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DISSERTATION ABSTRACT 
 
Yichen Li  
 
Doctor of Philosophy in Psychology 
 
Title: Background Functional Connectivity Reveals Neural Mechanisms of Top-Down 

Attentional Control 
 
 

Top-down attentional control is essential for efficiently allocating our limited attentional 

resources to process complex natural environments, focusing on information relevant to our goals. 

The neural mechanism underlying this pervasive cognitive ability can be dichotomized into 

externally-oriented, which allocates attention to perceptual details, and internally-oriented, which 

direct attention to mnemonic episodes. Extensive research has investigated these neural 

mechanisms by focusing on the operations of attentional control, executed in response to a 

stimulus, by examining the evoked activity patterns in the brain. However, growing evidence 

indicates the importance of exploring these neural mechanisms supporting the states of attentional 

control that persist over time, by scrutinizing the intrinsic functional interaction patterns among 

brain regions. The present dissertation follows along the latter perspective to extend our current 

knowledge of the neural mechanism of top-down attentional control. In a series of two 

experiments, background functional connectivity (BGFC) analyses were applied to isolate intrinsic 

functional organizations of the brain from stimulus-evoked signals. Utilizing a whole-brain, data-

driven approach combined with machine learning, important neural interaction circuits and 

pathways were revealed in response to switching between externally and internally oriented 

attentional control states (Chapter 2) and concurrently representing multiple states requiring either 

external or internal attention (Chapter 3). Moreover, evidence was provided suggesting the 

systematic distinctions between stimulus-related signals (captured by evoked activity) and state-
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related signals (captured by BGFC) in reflecting the process of top-down attentional control. 

Finally, in Chapter 4, a self-developed open-source Python library (BGFC-kit) was introduced for 

streamlining the preprocessing steps of BGFC analyses. Together, the works in this dissertation 

provide important insights and facilitate future investigations of the general neural mechanisms 

underlying top-down attentional control. 

 

This dissertation includes previously published and unpublished co-authored material.  
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CHAPTER I 

GENERAL INTRODUCTION 

This chapter contains an edited section of unpublished co-authored material. I am the 
primary author of this material, and I incorporated editing advice from Dr. Ben Hutchinson. 

 

Overview 

Attention is a core property of all human cognitive operations. Given limited cognitive 

capacity to process competing options, attention allows one to select, modulate, and sustain focus 

on information most relevant for behavioral goals. One of the central problems in attention 

research is to unravel the top-down attentional control mechanism in the brain and to understand 

how such a mechanism manages all information-processing in the brain to achieve efficient 

behavioral performance (Desimone & Duncan, 1995; Hopfinger et al., 2000; Parasuraman, 2000; 

Petersen & Posner, 2012; Posner & Petersen, 1990). The pervasive influence of top-down 

attentional control in our daily lives makes its examination challenging, often leading to multiple 

interconnected yet seemingly distinct research paths. The central challenge that this dissertation 

addresses is to study top-down attentional control as a multi-module configuration of neural 

measures (e.g., evoked activity and intrinsic functional structures of the brain; Cole et al., 2019; 

Turk-Browne, 2013) and cognitive abilities (e.g., perception and memory retrieval; Chun et al., 

2011; Chun & Johnson, 2011).  

One aspect of top-down attentional control research aims to comprehend how the brain 

selectively attends to goal-relevant information within perceptual domains. For instance, in a 

hypothetical scenario where an individual converses in a noisy bar, attention must be directed to 

the conversation while filtering out irrelevant auditory and visual stimuli. This prompts inquiries 

into the neural processes underlying the registration of behavioral goals within the brain and the 
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subsequent control of perceptual information processing within the visual and auditory cortices. 

In the context of human fMRI, research in this area tends to reveal different attentional control 

mechanisms depending on the specific fMRI neural measure utilized. A commonly accepted 

perspective on this mechanism suggests that the behavioral objective is encoded through the 

evoked activity patterns of blood oxygen level-dependent (BOLD) signals in the frontal brain 

regions (Corbetta & Shulman, 2002; Hopfinger et al., 2000). Attentional control, in turn, entails 

the information captured by these activity patterns serving as directives transmitted along 

neuronal pathways between brain regions to influence the activities elsewhere in the brain. (e.g., 

Cole et al., 2016; Dosenbach et al., 2008; Miller & Cohen, 2001). Additionally, alongside 

evoked neural activity, the neural pathways themselves were also actively modulated in 

accordance with behavioral goals (Al-Aidroos et al., 2012). This modulation is reflected by 

changes in functional connectivity (FC) patterns of the brain, quantified through statistical 

dependence, such as correlation, between the timeseries of BOLD signals among brain regions 

(Friston, 1994). Consequently, the brain inherently optimizes the processing pathways for goal-

pertinent information, even when there is no elicited brain activity, to align with the behavioral 

goal (e.g., Al-Aidroos et al., 2012; Turk-Browne, 2013).  

Moreover, top-down attentional control is not limited to externally allocation toward 

perceptual information but can also be internally directed for mnemonic or reflective purposes 

(Chun et al., 2011; Chun & Johnson, 2011). In the context of engaging conversations, individuals 

may need to attend externally to the perceptual details of what the other person is saying (i.e., 

perception), but also need to attend internally for recollecting the context or past events (i.e., 

memory retrieval). This prompts inquiries into the neural processes underlying top-down 

attentional control regarding the allocation to or switching between external and internal 
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processing domains. Research in this area seeks to bridge the seemingly unrelated topics such as 

memory and perception, aiming to understand the similarities and differences between these 

cognitive abilities (Lepsien & Nobre, 2006; Li et al., 2023; Long & Kuhl, 2021; Poskanzer & 

Aly, 2023; Verschooren et al., 2019).  

This dissertation aims to integrate and advance these aspects of attentional control 

research. Specifically, the focus is on understanding the mechanisms underlying the flexible 

allocation of attention between external and internal information processing, taking into account 

modulations in both FC patterns and evoked activity patterns. The dissertation begins by 

examining how top-down attentional control efficiently switches between prioritizing external 

and internal information processing streams (Chapter 2). I proceed to investigate the top-down 

attentional control mechanism capable of concurrently representing multiple behavioral goals, 

particularly emphasizing those involving both perceptually and mnemonically driven factors. 

(Chapter 3). I then present and introduce a self-developed open-source python package that aims 

to facilitate and streamline the investigation of intrinsic FC patterns (Chapter 4). I conclude with 

a discussion of what has been learned as well as potential future applications (Chapter 5). 

The remainder of this introductory chapter provides essential background information. In 

the following section, I outline two complementary and intertwined theories concerning the 

neural mechanisms governing top-down attentional control: the guided activation account and 

the switching train tracks account (Miller & Cohen, 2001; Turk-Browne, 2013). Following this, I 

review the two commonly used neural measures in human fMRI data analyses: evoked activity 

patterns and intrinsic functional connectivity (FC) patterns (Friston, 1994; Norman et al., 2006). 

I highlight their quantitative independence and stress that both previously discussed theories 

suggest the study of top-down attentional control neural mechanisms should involve examining 
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and combining both neural measures. Finally, I introduce the taxonomy distinguishing between 

external and internal attention (Chun et al., 2011) and illustrate how this taxonomy guides our 

exploration of the attentional control mechanisms using the aforementioned neural measures. 

Mechanisms of top-down attentional control system  

As our understanding of the world expands and our behavioral capabilities grow, our 

evolved systems coordinate mental, perceptual, and motor processes toward common behavioral 

goals. Maintaining sustained behavioral goals is crucial for navigating the daily influx of 

information and reducing ambiguity. Specifically, the attentional control system can operate in a 

"top-down" manner, voluntarily biasing attention and information processing toward goal-driven 

outcomes, enabling the early selection and processing of goal-relevant information (Corbetta & 

Shulman, 2002; Posner & Petersen, 1990). A substantial body of work has investigated the 

underlying neural mechanisms responsible for top-down attentional control, reaching consensus 

on two key components of this system. First, understanding the properties and functions of 

specific brain regions is essential, as they play a crucial role in guiding and coordinating 

attentional resources, such as the prefrontal cortex (PFC), or more broadly, the frontal-parietal 

control network (Corbetta & Shulman, 2002; Dosenbach et al., 2008; Miller & Cohen, 2001). 

Second, understanding how different brain regions communicate is vital, as efficient top-down 

attentional control would require the interplay of multiple brain regions and networks (Al-

Aidroos et al., 2012; Felleman & Van Essen, 1991; Mesulam, 1990; Turk-Browne, 2013). In this 

section, we review two complementary accounts of top-down attentional control, shedding light 

on how important brain networks coordinate information processing throughout the brain in a 

goal-directed way (Figure 1.1). 
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Guided activation account of attentional control  

Originally proposed by Miller and Cohen (2001), the guided activation account 

emphasizes the crucial role of the prefrontal cortex (PFC) in maintaining behavioral goals and 

“guiding” activity throughout the brain. According to this account, when forming behavioral 

goals, the PFC evokes patterns of neuronal activations to actively sustain these goals in a 

multivariate manner. These activation patterns in the PFC represent subtle combinations of 

events and contingencies which are learned over time. Importantly, these activation patterns in 

the PFC don't directly execute input-output mappings required for task performance; instead, 

they guide the activation of other brain regions, such as visual areas, which are responsible for 

executing these mappings and providing the necessary outputs for task completion (Miller & 

Cohen, 2001). For instance, PFC neurons might produce a specific activation pattern to prioritize 

attending to an ongoing conversation while ignoring ambient sounds. This activation pattern in 

the PFC then influences the auditory cortex through neural pathways, thus biasing and 

modulating the auditory cortex activation patterns to facilitate behavioral goals (Figure 1.1A). 

Recent research on functional brain organization has broadened the focus from the 

prefrontal cortex (PFC) to include a wider network known as the frontal-parietal control network 

(Dosenbach et al., 2006; Yeo et al., 2011). Functional connectivity (FC) is assessed between 

brain regions at rest to identify functionally homogeneous regions that may be anatomically 

separated (Biswal et al., 1995; Friston, 1994). Numerous studies have provided consistent 

evidence that the FC pattern in the human brain at rest demonstrates a meaningful network 

structure of functionally coupled regions, rather than being random (Damoiseaux et al., 2006; 

Fox & Raichle, 2007; Van Dijk et al., 2010; Yeo et al., 2011). The PFC is consistently grouped 

into the frontal-parietal control network, which plays a key role in coordinating and controlling 
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goal-guided information processing (Gordon et al., 2016; Power et al., 2011; Schaefer et al., 

2018; Shen et al., 2013). For example, research has demonstrated that the control network as a 

whole, not just the PFC, can reflect and maintain sustained behavioral goals throughout a task 

(e.g., Dosenbach et al., 2006). Additionally, works on activity flow mapping have provided 

substantial evidence demonstrating how the evoked activation pattern in the control network can 

efficiently influence and guide the activation patterns in other brain regions. Specifically, Cole et 

al. (2016) demonstrated that the evoked activation pattern of any region can be accurately 

predicted by estimating the FC-weighted sums of the activations at other locations, referred to as 

the sum of activity-flow estimates. Importantly, the control network has been identified as a hub 

densely functionally coupled with all other brain networks (Cole, Laurent, et al., 2013; Gordon et 

al., 2018; Gratton, Sun, et al., 2018), exhibiting the most flexible and rapid shifts in functional 

coupling patterns with other networks in response to changes in attentional control demands 

(Cole, Reynolds, et al., 2013). This research highlights the validity of having the activation 

patterns of the control network to guide the activation pattern of other networks during the top-

down attentional control processes.  

 Collectively, the guided activation theory of top-down attentional control suggests that 

the PFC (and the control network in general) gradually learns the mapping between different 

scenarios and the corresponding actions needed. When a behavioral goal is set, the control 

network produces activation patterns that precisely mirror the ongoing behavioral goal. These 

patterns then direct other brain networks via functional connectivity pathways, allowing them to 

engage and synchronize their behavior with the defined goal. Consequently, the brain operates 

harmoniously to accomplish efficient top-down attentional control. 
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Switching train tracks account of attentional control  

As previously indicated, functional connectivity (FC) among brain regions serves as 

conduits through which evoked activities propagate. A major line of research following the 

guided activation account focuses on examining the information conveyed by evoked activities 

transmitted through FC pathways, while comparatively less attention has been paid to exploring 

whether the FC pathways themselves offer valuable insights. Yet it's crucial to acknowledge that 

the guided activation account also anticipates changes in these pathways, as the evoked activity 

patterns in the prefrontal cortex (PFC) contain the appropriate representations that can select the 

pathways required for the task (Miller & Cohen, 2001). Highlighting this aspect of the guided 

activation process, the switching train tracks model of attentional control was proposed to focus 

on understanding how attentional control operates through modulations of FC pathways (Turk-

Browne, 2013). Specifically, this account proposes that in the presence of a behavioral goal, FC 

pathways undergo significant modulation to strengthen connections between areas of the human 

cortex relevant to the goal (akin to switching train tracks), thereby prioritizing the processing of 

goal-relevant information (Al-Aidroos et al., 2012). Importantly, extending beyond the guided 

activation account, the switching train tracks account emphasizes that the FC pathway 

modulations happen intrinsically, independent of evoked activity in the brain, and persist without 

external stimulation (Figure 1.1B). 

 Recent research has provided empirical evidence suggesting that top-down attentional 

control does indeed modulate the FC pathways. Several investigations have compared the 

functional network organization of the human brain during “resting-state” and various cognitive 

“task-states” where top-down attentional control is required. These studies have consistently 

shown that while the resting-state network organization remains highly stable and persistent 
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across tasks (Fox & Raichle, 2007; Gratton, Laumann, et al., 2018; Shehzad et al., 2009), 

different behavioral objectives subtly influence functional network organization as a mechanism 

of top-down attentional control (Braun et al., 2015; Cole et al., 2014; Finc et al., 2020). In 

particular, early research has established that the functional network organization of the human 

brain during “resting-state” can predict individual traits and behavioral performance differences 

across various cognitive tasks, such as fluid intelligence and attention capacity (Finn et al., 2015; 

Rosenberg et al., 2016). However, recent evidence suggests that the "task-state" functional 

network organization structure, due to the subtle yet significant FC modulations induced by goals 

of cognitive tasks, can notably enhance the accuracy of predicting individual differences across a 

broad spectrum of cognitive tasks, including working memory, sustained attention, and cognitive 

control (Cole et al., 2021; Fong et al., 2019; Greene et al., 2018; McCormick et al., 2022). 

Moreover, recent works have also supported the switching train tracks account by providing 

evidence that the modulation of brain network organization is independent from task-evoked 

activations. A series of works demonstrated that FC pathways undergo goal-relevant modulations 

both before the initiation of tasks (Ploner et al., 2010; Preti et al., 2017; Sadaghiani et al., 2015) 

and even after task completion (LaBar & Cabeza, 2006; Tambini et al., 2017). Additionally, 

other studies have successfully identified significant changes in FC pathways even after 

quantitatively removing evoked activities from the recorded brain BOLD signals, which will be 

further discussed in the following section (Al-Aidroos et al., 2012; Córdova et al., 2016; K. 

Duncan et al., 2014; Norman-Haignere et al., 2012; Tompary et al., 2018). 

Notably, the switching train tracks account highlights that top-down attentional control 

can manifest in FC pathway modulations among brain regions beyond just the PFC. Indeed, the 

subtle yet significant modulations of functional network structure often encompass changes in 
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coupling strengths among regions throughout the entire brain. For example, Cohen and 

D’Esposito (2016) illustrated across the entire brain that tasks with simple motor response-

centered goals amplified coupling among regions within the same network, while the FC 

pathways between distinct networks remained restricted, resulting in a more "segregated" 

functional organization. Conversely, tasks involving complex goals like working memory 

fostered a more "integrated" functional organization, promoting enhanced FC pathways among 

regions associated with disparate brain networks across the entire brain.  

Together, the switching train tracks model of attentional control proposes that the 

network architecture of the human brain, as assessed by functional connectivity (FC) patterns, 

resembles a map of train tracks that typically remains stable over time. Top-down attentional 

control acts like a lever, altering the connections between brain regions, thus prioritizing the 

processing of goal-relevant information needed to accomplish behavioral objectives. 

Importantly, this mechanism was proposed to occur concurrently yet independently from evoked 

activities in the brain.  

Measuring state-related neural processes with background functional connectivity 

Stimulus- and state-related neural processes 

Previous research has posited that engaging in goal-directed cognitive tasks elicits two 

distinct sets of neural processes. Firstly, tasks prompt stimulus-related neural processes, which 

denote transient neural signal changes within relevant brain regions in response to information 

processing for the cognitive task. Secondly, tasks also induce state-related neural processes, 

characterized by goal-specific neural pathway that persist in the background of external stimulus 

processing to optimize task performance (Otten et al., 2002; Summerfield et al., 2006; Turk-

Browne, 2013). Both the guided activation and switching train tracks theories reviewed  
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Figure 1.1. Exploring top-down attentional control by focusing on either evoked activity 
patterns or functional connectivity (FC) patterns. 
A) The line of work that investigates top-down attentional control mechanisms by focusing on 
examining evoked activity patterns. The guided activation account posits that the top-down 
behavioral goal is represented by the evoked activity patterns in the PFC, which influence the 
evoked activation pattern at other brain locations, allowing the sensory regions to process stimuli 
in a goal-relevant manner. Thus a major line of research based on this account primarily focuses 
on understanding evoked activity responses, revealing regions involved in top-down attentional 
control processes (solid red dots) and those relevant to processing the nuisances of behavioral 
tasks (e.g., task difficulties, features of the stimulus etc.; light red dots). B) The line of work that 
investigates top-down attentional control mechanisms by focusing on examining modulations of 
functional connectivity patterns. The switching train tracks account stresses that top-down 
attentional control induces modulations of FC pathways between brain regions. The FC 
modulations enhance pathways for goal-relevant information processing (thick red lines) while 
weakening those for irrelevant information (dotted red lines). Crucially, FC pathway 
modulations are independent of evoked activities, persist even without external stimulations, and 
reveal FC pathways relevant solely for top-down attentional control (solid red dots), excluding 
those related to processing behavioral task nuances (light red dots). 

 

previously suggest that a complete understanding of both stimulus-related and state-related 

neural processes is crucial for a thorough examination of top-down attentional control (Miller & 

Cohen, 2001; Turk-Browne, 2013). As such, the two different types of neural processes 

correspond precisely to the two lines of research into top-down attentional control mechanisms: 
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studies that focus on evoked activity patterns aim to investigate stimulus-related neural 

processes, while research on functional connectivity (FC) modulations seeks to understand state-

related neural processes. 

In human fMRI research, investigating evoked activity patterns means analyzing how 

changes in the BOLD signal in brain voxels respond to external stimuli during different cognitive 

tasks, thus capturing stimulus-related neural process. In particular, task-based functional 

magnetic resonance imaging (fMRI) studies have long been used to investigate how and where 

regional, stimulus-evoked responses emerge in the brain during various cognitive processes. 

Examining stimulus-evoked responses has been an extremely fruitful approach to understanding 

which brain regions support the component processes of task-driven cognition and the 

representational capabilities of the human brain (Kanwisher, 2010; Norman et al., 2006). On the 

other hand, FC examines the strength of coupling strengths between different brain regions over 

time. The idea is that while specific brain regions tend to be specialized at one or a few cognitive 

operations (e.g., the medial temporal lobe plays a critical role in forming and retrieving long-

term memories; Nyberg et al., 1996), unique cognitive states engage unique combinations of 

component interactive processes (Turk-Browne, 2013). Therefore, instead of being captured by 

univariate activity or multivariate patterns in a single brain region, state-related neural processes 

are best captured by FC, which quantifies distributed neural interactions induced by cognitive 

tasks (Friston, 1994). It's important to acknowledge that FC measurements can be exaggerated or 

even inaccurate because of the impact of stimulus-evoked activities, presenting a significant 

methodological challenge in distinguishing these signals from one another in human fMRI data. 

In the following sections, we delve into the challenge of measuring FC with the presence of 

tasks, and the utilization of background functional connectivity (BGFC) as a variant of FC 
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measure to disentangle intrinsic neural pathway modulations from stimulus-evoked activities in 

brain signals. 

Co-activation confounds in task-state functional connectivity  

Task-state FC refers to the neural interaction patterns of the brain during various 

cognitive tasks. Note that here we refer to task-state FC as the FC-based neural measure 

computed based on preprocessed BOLD timeseries, without removing the stimulus-evoked 

response. One major challenge in investigating state-specific neural processes using functional 

connectivity is so-called “co-activation confounds” introduced by stimulus-related activity in 

multiple regions (Cole et al., 2019). Specifically, task-state FC measures consist of two 

additional sources of variance compared to resting-state, one being the actual state-related neural 

processes for optimal task performances, but another being two or more brain regions “co-

activating” in response to external stimuli at the same time, without being in communication 

with one another per se. As shown in Figure 1.2, two brain regions can demonstrate spurious FC 

modulations by both responding to the presence of an external stimulus when, in fact, no state-

related modulations exist. Empirical evidence suggests that without removing stimulus-evoked 

responses, around 7% of brain connections increased during tasks compared to rest, but only 2% 

remained after accounting for the coactivation confounds, suggesting that more than half of the 

task-state FC connections are inflated (Cole et al., 2019). As a result, the explanatory power of 

task-state FC is potentially significantly limited by this issue. For example, a previous study 

attempted to identify “state-related” FC templates for multiple tasks (e.g., memory retrieval) and 

yielded a set of connections that are predictive of a cognitive task (Shirer et al., 2012). However, 

due to the problem of coactivation confounds and the differences in the type and timing of 
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external stimuli across tasks, it is hard to conclude that any connections revealed by the 

templates are necessarily attributed to the task state (e.g., the state of memory retrieval).  

Introducing background functional Connectivity  

Background functional connectivity (BGFC) is a variant of FC measurement designed to 

solve the co-activation problem. In the preprocessing phase, stimulus-evoked responses are 

removed, using various techniques, leaving only the residual (thus background) timeseries for 

subsequent connectivity analyses (Cole et al., 2019; Frank & Zeithamova, 2023). Specifically, 

the stimulus-evoked response can be modeled and then removed or accounted for using a general 

linear model. There are several different existing approaches that fit into this family of 

techniques. Some existing approaches model the evoked response (using either a ‘canonical’ 

HRF, or preferably, through estimation using a finite impulse response model which does not 

make assumptions about the shape of the underlying response) and then statistically regress it out 

of the timeseries data, leaving only the residuals for subsequent analyses (Cole et al., 2019; Fair 

et al., 2007). Thus, BGFC is argued to capture task-modulated, state-specific neural processes in 

human fMRI, that are free from any extrinsic factors.  

Previous studies have demonstrated the use of BGFC, showing that even with the absence 

of stimulus-evoked activity signals, the remaining state-related FC pathways still demonstrate 

important and meaningful differences in response to cognitive states. A series of studies involved 

participants being presented with composite images containing both faces and scenes as stimuli, 

with instructions to focus attention either on the face or the scene component, depending on the 

task at hand (Al-Aidroos et al., 2012; Córdova et al., 2016; Norman-Haignere et al., 2012; 

Tompary et al., 2018). The underlying hypothesis was that top-down attentional control 

regarding the visual processing of either face or scene components would induce modulation in 
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the FC pathways of the ventral visual stream, aligning with the respective attentional objective. 

As anticipated, the findings revealed that when attention was directed towards visualizing the 

face component, FC pathways between the visual cortex and face-specialized regions such as the 

fusiform area, perirhinal cortex, and superior temporal sulcus were strengthened. Conversely, 

when the focus was on visualizing the scene component, FC pathways between visual regions 

and scene-specialized areas like the parahippocampal cortex exhibited enhancement. 

Furthermore, recent research has presented compelling evidence indicating that alterations in 

BGFC pathways across the brain are closely linked to the efficiency of top-down attentional 

control. For instance, past research has suggested that modifications in BGFC patterns within the 

medial temporal lobe can accurately forecast an individual's level of internal attentional focus: 

this level of internal attentional focus is assessed by their capacity to effectively encode, retrieve, 

and generalize information (Cooper & Ritchey, 2019; Frank et al., 2019; Gruber & Otten, 2010). 

The taxonomy of internal vs. external attention 

An inherent aspect of top-down attentional control is its pervasive presence in our daily 

lives across a vast repertoire of cognitive tasks. This emphasizes its importance as a central focus 

in human cognitive neuroscience research, yet it also makes studying this area somewhat 

complex and difficult to handle: even minor changes in behavioral goals or cognitive demands 

can lead to modulations in both stimulus-evoked and state-related neural processes. 

Consequently, it is imperative to devise a systematic approach to classify and investigate top-

down attentional control without becoming entangled in the nuanced intricacies of micro-level 

variations. In this regard, the development of a taxonomy that organizes top-down attentional 

control at a broader level proves beneficial. One such taxonomy distinguishes top-down 

attentional control between external and internal attention, based on the nature of the target  
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Figure 1.2. Coactivations among brain regions in response to stimulus onset inflate task-
state functional connectivity.  
A) When engaging in a cognitive task, resting state functional connectivity is complicated by 
two additional sources of variance: one is the state-related neural reconfiguration modulated by 
the cognitive task; another is the stimulus-related coactivation confounds, unrelated to the task 
per se. The background functional connectivity method aims to isolate the state-related neural 
modulations from stimulus-related coactivation. B) When the task indeed modulates FC strength 
between two regions, stimulus-related variance can inflate such measure. Specifically, as the FC 
measure between the yellow and blue regions increased from 0.2 during rest to 0.8 during the 
task, one would make the conclusion that the neural interaction between these two regions is 
task-specific. Although this conclusion is correct, the task-specific modulation on FC measure 
can be exaggerated by stimulus-evoked activity. C) When the task does not modulate FC 
strength between two regions, stimulus-related variance is enough to create spurious FC strength 
changes. Specifically, as the FC measure between the green and blue regions increased from 0.2 
during rest to 0.6 during the task, one would make the conclusion that the neural interaction 
between these two regions is task-specific. However, this modulation in FC is solely due to the 
fact that the two brain regions co-activate external stimuli, and the neural interaction between the 
two regions has nothing to do with maintaining the state of the task.  
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information upon which attention operates (Chun et al., 2011). In accordance with this 

taxonomy, the top-down attentional control mechanism for external attention entails the 

voluntary selection, modulation, and integration of perceptual information across various 

modalities. Conversely, the top-down attentional control mechanism for internal attention 

facilitates the management of internally generated information, encompassing processes such as 

introspection and the retrieval of episodic memory. 

