

design dependency graphs for instances. Mean-field factorization of the joint label

distribution for JointIE instances is dominant in prior work.

Our work is also related to prior work that uses CRFs (Chiu & Nichols,

2016; Lafferty et al., 2001) to estimate joint distribution of instance labels.

Sequence labeling is a typical problem that has been solved by CRFs, including
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part of speech tagging and named entity recognition (Chiu & Nichols, 2016; Ekbal,

Haque, & Bandyopadhyay, 2007; Lafferty et al., 2001; Shishtla, Gali, Pingali, &

Varma, 2008; Sobhana, Mitra, & Ghosh, 2010; K. Xu, Zhou, Hao, & Liu, 2017; Zea,

Luna, Thorne, & Glavaš, 2016). However, these prior work only employ CRFs for

simple graph structures (i.e., linear chains). A few prior work has considered CRFs

for more complicated graph structures (Gao, Pei, & Huang, 2019; Qu, Bengio, &

Tang, 2019; X. Sun, Lin, Shen, & Hu, 2017; H. Yuan & Ji, 2020); however, none of

such works has applied CRFs for JointIE as we do.

3.3.6 Summary. We propose a novel model for jointly solving four IE

tasks (EMR, ETD, EAE, and RE). Our proposed model learns a dependency graph

among the instances of the tasks via a novel edge weighting mechanism. We also

estimate the joint distribution among instance labels to fully enable interactions

between instance labels for improved performance. The experimental results show

that our model achieves best performance for multiple JointIE tasks across 5

datasets and 2 languages.
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CHAPTER IV

LEARNING METHODS FOR IE IN LOW-RESOURCE LANGUAGES

This chapter contains materials from the published papers “Minh Nguyen,

Tuan Ngo Nguyen, Bonan Min, and Thien Huu Nguyen. ‘Crosslingual Transfer

Learning for Relation and Event Extraction via Word Category and

Class Alignments’ In Proceedings of the 2021 Conference on Empirical Methods

in Natural Language Processing, 2021” (M. V. Nguyen, Nguyen, et al., 2021) and

“Minh Nguyen, Nghia Trung Ngo, Bonan Min, and Thien Huu Nguyen. ‘FAMIE:

A Fast Active Learning Framework for Multilingual Information

Extraction’ In Proceedings of the 2022 Conference of the North American Chapter

of the Association for Computational Linguistics: Human Language Technologies:

System Demonstrations, 2022” (M. V. Nguyen, Ngo, et al., 2022). Minh was

responsible for the method design, experiments, evaluation and writing as the

first author. Tuan, Nghia, Bonan, and Thien provided meaningful discussions and

analysis. Thien contributed to the method design and editorial revisions for the

paper submissions. The papers were revised to comply with the dissertation format

and purposes.

The third research direction (RD3) addresses the challenge of non-existent or

limited training data in target languages for multilingual IE. This chapter focuses

on two scenarios: (1) when training data is unavailable in the target languages, and

(2) when limited training data is available in the target languages. For the first

scenario, we present our novel learning method called CCCAR for class- and word

category-based crosslingual alignment of representations. CCCAR ensures similar

representations of the same concepts across source and target languages, improving

the cross-lingual transferability of the model. For the second scenario, we introduce
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FAMIE, a novel active learning framework that employs a small proxy network for

fast data selection and annotation, maximizing the performance of IE models in the

target languages. Extensive experiments demonstrate the effectiveness of CCCAR

and FAMIE in enhancing multilingual IE in low-resource settings.

4.1 CCCAR

4.1.1 Introduction. Relation and Event Extraction (REE) are

important tasks of Information Extraction (IE), whose goal is to extract structured

information from unstructured text (Walker et al., 2006). Due to their complexity,

annotations for REE tasks are costly and only available in a few languages.

Thus, there have been growing interests on crosslingual learning for REE in

which a model is trained on a language, i.e., source language, and applied to

another language, i.e., target language, where the annotations are not available.

Recent approaches for crosslingual REE have mainly employed multilingual word

embeddings, e.g., MUSE, (Joulin, Bojanowski, Mikolov, Jégou, & Grave, 2018;

J. Liu et al., 2019a; Ni & Florian, 2019; Subburathinam et al., 2019) or multilingual

pre-trained language models, e.g., multilingual BERT, (Ahmad, Peng, & Chang,

2021; Devlin et al., 2019a; M’hamdi et al., 2019; M. V. Nguyen & Nguyen, 2021b)

to learn crosslingual representation vectors for REE.

However, previous work on crosslingual REE suffers from the monolingual

bias issue due to the monolingual training of models on only the source language

data, leading to non-optimal crosslingual performance. A solution for this issue

can resort to language adversarial training (X. Chen et al., 2019; He, Yan, & Xu,

2020; Huang et al., 2019; Keung, Lu, & Bhardwaj, 2019; Lange, Iurshina, Adel,

& Strötgen, 2020a) where unlabeled data in the target language is used to aid

crosslingual representations via fooling a language discriminator. The underlying
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Figure 16. Overall architecture of the proposed models for RE, EAE. For ED, example
representations are the contextualized embeddings.

principle for this approach is to encourage the closeness of representation vectors

for sentences in the source and target languages (i.e., aligning representation

vectors). However, a critical drawback of language adversarial training is the

failure to condition on classes/types of examples in the alignment process. As

such, a target language example of a class could be incorrectly aligned to a source

language example of a different class in REE, causing confusion and hindering the

performance of the models. The middle sub-figure in Figure 17 demonstrates the

class misalignment of representation vectors in crosslingual REE.

To this end, we propose a crosslingual alignment method that explicitly

conditions on class information of REE tasks to enhance representation alignment

and learning. Our major intuition is that the semantics of the classes in REE

tasks (e.g., the event type of Attack in event extraction) are generally invariant

across languages that can be leveraged as anchors to bridge representation

vectors for examples in different languages. As such, we can obtain two semantic

representation vectors for each class in an REE task based on representation
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vectors of examples in either source or target language. Afterward, the

representation vectors of the same class can be regulated to match each other,

serving as a mechanism for class-aware crosslingual alignment of representation

vectors for source and target examples. To implement this idea, we use multilingual

BERT (mBERT) to obtain same-space representations for examples in both source

and target languages to facilitate the alignment process. Afterward, the source-

language representation vector for a class is computed via representation vectors

of source-language examples that belong to the corresponding class. For the target

language, as class information is not provided, we seek to compute target-language

representation vector for a class by aggregating representation vectors for unlabeled

examples, weighted on an estimation of the probabilities for the examples to exhibit

the class.

In addition to class semantics, we propose to further exploit universal

parts of speech and dependency relations in parsing trees (i.e., word categories)

to improve the cross-lingual alignment for representation vectors in REE. As

such universal word categories have been consistently annotated for more than

100 languages (Zeman et al., 2020) and can be generated with high accuracy

via existing toolkits, e.g., the transformer-based toolkit Trankit for multilingual

NLP (M. V. Nguyen, Lai, Veyseh, & Nguyen, 2021; Qi, Zhang, Zhang, Bolton,

& Manning, 2020a; Straka, 2018a), we expect this information to provide helpful

anchor knowledge for cross-lingual representation learning. To this end, similar to

the class-aware alignment, we propose to align representation vectors of the same

universal word categories that are computed using contextualized representations

of examples in the source and target languages to further improve the language-

independence of representation vectors for REE.
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A potential issue with the computation of word category representations

via contextualized representations of examples is the preservation of context

word information in representations for word categories that might introduce

noise and hinder the representation alignment. To address this issue, we propose

an adversarial training model that seeks to explicitly filter context information

from word category representations. This is achieved by using Gradient Reversal

Layer (Ganin & Lempitsky, 2015) to prevent word category representations from

being able to recognize the context words in the original examples. We expect

that this filtering mechanism can improve the word category pureness of the

representations, thus providing appropriate inputs for the alignment process for

improved representation learning.

We conduct extensive experiments with different crosslingual settings on

English, Chinese, and Arabic for three REE tasks, i.e., Relation Extraction, Event

Detection, and Event Argument Extraction. The results demonstrate the benefits

of the proposed method that significantly advances the state-of-the-art performance

in these settings.

4.1.2 Problem Statement. We study cross-lingual transfer learning

for three REE tasks as defined in the ACE 2005 dataset (Walker et al., 2006), i.e.,

Relation Extraction (RE), Event Detection (ED), and Event Argument Extraction

(EAE). Given two entity mentions in an input sentence, the goal of RE is to

determine the semantic relationship between the mentions according to predefined

relation types/classes (e.g., Employment). For ED, its purpose is to identify event

triggers, which can be verbs/normalization with one or multiple words, that express

occurrences of events of predefined types (e.g., Attack). Finally, given an event

trigger and an entity mention, EAE aims to predict the role (e.g., Victim) that the
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entity mention plays in the corresponding event. Note that, we have a special type

None to indicate non-relation, non-trigger, or non-argument for RE, ED, and EAE

respectively.

For further discussion, let Dsrc = {(xsrc, ysrc)} (|Dsrc| = Nsrc) be the labeled

training set in the source language. As such, for ED, xsrc is an input sentence and

ysrc serves as the golden sequence tag (using BIO) for the words in xsrc. For RE

and EAE, xsrc involves an input sentence along with indexes of the given trigger

word and entity mentions while ysrc represents the golden relation type or argument

role for the input. We also assume access to an unlabeled dataset Dtgt = {(xtgt)}

(|Dtgt| = Ntgt) in the target language where xtgt consists of similar information as

xsrc for the corresponding task.

4.1.3 Baseline Methods. To prepare for our cross-lingual

representation alignment techniques for REE, we first describe the baseline models

explored in this work.

4.1.3.1 Using Source Language Data Only. In this section, we

present two baselines that train models based only on labeled data in the source

language. These baselines are the current state-of-the-art (SOTA) models for

crosslingual transfer learning for ED, RE, and EAE on the ACE 2005 dataset

(Walker et al., 2006).

BERTCRF (M’hamdi et al., 2019): This is the current SOTA model for

crosslingual ED. Given an input sentence w = [w1, w2, . . . , wn] with n words (in

xsrc), the model first sends w to the mBERT encoder to obtain a sequence of

contextualized representations Z = [z1, z2, . . . , zn] where zk is the representation

for each wk ∈ w, computed as the average of its word-piece representations

returned by the last layer of mBERT. The ED task is then done by performing
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sequence labeling over the words in w where each word is assigned with a BIO tag

to capture boundaries and event types of event triggers in w. In particular, the

final representation vector for trigger prediction rED
src,k is directly formed from the

word representation zk (i.e., rED
src,k = zk). Afterward, this prediction representation

is fed into a feed-forward network FFNED to obtain a score vector that exhibits

the likelihoods for wk to receive possible BIO tags for the predefined event types:

sED
src,k = FFNED(rED

src,k) ∀1 ≤ k ≤ n.

Next, the score vectors are sent to a Conditional Random Field (CRF) layer

to learn the inter-dependencies between the tags and obtain conditional probability

for possible tag sequences PED(.|w = xsrc). The negative log-likelihood of the

golden tag sequence ysrc is then used to train the model:

LED = −
∑

(xsrc,ysrc)∈Dsrc

log
(
PED(ysrc|xsrc)

)
(4.1)

Finally, Viterbi decoding is employed to perform prediction in inference time.

GATE (Ahmad et al., 2021): This is the current SOTA model for

crosslingual RE and EAE on the ACE 2005 dataset. Given an input sentence

w in xsrc, this model uses the same encoding step with mBERT in BERTCRF

to obtain the contextualized representation zk for each wk ∈ w. Afterward,

an overall word representation vector vk for wk is formed by the concatenation:

vk = [zk; z
pos
k ; zdepk ] where zposk and zdepk are the embeddings of the universal part

of speech and the dependency relation for wk. Here, the dependency relation

for a word is obtained by retrieving the dependency relation between the word

and its governor in the dependency tree. For RE, given two entity mentions, the

sequence of vectors V = [v1,v2, . . . ,vn] is then passed to a Transformer layer

(Vaswani et al., 2017) along with a syntax-based attention mask to compute a final

representation vector rRE
src for relation prediction over the input xsrc. Afterward,
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a score vector for the possible relations is computed via a feed-forward network

FFNRE: sRE
src = FFNRE(rRE

src ).

The score vector sRE
src is then sent to a softmax layer to obtain a distribution

over possible relation types for xsrc: P
RE(.|xsrc). Finally, to train the model, we

minimize the standard negative log-likelihood of the golden label ysrc:

LRE = −
∑

(xsrc,ysrc)∈Dsrc

log
(
PRE(ysrc|xsrc)

)
(4.2)

For EAE, given an event trigger and an entity mention, we follow the same

steps above for RE to compute the representation vector for role prediction rEAE
src ,

the score vector sEAE
src , and the negative log-likelihood for optimization LEAE.

Finally, for convenience, let rED
tgt,k, r

RE
tgt , and rEAE

tgt be the final representation

vectors for xtgt in the unlabeled data of target language. We also have sED
tgt,k, s

RE
tgt ,

and sEAE
tgt for the likelihood score vectors for examples in the target language.

These vectors are computed in the same way as their source language counterparts

in this section.

4.1.3.2 Using Unlabeled Target Language Data. To avoid the

monolingual bias in the cross-lingual methods for REE in Section 4.1.3.1, our work

aims to exploit unlabeled data in the target language to improve the cross-lingual

representations for REE. This section presents the typical approaches for leveraging

unlabeled target language data for cross-lingual transfer learning in NLP, offering

additional baselines for our proposed model later.

Language Adversarial Training (LADV): To leverage unlabeled data in the

target language, this method introduces a language discriminator that receives

representation vectors for input sentences and predicts the language identity

(i.e., source or target) of the sentences (Cao, Liu, & Wan, 2020; X. Chen et

al., 2019; Huang et al., 2019; Keung et al., 2019). As such, given an REE task

123



t ∈ {ED,RE,EAE}, the method seeks to jointly train a model for t (i.e., those

described in Section 4.1.3.1) and the language discriminator so that the induced

representation vectors for t can contain necessary information for the predictions

in t and be language-agnostic to better transfer knowledge across languages at the

same time.

To implement this method, we first obtain a representation vector for each

input sentence in the source and target language data by feeding it into mBERT

to obtain word representation vectors [z1, z2, . . . , zn] as in BERTCRF. Following

(Keung et al., 2019), the average of such word vectors is used as the representation

for the sentence in this baseline. For convenience, let asrc and atgt be the sentence

representation vectors for the input sentences in xsrc and xtgt respectively. Also,

let f t
lng be the language discriminator for task t (implemented by a feed-forward

network with a sigmoid activation in the end). In the next step, the representation

vector a∗ (∗ ∈ {src, tgt}) for each sentence is sent to f t
lng to obtain a probability

p∗ = f t
lng(a∗), indicating the likelihood that the input sentence belongs to the

source language. Treating source and target language sentences as positive and

negative examples, the loss for the discriminator Ldisc is then computed via the

negative log-likelihood: Ldisc = −
∑

xsrc∈Dsrc
log(pxsrc) −

∑
xtgt∈Dtgt

log
(
1− pxtgt

)
.

The overall joint loss to train the model for t with LADV is thus: L = Ltask + Ldisc.

