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DISSERTATION ABSTRACT 
 
Rebecca Collette Bussard 
 
Doctor of Philosophy in Earth Sciences 
 
Title: Insights from Mapping Distributed and Focused Volcanism  
 
 

This dissertation utilizes a variety of mapping techniques to explore surface and subsurface 

processes at different volcanic systems. As each volcanic system is unique, it is important to 

understand which mapping methods can be applied to vents contained within the system and which 

will face more challenges. This dissertation details the use of statistical analysis and remote sensing 

for addressing questions of magma transport/storage as well as volcanic surface change at 

distributed and focused systems. 

To begin, Voronoi tessellations are used to map the area between vents in a variety of 

distributed volcanic fields. The distributions of vent areas are then compared to distributions of 

areas between randomly simulated vents. If the distribution of vent areas across a volcanic field 

differs from a random distribution, then clustering is occurring in this field; from this, causes of 

clustering such as regional tectonic forces, magma supply rates, and magma storage can be 

explored. Five of the six fields analyzed experience clustering and visualize the length scale at 

which clustering occurs through Kernel Density Estimation.  

The work then shifts from distributed to focused volcanism, specifically Mt. St. Helens, a 

stratovolcano in southwest Washington. A computationally inexpensive neural network developed 

with open access code classifies snow cover in optical imagery covering the Mt. St. Helens region 

through time. The snow cover estimates produced through classification are then compared with 

coherence maps from Sentinel-1 Interferometric Synthetic Aperture Radar (InSAR) data to 

quantify how snow cover effects coherence (signal strength). Snow cover reduces coherence up to 
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70% and widespread snow cover can almost entirely mask out uplift greater than one centimeter 

from an inflating magma source. 

Finally, InSAR timeseries and velocity data over Medicine Lake volcano measures ground 

deformation from 2017-2021. The vertical velocity data shows subsidence across the broad edifice 

that increases in magnitude within the volcano’s central caldera to ~ 1 cm/yr. Markov Chain Monte 

Carlo (MCMC) modeling constrains several parameters of a potential volume loss source at depth 

beneath the volcano, including depth and volume change for a point source and depth, length, 

wide, opening, and strike for a rectangular sill. The highest likelihood point source sits at 7.7 km 

depth with a volume decrease of 0.0013 km3/yr, and for the sill source sits at 10.1 km depth with 

a volume decrease of 0.0016 km3/yr. Subsidence due to edifice loading is also analytically modeled 

and is assumed to occur (subtracted from the InSAR vertical deformation signal). When the 

MCMC is rerun taking loading into account, source depths become shallower and volume changes 

decrease.  

This dissertation includes previously submitted and unpublished co-authored material. 
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CHAPTER I 

INTRODUCTION 

Very well. So the universe is not quite as you thought it was. You’d better rearrange your beliefs 

then. Because you certainly can’t rearrange the universe. 

Isaac Asimov, Nightfall 

1.1      Background  

What do maps tell us about the processes affecting these volcanoes at and beneath the 

surface? How can we utilize different tools and techniques to map different volcanic systems? 

Why do we use maps to study volcanic hazards? These questions frame the work of this 

dissertation, which maps a variety of volcanic systems with a suite of tools to understand their 

formation and evolution through time. Understanding these aspects of volcanoes can help us 

address their local hazards and can allow us to compare different volcanic systems to uncover why 

they behave differently. Before we reach this why however, we will start with what we map at 

volcanic systems and different ways how to map them depending on their structure and behavior. 

1.1.1    What to Map at Volcanic Systems  

Distributed volcanism refers to volcanic systems whose eruptions are constrained neither 

in time nor space, and commonly manifest as volcanic fields that consist of tens to hundreds of 

short lived vents contained within an area. Eruptions in volcanic fields typically lead to new vent 

formation, and different eruptions can occur years to thousands of years apart and be within 

hundreds to thousands of meters apart depending on the size of the field. Typically, compositions 

of erupted products are basaltic (SiO2 ~45-52%) and the prevalent type of vent found in these 

fields are monogenetic cinder cones formed from solidified basaltic lava (Valentine et al., 2021; 

Condit et al., 1996; Hasenaka & Carmichael, 1985). However, not every cinder cone is 
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monogenetic, and other eruptive products with a wider range of compositions also can exist in 

these fields such as shields, lava flows, maars, domes, and tuffs (Hasenaka, 1994; Hopkins et al., 

2020). Volcanic fields can occur in a variety of tectonic settings including extensional (e.g. 