This taxonomy of external and internal attention mirrors real-life dichotomies. In 

everyday situations, the same external stimulus can serve as both the target of perception and the 

cue for memory retrieval. When attention is directed externally, perceptual details are processed, 

whereas internal attention allocation leads to the processing of mnemonic episodes. It thus 

become a central question to understand the neural mechanisms enabling the brain to selectively 

represent perceptual details when behavioral goals emphasize perception, and memory details 

when goals require recollection. Previous research has suggested that the brain employs two 

distinct modes for external and internal processing (Hasselmo et al., 1996; Honey et al., 2017; 

Long & Kuhl, 2019). Yet, the precise neural mechanisms facilitating efficient attention 

allocation and switching between external and internal processing are still unclear.  

In the human fMRI literature, previous studies comparing externally- and internally-

oriented top-down attentional control typically align with the two sets of neural processes: one 

emphasizing the localization and interpretation of evoked activity, and the other examining 

intrinsic changes in functional connectivity pathways during attentional processing (Miller & 

Cohen, 2001; Summerfield et al., 2006; Turk-Browne, 2013). Investigations focusing on evoked 

activity have identified two complementary systems: a "task-positive" system that is more active 

during external-oriented processing, involving auditory, visual, and somatosensory areas, as well 
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as the lateral prefrontal cortex (lPFC) and superior parietal lobule (SPL); and a "task-negative" or 

default system that is more active during internal-oriented processing, encompassing the 

posterior cingulate (PCC), precuneus (PCUN), lateral inferior parietal cortex (IPC), inferior 

temporal cortex, and medial prefrontal cortex (mPFC; Corbetta & Shulman, 2002; Golland et al., 

2007, 2008). Furthermore, prior studies suggest that external (perceptual) and internal 

(mnemonic) processing of the same information result in distinct differences. For instance, the 

representation of information shifts the location from the visual cortex during externally oriented 

processing to the ventral parietal cortex during internally oriented processing (Long & Kuhl, 

2021). Additionally, the neural presentation of information also undergoes meaningful goal-

relevant changes during internal compared to external processing (Chanales et al., 2019; Favila 

et al., 2018, 2022; Zhao et al., 2021).  

Alternatively, studies focusing on intrinsic FC pathway modulations have indicated that 

external and internal-oriented attentional control enhance distinct sets of intrinsic pathways 

throughout the brain that are unrelated to evoked activities. For instance, a body of research has 

delved into understanding intrinsic FC modulations centered on the hippocampus, a region long 

recognized as crucial for both externally allocating attention for encoding information and 

internally allocating attention for retrieving information (Hasselmo et al., 1996; Norman, 2010). 

It has been found that subregions of the hippocampus alter their interaction patterns as attentional 

control shifts from external to internal. Specifically, intrinsic FC between area CA1 and the 

ventral tegmental area strengthens when the goal is to encode perceptual information, whereas 

intrinsic FC between area CA1 and DG/CA3 strengthens when the goal is to retrieve mnemonic 

information (K. Duncan et al., 2014). Moreover, recent studies suggest that intrinsic FC between 

the hippocampus and the basal ganglia is heightened when the behavioral goal involves orienting 
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attention externally (i.e., explicit instruction), while intrinsic FC between the hippocampus and 

the dorsal attention network (DAN) is heightened when the goal involves orienting attention 

internally (Poskanzer & Aly, 2023). 

Goal and structure of the dissertation 

This dissertation aims to delve deeper into the neural mechanisms underlying top-down 

attentional control in humans, particularly in externally and internally oriented information 

processing. Despite existing research in this area, two key questions remain unanswered. Firstly, 

previous studies have predominantly focused solely on either evoked activities or intrinsic 

functional connectivity (FC) to uncover the neural underpinnings of top-down attentional 

control. However, each approach alone only offers limited perspectives, leaving it unclear 

whether the two neural measures tap into distinct or overlapping aspects of the cognitive process. 

Secondly, prior research investigating intrinsic FC modulations in externally versus internally 

oriented attentional control has typically adopted a seed-based approach, focusing on the FC 

pathway modulations of specific regions (e.g., hippocampus) or networks (e.g., default network). 

However, this method may overlook crucial FC dynamics elsewhere in the brain that 

characterize the dichotomy of the two top-down attentional control processing streams. To 

address these gaps, this dissertation presents a set of two human fMRI studies employing a 

whole-brain, exploratory approach to systematically examine intrinsic FC pathway modulations 

through BGFC as top-down attentional control transitions from external to internal. Furthermore, 

these studies compare the findings obtained through both activity- and connectivity-based 

analyses to elucidate the extent to which, and in which brain regions, the two neural measures 

diverge. 
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Chapter 2 endeavors to comprehend the intrinsic FC pathway modulations as top-down 

attentional control transitions from external to internal information processing. This is achieved 

by comparing the FC dynamics between states of perception and memory retrieval, with each 

state being the sole top-down goal at a given time. Background functional connectivity (BGFC) 

and an intensive exploratory method, full correlation matrix analyses (FCMA), are employed to 

scrutinize the intrinsic FC pathway changes for every voxel in the brain during these states. 

Furthermore, Chapter 2 investigates whether connectivity-based and activity-based neural 

measures capture distinct aspects of cognitive processes, and which cognitive aspects each neural 

measure is most sensitive to. In Chapter 3, the focus shifts to understanding the intrinsic FC 

pathway modulations underlying the transition from externally to internally oriented information 

processing in multitasking conditions. Specifically, the brain's ability to simultaneously attend to 

perceptual and mnemonic information is examined using BGFC. This includes exploring 

multitasking scenarios involving two externally oriented tasks as well as scenarios involving one 

externally and one internally oriented task. Additionally, Chapter 3 explores how BGFC 

complements conventional evoked activity patterns in representing multiple states 

simultaneously. In Chapter 4, a self-developed open-source Python library (BGFC-kit) is 

introduced to streamline future BGFC analyses. This library aims to simplify and standardize the 

implementation of BGFC analyses. Lastly, chapter 5 concludes with a summary of the results 

and a discussion on the broader implications of the findings. 
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CHAPTER II 

PERCEPTION AND MEMORY RETRIEVAL STATES ARE REFLECTED IN 

DISTRIBUTED PATTERNS OF BACKGROUND FUNCTIONAL CONNECTIVITY  

From Li, Y. P., Wang, Y., Turk-Browne, N. B., Kuhl, B. A., & Hutchinson, J. B. (2023). 
Perception and Memory Retrieval States are Reflected in Distributed Patterns of Background 
Functional Connectivity. NeuroImage, 120221. 

Introduction 

When a familiar visual stimulus (e.g., a colleague) is encountered, it might serve as the 

target of perceptual scrutiny (e.g., their current facial expression) or the trigger for episodic 

memory retrieval (e.g., something they said in the past). Numerous cognitive theories and 

neuroimaging studies have contrasted the cognitive processes and brain regions engaged during 

perception versus retrieval (Bosch et al., 2014; Chun & Johnson, 2011; Kosslyn et al., 1995; 

McClelland et al., 1995; O’Reilly & McClelland, 1994; Polyn et al., 2005; Wheeler et al., 2000). 

The majority of this work has focused on investigating the operations performed upon the 

stimulus, such as how the stimulus is encoded into long-term memory or how the stimulus is 

used to drive memory recollection (Favila et al., 2020; Fernandez et al., 2022; H. Kim, 2013). 

However, evidence also suggests that perception and memory retrieval are characterized by 

distinct ‘states’ that are sustained over time and independent from external stimuli . 

Characterizing how perception and retrieval states are implemented in the brain represents an 

important challenge, but one that is complicated by methodological and analytical factors. 

One potentially powerful way to characterize distinct cognitive states is by measuring 

patterns of functional connectivity within the brain (Cohen & D’Esposito, 2016; Fritch et al., 

2021; Shirer et al., 2012; Song & Rosenberg, 2021). Functional connectivity is typically 
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computed over extended windows of time and is therefore well-suited to measure states that 

putatively persist across, or in the absence of, external stimuli. However, a critical issue in 

applying functional connectivity during cognitive tasks is that any observed correlations in 

neural activity may be largely or entirely driven by stimulus-evoked neural responses. That is, if 

two brain regions consistently respond to external stimuli, this will induce apparent 

“connectivity” between these regions. Several fMRI studies have addressed this concern by 

using “background” connectivity—an approach in which stimulus-evoked responses are 

explicitly modeled and removed, with connectivity then computed using the residual 

(background) activity (Al-Aidroos et al., 2012; Cole et al., 2019; K. Duncan et al., 2014; 

Norman-Haignere et al., 2012; Turk-Browne, 2013). Conceptually, this approach can isolate 

interactions between brain regions that reflect sustained, endogenous processing as opposed to 

transient, exogenous responses to stimuli (Summerfield et al., 2006; Turk-Browne, 2013). 

To date, only a limited number of fMRI studies have used background connectivity to 

test for differences between perception and memory retrieval states (Cooper & Ritchey, 2019; K. 

Duncan et al., 2014). Moreover, these studies have only considered potential interactions 

(connectivity) between a relatively limited number of brain regions. For example, Cooper and 

Ritchey (2019) examined background FC patterns exclusively between a priori, memory-related 

brain regions in the posterior-medial (PM) and anterior-temporal (AT) networks. They found that 

regions in these networks exhibited stronger background connectivity during retrieval compared 

to perception, providing important evidence that perception versus retrieval states can be linked 

to stimulus-independent processes. While this type of targeted, seed-based analysis is highly 

valuable for testing specific hypotheses about regions of a priori interest, it is inherently blind to 

interactions involving non-seed regions (Turk-Browne, 2013). In other words, discoveries are 
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systematically biased to come from the regions that are tested (Wang et al., 2015). Thus, there is 

value to unbiased approaches that allow for background FC to be more comprehensively 

measured—ideally, across the whole brain. That said, while conducting whole-brain functional 

connectivity may be theoretically appealing, it can be computationally intractable, particularly if 

applied without down-sampling data. For example, brain volumes consisting of 50,000 voxels 

would yield 1.25B voxel pairs (‘connections’) to analyze. For this reason, previous attempts to 

measure whole-brain functional connectivity have tended to substantially reduce the 

dimensionality of data by grouping voxels into regions or parcels (e.g., Pantazatos et al., 2012; 

Shirer et al., 2012; Watanabe et al., 2012).  

Here, we sought to identify patterns of background connectivity associated with 

perception versus retrieval states using full correlation matrix analysis (FCMA) applied to human 

fMRI data. In contrast, to typical seed-based connectivity measures, FCMA comprehensively 

considers connectivity between every possible pair of voxels in the brain using sophisticated 

approaches to overcome historical computational limitations (Kumar et al., 2022; Turk-Browne, 

2013; Wang et al., 2015). Specifically, FCMA uses a combination of machine learning (support 

vector machine; SVM) and parallel computing to efficiently map patterns of connectivity to 

stimulus or task information (Turk-Browne, 2013; Wang et al., 2015). The computational 

efficiency afforded by this approach is substantial in that it can reduce computation time from 

weeks to hours and has the potential to reveal information in fine-grained connectivity patterns 

that would be missed by conventional seed-based functional connectivity (Wang et al., 2015). 

We applied FCMA using an experiment that manipulated perception versus retrieval states while 

carefully controlling for three potentially confounding variables: (1) subjects performed the same 

judgments on the same images across both perception and retrieval tasks, minimizing differences 
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in task demands and sensory content; (2) subjects were familiarized with the images in all 

conditions, minimizing differences in novelty/encoding across perception and retrieval; and (3) 

behavioral accuracy was matched across key conditions in an attempt to minimize differences in 

task difficulty. 

To preview, we report four main findings: (1) background connectivity, which is 

orthogonal to evoked responses, allowed for classification of perception versus retrieval states 

with remarkably high accuracy; (2) perception and retrieval states can be discriminated 

parsimoniously based on background connectivity patterns in a relatively small number of 

clusters that span three functional communities: the control network, default mode network 

(DMN), and retrosplenial cortices (RSC); (3) connections within the control network were 

relatively stronger during perception states whereas connections within the DMN were relatively 

stronger during retrieval states; and (4) RSC shifted its coupling with the control network and 

DMN as a function of cognitive state, suggesting that it acts as a hub for transitioning between 

perception and retrieval. 

Methods 

Subjects 

Twenty-seven adults with normal or corrected-to-normal vision were recruited to 

participate for monetary compensation at Princeton University. Three subjects were excluded 

due to excessive head motion for a total of 24 subjects in the current sample (eleven reported 

male, mean age = 23.3 years). The Princeton University Institutional Review Board approved the 

study protocol, and all subjects provided informed consent. The sample size is on par with 

previous studies that examined functional connectivity changes with memory (Cooper & 

Ritchey, 2019) and used FC patterns to differentiate task states (Shirer et al., 2012).  
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Materials 

Stimuli consisted of 64 scene and 64 face images. The scene images were collected from 

the “Massive Memory” dataset (Konkle et al., 2010; http://konklab.fas.harvard.edu/#). The face 

images were obtained from the FEI face database (Thomaz & Giraldi, 2010; 

https://fei.edu.br/~cet/facedatabase.html) and contained emotionally neural expressions. 

Scrambled images were generated as the weighted average between the actual image and its 

phase-scrambled version (Oppenheim & Lim, 1981; Stojanoski & Cusack, 2014). The script for 

creating the phase-scrambled images was adopted from code by Nicolaas Prins (e.g., as 

described here: https://github.com/rordenlab/spmScripts/blob/master/bmp_scramble.m). 

Experimental Design and Procedure 

During the pre-scan training phase (~20-30 minutes prior to scanning), subjects viewed 

randomly assigned pairs of images (always consisting of one face and one scene) and indicated 

how successfully they were in forming a mental association between the images. After viewing all 

stimuli pairs, they were given a 2-alternative force choice task (AFC) in which a face would be 

presented above two scenes (or vice versa) and the subjects had to indicate which of the bottom 

images had been paired with the top image before. The cycle of association-forming and 2-AFC 

task continued until subjects got each association correct two times in a row (Figure 2.1A left).  

During the scanning session, subjects completed 3 task conditions across 6 functional runs 

(2 runs for each condition) using a block design. In the Perceive task condition, subjects were 

asked to identify the visual features of each cue on the screen. That is, if a face cue was presented, 

subjects were instructed to make a male/female judgment of the face via a button box, whereas if 

a scene cue was shown, subjects were instructed to make natural/man-made judgment of the scene. 

On the other hand, during the Retrieve task condition, subjects were asked to judge the gender or 

http://konklab.fas.harvard.edu/
https://fei.edu.br/~cet/facedatabase.html
https://github.com/rordenlab/spmScripts/blob/master/bmp_scramble.m
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naturalness of the cue-associated image (i.e., the pair mate of the cue from the training phase). For 

example, if a face cue was shown, subjects needed to retrieve the specific associated scene image 

(not presented) and make a natural/man-made decision on that remembered information. Likewise, 

if a scene cue was shown, subjects were supposed to retrieve the specific associated face image 

and make a male/female decision on that remembered information. To minimize the probability 

that the neural correlates we later identified were not driven solely by differences in task difficulty 

between Perceive and Retrieve task conditions, we included a Scramble condition. During the 

Scramble condition, subjects completed the same task as they did in the Perceive condition, but 

the visual cues were scrambled using a weighted average of the original image and its phase-

scrambled version. The weight of this average was established based on a behavioral pilot study 

using the same design which sought to vary the weight until accuracy between the Scramble and 

Retrieve task conditions was matched (Figure 2.1 right). Note that although these two conditions 

were equated in terms of accuracy, they did differ in terms of reaction time (see Results and 

Discussion sections). Each run started with a 6-s blank lead-in period, followed by 8 task epochs 

and ended with a 6-s lead-out period. Each epoch consisted of a 4-s presentation of instructions, 

followed by 8 2-s presentations of single images presented at central fixation separated by a 1-s 

interstimulus interval. Each sequence of stimuli was followed by a 12-s inter-block-interval. 

Together, the duration of each trial, epoch, and run was 3 s, 40 s and 332 s, respectively. Note that 

all epochs within a functional run are of the same condition, and that all visual stimuli of an epoch 

are of the same category (i.e., either all faces or all scenes). The order of the runs was randomized 

across all subjects and presented in different orders. The order of the three conditions was 

randomized across the first three runs for each subject and then the same order was repeated for 

the last three runs of that subject. 
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Image Acquisition and Preprocessing 

The fMRI data were acquired with a 3T scanner (Siemens Prisma) at the Princeton 

Neuroscience Institute. Functional data were acquired using a T2*-weighted multiband EPI 

sequence (repetition time = 1 s, echo time = 26 ms, flip angle = 50°, FOV = 260 x 260, 

resolution = 2.5 x 2.5 x 2.5 mm, multiband acceleration factor = 4) with 44 axial slices aligned to 

the anterior commissure/posterior commissure. A whole-brain T1-weighted MPRAGE 3D 

anatomical volume (1 x 1 x 1 mm voxels) was collected to improve registration. One phase and 

two magnitude field maps were collected to correct field inhomogeneities. 

The first 6 lead-in volumes of each functional run were manually discarded before 

entering the preprocessing pipeline. Image preprocessing was performed using fMRIPrep 

20.1.0rc1 (Esteban et al., 2019). All functional images were corrected for slice-acquisition time, 

head motion, and susceptibility distortion, and were normalized to a standard template, yielding 

preprocessed BOLD runs in MNI152NLin2009cAsym space. Following use of fMRIPrep, the 

minimally preprocessed functional runs were further processed using FSL (Woolrich et al., 2001) 

with a Nipype implementation (Gorgolewski et al., 2011). All functional images were smoothed 

with a 5.0 mm FWHM Gaussian kernel and high-pass filtered at 0.01 Hz. For each subject, the 

intensity values in each voxel in each of the 6 functional runs were then normalized using the 

mean and standard deviation of the resting period. The resting period for each functional run was 

defined as the 6 lead-out volumes plus all 12-s inter-block intervals of that run, which were 

shifted for 4 TRs to account for the hemodynamic delay. This normalization is intended to 

remove the BOLD signal differences across runs and thus all 6 runs were then concatenated to 

one time series and used for further modeling.  

Stimulus-Evoked and Residual (i.e., background) Activity 
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We computed residual activity by modeling and then regressing out the stimulus-evoked 

component from the preprocessed data in order mitigate stimulus-evoked coactivation confounds 

(Al-Aidroos et al., 2012; Cole et al., 2019). First, we constructed a confound regression model 

using FSL (implemented in NiPype) in order to minimize the effect of the following confound 

variables (obtained from fMRIPrep): six head motion parameters and the mean time series from 

white matter and cerebrospinal fluid. The resulting timeseries from regressing out the confound 

regressors are referred to as the stimulus-evoked activity timeseries in all subsequent analyses, as 

they are fully preprocessed, yet contain the stimulus-evoked components. Second, we estimated 

and removed the stimulus-driven components from the stimulus-evoked timeseries using a finite 

impulse response (FIR) model, which modeled the first 36 TRs for every epoch separately for 

face and scene epochs, resulting in 36 (TR) x 2 (epoch category) x 3 (condition) = 216 

regressors. FIR is believed to be the optimal GLM for removing stimulus-evoked response 

because it does not assume the shape of the hemodynamic response function (Cole et al., 2019; 

Norman-Haignere et al., 2012). The residual timeseries data are referred to as the residual 

activity and used for computing background functional connectivity for all subsequent analyses.  

Full Correlation Matrix Analysis on Residual Activity 

We utilized full correlation matrix analysis (FCMA) as implemented in the Brain 

Imaging Analysis Kit (BrainIAK; version 0.11; http://brainiak.org) to conduct an unbiased, 

whole-brain voxel-wise FC analysis that systematically considers all pairwise correlations in the 

brain to explore the differences in connectivity configurations between perception and retrieval 

states. All FCMA jobs were executed on Talapas, the HPC cluster at University of Oregon 

(https://racs.uoregon.edu/talapas). Each FCMA inner loop job was spread across 4 nodes, with 

each node supporting 28 threads and a job took around 4 hours to complete. Each node was 

http://brainiak.org/


 

40 
 

 

equipped with two Intel E5-2690v4 processors, with 128 GB of memory. FCMA took in the 

residual activity and computed a full correlation matrix (i.e., whole-brain voxel-wise correlation 

matrix; 92745 voxels x 92745 voxels) for each task epoch. Therefore, for each subject, 8 (epoch) 

x 2 (run) = 16 full correlation matrices were computed per task condition (i.e., Perceive, Retrieve 

and Scramble; Figure 2.1 c-e). Using these full correlation matrices, FCMA aimed to (𝑖) 

examine whether perception (Perceive and Scramble) versus retrieval (Retrieve) states can be 

successfully decoded from background connectivity patterns, and (𝑖𝑖) identify the connectivity 

configuration that characterizes each cognitive task state. Notably, the whole-brain correlation 

matrix is not easily interpretable by humans given its high dimensionality, and FCMA solves this 

problem by identifying of the most important/diagnostic regions of the brain involved in 

discriminating cognitive states (Figure 2.1F). Specifically, FCMA implements a nested leave-

one-subject-out cross-validation (LOOCV) framework: the outer loop contains 23 training 

subjects (23 x 48 epochs/subject = 1104 epochs) and 1 left-out test subject (1 x 48 epochs/subject 

= 48 epochs) for each outer-loop iteration; and the inner-loop uses 22 training subjects (22 x 48 

epochs/subject = 1056 epochs) and 1 left-out test subject (1 x 48 epochs/subject = 48 epochs) 

within the outer training set for each inner-loop iteration. Importantly, the inner-loop intends to 

select the top k most useful voxels (based on their connectivity patterns) from the training data 

(Figure S2.1) and the outer loop aims to train classifiers on connectivity patterns of the selected 

voxels and test their ability to predict left-out data (Figure 2.1G, H). Note that we also 

performed parcel-level analysis to demonstrate the sensitivity advantage of our more fine-

grained approach. We utilized the MNI version of the Schaefer parcellation scheme 

(https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Schaef

er2018_LocalGlobal/Parcellations/MNI; Schaefer et al., 2018), and performed analyses on 

https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Schaefer2018_LocalGlobal/Parcellations/MNI
https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Schaefer2018_LocalGlobal/Parcellations/MNI
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parcellations of different granularity (400 and 1000 parcels), which yielded comparable patterns 

of results as one another.  

For each iteration of the outer loop, the inner-loop worked with the training data from 23 

subjects (N-1 subjects) and performed a separate, nested LOOCV. Specifically, the inner-loop 

tested the accuracy of using each voxel’s seed maps (i.e., how much the voxel is connected to all 

other voxels in the brain) to differentiate perception (i.e., Perceive and Scramble) from retrieval 

(i.e., Retrieve) state (Figure S2.1). Each voxel would get an accuracy score for separating 

Retrieve and Perceive FC patterns, and another score for separating Retrieve and Scramble FC 

patterns. The minimum score of the two was assigned to the voxel and all assigned scores were 

averaged across the 23 inner-loop LOOCV iterations (i.e., training using 22 subjects and testing 

on a left out subject). The minimum score was used to make sure one of the two comparisons did 

not drive the overall effect and thus voxel selection prioritized discovery of regions which were 

sensitive to both comparisons. For example, a voxel’s seed map might be able to separate 

Retrieve from Scramble well by picking up the visual content information (i.e., scramble vs. 

intact), but not separate Retrieve from Perceive well when the visual content difference was 

absent. Computing the minimum accuracy scores allowed us to measure how well more 

comprehensively each voxel’s seed map encoded cognitive task state differences.  

The resulting scores indicated the ability of each voxel to differentiate perception from 

retrieval states independent of the test data (i.e., the left out subject in the outer loop). Based on 

these scores, masks of the top k most useful voxels were created from each inner-loop and the 

whole-brain full correlation matrices were reduced to k x k correlation matrices. The current 

study tested all results with k = 100, 1000, 3000, 5000, 7000, 10000 and 15000 voxels, and 

subsequently focused on results using k = 3000. this was done for two reasons. First, model 
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performances dramatically improved as the voxel masks were enlarged from k = 100 to k = 3000. 

However, model performance seemed to plateau when the top 3000 voxels were selected. 

Second, our information mapping pipeline (See Methods: Information Mapping) identified a 

shared mask that included about 3500 voxels. The results from k = 3000 therefore provides the 

most direct comparison and is the most representative for subsequent analyses. Using these k x k 

connectivity matrices, the FCMA outer-loop trained 3 classifiers (one for each pair of task 

conditions, e.g., Perceive vs. Retrieve) and tested the model performance using the left-out 

testing data.  