Note that as LADV aims to prevent the language discriminator from recognizing

the language identity from sentence representation vectors, we insert the Gradient

Reversal Layer (GRL) (Ganin & Lempitsky, 2015) between a∗ and f task
lng to reverse

the gradients during the backward pass from Ldisc. Overall, fooling the language

discriminator in LADV with GRL eliminates language-specific features to improve

generalization across languages for t.
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mBERT Finetuning (FMBERT): Recently, it has been shown that fine-tuning

multilingual pre-trained language models on unlabeled data of the target language

can improve the crosslingual performance for NLP tasks (Pfeiffer, Vulić, et al.,

2020). Motivated by such prior work, this baseline exploits the unlabeled data

in the target language for cross-lingual representation learning by fine-tuning

mBERT on the data using mask language modeling (MLM) (Devlin et al., 2019a).

Afterward, the fine-tuned mBERT model is utilized in the encoders for the baseline

models for REE tasks in Section 4.1.3.1.

4.1.4 Proposed Method.

4.1.4.1 Class-based Alignment. An overview for the proposed

model is shown in Figure 16. As described in the introduction, to avoid the

potential cross-class alignment of representation vectors in the source and target

language, this section presents a novel method for crosslingual representation

alignment in REE where class information of tasks is explicitly employed to

improve the alignment process. In particular, due to the language-universal nature

of the semantics of the classes for an REE task, semantic representation vectors

for a class should match each other no matter if they are computed with data

from the source or target language. To this end, we seek to obtain two versions

of representation vectors for each class in an REE task. One version is based on

representations of examples for the source language while the other version employs

representations from target language examples. The two representation versions

will then be matched to achieve cross-lingual representation alignment for REE.

As such, let l be a class in an REE task t (e.g., l is a BIO tag for event

types in ED). We compute the source-language representation ctsrc,l for l via the

average of representation vectors for examples with label l in Dsrc. In particular,
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for t = RE or EAE, we have:

ctsrc,l =
1

N l
src

∑
(xsrc,ysrc)

⊮[ysrc = l]rtsrc (4.3)

Similarly, for t = ED:

cED
src,l =

1

N l
src

∑
(xsrc,ysrc)

|xsrc|∑
k=1

⊮[ysrc,k = l]rED
src,k (4.4)

Here, ⊮ is the indicator function, and N l
src is the number of examples (for RE and

EAE) or words (for ED) in Dsrc that are annotated with label l.

In the target language, as the golden labels ytgt for the examples xtgt are

not provided, we propose to obtain a target-language representation cttgt,l by

aggregating representation vectors for all examples xtgt ∈ Dtgt. Probability

estimations for examples or words to belong to class l are used as the weights for

the aggregation. In particular, we obtain the probability estimations by sending the

score vectors sED
tgt,k, s

RE
tgt , and sEAE

tgt to a softmax layer: ŷED
tgt,k = softmax(sED

tgt,k), and

ŷt
tgt = softmax(sttgt) (for t = RE or EAE). As such, we obtain the target-language

representation for l via the weighted sum of rttgt (for RE and EAE):

cttgt,l =

∑
xtgt∈Dtgt

ŷt
tgt,lr

t
tgt∑

xtgt∈Dtgt
ŷt
tgt,l

(4.5)

Similarly, for ED:

cED
tgt,l =

∑
xtgt∈Dtgt

∑|xtgt|
k=1 ŷED

tgt,k,lr
ED
tgt,k∑

xtgt∈Dtgt

∑|xtgt|
k=1 ŷED

tgt,k,l

(4.6)

where ŷt
tgt,l and ŷED

tgt,k,l represent the likelihood score for class l in vectors

ŷt
tgt and ŷED

tgt,k respectively. The alignment for the representations of class l is then

achieved by minimizing the negative cosine similarity of the source- and target-

language vectors (i.e., for task t):

Lt
cls = −

∑
l

cosine(ctsrc,l, c
t
tgt,l) (4.7)

Adaptive Coefficient: In our implementation, we compute the source-

language representations ctsrc,l for l after each training epoch while the target-
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language representations cttgt,l are obtained for in each training minibatch. The

current parameters of the models are utilized to perform such calculation. As such,

the quality of the representation vectors for classes might vary along the training

process of the models. In particular, later epochs might correspond to better model

parameters, thus leading to more reliable class representations. To this end, we

propose to apply an adaptive coefficient λcls for the class alignment loss Lt
cls so its

impact is gradually increasing along the training: λcls =
2

1+exp(−e/E)
− 1 where E and

e are the total and current numbers of training epochs, respectively. Note that λcls

is small in the early training stages and gradually increase in the process.

4.1.4.2 Word Category-based Alignment. We further exploit

universal parts of speech (UPOS) and dependency relations as the language-

agnostic knowledge to align crosslingual representations for REE. To achieve a

fair comparison with prior work (Ahmad et al., 2021; Subburathinam et al., 2019),

we employ the UDPipe toolkit (Straka & Straková, 2017) to obtain parts of speech

and dependency relations for the sentences. Due to their similarity, we will only

describe the UPOS-based alignment process and the dependency-based alignment

can be done in the same way.

As such, we utilize an embedding table U (initialized randomly) to capture

representation vectors for the possible UPOS, serving as an anchor knowledge

across languages. Next, to facilitate the UPOS-based representation alignment,

we compute additional representation vectors for UPOS based on representation

vectors of examples in both source and target languages. In particular, for each

word wk in an input sentence w (from xsrc or xtgt), we send its contextualized

representation zk from mBERT into a feed-forward network FFNUPOS to produce

a representation vector qk for the UPOS wpos
k of wk ∈ w: qk = FFNUPOS(zk).
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Afterward, to leverage the language-universal of U , we propose to match qk to the

embedding vector of wpos
k in U for qk in both source and target language data. In

other words, induced representation vectors in the source and target languages are

both matched to the anchor knowledge U , providing a mechanism to align source

and target representations.

To match qk and U , we seek to maximize the similarity between qk and the

embedding of wpos
k in U while minimizing qk’s similarities with embeddings of other

UPOS at the same time. To implement this idea, we utilize the following function

for minimization:

Lalign
pos =

∑
w∈D,wk∈w

log

(∑
u∈O

eqkU [u]−qkU [wpos
k ]

)
(4.8)

where D = Dsrc ∪Dtgt, O is the set of possible UPOS, and U [u] is the embedding of

u in U .

Context Information Filtering: Note that Lalign
pos is also the negative

log-likelihood for a feed-forward classifier that uses U as the weight matrix and qk

as the input vector to predict the UPOS wpos
k for wk. As such, minimizing Lalign

pos

also serves to retain relevant information for UPOS prediction in the representation

vector qk. However, due to the direct computation of qk from the contextualized

representation zk, it is possible that qk still preserves context information from

the input sentence w. This might introduce noise into qk as ideally, we expect qk

to focus only on information about UPOS. As such, to improve the quality of qk

for representation alignment, we propose to explicitly filter context information

from vectors qk. Our main idea is to ensure that qk cannot be used to recover

the context words in w. To achieve this goal, we first obtain an aggregated vector

for the UPOS representation vectors in the input sentence w: q = 1
n

∑n
k=1 qk.

The resulting vector is then fed into a Gradient Reversal Layer (GRL) (Ganin &
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Lempitsky, 2015), followed by a word classifier (i.e., a feed-forward network FFNctx

with a softmax layer in the end) to compute a probability distribution over the

words in our vocabulary: ŷctx = softmax(FFNctx(GRL(q))). Finally, to filter the

context information from qk, we minimize the negative log-likelihood of the context

words wk in the input sentence w:

Lctx
pos = −

∑
w∈Dsrc∪Dtgt

∑
wk∈w

log
(
ŷctx[wk]

)
(4.9)

where ŷctx[wk] is the probability for word wi in the distribution ŷctx. Note that

while the minimization of the negative log-likelihood generally encourages input

representations to reveal information about the prediction outputs (i.e., context

words in our case), the introduction of GRL in Lctx
pos reverses this process to

discourage the context information in q, thus purifying qk to focus on UPOS

knowledge and facilitating the representation alignment.

In the next steps for universal dependency relations, we follow the same

procedure for Lalign
pos and Lctx

pos to obtain the losses Lalign
dep and Lctx

dep respectively

for minimization. For convenience, let Lpos = Lalign
pos + Lctx

pos and Ldep =

Lalign
dep + Lctx

dep. In summary, the overall loss function to train our models for a

task t ∈ {ED,RE,EAE} with both class and word category alignment is thus:

Lmain = Lt + λclsL
t
cls + λposLpos + λdepLdep where λcls is the adaptive coefficient, and

λpos and λdep are trade-off parameters.

4.1.5 Experiments. Datasets and Hyper-parameters: Following

previous work (Ahmad et al., 2021; M’hamdi et al., 2019; Subburathinam et al.,

2019), we use the multilingual dataset ACE 2005 (Walker et al., 2006) to evaluate

REE models in this work. ACE 2005 annotate documents for entity mentions,

event triggers, relations, and arguments in English (EN), Chinese (ZH) and Arabic

(AR). We apply the same data split and preprocessing for ACE 2005 as prior work
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Language Data
RE

(#rels)
ED

(#trgs)
EAE

(#args)

English
Train 4,974 4,420 7,018
Dev 626 505 877
Test 620 424 878

Chinese
Train 4,767 2,213 5,931
Dev 572 111 741
Test 605 197 742

Arabic
Train 2,918 1,986 3,959
Dev 357 112 495
Test 378 169 495

Table 21. Statistics of the multilingual datasets for ED, RE, and EAE in ACE 2005.
#rels, #trgs and #args represent the numbers of relations, event triggers, and
event arguments respectively.

Model
Even Argument Extraction Relation Extraction

EN
ZH

EN
AR

ZH
EN

ZH
AR

AR
EN

AR
ZH

EN
ZH

EN
AR

ZH
EN

ZH
AR

AR
EN

AR
ZH

GATE 63.2 68.5 59.3 69.2 53.9 57.8 55.1 66.8 71.5 61.2 69.0 54.3

GATE+LADV 63.9 67.7 60.3 68.6 55.8 57.8 56.8 64.2 70.2 61.6 68.9 54.8
GATE+FMBERT 63.7 68.7 59.3 69.3 54.6 58.1 55.8 66.9 71.8 61.7 69.2 54.9

GATE+CCCAR 65.5 69.4 62.0 69.3 57.5 59.1 58.1 67.9 72.0 63.5 70.5 57.7

Table 22. Performance (F1 scores) of models on test data for EAE and RE in six
crosslingual settings. Each column corresponds to one setting where source languages
are written above target languages. Underlined numbers designate settings where the
proposed model is significantly better than other models with p < 0.01.

(Ahmad et al., 2021; M’hamdi et al., 2019) for a fair comparison. Overall, there are

18 relation types, 33 event types, and 35 argument roles in this dataset. For each of

the language (i.e., English, Chinese and Arabic) and task (i.e., ED, RE, and EAE),

the data split provides training, development, and test data. In our cross-lingual

transfer learning experiments, the models will be trained on the training data of

one language (the source) and evaluated on the test data of another language (the

target). The unlabeled data for the target language is obtained by removing the

labels from its training data. The statistics of the ACE 2005 dataset for the three

tasks are shown in Table 21.

We use the same hyper-parameters for BERTCRF and GATE as provided

by previous work (Ahmad et al., 2021; M’hamdi et al., 2019). Specific hyper-
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Model
Event Detection

EN
ZH

EN
AR

ZH
EN

ZH
AR

AR
EN

AR
ZH

BERTCRF 68.5 30.9 - - - -

BERTCRF+LADV 70.0 33.5 41.2 20.3 37.2 55.6
BERTCRF+FMBERT 69.4 33.4 42.9 20.0 36.5 56.3

BERTCRF+CCCAR 72.1 42.7 45.8 20.7 40.7 59.8

Table 23. Performance (F1 scores) on test data for ED in six crosslingual settings.
Each column corresponds to one setting where source languages are written above target
languages. “-” indicates results that are not reported in the original work. Underlined
numbers designate settings where the proposed model is significantly better than other
models with p < 0.01.

parameters for our model are tuned on the development data. In particular, we

use two layers for the feed forward networks with 50 hidden units for the layers, 50

dimensions for the UPOS and dependency embeddings, and 0.1 for the parameters

λpos and λdep. For the baseline FMBERT, we utilize the huggingface library to

finetune mBERT on unlabeled target data with MLM for 100, 000 steps (i.e., batch

size of 64 and learning rate of 5e-5).

Performance Comparison: We compare the proposed crosslingual method for

REE on two groups of baselines. The first group involve models that only use

source language data for training, i.e., BERTCRF and GATE. These are current

SOTA methods for crosslingual ED, RE, and EAE. The second baseline groups

additionally employ unlabeled data in the target language to support crosslingual

representation learning in REE, i.e., LADV and FMBERT. Our proposed method

also leverages unlabeled data in the target language, called CCCAR for class- and

word category-based crosslingual alignment of representations. Note that LADV,

FMBERT, and CCCAR should be applied on top of a source-only method (i.e.,

BERTCRF and GATE) to form a complete model.

Tables 23 and 22 show the test data performance of the models for the three

REE tasks in six crosslingual settings (i.e., with different pairs of languages for the
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source and target). It is clear from the tables that the proposed method CCCAR

consistently outperforms other methods in all crosslingual settings for the three

REE tasks. In particular, for EAE, CCCAR substantially improves the baseline

model GATE (i.e., the current SOTA) by 1.9% on average while those improvement

for LADV and FMBERT are only 0.45% and 0.38%. The same trend can be seen

for RE and ED where CCCAR on average improves the baselines by 1.97% for the

former and 7.7% for the latter. These results clearly demonstrate the effectiveness

of the proposed method, highlighting the benefits of the class- and word category-

based alignment for crosslingual REE.

Model
English → Chinese English → Arabic
RE ED EAE RE ED EAE

CCCAR
- Class Align.
- Adaptive Coeff.
- UPOS Align.
- Dep Align.
- Word Cat Align.
- Context Filtering

58.1 72.1 65.5 67.9 42.7 69.4
56.6 69.9 63.6 66.9 38.8 68.9
57.4 71.5 64.7 67.3 41.3 69.2
57.9 71.4 65.1 66.9 40.4 69.3
57.8 71.7 64.7 67.1 41.5 68.9
57.0 70.9 64.4 67.0 40.0 68.7
57.6 71.2 64.9 67.4 41.6 69.0

Table 24. Performance (F1 scores) of models. In the row for the proposed model
CCCAR, we use BERTCRF as the base model for ED, and GATE as the base model for
RE and EAE.