Springerville, San Francisco, and Portillo fields in the southwestern U.S.), strike slip (e.g. Pinacate 

(Mexico), Armenia (Armenia), Es Safa (Syria) fields), and compressional environments (Abu 

field, Japan) (LeCorvec et al., 2013). Subduction zones can also host widespread distributed 

volcanism, such as at the Michoacán-Guanajuato Volcanic Field (MGVF) in central Mexico that 

has ~1000 vents and sits 200-440 km from the Middle America Trench (Hasenaka & Carmichael, 

1985). The Cascade Volcanic Arc also contains hundreds of cinder cones, shields, and domes in 

addition to its larger composite centers (O’Hara et al., 2020).  

Focused volcanism refers to volcanic systems that have the location of eruption constrained 

in space; typically this manifests as large shield and composite volcanoes with long eruptive 

histories. Since the location of eruption is constrained, focused volcanism is also associated with 

magma storage and evolution over time, leading to eruptive products with a wide range of 

compositions and behaviors (lava flows, lahars, pyroclastic density currents, eruption columns, 

etc.). These larges shields and composite volcanoes are found in 1) continental or island arcs that 

are the result of subduction zone tectonics or 2) volcanic centers or chains produced from mantle 

hot spots. An example of the former is the aforementioned Cascade Volcanic Arc formed from the 

subduction of the Juan de Fuca oceanic plate beneath the continental North American plate 

(Hildreth, 2007). Additional examples of subduction zone volcanic arcs include the Central 

American Volcanic Arc, the Aleutian island arc, and the Andes, while hot spot volcanism includes 

the Hawaiian island volcanic chain, the Canary Islands, and Iceland (Sleep, N.H., 1992).  

1.1.2    How to Map Volcanic Systems 
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Early mapping techniques that are still used to provide critical data on volcanoes involve 

field work where different characteristics of volcanoes (slope, height, width, etc.) are measured 

and samples from the region are collected. The physical traits of the volcanoes can be used to 

classify them into different groups (Hasenaka, 1994) while the samples are processed to find 

additional properties such as melt storage depths, eruption ages, and magma compositions (Condit 

& Connor, 1996; Deligne et al., 2016; Bacon & Lanphere, 2006). Results of this field work are 

often maps of volcanoes with different key features identified such as eruptive units, faults, and 

topographic changes. Additional field techniques that provide observations of the subsurface are 

seismic arrays (e.g. Evans & Zucca, 1988; Heath et al., 2019; Waite & Moran, 2009) and gravity 

surveys (Poland et al., 2018; Williams et al., 1987; Deng et al., 2017). While the work of this 

dissertation focuses on methods that either analyze field data already collected or collect data 

remotely, field mapping methods remain a vital part of analyzing a variety of volcanic systems.  

Spatial analysis of volcanic systems uses different statistical techniques to understand 

processes such as clustering, alignment, and density of vents within distributed volcanic fields. 

Early spatial analysis included comparing cinder cone volume with lava flow volume to find 

explosivity and viscosity of magmas (Hasenaka & Carmichael, 1985), and measuring small vent 

(cinder cone) and medium vent (shield) distance from subduction zone trench to understand 

magma availability (Hasenaka, 1994). Distribution of distances between vents can be used for the 

various nearest neighbor (NN) methods-Poisson Nearest Neighbor (PNN), normalized PNN, 

logistic NN, and “scavenged PNN”-to understand if vents are clustered, which indicates different 

processes such as crustal storage or faulting impacting vent location (Clark & Evans, 1954; Baloga 

et al., 2007; LeCorvec 2013). Alignments of field vents can be identified using the two-point 

azimuth (Lutz, 1986), Hough transform (Wadge & Cross, 1988) and strip-filter (Zhang & Lutz, 
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1989) methods to determine if linear chains of vents are due to tectonic control or are the result of 

fissure eruptions (LeCorvec et al., 2013). Clusters of vents in volcanic fields can also be identified 

using k-means and hierarchical approaches to separate different groups potentially impacted by 

different storage bodies and/or fault systems (e.g. Connor & Hill, 1995; Connor, 1990). Kernel 

Density Estimation is a method that visualizes the density of vents in volcanic fields to indicate 

areas of increased and decreased volcanism across the regions (e.g. Lutz & Gutmann, 1995; 

Connor, 2000; Bebbington, 2015).  