Regular Cross-Validation and Generalization Tests 

Classifiers built during FCMA were first trained and tested on the same task condition 

comparison (regular cross-validation). To quantify and compare model performance for each 

task comparison, we computed the area under the receiver operating characteristic curve (AUC) 

for each classifier. One way ANOVA was used to compare the AUCs for the three classifiers. 

The goals of the regular cross-validation tests were to examine (𝑖) whether task conditions could 

be successfully decoded from background connectivity patterns and (𝑖𝑖) whether task condition 

comparisons that involve cognitive task state differences (e.g., Retrieve vs. Perceive) could be 

decoded with higher accuracies relative to the comparison that did not involve such differences 

(e.g., Scramble vs. Perceive).  

During the generalization test, a classifier was trained on one task condition comparison 

(e.g., Perceive vs. Retrieve) but tested on a different comparison (e.g., Perceive vs. Scramble). 

The generalization test can be conducted between each pair of task condition comparisons; we 

argue that the bidirectionally averaged generalization AUCs should indicate the classifiers’ 

sensitivity to a certain dimension of task differences (Figure 2.2D). For example, both the 
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Retrieve vs. Perceive and Retrieve vs. Scramble comparisons involve cognitive task state 

differences. As a result, high bidirectionally averaged AUC scores across classifiers trained on 

Retrieve vs. Perceive and tested on Retrieve vs. Scramble and vice versa would indicate that the 

classifiers were indeed trained to pick up on cognitive task state information. On the other hand, 

high bidirectionally averaged AUC score across Retrieve vs. Perceive and Scramble vs. Perceive 

comparisons would suggest that the classifiers were trained to pick up on task difficulty (as 

reflected by decreased reaction times and increased accuracy in the Perceive condition compared 

to the others) differences. Likewise, high bidirectionally averaged AUC scores across Scramble 

vs. Perceive and Scramble vs. Retrieve comparisons would suggest that the classifiers were 

trained to detect scrambled versus intact visual features. Thus, the averaged bidirectional 

generalization accuracies served to measure the degree to which differences in cognitive task 

states, task accuracies, and visual content drove classifier performance. The primary goal of the 

generalization test, then, was to examine whether classifiers were able to preferentially detect 

connectivity patterns underlying perception versus retrieval task state differences. 

Multivoxel Pattern Classification Analyses  

We trained activity pattern-based classifiers to test 1) whether FCMA classifier 

performances were driven by any coactivation confounds left in the residual activity and 2) 

whether simple MVPA and background FC patterns rely on the same type of cognitive 

processes. The evoked activity for each voxel was calculated as the average across the 24 TRs 

thought to capture the peak evoked BOLD response (shifted 4s to account for hemodynamic 

delay), resulting in a single value for each voxel per epoch. As such, the number of features used 

for MVPA classification was equal to the number of voxels in the brain mask. Per the first goal, 

using the k voxel masks generated by FCMA inner-loop (See section: Full Correlation Matrix 
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Analysis on Residual Activity), we trained pattern classifiers using residual activity to perform 

the regular cross-validation tests (Figure S2.2). Per the second goal, with each set of k voxel 

masks, we trained pattern classifiers using stimulus-evoked activity to perform the regular cross-

validation test (Figure 2.3B middle). Pattern classification analyses were performed using a 

support vector classifier (C = 1) implemented in the Scikit-learn module in Python (Pedregosa et 

al., 2011).  

Information Mapping 

Due to the leave-one-out cross-validation scheme, each fold of the outer-loop produced 

non-identical sets of top voxels. To obtain a common mask, we combined the FCMA inner-loop 

with non-parametric permutation tests to generate a group-level mask that included the top 

voxels differentiating perception from retrieval states better than chance. We obtained this 

group-level mask in three steps. First, using a LOOCV scheme across all 24 subjects, we 

averaged the classification accuracy composite score (i.e., the minimum of the accuracy scores 

for separating Retrieve vs. Perceive and Retrieve vs. Scramble FC patterns) for each voxel 

(Figure S2.1) and used this as the “observed” score for each voxel. Second, we shuffled the 

labels of all three task conditions for each subject and repeated the outer-loop training-testing 

pipeline using the shuffled labels for 100 iterations. As a result, we generated a null distribution 

of the classification accuracy composite scores for each voxel. Using the mean and standard 

deviation of the classification accuracy score null distribution for each voxel, we z-transformed 

the observed feature selection score computed above (i.e., the group-averaged composite 

accuracy score). We chose a relatively stringent voxel-wise primary threshold (P < 0.0001) to 

reduce the likelihood of false positives and to avoid finding large voxel clusters that span the 

brain (Woo et al., 2014). Voxels that passed the threshold were divided into clusters using 
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3dClusterize and the corresponding cluster-extent threshold was computed using 3dClustSim 

with AFNI (whole-volume alpha-values: -athr < 0.01). In total, 62 clusters passed the cluster-

extent threshold, with size ranging from 620 to 2 voxels. In the last phase of the information 

mapping, we selected clusters according to their size and whether they improved model 

performance when combined with all larger clusters. Specifically, we began with the largest 

cluster (620 voxels), then we sequentially added voxels from the next largest cluster to our mask 

and used the FCMA outer loop to test how well this set of voxels differentiated perception from 

retrieval states. In other words, we iteratively ran a set of FCMA outer loop tests, and measured 

the change in classification performance as the mask accumulated each new cluster of voxels 

(Figure S2.3A). The rationale for performing cluster selection is to identify the smallest number 

of “sufficient” nodes whose network dynamics capture the differences between perception and 

retrieval states and ultimately reduce the full correlation matrix of the brain to a tractable set of 

representative ROIs.  

Community Detection 

We applied community detection algorithms on the clusters identified by information 

mapping, aiming to understand the network level differences between perception and retrieval 

states. Specifically, we averaged across all voxels within each cluster to obtain cluster-level time 

series data for each epoch. Cluster-level background functional connectivity (FC) matrices were 

then computed for each epoch for every subject, and then averaged within each task condition, 

resulting in one group-averaged connectivity matrix for the Perceive, Scramble, and Retrieve 

conditions respectively. Community detection on weighted graphs (i.e., the connectivity matrices 

calculated above) was performed using the Louvain algorithm via NetworkX in Python. 

Following the approach used in prior work (Barnett et al., 2021; Ji et al., 2019), we ran the 



 

46 
 

 

algorithm 1000 times on the weighted graphs to tune the resolution parameter in order to 

maximize modularity, which in turn captures how well a network can be subdivided into non-

overlapping groups (Rubinov & Sporns, 2011). The tuned resolution parameters (gamma) were 

1.10, 1.13, 1.19, for Perceive, Retrieve and Scramble task conditions, respectively. To visualize 

intra- and intramodular connectivity, we used the Fruchterman-Reingold force-directed 

projection implemented in NetworkX to project the graphs onto 2D spaces.  

Within- and Between-Communities Connectivity 

To further understand network-level differences within and between the communities 

identified using the steps above (DMN, Control, and RSC; see Results), we computed a cluster-

wise subject-level FC matrix for each task condition. We averaged the FC matrices for Perceive 

and Scramble conditions to create composite matrices that reflect FC dynamics underlying the 

perception state. To examine the coupling pattern across communities, we averaged across the 

connectivity strength between clusters (nodes) within the same functional community using both 

perception and retrieval state FC matrices. A paired sample t-test was used to examine whether 

DMN-Control connectivity strength differed between perception and retrieval states; and a two-

way repeated measures ANOVA was then used to examine whether RSC nodes changed their 

coupling pattern with respect to the DMN and Control network nodes. To examine within-

community connectivity strength, we averaged the connectivity strength between all nodes 

within the DMN, Control, and RSC regions for both perception and retrieval states. Similarly, a 

two-way repeated measures ANOVA was used to assess whether a functional community was 

biased toward a certain cognitive task state. All statistical analyses were performed using 

Pingouin 0.5.1 with Python3. 

Pattern Similarity Analyses on Stimulus-Evoked Activity 
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The goal of this set of analyses was to identify any potential differences between the 

three functional communities in their roles in performing cognitive tasks. We focused on three 

different cognitive aspects and tested the degree to which each functional community was 

sensitive to (𝑖) the current visual category (i.e., face vs. scene), (𝑖𝑖) the current behavioral task 

(i.e., gender vs. naturalness judgement), and/or (𝑖𝑖𝑖) the current cognitive state (i.e., perception 

or retrieval). To do that, we performed pattern similarity analyses using both stimulus-evoked 

activity patterns and background connectivity patterns.  

To obtain the stimulus-evoked activity patterns, we extracted the 24 task TRs for each 

epoch (after being shifted 4 s to account for hemodynamic delay) from the post-confound 

regression time-series. These stimulus-evoked estimates were then averaged along the time 

dimension and reshaped into a vector for each cluster (length of the vector is the number of 

voxels in that cluster). Background connectivity patterns for each cluster were computed as the 

correlation over time between the cluster and the other 15 clusters, reshaped into a 15-

dimensional vector for each ROI (Figure 2.6B). To compute pattern similarity measures, the 

Fisher’s Z transformed correlations between each pair of vectors from different functional runs 

were calculated (Kriegeskorte et al., 2009; Figure 2.6A). Sensitivity was quantified as the 

difference between within-state epoch pattern similarity and between-state epoch pattern 

similarity. For example, when examining sensitivities for the current task judgement, pattern 

similarities were computed among all epochs with the same judgement (i.e., gender to gender 

and naturalness to naturalness) and compared to those with different judgments (i.e., gender to 

naturalness). Sensitivity was calculated by using the average within-state pattern similarity score 

minus the average between-states pattern similarity score. Thus, a significantly positive 

sensitivity index would suggest that the given ROI produced relatively distinct activity and/or 
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connectivity patterns for the two aspects of the task (state, content, or judgement). We averaged 

the sensitivity scores across ROIs within the same functional communities. A one-way ANOVA 

was used to compare sensitivity scores of each cognitive process across the three functional 

communities.  

Results 

Behavioral Results 

We designed an fMRI task that required subjects to perform judgments on information 

that was either available in the perceptual environment (perception) or had to be retrieved from 

memory (retrieval), in both cases matched in terms of visual content and task accuracy (Figure 

2.1A). Overall, subjects demonstrated greater accuracy in the Perceive compared to Retrieve 

condition, but comparable accuracy between Scramble and Retrieve conditions (Figure 2.1B). 

 

Figure 2.1. Task paradigm and analysis flowchart.  
(A) Behavioral training and in-scanner tasks. Subjects formed mental associations between face 
and scene images outside of the scanner and then made judgments on either perceptual or 
mnemonic information in the scanner. (B) In-scanner behavioral performance, with the orange bar 
indicating the sample mean and asterisks indicating p < 0.001. (C) Each condition had 16 epochs 
per subject, with each epoch lasting 40 s. (D) The residual activity for each task epoch was 
computed by regressing out the stimulus-evoked component using a finite impulse response 
general linear model. (E) Whole-brain voxel-wise background FC matrices were computed for 
each task epoch. These matrices were n-by-n shape, where n is the total number of voxels in the 
brain (n = 92,745). (F) Background FC matrices of FCMA-selected voxels. FCMA was 
implemented to select a certain number of voxels whose connectivity patterns were most accurate 
for separating perception and retrieval states based on two-way classifications of epochs from 
different conditions. The details of the feature selection process are shown in Figure S2.1. In 
essence, FCMA reduced the whole-brain correlation matrix to a k-by-k correlation matrix for each 
epoch, where k is the number of voxels selected by FCMA. The current study tested multiple 
values of k, ranging from 100 to 15,000. (G) Model training. Using a cross-validation framework, 
SVM classifiers with precomputed linear kernel were trained to separate all task condition 
comparisons. (H) Model testing. Trained models were tested using the left-out subject for each 
fold. During the regular cross-validation test, the model was tested on the same task condition 
comparison as it was trained on. During the generalization test, the model was tested on a different 
task condition comparison than it was trained on. 
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Specifically, one-way (condition) repeated measures ANOVAs revealed a main effect of 

condition for both reaction time (F(2, 46) = 288.8, p < 0.001, 𝜂! = 0.97) and accuracy (F(2, 46) = 

91.21, p < 0.001, 𝜂! = 0.90). Although accuracy in the Perceive condition was significantly 

greater than that in the Retrieve condition (t(23) = 13.4, p < 0.001, 95% CI = [0.16, 0.22], Cohen’s 

d = 3.55), the Retrieve and Scramble conditions did not significantly differ, serving as a useful 

point of comparison (t(23) = -1.65, p = 0.11, 95% CI = [-0.07, 0.01], Cohen’s d = 0.45). The 

process (see Methods) used to match accuracy across Retrieve and Scramble conditions was not 

designed to match reaction time between Retrieve and Scramble conditions, which significantly 

differed from one another. Specifically, subjects differed across the three conditions in terms of 

reaction time (F(2,46) = 230.9, p < 0.001, 𝜂2 = 0.91) and had a significantly slower reaction time in 

the Retrieve condition compared to Perceive and Scramble conditions and slower reaction times 

for Scramble compared to Perceive (Retrieve vs. Perceive: t(23) = 18.8, p < 0.001, 95% CI = 

[0.39, 0.0.49], Cohen’s d = 3.63; Retrieve vs. Scramble: t(23) = 6.94, p < 0.001, 95% CI = [0.10, 

0.19], Cohen’s d = 1.11; Scramble vs. Perceive: t(23) = 16.44, p < 0.001, 95% CI = [0.26, 0.33], 

Cohen’s d = 2.37). 

Perception and Retrieval Involve Distinct Background Connectivity Patterns 

We first examined whether perception and retrieval states involve different “state-

related” whole-brain FC patterns. Using background connectivity analysis, voxel-wise whole-

brain correlation matrix was computed for each epoch (Figure 2.1E; for details see Methods: 

Stimulus-Evoked and Residual Activity). We then applied full correlation matrix analysis 

(FCMA) to test whether a trained support vector machine (SVM) could successfully separate 

perception epochs (Perceive and Scramble) from retrieval epochs (Retrieve; Figure 2.1G-H). To 

evaluate binary classifier performance within the top-performing voxels, we computed the 
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receiver operating characteristic (ROC) curves and area under the ROC curve (AUC) for each 

classifier per subject, with larger AUC indicating better model performance (Hanley & McNeil, 

1982). We started by having FCMA select k = 100 best performed voxels to train the classifier 

and gradually increased k until classifier performance asymptoted (for details see Methods: Full 

Correlation Matrix Analysis on Residual Activity). As seen in Figure 2.2A, accuracy plateaued 

when the mask reached roughly 3,000 voxels, and the overall pattern of results across conditions 

did not dramatically change as a function of the mask size used. Accordingly, we performed 

follow-up analyses on the top k = 3,000 voxel masks. These analyses suggested that classifiers 

trained on background FC patterns successfully differentiated epochs of perception from 

retrieval states (Perceive vs. Retrieve: MAUC = 0.87 ± 0.06, t(23) = 28.62, p < .001, 95% CI = 

[0.84, 0.89], Cohen’s d = 5.84; Retrieve vs. Scramble: MAUC = 0.83 ± 0.08; t(23) 19.39, p < .001, 

95% CI = [0.79, 0.86], Cohen’s d = 3.96; one-sample t-test against chance-level performance of 

�̅� = 0.5; see also Figure S2.2A for results in terms of proportion correct). Control analyses 

showed that state-related differences were selectively captured by background FC measures and 

not by left-over differences in the stimuli-evoked component of the signal. In particular, pattern 

analysis using residual activity patterns (i.e., simple MVPA on residual timeseries) in the same 

voxel masks failed to discriminate any task condition comparisons (all model performances ≈ 

50% correct; Figure S2.2B). 

One potential concern with the connectivity results above is that the above-chance 

classification performance was not strictly related to differences in perception versus retrieval 

states per se and might reflect the contribution of several potential confounding factors. For 

example, in addition to capturing differences in perception and retrieval, the Perceive vs. 

Retrieve comparison also varied in terms of task difficulty (as measured by accuracy and reaction 



 

52 
 

 

time) and the Scramble vs. Retrieve comparison also varied in terms of sensory input (i.e., 

partially scrambled vs. intact stimuli). To ensure that the variations in background FC patterns 

(among FCMA-selected voxels) were most strongly induced by state-related differences, we 

performed two extra sets of analyses to rule out these potential confounds. First, we tested the 

background FC pattern separability of Perceive vs. Scramble conditions—a task condition 

comparison that differed in terms of both task difficulty and visual content but not in 

perception/retrieval cognitive states. If the background FC patterns contain mostly state-related 

information, having equated perception state for both Perceive and Scramble should worsen 

classifier performance. Consistent with this hypothesis, AUC significantly differed between the 

non-state-related and state-related background FC classifiers (F(2,46) = 20.30, p < 0.001, 𝜂! = 

0.47), with post-hoc tests revealing that Perceive-Scramble AUC was significantly lower than 

Retrieve-Perceive (t(23) = -5.62, p < 0.001, 95% CI = [-0.19, -0.09], Cohen’s d = 1.45; Figure 

2.2A) and Retrieve-Scramble (t(23) = -4.10, p < 0.001, 95% CI = [-0.15, -0.05], Cohen’s d = 

0.97). No significant difference was observed in the comparison of Retrieve-Perceive to 

Retrieve-Scramble, although there was a trend for higher AUC for Retrieve-Perceive (t(23) = 1.82, 

p = 0.08, 95% CI = [-0.01, 0.08], Cohen’s d = 0.52). 

In the second set of analyses, we leveraged classification generalization to assess the 

degree to which background FC patterns capture differences within each of three dimensions: (1) 

cognitive state (i.e., perception vs. retrieval); (2) task difficulty; and (3) visual content (for details 

see Methods: Regular Cross-Validation and Generalization Tests). This was operationalized as 

how well a classifier trained on one pair of conditions generalized to another pair of conditions 

that differed on the same putative dimension (Figure 2.1H). We predicted that generalizability 

as measured by averaged bidirectional AUC should be greatest for task condition comparisons 
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that involve state-related differences (i.e., Perceive vs. Retrieve to/from Scramble vs. Retrieve; 

Figure 2.2B) compared to task difficulty or visual content. Indeed, we found that background FC 

classifiers differed in their sensitivities to the three dimensions (cognitive task state: 𝑀AUC = 0.78 

± 0.07; task difficulty: 𝑀AUC = 0.68 ± 0.07; visual content: 𝑀AUC = 0.53	± 0.11; F(2,69) = 52.80, 

p < 0.001, 𝜂! = 0.60, Figure 2.2C). Follow-up t-tests suggested that generalization of 

background FC classification was highest when state-related differences were aligned compared 

to other dimensions of generalization (ts > 5.78, ps < 0.001). Together, these two analyses 

provide additional support to the finding above that the pattern of background FC contains 

information about perception and retrieval states above and beyond other differences between 

conditions. 

Background Connectivity and Evoked Activity Patterns Capture Distinct Cognitive 

Processes 

Previous research has shown that stimulus-evoked, multi-voxel activity patterns reflect 

ongoing cognitive processes and can be used to train classifiers for separating task conditions 

(Norman et al., 2006). How such measures relate to background FC is less well understood. 

Accordingly, we investigated whether patterns of stimulus-evoked activity reflect similar or 

distinct aspects of perception and retrieval states compared with patterns of background FC. 

Specifically, we trained MVPA classifiers on stimulus-evoked activity patterns for each pair of 

task conditions and compared the performance to classifiers trained using background FC 

patterns (Figure 2.3 left and middle; for details see Methods: Pattern Similarity Analyses on 

Stimulus-Evoked Activity). Stimulus-evoked activity patterns led to reliable classification of task 

conditions (Retrieve vs. Perceive: Mauc = 0.86 ± 0.06; Scramble vs. Perceive: Mauc= 0.90 ± 0.12; 

Scramble vs. Retrieve: Mauc= 0.90 ± 0.12; ts > 37.62, ps < 0.001). Interestingly, however,  
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Figure 2.2. Classification of task conditions based on different features.  
A) Performance of background FC classifiers as a function of the number of voxels selected by 
FCMA. Area under the receiver operating characteristic curve (AUC) was computed for each 
leave-one-subject-out testing fold to examine the performance of the binary classifiers. The error 
bars indicate the standard error of the mean AUC across all subjects being tested. The results 
suggest that the top 3,000 voxels were able to differentiate task conditions as well as larger sets of 
voxels and so were used for follow-up analyses. B) Schematic diagram for measuring sensitivity 
to different aspects of cognitive processes using generalization tests. For example, given that both 
Retrieve vs. Scramble and Retrieve vs. Perceive comparisons involve state-related differences, 
success in classifying Retrieve vs. Perceive with the background FC classifier trained on Retrieve 
vs. Scramble (and vice versa) would provide strong evidence that the classifier is sensitive to state-
related differences. C) Sensitivity of background FC classifiers to three distinctions: cognitive 
state (i.e., perception vs. retrieval), visual content (i.e., scrambled vs. intact), and task difficulty 
(i.e., low vs. high accuracy). Sensitivity was quantified as the average AUC from classifiers trained 
on one set of conditions and tested on another set along the same task-related dimension 
(generalization test). Error bars indicate the standard error of the mean across all testing folds. 
Asterisks indicate p < 0.05.  
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activity-based classification results demonstrated systematically different pattern compared to 

those of background FC-based classification. Specifically, a two-way repeated measures 

ANOVA with comparisons (Retrieve vs. Perceive, Scramble vs. Perceive, Scramble vs. Retrieve) 

and neural measure (stimulus-evoked activity, background FC) revealed a main effect of neural 

measure (F(1,23) = 58.60, p < 0.001, 𝜂! = 0.72), highlighting the overall impact of using evoked-

responses for classification. There was also a main effect of comparison (F(2,46) = 16.19, p < 

0.001, 𝜂! = 0.41). Strikingly, the ANOVA also revealed differential sensitivity across 

comparisons as a function of neural measure (F(2,46) = 9.70, p < 0.001, 𝜂! = 0.30). Based on post-

hoc t-tests (see Figure 2.3), this interaction appeared to be driven by relatively greater 

classification performance for comparisons involving cognitive state differences (i.e., Retrieve 

vs. Perceive and Scramble vs. Retrieve) than those both involving perceptual decisions (i.e., 

Scramble vs Perceive), but only for background FC as the neural measure. Activity-based 

classification, on the other hand did not show a similar relationship. 

The above findings are suggestive that stimulus-evoked activity and background FC may 

capture distinct aspects of the underlying cognitive state. To test this hypothesis more directly, 

we trained hybrid classifiers that combined both stimulus-evoked activity and background FC. 

The decision confidences of the hybrid classifier were computed as the averaged decision 

function outputs from both FC and MVPA classifiers. The rationale is that the hybrid classifiers 

should achieve better performance than either classifier on its own if the two neural measures 

capture distinct state-related processes (Manning et al., 2018). In line with the above results, a 

two-way repeated measures ANOVA revealed a significant main effect of classifier types (i.e., 

FC vs. MVPA vs. hybrid; F(2,46) = 68.32, p < 0.001, 𝜂! = 0.75; Figure 2.3). Follow-up analyses 

showed that the average AUC of hybrid classifiers was significantly greater than background FC 
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classifiers (t(23) = 9.95, p < 0.001, 95% CI = [0.11, 0.17], Cohen’s d = 2.58) and evoked-activity 

MVPA classifiers (t(23) = 3.06, p = 0.006, 95% CI = [0.01, 0.04], Cohen’s d = 0.88). Together, 

these results suggest that evoked activity and background FC reflect distinct, possibly 

complementary, neural signatures of cognitive processes, with the latter displaying more relative 

sensitivity to state-related differences across retrieval and perception. 

 
Figure 2.3. Classification of task conditions based on different neural measures.  
Comparing performance of binary classifiers trained with different neural measures: background 
FC (left), evoked activity (middle), hybrid FC + activity (right). Each dot represents a subject. The 
error bars indicate the standard error of the mean AUC across all subjects being tested. 
 

Regions and Functional Communities Underlying Perception and Retrieval States 

The results so far suggest that background FC patterns of FCMA selected voxels capture 

differences between perception and retrieval states. However, the interpretation of these results 

in terms of brain regions is complicated by two key issues: 1) the top voxels were not necessarily 

identical across cross-validation folds and 2) the number of connections between voxels remains 

quite large. We sought to address each of these issues in turn. Per the first issue, because of 

leave-one-subject-out cross-validation, different sets of voxels were selected by FCMA for each 
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left-out testing subject/fold. Accordingly, to allow further characterization and interpretation of 

state-related background FC patterns, we combined the FCMA inner-loop (Figure S2.1) with 

permutation-based statistical inference tests to obtain a shared set of voxels across all testing 

folds (yielding roughly 3500 voxels) whose background FC patterns captured state-related 

differences (for details see Methods: Information Mapping). Per the second issue, even with a 

shared voxel mask, it may still be intractable to interpret FC patterns consisting of millions of 

connections (i.e.,	~8 × 10" unique connections among 3500 voxels). For this reason, we further 

reduced the dimensions of FC patterns using clustering. We first identified spatially contiguous 

clusters of voxels in the shared mask using a novel FCMA-then-clustering pipeline (see 

Methods and Figure S2.3). This process revealed 16 clusters of interests, whose cluster-level 

background FC patterns provided a parsimonious summary of the neural sources distinguishing 

between perception and retrieval states (Figure 2.4A; Table S2.1). 