Ablation Study: This section conducts an ablation study to understand the

contribution of each designed component in the proposed crosslingual alignment

method CCCAR. In particular, we examine the performance of the following

ablated models: (i) - Class Align.: this model excludes the class-based alignment

component (i.e., the loss Lt
cls) from CCCAR; (ii) - Adaptive Coeff.: instead of

using the adaptive coefficient λcls for the class-based alignment loss Lt
cls, this model

utilizes a fixed value (i.e., 0.2 as tuned on development data) for λcls; (iii) - UPOS

Align.: this model eliminates the UPOS-based alignment component (i.e., the

losses Lalign
pos and Lctx

pos) from CCCAR; (iv) - Dep Align.: the alignment component
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Figure 17. T-SNE visualizations for the representations of 4,000 randomly selected
examples from English (i.e., source language) and Chinese (i.e., target language) data.
Circles and triangles represent English and Chinese examples respectively. Colors
represent different classes in EAE. GATE+CCCAR shows induced representation vectors
from our proposed model.

based on dependency relations (i.e., the losses Lalign
dep and Lctx

dep) is not utilized in

this model; (v) - Word Cat Align.: this model removes both UPOS-based and

dependency-based alignment from CCCAR (i.e., excluding Lpos and Ldep); and (vi)

- Context Filtering: the word context filtering for the representation vectors of

UPOS and dependency relations (with GRL) is not employed in this model (i.e.,

eliminating the losses Lctx
pos and L

ctx
dep).

Table 24 presents the test data performance of the models in the English-

to-Chinese and English-to-Arabic settings for the three REE tasks. As can be

seen, removing any component of the proposed model would hurt the performance

significantly across different settings and tasks, thus clearly illustrating the benefits

of the designed components for CCCAR. The performance of the models drops

the most when the class-based alignment is excluded, further demonstrating the

importance of class-aware alignment for crosslingual REE.

Source-language Data Usage: Previous experiments show that using unlabeled

data in the target language to align representation vectors in CCCAR can improve
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Figure 18. Performance on test data of the models in the English-to-Chinese
setting. Dash lines represent the performance of the source-only baselines using
100% of the source-language training data.

the performance for the source-only baselines for REE. In this section, we seek

to understand how much labeled data in the source language can be saved if

unlabeled data in the target language is employed with CCCAR for an REE

task. In particular, we are interested in the portion of source language data that,

once combined with unlabeled target language data via CCCAR, can produce

similar performance as the source-only baseline trained on full source language

data. To this end, we show the learning curves of the source-only and CCCAR-

augmented models for REE tasks when the size of the source-language training

data varies. Figure 18 show the curves for the English-to-Chinese setting. As can

be seen, the proposed CCCAR method with unlabeled target data only needs

to use approximately 60% of the source-language training data for RE and EAE

to achieve comparable performance with the source-only baselines on full source

language data. This portion for ED is less than 80%. These results thus suggests

an additional benefit of CCCAR to significantly reduce necessary data annotation
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for the source language based on unlabeled target language data in crosslingual

learning for REE.

Alignment Effect of the Proposed Method: As discussed earlier, a major issue

for LADV is that it might align representations of examples with different classes

in the crosslingual setting. CCCAR can address this issue as it explicitly relies on

class information for representation alignment. To demonstrate these arguments,

Figure 17 uses the t-Distributed Stochastic Neighbor Embedding (t-SNE) (Van der

Maaten & Hinton, 2008) to visualize the example representations induced by

GATE, the LADV baseline GATE+LADV, and the proposed GATE+CCCAR.

This visualization is done over 4,000 randomly selected examples for the top 5

frequent classes in EAE. Here, examples are sampled from training data for both

source and target languages in the English-to-Chinese setting. As can be seen,

in the source-only model GATE, representations for examples from the source

language are quite separate from those in the target language. The representation

alignment in GATE+LADV can address this issue by pushing representations from

both languages closer. However, representations for examples with different classes

are unexpectedly aligned in GATE+LADV, causing suboptimal representations for

crosslingual settings. Finally, due to the explicit condition on class information for

alignment, GATE+CCCAR can match representations for both languages while

avoiding the cross-class alignment to improve crosslingual performance for REE.

4.1.6 Related Work. REE has been extensively studied for English,

featuring traditional machine learning methods (Q. Li et al., 2013a; Liao &

Grishman, 2011; Patwardhan & Riloff, 2009; B. Yang & Mitchell, 2016a) and

advanced deep learning models (Y. Chen, Xu, Liu, Zeng, & Zhao, 2015b; Y. Lin et

al., 2020a; M. V. Nguyen, Lai, & Nguyen, 2021; T. H. Nguyen, Cho, & Grishman,
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2016a; T. H. Nguyen & Grishman, 2015a, 2018b; Sahu, Christopoulou, Miwa,

& Ananiadou, 2019; Veyseh, Dernoncourt, Dou, & Nguyen, 2020b; Veyseh,

Dernoncourt, Thai, Dou, & Nguyen, 2020b; Veyseh, Nguyen, & Nguyen, 2020b;

X. Wang et al., 2019; Zhang et al., 2019). Recently, several works have considered

cross-lingual transfer learning for three REE tasks (J. Liu et al., 2019a; Ni &

Florian, 2019; Subburathinam et al., 2019) where multilingual pre-trained language

models (e.g., mBERT) have been proved as an important encoding component

(Ahmad et al., 2021; M. V. Nguyen & Nguyen, 2021b).

However, a fundamental limitation of existing crosslingual models for REE is

the monolingual bias due to the sole reliance on source language data for training.

In other NLP tasks, LADV has been explored to address this issue by leveraging

unlabeled data in the target language to perform crosslingual representation

alignment (Cao et al., 2020; X. Chen et al., 2019; He et al., 2020; Huang et al.,

2019; Lange et al., 2020a). Unfortunately, LADV suffers from the cross-class

alignment issue, making it less optimal for crosslingual REE. Finally, we note that

language-universal representation learning is related to domain adaption research

where models seek to learn domain-invariant representations (Adel, Zhao, & Wong,

2017; Cicek & Soatto, 2019; L. Fu, Nguyen, Min, & Grishman, 2017; Ganin &

Lempitsky, 2015; Ngo Trung, Phung, & Nguyen, 2021; Tang, Chen, & Jia, 2020;

Xie, Zheng, Chen, & Chen, 2018).

4.1.7 Summary. We present a novel method for crosslingual

transfer learning for REE that leverages unlabeled data in the target language

to support language-universal representation learning. Our method exploits class

semantics in REE tasks and universal word categories (i.e., UPOS and dependency

relations) as bridges to align representation vectors across languages. In our
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method, representation vectors for classes and word categories are computed via

contextualized representations of examples to implement representation matching

for crosslingual alignment. Extensive experiments show that the proposed method

achieves SOTA performance for three REE tasks in different crosslingual settings.

4.2 FAMIE

4.2.1 Introduction. Information Extraction (IE) systems provide

important tools to extract structured information from text (V. D. Lai, Nguyen,

Nguyen, & Dernoncourt, 2021; Q. Li et al., 2014; M. V. Nguyen, Lai, & Nguyen,

2021; T. M. Nguyen & Nguyen, 2019b; Veyseh, Nguyen, Min, & Nguyen, 2021).

At the core of IE involves sequence labeling tasks that aim to recognize word

spans and semantic types for some objects of interest (e.g., entities and events)

in text. For example, two typical sequence labeling tasks in IE feature Named

Entity Recognition (NER) to find names of entities of interest, and Event Detection

(ED) to identify triggers of specified event types (Walker et al., 2006). Despite

extensive research effort for sequence labeling (Lafferty et al., 2001; Ma & Hovy,

2016; Pouran Ben Veyseh, Nguyen, Ngo Trung, Min, & Nguyen, 2021), a major

bottleneck of existing IE methods involves the requirement for large-scale human-

annotated data to build high-quality models. As annotating data is often expensive

and time-consuming, large-scale labeled data is not practical for various domains

and languages.

To address the annotation cost for IE, previous work has resorted to

active learning (AL) approaches (Settles, 2009; Settles & Craven, 2008) where

only a selective set of examples are annotated to minimize the annotation effort

while maximizing the performance. Starting with a set of unlabeled data, AL

methods train and improve a sequence labeling model via multiple human-model
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collaboration iterations. At each iteration, three major steps are performed in

order: (i) training the model on the current labeled data, (ii) using the trained

model to select the most informative examples in the current unlabeled set for

annotation, and (iii) presenting the selected examples to human annotators to

obtain labels. In AL, the number of annotated samples or annotation time might

be limited by a budget to make it realistic.

Unfortunately, despite much potentials, existing AL methods and

frameworks are still not applied widely in practice due to their main focus on

devising the most effective example selection algorithm for human annotation,

e.g., based on the diversity of the examples (Shen, Yun, Lipton, Kronrod, &

Anandkumar, 2017a; M. Yuan, Lin, & Boyd-Graber, 2020) and/or the uncertainty

of the models (Roth & Small, 2006; Shelmanov et al., 2021; D. Wang & Shang,

2014). Training and selection time in the first and second steps of each AL

interaction is thus not considered in prior work for sequence labeling. This is a

critical issue that limits the application of AL: annotators might need to wait for

a long period between annotation batches due to the long training and selection

time of the models at each AL iteration. Given the widespread trend of using

large-scale pre-trained language models (e.g., BERT), this problem of long waiting

or training/selection time in AL can only become worse. On the one hand, the

long idle time of annotators reduces the number of annotated examples given

an annotation budget. Further, the engagement of annotators in the annotation

process can drop significantly due to the long interruptions between annotation

rounds, potentially affecting the quality of their produced annotation. In all,

current AL frameworks are unable to optimize the available time of annotators

to maximize the annotation quantity and quality for satisfactory performance.
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To this end, we demonstrate a novel AL framework (called FAMIE) that

leverages large-scale pre-trained language models for sequence labeling to achieve

optimal modeling capacity while significantly reducing the waiting time between

annotation rounds to optimize annotator time. Instead of training the full/main

large-scale model for data selection at each AL iteration, our key idea is to train

only a small proxy model on the current labeled data to recommend new examples

for annotation in the next round. In this way, the training and data selection time

can be reduced significantly to enhance annotation engagement and quality. An

important issue in this idea is to ensure that the examples selected by the proxy

model are also optimal for the main large model. To this end, we introduce a novel

knowledge distillation mechanism for AL that encourages the synchronization

between the proxy and main models, and promotes the fitness of selected examples

for the main model. To update the main model with new annotated data for

effective distillation, we propose to train the main large model on current labeled

data during the annotation time, thus not adding to the waiting time of annotators

between annotation rounds. This is in contrast to previous AL frameworks that

leave the computing resources unused during annotation time. Our approach can

thus efficiently exploit both human and computer time for AL.

To evaluate the proposed AL framework FAMIE, we conduct experiments

for multilingual sequence labeling problems, covering two important IE tasks

(i.e., NER and ED) in three languages (i.e., English, Spanish, and Chinese). The

experiments demonstrate the efficiency and effectiveness of FAMIE that can achieve

strong performance with significantly less human-computer collaboration time.

Compared to existing AL systems such as ActiveAnno (Wiechmann, Yimam, &

Biemann, 2021) and Paladin (Nghiem, Baylis, & Ananiadou, 2021), our system
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Figure 19. The overall Proxy Active Learning process.

FAMIE features important advantages. First, FAMIE introduces a novel approach

to reduce model training and data selection time for AL via a small proxy model

and knowledge distillation while still benefiting from the advances in large-

scale language models. Second, while previous AL systems only focus on some

specific task in English, FAMIE can support different sequence labeling tasks in

multiple languages due to the integration of our prior multilingual toolkit Trankit

(M. V. Nguyen, Lai, Veyseh, & Nguyen, 2021) to perform fundamental NLP tasks

in 56 languages. Third, in contrast to previous AL systems that only implement

one data selection algorithm, FAMIE covers a diverse set of AL algorithms. Finally,

FAMIE is the first complete AL system that allows users to define their sequence

labeling problems, work with the models to annotate data, and eventually obtain a

ready-to-use model for deployment.

4.2.2 System Description. In AL, we are given two initial datasets,

a small seed set of labeled examples D0 = {(w,y)} and an unlabeled example

set U0 = {w} (the seed set D0 is optional and our system can work directly

with only U0). For sequence labeling, models consume a sequence of K words

w = [w1, w2, . . . , wK ] (i.e., a sentence/example) to output a tag sequence
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y = [y1, y2, . . . , yK ] (yi is the label tag for wi). The tag sequence is represented

in the BIO scheme to capture spans and types of objects of interest.

A typical AL process contains multiple rounds/iterations of model training,

data selection, and human annotation in a sequential manner. Let D and U be the

overall labeled and unlabeled set of examples at the beginning of the current t-th

iteration (initialized with D0 and U0). At the current iteration, a sequence labeling

model is first trained on the current labeled set D. A sample selection algorithm

then employs the trained model to suggest the most informative subset of examples

U t in U (i.e., U t ⊂ U) for annotation. Afterwards, a human annotator will provide

labels for the sentences in the selected set U t, leading to the labeled examples Dt

for U t. The labeled and unlabeled sets can then be updated via: D ← D ∪Dt and

U ← U \ U t.

4.2.2.1 Model. We employ the typical Transformer-CRF architecture

for sequence labeling (M. V. Nguyen, Lai, Veyseh, & Nguyen, 2021). In

particular, given the input sentence w = [w1, w2, . . . , wK ], the state-of-the-art

multilingual language model XLM-Roberta (Conneau et al., 2020) is used to obtain

contextualized embeddings for the words: X = x1, . . . ,xK = XLMR(w1, . . . , wK)

(i.e., to support multiple languages). Afterwards, the word embeddings are sent

to a feed-forward network with softmax in the end to obtain the score vectors:

zi = softmax(hi) where hi = FFN(xi). Here, each value in zi represents a

score for a tag in the tag set V . The score vectors are then fed into a Conditional

Random Field (CRF) layer to compute a distribution for possible tag sequences

for w: P (ŷ|w) = exp(s(ŷ,w))∑
ŷ′∈Y (w) exp(s(ŷ

′,w))
where Y (w) is the set of all possible tag

sequences for w. Also, s(ŷ,w) is the score for a tag sequence ŷ = [ŷ1, . . . , ŷK ]:

s(ŷ,w) =
∑

i zi[ŷi] +
∑

i πŷi→ŷi+1
. Here, πŷi→ŷi+1

is the transition score from the tag
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ŷi to the tag ŷi+1. The model is trained by minimizing the negative log likelihood:

Ltask = − logP (y|w). For inference, the Viterbi algorithm is used for decoding:

ŷ∗ = maxŷ′P (ŷ′|w).

Adapter-based Finetuning To further improve the memory and time

efficiency, we incorporate light-weight adapter networks (Houlsby et al., 2019;

Peters, Ruder, & Smith, 2019a) into our model. In form of small feed-forward

networks, adapters are injected in between the transformer layers of XLM-

Roberta. For training, we only update the adapters while the parameters of XLM-

Roberta are fixed. This significantly reduces the amount of learning parameters

while sacrificing minimal extraction loss, or in case of low-resource learning even

surpassing performance of fully fine-tuned models.

4.2.2.2 Data Selection Strategies. To improve the flexibility to

accommodate different problems, our AL framework supports a wide range of

data selection strategies for choosing the best batch of examples to label at each

iteration for sequence labeling. These algorithms are categorized into three groups,

i.e., uncertainty-based, diversity-based, and hybrid. For each group, we explore its

most popular methods as follows.