In the last half century, remote sensing methods have emerged as a primary way to map 

volcanic systems and their hazards. Generally remote sensing refers to measuring characteristics 

of the earth using space-borne or air-borne satellites. For remote sensing of volcanoes, there are 

numerous methods that can be decently summarized into four volcanic properties they map: 

thermal emissions, gas emissions, ash clouds, and surface change (Pritchard et al., 2020). Thermal 

satellites utilize Thermal Infrared (TIR), Short Wave Infrared (SWIR), and Mid Infrared (MIR) 

wavelengths to observe thermal anomalies such as volcanic hot spots, lava flows, and fumaroles 

(Flynn et al., 2000; Harris, 2013). For detecting gas emissions, satellites typically utilize 

wavelengths in the ultraviolet (UV) region in addition to MIR and TIR (Carn et al., 2016). Volcanic 

ash clouds are often tracked with geostationary meteorological satellites (Prata, 2009). Multi-

spectral optical satellites that use visible and infrared wavelengths, as well as Synthetic Aperture 

Radar (SAR) satellites that use microwave sensing, are used to track surface changes at volcanoes 

such as lava flows, dome growth, ashfall, pyroclastic flows, and deformation (Wadge et al., 2012; 

Pallister et al., 2019; Poland et al., 2014). GNSS satellites continuously track three-dimensional 

deformation (ground movement) at a single point in space, and Interferometric Synthetic Aperture 

Radar (InSAR) differences two SAR images taken at different times to produce maps with wide 
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spatial coverage of deformation that can be projected into vertical and east-west directions (GNSS 

reference; Massonnet et al., 1995; Zebker et al., 2000; Hooper et al., 2012).  

1.1.3    Why Map Volcanic Systems 

The reasons behind mapping volcanoes are as numerous as volcanoes themselves, but they 

all fall under the purpose of trying to better understand volcanic hazards and improve mitigation 

efforts for these hazards. This motivation is clear for remote sensing data, which is often used to 

map volcanic centers before, during and after eruptions. Deformation data from InSAR can track 

magma movement beneath the surface to provide better constraints on where within a volcanic 

system there could be an eruption. Weather satellites can track ash movement through the 

atmosphere to help pilots navigate aircraft safely around eruption columns. Lava flows can be 

tracked using optical and radar data to determine future flow paths and evacuate residents and 

livestock.  

 Mapping volcanic systems can also constrain different processes affecting the systems to 

use the past evolution to determine potential future activity. This is particularly important at 

volcanic fields, where it is difficult to monitor the entire field; using statistical mapping to 

understand if there are subsurface tectonic or magmatic controls that can help constrain what 

processes might currently impact eruption location, duration, and style. Even for focused volcanic 

centers, mapping these systems can produce data that can be inverted to find magma chamber 

properties (size, shape, depth, etc.) which can inform future estimates of eruption size and style.  

 Another motivation behind mapping volcanoes is to understand which mapping techniques 

work on which volcanic systems and how to improve upon existing data. As stated previously, the 

large spatial extent and unconstrained eruption location at most volcanic fields makes monitoring 

them with remote sensing difficult, but statistical methods can be effective tools for summarizing 
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behavior across these wide areas and multitudes of vents. In contrast, statistical methods are 

difficult at focused centers, but monitoring over these systems can be performed. These methods 

aren’t mutually exclusive however, particularly in regions like the Cascades where there is both 

distributed and focused volcanism. There are also challenges to the methods themselves. SAR data 

can be difficult to use in heavily vegetated, snow covered, or submerged areas, while UV gas 

sensing can occur only during the day, and thermal monitoring can be obscured by cloud cover. 

For statistical analysis, there are often decisions that have to be made with thresholding data, scale 

of study, and vent identification that all impact results. However, only by trying these mapping 

methods and learning their advantages and disadvantages across different volcanic systems can we 

adapt our maps to better illuminate the hazards associated with these systems.  