Notably, in addition to its greater interpretability, this FCMA-then-clustering approach 

also produced superior classification accuracy to the use of a priori parcellation-based clusters 

(Feilong et al., 2021; Schaefer et al., 2018). That is, by repeating the analysis pipeline with 

predefined brain parcels (instead of fine-grained voxel-wise analysis), the 16 clusters derived 

from voxel-level analyses had significantly greater discrimination performance compared to the 

best performing 16 predefined parcels in the parcel-level analysis (F(1,23) = 96.71, p < 0.001, 𝜂! = 

0.81; Figure S2.3B right). This result held across different parcellation granularities (400 and 

1000 parcels; Schaefer et al., 2018). Moreover, cluster-level background FC patterns retained 

their preference for state-related vs. non-state-related differences (Figure S2.3; F(2,46) = 24.09, p 

< 0.001, 𝜂! = 0.23).  
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Although the analyses above inform which brain regions might be most involved in 

differentiating perception and retrieval cognitive states, they do not provide information about 

how the regions are differentially connected. Indeed, previous research has suggested that 

functionally coupled brain regions form large-scale functional communities (Yeo et al., 2011) 

and that a cluster may be associated with different functional communities across different 

cognitive states (Braun et al., 2015). With this in mind, we next examined the functional 

community structures of the 16 clusters of interest during each task condition (i.e., Perceive, 

Retrieve, and Scramble). Specifically, we applied the Louvain community detection algorithm 

(Blondel et al., 2008) to the group-averaged background FC matrices for each condition (see 

Methods: Community Detection for details). Interestingly, the community structures underlying 

all three task conditions were consistent in that the 16 clusters were consistently partitioned into 

3 functional communities (Figure 2.4A). The first functional community consisted of regions 

from the conventional default mode network (Buckner et al., 2008), including the bilateral 

inferior parietal lobule, precuneus, medial prefrontal cortex, posterior cingulate cortex, and the 

middle temporal gyrus, which hereafter we refer to as the DMN. The second functional 

community consisted of the bilateral prefrontal cortex, bilateral intraparietal sulcus, superior 

frontal gyrus, and temporal gyrus, most of which are part of the frontoparietal control network 

(Marek & Dosenbach, 2018); we refer to this as the Control network1. The last community 

consisted of bilateral retrosplenial cortices (RSC; Gilmore et al., 2016).  

 
1 Note that some of the clusters (right intraparietal sulcus and the inferior temporal gyrus) had 
peak coordinates in the dorsal-attention network (according to Schaefer et al., 2018). Given that 
the remainder of the clusters (5 out of 7 clusters) fell into the Control Network we use that as the 
shorthand label. 
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As an initial step to characterize the contribution of these different functional 

communities, we examined their evoked activation profiles during each task condition, using the 

averaged beta values estimated by an FIR model (Figure S2.4; see Method: Stimulus-Evoked 

and Residual Activity). Consistent with network-level activity reported in past work, we found 

that DMN clusters deactivated (task-negative) during both perception and retrieval states, 

whereas Control network clusters activated (task-positive; Kim et al., 2015). Interestingly, only 

the activation profile of RSC clusters differed between perception and retrieval states: task-

positive during the retrieval state but task-negative during the two conditions in the perception 

state.  

 
Figure 2.4. The regions of interest identified by the pipeline and their network structure.  
A) The 16 clusters of interest identified through the information mapping pipeline, partitioned 
into 3 functional communities. The color indicates the functional community assignment of each 
cluster. B) Force-directed graphs generated using the Fruchterman-Reingold algorithm 
implemented in NetworkX (V2.7.1; Fruchterman & Reingold, 1991). The projected physical 
distance in the graph indicates the degree to which nodes are being functionally connected. The 
color indicates the functional community allegiance of each cluster. Solid black lines represent 
manual delineations of the coupling pattern of RSC nodes.  
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Within- and Between-Community Background FC Discriminates Perception from 

Retrieval States  

Our FCMA-then-clustering pipeline successfully identified a tractable number of 

connections among selected brain clusters that robustly differentiated perception from retrieval 

states. In the next set of analyses, we aimed to characterize the nature of the difference in 

background FC by comparing within- and between-community FC strength across the two 

cognitive states. For each subject, we averaged across background FC matrices within each 

cognitive state (i.e., perception and retrieval). FC matrices from Perceive and Scramble 

conditions were thus averaged together in order to obtain a single measure of background FC for 

perception state for each subject. Note that we expected to observe background FC differences 

because the clusters were selected because of their sensitivity to state-related changes; the goal of 

this analysis is to interpret this difference. First, we sought to visualize the within- and between-

community structure using force-directed plots which allow a concise representation of 

connectivity between all the regions. As can be seen in Figure 2.4B, connectivity between 

Control and DMN communities appeared to be stable across conditions, RSC was more closely 

connected with the Control network during retrieval (Retrieve condition) and with the DMN 

during perception (Perceive and Scramble conditions).  

Next, in order to quantify within-community dynamics, we examined background FC for 

all cluster pairs within the same functional community during perception and retrieval states. 

Figure 2.5A shows the group-level differences in cluster-to-cluster background FC strength 

across the two states (perception minus retrieval). Visual inspection revealed that most intra-

Control network connections (17 out of 21 connections) were stronger during the perception 

state, whereas the majority of intra-DMN connections (17 out of 21 connections) were stronger 
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during the retrieval state. Quantitively, a repeated-measures ANOVA with factors of cognitive 

state (perception vs. retrieval state) and functional community (DMN, Control network, and 

RSC) revealed a significant interaction (F(2, 46) = 19.05, p < 0.001, 𝜂! = 0.45; Figure 2.5B). This 

interaction was driven by the fact that the averaged background FC strength among RSC clusters 

(t(23) = 2.94, p = 0.007, 95% CI = [0.02, 0.1], Cohen’s d = 0.49 ) and cluster pairs within the 

Control network (t(23) = 2.26, p = 0.03, 95% CI = [0.01, 0.06], Cohen’s d = 0.42) was stronger 

during perception compared to retrieval state (Figure 2.5A left), whereas it was numerically 

stronger among clusters in DMN during retrieval than perception state (t(23) = 1.87, p = 0.07, 

95% CI = [-0.06, 0.01], Cohen’s d = 0.32; Figure 2.5A right). Additionally, the ANOVA 

revealed a significant main effect of functional community (F(2, 46) = 228.56, p < 0.001, 𝜂! = 

0.91). Clusters within the Control network had overall stronger connectivity density compared to 

those within in the DMN (t(23) = 5.54, p < 0.001, 95% CI = [0.05, 0.1], Cohen’s d = 0.93). Note 

that this result holds even after accounting for the anatomical distances between clusters (Figure 

S2.5). Greater coupling between RSC regions may have possibly been driven by the fact that the 

two RSC clusters were close to each other anatomically. Lastly, the ANOVA did not show a 

significant main effect of cognitive state (F(1, 23) = 2.06, p = 0.16, 𝜂! = 0.08), suggesting that the 

overall background FC densities were comparable across perception and retrieval.  

Finally, to better understand across network connectivity, we examined background FC 

for cluster pairs in different functional communities across perception and retrieval states. 

Specifically, as a function of the two states, we assessed each set of between-network 

connections separately, both in an individual, cluster-wise manner as well as averaged across all 

between-network connections. Based on the relative stability across conditions of Control/DMN 

communities compared to RSC seen in Figure 2.4B, we will present the results from 
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Control/DMN connectivity and then connectivity with the RSC in turn. First, in terms of the 

Control/DMN communities, there were only hints of condition-dependent connectivity changes 

(Figure 2.5C). For example, the right precentral gyrus (rPreCG; Control) tended to couple with 

DMN clusters more strongly during the retrieval state, whereas the superior frontal gyrus (SFG; 

Control) had stronger coupling with DMN clusters during the perception state (Figure 2.5D). 

However, in aggregate, the averaged background FC strength of cluster pairs in Control network 

and DMN were comparable across the two cognitive states (t(23) = 1.38, p = 0.18, 95% CI = [-0.1, 

-0.02], Cohen’s d = 0.39). In contrast, RSC shifted from coupling with the Control network to 

DMN, as cognitive states shifted from retrieval to perception respectively (Figure 2.5E).  

 

Figure 2.5. Connectivity configurations during perception and retrieval cognitive states.  
A) Group-level differences in background FC strength between each pair of clusters (within the 
same functional community) across perception and retrieval. The color of each cell represents the 
sign and magnitude of the t values, with a positive value indicating stronger coupling during 
perception state and a negative value indicating stronger coupling during retrieval state. Asterisks 
indicate p < 0.05 after FDR correction. Note that we did not depict the background FC matrix for 
the retrosplenial cortex (RSC) due to the small number of clusters. The background FC strength 
between the two RSC regions is 0.88 during the perception state and 0.82 during the retrieval 
state. B) Background FC averaged across all pairwise connections within the same functional 
community across perception and retrieval states. The error bars indicate the standard error of the 
mean across all subjects. Asterisks indicate p<0.05 C) Group-level differences in background FC 
between pairs of clusters in different functional communities (DMN and Control network) across 
perception and retrieval states. The color of each cell represents the sign and magnitude of the t 
values and asterisks indicate p < 0.05 after FDR correction. D) Background FC patterns of superior 
frontal gyrus (SFG) and right precentral gyrus (PreCG) during perception and retrieval states. 
Asterisks imply p < 0.05 after FDR correction. E) Group-level differences in background FC 
between RSC clusters and DMN/Control clusters across perception and retrieval states. The color 
of each line represents the sign of the t values, with purple indicating stronger coupling during the 
perception state and green suggesting stronger coupling during the retrieval state. Solid lines 
indicate p < 0.05 after FDR correction. F) Background FC strength averaged across all pairwise 
connections between RSC clusters and DMN/Control clusters. The error bars indicate the standard 
error of the mean across all subjects. Asterisks indicate p<0.05. ITG: inferior temporal gyrus; IPS: 
Intraparietal sulcus; PreCG: precentral gyrus; IFS: inferior frontal sulcus; SFG: superior frontal 
gyrus; RSC: retrosplenial cortex; mPFC: medial prefrontal cortex; IPL: inferior parietal lobule; 
PCUN: precuneus; MTG: middle temporal gyrus; PCC: posterior cingulate cortex.  
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A repeated-measures ANOVA with factors of cognitive state (perception and retrieval) and 

functional community pair (i.e., the averaged connectivity measure between RSC nodes and 

regions in either Control or DMN regions) revealed a significant interaction (F(1, 23) = 100.94, p < 

0.0001, 𝜂! = 0.81; Figure 2.5F). Specifically, RSC nodes had stronger averaged background 

connectivity with DMN nodes during the perception state (t(23) = 4.83, p < 0.001, 95% CI = 

[0.05, 0.12], Cohen’s d = 0.76), but stronger background connectivity with Control nodes during 

the retrieval state. (t(23) = 2.35, p = 0.03, 95% CI = [0.01, 0.09], Cohen’s d = 0.43). The ANOVA 
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did not show a main effect of cognitive state (F(1, 23) 1.22, p = 0.28, 𝜂! = 0.05) or network pair 

(F(1, 23) = 0.01, p = 0.91, 𝜂! < 0.01).  

Retrosplenial Cortex Plays Unique Role across Perception and Retrieval States 

Although until now we have focused on differences between conditions related to 

cognitive state (i.e., perception vs. retrieval), performing the task required tracking two other 

forms of information: (1) the visual category2 currently being presented (i.e., face vs. scene) and 

(2) the behavioral judgement to perform (i.e., male/female vs. natural/manmade). Here, we 

performed pattern similarity analyses to assess how strongly these task components were 

represented in each cluster and functional community (Figure 2.6A). Further, given the 

divergence in sensitivity between background FC and evoked activity patterns reported above, 

we performed these analyses using both neural metrics. For each cluster, we calculated pattern 

similarity between pairs of epochs (Figure 2.6B) and compared within-class similarity (e.g., for 

visual category: face-face/scene-scene) and between-class similarity (e.g., face-scene) to index 

the cluster’s sensitivity to a given component. We then averaged across clusters within each 

functional community, yielding 3 sensitivity indices for each functional community per subject.  

Pattern similarity measures of background FC suggested that clusters in different 

functional communities had different levels of sensitivity to cognitive state (Figure 2.6C; F(2,46) 

= 6.32, p = 0.003, 𝜂! = 0.22). In particular, RSC sensitivity was significantly greater than the 

Control network (t(23) = 2.98, p = 0.006, 95% CI = [0.01, 0.05], Cohen’s d = 0.78) and 

numerically greater than the DMN (t(23) = 1.95, p = 0.06, 95% CI = [-0.01, 0.04], Cohen’s d = 

 
2 Here we mean “visual category” to refer to the underlying stimuli used regardless of how 
scrambled they were. Although images were slightly scrambled, they still afforded well-off-
chance M/F N/M judgements, making them dissimilar to traditional completely “scrambled” 
stimuli. Notably, calculating visual-category sensitivity using only non-scrambled stimuli does 
not change the results. 
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0.49). One-way ANOVAs did not reveal significant differences across functional communities in 

their background FC-based sensitivity to visual category and behavioral task (ps > 0.43). 

Although clusters were initially selected because their background FC patterns differentiated 

between cognitive states, perhaps leading to biased sensitivity estimates, this bias should not 

necessarily extend to differences in sensitivity between communities. Next, motivated by the 

differences between BG connectivity and evoked responses found above, we characterized 

pattern similarity using stimulus-evoked activity as well. Pattern similarity of evoked activity 

indicated that clusters in different functional communities also showed different level of 

sensitivity to visual category (Figure 2.6D; F(2,46) = 48.35, p < 0.001, 𝜂! = 0.68) and behavioral 

judgment (Figure 2.6E; F(2,46) = 26.92, p < 0.001, 𝜂! = 0.54). Further, the evoked activity 

patterns of RSC were significantly more sensitive to these two components than the DMN 

(visual-category: t(23) = 9.02, p < 0.001, 95% CI = [0.12, 0.19], Cohen’s d = 2.26; behavioral-

judgment: t(23)= 5.70, p < 0.001, 95% CI = [0.04, 0.08], Cohen’s d = 1.38) and the Control 

network (visual-category: t(23)= 4.52, p < 0.001, 95% CI = [0.05, 0.13], Cohen’s d = 1.21; 

behavioral-judgment: t(23)= 5.00, p < 0.001, 95% CI = [0.03, 0.07], Cohen’s d = 1.25). One-way 

ANOVAs did not reveal significant differences across functional communities in their evoked 

activity-based sensitivity to cognitive states (ps > 0.25). Across metrics, these pattern similarity 

results highlight how RSC might be involved in many critical aspects of retrieving versus 

perceiving information (cognitive state, the visual content, and the behavioral judgment). 

However, interestingly, depending on whether the patterns are defined based on connectivity or 

activity, RSC can differentially capture the cognitive states of retrieval and perception relative to 

other regions. 
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Figure 2.6. Pattern similarity analyses using both background FC patterns and stimulus-
evoked activity patterns.  
A) Diagram for computing pattern similarity measures between pairs of epochs for each of the 
three task components (cognitive state, visual category, behavioral task). Darker colors indicate 
epochs of the same class (e.g., visual categories being face-face) whereas light colors indicate 
epochs of different classes (e.g., visual categories being face-scene). B) Diagram for computing 
pattern similarity measures with both FC and activity patterns. When computing activity pattern 
similarity measures, each epoch is represented by a n-dimensional vector, where n is the total 
number of voxels in the respective cluster. When computing connectivity pattern similarity, each 
epoch is represented by a 15-dimensional vector, representing the background FC measure 
between this cluster and the other 15 clusters. C-E) Sensitivity indices of each functional 
community with regard to each of the three task component. Sensitivity indices were quantified as 
the average difference of within- vs. between-class epoch similarity. Each individual dot indicates 
the average across all subjects for a cluster and the error bars indicate the standard error of the 
mean across all subjects. Each bar represents the average across all subjects for a functional 
community and the error bars indicate the standard error of the mean across all clusters within the 
respective functional community. Asterisks indicate p < 0.05.  
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Discussion 

The goal of the current study was to characterize and differentiate perception versus 

retrieval states in a way that captures the complexity of whole-brain functional connectivity 

(FC). First, we found that patterns of background FC across perception versus retrieval states 

were systematically different from one another (Figure 2.2A). Moreover, the differences were 

best captured by background FC patterns between 16 clusters across 3 hypothesized functional 

communities (Figure 2.4; Table S2.1). Our whole-brain analysis pipeline allowed us to extend 

findings from previous research (Cooper & Ritchey, 2019) by identifying important brain 

clusters and coupling patterns beyond memory-related brain regions (Figure 2.5). Second, our 

results showed that background FC and evoked activity tend to capture distinct component 

processes (Figure 2.3), with the former being more “state-related” and the latter being more 

“stimulus-related” (Summerfield et al., 2006). Third, we demonstrated the utility of full 

correlation matrix analysis (FCMA; Kumar et al., 2022; Wang et al., 2015) and showed how the 

feature selection process of FCMA, paired with cluster-based dimensionality reduction, can be 

used to improve the interpretability of high-dimensional FC results (Figure S2.1, S2.3). We 

conclude by highlighting how the above findings are consistent with a framework of selective 

attention where, given the same perceptual input, directing attention externally would promote 

perception of the input-related sensory features, whereas directing attention internally would 

promote retrieval of the input-associated episodes (Chun et al., 2011). 

Background Functional Connectivity Configurations Underlying Perception and Retrieval 

States 

The current study had subjects use the same visual input as either the target of a 

perceptual judgement or the trigger for episodic memory. Our results suggest that in order to 
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successfully perform tasks in these different conditions the brain produces distinct background 

FC configurations to maintain a sustained cognitive state for either perception or retrieval 

(Figure 2.2A). It is worth noting that, despite our efforts to isolate these two states across the 

three conditions, there are several other possible differences between critical conditions. First, 

because the image associations were well-learned by the subjects, it is possible that incidental 

memory retrieval could happen during the Perceive and Scramble conditions. Although past 

univariate work has suggested that incidental and directed memory retrieval might engage 

different neural processes, the brain regions implicated in those processes do not appear to be at 

play here. That is, the peak coordinates reported in a representative study (Kompus et al., 2011) 

do not fall into any of the 16 clusters used here. As such, we believe the background FC results 

are more likely to reflect perception/retrieval state-related differences rather than 

incidental/directed memory retrieval per se. Second, although we sought to equate task difficulty 

between the Retrieve and Scramble conditions, there was still a reaction time difference 

suggestive of a difference in task demands. While the generalization analyses showing higher 

sensitivity for state differences rather than difficulty differences (as measured by accuracy and 

reaction time) suggest that a non-specific difficulty difference alone does not drive our effect, it 

is likely that the differences in reaction time reflect a difference in some other unspecified 

demand that would need to be explored in future work. Despite these points, we believe that our 

results still provide strong evidence for retrieval and perceptual state-related processing in the 

brain. 

Similar state-related shifts in background FC configurations have been reported in 

previous work. Cooper and Ritchey (2019) found that pre-defined regions of interest in memory-

related brain systems (anterior temporal and posterior medial networks; Ranganath & Ritchey, 
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2012) showed stronger background FC during retrieval over perception. Using a purely data-

driven approach, a subset of our findings are largely consistent with Cooper and Ritchey (2019), 

as we found that the retrieval (vs. perception) state is characterized by stronger background 

coupling between clusters in the default mode network (DMN), which is important for internal 

cognitive processes (Buckner et al., 2008; Yeshurun et al., 2021). Specifically, our pipeline 

highlighted seven clusters in the DMN (blue clusters in Figure 2.4A; Figure 2.5A, B), including 

the bilateral inferior parietal lobule (IPL), posterior cingulate cortex (PCC), precuneus (PCUN), 

medial prefrontal cortex (mPFC) and bilateral middle temporal gyrus (MTG). Note that IPL, 

PCUN, and PCC are considered parts of the posterior medial (PM) network for memory-guided 

behaviors (Ranganath & Ritchey, 2012), and IPL, PCC and mPFC have been shown to form a 

“core recollection network”, supporting memory retrieval success (Rugg & Vilberg, 2013). 

Indeed, several studies have showed that functional interactions between these regions contribute 

to different aspects of episodic memory (Cooper & Ritchey, 2019; Geib et al., 2017; King et al., 

2015). In particular, the interaction between the IPL and PCUN may connect episodic features to 

form an integrated neural representation, while conceptual knowledge and existing schemas are 

integrated by PCC and mPFC (Ranganath & Ritchey, 2012; Ritchey & Cooper, 2020). 

Our findings further extend previous work by showing that the perception (vs. retrieval) 

state is characterized by increased background FC within a functional community with clusters 

in both the Control Network and the Dorsal Attention network (red clusters in Figure 2.4A; 

Figure 2.5A, B). Although there are situations where these networks might be engaged during 

memory-related processes (Hutchinson et al., 2014; Rosen et al., 2016, 2018), much evidence 

suggests their consistent involvement in processing the external world. That is, previous research 

has consistently implicated these regions as being a part of a larger task-positive network that is 
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typically engaged when the brain processes external stimuli (Fornito et al., 2012; Golland et al., 

2008). Together with the results concerning the DMN, our findings are consistent with the idea 

that the brain has two anatomically separable systems that primarily correspond to “externally 

oriented” versus “internally oriented” processing (Golland et al., 2008).  

Our whole-brain data-driven approach also revealed the importance of the background 

FC patterns in retrosplenial cortex (RSC; green clusters in Figure 2.4A) for accurately 

characterizing perception versus retrieval states. Specifically, we showed that RSC-DMN 

coupling was substantially greater during perception whereas RSC-Control coupling was greater 

during retrieval (Figure 2.5E, F). This connectivity pattern may seem counterintuitive at first, 

but interestingly it replicates findings of previous research. RSC is hypothesized to be part of the 

PM network , and its background FC patterns were also examined in Cooper and Ritchey (2019). 

Their results suggested that, although most ROIs in the PM network showed stronger coupling 

with each other during retrieval compared to perception, the background FC patterns of RSC did 

not demonstrate observable enhancement during retrieval state with any other regions in the PM 

network (c.f., Figure 3C right in Cooper & Ritchey, 2019). Instead of showing stronger coupling 

with PM regions during the retrieval state, they found that RSC had numerically stronger 

background FC with task-positive regions, such as the inferior temporal cortex, which is 

consistent with what we observed (Figure 2.5E). Benefiting from the whole-brain data-driven 

approach, the current study revealed a more complete picture of RSC background FC during 

perception and retrieval states, identifying regions in the DMN and Control networks beyond 

classical memory-related systems (Cooper & Ritchey, 2019). Moreover, the RSC clusters 

identified here also displayed a ‘flip’ in evoked activity across perception and retrieval tasks (see 

Figure S4), replicating past work showing decreased/below-baseline activity during encoding 
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and increased/above-baseline activity during retrieval in medial parietal regions (e.g., Daselaar et 

al., 2009; Huijbers et al., 2012, 2013). A number of conceptual accounts have been offered in 

terms of understanding this ‘flip’ (Huijbers et al., 2012), however, such accounts typically imply 

that RSC/DMN connectivity would be greater during retrieval, which differs from what we 

found here (also see Cooper & Ritchey, 2019). Interestingly, these task-evoked ‘flip’ effects 

often span multiple subregions and/or functional networks (Huijbers et al., 2012, 2013), and a 

fruitful direction for future research might be assessing the heterogeneity of background 

functional connectivity within the RSC and surrounding regions. 

Although the findings in RSC are consistent with past observations, conceptual 

interpretation of its role here remains speculative. We do note that previous human fMRI and 

rodent studies suggest that RSC is involved in connecting external and internal states (Bicanski 

& Burgess, 2018; Yeshurun et al., 2021). For example, a study in mice found that RSC integrates 

both allocentric mapping (the animal’s location in the external world) and egocentric frame (the 

animal’s internal representation of the location) to navigate through a maze (Alexander & Nitz, 

2015) by combining sensory inputs and mnemonic information from the medial temporal 

network (Bicanski & Burgess, 2018). Similarly, human RSC has been proposed to be a hub for 

connecting external and internal worlds (Yeshurun et al., 2021), such that it integrates external 

cues with self-generated information to guide behavior (Ranganath & Ritchey, 2012). In this 

respect, background FC in RSC during perception and retrieval may capture the role of RSC in 

bridging perceptual and mnemonic information; however, it is unclear why RSC would express 

higher coupling with the functional community putatively less involved with the task at hand 

(e.g., with DMN during the perception state). Accordingly, we believe an important direction of 
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future research will be to fully characterize how the RSC assists in establishing perception and 

retrieval states.  

The current results provide information concerning the BOLD correlates of retrieval and 

perception states which might complement existing findings from other modalities. A large 

number of findings from intracranial and scalp EEG in humans have suggested a link between 

cognitive states and a host of oscillatory dynamics in the brain (for reviews see Kahana, 2006; 

Nyhus & Curran, 2010). Although the relationship between oscillatory dynamics in the cortex 

and states such as episodic memory retrieval is multi-faceted (Hanslmayr et al., 2016), a recent 

study employing a similar task as here found that retrieval and perceptual/encoding states could 

be differentiated based on scalp EEG with a speculative role of frequencies in the theta range 

(Long & Kuhl, 2019). Interestingly, this is consistent with past work showing a link between 

aspects of theta rhythms occurring before the onset of the stimulus and subsequent perception- 

(Hanslmayr et al., 2013) or retrieval-related processing (Addante et al., 2011). Future research is 

required, however, to fully understand if and how particular oscillatory EEG rhythms might 

relate to the background BOLD connectivity and the degree to which key subcortical regions 

implicated in oscillatory dynamics such as the hippocampus and thalamus might additionally 

influence the specific cortical connections observed here. 