Uncertainty-based. These methods select examples for annotation according

to the main model’s confidence over the predicted tag sequences for unlabeled

examples. Early methods sort the unlabeled examples by the uncertainty of the

main model. To avoid the preference over longer examples, the method Maximum

Normalized Log-Probability (MNLP) (Shen et al., 2017a) proposes to normalize

the likelihood over example lengths. In particular, MNLP selects examples with the

highest MNLP scores: MNLP (w) = −maxŷ′ 1
K
logP (ŷ′|w).
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Diversity-based. Algorithms in this category assume that a representative

set of examples can act as a good surrogate for the whole dataset. BERT-KM

(M. Yuan et al., 2020) uses K-Means to cluster the examples in unlabeled data

based on the contextualized embeddings of the sentences (i.e., the representations

for the [CLS] tokens in the trained BERT-based models). The nearest neighbors to

the K cluster centers are then chosen for labeling.

Hybrid. Recently, several works have proposed data selection strategies for

BERT-based AL to balance between uncertainty and diversity. The BADGE

method (Ash, Zhang, Krishnamurthy, Langford, & Agarwal, 2019; Kim, 2020)

chooses examples from clusters of gradient embeddings, which are formed with the

token representations hi from the penultimate layer of the main model and the

gradients of the cross-entropy loss with respect to such token representations. The

gradient embeddings are then sent to the K-Means++ to find the initial K cluster

centers that are distant from each other, serving as the selected examples (Kim,

2020).

In addition, we implement the AL framework ALPS (M. Yuan et al., 2020)

that does not require training the main model for data section. ALPS employs the

surprisal embedding of w, which is obtained from the likelihoods of masked tokens

from pre-trained language models (i.e., XLM-Roberta). The surprisal embeddings

are also clustered to select annotation examples as in BERT-KM.

4.2.2.3 Proxy Active Learning. As discussed in the introduction,

model training and data selection at each iteration of traditional AL methods

might consume significant time (especially with the current trend of large-scale

language models), thus introducing a long idle time for annotators that might

reduce annotation quality and quantity. To this end, (Shelmanov et al., 2021)
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have explored approaches to accelerate training and data selection steps for AL

by leveraging smaller and approximate models during the AL iterations. To make

it more efficient, the main large model is only trained once in the end over all the

annotated examples in AL. Unfortunately, this approach suffers from the mismatch

between the approximate and main models as they are separately trained in AL,

thus limiting the effectiveness of the selected examples for the main model (Lowell,

Lipton, & Wallace, 2019).

To overcome these issues, our AL framework FAMIE trains a small proxy

network at each iteration to suggest new unlabeled samples. Dealing with the

mismatch between the proxy-selected examples and the main model, FAMIE

proposes to involve the main model in the training and data selection for the

proxy model. In particular, at each AL iteration, the main model will still be

trained over the latest labeled data. However, to avoid the interference of the

main large model with the waiting time of annotators, we propose to train the main

model during the annotation time of the annotators (i.e., main model training and

data annotation are done in parallel). Given the main model trained at previous

iteration, knowledge distillation will be employed to synchronize the knowledge

between the main and proxy models at the current iteration.

The complete framework for FAMIE is presented in Figure 19. At iteration

t, a proxy acquisition model is trained on the current labeled data set Dt−1
0 =

D0 ∪ D1 . . . ∪ Dt−1. The trained proxy model at the current step is called M t
prx.

Also, we use knowledge distillation signals Kt−2
0 that is computed from the main

model M t−1
main trained at the previous iteration t − 1 to synchronize the proxy

model M t
prx and the main model M t−1

main (M1
prx is trained only on D0). Afterwards, a

data selection algorithm is used to select a batch of examples U t from the current
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unlabeled set U for annotation, leveraging the feedback from M t
prx. Next, a human

annotator will label U t to produce the labeled data batch Dt for the next iteration

t+1. During this annotation time, the main model will also be trained again over the

current labeled data Dt−1
0 to produce the current version M t

main of the model. The

distillation signal Kt−1
0 for the next step will also be computed after the training

of M t
main. This process is repeated over multiple iterations and the last version of

Mmain will be returned for users.

To improve the fitness of the proxy-based selected examples for Mmain, we

leverage the distilled version miniLM of XLM-Roberta (W. Wang, Bao, Huang,

Dong, & Wei, 2021) that employs similar stacks of transformer layers for the proxy

model Mprx. Note that Mprx also includes a CRF layer on top of miniLM.

4.2.2.4 Uncertainty Distillation. Although the proxy and main

model Mprx and Mmain are trained on similar data, they might still exhibit

large mismatch, e.g., regarding decision boundaries. This prompts a demand for

regularizing the proxy model’s predictions to be consistent with those of a trained

main model to improve the fitness of the selected examples for Mmain. Ideally,

we expect the tag sequence distribution Pprx(y|w) learned by the proxy model to

mimic the tag sequence distribution Pmain(y|w) learned by the main model. To this

end, we propose to minimize the difference between the intermediate outcomes

(i.e., the unary and transition scores) of the two distributions. In particular,

we introduce the following distillation objective for each sentence w at one AL

iteration: Ldist = −
∑

i

∑
v p

main
i [v] log pprxi [v] +

∑
i(π

main
yi→yi+1

− πprx
yi→yi+1

)2 where

pmain
i and pprxi are the tag distributions computed by the main and proxy models

respectively for the word wi ∈ w (i.e., the scores zi). Note that pmain
i and πmain

yi→yi+1

serve as the knowledge distillation signal that is obtained once the main model
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finishes its training at each iteration. Here, we will use the newly selected examples

for the current annotation to compute the distillation signals. The overall objective

to train Mprx at each AL iteration is thus: L = Ltask + Ldist.
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Figure 20. Comparison among data selection strategies.

4.2.3 Usage. Detailed documentation for FaMIE is provided at:

https://famie.readthedocs.io/. The codebase is written in Python and

Javascript, which can be easily installed through PyPI at : https://pypi.org/

project/famie/.

Initialization. To initialize a project, users first choose a data selection strategy

and upload a label set to define a sequence labeling problem. Next, the dataset U

with unlabeled sentences should be submitted. FAMIE then allows users to interact

with the models and annotate data over multiple rounds with a web interface. Also,

FAMIE can detect languages automatically for further processing.
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Annotating procedure. Given one annotation batch in an iteration, annotators

label one sentence at a time as illustrated in Figure 21. In particular, the

annotators annotate the word spans for each label by first choosing the label

and then highlighting the appropriate spans. Also, FAMIE designs the size of the

annotation batches to allow enough time to finish the training of the main model

during the annotation time at each iteration.

Output. Unlike previous AL toolkits which focus only on their web interfaces to

produce labeled data, FAMIE provides a simple and intuitive code interface for

interacting with the resulting labeled dataset and trained main models after the AL

processes. The code snippet in Figure 22 presents a minimal usage of our famie

Python package to use the trained main model for inference over new data. This

allows users to immediately evaluate their models and annotation efforts on data of

interest.

Figure 21. Annotation interface in FAMIE.

Idle CoNLL03-English CoNLL02-Spanish ACE-English ACE-Chinese
mins/iter 10% 20% 30% 40% 50% 100% 10% 20% 30% 40% 50% 100% 10% 20% 30% 40% 50% 100% 10% 20% 30% 40% 50% 100%

Full Data x x x x x x 92.4 x x x x x 89.6 x x x x x 71.9 x x x x x 69.1
Large 41.6 90.3 92.4 93.0 92.4 92.4 x 86.9 88.6 89.4 89.3 89.0 x 67.8 71.1 70.0 72.4 71.3 x 64.8 67.6 71.3 68.7 71.5 x
FaMIE 3.4 90.1 91.7 91.8 91.7 92.7 x 86.5 88.2 88.5 88.1 89.4 x 67.0 69.3 69.5 68.9 70.6 x 61.3 67.9 68.5 69.8 69.6 x
FaMIE-A 5.7 89.7 90.8 91.3 91.9 91.7 x 87.4 87.2 89.0 87.7 89.1 x 67.2 68.0 69.5 68.9 70.6 x 62.8 66.5 67.9 66.3 69.4 x
FaMIE-AD 5.6 87.0 90.1 90.5 90.7 90.5 x 85.5 86.9 87.7 88.8 88.6 x 64.9 65.4 67.7 66.8 69.1 x 58.1 65.4 66.5 64.8 70.3 x
Random x 86.0 89.1 90.6 91.4 91.9 x 80.8 85.3 88.1 88.7 88.6 x 60.4 64.1 66.9 69.0 67.5 x 48.4 58.2 65.1 65.4 66.6 x

Table 25. Main model’s performance on multilingual NER and ED tasks. “Idle”
indicate average waiting time of annotators.
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import famie
# access a project via its name
p = famie.get_project('NewProject')
# access the project's labeled data
data = p.get_labeled_data()

# access the project's trained target model
model = p.get_trained_model()
# make predictions with the trained model
doc = '''Nick is happy.'''
output = model.predict(doc)
print(output)
# [('Nick', 'B-Person'), ('is', 'O'), ('happy', 'O'), ('. ', 'O')]

1
2
3
4
5
6
7
8
9
10
11
12
13

Figure 22. Accessing the labeled dataset and the trained main model returned by an
AL project.

4.2.4 Evaluation.

Datasets and Hyper-parameters. To comprehensively evaluate our AL

framework FAMIE, we conduct experiments on two IE tasks (i.e., NER and ED)

for three languages using four datasets: CoNLL03-English (Tjong Kim Sang &

De Meulder, 2003) and CoNLL02-Spanish (Tjong Kim Sang, 2002) for NER,

and ACE-English and ACE-Chinese for ED (i.e., using the multilingual ACE-05

dataset (T. H. Nguyen & Grishman, 2015a, 2018a; Walker et al., 2006)). The

CoNLL datasets cover 4 entity types while 33 event types are annotated in ACE-05

datasets. We follow the standard data splits for train/dev/test portions for each

dataset (V. D. Lai et al., 2020; Q. Li et al., 2013a; Pouran Ben Veyseh, Lai, et al.,

2021).

For the main target model Mmain, the full-scale XLM-Robertalarge model

is used as the encoder. Our framework for AL thus inherits the ability of XLM-

Roberta to support more than 100 languages. Also, we employ the compact

miniLM architecture (distilled from the pre-trained XLM-Roberta) for the proxy

model Mprx. In all experiments, the main model is trained for 40 epochs while the

proxy model is trained for 20 epochs at each iteration. We use the Adam optimizer

with batch size of 16 and learning rate of 1e-5 to train the models.
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We follow the AL settings in previous work to achieve consistent evaluation

(Kim, 2020; M. Liu et al., 2022; Shelmanov et al., 2021). Specifically, the unlabeled

pool is created by discarding labels from the original training data of each dataset;

2% of which (∼ 242 sentences) is selected for labeling at each iteration for a total of

25 iterations (examples of the first iteration are randomly sampled to serve as the

seed D0). The annotation is simulated by recovering the ground-truth labels of the

corresponding instances. The model performance is measured on the test datasets

by taking average over 3 runs with different random seeds.

Comparing Data Selection Strategies. In this experiment, we aim to

determine the best data selection strategy for our AL framework. To this end,

we perform the standard AL process (i.e., training the full transformer-CRF model

with no adapters, selecting data, and annotating data at each iteration) for different

data selection strategies to measure performance and time. We focus on English

datasets in this experiment. Figure 20 reports the performance across AL iterations

of the model for different data selection methods. As can be seen, “MNLP” is the

overall best method for data selection in AL. We will thus leverage MNLP as the

data section strategy for the evaluation of FAMIE.

Also, Figure 20 shows the annotators’ idle time (the combined time for

model training and data selection) across iterations for each selection strategy. The

major difference comes from ALPS that has significantly less waiting time than

other methods as it does not require model training. However, ALPS’s performance

is considerably worse than MNLP as a result, especially in early iterations. This

demonstrates the importance of training and including the main model during

the AL iterations for data section. Importantly, we find that the waiting time of

annotators at each iteration is very high in current AL methods (e.g., more than
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30 minutes after the first 8 iterations with the MNLP strategy), thus affecting the

annotators’ productivity.

Performance and Time Efficiency. To evaluate the performance and time

efficiency of FAMIE, Table 25 compares our full proposed framework FAMIE (with

proxy model, knowledge distillation, and adapters) with the following baselines:

(i) “Large”: the best AL baseline from the previous experiment employing the

full-scale transformer encoder and MNLP for data selection; (ii) “Random”: this

is the same as “Large”, but replaces MNLP with random selection; (iii) “FAMIE-

A”: this is the proposed framework FAMIE without adapter-based tuning (all

parameters from the main model are fine-tuned); and (iv) “FAMIE-AD”: we

further remove the knowledge distillation loss from “FAMIE-A” in this method.

The experiments are done for all four datasets of NER and ED.

The first observation is that FAMIE’s performance is only marginally

below that of Large despite only using the small proxy network for data selection.

Importantly, annotators only have to wait for about 3.4 minutes per AL iteration

before they can annotate the next data batch in FAMIE. This is over 10 times

faster compared to the standard AL approaches (e.g., in Large). Second, the

adapters in FAMIE not only boost the overall performance for AL but also

reduce the waiting time for annotators. Also, we note that using adapters, the

training time of Mmain only takes 32 minutes at each iteration (on average). This

is reasonable to fit into the time that an annotator needs to spend to label an

annotation batch at each AL iteration, thus accommodating our proposal for

training the main model during annotation time. Finally, FAMIE-AD performs

worst (i.e., similar or even worse than Random) in most cases, which confirms the

necessity of our distillation component in FAMIE.
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4.2.5 Related Work. Despite the potential of AL in reducing

annotation cost for a target task, most previous AL work focuses on developing

data selection strategies to maximize the model performance (Ash et al., 2019; Kim,

2020; M. Liu et al., 2022; Margatina, Vernikos, Barrault, & Aletras, 2021; Sener

& Savarese, 2017; D. Wang & Shang, 2014). As such, previous AL methods and

frameworks tend to ignore the necessary time to train models and perform data

selection at each AL iteration that can be significantly long and hinder annotators’

productivity and model performance. To make AL frameworks practical, few recent

works have attempted to minimize the model training and data selection time by

leveraging simple and non state-of-the-art architectures as the main model, e.g.,

ActiveAnno (Wiechmann et al., 2021) and Paladin (Nghiem et al., 2021). However,

an issue with these approaches is the inability to exploit recent advances in large-

scale language models to achieve optimal performance. In addition, some recent

works have also explored large-scale language models for AL (Shelmanov et al.,

2021; M. Yuan et al., 2020); however, to reduce waiting time for annotators, such

methods need to exclude the training of the large models in the AL iterations or

employ small models for data selection, thus suffering from a harmful mismatch

between the annotated examples and the main models (Lowell et al., 2019).

4.2.6 Summary. We introduce FAMIE, a comprehensive AL

framework that supports model creation and data annotation for sequence labeling

in multiple languages. FAMIE optimizes the annotators’ time by leveraging a small

proxy network for data selection and a novel knowledge distillation to synchronize

the proxy and main target models for AL. As FAMIE is task-agnostic, we plan to

extend FAMIE to cover other NLP tasks in future work.

151



CHAPTER V

POTENTIAL APPLICATIONS OF INFORMATION EXTRACTION FOR

ENHANCING LARGE LANGUAGE MODELS

This chapter contains materials from the published paper “Minh Nguyen,

Kishan K C, Toan Nguyen, Ankit Chadha, and Thuy Vu. ‘Efficient fine-tuning

large language models for knowledge-aware response planning’ In

Proceedings of the European Conference on Machine Learning and Principles

and Practice of Knowledge Discovery in Databases, 2023” (M. Nguyen et al.,

2023). Minh was responsible for the idea conception, model design, experiment

setup, and writing as the first author. Kishan, Toan, Ankit, and Thuy provided

meaningful discussions and analysis. Kishan and Thuy conducted the evaluation

and contributed to the writing. The paper was revised to comply with the

dissertation format and purposes.