1.2      Outline  

This dissertation begins with Chapter II where we map distributed volcanism in a variety 

of environments; the Auckland Volcanic Field in Auckland, New Zealand, the Springerville 

Volcanic Field in Arizona, USA, and fields along Cascade Volcanic Arc segments in Oregon and 

Washington, USA. We map the area between vents for each field using a variety of statistical 

techniques to develop a methodology for determining if clustering exists in different fields and at 

what length scales. Understanding if clustering exists in volcanic fields is important for 

determining if processes such as faulting or magma storage will impact the next vent location. The 

work in this chapter is done in collaboration with Chris Harper, Katharine Cashman, and Leif 

Karlstrom, and is under review for publication in a USGS special issue. 

Chapter III of this dissertation transitions to mapping a focused center, Mt. St. Helens, 

which is located in southwest Washington along the northern section of the Cascade Volcanic Arc. 

This chapter is focused on tracking seasonal snow cover across the Mt. St. Helens region to develop 
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a better understanding of how snow cover changes over time and how drastically snow cover 

impacts InSAR signal coherence. To do this, snow cover is mapped using image classification of 

Landsat 8 optical imagery by a computationally inexpensive neural network and then compared 

with coherence images from Sentinel-1 InSAR data. We are able to find which regions of Mt. St. 

Helens are consistently snow covered and how significantly that snow cover degrades coherence, 

which is useful for understanding how much deformation could be seen with InSAR in the case of 

a chamber inflation event. This work is done in collaboration with Josef Dufek, Christelle 

Wauthier, and Meredith Townsend, and will be submitted to JGR: Machine Learning.  

In Chapter IV we focus on another volcanic system, Medicine Lake volcano, that resides 

in Northern California at the southern extent of the Cascade Volcanic Arc and on the western edge 

of the Basin and Range extensional province. Due to this intersection of tectonic regimes, 

Medicine Lake is a large, broad shield volcano peppered with monogenetic cones; this work 

focuses on Medicine Lake’s central caldera and the steady subsidence signal that has been mapped 

across the caldera since 1954. We use Sentinel-1 InSAR as well as GNSS data to track present 

ground deformation, and then use a combination of models to describe processes potentially 

causing this deformation. This work is done in collaboration with Josef Dufek, Meredith 

Townsend, and Christelle Wauthier and will be submitted to JGR: Solid Earth.  

Chapter V presents concluding remarks and thoughts on future directions in the field of 

mapping volcanic systems.  
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CHAPTER II 

AN AREA-BASED METHODOLOGY FOR DERIVING 

INTRINSIC LENGTH SCALES OF DISTRIBUTED VOLCANIC 

FIELDS 

 

From Bussard, R., Harper, C., Cashman, K. & Karlstrom, L. (2024). An Area-Based 

Methodology for Deriving Intrinsic Length Scales of Distributed Volcanic Fields. Manuscript 

submitted for publication. The writing of this chapter was done by me, Chris Harper, and Kathy 

Cashman with Leif Karlstrom providing editorial assistance. Chris Harper, Kathy Cashman, and I 

conceptualized the work presented in this chapter. Leif Karlstrom provided one of the datasets 

used for analysis. Chris Harper and I performed the analysis.  

 

2.1  Introduction  

Collections of volcanic vents known as distributed volcanic fields (Fig. 2.1) can be found 

in both intraplate and arc settings. The sheer number of volcanic vents, together with the 

infrequency of eruptive activity in most volcanic fields, means that the usual tools for studying the 

underlying magmatic system – petrology, geophysics, and physics-based modeling – are 

challenging to apply. For this reason, many studies of volcanic fields have focused on measuring 

and interpreting the spatial and, where available, the temporal distribution of individual 

vents/eruptive episodes. When compared with the overall footprint of the field and patterns of 

regional tectonics, vent distributions have been used to either (1) forecast the probable location of 

future activity (Connor & Hill, 1995; Conway et al., 1998; Germa et al., 2013, Bebbington, 2013) 
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or (2) infer characteristics of the field through time. Key characteristics include the geometry of 

the magma source region (Condit & Connor, 1996), the thickness of the underlying crust 

(Mazzarini 2004; Mazzarini et al., 2008; 2010), controls on magma movement (Le Corvec et al., 

2013; Grosse et al., 2020; Morfulis et al., 2020; Valentine et al., 2021), magma storage locations 

(Pozzobon et al., 2015; Mazzarini et al., 2016; O’Hara et al., 2020), and post-emplacement erosion 

patterns (Rodriguez-Gonzales et al., 2011; O’Hara & Karlstrom, 2023). To find these 

characteristics, various statistical methods have been developed and applied. Each method, 

however, requires choices of parameters, data binning, and benchmark distributions, all of which 

affect both the results and their interpretation. 