Background FC Captures “State-Related” Signals and Evoked Activity Reflect “Stimulus-

Related” Signals 

Different mental states can be reflected in distributed and overlapping patterns of evoked 

activity in the brain. An influential line of work has aimed to decode this information using the 

technique referred to as multivariate pattern analysis (MVPA; Norman et al., 2006). At the same 

time, another line of complementary work has investigated the inter-regional connectivity 
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structure of the brain by examining the patterns of BOLD correlations (functional connectivity; 

FC) between multiple brain regions (Smith, 2012). Both approaches have been fruitful, resulting 

in tremendous insights into our understandings of human cognitive processes (Haxby, 2012; 

Song & Rosenberg, 2021). Importantly, some previous research has suggested that these two 

neural measures are likely to capture and reflect distinct, or at least non-overlapping aspects of 

cognitive processes. For example, Song et al. (2021) found that when viewing or listening to 

narratives, ongoing attentional engagement can only be predicted by FC-based models, whereas 

models trained with regional activity patterns failed to capture this information. Additionally, 

Manning et al. (2018) showed that an ensemble model that relied on both FC- and activity-based 

neural measures outperformed models that utilized either measure on its own. This result 

suggests that FC and activity patterns can capture partially non-overlapping variance in cognitive 

processes. 

Extending these findings, the current study suggests that background FC-based measures 

are more sensitive to differences in cognitive states whereas activity-based measures are more 

likely to reflect differences in stimulus-related features of the task. Specifically, we found that 

background FC-based classifiers better separated task conditions that involved state-related (i.e., 

perception vs. retrieval) than those that primarily involved stimulus-related differences (e.g., 

visual content). On the contrary, MVPA classifiers did not demonstrate a clear preference for 

state-related comparisons over stimulus-related distinctions (Figure 2.3). Our findings are in line 

with the theory that the fMRI data acquired at each voxel are composed of both state-related and 

stimulus-related activity, and that FC-based measures could be better suited to capture “state-

related” signals whereas activity patterns better capture the “event-related” component 

(Summerfield et al., 2006). These findings are suggestive that background connectivity 
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measures, or similar, might be informative for investigating complex state-related neural 

dynamics beyond perception and retrieval. That is, this form of connectivity appears to show 

state-like dynamics in the brain: arising before task onset (e.g., preparatory state; Sadaghiani et 

al., 2015), maintained in the background during task performance (e.g., ongoing state; Cohen & 

D’Esposito, 2016), and carried over after the end of a task (e.g., lingering state; Tambini et al., 

2017). We posit that FC-based measures which remove or account for evoked responses, have 

the potential to capture these aspects of cognitive states across a wide variety of domains. It is 

also worth noting that there are different types of FC-based measures; the current study primarily 

tested the background FC measures by regressing out the stimulus-evoked component using a 

general linear model (Al-Aidroos et al., 2012; Bejjanki et al., 2017; Norman-Haignere et al., 

2012; Tompary et al., 2018). However, some studies computed their FC measures without 

regressing out the stimulus-evoked component (e.g., Song et al., 2021) or relying on stimulus-

evoked parametric measures (e.g., beta series correlation; Bein et al., 2020). Future work might 

further examine whether these types of FC-based measures also preferentially capture state-

related aspects of the cognitive process.  

The Utility of Feature Selection in Whole-brain Voxel-wise FC Analyses 

The current study used full correlation matrix analysis (FCMA; Kumar et al., 2022; 

Wang et al., 2015) to explore whether cognitive states are encoded in whole-brain voxel-wise 

background FC patterns. Our approach is systematically different from those used in previous 

studies, such as connectome-based predictive modeling (Shen et al., 2017) in two ways. First, 

FCMA operates on voxel-level connectivity matrices instead of the commonly-used, lower-

dimensional parcel-averaged time series. Second, FCMA uses a nested leave-one-subject-out 

cross validation framework that enables more efficient feature selection to reduce large 
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connectivity matrix to a tractable size. Here we discuss the potential trade-off regarding these 

two distinctions. First, our results suggest that FCMA identified regions that, even after 

clustering over contiguous voxels, retained a higher sensitivity for differences in cognitive states 

compared to parcel-level analyses (Figure S2.3B right). This finding is consistent with previous 

research suggesting that voxel-/vertex-level FC patterns are more sensitive to other cognitive 

measures (concerning intelligence) compared to relatively coarse-grained parcel-level analysis 

(Feilong et al., 2021). The differences in sensitivity could be due to the fact that many 

parcellation schemes were defined from whole-brain resting-state functional connectivity 

profiles rather than task-based connectivity and previous work has suggested that the functional 

architecture of the brain might change across resting and task states (Cole et al., 2014) and may 

also vary across different task states (Krienen et al., 2014). It is worth mentioning that the use of 

predefined parcellation schemes can significantly improve sensitivity (as measured by effect 

size) in other types of analyses (e.g., univariate analyses) compared to voxel-/vertex-level 

analysis (Li et al., 2021). Thus, future studies need to further investigate the tradeoffs for 

predefined parcellation schemes in connectivity analyses.  

The second way the current approach differs from prior approaches is in terms of 

interpretability. That is, machine learning models often face a trade-off between prediction 

accuracy and model interpretability (Feilong et al., 2021). In the context of FC-based models, 

previous work has primarily focused on constructing a model for making the most accurate 

predictions on trait-like demographic variation (Finn et al., 2015), behavioral performance 

(Rosenberg et al., 2016, 2020), or task conditions (Gonzalez-Castillo et al., 2015; Shirer et al., 

2012). Despite high prediction accuracies in these models, it is often hard to interpret the FC 

configuration given the vast number of connections. For example, Rosenberg et al. (2016) 
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identified a “high-attention network”, consisted of 757 edges across the entire brain, whose 

pattern of connectivity reliably predicted better performance on a sustained attention task. 

Indeed, such an approach likely captures many nuances in the neuronal distributed process of 

attention and has high predictive accuracy. However, it is possible that such high accuracy comes 

at the expense of interpretability. That is, constraining the number of edges and nodes in the 

descriptive network might sacrifice some degree of prediction accuracy, but the resulting FC 

configuration might be more easily interpreted. The current study attempted to do this by 

combining a whole-brain voxel-level FC model with feature selection using a nested cross-

validation framework. Specifically, we quantified the “utility” of each connection using the 

machine learning training and testing framework (See Method: Full Correlation Matrix 

Analysis on Residual Activity; Figure S2.1). As a result, we were able to select the most useful 

connections in an unbiased, automated fashion, reducing large correlation matrices to a tractable 

size. Remarkably, the model based on connections among only a set of 16 regions retained 

comparable AUC scores compared to models based on connections among 3000 voxels (Figure 

2a; 0.83 vs. 0.87)3. Thus, the current study demonstrates the value of using the FCMA voxel-to-

cluster pipeline in order to yield the most relevant and interpretable FC configuration profile 

while largely maintaining prediction performance.  

Ideas and Speculation: How Specialized are Retrieval and Perception States? 

The nature of this experiment along with the brain regions implicated in our data-driven 

approach are broadly consistent with the framework of cognitive control. That is, in terms of 

experimental demands, the same type of information from the outside world (images of scenes or 

 
3 Note that there was overlap between the feature selection process and the final testing process 
(both used all subjects) in the 16 cluster analysis. Thus, the performance of the 16 clusters is 
slightly biased towards higher performance. 
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faces) had to be flexibly routed to a limited number of response options based on the task goals 

(Posner & Snyder, 1975). Consistent with multi-faceted involvement of cognitive control across 

conditions, our analysis identified a series of frontal and parietal regions falling within the 

control network (Miller & Cohen, 2001). Per this perspective, initiation and maintenance of 

retrieval and perception states would be supported by the ability of prefrontal control regions to 

represent task goals and to dynamically update connectivity of the control network and beyond 

(Cole, Reynolds, et al., 2013; Stokes et al., 2017). In this perspective, this control mechanism 

would enable perceptual- or memory-based processing similar to how it might promote a large 

range of other complex cognitive states, with, e.g., the added involvement of DMN regions here 

likely related to the involvement of memory retrieval.  

What awaits future research is if and how these general properties of frontoparietal 

cognitive control dovetail with mechanisms posited to play a role in external/perceptual versus 

internal/mnemonic processing specifically. For example, the retrieval and perception states 

indexed here might be thought of as forms of internal and external attention respectively (Chun 

et al., 2011), but the current study did not explicitly manipulate selection demands during either 

state, making a full comparison to the different forms of attention incomplete. Another rich vein 

of theoretical and empirical work suggests the hippocampus might play a central role in how the 

brain switches between environmentally-oriented encoding processes and memory-based 

retrieval processes (Duncan et al., 2014; Hasselmo et al., 1996; Honey et al., 2017; Poskanzer & 

Aly, 2022), but our approach did not find its significant involvement. We speculate that this 

absence might stem from design-related (use of previously encountered items in the ‘Perceive’ 

condition) and/or analysis-related (lack of subject-specific subfield data) issues. Nevertheless, a 

critical step moving forward will be to understand the bridge between such process-specific 
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mechanisms and how such processes are flexibly controlled and maintained in the service of 

ongoing behavior. 

Data and Code Availability  

Processed fMRI data including both the stimulus-evoked and residual time series 

supporting the primary findings of this study are available on the Open Science Framework 

(OSF) at https://osf.io/yfwc7/. Scripts for performing and reproducing the specific analyses 

described in this paper can be found through Github at 

https://github.com/peetal/Decode_AttenStates. 
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CHAPTER III 

BACKGROUND CONNECTIVITY AND EVOKED ACTIVITY PATTERNS REFLECT 

ONGOING ATTENTIONAL GOALS DURING MULTITASKING 

This chapter contains unpublished co-authored material. I am the primary author of this 
chapter, and I incorporated editing advice from Dr. Ben Hutchinson. Dr. Hutchinson and I 
designed the study together. I conducted all data collection, and wrote the scripts for experiment 
presentation, data analysis, and figure creation. I wrote the manuscript with editorial assistance 
from Dr. Hutchinson. 

Introduction 

 A major challenge for human cognition stems from the rapid shifts in the behavioral 

relevance of diverse and ambiguous information sources within complex environments. To 

effectively navigate this challenge, our attentional control system possesses two vital 

capabilities. Firstly, it allocates attentional resources to prioritize goal-relevant information and 

filter out distractions (Desimone & Duncan, 1995; Posner & Petersen, 1990). Second, it is 

capable of allocating attentional resources across multiple demands and to complete a variety of 

goals simultaneously (J. Duncan, 2010). For instance, during an engaging conversation, 

individuals naturally focus on both the conversation content and relevant memory episodes while 

filtering out irrelevant ambient noises. 

In human fMRI research, it has been proposed that the neural mechanisms underlying this 

control system are evident in both evoked activity and functional connectivity estimates within 

the recorded signal. The guided activation account posits that specific brain regions, particularly 

those centered at the lateral prefrontal cortex (lPFC), exhibit meaningful evoked activity patterns 

that represent behavioral goals. These patterns then guide activations in other brain regions to 

align with the behavioral objectives via neuronal pathways (Miller & Cohen, 2001). 



 

80 
 

 

Complementarily, the switching train tracks account suggests that neuronal pathways themselves 

also undergo meaningful modulations to prioritize processing streams of goal-relevant 

information amidst the background of evoked activity (Al-Aidroos et al., 2012; Turk-Browne, 

2013). These pathways are quantified through functional connectivity (FC), computed as the 

statistical dependence (i.e., correlation) between the time series of two brain regions (Friston, 

1994). Notably, both evoked activity and FC patterns demonstrate compositional coding during 

multitasking, where the brain represents complex compound tasks by combining the neural 

representations of individual constituent tasks (Cole et al., 2011; Cole, Reynolds, et al., 2013; 

Reverberi et al., 2012). Compositional coding is deemed critical for humans' ability to swiftly 

adapt to novel multitasking scenarios by facilitating the transfer of knowledge and skills (Cole, 

Laurent, et al., 2013). Specifically, existing work has suggested that classifiers trained on evoked 

activity patterns of the lPFC and FC maps of the frontoparietal network (i.e., the FC measure 

between regions in this network and all other regions in the brain) can decode constituent tasks 

of multitasking conditions (Cole et al., 2011; Cole, Laurent, et al., 2013; Reverberi et al., 2012). 

Despite the evidence supporting compositional coding as a pivotal neural mechanism for 

multitasking, several aspects of this phenomenon remain unknown. One such aspect pertains to 

the potentially distinct information contained within different neural measures (i.e., activity vs. 

connectivity). Previous literature suggests that the blood oxygen level dependent (BOLD) signal 

in human fMRI research comprises two distinct sources of information: stimulus-related 

information, best captured by evoked activity patterns, and task state-related information, 

reflected in FC patterns (Otten et al., 2002; Summerfield et al., 2006; Turk-Browne, 2013). 

Consistent with this view, empirical studies have indicated that combining these two neural 

measures can provide additional insights (Li et al., 2023; Manning et al., 2018). Consequently, 
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questions arise regarding whether compositional coding of activity- and FC-based neural 

measures contributes to comparable or disparate neural processing during multitasking. If 

activity- and FC-based compositional coding reflects non-identical neural processing during 

multitasking, it is hypothesized that different brain regions and networks may exhibit preferences 

for specific neural measures in demonstrating compositional coding.  

Another aspect that remains unclear regarding compositional coding is whether this 

property persists when the compound task involves tasks from dichotomized attentional domains. 

Attention can be divided into external and internal domains, with external attention involving 

perceptually driven information and internal attention involving mnemonically driven episodes 

(Chun et al., 2011). Previous studies have suggested that externally and internally oriented 

processing often engage distinct processing modes (Chun & Johnson, 2011; Honey et al., 2017; 

Poskanzer & Aly, 2022), which may be somewhat conflicting (K. Duncan et al., 2014; Rolls, 

2013). Therefore, it is likely that compositional coding of components within the same 

attentional domain (e.g., two perceptual tasks) differs from that of components across attentional 

domains (e.g., one perceptual and one memory retrieval task). However, previous task paradigms 

only allowed for examining compositional coding of multitasking conditions within the same 

attentional domain. It is hypothesized that certain brain regions or networks may specialize in 

compositional coding for within- or across-domain multitasking goals, while others may exhibit 

a more general property.  

This study aims to systematically investigate the compositional coding property of every 

brain region and network as it relates to supporting multitasking. Specifically, we compared this 

property reflected in both activity- and connectivity-based measures for every brain region. 

Importantly, we computed background functional connectivity (BGFC) to isolate the 
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connectivity-based measure from evoked activity signals and co-activation confounds (Al-

Aidroos et al., 2012; Cole et al., 2019; Córdova et al., 2016; Li et al., 2023). Additionally, we 

compared the compositional coding property of each brain region when multitasking conditions 

engage constituent tasks within or across attention domains (i.e., external and internal). In 

summary, we report three main findings: 1) brain regions beyond the PFC and frontoparietal 

control network demonstrate compositional coding property with both activity- and connectivity-

based neural measures; 2) assembling the two neural measures significantly improves 

compositional coding accuracy, suggesting they contribute to non-identical aspects neural 

processing during multitasking; and 3) while some regions demonstrate measure- and domain-

specificity, compositional coding of most regions does not exhibit such preferences. 

Methods 

Participants  

Thirty-seven right-handed young adults aged between 18 and 35, with normal or 

corrected-to-normal vision, were recruited from the University of Oregon community to 

participate in exchange for monetary compensation. One participant was excluded due to 

incomplete participation, another due to excessive head motion, and three due to poor behavioral 

performance (defined as average accuracy below two standard deviations from the sample 

mean). This resulted in a final sample size of 32 subjects. Informed consent was obtained 

following procedures approved by the University of Oregon Institutional Review Board. The 

sample size aligns with that of previous studies investigating functional connectivity (FC) during 

perception and memory retrieval (Li et al., 2023) and multitasking (Cole, Reynolds, et al., 2013). 

Materials  
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 The visual stimuli used in the experiment comprised 48 images of well-known scenes and 

48 images of celebrity faces, sourced from the stimulus set utilized by Lee and Kuhl (2016). The 

scene images contain equal number of natural (e.g., Crater Lake) and man-made scenes (e.g., 

Golden Gate Bridge) and the face images include qual number of male and female faces. To 

regulate brightness, the contrast parameter in Psychopy was adjusted, ranging from 0 to 1. A 

value of 1 represented the original color of the image, while smaller values resulted in 

progressively dimmer and greyer images. Initially, the contrast parameter was set to 0.5 but 

varied throughout each trial's duration. The auditory stimuli consisted of high-pitched tones 

generated using the Psychopy sound module, commencing at 440 Hz and also varying during 

each trial. Refer to the following section for a detailed description of the titration procedure. 

Experimental design and procedure 

Memory formation phase. During the pre-scan behavioral training phase, occurring one 

hour before scanning, participants were presented with randomly assigned pairs of face and 

scene images (Figure 3.1A). Initially, they viewed all 48 pairs twice in a random order, followed 

by a series of 2-alternative forced choice (2-AFC) trials. In these trials, a face image appeared at 

the top of the screen, followed by two scene images below, one of which was the correct pair for 

the face image while the other was randomly selected. Participants were instructed to select the 

scene image paired with the face. This 2-AFC process continued until participants correctly 

identified the paired scene image for each face image twice. 

Titration phase. After memorizing the associations between image pairs, participants 

were introduced to each of the three sub-tasks of the main task. In the Tone sub-task trials, 

participants heard a tone starting at 440hz that either increased or decreased in pitch. The 

objective of the Tone sub-task was to identify the direction of the pitch change (Figure 3.1B, 
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tone task). For each trial of the Face sub-task, participants were presented with face images from 

the memory formation phase one at a time. The brightness of the face image either increased or 

decreased, and participants were required to identify the direction of the brightness change 

(Figure 3.1B, face task). In the Scene sub-task trials, participants were again presented with face 

images from the memory formation phase one at a time, though with the brightness of the image 

remaining constant. The task objective was to recall the associated scene image for each face and 

indicate whether it depicted a natural or manmade scene (Figure 3.1B, scene task). Visual or 

auditory stimuli were presented for 2-s in each trial of the three sub-tasks, with changes 

occurring every 0.5-s for the Tone and Face sub-tasks, and participants were given 2-s respond 

window for each trial. This titration phase aimed to ensure that all three sub-tasks were matched 

in difficulty for each participant, so that they differed primarily in terms of the nature of the 

information attended to and not in terms of overall difficulty. To achieve this, participants 

initially performed the Scene sub-task alone, and their accuracy performance was used to adjust 

the difficulties of the Tone and Face sub-tasks. This adjustment involved setting the stride of 

pitch/brightness change, taking into account each participant's sensitivity to detecting such 

changes. For instance, while a 5Hz change may be easily detectable for a participant, a 2Hz 

change significantly increases the difficulty of the Tone sub-task. The titration phase was 

conducted individually for each participant due to variations in performance on the scene 

retrieval sub-tasks and differences in sensitivity to pitch and brightness changes. 

fMRI tasks. Each trial in the fMRI main tasks encompassed all three sub-task 

components. During each 2-s stimuli presentation, participants encountered a tone with changing 

pitch every 0.5-s and a face image with changing brightness also every 0.5-s (Figure 3.1B). It's 

crucial to note that trials in the main tasks consistently provided information relevant for all three 
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sub-tasks. That is, in contrast to the titration phase where only task-relevant information was 

presented, participants were presented with sufficient information to perform the Tone, Face, and 

Scene sub-tasks for each trial. However, participants were directed to engage in only one or two 

sub-tasks depending on the condition (Figure 3.1C). In the 3 non-multitasking conditions, 

participants focused on a single sub-task while disregarding information related to the others. 

They then responded during a subsequent 2-s response window, prompted by the task being 

performed. For instance, in the Face task non-multitasking condition, participants concentrated 

on the image brightness changes for 2-s and disregarded both tone pitch changes and face-

associated scene images. Following this, they had a 2-s window to respond with a "Face task" 

prompt displayed on the screen. Conversely, in the 3 multitasking conditions, participants 

attended to two sub-tasks simultaneously but responded only to the prompted task during the 

response window. For instance, in the Face/Tone task multitasking condition, participants 

tracked changes in image brightness and tone pitch concurrently during the 2-s stimulus 

presentation of each trial. Subsequently, during the ensuing 2-s response window, participants 

responded to prompts being either "Face task" or "Tone task," indicating the direction of pitch or 

brightness change, respectively, while disregarding the face-associated scene image's properties. 

Each functional run started with a 6-s blank lead-in period, followed by 8 task epochs (i.e., 

blocks) and concluded with a 6-s lead-out period. Within each epoch, participants received 4-s of 

instruction presentation followed by six 4-s trials. Each trial included a 2-s stimulus presentation, 

where stimuli changed every 0.5-s, and a subsequent 2-s response window with a presented 

prompt. Following each sequence of stimuli, there was a 12-s inter-block interval (IBI). Each 

condition comprises two functional runs, with all epochs within a run belonging to the same 

condition. Each participant completed in total of 96 epochs evenly distributed among the 6 task 
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conditions. The duration of each trial, epoch, and run was 4-s, 40-s, and 332-s, respectively. To 

ensure counterbalancing, task conditions were organized using a Latin square method, resulting 

in six sets of counterbalanced orders. These orders were randomly assigned to participants, who 

then completed the first six functional runs according to their assigned order, followed by the 

remaining runs in the same sequence. 

Image acquisition and preprocessing 

The fMRI data were acquired on a 3T scanner (Siemens Prisma) with a 64-channel coil at 

Lewis Center for Neuroimaging (LCNI) at the University of Oregon. Functional data were 

acquired using a T2*-weighted multiband EPI sequence (2.5 mm isotropic resolution, repetition 

time = 1 s, echo time = 28 ms, flip angle = 54°, bandwidth = 2590Hz/pixel, multiband 

acceleration factor = 4) with 60 axial slices aligned to the anterior commissure/posterior 

commissure. A whole-brain T1-weighted MPRAGE 3D anatomical volume (1 mm isotropic 

resolution,  repetition time = 2.5 s, echo time = 3.43 ms, flip angle = 7°) was collected to 

improve registration. One phase and two magnitude field maps were collected to correct field 

inhomogeneities. 

The preprocessing steps closely mirrored those outlined in our prior work (Li et al., 

2023). Image preprocessing was conducted using fMRIPrep 20.1.0rc1 (Esteban et al., 2019). 

Functional images underwent correction for slice acquisition time, head motion, and 

susceptibility distortion, followed by normalization to both standard (MNI152NLin2009cAsym) 

and native (T1w) spaces. As for post fMRIPrep processing, the minimally preprocessed 

functional runs were further handled using FSL (Woolrich et al., 2001) with a Nipype 

implementation (Gorgolewski et al., 2011). A Gaussian kernel with a full-width half-maximum 

(FWHM) of 5.0 mm was applied for spatial smoothing, and a high-pass filter with a cutoff 



 

87 
 

 

 

Figure 3.1. Task paradigm for multitasking and non-multitasking attention conditions.  
A) Memory formation phase.  Participants established mental associations between face and 
scene one hour before entering the scanner. B) Trial structure for all fMRI task conditions. Every 
trail comprised a tone with changing pitch and a face image with changing brightness in each 
trial. Participants determined the direction of pitch change for tone sub-tasks, brightness change 
for face sub-tasks, and identified whether the face-associated scene image depicted a natural or 
manmade scene for the scene retrieval task. C) Participants engaged in one or two of the three 
available sub-tasks cross different conditions, yielding three non-multitasking conditions and 
three multitasking conditions. The titration phase is not depicted in this diagram. D) Evoked 
activity patterns at the parcel level were measured. Within each epoch, the evoked activities were 
averaged across the 24-second tasks (averaged across the time dimension), yielding a singular 
value for each voxel. Consequently, for each parcel, the evoked activity pattern for each epoch 
was depicted as an n-vector, where n represents the number of voxels within that parcel. E) 
Background functional connectivity (BGFC) patterns at the parcel level were measured. Within 
each epoch, the residual activities were averaged across all voxels within a parcel (averaged 
across the spatial dimension), resulting in a 36-s residual activity for each parcel per epoch. The 
BGFC pattern of each parcel was computed as the Fisher's z-transformed correlation coefficient 
between this parcel (e.g., the orange parcel) and every other parcel in the brain (e.g., the blue and 
green parcels). For each parcel, the BGFC pattern of each epoch was represented by a 214-
vector, with 214 being the total number of parcels in the brain. 
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frequency of 0.01 Hz was employed. A confound regression was performed for each functional 

run to minimize the effect of the confounds by fMRIprep, including the 6 motion parameters, 

white matter (WM) and cereberospinal fluid (CSF). Next, normalization of intensity values in 

each voxel across the 12 functional runs was performed using the mean and standard deviation of 

the resting period for each subject. The resting period comprised the 6 lead-out volumes plus all 

12-second inter-block intervals of each run, adjusted for a 4-TR hemodynamic delay. This 

normalization aimed to mitigate BOLD signal variations across runs, enabling concatenation of 

all 6 runs into a single time series for subsequent modeling. 

Next, to mitigate the impact of head motion on subsequent neural measures, we 

performed cleaning on the concatenated timeseries using the framewise displacement (FD) data 

estimated by fMRIprep. A spike was identified as any frame with an FD exceeding 2 mm. We 

eliminated the spike along with its preceding and succeeding frames by manually setting all 

voxel intensity values to np.nan. Consequently, these frames were ignored when computing 

activity- and connectivity-based measures. Additionally, we removed runs if over 5% of their 

frames exhibited an FD exceeding 0.5 mm. Each participant had at least one run per condition, 

with no more than two runs being excluded in total. The unqualified runs were not subjected to 

modeling in any of the subsequent analyses.   