The fourth and final research direction (RD4) explores the potential

applications of information extraction (IE) for enhancing large language models

(LLMs). This chapter introduces an innovative retrieval-augmented generation

(RAG) framework called KARP as a case study, which comprises a novel

knowledge retrieval component and an LLM for open-domain question answering.

KARP employs IE techniques to convert unstructured text into structured data,

facilitating the development of sophisticated retrieval systems that benefit RAG-

based LLMs. The knowledge retriever in KARP extracts relevant words from

web contexts to assess their relevance and determine the most suitable contexts

for answer generation. We also propose a novel fine-tuning method for training

the LLM to efficiently utilize both kinds of knowledge: external knowledge from

web contexts, and internal knowledge embedded within the model parameters.
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Experimental results demonstrate that KARP can provide natural, concise, and

highly accurate answers for open-domain questions by leveraging the power of

LLMs and the retrieval of relevant external knowledge, highlighting the potential

of IE in enhancing LLMs for more effective and reliable language understanding

and generation. This chapter serves as a starting point for discussing the broader

potential of IE in improving various aspects of LLMs, such as knowledge retrieval,

contextual understanding, and response generation, paving the way for future

research and applications in this area.

5.1 Introduction

General question answering (QA), a crucial natural language processing

(NLP) task, is often regarded as AI-complete (Clark et al., 2016; Weston et

al., 2015); that is, QA will only be considered solved once all the challenging

problems in artificial intelligence (AI) have been addressed. Several virtual response

assistants, including Google Assistant, Amazon Alexa, and Apple’s Siri, have

integrated state-of-the-art QA technologies, allowing them to understand and

generate responses in natural languages, providing valuable services to users.

However, general QA still presents significant challenges, primarily due to the

inherent difficulties in reasoning with natural language, including aspects like

commonsense and general knowledge. Past research has explored the use of

Large Language Models (LLMs) for general QA, predominantly leveraging either

parametric (e.g., ChatGPT1) or external (e.g., WebGPT(Nakano et al., 2021))

knowledge sources. This method, however, can lead to considerable complications,

including hallucination - the generation of plausible but incorrect or unverified

information. To address these challenges, this paper introduces the concept of

1https://chat.openai.com/chat
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Knowledge-Aware Response Planning (KARP) for general QA along with a novel

framework that combines a knowledge retriever with a robust fine-tuning strategy

for LLMs. In particular, the problem of KARP can be defined as follows. Given

a user query and a prompt containing external knowledge, the goal is to develop

a model that can consolidate a response that must be crafted not just from the

externally sourced information, but also from the model’s inherent parametric

knowledge. This is different from the previous work that aim to generate a response

by either harnessing parametric knowledge (e.g., ChatGPT) or retrieving from

external knowledge such as knowledge bases (Bao, Duan, Yan, Zhou, & Zhao,

2016; Bao, Duan, Zhou, & Zhao, 2014; Saxena, Chakrabarti, & Talukdar, 2021;

J. Xu et al., 2019), web documents (D. Chen, Fisch, Weston, & Bordes, 2017;

D. Chen & Yih, 2020; Garg et al., 2020; W. Yang et al., 2019; Y. Yang, Yih, &

Meek, 2015a), or a provided context (Devlin et al., 2019b; Hermann et al., 2015;

Rajpurkar, Zhang, Lopyrev, & Liang, 2016; W. Wang, Yang, Wei, Chang, & Zhou,

2017).

With the emergent abilities of LLMs (Wei et al., 2022), generative QA

systems, in which answers are produced by a generative LLM, have been explored

to improve the performance of QA (Gabburo, Koncel-Kedziorski, Garg, Soldaini, &

Moschitti, 2022; C.-C. Hsu, Lind, Soldaini, & Moschitti, 2021a; Izacard & Grave,

2021; Jiang, Araki, Ding, & Neubig, 2022; Lewis & Fan, 2019; Muller, Soldaini,

Koncel-Kedziorski, Lind, & Moschitti, 2022; Raffel et al., 2020c; Roberts, Raffel, &

Shazeer, 2020b). In paritcular, previous work typically employs pre-trained LLMs

with encoder-decoder architectures such as BART (Lewis et al., 2020) and T5

(Raffel et al., 2020b), where the encoder consumes a given question and a required

relevant context as input for the decoder to generate an answer to the question (C.-
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q: What college offers chiropractic ?

c1: New York Chiropractic College offers 1 Chiropractic Degree program.
It’s a private university in a far away town. In 2015, 173 students
graduated in the study area of Chiropractic with students earning 173
Doctoral degrees.

a1: New York Chiropractic college offers chiropractic.

c2: Chiropractic care is also essential for college students who want to stay
healthy. The central nervous system is based in the spinal column,
so correcting subluxations (misalignments) of the spine is important,
no matter how old you are. Holt Chiropractic in Port Orchard, WA
provides expert chiropractic care to students of all ages.

a2: Holt Chiropractic College offers chiropractic.

c3: Howell Township is a township in Monmouth County, New Jersey,
United States. As of the 2010 United States Census, the township’s
population was 51,075, reflecting an increase of 2,172 from the 48,903
counted in the 2000 Census.

a3: Howell Township College offers chiropractic.

Table 26. Generated answers for a question q with different context passages c1
(relevant), c2 (quasi-relevant), and c3 (irrelevant) from MS MARCO QA NLG test
set (T. Nguyen et al., 2016). Answers a1, a2, and a3 are generated by GenQA (C.-
C. Hsu et al., 2021b).

C. Hsu et al., 2021b; Khashabi et al., 2020). On one hand, the similarity between

generative QA and the pre-training tasks of LLMs enables transfer learning to

improve QA performance. On the other hand, the generative formulation allows for

flexibility in handling various types of QA problems (e.g., extractive QA, multiple-

choice QA) (Khashabi et al., 2020). However, a well-known issue that has been

shown to occur with the generative models is hallucination (Maynez et al., 2020;

Roller et al., 2021; Shuster, Poff, Chen, Kiela, & Weston, 2021a), where the models

generate statements that are plausible looking but factually incorrect. Additionally,

if the answers are composed by a pretrained LLM without external knowledge, i.e.,

using parametric knowledge, the information contained in the answers might be

outdated and no longer valid. For example, the answer for the question “Which

country is the reigning World Cup champion?” will change through time.
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Recent works (C.-C. Hsu et al., 2021b; Nakano et al., 2021) mitigate these

issues by employing an information retrieval component, which is responsible for

collecting web content to compose an answer for a given question. Formally, given

a question q and a retrieved web content c, the model is trained to take (q, c) as

input to produce a response a = fθ(q, c), where fθ denotes the corresponding LLM

with the parameters θ. Unfortunately, fθ may merely learn to copy/synthesize

information from c to produce a if c often contains necessary information for

correctly answering the question q in training data. As a result, the model may fail

to provide a correct answer for a given question if the retrieved content is missing

or contains irrelevant information (see Table 26). In other words, performance of

these retrieval-based QA models are limited to an upper bound by the knowledge

retriever.

In this work, we address such issues in building a generative QA model.

First, we utilize a knowledge retriever that employs Optimal Transport to extract

relevant content from web documents or databases for a given user query. Second,

we propose a novel fine-tuning strategy combining external knowledge, i.e.,

provided by the knowledge retriever and the intrinsic pre-trained knowledge in

LLMs to generate informed responses. Particularly, we propose a novel knowledge

retriever as answer reranking model. Our proposed model performs an alignment

between a given question and a text passage via Optimal Transport to extract

relevant words in web context for determining its correctness. The relevant words

in the context will then be used to produce a correctness score for ranking. In this

way, we can obtain top K relevant contexts from databases/web documents, which

are treated as external knowledge in our framework. Different from the previous

work that follows a single-stage finetuning strategy, we propose to employ a two-
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Figure 23. Overview of our proposed framework for KARP. The blue and orange
arrows represent the finetuning and inference processes of our model respectively.

stage finetuning strategy, where both “a = fθ(q, c)” and “a = fθ(q)” templates are

used to train the model. The latter intentionally excludes the external knowledge c

from the input to encourage the model to exploit its own knowledge from the model

parameters θ, which have been pretrained on massive unlabeled text (FitzGerald et

al., 2022; Lewis et al., 2020; Raffel et al., 2020b; Soltan et al., 2022). To combine

the two finetuning stages, we propose to finetune the LLM with the “a = fθ(q, c)”

template, and sequentially finetune the model with “a = fθ(q)”. At test time, we

use the “a = fθ(q, c)” template to make predictions, where the context c is provided

by our proposed knowledge retriever. Experimental results show that our proposed

framework significantly improves the performance compared to the baselines on MS

MARCO QA NLG (T. Nguyen et al., 2016), demonstrating the effectiveness of our

proposed method. In addition, we also show that our proposed knowledge retriever

contributes significantly to the overall performance of the system.

5.2 Proposed Method

Our proposed framework - KARP consists of (i) a knowledge retriever and

(ii) a generative LLM-based answer generator. An overview of our framework is
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shown in Figure 23. Details regarding the knowledge retriever and the answer

generator are presented in section 5.2.1 and 5.2.2, respectively.

5.2.1 Knowledge Retriever. Our knowledge retriever functions as

an answer reranking model. Given a question q and a group of N web contexts

C = {c1, c2, . . . , cN}, the goal is to determine the contexts containing the correct

answer A ⊂ C by learning a reranking function r : Q × ϕ(C) → ϕ(C), where Q

represents the set of questions and ϕ(C) represents all the possible orderings of C.

The intent is to place the relevant contexts A at the top of the ranking produced

by the function r. The reranker r is typically a pointwise network f(q, ci), such as

TANDA (Garg et al., 2020), which learns to assign a relevance/correctness score

pi ∈ (0, 1) to each ci for ranking purposes.

Our knowledge retriever consists of three primary components: i) Encoding,

ii) Question-Context Alignment, and iii) Answer-Context Dependencies. Overview

of our proposed model is provided in Figure 24.

5.2.1.1 Encoding. We are provided with a question represented as q =

[wq
1, w

q
2, . . . , w

q
Tq
] with Tq words and a set of N web contexts C = {c1, c2, . . . , cN}

retrieved from a search engine. Each context, denoted as ci = [wc
1, w

c
2, . . . , w

c
Tc
],

consists of Tc words. In this work, we consider previous and next sentences cprev,

cnext as additional contexts for each context c ∈ C. To create the input for our

model, we concatenate the question, the web context, and context sentences into

a single input sequence: [q; c; cprev; cnext]. This combined sequence is then passed

through a pre-trained language model (PLM), e.g., RoBERTa (Y. Liu et al., 2019),

to obtain contextualized word embeddings. Additionally, we employ distinct

segment embeddings for the question, the web context, and context sentences.

These segment embeddings, which are randomly initialized and trainable during
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training, are added to the initial word embeddings in the first layer of the PLM.

For simplicity, let [wq
1,w

q
2, . . . ,w

q
Tq
] and [wc

1,w
c
2, . . . ,w

c
Tc
] represent the sequences

of word representations obtained from the last layer of the PLM for the question q

and the web context c ∈ C, respectively.

Pretrained Language Model

[CLS] question [SEP]       web context    [SEP] prev_context [SEP] next_context

Inter-Context
Dependencies

Alignment
via 

Optimal 
Transport

Question Answer/Context

. . .
Relevant Context

Graph Convolutional Network

AS2 prediction

Figure 24. A diagram depicting the knowledge retriever in our framework for
KARP.

5.2.1.2 Question-Context Alignment. In this section, we

present our approach for extracting relevant words within the web context and

its surrounding sentences based on the alignment of words with the question.

Specifically, we introduce the use of Optimal Transport (OT) (Cuturi, 2013; Monge,

1781) to address the task of aligning the question with the context for answer

reranking.

OT is a well-established technique used to transfer probability from one

distribution to another by establishing an alignment between two sets of points. In

the discrete setting, we are provided with two probability distributions, denoted as
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pX and pY , defined over two sets of points, namely X = {xi}ni=1 and Y = {yj}mj=1 (∑
i pxi

= 1 and
∑

j pyj = 1). Additionally, a distance function D(x, y) : X × Y → R+

is given to quantify the distance between any two points x and y. The objective of

OT is to determine a mapping that transfers the probability mass from the points

in {xi}ni=1 to the points in {yj}mj=1, while minimizing the overall cost associated

with this transportation. Formally, this involves finding the transportation matrix

πXY ∈ R+n×m
that minimizes the following transportation cost:

dXY =
∑

1≤i≤n
1≤j≤m

D(xi, yj)πXY ij, (5.1)

so that πXY 1m = pX and πT
XY 1n = pY . The transportation matrix πXY signifies the

best matching between the sets of points X and Y , where each row i in the matrix

indicates the optimal alignment from a point xi ∈ X to each point yj ∈ Y .

In our problem of aligning the question with the web context, we treat the

question q and the context c as two point sets: {wq
i }

Tq

i=1 and {wc
i}Tc

i=1 respectively

(each word is a point)2. To determine the probability distributions for these word

sets, we propose calculating the word frequencies and then normalizing the sum of

frequencies. Specifically, the probability distribution for the question is obtained by:

pwq
i
=

freq(wq
i )∑Tq

i′=1 freq(w
q
i′)

(5.2)

The frequency freq(wq
i ) corresponds to the number of occurrences of the

word wq
i in the training data. The same approach is applied to compute the

probability distribution for the context. To handle unseen words during testing,

we utilize Laplace smoothing to assign a non-zero probability. Moving on, we

2Before performing the alignment, we remove stopwords and punctuation marks from both sets
of words.
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estimate the distance between two words wq
i ∈ q and wc

j ∈ c by measuring their

semantic divergence, which involves computing the Euclidean distance between

their contextualized representations obtained from the PLM: D(wq
i , w

c
j) = ||w

q
i −wc

j||.

The Sinkhorn-Knopp algorithm is then efficiently employed to solve for the optimal

transportation matrix πXY (in this case, πqc for the question q and the context

c) (Cuturi, 2013; Sinkhorn & Knopp, 1967). Finally, we obtain the relevant

words rc for the context c by taking the union of words wc
j that have the highest

transportation probabilities:

rc =

Tq⋃
i=1

{wc
j |j = argmax1≤j′≤Tc

πqcij′} (5.3)

To compute the representation for the context c, we take the average sum of the

representations of the relevant words:

rc =
1

|rc|
∑

j|wc
j∈rc

wc
j (5.4)

By incorporating the information of the relevant words, our intention is to

eliminate any disruptive or unrelated details from the web context.