 
Figure 2.1. Global distribution of volcanic fields active in the Pleistocene and Holocene [GVP]. Stars represent 
the fields analyzed in this study (yellow = Auckland Volcanic Field; red = Springerville Volcanic Field; blue = 
Cascades Volcanic Arc). 
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In this work, we seek to answer the following specific question: Is there a length scale 

intrinsic to each volcanic field that signifies the initiation of non-random behavior (i.e. clustering 

of vents in space)? To answer this question, we use the areal distribution of vents instead of the 

more commonly used linear distance to compare with the distribution expected from a random 

process. The result is an area, which can then be converted to a length scale, that represents the 

length at which behavior departs from random. We perform this analysis on multiple volcanic 

fields in a variety of tectonic settings and with different magmatic histories and visualize our 

results with maps of vent density. We discuss the differences between our methodology and 

examples of current methods, then compare vents characterized by our length scale with distance 

and area metrics from full field data and simulated vent data. We then explore the relation between 

vent age and spatial density from the Kernel Density Estimations produced by our workflow to 

connect the spatial structure of these fields with emplacement sequence to begin exploring causes 

of clustering in these fields. 

2.2 Background 

2.2.1 Previous Spatial Analysis of Volcanic Fields  

Numerous techniques of spatial analysis have been used to assess the distribution of 

individual vents (typically scoria cones) within volcanic fields (e.g., Connor, 1990; Connor et al., 

1992; Lutz and Gutman, 1995; Conway et al., 1998; Le Corvec et al., 2013; Traglia et al., 2014; 

Mazzarini et al., 2010; 2016; Deng et al., 2017; Grosse et al., 2020; Morfulis et al., 2020). Spatial 

analysis techniques can be divided into two broad categories: analyses designed to assess (1) the 

structure of volcanic fields for comparison with associated tectonic structures/stress fields and (2) 

patterns of vent locations, which can provide information about the underlying magmatic system 

and, under some circumstances, be used to anticipate future vent locations. Here we briefly review 



 27 

both analysis types and their application to questions about volcanic field formation, evolution and 

patterns of eruption. 

2.2.1.1 Analysis Approaches 

The simplest structural analysis measures the overall shape of the volcanic field, which is 

often inferred to mirror the mantle source. Volcanic field shapes are commonly measured by fitting 

a minimum area ellipse to a convex hull formed by connecting perimeter vents (Fig. 2.2a). The 

overall field shapes can be compared with vent alignments and other stress indicators, such as the 

spatial distribution of faults, geophysical structures and/or stress maps. User-defined criteria for 

identifying alignments include the minimum number of features (typically taken as three), 

tolerances set for mis-alignment (‘length’; Fig. 2.2b inset) and the distance over which alignments 

are accepted. An empirical estimate for the latter (Le Corvec et al., 2013a) infers a maximum 

correlation distance that is inversely proportional to the mean vent density (Fig. 2.2b). Also 

important is the timing of the alignment: vents aligned along a fissure during a single eruption may 

record dike propagation (typically in the direction of maximum principal stress), whereas repeated 

eruptions along a structural lineament can reflect strong control of pre-existing faults (Gómez-

Vasconcelos et al., 2020).  

Several approaches have been used to determine the spatial distribution of vents within 

volcanic fields. The first is Poisson Nearest Neighbor analysis (PNN), which compares the mean 

distances between nearest neighbor vents to those of an idealized statistical model (e.g., a Poisson 

distribution). Here the area analyzed is defined either by the convex hull fit to the overall field 

(Fig. 2.2a) or by adding a buffer to the convex hull determined by the mean nearest neighbor 

distance (Le Corvec et al., 2013b). The ratio (R) of the observed distribution (Ro) to the distribution 

expected (Re) is used to define the overall vent distribution, with R < 1 showing regions where 
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vents are more clustered than expected and R > 1 denoting fields where the vents are more 

distributed than expected (Fig. 2.2c). In their analysis of 37 volcanic fields, Le Corvec et al. 