Evoked activity and background functional connectivity (BGFC) 

 Parcel-level evoked activity pattern. The concatenated timeseries after regressing out the 

confound regressors are denoted as the evoked activity. These timeseries are fully preprocessed 

and retain stimulus-evoked signals. We employed the Schaefer predefined parcellation scheme to 

divide the cortical area into 200 parcels across 7 functional networks (Schaefer et al., 2018). For 

subcortical regions, we utilized the Harvard Oxford parcellation scheme to define 14 regions of 
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interest, encompassing bilateral thalamus, caudate, putamen, pallidum, hippocampus, amygdala, 

and accumbens (Desikan et al., 2006). Subsequently, we estimated the evoked activity pattern for 

each parcel for each epoch, excluding those in the unqualified runs. Specifically, the evoked 

activity of each voxel within a parcel was averaged over 24 task TRs, capturing the peak evoked 

BOLD response (adjusted 4 s for hemodynamic delay), yielding a single value per voxel per 

epoch. Therefore, each parcel was represented by an n-voxel long vector quantifying its evoked 

activity pattern for each epoch (Figure 3.1D). For example, if a parcel contained 300 voxels, 

then its evoked activity pattern would be represented by a 300-long vector for each of the 96 

epochs (assuming no unqualified runs). Notably, to ensure consistency in voxel count within 

each parcel across participants, these procedures were conducted in standard space 

(MNI152NLin2009cAsym) using a shared brain mask, maintaining uniform brain shape across 

all participants prior to parcellation. 

 Parcel-level background functional connectivity pattern. We proceeded to estimate and 

eliminate the stimulus-evoked signals from the fully preprocessed time series utilizing a Finite 

Impulse Response (FIR) model. The FIR regressors were constructed to model the initial 36 TRs 

for each epoch, resulting in 36 (TR) x 6 (conditions) = 216 regressors. FIR is considered the 

optimal General Linear Model (GLM) for eliminating stimulus-evoked responses because it does 

not presuppose the shape of the hemodynamic response function (Al-Aidroos et al., 2012; Cole 

et al., 2019). The resulting residual timeseries data were termed as the residual activity and 

employed for calculating background functional connectivity (BGFC). Employing the same 

parcellation schemes, the brain was divided into 200 cortical parcels across 7 functional 

networks and 14 subcortical parcels, after which the residual activities were averaged across all 

voxels within each parcel. The BGFC pattern of each parcel was determined by the statistical 
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dependence (i.e., correlation) of residual activities between the given parcel and every other 

parcel in the brain, resulting in a 214-dimensional vector for each epoch (Figure 3.1E). To 

ensure precise BGFC measures, the residual activities were computed and parcellated in each 

participant's native space (T1w).  

Activity- and connectivity-based compositional coding score 

 In the current experimental design, compositional coding refers to the observation the 

activity- or connectivity-based neural representations of a multitasking condition (e.g., 

Face/Tone multitasking condition) is built on those of its simple constituent conditions (e.g., 

Face and Tone non-multitasking conditions; Cole, Reynolds, et al., 2013; Reverberi et al., 2012). 

Here, we calculated the compositional coding score (CCS) to examine the extent to which 

activity- and connectivity-based neural representations exhibit compositional coding properties 

for each parcel and network. Employing a leave-one-participant-out cross-validation framework, 

we estimated a CCS score for each parcel and participant. In each fold, one participant's data 

were withheld for testing, while the data from the remaining participants were used as training 

data. Using the training data, we trained regularized Softmax models (with L2 regularization and 

C=0.1) implemented in Scikit-learn (Pedregosa et al., 2011) on only the non-multitasking epochs 

(i.e., Face, Tone, and Scene epochs). Subsequently, the trained model was tested on multitasking 

epochs (i.e., Face/Tone, Face/Scene, and Scene/Tone epochs) in the testing set (Figure 3.3A 

left). An epoch in the testing set was considered correct if the Softmax model assigned the two 

relevant labels the highest decision function output values (i.e., probability). For instance, during 

testing of a Face/Tone multitasking epoch, the epoch was deemed correct only if the output 

probability for the Face and Tone classes exceeded that for the Scene class. The CCS score was 
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calculated as the number of correctly predicted epochs divided by the total number of testing 

epochs (48 epochs if no disqualified runs were present; Figure 3.3A right.).  

Importantly, we calculated the CCS for each parcel using both evoked activity patterns 

and background connectivity patterns. Specifically, for the activity-based CCS estimations of 

each parcel, the training and testing inputs of the models were the n-long vectors, where n 

represents the number of voxels within the respective parcel (See Methods: Evoked activity and 

background functional connectivity for details). It is important to note that due to the utilization 

of standard space and a shared brain mask, the dimensions of these n-vectors were consistent 

across participants, rendering this cross-validation framework feasible. On the other hand, for the 

connectivity-based CCS estimations of each parcel, the training and testing inputs of the models 

were the 214-long vectors, which encapsulated the correlation of residual activities between the 

current parcel and every other parcel in the brain (See Methods: Evoked activity and background 

functional connectivity for details). Moreover, we derived an ensembled CCS using an ensemble 

model that integrated decision function outputs (i.e., probability) from both the activity- and 

connectivity-based Softmax models. Specifically, for each testing epoch within each fold, both 

the activity- and connectivity-based models outputted an estimated probability value for each 

class (i.e., Face, Tone, and Scene). The ensemble model then computed the weighted average of 

the probability outputs from the two models (weight=0.5) and assessed the accuracy of the 

current epoch’s prediction using the same approach as introduced above. Together, we obtained 

a CCS score for each parcel within each participant, incorporating activity-based, connectivity-

based, and ensemble neural measures. 

Examining measure- and domain-specificity of parcels  
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Measure-specific and general parcels. We hypothesized that some parcels may 

demonstrate stronger compositional coding properties when a specific neural measure was used 

(i.e., measure-specific) whereas other parcels may not exhibit this preference (i.e., measure-

general). To identify parcels that are either measure-specific or measure-general, one sample t-

tests were performed to first select parcels that had ensemble CCS significantly above chance 

level (33.33%; p < 0.05). Within this subset, a paired sample t-test was performed to identify 

parcels exhibiting significantly higher activity-based CCS scores compared to connectivity-based 

CCS scores, or vice versa (p < 0.05), termed as measure-specific parcels. Measure-general 

parcels encompassed the remaining parcels. 

 Domain-specific and general parcels. Moreover, we posited that the degree of 

compositional coding in a parcel might differ based on whether the multitasking condition 

involves tasks from the same attentional domain (i.e., external/perceptual vs. 

internal/mnemonic). For instance, certain parcels might exhibit a stronger compositional coding 

tendency when multitasking conditions entail two tasks from the same attentional domain (i.e., 

Face/Tone condition; both tasks are perceptual related), as opposed to conditions involving tasks 

from different attentional domains (i.e., Face/Scene and Scene/Tone conditions; one perceptual 

task and one memory retrieval task). Parcels demonstrating such preferences, or the reverse, 

were designated as domain-specific parcels, while others were classified as domain-general 

parcels. To identify these parcels, one-sample t-tests were initially conducted to select parcels 

with ensemble CCS scores significantly exceeding chance level (33.33%; p < 0.05). Within this 

subset, the ensembled CCS for each multitasking condition was individually assessed within 

each testing fold. This was quantified as the ratio of correctly predicted epochs by the ensembled 

CCS to the total number of epochs in each multitasking condition (i.e., 16 epochs if no 
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unqualified runs occurred). Subsequently, the within-domain CCS referred to the CCS for the 

Face/Tone condition, while the across-domain CCS was computed as the average of the CCS for 

the Face/Scene and Scene/Tone conditions. Paired-sample t-tests were then employed to identify 

domain-specific parcels whose within-domain CCS was significantly greater than the across-

domain CCS, or vice versa (p < 0.05). Parcels remaining in the subset were classified as domain-

general. 

Statistical tests 

 All statistical analyses were performed using Pingouin 0.5.1 with Python3. Statistical 

significances were assessed at the 0.05 alpha threshold. Bonferroni corrections were made for 

multiple comparisons.  

Results 

Behavioral results 

 We devised a behavioral task where participants were simultaneously exposed to 

information for three sub-tasks: the Face task (requiring brightness judgment on visual stimuli), 

the Tone task (requiring pitch judgment on auditory stimuli), and the Scene task (requiring 

naturalness judgment on recalled images). In the non-multitasking conditions (blue dots in 

Figure 3.2), participants focused on one piece of information and executed one sub-task at a 

time, whereas in the multitasking conditions (red dots in Figure 3.2), they attended to two 

information sources and performed two sub-tasks concurrently. Overall, participants exhibited 

higher accuracy (Figure 3.2 top) and quicker reaction times (Figure 3.2 bottom) during non-

multitasking conditions compared to multitasking conditions. Specifically, two-way repeated 

measures ANOVAs with tasks (Face-, Tone- and Scene-tasks) and conditions (non-multitasking 

vs. multitasking) on behavioral accuracy and reaction time revealed significant main effects of 
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condition (Acc: F(1,31) = 73.03, p < 0.001,  𝜂! = 0.70; RT: F(1,31) = 748,70, p < 0.001,  𝜂! = 0.96), 

suggesting that multitasking incurred substantial costs in both accuracy and reaction time. 

Additionally, the ANOVA on accuracy showed no main effect of tasks (F(2,62) = 1.78, p = 

0.18,  𝜂! = 0.05) but revealed an interaction between tasks and conditions (F(2,62) = 6.04, p = 

0.004,  𝜂! = 0.16). The ANOVA on reaction time revealed a main effect of tasks (F(2,62) 

= 34.20, p < 0.001,  𝜂! = 0.52) and an interaction between task and conditions (F(2,62) = 26.18, p < 

0.001,  𝜂! = 0.46). Subsequent analyses indicated that these interactions were driven by the scene 

task exhibiting greater costs caused by multitasking in both accuracy and reaction time compared 

to the face and tone tasks (Acc cost in Scene- vs. Face tasks: t(31) = 2.85, p = 0.008, 95% 

CI = [0.01, 0.06], Cohen’s d = 0.64; Acc cost in Scene- vs. Tone tasks: t(31) = 2.78, p = 0.009, 

95% CI = [0.01, 0.06], Cohen’s d = 0.71; RT cost in Scene- vs. Face tasks: t(31) = 4.60, p < 0.001, 

95% CI = [0.06, 0.15], Cohen’s d = 0.92; RT cost in Scene- vs. Tone tasks: t(31) = 7.40, p < 

0.001, 95% CI = [0.10, 0.17], Cohen’s d = 1.11).  

Crucially, preceding fMRI tasks, the three sub-tasks underwent titration processes (see 

Methods: Experimental design and procedure for details) to ensure comparable task difficulties 

for each participant. As a result, during non-multitasking conditions, participants demonstrated 

similar accuracy and reaction times across the three sub-tasks (Figure 3.2 blue dots). A repeated 

measure one-way ANOVA on tasks of the non-multitasking conditions showed neither 

differences in accuracy (F(2,62) = 0.86, p = 0.43,  𝜂! = 0.03) nor reaction time (F(2,62) = 1.41, p = 

0.25,  𝜂! = 0.04). This finding is pivotal as it suggests that subsequent examination of 

compositional coding properties is unlikely influenced by varying neural responses resulting 

from different cognitive demands or motor responses. 
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Figure 3.2. Behavioral results. 
Accuracy and reaction time performance for each sub-task under non-multitasking and multi-
tasking conditions. Each data point represents an individual participant. Multi-tasking 
performances (i.e., accuracy or reaction time) for each sub-task were calculated as the average 
performances when it was performed alongside another sub-task in the multitasking conditions. 
For instance, the multi-tasking accuracy of the Face task was determined by averaging its 
accuracy across the Face/Tone and Face/Scene conditions. Error bars depict the standard error of 
the mean across all participants, with asterisks indicating statistical significance at p < 0.05. 
 
Activity- and connectivity-based compositional coding  

 Initially, we investigated the extent to which each parcel and network embodies the 

compositional coding property. This property denotes that a parcel represents a multitasking 

scenario by combining the neural representations of its constituent tasks, with the neural 

representations being either evoked activity or background functional connectivity (BGFC) 
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patterns. A compositional coding score (CCS) was computed for each parcel per participant, 

measuring how well the two individual tasks of the multitasking conditions can both be 

successfully detected from classifiers trained solely on neural representations of the non-

multitasking conditions (Figure 3.3A; see Methods: Activity- and connectivity-based 

compositional coding score for details). CCS were averaged within each cortical network, and 

bilateral subcortical regions of interests (Figure 3.3B). One sample t-tests were performed on the 

CCS of each network against the chance level (33.33%).  

Our findings indicate that all seven cortical networks and the hippocampus exhibited 

significantly off-chance evoked activity-based CCS (Bonferroni corrected at p < 0.003). The 

putamen and thalamus also displayed off-chance evoked activity-based CCS (ps < 0.05), but did 

not withstand multiple comparison correction. One the other hand, the control, default mode, 

dorsal-attention, ventral-attention, and visual networks demonstrated significantly off-chance 

BGFC-based CCS (Bonferroni corrected at p < 0.003). Additionally, the limbic network, 

putamen, hippocampus, and amygdala exhibited off-chance BGFC-based CCS (ps < 0.05), albeit 

failing to survive multiple correction (Figure 3.3B). One potential counterargument to the 

BGFC-based CCS results is that the FIR preprocessing procedures might not entirely remove all 

evoked activities (See methods: Evoked activity and background functional connectivity for 

details). Consequently, the off-chance performance of the BGFC-based CCS could be solely 

driven by the remaining stimulus-evoked signals in the residual activity. To address this concern, 

we also computed the CCS using the residual activity pattern. As illustrated in Figure 3.3B, the 

residual activity-based CCS for both cortical networks and subcortical ROIs were not 

significantly off-chance (ps > 0.2). Importantly, however, when BGFC measures were derived 

from the residual activity, they effectively demonstrated how a parcel integrates multitasking 
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objectives with their underlying components. This suggests that the information conveyed in 

BGFC is not driven by and independent from stimulus-evoked signals.  

Next, we compared the CCS based on evoked activity and connectivity (i.e., BGFC) 

across brain regions. A two-way repeated measures ANOVA with neural measure (evoked 

activity, BGFC) and cortical networks (seven cortical networks) revealed a main effect of neural 

measure (F(1,31) = 8.44, p < 0.01,  𝜂! = 0.21), highlighting the overall greater sensitivity of 

evoked-activity patterns for compositional coding. There was also a main effect of networks 

(F(6,186) = 10.58, p < 0.001,  𝜂! = 0.25). Notably, the ANOVA revealed a significant interaction 

between the two factors (F(6,186) = 4.37, p < 0.001,  𝜂! = 0.12), suggesting varying sensitivity of 

activity- and connectivity-based CCS across networks. Post-hoc t-tests (Figure 3.3B) further 

indicated that this interaction was driven by the default mode and ventral-attention networks, 

which displayed numerically higher connectivity-based CCS compared to activity-based CCS, 

while the opposite pattern was observed in all other cortical networks. Similarly, a repeated 

measures ANOVA involving neural measure and subcortical ROIs revealed a main effect of ROI 

(F(6,186) = 3.27, p = 0.004,  𝜂! = 0.10), but no main effect of neural measure (F(1,31) = 1.11, p = 

0.30,  𝜂! = 0.03) or interaction (F(6,186) = 1.18, p = 0.32,  𝜂! = 0.04) was observed.        

Evoked activity and BGFC capture non-identical aspects of compositional coding  

The findings thus far indicate that both the evoked activity patterns and background 

functional connectivity (BGFC) patterns of a parcel can exhibit compositional coding properties. 

However, a lingering question persists: as a parcel represents a multitasking condition by 

combining the neural representations of its constituent tasks, do the composite activity-based 

neural representation and the composite connectivity-based neural representation yield similar or 

disparate insights into cognitive processes during multitasking? To address this inquiry, we ran a 
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Figure 3.3. Activity- and connectivity-based compositional coding scores (CCS).  
A) Classifiers were trained on parcel-level neural representations (i.e., either activity patterns or 
background functional connectivity seedmaps) of non-multitasking conditions and tested on 
those of multitasking conditions. Correct labeling in the testing set was based on the model 
assigning higher probability scores to both relevant tasks (e.g., greater probability for both the 
Face and Tone classes compared to the scene class for a Face/Tone multitasking epoch). 
Compositional coding scores were calculated as the percentage of correctly predicted epochs in 
the testing set. B) Comparison of activity- and connectivity-based CCS across cortical networks 
and subcortical ROIs. Error bars represent the standard error of the mean across all subjects, with 
the dashed line indicating chance level.  
 
 
mixed-effects linear regression model to explore the association between CCS scores derived 

from activity and connectivity across all parcels, with participants treated as a random effect. The 

premise is that if compositional coding of evoked activity and BGFC largely depict overlapping 

facets of cognitive processing in multitasking, then the two scores should exhibit a robust 

positive relationship, consistent across participants. Conversely, we would not anticipate 

observing a significant group-level relationship if the compositional coding of the two neural 
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measures predominantly encapsulate distinct information. As depicted in Figure 3.4A, the model 

did not reveal a robust relationship between CCS obtained from the two neural measures (group-

level β = 0.013, p = 0.14, 95% CI = [-0.004, 0.031]). We also examined the model for parcels 

within each cortical network; however, none of the models exhibited a significant relationship 

between the two CCS measures (ps > 0.07). 

 These results indicate that the composite activity patterns and BGFC patterns signify 

separate dimensions of multitasking. Consequently, we hypothesized that a composite model, 

integrating both activity- and connectivity-based neural measures during both training and 

testing, would yield higher CCS compared to using a single neural measure (See Methods:  

Activity- and connectivity-based compositional coding score for details). The CCS was averaged 

across all parcels within each participant for each neural measure (i.e., BGFC, evoked activity, 

and ensembled). As anticipated, a one-way repeated measures ANOVA revealed a significant 

main effect of neural measures (Figure 3.4B; F(2,62) = 13.33, p < 0.001,  𝜂! = 0.30). Post-hoc t-

tests indicated that the ensembled CCS is significantly higher than both BGFC-based CCS 

(t(31) = 3.86, p < 0.001, 95% CI = [0, 0.01], Cohen’s d = 0.43) and activity-based CCS 

(t(31) = 5.30, p < 0.001, 95% CI = [0.01, 0.02], Cohen’s d = 0.81). Subsequently, one-sample t-

tests were performed on each parcel’s ensembled CCS against the chance level to identify all 

parcels demonstrating significantly off-chance ensembled CCS (p < 0.05), with Figure 4C 

displaying the t-stats of all off-chance parcels. These parcels play a crucial role in supporting the 

brain's multitasking abilities by aiding in the achievement of multitasking objectives and 

facilitating neural processing through meaningful evoked activity patterns or background 

connectivity patterns. It's important to note that computing the ensemble enables the 

identification of parcels that may not individually surpass the threshold based on either activity 
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or connectivity patterns alone, but still significantly contribute to multitasking when both neural 

measures are taken into account. Overall, 133 out of 214 parcels exhibited significantly off-

chance ensembled CCS. The parcels with the highest t-estimates were primarily located in the 

lateral prefrontal cortex (lPFC), intraparietal sulcus (IPS), precuneus (PCUN), post cingulate 

cortex (PCC), and fusiform area (FFA). Notably, among the 14 subcortical ROIs, only the left 

thalamus (THL) and bilateral hippocampus (HPC) displayed off-chance ensembled CCS. 

 

Figure 3.4. Ensemble-based compositional coding scores (CCS) outperform CCS based on 
a single measure.  
A) The relationship between connectivity (BGFC) and activity-based CCS across 214 brain 
parcels. Each gray line represents the regression line for an individual participant, while the red 
line represents the group-level regression line. B) CCS values were averaged across all parcels, 
resulting in a single value for each participant per neural measure. The dotted gray line indicates 
the chance level. Error bars represent the standard error of the mean across all participants, with 
asterisks indicating statistical significance at p < 0.05. C) Parcels displaying significantly off-
chance ensemble CCS. The color map illustrates t-stats from one-sample t-tests. 
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Measure and attentional domain specificity of compositional coding  

The preceding findings have pinpointed parcels that play a role in multitasking. However, 

the extent of their involvement in multitasking may vary depending on the neural measure and 

the attentional domain of multitasking. Regarding neural measures, a parcel's off-chance 

performance in the ensemble CCS can be influenced by either activity- or connectivity-based 

measures alone. In other words, a parcel might exhibit significant changes in connectivity 

patterns that reflect neural processing during multitasking, while its evoked activity pattern may 

not convey meaningful information, or vice versa. On the other hand, while attention can be 

generally dichotomized into external and internal attention (Chun et al., 2011), multitasking can 

involve tasks within the same attentional domain (Face/Tone condition) and across attentional 

domains (Face/Scene and Scene/Tone conditions). Consequently, parcels may demonstrate 

selectivity in representing within- and across-domain multitasking. 

To explore the measure specificity of parcels, we conducted paired sample t-tests 

comparing activity- and connectivity-based CCS scores for each parcel with off-chance 

ensembled CCS (see Methods: Examining measure- and domain-specificity of parcels for 

details). The findings indicate that the majority of parcels exhibiting compositional coding 

properties are measure-general (Figure 3.5A). This implies that both their evoked activity and 

BGFC patterns similarly represent multitasking through compositional coding. Notably, nearly 

all parcels demonstrating compositional coding property within the dorsal attention network are 

measure-general. Moreover, all cortical networks consist of parcels that exhibit activity-specific 

compositional coding, indicating significantly stronger properties when examining evoked 

activity compared to BGFC. In contrast, only five parcels demonstrate BGFC-specificity, 

showing significantly stronger compositional coding when considering BGFC over evoked 
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activity. These five parcels encompass the prefrontal cortex (PFC) and superior parietal lobule 

(SPL) from the frontoparietal control network, as well as the parahippocampal cortex (PHC) and 

bilateral medial PFC from the default mode network (Figure 3.5A). 

To investigate the attentional domain specificity of parcels, we computed the ensembled 

CCS separately for each multitasking condition instead of averaging across conditions. Within-

domain CCS refers to the CCS for the Face/Tone condition, while across-domain CCS refers to 

the averaged CCS for the Face/Scene and Scene/Tone conditions (see Methods: Examining 

measure- and domain-specificity of parcels for details). Paired sample t-tests were conducted to 

compare within- and across-domain CCS. Our findings suggest that most parcels are domain 

general when representing multitasking goals and neural processing (Figure 3.5B,C). In 

particular, nearly all parcels in the dorsal attention network that demonstrate compositional 

coding properties are domain-general. This means that, with the neural measure that 

encompasses both evoked activity and BGFC, these parcels do not differentiate in representing 

multitasking conditions that involve tasks that are both perceptual compared to one perceptual 

and one retrieval task. Furthermore, as depicted in Figure 3.5B, parcels located in the dorsal 

lateral prefrontal cortex (dlPFC), PCUN, IPL, PHC, and hippocampus (HPC) demonstrated 

enhanced compositional coding when multitasking involved tasks within the same attentional 

domain. Conversely, parcels situated in the lateral prefrontal cortex (lPFC), superior frontal 

gyrus (SFG), anterior cingulate cortex (ACC), visual and somatosensory cortex, as well as the 

left thalamus (THL), exhibited a stronger compositional coding property when multitasking 

occurred across attentional domains. In supplementary analyses, we explored whether the 

domain specificity of a parcel or network might differ based on the neural measure utilized. Our 

findings indicate that parcels in the control and salience/ventral attention networks tend to 
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exhibit increased within-domain specificity when assessed using BGFC-based measures 

compared to activity-based measures. Conversely, parcels in the dorsal attention networks and 

the visual networks tend to demonstrate heightened across-domain specificity when assessed 

using BGFC-based measures compared to activity-based measures (Figure S3.1).  

Discussion 

The goal of the current study was to investigate the compositional coding characteristics 

of individual brain parcels and networks in order to elucidate the neural mechanisms involved in 

effective multitasking. Notably, we assessed this property using both evoked activity-based 

measures and intrinsic functional connectivity measures (i.e., BGFC). Additionally, we 

compared these measures across multitasking conditions within and across attentional domains. 

Firstly, we observed robust compositional coding properties in the patterns of background 

functional connectivity (FC) across multiple networks, even in cases where the residual activity,  

 

Figure 3.5. Measure- and domain-specificity of parcels exhibiting compositional coding 
property.  
A) Criteria for categorizing parcels as evoked-activity-specific (red), BGFC-specific (blue), and 
measure-general (gray). Parcels with significantly off-chance ensembled CCS were selected. For 
each parcel within this subset, t-stats were computed between its activity- and BGFC-based CCS, 
with positive values indicating greater activity-based CCS and negative values suggesting the 
opposite. B) Criteria for categorizing parcels as within-domain-specific (green), across-domain-
specific (purple), and domain-general (white). Parcels with significantly off-chance ensembled 
CCS were selected. For each parcel within this subset, t-stats were computed between its 
ensembled within-domain- and ensembled across-domain-CCS, with positive values indicating 
greater ensembled within-domain-CCS and negative values suggesting the opposite. Here, 
attentional domain specificity refers to whether the cognitive task requires external or internal 
attention. Within-domain indicates that the multitasking condition involves two subtasks of the 
same attentional domain, while across-domain means that the multitasking condition involves 
subtasks from different domains. C) The t-stats of each parcel showing significantly off-chance 
ensembled CCS, grouped by networks. The x-axis displays the t-stats of the domain-specificity 
estimates and the y-axis shows the t-stats of the measure-specificity estimates. Each dot 
represents a parcel, and the dotted lines represent the t threshold for being statistically significant 
(p < 0.05). 
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from which BGFC was computed, did not exhibit compositional coding (Figure 3.3). Secondly, 

our findings suggest that compositional coding is not limited to the lateral prefrontal cortex 

(lPFC) and the frontoparietal network; instead, it involves other networks such as the dorsal 

attention network in facilitating efficient multitasking (Figure 3.3). Thirdly, our results indicate 

that compositional coding of evoked activity and background FC likely represent distinct facets 

of multitasking neural processes, with certain brain networks relying more on one aspect than the 
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other (Figure 3.4 and 3.5). Additionally, the compositional coding of background FC, compared 

to evoked activity, exhibits stronger preferences for either within- or across-domain multitasking 

conditions, which vary across different brain networks (Figure S3.1). 