5.2.1.3 Answer-Context Dependencies. For convenience, let

[r1, r2, r3] denote the representations acquired from Equation (5.4) for the web

context p1 ≡ c, the previous context p2 ≡ cprev, and the next context p3 ≡ cnext. To

capture the relationships between these contexts, we view each context as a node

in a fully-connected graph G = (V,E), where V = {pi} (1 ≤ i ≤ 3) is the node

set and E = {(pi, pj)} (1 ≤ i, j ≤ 3) is the edge set. Our objective is to determine

a weight αij ∈ (0, 1) for each edge (pi, pj) that reflects the dependency of pi on

pj. To accomplish this, we propose to leverage their semantic representations ri,

rj, and transportation costs to the question dqpi , dqpj to measure the dependency

weight αij between the contexts pi and pj. Specifically, we first compute the score:
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uij = FFNDEP ([ri ⊙ rj; dqpi ; dqpj ]), where ⊙ is the element-wise product, [; ]

represents the concatenation operation, and FFNDEP is a feed-forward network.

Subsequently, the weight αij for the edge (pi, pj) is obtained through a softmax

function:

αij =
exp(uij)∑K

j′=1 exp(uij′)
(5.5)

The derived weights {αij} are subsequently utilized to enrich the passage

representations through L layers of a Graph Convolutional Network (GCN) (Kipf &

Welling, 2017):

hl
i = ReLU(

K∑
j=1

αijW
lhl−1

j + bl) (5.6)

where Wl, bl are learnable weight matrix and bias for the layer l of the GCN

(1 ≤ l ≤ L), and h0
i ≡ ri is the input representation for the context pi. The output

vectors hL
i ≡ hi at the last layer of the GCN serve as the final representations

for the context pi. Intuitively, the weights αij enable each context to decide

the amount of information it receives from the other contexts to improve its

representation for the task. The representation h1 for the web context p1 ≡ c is

finally sent to a feed-forward network with a sigmoid output function to estimate

the relevance/correctness score pc ∈ (0, 1) for the context c: pc = FFNDPR(h1). For

training, we minimize the binary cross-entropy loss with the correctness scores pc.

At inference time, consistent with previous research (Garg et al., 2020), we include

all web contexts for each question for ranking.

5.2.2 LLM-based Answer Generator.
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5.2.2.1 Background on Text Generation Finetuning. Text

generation finetuning has become a general approach to solving different NLP

tasks, where input and expected output of a task can be represented as source and

target text respectively for a generative model to learn the task (B. Lin et al., 2022;

Lu et al., 2021b; Raffel et al., 2020b). For example, a pretrained generative LLM

such as BART (Lewis et al., 2020) and T5 (Raffel et al., 2020b) can be finetuned

on sentiment analysis by taking a statement (e.g., “I really like the story”) as

the source text to generate a label (i.e., “Positive”, ”Negative”, “Neutral”) to

indicate the sentiment of the statement. As the text generation resembles the

LLM’s pretraining task (e.g., next word prediction), the formulation could facilitate

the transfer learning to the target task. In addition, it enables data augmentation

methods where training data for a task may also be leveraged for another task

in the same generative formulation (J. Liu, Chen, Liu, Bi, & Liu, 2020). These

advantages have led to significant performance improvements for many NLP tasks

such as event extraction (J. Liu et al., 2020), named entity recognition (Yan et

al., 2021), and dependency parsing (B. Lin et al., 2022). Similar to other NLP

tasks, the generative methods have been explored for improving QA performance

(Gabburo et al., 2022; C.-C. Hsu et al., 2021a; Izacard & Grave, 2021; Jiang et al.,

2022; Lewis & Fan, 2019; Muller et al., 2022; Raffel et al., 2020c; Roberts et al.,

2020b). To avoid hallucination and improve factual accuracy for the models, recent

works on ODQA employ the retrieval-based methods such as GenQA (C.-C. Hsu et

al., 2021b).

GenQA is introduced by Hsu et al. (C.-C. Hsu et al., 2021b) for generating

appropriate answers for user questions given answer candidates retrieved by a

reranking model. This expands the answer retrieval pipeline with an additional
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generative stage to produce correct and satisfactory answers, especially in cases

where a highly ranked candidate is not acceptable or does not provide a natural

response to the question. In particular, GenQA employs a pretrained generative

LLM to produce an answer by taking a given question and a list of answer

candidates as input, sorted by a trained reranking model.

5.2.2.2 Our Proposed Finetuning Method. The main goal of

a general text-generation model is to produce an output text sequence y =

[y1, y2, . . . , yT ] based on a given input text sequence x = [x1, x2, . . . , xS], where

the lengths of the input and output sequences are denoted by S and T , respectively.

With a pretrained encoder-decoder LLM such as BART (Lewis et al., 2020) or

T5 (Raffel et al., 2020b), we can compute the conditional probability of P (y|x)

for training the model. At test time, the decoder merges the previous output and

input text to create the current output. A decoding algorithm such as Greedy

or Beam Search (Wiseman & Rush, 2016) can be used to generate an output

text with the highest likelihood. For ODQA, given a question q and a retrieved

web content c (e.g., top relevant contexts), previous works such as GenQA are

trained to take (q, c) for as the source sequence to produce a response as the

target sequence a = fθ(q, c), where fθ denotes the corresponding LLM with the

parameters θ. As a result, fθ may merely learn to copy/synthesize information from

c to produce a if c often contains necessary information for correctly answering the

question q in training data. Relying solely on the retrieved content c, the model

may fail to provide a correct answer for a given question if c is missing or contains

irrelevant/noisy information. In other words, performance of these retrieval-based

QA models tend to be limited by an upper bound of the knowledge retriever’s

performance.
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Different from the previous works that follow a single-stage finetuning

method, we propose to employ a multi-stage finetuning method, where both

“a = fθ(q, c)” and “a = fθ(q)” templates are used to train the model. The latter

intentionally excludes the external knowledge c from the input to encourage the

model to retrieve its own knowledge from the model parameters θ, which have been

pretrained on massive unlabeled text (FitzGerald et al., 2022; Lewis et al., 2020;

Raffel et al., 2020b; Soltan et al., 2022). To combine the two finetuning stages, we

propose to finetune the LLM with “a = fθ(q, c)”, and sequentially finetune the

model with “a = fθ(q)”. In this way, our model does not completely rely on the

retrieval results to generate answers for given questions. At test time, we use the

“a = fθ(q, c)” template to make predictions. The retrieved content c now can be

considered as a source of external knowledge along with the pretrained knowledge

contained in the model parameters θ to generate an answer for the question. Under

this perspective, we consider various QA datasets for each step in our finetuning

process. We call such dataset collection OKQA as they are publicly available and

contains high-quality general knowledge.

MS Marco QA NLG is a specialized version of the MS Marco dataset

(T. Nguyen et al., 2016) that aims to produce natural language responses to user

inquiries using web search result excerpts. This dataset includes 182K queries from

Bing search logs, each is associated with top ten most relevant passages. A human

annotator is then required to look at the passages and synthesize an answer using

the content of the passages that most accurately addresses the query.

Super Natural Instructions (SNI) is a data collection proposed by

(Y. Wang et al., 2022). The corpus consists of 1, 616 diverse NLP tasks and their

expert-written instructions. In this work, we consider only question-answering
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tasks such as extractive QA with SQUAD (Rajpurkar et al., 2016) and multiple-

choice QA with MCTest (Richardson, Burges, & Renshaw, 2013). For each task, we

consider anything but a question q provided in the input as context c. Particularly,

the context c can be a passage, a fact, or a set of answer choices associated with

the question. As a result, we obtain 180K examples for finetuning our model.

Anthropic is introduced by (Bai et al., 2022), containing conversations

between a human and a computer assistant. For each conversation, we consider a

human question in the current turn and the (question, answer) pairs in the previous

turns as the input sequence. The answer from the assistant in the current turn is

treated as the output sequence. In this way, the previous turns can be considered

as a form of relevant context c for clarifying the current question q. Consequently,

we obtain 280K examples for finetuning our model.

Answer Reranking datasets, namely, WikiQA (Y. Yang, Yih, & Meek,

2015b) and WDRASS (Zhang, Vu, Gandhi, Chadha, & Moschitti, 2022a) are also

used for finetuning our model. WikiQA is a collection of questions and answer

candidates that have been manually annotated using Bing query logs on Wikipedia.

WDRASS is a large-scale dataset of questions that are non-factoid in nature, such

as questions that begin with “why” and “how”. The dataset contains around

64, 000 questions and over 800, 000 labeled passages that have been extracted from

a total of 30M documents. Each question in such datasets is associated with a set

of answer candidates, in which some of the candidates are correct answers. As a

question can have multiple correct answers, we select the longest answer as the

output sequence for the question, which is considered as the input sequence. This

results in a set of 105K examples for finetuning our model.
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In the end, the datasets where context is available for a question are used

in the first stage of our finetuning process, while the other datasets are used for

further training the model in the subsequent stage. With a huge amount of various

QA tasks, we expect this could teach the model to understand the nature of

question answering and how to utilize its own parametric knowledge (in case no

context is provided) and external knowledge (i.e., relevant context) to answer a

given question.

5.3 Experiments

5.3.1 Benchmarking the Knowledge Retriever.

5.3.1.1 Experimental Setup.

Datasets We follow the previous work (Garg et al., 2020; Zhang, Vu, Gandhi,

Chadha, & Moschitti, 2022b) to conduct the evaluation. In particular, we use (i)

WikiQA (Y. Yang et al., 2015b), consisting of questions from Bing query logs and

manually annotated answers from Wikipedia, and (ii) WDRASS (Zhang et al.,

2022b), a large-scale web-based dataset having factoid and non-factoid questions, to

investigate our retrieval performance. We use the same train/dev/test splits used in

previous work.

Hyper-parameters and Tools In accordance with previous work, we use a

small portion of the WikiQA training data to tune hyper-parameters for our model

and select the best hyper-parameters for all the datasets (Lauriola & Moschitti,

2021). We employ Adam optimizer to train the model with a learning rate of

1e-5 and a batch size of 64. We set 400 for the hidden vector sizes for all the feed-

forward networks, L = 2 for the number of the GCN layers. We use Pytorch version

1.7.1 and Huggingface Transformers version 3.5.1 To implement the models. We use
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Model
WikiQA WDRASS

w/o ASNQ with ASNQ with ASNQ
P@1 MAP P@1 MAP P@1 MAP

TANDA 63.24* 75.00* 78.67* 86.74* 54.60 63.50
Ours 74.16 83.29 83.77 89.28 55.9 61.8

Table 27. Performance comparison on WikiQA and WDRASS, * indicates results
reported by (Lauriola & Moschitti, 2021).

the NLTK library version 3.5 (Bird, Klein, & Loper, 2009) to preprocess the data

and remove stopwords. The model performance is obtained over three runs with

random seeds.

Evaluation Metrics We measure the model performance using the following

standard metrics: Precision-at-1 (P@1) and Mean Average Precision (MAP) on the

entire set of answer candidates for each question.

5.3.1.2 Performance Comparison. We compare our proposed

model with TANDA (Garg et al., 2020), which is the current state-of-the-art model

for answer reranking. Table 27 shows the performance comparison between the

models in two settings: i) using a non-finetuned RoBERTa-Base encoder, and ii)

using a fine-tuned RoBERTa-Base encoder. The non-finetuned RoBERTa-Base

is obtained from (Y. Liu et al., 2019) while the other is produced by fine-tuning

TANDA on the ASNQ dataset (Garg et al., 2020). As can be seen from the table,

all the models benefit from using the finetuned RoBERTa-Base encoder. Across

the two settings, our model outperforms the previous models by large margins,

demonstrating its effectiveness for the task.

In addition, we show the performance of our proposed model compared

to TANDA on the WDRASS test set. As we can see, our knowledge retriever

significantly improves the performance for P@1 score, however, decreases the
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performance for MAP score. We attribute this to the fact that questions in

WDRASS dataset usually have more than 1 correct answers for a single question

while our model ranks the answer candidates individually. However, we note that

the top-1 answer candidate is often the most helpful for the answering process.

5.3.1.3 Ablation Study. To understand the impact of each

component in our proposed model, we conduct ablation experiments by

removing/replacing different components in our model and evaluating the ablated

models on the WikiQA development data.

Impact of Individual Components: First, we exclude each component

from our proposed model to obtain the ablated models: “- OT alignment”

(removing the question-candidate alignment via Optimal Transport), and “- GCN

dependencies” (removing the inter-candidate dependencies via GCN). As shown

in the Table 28, the removal of each component results in significant drops in the

performance of the models, demonstrating the contributions of each component to

the overall performance of our model.

Models P@1 MAP MRR
TANDA 81.2 88.6 88.9

Our Model 85.3 89.9 90.6
− OT alignment 83.6 89.1 89.6
− GCN dependencies 84.4 88.7 89.3

Table 28. Performance of ablated models on WikiQA development data for each
component in our proposed answer reranking model.

Designs for Question-Candidate Alignment: Second, we experimented

with different design choices for our question-candidate alignment component.

Specifically, we tried the following models: “+uniform dist” (replacing the

frequency-based distributions for OT with uniform distributions), and “+cosine

distance” (employing the cosine distance instead of the Euclidean distance for
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OT). As shown in Table 29, the performance of the ablated models decreases.

This validates our design choices for the question-candidate alignment via OT.

Additionally, we incorporated the question-candidate alignment into the TANDA

baseline, where the alignment happens between a question and an answer candidate.

The resulting model obtains significant improvement, showing the effectiveness of

the question-candidate alignment for the task.

Models P@1 MAP MRR
Our Model 85.3 89.9 90.6
+ uniform dist 84.4 89.5 90.1
+ cosine distance 83.6 89.4 89.9
− OT + cosine 83.6 89.0 89.5

TANDA 81.2 88.6 88.9
+ OT alignment 83.6 89.3 89.6

Table 29. Performance of ablated models on WikiQA development data for the
question-candidate alignment.

Learning Inter-Context Dependencies: Third, we would like

to understand the effects of the following ablated models in capturing the

dependencies among the contexts: “- transportation costs” (removing the OT

transportation costs dqci and dqcj from the computations of the dependency

weights), “+ vector concatenation” (concatenating the candidate representations

ri and rj instead of element-wise multiplying them), and “+ cosine weights”

(computing dependency weights αij via the cosine similarity between the

representations ri, rj for the answer contexts). The incline of the ablated models’

performance in Table 30 confirms the effectiveness of our proposed method for

learning the dependencies among the answer contexts.

5.3.2 Automatic Evaluation for Knowledge-Aware Answer

Planning.
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Models P@1 MAP MRR
Our Model 85.3 89.9 90.6
− transportation costs 83.6 89.2 89.8
+ vector concatenation 84.4 89.5 90.3
+ cosine weights 83.6 88.7 89.0

Table 30. Performance of ablated models on WikiQA development data for the
inter-candidate dependencies.

5.3.2.1 Experimental Setup. Dataset: We acquire the evaluation

data as follows. First, we randomly select 2,000 questions from the MS MARCO

QA NLG test set. For each question, we rank all the retrieval contexts using our

proposed reranking model trained on WDRASS to obtain the top 5 candidates. We

then concatenate the question and contexts to form the input, which is used to

generate the predicted answer.

Hyper-parameters and Tools: To train the answer generators, we

employ the Adam optimizer with a learning rate of 1e-5 and a batch size of 128.

The implementation of the models is carried out using Pytorch version 1.7.1 and

Huggingface Transformers version 3.5.1. Unless otherwise specified, all the models

employ the pretrained T5-large as the base model.