BGFC robustly reveals constituent task-states during multitasking 

 In human fMRI research, previous studies have demonstrated that functional connectivity 

patterns can effectively reflect ongoing cognitive processes, including current behavioral goals, 

sustained attention levels, and targets of selective attention (Al-Aidroos et al., 2012; Cole, 

Reynolds, et al., 2013; Gonzalez-Castillo et al., 2015; Rosenberg et al., 2020; Shirer et al., 2012). 

Additionally, functional connectivity patterns have been proposed to capture cognitive processes 

independently of stimulus-evoked activities (Fox & Raichle, 2007; J. Kim & Horwitz, 2008; 

Summerfield et al., 2006). In line with these perspectives, findings from our study indicate that 

even after modeling and removing stimulus-evoked activities, multivariate pattern analyses 

(MVPA) of the residual activity within a parcel did not successfully identify the constituent tasks 

of multitasking (Norman et al., 2006). However, when pearson correlations were computed 

between the residual activities of that parcel and those of every other parcel, MVPA of this 

BGFC seed map still retained information about the ongoing multitasking components. It is 

essential to note that due to the individually tailored titration procedure (see Methods: 

Experimental design and procedure for details task difficulty in terms of accuracy and reaction 

time was matched across the three sub-tasks. Therefore, the success of BGFC in reflecting the 

constituent tasks being performed cannot be attributed to differences in cognitive demands or 

stimulus-evoked signals remaining in the residual activity. 

We posit that the observed compositional coding property of BGFC stems from the fact 

that multitasking necessitates the interaction of multiple brain networks (Bressler & Menon, 



 

106 
 

 

2010; Santangelo, 2018) and such interaction is manifested in the form of noise correlation 

captured by BGFC but not by evoked activity (Al-Aidroos et al., 2012; Bejjanki et al., 2017). 

Specifically, due to the parcel-level analysis approach employed in our study, evoked activity 

was measured as the pattern of activity across voxels within a parcel, primarily reflecting local 

signals concerning the behavior of a specific brain area. In contrast, connectivity was measured 

as the pattern of BGFC between a parcel and every other parcel in the brain, thus containing 

more global signals regarding communication between brain regions (see Methods: Evoked 

activity and background functional connectivity for details). With the removal of stimulus-

evoked activity, the seeming task-induced reactions of the brain parcels were no longer apparent, 

leading to the absence of compositional coding property in the local signal of residual activity. 

Yet information regarding the ongoing multitasking condition was not solely reliant on the local 

reactions of parcels but was also evident in the global communication pattern between parcels. 

This communication, facilitated through noise correlation, persisted in the residual activity, 

enabling BGFC to capture components of multitasking (Al-Aidroos et al., 2012). 

Previous studies exploring the relationship between FC patterns and task-states have 

typically focused on identifying connectivity edges that differ between task states (Li et al., 

2023; Shirer et al., 2012). However, the current findings suggest that task-states, instead of being 

independent and detached from each other, actually share resemblance and even 

interdependency. Specifically, the results of our study suggest that such interdependency 

represents the transfer of skills and knowledge. Consequently, it is meaningful to study how task-

states resemble each other in terms of functional connectivity patterns to identify the neural 

mechanisms underlying the repertoire of the key cognitive functions that are widely applied 

across multiple task states. 
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Compositional coding of evoked activity and connectivity reflect non-identical aspects of 

multitasking  

 In line with prior research, we first established that the brain integrates regional reactions 

of individual brain regions (assessed through evoked activity) and global communication 

patterns between regions (assessed through BGFC) of constituent tasks to effectively represent a 

multitasking condition (Cole et al., 2011; Cole, Reynolds, et al., 2013; Reverberi et al., 2012). 

Earlier studies have proposed that such compositional coding during multitasking plays a vital 

role in knowledge and skill transfer, enabling humans to swiftly learn instructed tasks and adapt 

flexibly to new situations (Cole, Laurent, et al., 2013). Yet it remains unknown that whether this 

compositional encoding of evoked activity and BGFC reflects similar or distinct neural processes 

linked to knowledge and skill transfer during multitasking. Prior research has suggested that 

evoked activity and BGFC patterns capture at least partially different aspects of neural processes 

when representing a single task state. Specifically, combining these two neural measures using 

ensemble methods has been shown to significantly enhance classification accuracy in 

distinguishing between task states (Li et al., 2023; Manning et al., 2018). Building on this, our 

study expands on these findings, demonstrating that the ensemble model combining both neural 

measures could decode constituent tasks with significantly greater accuracy, as evidenced by 

higher CCS scores (Figure 3.4B). Furthermore, our results indicate that the extent to which 

evoked activity reflects the multitasking process does not predict the extent to which BGFC 

reflects the same process. Taken together, these findings suggest that during multitasking, the 

compositional encoding of evoked activity and BGFC reflects distinct aspects of top-down 

attentional control. 
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 Notably, findings from the current study suggest that the disparities between evoked 

activity and BGFC in reflecting multitasking processes depend on their sensitivities to whether 

the subtasks being multitasked belong to the same attentional domain (i.e., external and internal). 

Specifically, most brain regions exhibit composite evoked activity patterns regardless of whether 

the subtasks are both perceptual (i.e., within attentional domain) or one perceptual and one 

retrieval (i.e., across attentional domain). In contrast, a greater number of brain regions 

demonstrate selectivity when examining BGFC patterns. Some regions only display composite 

BGFC patterns when the attentional domain of subtasks is the same, while others show 

meaningful BGFC patterns only when subtasks are of different domains. This effect is 

particularly pronounced for brain regions in the control, default mode, dorsal attention, ventral 

attention, and visual networks (Figure S3.1). Consequently, it appears that evoked activity 

patterns convey transferable skills and knowledge that are more universally applicable across 

attentional domains, while BGFC patterns facilitate learning that is more specific to either 

perceptually or mnemonically driven information. 

Networks beyond the prefrontal cortex contribute to multitasking 

 Our findings indicate that both the evoked activity and the BGFC patterns within the 

prefrontal cortex (PFC) and the control network are crucial for facilitating the transfer of skills 

and knowledge during multitasking (Figure 3.3B). his discovery aligns with the guided 

activation account, which posits that the evoked activity pattern of the prefrontal cortex 

delineates goals and rules, subsequently directing the activation of other brain regions (Miller & 

Cohen, 2001). Furthermore, our results are consistent with prior research indicating that the 

frontoparietal control network modulates its functional connectivity (FC) patterns with other 

brain regions to optimize the guided activation process (Braun et al., 2015; Cole, Reynolds, et 
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al., 2013). These findings suggest that when faced with multitasking comprising familiar 

constituent goals, the guided activation process in the frontal cortex is achieved through 

compositional coding. 

 Importantly, employing a whole-brain, data-driven approach, our study also identified 

brain regions within the default mode network (DMN), dorsal attention network (DAN), and 

visual networks, alongside the thalamus and hippocampus (HPC). In particular, our findings 

indicated the involvement of the evoked activity and BGFC patterns of these regions in 

facilitating and achieving attentional control during multitasking (Figure 3.3B). In this context, 

we discuss previous research and theories regarding significant attentional control mechanisms 

beyond the PFC. Firstly, a body of work suggests that the thalamus plays a crucial role in 

integrating multimodal information through the PFC-thalamus-hippocampus circuit (Theyel et 

al., 2010; Weel et al., 2019). This circuit is implicated in supporting various behavioral 

functions, including memory organization and executive functions (Chudasama et al., 2012; 

Jayachandran et al., 2019), and lesions in the thalamus can result in impairments in high-level 

cognitive functioning (de Bourbon-Teles et al., 2014). It has been postulated that following the 

integration of multimodal information, this circuit facilitates the maintenance and coordination of 

task-relevant cortical representations by modulating the FC pathways within the cortex 

(Nakajima & Halassa, 2017). Secondly, evidence suggests that switching between external- and 

internal-oriented attention requires control mechanisms extending beyond the PFC. Several 

studies propose that the hippocampus serves as a pivotal switchboard in transitioning between 

these attentional domains. Specifically, the HPC-DAN coupling is stronger during external 

attention, while the HPC-DMN coupling is stronger during internal attention (H. Kim, 2015; 

Poskanzer & Aly, 2022). Moreover, evidence from our previous work indicates that sustained 
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BGFC within the DMN characterizes internal attention, whereas stable patterns of BGFC within 

the DAN/frontoparietal control network characterize external attention (Li et al., 2023). Thirdly, 

research suggests that the visual network itself also engages in low-level attentional control. 

Particularly, the BGFC pattern of early visual regions shifts from coupling to face-specialized 

areas to coupling to scene-specialized areas when the behavioral goal transitions from perceiving 

faces to perceiving scenes (Al-Aidroos et al., 2012; Córdova et al., 2016; Norman-Haignere et 

al., 2012; Tompary et al., 2018). Collectively, these pieces of evidence suggest that the 

substantial compositional coding scores (CCS) observed in the DMN, DAN, visual network, 

HPC, and thalamus, akin to those in the PFC, reflect the combination of critical attentional 

control processes within these regions for the purpose of multitasking. 

Conclusion  

 This chapter aimed to understand how the top-down attentional control system 

concurrently represent two attentional goals, whether externally or internally driven. 

Specifically, the study focused on examining the compositional coding property reflected in the 

evoked activity and intrinsic functional connectivity (FC) patterns across all brain cortical and 

subcortical regions. The chapter provided strong evidence suggesting that multitasking 

attentional goals are represented by merging the neural representations of their individual tasks, 

which can be either activity- or connectivity-based. Notably, our findings indicated that the 

strength of compositional coding varied across different networks and neural measures. 

Additionally, activity- and connectivity-based neural measures showed distinct preferences in 

compositional coding for tasks within the same or different attentional domains. In sum, the 

results from this chapter offered valuable insights into understanding how top-down attentional 

control manages complex attentional goals. 
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CHAPTER IV 

BACKGROUND FUNCTIONAL CONNECTIVITY KIT: A PUBLIC PYTHON LIBRARY 

DEVELOPED FOR BGFC ANALYSES 

 
Introduction 

In human fMRI, functional connectivity (FC) is a neural measure that examines 

distributed neural interactions between brain regions that are functionally homogenous but 

anatomically separated (Friston, 1994). FC is operationalized as the statistical dependence (e.g. 

correlation) between time series of preprocessed blood oxygen level-dependent (BOLD) signals 

across distinct brain regions. Resting-state functional connectivity (RSFC) is the measure of FC 

when neither explicit cognitive tasks nor external stimuli were presented to the participants. 

RSFC has been used to reflect endogenous functional structures of the brain (e.g., Damoiseaux et 

al., 2006; Gratton et al., 2018; Yeo et al., 2011). One the other hand, task-state functional 

connectivity measures FC when the brain is performing an explicit behavioral task. Previous 

studies have indicated that engaging in a behavioral task leads to subtle but significant changes 

in the functional structure of the brain, as observed through FC pattern modualtions  (Cole et al., 

2014). As task-state functional connectivity becomes a popular neural measure of the brain 

during task, a main challenge of this approach is to exclude the “co-activation confounds” during 

the preprocessing stage of the measured human fMRI signals. Specifically, co-activation 

confounds are introduced by stimulus-related activity in multiple brain regions, thus creating 

spurious connectivity even though having no real functional interactions among them (Cole et 

al., 2019). Background functional connectivity (BGFC) is a variant of functional connectivity 

analysis with the goal being to remove the stimulus-evoked responses, using various techniques, 
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leaving only the residual timeseries for subsequent connectivity analyses (Al-Aidroos et al., 

2012; Cole et al., 2019; Fair et al., 2007; Frank & Zeithamova, 2023).  

One dominant approach to model and remove the stimulus-evoked responses is to use a 

finite impulse (FIR) basis function to model the mean evoked responses of every time point 

across blocks (Al-Aidroos et al., 2012; Córdova et al., 2016; Norman-Haignere et al., 2012). 

Such approach has been shown to be able to remove almost all coactivation confounds (Cole et 

al., 2019). However, although the approach has been conceptually introduced in several previous 

works, there remains neither thorough and detailed guide on its operation nor any standard open-

source tools to conduct such analyses. Here we introduce the background functional connectivity 

kit (BGFC-kit), an open-source python library developed to facilitate and standardize the 

preprocessing and computation of background functional connectivity 

(https://github.com/peetal/bgfc_kit). Importantly, BGFC-kit provides pipelines that can perfectly 

connect to fMRIprep, a popular fMRI preprocessing tool (Esteban et al., 2019) and leverages 

available fMRI analyses libraries such as FSL and AFNI, integrated in a workflow using Nipype 

(https://nipype.readthedocs.io/en/latest/). Specifically, BGFC-kit presents tools that cover four 

important stages of BGFC analyses: 1) tools that intake key experimental design parameters and 

generate FIR model design matrix, 2) tools that model and remove co-activation confounds and 

output both the modeling parameters and residual activities, 3) tools that divide timeseries into 

epochs (blocks) and compute background connectivity matrices, and 4) tools for potential 

subsequent analyses using the computed connectivity measures. Each of these features will be 

further introduced in the following sections. We present an accompanying notebook that applies 

these tools in BGFC-kit to an available dataset, serving as a guidance for using the library  

(https://github.com/peetal/bgfc_kit/blob/main/bgfc_kit/demo/).  

https://github.com/peetal/bgfc_kit
https://nipype.readthedocs.io/en/latest/
https://github.com/peetal/bgfc_kit/blob/main/bgfc_kit/demo/
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Main features in BGFC-kit 

Finite impulse response (FIR) model  

 BGFC-kit uses a FIR task regression approach to model and then remove the task-evoked 

activities. In this approach, the cross-block mean response is calculated for each time point using 

within a specified window length, synchronized with the block onset for a given task condition. 

For example, if the first 20 time points were being modeled for a task condition consisted of 5 

blocks, the mean response of each of the 20 time point would be modeled across the 5 blocks, 

leading up to 20 beta estimates (Al-Aidroos et al., 2012; Cole et al., 2019; Cooper & Ritchey, 

2019; K. Duncan et al., 2014; Norman-Haignere et al., 2012). This approach is apart from the 

traditional modeling approach that it does not make any assumption regarding to the 

hemodynamic response function (HRF), but determine the best fitting shape empirically, 

allowing for more precise modeling of the task-evoked activity (Cole et al., 2019; Fair et al., 

2007). 

 BGFC-kit includes a module to generate the design matrix that be used for performing 

FIR task regression. Specifically, this module allows user defined configuration files containing 

their specific experimental design parameters, such as the number of task conditions, the number 

of blocks within a condition, the number of timepoints to model etc. Using the configuration file, 

this module will be able to generate a design matrix that includes a binary regressor for every 

time point in the task blocks that the user aims to model, which can be used again by BGFC-kit 

during the modeling stage.  

Notably, analyses of human fMRI data can be influenced by head motion, leading to the 

exclusion of time points with noticeable spikes in head motion from the design matrix. As in the 

previous example, the usual practice involves modeling the mean evoked responses of a time 
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point across 5 blocks of a specific condition. However, if a head motion spike is detected at this 

time point in one of the blocks, the mean evoked response for this time point will only be 

modeled across the remaining 4 blocks. In the block with the motion spike, the binary regressor 

for this time point will be set to 0. BGFC-kit achieves this by referring to the framewise 

displacement confound parameter measured by fMRIprep, and drops the time points using a user 

defined spike cutoff optionally specified in the configuration file.  

Extracting residual timeseries  

The module within BGFC-kit responsible for extracting the residual timeseries is 

intended to complement the preprocessing pipeline of fMRIprep (Esteban et al., 2019). Utilizing 

the minimally preprocessed NIFTI files and the confound parameter estimates generated by 

fMRIprep, BGFC-kit carries out additional preprocessing steps. These steps include: 1) 

smoothing and filtering, 2) applying a first general linear model (GLM) to eliminate nuisance 

regressors, 3) demeaning and concatenation, and 4) employing a second GLM to eliminate 

stimulus-evoked activities.  

Smoothing and filtering (Figure 4.1 purple and orange boxes). BGFC-kit initiates the 

preprocessing by applying spatial smoothing and high-pass filtering to each fMRIprep 

preprocessed image, utilizing user-defined parameters such as smoothing kernel size and high-

pass filter cutoff. Spatial smoothing was done using FSL SUSAN workflow implemented in 

Nipype, and high-pass filtering was performed using fsl.ImageMaths. The first GLM (Figure 4.1 

blue box). The first GLM aims to remove selected confound estimates from the each timeseries, 

including the 6 motion parameters as well as white matter (MW) and cerebrospinal fluid (CSF) 

estimated by fMRIprep. BGFC-kit performs the first GLM using FSL FEAT implemented in 

Nipype (Woolrich et al., 2001). Demeaning and concatenation (Figure 4.1 green box). BOLD 
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signals often exhibit arbitrary units, introducing potential biases when comparing different runs. 

To address this issue, BGFC-kit employs a normalization step for the BOLD signal within each 

run and concatenates runs before modeling the task-evoked response. More precisely, BGFC-kit 

normalizes each run using the mean and standard deviation of the BOLD signals during the inter-

block interval of that run. This normalization is based on the rationale that the BOLD signals 

during the "resting" period should remain consistent across runs. Subsequently, the demeaned 

timeseries are concatenated together using a shared brain masks across all runs. The second GLM 

(Figure 4.1 pink box). The second GLM takes in the previously generated design matrix and 

compute both the parameter estimates for each regressor and residual timeseries. BGFC-kit 

outputs. The outputs of BGFC-kit preprocessing pipeline includes 4 important components: 1) 

the residual timeseries, which can then be used for computing background functional 

connectivity, 2) the “evoked” timeseries, which is the concatenated timeseries prior to the second 

GLM, 3) the parameter estimates of the second GLM, which can be used to perform sanity 

check, and 4) a brain mask for the subject shared across all fMRI functional runs.  

Computing BGFC from residual activities  

BGFC-kit encompasses various functions designed to operate on the residual timeseries 

resulting from the post-fMRIprep preprocessing pipeline. These functions are instrumental in 

computing whole-brain background functional connectivity matrices. Given the extensive 

number of voxels in the brain, calculating a voxel-level whole-brain correlation matrix can be 

impractical. To address this, BGFC-kit employs dimension reduction through parcellation, using 

a predefined parcellation mask (e.g., Gratton et al., 2018; Schaefer et al., 2018; Yeo et al., 2011) 

to divide the brain into a manageable number of parcels with each parcel reflecting the averaged 

neural activity across all voxels within it. Additionally, BGFC-kit provides tools to unpack the 
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Figure 4.1. BGFC-kit post-fMRIprep processing pipeline.  
This graph is modified based on the workflow graph automatically generated from Nipype. Each 
circle represents a Nipype node, which consists of an input field, a function that can be built-in 
(e.g., a FSL function) or user-defined (i.e., utility), and an output field. The name of each circle 
represents the name of the function contains within each node. The arrows connect the output 
field on the previous node to the input field of the next node, representing the order of the 
workflow. Some nodes can take inputs from multiple nodes and pass outputs to multiple nodes. 
The colored boxes represent the key components within this pipeline, including smoothing and 
filtering, the nuisance regression, de-meaning and concatenation, and the FIR model regression.  
 

residual timeseries into epochs (i.e., blocks) for each condition. For instance, in an experiment 

with 2 conditions, each consisting of 5 epochs, and modeling the first 20 timepoints of each 

epoch with the FIR regressors, BGFC-kit returns a 10 by 20 NumPy array. In this array, the first 
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dimension represents the total number of epochs, and the second dimension represents the 

residual activity with the task-evoked activity removed by the model.  

Following this, BGFC-kit offers a function to compute background connectivity matrices 

from these epoch-level residual timeseries using numpy.corrcoef. Subsequently, it performs 

Fisher z-transformation through numpy.arctanh to derive the final connectivity measure. The 

function provides flexibility in producing either epoch-level or condition-level outputs. Epoch-

level matrices enable the examination of connectivity matrices for each epoch individually. On 

the other hand, condition-level matrices are computed by averaging across all matrices of epochs 

within the same condition. The availability of both epoch- and condition-level matrices allows 

researchers to conduct diverse analyses to address various types of questions. For instance, 

epoch-level data can be particularly valuable for training and testing machine learning models to 

discern neural differences between conditions. In contrast, condition-level data proves useful for 

investigating neural-behavioral relationships across participants, especially when the number of 

trials within an epoch is too limited to be considered in isolation. 

It's essential to acknowledge that BGFC measures can be influenced by head motion 

spikes. Specifically, because the stimulus-evoked activities were not modeled at the time points 

of motion spikes when constructing the design matrix for FIR regressors, the residual timeseries 

near the spike may contain a mix of stimulus-evoked and motion-distorted signals. 

Consequently, in certain cases, researchers may prefer to exclude specific time points associated 

with head motion spikes when computing connectivity measures. BGFC-kit implements this 

operation by incorporating a function that systematically scans the residual timeseries, 

identifying and masking the time points near a head motion spike based on framewise 

displacements measured by fMRIprep. Subsequently, motion-corrected BGFC matrices are 
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computed using numpy.ma.corrcoef followed by Fisher z-transformation, and this operation is 

available for both epoch- and condition-level analyses. 

Potential subsequent analyses 

 As recommended by previous studies, both the residual timeseries and the BGFC 

matrices offer avenues for diverse subsequent analyses, tailored to specific research inquiries. 

BGFC furnishes tools and illustrative examples for several of these potential analyses, 

conveniently accessible in the accompanying notebook demonstration (see 

https://github.com/peetal/bgfc_kit/blob/main/bgfc_kit/demo/). 

 Sanity check. A fundamental assumption underpinning BGFC analyses is the efficacy of 

the FIR model in capturing most of the stimulus-evoked neural activity. Therefore, it is important 

to conduct sanity checks to validate this assumption and ensure the absence of task-evoked 

components that may have eluded removal by the GLM models. BGFC-kit offers a suite of tools 

for this purpose. Firstly, it provides functions to plot the parameter estimates of the FIR 

regressors for each parcel of the interest to examine each whether the estimates capture the block 

design structure within the task paradigm. In these plots, one should observe regressors capturing 

inter-block intervals reflecting baseline neural activity, while those modeling task should depict 

either activation (e.g., in control network regions) or deactivation (e.g., in default mode network 

regions), resulting in a discernible boxcar or inverted boxcar function. Secondly, BGFC-kit 

assesses whether residual timeseries retain any informative activity patterns, as successful 

removal of stimulus-evoked activities should render these patterns incongruent with external 

stimuli and processing. Specifically, BGFC-kit can conduct multi-voxel pattern analyses on both 

residual and pre-FIR timeseries to discriminate between selected task conditions (Norman et al., 

https://github.com/peetal/bgfc_kit/blob/main/bgfc_kit/demo/
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2006). Chance-level performance in the former and a deviation from chance in the latter would 

signify successful modeling and removal of task-evoked activities. 

 BGFC based machine learning classifiers. One subsequent analysis within the realm of 

BGFC analyses involves scrutinizing the extent to which stimulus-independent, endogenous 

functional connectivity (FC) reflect ongoing task states (e.g., Gonzalez-Castillo et al., 2015; Li et 

al., 2023). To conduct this analysis, cross-subject classification could be performed upon the 

BGFC matrices computed by BGFC-kit to differentiate between task conditions. Specifically, the 

notebook demonstration employs a leave-one-subject-out cross-validation framework, utilizing 

all epochs of the excluded subject as the testing set for each fold. Given the abundance of 

features within a connectivity matrix, principal component analysis (PCA) is initially performed 

on all BGFC matrices in the training set. The top 500 principal components are then utilized to 

train a regularized generalized linear model (e.g., softmax) to distinguish between selected task 

conditions, which is subsequently tested on epochs from the left-out subject in each fold. 

Machine learning performance can be averaged across folds to assess overall performance. 

Previous studies have suggested that the endogenous BGFC pattern associated with task states 

can be modulated to prioritize goal-relevant information processing (Chun et al., 2011; Turk-

Browne, 2013). 

Graph theory analyses. Another popular approach in subsequent BGFC analyses involves 

employing graph theory measures (Bullmore & Bassett, 2011; Fornito et al., 2013), as each 

BGFC matrix can often serve as the basis for constructing a graph (Barnett et al., 2021; Cohen & 

D’Esposito, 2016; Richiardi et al., 2011). BGFC-kit is seamlessly integrated with NetworkX 

(https://networkx.org/) and offers wrapper functions for computing graph theory measures across 

various thresholds. Previous studies in graph theory analyses have often opted to generate binary 

https://networkx.org/


 

120 
 

 

graphs by considering only the top percentage of edges instead of constructing graphs from all 

connectivity edges (e.g., Cohen & D’Esposito, 2016). BGFC-kit facilitates this approach by 

computing various graph theory measures, such as degrees, participation coefficients, and 

modularity, using graphs generated from the top 25%, 20%, 15%, 10%, and 5% of edges. These 

analyses offer a macro-level understanding of how the brain reconfigures itself to accommodate 

different behavioral task goals. 