Evaluation Metrics: We employ widely-used evaluation metrics, including

ROUGE (C.-Y. Lin, 2004), BLEU (Papineni, Roukos, Ward, & Zhu, 2002), and

BERTScore (Zhang*, Kishore*, Wu*, Weinberger, & Artzi, 2020), for assessing

the quality of generated answers in comparison to human-written natural answers.

These metrics are commonly applied to standard text generation tasks such as

summarization (Zhang, Zhao, Saleh, & Liu, 2020), machine translation (Vaswani et

al., 2017), and answer generation (Raffel et al., 2020c).

It is important to note that these metrics have their own limitations;

however, these can be mitigated by providing more and higher-quality reference
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Model BLEU RougeL BERTScore
GenQA (C.-C. Hsu et al., 2021b) 14.6 0.518 0.698

KARP (Ours) 38.3 0.632 0.762

Table 31. Comparison between KARP and GenQA (C.-C. Hsu et al., 2021b) using
automatic evaluation metrics.

texts (Callison-Burch, Osborne, & Koehn, 2006). In the context of answer

generation, we enhance the reliability of these measurements by employing human-

written answers as references.

5.3.2.2 Performance Comparison. Table 31 presents a comparison

of KARP with GenQA in terms of BLEU, RougeL, and BERTScore metrics.

The results demonstrate that KARP outperforms GenQA in all evaluation

metrics. KARP achieves a BLEU score of 39.4, a RougeL score of 0.608, and

a BERTScore of 0.752. These results indicate that KARP offers a significant

improvement over GenQA in the context of answer generation, which we attribute

to our specialized fine-tuning method.

5.3.3 Human Evaluation for Knowledge-Aware Response

Planning. In this section, we evaluate KARP in an end-to-end industry-scale

scenario.

5.3.3.1 Experimental Setup. We outline the experimental setup to

evaluate the end-to-end performance of KARP in a web-scale scenario, involving

tens of millions of web documents. The configuration allows us to study the

scalability and effectiveness of our approach in a real-world, large-scale setting.

Web Document Collection: We constructed a large collection of

web data, comprising documents and passages, to facilitate the development of

knowledge retrieval for end-to-end system evaluation. This resource enables us

to assess the impact of our work in an industry-scale ODQA setting. We selected
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English web documents from the top 5,000 domains, including Wikipedia, from

Common Crawl’s 2019 and 2020 releases. The pages were split into passages

following the dense passage retrieval (DPR) procedure (Karpukhin et al., 2020),

limiting passage length to 200 tokens while maintaining sentence boundaries. This

produced a collection of roughly 100 million documents and 130 million passages.

From this, we built (i) a standard Lucene/Elasticsearch index and (ii) a neural-

based DPR index (Karpukhin et al., 2020).

Web-scale Knowledge Retrieval: For each question, we retrieved up

to 1,000 documents/passages using both indexes. We then rank the passages and

applied a knowledge retriever to select relevant contexts. We used top K = 5

contexts as external knowledge for a question.

Question Sampling: We randomly selected 2,000 questions from

WDRASS test set as it shows to represent natural questions extracted from the

Web. In addition, the questions were also manually labeled.

Baselines: We employ GenQA (C.-C. Hsu et al., 2021b) as our main

baseline in this experiment.

Evaluation Metrics: We evaluate the performance of the end-to-end QA

system using accuracy metrics, i.e., the percentage of questions that were answered

satisfactorily, judged by human experts. Additionally, we define a correct answer

as one that must not only be factually accurate, but also expressed in a natural

and fluent manner. Answers that are too verbose or oddly phrased are considered

unsatisfactory.

5.3.3.2 Performance Comparison. Table 32 presents the

relative accuracy of different QA settings, including TANDA (Garg et al., 2020),

GenQA (C.-C. Hsu et al., 2021b), and our proposed KARP. As we can see, using
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Model Accuracy
TANDA baseline

TANDA → GenQA +2.20%
TANDA → KARP +4.50%
KARP → KARP +6.20%

KARP → KARP (OKQA) +7.40%

Table 32. Relative accuracy of different QA settings: TANDA (Garg et al., 2020),
GenQA (C.-C. Hsu et al., 2021b), and our proposed frame work.

GenQA to generate an answer based on the answer candidates retrieved by TANDA

helps improve the accuracy by +2.2% (TANDA → GenQA). The performance is

then improved further by +4.5% when TANDA is coupled with the model finetuned

using KARP for answer generation (“TANDA → GenQA”), which shows the

clear benefit of our two-stage finetuning method compared to GenQA. If both

our proposed knowledge retriever and finetuning technique are employed, the

performance boost compared to TANDA achieves at +6.2% (“KARP → KARP”).

This demonstrates the importance of our proposed knowledge retriever in providing

better answer candidates for the answer generation of the model. Finally, the

best performer among all the models is “KARP → KARP (OKQA)”, achieved

when we apply KARP with additional training data from OKQA to improve the

performance of TANDA by +7.4%. The result further demonstrates the efficacy of

our proposed method for open domain question answering.

5.4 Related Work

Large Language Models (LLMs): LLMs have transformed NLP

technologies with the advent of the Transformer architecture (Vaswani et al., 2017).

Two fundamental pre-training objectives, Masked Language Modeling (MLM) and

Causal Language Modeling (CLM), underpin the success of these models. MLM,

introduced by BERT (Devlin et al., 2019b), predicts masked tokens in a sentence
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using surrounding context, enabling LLMs to learn bidirectional representations

that excel in various NLP tasks. In contrast, CLM, exemplified by GPT (Radford,

Narasimhan, Salimans, & Sutskever, 2018), predicts the next token in a sequence

given its preceding context, showing remarkable success in text generation and

other downstream applications (Kaplan et al., 2020; Radford et al., 2019; Raffel

et al., 2020c). In this paper, we leverage the CLM architecture for its language

generation capabilities to enhance QA performance.

General Question Answering using LLM: A standard QA system

consists of (i) a retrieval engine that returns relevant knowledge and (ii) a model

that generates a response addressing the question, either through selection (Garg et

al., 2020; Severyn & Moschitti, 2015; Yoon, Dernoncourt, Kim, Bui, & Jung, 2019)

or abstractive summarization of the top-selected answers (Gabburo et al., 2022;

C.-C. Hsu et al., 2021a; Muller et al., 2022). In particular, recent summarization-

based approaches, e.g., GenQA (Gabburo et al., 2022; C.-C. Hsu et al., 2021a;

Muller et al., 2022), are highly susceptible to hallucination due to the absence of

special treatment of irrelevant candidates, which commonly appear among the top-

ranked options. As a result, the generated answer may seem plausible but could

be factually incorrect (Ji et al., 2023; Raunak, Menezes, & Junczys-Dowmunt,

2021; Rebuffel et al., 2021; Shuster, Poff, Chen, Kiela, & Weston, 2021b; C. Wang

& Sennrich, 2020; Xiao & Wang, 2021; Zhao, Cohen, & Webber, 2020; C. Zhou

et al., 2021b). Even though its original goal is to generate more natural answers,

GenQA (Gabburo et al., 2022; C.-C. Hsu et al., 2021a; Muller et al., 2022) can be

considered as a method to ground LLMs for QA as it decodes an answer from the

concatenation of both question and answer candidates. This approach, however,

requires good answer candidates and careful finetuning to reduce hallucinations.
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We propose, instead, a novel generation-based approach that leverages

the emerging language reasoning capabilities of Large Language Models

(LLMs) (Radford et al., 2018) to enhance quality of generated answers. In

particular, KARP is designed to mitigate the reliance on oracle data by making

use of the context, such as all choices in multiple-choice QA, instead of a correct

answer alone, i.e., the correct choice. The experiments demonstrated that our

proposed framework for KARP is highly resilient to noisy input data, and bring

about broader application across different QA tasks.

Fine-tuning Strategies for LLMs: Several fine-tuning strategies

have been specifically proposed for large language models (LLMs). These

strategies can be broadly categorized into two groups: architecture-centric and

data-centric. (i) Architecture-centric fine-tuning aims to improve the model’s

robustness and adaptability by modifying hyper-parameters across layers. Gradual

unfreezing (Howard & Ruder, 2018) is one example, involving sequential fine-tuning

of model layers to prevent catastrophic forgetting and better adapt to downstream

tasks. Layer-wise learning rate decay (Radford et al., 2018) is another example,

where different learning rates are assigned to various layers to enable more refined

adaptation to the target task. (ii) Data-centric fine-tuning, on the other hand,

concentrates on leveraging data from different sources or intermediate tasks to

enhance model performance. Sequential fine-tuning (Garg et al., 2020; Gururangan

et al., 2020) involves training the model on intermediate tasks before the final

target task, improving its performance on the latter. Combining several related

datasets for multi-task fine-tuning has also been shown to improve performance

on the target task (X. Liu, He, Chen, & Gao, 2019). Our work is related to data-

centric fine-tuning. In particular, we propose a novel strategy specifically designed
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for the question answering context. By leveraging both external knowledge and

intrinsic parametric knowledge of LLMs, our approach aims to enhance the quality

of generated answers in QA tasks.

5.5 Summary

In this chapter, we introduced KARP, a novel Retrieval-Augmented

Generation (RAG) framework for Open-Domain Question Answering (ODQA).

KARP consists of a novel knowledge retriever and an LLM-based answer generation

component. Our experimental results demonstrate that the proposed knowledge

retriever can obtain significantly higher quality contexts compared to TANDA, the

state-of-the-art reranking model for ODQA. This finding highlights the benefit of

incorporating Information Extraction (IE) techniques in building advanced retrieval

systems for Large Language Models (LLMs).

Furthermore, we proposed a two-stage finetuning method that outperforms

GenQA, the standard fine-tuning approach for RAG-based LLMs, in various

settings. This result underscores the importance of leveraging the intrinsic

parametric knowledge of LLMs in addition to the retrieved contexts to enhance

their performance in ODQA tasks. By effectively utilizing the LLMs’ inherent

knowledge, our approach achieves superior results compared to relying solely on the

information provided by the retrieval contexts.
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CHAPTER VI

CONCLUSIONS

I was the main author of this chapter and Thien Nguyen provided editorial

suggestions.

6.1 Summary

This dissertation has undertaken a comprehensive exploration into the

domain of Multilingual Information Extraction (Multilingual IE) within the

broader field of Natural Language Processing (NLP). Through the dedication

to understanding and enhancing upstream models, developing language-agnostic

downstream architectures, and innovating cross-lingual transfer learning and active

learning methods, significant strides have been made towards a more inclusive,

equitable, and linguistically diverse digital future. Notably, the research has

underscored the vital role of IE in the evolution and improvement of large language

models (LLMs), especially through the introduction of a novel retrieval-augmented

generation (RAG) framework. The culmination of this work presents a significant

contribution to the field of NLP and Multilingual IE, aiming at bridging the global

communication gap and ensuring information accessibility and cultural preservation

across a myriad of languages.

6.2 Limitations

Despite the considerable progress and achievements, this dissertation

acknowledges several limitations that warrant further discussion:

– Data Scarcity for Low-Resource Languages: While strides have been made

in developing methods for IE in low-resource languages, the scarcity of

digital resources and annotated datasets remains a significant challenge. The
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effectiveness of these methods can still be constrained by the availability and

quality of data for training models.

– Complexity of Linguistic Diversity: The intrinsic complexity and variability

of human language across different cultures and linguistic structures pose

ongoing challenges to creating universally effective IE models. While the

research has made advancements in language-agnostic architectures, capturing

the full range of linguistic nuances remains an area for further enhancement.

– Model Generalizability and Scalability: While efforts have been directed

towards developing scalable and generalizable models, ensuring these models’

robustness across an extensive array of languages and contexts is an area that

requires continuous refinement and testing.

6.3 Future Works

Looking ahead, the following avenues for future research emerge as critical

steps towards overcoming the limitations identified and pushing the boundaries of

Multilingual IE further:

– Enhanced Data Acquisition and Annotation for Low-Resource Languages:

Innovative approaches to data generation, such as synthetic data creation or

semi-supervised learning methods, could mitigate the impact of data scarcity.

Additionally, collaborative global initiatives to annotate data in low-resource

languages can significantly contribute to this effort.

– Deeper Exploration of Cross-Linguistic and Cultural Nuances: Future

research should delve into more sophisticated models that can better

understand and interpret the subtleties of cultural and linguistic diversity.
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This includes models that can dynamically adapt to the context and cultural

background of the text being processed.

– Further Development of RAG Frameworks for LLMs: Building upon the

introduced RAG framework, future works could focus on enhancing the

knowledge retrieval components to improve the accuracy and relevance

of information sourced by LLMs. This would include the refinement of IE

techniques to structure unstructured data more effectively, thereby improving

the quality of inputs for LLMs.

In conclusion, while this dissertation has made substantial contributions to

the field of Multilingual IE, the path forward invites a collaborative, innovative,

and multifaceted research effort. By addressing the limitations and embracing the

proposed future directions, the next generation of NLP research can continue to

make significant advances towards a more connected, inclusive, and linguistically

diverse digital world.

180



REFERENCES CITED

Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I., Aleman, F. L., . . .
others (2023). Gpt-4 technical report. arXiv preprint arXiv:2303.08774 .

Adel, T., Zhao, H., & Wong, A. (2017). Unsupervised domain adaptation with a
relaxed covariate shift assumption. In Proceedings of the association for the
advancement of artificial intelligence (aaai).

Adelani, D. I., Abbott, J., Neubig, G., D’souza, D., Kreutzer, J., Lignos, C., . . .
Osei, S. (2021). MasakhaNER: Named entity recognition for African
languages. Transactions of the Association for Computational Linguistics , 9 ,
1116–1131. Retrieved from https://aclanthology.org/2021.tacl-1.66

doi: 10.1162/tacl a 00416

Aharoni, R., Johnson, M., & Firat, O. (2019, June). Massively multilingual neural
machine translation. In Proceedings of the 2019 conference of the north
American chapter of the association for computational linguistics: Human
language technologies, volume 1 (long and short papers) (pp. 3874–3884).
Minneapolis, Minnesota: Association for Computational Linguistics.
Retrieved from https://aclanthology.org/N19-1388 doi:
10.18653/v1/N19-1388

Ahmad, W. U., Peng, N., & Chang, K.-W. (2021). Gate: Graph attention
transformer encoder for cross-lingual relation and event extraction. In
Proceedings of the association for the advancement of artificial intelligence
(aaai).

Akbik, A., Bergmann, T., Blythe, D., Rasul, K., Schweter, S., & Vollgraf, R. (2019,
June). FLAIR: An easy-to-use framework for state-of-the-art NLP. In
Proceedings of the 2019 conference of the north American chapter of the
association for computational linguistics (demonstrations) (pp. 54–59).
Minneapolis, Minnesota: Association for Computational Linguistics.
Retrieved from https://aclanthology.org/N19-4010 doi:
10.18653/v1/N19-4010

Ash, J. T., Zhang, C., Krishnamurthy, A., Langford, J., & Agarwal, A. (2019).
Deep batch active learning by diverse, uncertain gradient lower bounds.
arXiv preprint arXiv:1906.03671 .

Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., . . . others
(2022). Training a helpful and harmless assistant with reinforcement learning
from human feedback. arXiv preprint arXiv:2204.05862 .

181

https://aclanthology.org/2021.tacl-1.66
https://aclanthology.org/N19-1388
https://aclanthology.org/N19-4010


Banerjee, S., & Ghosal, S. (2015). Bayesian structure learning in graphical models.
Journal of Multivariate Analysis , 136 , 147–162.

Bao, J., Duan, N., Yan, Z., Zhou, M., & Zhao, T. (2016). Constraint-based
question answering with knowledge graph. In Proceedings of coling 2016, the
26th international conference on computational linguistics: technical papers
(pp. 2503–2514).

Bao, J., Duan, N., Zhou, M., & Zhao, T. (2014). Knowledge-based question
answering as machine translation. In Proceedings of the 52nd annual meeting
of the association for computational linguistics (volume 1: Long papers) (pp.
967–976).

Bekoulis, G., Deleu, J., Demeester, T., & Develder, C. (2018a). Adversarial
training for multi-context joint entity and relation extraction. In Proceedings
of the 2018 conference on empirical methods in natural language processing.

Bekoulis, G., Deleu, J., Demeester, T., & Develder, C. (2018b, October-November).
Adversarial training for multi-context joint entity and relation extraction. In
Proceedings of the 2018 conference on empirical methods in natural language
processing (pp. 2830–2836). Brussels, Belgium: Association for
Computational Linguistics. Retrieved from
https://aclanthology.org/D18-1307 doi: 10.18653/v1/D18-1307

Benikova, D., Biemann, C., & Reznicek, M. (2014, May). NoSta-D named entity
annotation for German: Guidelines and dataset. In Proceedings of the ninth
international conference on language resources and evaluation (LREC’14)
(pp. 2524–2531). Reykjavik, Iceland: European Language Resources
Association (ELRA). Retrieved from
http://www.lrec-conf.org/proceedings/lrec2014/pdf/276 Paper.pdf

Bird, S., Klein, E., & Loper, E. (2009). Natural language processing with python:
analyzing text with the natural language toolkit. ” O’Reilly Media, Inc.”.

Blommaert, J. (2013). Language and the study of diversity. Tilburg Papers in
Culture Studies .

Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2017). Enriching word
vectors with subword information. Transactions of the Association for
Computational Linguistics , 5 , 135–146. Retrieved from
https://aclanthology.org/Q17-1010 doi: 10.1162/tacl a 00051

Borisov, O., Aliannejadi, M., & Crestani, F. (2021). Keyword extraction for
improved document retrieval in conversational search. CoRR,
abs/2109.05979 . Retrieved from https://arxiv.org/abs/2109.05979

182

https://aclanthology.org/D18-1307
http://www.lrec-conf.org/proceedings/lrec2014/pdf/276_Paper.pdf
https://aclanthology.org/Q17-1010
https://arxiv.org/abs/2109.05979


Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., . . .
others (2020). Language models are few-shot learners. Advances in neural
information processing systems , 33 , 1877–1901.

Callison-Burch, C., Osborne, M., & Koehn, P. (2006, April). Re-evaluating the role
of Bleu in machine translation research. In 11th conference of the European
chapter of the association for computational linguistics (pp. 249–256).
Trento, Italy: Association for Computational Linguistics. Retrieved from
https://aclanthology.org/E06-1032

Cao, Y., Liu, H., & Wan, X. (2020, July). Jointly learning to align and summarize
for neural cross-lingual summarization. In Proceedings of the 58th annual
meeting of the association for computational linguistics (pp. 6220–6231).
Online: Association for Computational Linguistics. Retrieved from
https://aclanthology.org/2020.acl-main.554 doi:
10.18653/v1/2020.acl-main.554

Che, W., Feng, Y., Qin, L., & Liu, T. (2020). N-ltp: A open-source neural chinese
language technology platform with pretrained models. arXiv preprint
arXiv:2009.11616 .

Chen, D., Fisch, A., Weston, J., & Bordes, A. (2017). Reading wikipedia to answer
open-domain questions. arXiv preprint arXiv:1704.00051 .

Chen, D., & Yih, W.-t. (2020). Open-domain question answering. In Proceedings of
the 58th annual meeting of the association for computational linguistics:
tutorial abstracts (pp. 34–37).

Chen, X., Awadallah, A. H., Hassan, H., Wang, W., & Cardie, C. (2019, July).
Multi-source cross-lingual model transfer: Learning what to share. In
Proceedings of the 57th annual meeting of the association for computational
linguistics (pp. 3098–3112). Florence, Italy: Association for Computational
Linguistics. Retrieved from https://aclanthology.org/P19-1299 doi:
10.18653/v1/P19-1299

Chen, X., & Cardie, C. (2018, October-November). Unsupervised multilingual word
embeddings. In Proceedings of the 2018 conference on empirical methods in
natural language processing (pp. 261–270). Brussels, Belgium: Association
for Computational Linguistics. Retrieved from
https://aclanthology.org/D18-1024 doi: 10.18653/v1/D18-1024

Chen, Y., Xu, L., Liu, K., Zeng, D., & Zhao, J. (2015a). Event extraction via
dynamic multi-pooling convolutional neural networks. In Proceedings of the
53rd annual meeting of the association for computational linguistics and the
7th international joint conference on natural language processing.

183

https://aclanthology.org/E06-1032
https://aclanthology.org/2020.acl-main.554
https://aclanthology.org/P19-1299
https://aclanthology.org/D18-1024


Chen, Y., Xu, L., Liu, K., Zeng, D., & Zhao, J. (2015b). Event extraction via
dynamic multi-pooling convolutional neural networks. In Proceedings of the
annual meeting of the association for computational linguistics (acl).

Chen, Y., Xu, L., Liu, K., Zeng, D., & Zhao, J. (2015c, July). Event extraction via
dynamic multi-pooling convolutional neural networks. In Proceedings of the
53rd annual meeting of the association for computational linguistics and the
7th international joint conference on natural language processing (volume 1:
Long papers) (pp. 167–176). Beijing, China: Association for Computational
Linguistics. Retrieved from https://aclanthology.org/P15-1017 doi:
10.3115/v1/P15-1017

Chiu, J. P., & Nichols, E. (2016). Named entity recognition with bidirectional
lstm-cnns. In Transactions of the association for computational linguistics.

Chow, C., & Liu, C. (1968). Approximating discrete probability distributions with
dependence trees. IEEE transactions on Information Theory , 14 (3),
462–467.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra, G., Roberts, A., . . .
others (2023). Palm: Scaling language modeling with pathways. Journal of
Machine Learning Research, 24 (240), 1–113.

Chu, Y.-J. (1965). On the shortest arborescence of a directed graph. Scientia
Sinica.

Chung, H. W., Hou, L., Longpre, S., Zoph, B., Tay, Y., Fedus, W., . . . others
(2022). Scaling instruction-finetuned language models. arXiv preprint
arXiv:2210.11416 .

Cicek, S., & Soatto, S. (2019). Unsupervised domain adaptation via regularized
conditional alignment. In Proceedings of the international conference on
computer vision (iccv).

Clark, P., Etzioni, O., Khot, T., Sabharwal, A., Tafjord, O., Turney, P., &
Khashabi, D. (2016, Mar.). Combining retrieval, statistics, and inference to
answer elementary science questions. Proceedings of the AAAI Conference
on Artificial Intelligence, 30 (1). doi: 10.1609/aaai.v30i1.10325

Conneau, A., Khandelwal, K., Goyal, N., Chaudhary, V., Wenzek, G., Guzmán, F.,
. . . Stoyanov, V. (2019). Unsupervised cross-lingual representation learning
at scale. arXiv preprint arXiv:1911.02116 .

184

https://aclanthology.org/P15-1017


Conneau, A., Khandelwal, K., Goyal, N., Chaudhary, V., Wenzek, G., Guzmán, F.,
. . . Stoyanov, V. (2020, July). Unsupervised cross-lingual representation
learning at scale. In Proceedings of the 58th annual meeting of the
association for computational linguistics (pp. 8440–8451). Online:
Association for Computational Linguistics. Retrieved from
https://aclanthology.org/2020.acl-main.747 doi:
10.18653/v1/2020.acl-main.747

Corcoglioniti, F., Dragoni, M., Rospocher, M., & Aprosio, A. P. (2016). Knowledge
extraction for information retrieval. In The semantic web. latest advances
and new domains: 13th international conference, eswc 2016, heraklion, crete,
greece, may 29–june 2, 2016, proceedings 13 (pp. 317–333).

Cuturi, M. (2013). Sinkhorn distances: Lightspeed computation of optimal
transport. Advances in neural information processing systems , 26 .

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019a). Bert: Pre-training of
deep bidirectional transformers for language understanding. In Proceedings
of the 2019 conference of the north american chapter of the association for
computational linguistics: Human language technologies.

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019b, June). BERT:
Pre-training of deep bidirectional transformers for language understanding.
In Proceedings of the 2019 conference of the north American chapter of the
association for computational linguistics: Human language technologies,
volume 1 (long and short papers) (pp. 4171–4186). Minneapolis, Minnesota:
Association for Computational Linguistics. Retrieved from
https://aclanthology.org/N19-1423 doi: 10.18653/v1/N19-1423

de Vries, W., van Cranenburgh, A., Bisazza, A., Caselli, T., van Noord, G., &
Nissim, M. (2019). Bertje: A dutch bert model. arXiv preprint
arXiv:1912.09582 .

Dozat, T., & Manning, C. D. (2017). Deep biaffine attention for neural dependency
parsing. In Proceedings of the international conference on learning
representations.

Du, X., & Cardie, C. (2020, November). Event extraction by answering (almost)
natural questions. In Proceedings of the 2020 conference on empirical
methods in natural language processing (emnlp) (pp. 671–683). Online:
Association for Computational Linguistics. Retrieved from
https://aclanthology.org/2020.emnlp-main.49 doi:
10.18653/v1/2020.emnlp-main.49

Eaton, D., & Murphy, K. (2012). Bayesian structure learning using dynamic
programming and mcmc. arXiv preprint arXiv:1206.5247 .

185

https://aclanthology.org/2020.acl-main.747
https://aclanthology.org/N19-1423
https://aclanthology.org/2020.emnlp-main.49


Edmonds, J. (1967). Optimum branchings. Journal of Research of the national
Bureau of Standards B .

Ekbal, A., Haque, R., & Bandyopadhyay, S. (2007). Bengali part of speech tagging
using conditional random field. In Proceedings of the seventh international
symposium on natural language processing, snlp-2007.

Evans, N. (2018). The dynamics of language diversity. In The dynamics of
language: Plenary and focus lectures from the 20th international congress of
linguists (pp. 12–41).

Feng, A., You, C., Wang, S., & Tassiulas, L. (2022). Kergnns: Interpretable graph
neural networks with graph kernels. In Proceedings of the aaai conference on
artificial intelligence.

FitzGerald, J. G. M., Ananthakrishnan, S., Arkoudas, K., Bernardi, D., Bhagia, A.,
Bovi, C. D., . . . Natarajan, P. (2022). Alexa teacher model: Pretraining and
distilling multi-billion-parameter encoders for natural language
understanding systems. In Kdd 2022.

Forney, G. D. (1973). The viterbi algorithm. Proceedings of the IEEE , 61 (3),
268–278.

Fu, L., Nguyen, T. H., Min, B., & Grishman, R. (2017, November). Domain
adaptation for relation extraction with domain adversarial neural network.
In Proceedings of the eighth international joint conference on natural
language processing (volume 2: Short papers) (pp. 425–429). Taipei, Taiwan:
Asian Federation of Natural Language Processing. Retrieved from
https://aclanthology.org/I17-2072

Fu, T.-J., Li, P.-H., & Ma, W.-Y. (2019). GraphRel: Modeling text as relational
graphs for joint entity and relation extraction. In Proceedings of the 57th
annual meeting of the association for computational linguistics.

Gabburo, M., Koncel-Kedziorski, R., Garg, S., Soldaini, L., & Moschitti, A. (2022,
December). Knowledge transfer from answer ranking to answer generation.
In Proceedings of the 2022 conference on empirical methods in natural
language processing (pp. 9481–9495). Abu Dhabi, United Arab Emirates:
Association for Computational Linguistics.

Ganin, Y., & Lempitsky, V. (2015). Unsupervised domain adaptation by
backpropagation. In International conference on machine learning (pp.
1180–1189).

186

https://aclanthology.org/I17-2072


Gao, H., Pei, J., & Huang, H. (2019). Conditional random field enhanced graph
convolutional neural networks. In Proceedings of the 25th acm sigkdd
international conference on knowledge discovery & data mining (pp.
276–284).

Garg, S., Vu, T., & Moschitti, A. (2020, Apr). Tanda: Transfer and adapt
pre-trained transformer models for answer sentence selection. Proceedings of
the AAAI Conference on Artificial Intelligence, 34 (05), 7780–7788.
Retrieved from http://dx.doi.org/10.1609/AAAI.V34I05.6282 doi:
10.1609/aaai.v34i05.6282
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Zeman, D. (2020, May). Universal Dependencies v2: An evergrowing
multilingual treebank collection. In Proceedings of the twelfth language
resources and evaluation conference (pp. 4034–4043). Marseille, France:
European Language Resources Association. Retrieved from
https://aclanthology.org/2020.lrec-1.497

Nothman, J., Ringland, N., Radford, W., Murphy, T., & Curran, J. R. (2012).
Learning multilingual named entity recognition from Wikipedia. Artificial
Intelligence, 194 , 151–175. Retrieved from
http://dx.doi.org/10.1016/j.artint.2012.03.006 doi:
10.1016/j.artint.2012.03.006

Pacheco Coelho, M. T., Pereira, E. B., Haynie, H. J., Rangel, T. F., Kavanagh, P.,
Kirby, K. R., . . . others (2019). Drivers of geographical patterns of north
american language diversity. Proceedings of the Royal Society B , 286 (1899),
20190242.

Paolini, G., Athiwaratkun, B., Krone, J., Ma, J., Achille, A., Anubhai, R., . . .
Soatto, S. (2021). Structured prediction as translation between augmented
natural languages. In 9th international conference on learning
representations, ICLR 2021.

Papineni, K., Roukos, S., Ward, T., & Zhu, W.-J. (2002, July). Bleu: a method for
automatic evaluation of machine translation. In Proceedings of the 40th
annual meeting of the association for computational linguistics (pp. 311–318).
Philadelphia, Pennsylvania, USA: Association for Computational Linguistics.
Retrieved from https://aclanthology.org/P02-1040 doi:
10.3115/1073083.1073135

Patwardhan, S., & Riloff, E. (2009). A unified model of phrasal and sentential
evidence for information extraction. In Proceedings of the annual meeting of
the association for computational linguistics (acl).

Peters, M. E., Ruder, S., & Smith, N. A. (2019a). To tune or not to tune?
adapting pretrained representations to diverse tasks. In Repl4nlp@acl.

202

https://aclanthology.org/D19-1038
https://aclanthology.org/2020.lrec-1.497
http://dx.doi.org/10.1016/j.artint.2012.03.006
https://aclanthology.org/P02-1040


Peters, M. E., Ruder, S., & Smith, N. A. (2019b, August). To tune or not to tune?
adapting pretrained representations to diverse tasks. In Proceedings of the
4th workshop on representation learning for nlp (repl4nlp-2019) (pp. 7–14).
Florence, Italy: Association for Computational Linguistics. Retrieved from
https://aclanthology.org/W19-4302 doi: 10.18653/v1/W19-4302
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