Conclusion  

 This chapter introduces a self-developed public Python library designed to streamline 

background functional connectivity (BGFC) analyses. The library offers wrapped functions and 

pipelines that cover various stages such as: 1) FIR modeling for evoked activity, 2) 

preprocessing for extracting residual time series, 3) calculating BGFC measures, and 4) 

performing potential subsequent analyses with BGFC. We hope this library will make it easier 

and more appealing for researchers to conduct BGFC analyses, thus enabling more studies to 

explore the neural mechanisms of top-down attentional control through intrinsic functional 

connectivity modulations. 
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CHAPTER V 

GENERAL DISCUSSION 

 A major line of work in cognitive neuroscience has been directed toward understanding 

the neural mechanism underlying top-down attention control, which refers to the voluntary 

allocation of attentional resources to goal-relevant information (Corbetta & Shulman, 2002; 

Hopfinger et al., 2000). One line of works primarily focuses on investigating the operations 

performed upon the stimulus, such as the processes of monitoring, selection, and modulation, by 

examining  brain regions showing increased neural activity evoked by these operations (Corbetta 

et al., 2000; Kastner et al., 1999). Yet recent theories propose that in the presence of behavioral 

tasks and goals, the brain not only demonstrates evoked activities related to stimulus processing 

but also maintains a sustained task-state in the background of activation (Otten et al., 2002; 

Summerfield et al., 2006). Building upon this notion, another line of research has emerged to 

explore the neural mechanisms underlying the sustained maintenance of task states (Turk-

Browne, 2013). The present dissertation aligns with this line of inquiry and focuses on utilizing 

background functional connectivity (BGFC) as the neural measure to investigate the neural basis 

of top-down attentional control. 

 The research presented in this dissertation aimed to enhance our comprehension and 

support future studies on top-down attentional control from various perspectives. Firstly, I 

conducted whole-brain exploratory approach using whole-brain BGFC, revealing neural 

mechanisms that enable flexible transitions between external and internal attentional states 

(Chapter 2), as well as the concurrent maintenance of multiple attentional states, whether 

external or internal (Chapter 3). These data-driven approaches allow for the identification of 

crucial top-down attentional control mechanisms often overlooked in previous seed-based human 
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fMRI studies but consistent with theories proposed in rodent literature. Secondly, I examined the 

similarities and distinctions between BGFC and evoked activity in reflecting top-down attention 

control mechanisms. I presented evidence indicating that their differentiation lies in their 

preference for capturing either stimulus- or state-related signals (Chapter 2), and that various 

brain networks preferentially employ top-down attentional control via either stimulus- or state-

related signal (Chapter 3). Lastly, I developed and introduced an open-source Python library 

aimed at streamlining and standardizing the preprocessing stage of BGFC analyses (Chapter 4). 

Bridging top-down attentional control theories 

 It is a fundamental principle that the brain is inherently competitive. Various pathways 

within it, each carrying distinct sources of information, compete for dominance in shaping 

behavior. Multiple top-down attentional control accounts have been proposed to explain how 

attention can influence this competitive dynamic. First introduced by Desimone and Duncan 

(1995), the theory of biased competition elucidates top-down attentional control at the individual 

neuron level. This theory posits that the neuronal reaction to stimuli presented simultaneously is 

a weighted average of the reaction to individual stimuli, with attention influencing the weighting 

in favor of the attended stimulus. Subsequently, this theory was expanded beyond the single-

neuron level, with evidence indicating that attention effectively biases population-level 

multivariate activation patterns in object representation (Reddy et al., 2009). Building upon the 

theory of biased competition, Miller and Cohen (2001) proposed the guided activation account, 

emphasizing the prefrontal cortex's (PFC) role in biased competition. According to this account, 

the evoked activity patterns of the PFC represent current behavioral goals and rules, guiding 

activation patterns across neural pathways to other brain regions. It was suggested that activation 

patterns in the PFC are acquired over time to establish mappings between goals and necessary 
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actions. As a result, the PFC can orchestrate brain-wide activation to bias competition in 

alignment with the behavioral objective. The guided activation account finds support in the 

specialized functions of the PFC, which include multimodal convergence, adaptive plasticity, 

and robust feedback pathways enabling control over other brain regions (Cole et al., 2012; 

Friedman & Robbins, 2022; Menon & D’Esposito, 2022; Miller & Cohen, 2001). In addition to 

the modulations of evoked activity patterns, the guided activation account also suggests potential 

changes in the neural pathways. That is, the evoked activity pattern of the PFC dictates which 

neural pathways to traverse and subsequently influences the behavior of other brain regions 

(Miller & Cohen, 2001). Building upon this concept, the switching train tracks account asserts 

that top-down attentional control does not solely depend on managing evoked activation patterns 

from the PFC to bias competition and influence behavior. Instead, competition is also shaped by 

intrinsic functional connectivity (FC) modulation that are independent from evoked activities in 

the PFC, where goal-relevant information processing pathways are strengthened and irrelevant 

ones are weakened (Al-Aidroos et al., 2012; Turk-Browne, 2013). This account is supported by 

previous research indicating that intrinsic FC patterns engage in goal-oriented modulation both 

before and after the presence of actual behavioral tasks, even without guidance signals from the 

PFC (Gruber et al., 2016; Murty et al., 2017; Ploner et al., 2010; Sadaghiani et al., 2015; 

Tambini et al., 2017) 

 The findings from this dissertation align with these theories of top-down attentional 

control. Consistent outcomes from Chapters 2 and 3 show that intrinsic FC patterns, as measured 

by BGFC, exhibit goal-oriented modulations even after removing whole-brain evoked activity 

patterns. These results imply that the attentional control mechanisms reflected by FC 

modulations operate independently of those reflected by evoked activity pattern modulations. As 
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a result, biased competition can arise through two distinct pathways: firstly, via guided activation 

through PFC-generated activation patterns, and secondly, through intrinsic FC modulations in 

the background of activation (Al-Aidroos et al., 2012; Miller & Cohen, 2001; Turk-Browne, 

2013). Therefore, a comprehensive understanding of the neural mechanisms of top-down 

attentional control requires an integrative approach that combines these two lines of research. 

Additionally, the findings from this dissertation also offer insights that could potentially guide 

future research beyond established theories. The guided activation account primarily focuses on 

the PFC's role in initiating FC pathway modulations. However, the dissertation's results suggest 

the involvement of additional neural circuits, such as those involving the retrosplenial cortex 

(RSC) and thalamus, which have been highlighted in rodent studies. These circuits may also play 

a role in initiating FC pathway modulations alongside the PFC. 

Differences between activity- and connectivity-based neural measures  

 As depicted in the previous session, research on the neural mechanisms of top-down 

attentional control typically adopts two distinct approaches. The first approach, following the 

guided activation account, focuses on evoked activity patterns to identify brain regions activated 

during attentional control processes or to decode information revealing how they influence 

competition (Corbetta & Shulman, 2002; Long & Kuhl, 2018). The second approach, aligned 

with the switching train tracks account, concentrates on intrinsic FC patterns to unveil FC 

modulations induced by behavioral goals that bias competition in favor of goal-relevant 

information processing (Al-Aidroos et al., 2012; Cooper & Ritchey, 2019; K. Duncan et al., 

2014; Tompary et al., 2015). However, there has been limited exploration into whether activity- 

and connectivity-based neural measures reveal similar or distinct neural mechanisms of top-

down attentional control. The studies presented in this dissertation are among the first to 
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systematically compare the use of these two neural measures and shed light on the distinctions 

between the two perspectives. 

 Firstly, I provided evidence that both evoked activity and intrinsic FC (measured by 

BGFC) robustly reflect aspects of ongoing cognitive tasks. This is demonstrated by their ability 

to differentiate task conditions when only one task is being performed (Chapter 2) and to identify 

constituent tasks during multitasking (Chapter 3). Secondly, results from both chapters indicate 

that evoked activity generally contains more information than BGFC, as evidenced by the higher 

accuracy of machine learning models trained on evoked activity. However, Chapter 3 reveals 

evidence that this superiority of evoked activity may not always hold for certain brain networks 

such as the default mode network (DMN). Specifically, our findings suggest that BGFC of brain 

regions in the DMN may better reflect attentional control processes during multitasking 

compared to evoked activity patterns of these regions. These results suggest that while some 

brain networks tend to engage top-down attentional control more via evoked activity patterns, 

others preferentially engage this process via modulations in intrinsic FC patterns. Lastly, the 

studies in this dissertation consistently provide evidence that evoked activity and BGFC patterns 

reflect distinct aspects of top-down attentional control processes. Results from both Chapters 

indicate that an ensemble model combining both neural measures outperforms models using a 

single measure. In particular, Chapter 2 suggests that the differences between the two measures 

lie in the sensitivity of evoked activity patterns to stimulus-related signals, while BGFC patterns 

are more specific to state-related signals. In other words, evoked activity patterns exhibit greater 

sensitivity to variations in stimuli (e.g., intact vs. scrambled), whereas BGFC demonstrates 

heightened sensitivity to differences in states (e.g., perception vs. retrieval states) compared to 

evoked activity patterns. 
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Overall, the findings from this dissertation align with theoretical propositions suggesting 

that evoked activity and intrinsic FC patterns are independent from each other, reflecting non-

identical processes of top-down attentional control. Specifically, evoked activity captures more 

transient signals (stimulus-related), while intrinsic FC reflects relatively sustained signals (state-

related; (Otten et al., 2002; Summerfield et al., 2006). 

Neural mechanisms underlying externally- and internally oriented attention  

 Investigating top-down attentional control poses an inherent challenge due to its 

multifaceted and pervasive nature. Previous human fMRI research focusing on intrinsic FC 

modulations tends to narrow its scope to specific aspects of this cognitive process. For instance, 

some studies delve into intrinsic FC modulations associated with the control process of attending 

to face versus scene stimuli (Al-Aidroos et al., 2012; Córdova et al., 2016; Norman-Haignere et 

al., 2012; Tompary et al., 2015; Turk-Browne et al., 2010). Other studies concentrate on intrinsic 

FC modulations related to individual differences in specific cognitive functions, such as 

maintaining focus on pertinent information over prolonged periods (sustained attention) and 

attending to relevant details from past episodes (memory retrieval; Cooper & Ritchey, 2019; 

Rosenberg et al., 2020; Song & Rosenberg, 2021). Undoubtedly, these studies provide valuable 

insights into particular facets of top-down attentional control, illuminating how intrinsic FC 

modulations mirror such control systems. However, there is also merit in exploring the neural 

mechanisms underlying broader categories of top-down attention control based on specific 

taxonomies. 

 This dissertation undertook such an investigation by adopting the taxonomy of external 

and internal attention (Chun et al., 2011). This taxonomy categorizes top-down attentional 

control mechanisms into either externally-oriented attention, such as visual perception and 
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sustained attention, or internally-oriented attention, such as memory retrieval. Works in this 

dissertation explored the neural mechanisms underlying this taxonomy of top-down attentional 

control in two scenarios: 1) the mechanism for flexibly switching between external and internal 

attention states (Chapter 2), and 2) the mechanism for concurrently representing tasks of 

external or internal attention states (Chapter 3). These investigations yielded multiple findings 

that will be discussed in the context of previous literature. Firstly, findings from both chapters 

underscored the involvement of the frontoparietal control network in both external and internal 

attentional control processes. In Chapter 2, it was observed that regions within the control 

network displayed heightened BGFC during external attention tasks compared to internal ones. 

Furthermore, Chapter 3 revealed that BGFC patterns of the control network regions effectively 

captured the task conditions concurrently represented during multitasking. These results align 

with established theories proposing the control network as a flexible connector hub (Cole, 

Reynolds, et al., 2013; Gordon et al., 2018; Gratton, Sun, et al., 2018). Specifically, this theory 

posits that the control network not only demonstrates coordinated activity within its network but 

also swiftly adapts its brain-wide FC patterns to facilitate attentional control across various tasks. 

Furthermore, the results from Chapter 2 suggest that the retrosplenial cortex (RSC) acts 

as a switchboard in alternating between externally (perception) and internally (memory retrieval) 

oriented attention. Specifically, the RSC exhibited stronger coupling with regions in the default 

mode network (DMN) during external attention, but with regions in the frontoparietal control 

and dorsal attention network (DAN) during internal attention. This constitutes among the first 

evidence in human fMRI studies suggesting the role of intrinsic FC modulations centered on 

RSC in switching between external and internal attentional control. We posit that this finding is 

attributed to our non-seed-based, data-driven approach, without presuming network allegiance. 
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Previous works typically rely on a priori regions of interest, and the RSC is often included as part 

of the DMN network, making it challenging to identify the important role of the sole RSC 

region. (Cooper & Ritchey, 2019; Yeshurun et al., 2021). Moreover, our indication of the role of 

RSC aligns with rodent literature, such as its involvement in integrating sensory inputs and 

mnemonic information (Bicanski & Burgess, 2018), and in integrating animals' actual location in 

the external world (allocentric mapping) with their internal representations of location 

(egocentric mapping) during maze navigation (Alexander & Nitz, 2015). 

Lastly, findings from Chapter 3 indicate that effective top-down attentional control 

during concurrent tasks, whether external or internal, involves the coordinated activity of 

multiple brain networks and subcortical regions. This cortical and subcortical engagement aligns 

with various circuits proposed in previous literature for controlling external and internal 

attentional processes. Notably, previous studies have suggested the existence of a thalamus-

centered circuit responsible for managing memory and executive functions (Weel et al., 2019). 

Specifically, the thalamus has been identified as a highly adaptable connector hub, exhibiting 

extensive connectivity with various cortical functional networks within the human brain (Hwang 

et al., 2017). It plays a pivotal role in integrating multimodal information across the cortex (de 

Bourbon-Teles et al., 2014), and in facilitating the maintenance and coordination of task-relevant 

cortical representations by adjusting functional connectivity strengths within the cortex 

(Nakajima & Halassa, 2017). Additionally, a hippocampus (HPC)-centered circuit has been 

proposed to regulate both externally and internally oriented processing through pattern 

separation and completion, respectively (Norman, 2010).  Consequently, intrinsic FC modulation 

within HPC subregions and between the HPC and cortical and other subcortical structures have 
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been demonstrated to influence attentional control. (K. Duncan et al., 2014; H. Kim, 2015; 

Poskanzer & Aly, 2022).  

 Together, this dissertation serves as an exploration into the intrinsic FC modulations that 

underlie the mechanisms of top-down control across externally and internally oriented attention, 

utilizing a comprehensive, data-driven approach spanning the entire brain. Our discoveries not 

only pinpoint significant FC pathways consistent with established theories but also those 

overlooked in previous seed-based human fMRI research, yet aligned with findings from rodent 

studies. 

The prospect and challenge of whole-brain BGFC analyses  

 This dissertation places particular emphasis on data-driven, whole-brain background 

functional connectivity (BGFC) analyses, coupled with machine learning models and feature 

selection methods. It's important to acknowledge that BGFC encompasses any FC analyses that 

address coactivation confounds, such as through methods like gPPI and low-pass filtering (Frank 

& Zeithamova, 2023; McLaren et al., 2012). However, the BGFC analysis undertaken in this 

dissertation specifically focuses on employing the finite impulse response model to eliminate 

stimulus-evoked signals from the recorded timeseries (see Cole et al., 2019 and Frank & 

Zeithamova, 2023 for comparisons between various approaches for computing BGFC). In this 

section, we delve into the benchmarks, challenges, and future directions associated with 

performing exploratory analyses on whole-brain BGFC. 

 This dissertation attempted to conducted whole-brain BGFC analyses on both voxel-

level, utilizing full correlation matrix analyses (FCMA; Wang et al., 2015) and parcel-level, 

employing predefined parcellation schemes and network structure (Schaefer et al., 2018). 

Evidence was presented indicating that both methodologies successfully identified meaningful 
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BGFC modulations associated with top-down attentional control. However, these analyses 

encountered a trade-off between precision and complexity. Chapter 2 findings suggested that 

machine learning classifiers trained on voxel-level BGFC patterns achieved notably higher 

accuracy compared to those trained on parcel-level BGFC patterns. This outcome implies that, 

by avoiding predefined parcels, voxel-level BGFC analyses could pinpoint clusters of voxels 

wherein BGFC modulation more accurately capture the top-down attention control process. 

Nonetheless, the enhanced precision of voxel-level analysis is offset by increased computational 

demands and the need for sophisticated feature selection techniques to delineate clusters of 

interest, which could be circumvented through parcel-level analyses. 

 Following the computation of BGFC from the recorded timeseries, there are multiple 

pathways that subsequent analyses can pursue. The current dissertation focused on building 

machine learning models using BGFC patterns to distinguish between different attentional states 

(Chapter 2) and to decode concurrent tasks (Chapter 3). Feature selection methods were then 

applied to pinpoint brain regions influencing classifier performance based on BGFC patterns. 

While this approach undoubtedly yields meaningful and interpretable results, future studies could 

explore additional avenues complementary to the current approach. Firstly, researchers could 

consider conducting graph theory analyses on whole-brain BGFC alongside predefined 

parcellation schemes. The advantage of the graph theory approach lies in its interpretability, with 

each measure indicating specific properties of the functional network structure (Bullmore & 

Bassett, 2011; Rubinov & Sporns, 2011). Additionally, graph theory measures, such as the 

participation coefficient, could help identify brain parcels or networks with unique 

characteristics, like connector hubs (e.g., connector hubs; Cole, Reynolds, et al., 2013; Gordon et 

al., 2018). However, a downside of the graph theory approach is the challenge of pinpointing 



 

131 
 

 

specific FC pathways and circuits underlying top-down attentional control. Secondly, while the 

current dissertation focused on identifying BGFC modulations related to different attentional 

states, another direction could involve examining BGFC modulation in relation to individual 

differences in behavioral performance. Connectome-based predictive modeling (CPM) was 

developed for this purpose (Shen et al., 2017). Hence, it would be valuable to investigate the 

extent to which BGFC modulation underlying behavioral performances overlaps with or differs 

from those characterizing attentional states. In summary, future studies could explore BGFC 

analyses along any of these directions, employing different granularities (i.e., voxel or parcel 

levels), to better elucidate the neural mechanisms underlying top-down attentional control. 

Conclusion  

 The present dissertation employs whole-brain background functional connectivity 

(BGFC) analysis to delve into the neural mechanisms underpinning top-down attentional control 

as manifested in the intrinsic functional organization of the brain. It moves beyond the 

exploration of specific aspects or functions of top-down attentional control to unveil general 

neural circuits governing the taxonomy of externally- and internally-oriented control systems. 

Notably, this dissertation introduces innovative methodologies for conducting non-seed-based, 

data-driven BGFC analyses and develops tools to facilitate future research in this area. 

Collectively, works in this dissertation broaden our current comprehension of the neural 

mechanisms of top-down attentional control and pave the way for further exploration in the field. 
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APPENDIX: SUPPLEMENTARY MATERIALS 

 
Figure S2.1. FCMA feature selection process.  
The FCMA inner-loop used a leave-one-subject-out cross validation (LOOCV) framework to 
quantify the utility of each voxel. Within each training fold, we examined the degree to which 
each voxel’s background functional connectivity patterns (seed map) can be used to differentiate 
Retrieve vs. Perceive conditions and Retrieve vs. Scramble conditions. This leads to two n-vector 
accuracy measures across voxels, one for each task condition comparison. A composite voxel-
wise accuracy score was computed by taking the minimum of the two accuracy values for each 
voxel. The top k voxels in terms of composite accuracy score were selected to construct 
dimensionality reduced FC patterns (Figure 2.1F). Because each fold’s training data differed by 
one subject, a different (but typically highly overlapping) set of k voxels could be selected for 
each training fold. As a result, the full cross-validation framework create 24 masks of selected 
voxels for each choice of k. 
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Figure S2.2. Background FCMA and MVPA classifier accuracies. 
A) Background FC classification accuracy for each task comparison across different numbers of 
voxels selected by FCMA. Performance asymptoted when k = 3,000: Perceive-Scramble, Macc = 
67% ± 11%; Perceive-Retrieve, Macc = 79% ± 8%; Retrieve-Scramble, Macc = 75% ± 9%. B) 
Using the k = 3,000 mask, MVPA classifiers trained on residual activity patterns from the 
background FC processing pipeline failed to differentiate task conditions. 
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Figure S2.3. Cluster selection process.  
A) Model performance as measured by both proportion correct accuracy and area under the 
curve (AUC) when sequentially adding in all voxels from the next largest cluster. The semi-
transparent bands indicate the standard error of the mean across all testing folds. For example, 
we started by using the background FC matrices of all voxels only in the largest cluster (i.e., 
shaped 620 x 620) to differentiate each task condition comparison. Then we added in all voxels 
(519; Table S2.1) from the next largest cluster and estimated the model performances of the 
combined background FC matrices (now shaped 1139 x 1139), and so forth. We selected a 
cluster number that, for either AUC or ACC, was significantly greater than the preceding number 
and not significantly less than the maximal number of clusters. B) Left: We averaged all voxels 
within a cluster, thus reducing the dimensions of the FC matrices from 3452 x 3452 to 16 x 16 
and examined the performances of the models for the reduced matrices. Right: Instead of 
defining clusters using the FCMA-then-clustering pipeline, we selected the top-performing 16 
parcels (from the Schaefer 1000 parcellation scheme) based on separating perception from 
retrieval states using the same cross-validation framework (Figure S2.1). We then examined the 
performance of models trained using FC matrices among predefined Schaefer parcels for 
differentiating each task condition comparison. The error bars represent the standard errors of the 
mean across all testing folds.  
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Figure S2.4. Univariate activation profiles of the 16 clusters across 3 functional 
communities during each task condition.  
The FIR model consists of 36 (4 TR instruction + 24 TR task + 8 TR inter-block interval) x 2 
(epoch category) x 3 (condition) = 216 regressors. Thus, 24 (TR task) x 2 (epoch category) = 48 
regressors modeled task activations for each condition. Here for each subject, we computed the 
averaged beta estimates (of the 48 regressors) for all voxels within a cluster per condition. Error 
bars indicates the standard error of the mean of beta estimates across subjects. The color 
indicates the functional community assignment of each cluster. mPFC: medial prefrontal cortex; 
IPL: inferior parietal lobule; PCUN: precuneus; MTG: middle temporal gyrus; PCC: posterior 
cingulate cortex; ITG: inferior temporal gyrus; IPS: Intraparietal sulcus; PreCG: precentral 
gyrus; IFS: inferior frontal sulcus; SFG: superior frontal gyrus; RSC: retrosplenial cortex  
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Figure S2.5. Background FC strength averaged across all pairwise connections within the 
same functional community across perception and retrieval states after factoring in 
anatomical distance.  
Using MNI coordinates in Table S2.1, anatomical distance was quantified as the Euclidean 
distance between each pair of clusters (divided by 100 to make the y-axis unit comparable to 
Figure 2.5B). The adjusted background FC strength was computed as 𝐹𝐶	𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ	 ×
	𝑎𝑛𝑎𝑡𝑜𝑚𝑖𝑐𝑎𝑙	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒, thus closer anatomical distance (e.g., the two RSC cluster) would lead to 
smaller adjusted FC strength. After factoring in anatomical distance, clusters within the Control 
network retained overall stronger connectivity density compared to the DMN (t(23) = 4.03, p < 
0.001, 95% CI = [0.02, 0.07], Cohen’s d = 0.70). On the other hand, the strong coupling strength 
between RSC regions observed in Figure 2.5B could be largely attributed to the short anatomical 
distance between the two RSC clusters.  
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ClusterIdx Brain Region Volume X Y Z MaxInt 

1 Medial prefrontal cortex 620 -0.5 44.3 -1.0 9.14 

2 R-Inferior parietal lobule 519 60.1 -26.4 49.0 8.03 

3 L-Retrosplenial cortex 400 -18.2 -69.3 24.0 7.88 

4 L-Intraparietal sulcus 377 -33.3 -59.2 41.5 8.30 

5 R-Intraparietal sulcus 364 29.8 -66.8 36.5 7.09 

6 Precuneus 308 -10.6 -54.2 44.0 7.47 

7 L-Middle temporal gyrus 117 -66.2 -51.7 9.0 5.96 

8 R-Precentral gyrus  116 52.5 9.0 19.0 6.43 

9 L-Inferior frontal sulcus1 116 -53.6 16.5 31.5 7.30 

10 Posterior cingulate cortex 107 2.0 -18.8 44.0 7.37 

11 R Retrosplenial cortex 103 14.6 -54.2 14.0 7.06 

12 
Superior frontal gyrus/ 

Pre-supplementary motor area 
82 -3.0 16.5 51.5 7.27 

13 L-Inferior frontal sulcus2 64 -48.5 29.2 24.0 6.23 

14 R-Middle temporal gyrus 58 62.6 -16.3 -11.0 6.30 

15 L-Inferior parietal lobule 52 -61.1 -49.1 44.0 7.00 

16 R-Inferior temporal gyrus 49 55.1 -56.7 -13.5 5.83 

 
Table S2.1. Sizes and locations (MNI coordinates) of the clusters of interest.  
The Volume column indicates the number of voxels included in each cluster. The MaxInt column 
indicates the maximum z-score within each cluster.  
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Figure S3.1. Measure- and domain-specificity of parcels exhibiting compositional coding 
property.  
A) The t-stats of each parcel showing significantly off-chance ensembled CCS, grouped by 
networks. The x-axis displays the t-stats of the domain-specificity estimates, with neural 
measures being either evoked activity (gray) or BGFC (orange). The y-axis shows the t-stats of 
the domain-specificity estimates. Each dot represents a parcel, and the dotted lines represent the t 
threshold for being statistically significant (p < 0.05). B) Within-domain-specific (green), across-
domain-specific (purple), and domain-general (white) parcels when either BGFC- or evoked 
activity was used as the neural measure.  
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