(2013a) find that most (28) have clustered vents. A more visual measurement of vent distribution 

is cluster analysis. A simple approach to cluster analysis uses a k-means algorithm; this approach 

has the disadvantage, however, of requiring the user to specify, a priori, the number of clusters. 

The same problem arises with a hierarchical approach to cluster analysis (Connor & Hill, 1995). 

Kernel Density Estimation (KDE) is a commonly employed technique that estimates the 

probability density of vents using a smoothing filter (the kernel), which is typically an isotropic 

Gaussian kernel, although anisotropic Gaussian kernels can also be applied to find alignments and 

structures (Bebbington, 2015; Connor et al., 2019; Kiyosugi et al., 2012). The primary challenge 

to KDE is determining the bandwidth over which smoothing occurs; similar to other types of 

cluster analysis, the results are non-unique (Canon-Tapia, 2020). Here, we develop a methodology 

to determine an empirical clustering length scale for a given volcanic field that provides 

functionality as a bandwidth for KDE and allows for comparison among fields of different sizes 

and shapes.  

2.2.1.2 Application of Spatial Analysis 

In general, studies of vent distributions distinguish between fields with relatively high (10-

100 km3/Myr) and low (< 1 km3/Myr) rates of magma supply (Valentine & Perry, 2007). Where 

magma supply rates are high, vents are clustered and radially oriented around centers, attesting to 

magmatic control on patterns of eruptive activity (Karlstrom et al., 2015). Where magma supply 

rates are low, vents often align with surface structures, providing evidence of tectonic control 

(Bacon, 1982). Importantly, analysis of vent locations in mafic volcanic fields is usually confined 

to scoria cones. In arc environments, however, the volumetric contribution of magma output 
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related to scoria cone eruptions is commonly substantially less than that recorded by associated 

shield volcanoes (Hasenaka and Carmichael, 1985; Hasenaka, 1994; O’Hara et al., 2020). 

Moreover, a recent study suggests that large (~10 km3) shield volcanoes can form rapidly (in 

decades to a few centuries; Pivarunas et al., 2022) and therefore pose hazards that are similar in 

time, as well as space, to those posed by cinder cone eruptions. The conditions that favor shield 

building over more focused composite centers, on the one hand, and distributed cinder cones, on 

the other, are not well understood. Other complicating factors include multiple vents formed during 

a single eruptive episode (the “vents to event” problem; Condit and Connor, 1996; Runge et al., 

2014; Gallant et al., 2021) and coverage of older vents by the products of younger eruptions 

(“hidden vents”; Runge et al., 2014). 

Spatial analysis has also been used to constrain the nature of the underlying volcanic 

system, for example, using the apparent relation between self-similar vent spacing (Mazzarini et 

al., 2003) and either crustal thickness (Mazzarini et al., 2010) or depth to crustal magma reservoirs 

Figure 2.2. Examples of analysis 
approaches to characterizing volcanic 
fields. (a) Overall field shape [Potrillo, 
NM], showing vents, convex hull 
enclosing vents, best-fit ellipse to 
convex hull, and apparent dominant 
direction of vents. (b) Vent alignment 
analysis, illustrating user-assigned 
parameters of length and distance 
(inset) and empirical estimate of 
distance parameter from highlighted 
points. (c) Example of Poisson nearest 
neighbor analysis, showing fields for 
Poisson vent distribution (including 
both 1σ and 2σ limits) as well as fields 
where vents are either more clustered 
or more distributed than a Poisson 
model. For illustration, plotting 
positions of Portrillo, NM (see (a)), 
and two of our analyzed fields – 
Auckland, NZ, and Springerville, NM. 
All figures redrafted and modified 
from Le Corvec et al. (2013a). 
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(Mazzarini et al., 2016). Addition of both compositional analyses and age data can be used to track 

the magmatic evolution of volcanic fields (Brenna et al., 2012; Stelten et al., 2018). When 

combined with both volume measurements and geophysical datasets, vent analysis can provide 

important information about magma supply and transport (O’Hara et al., 2020). 

Finally, spatial analysis has been used to provide likelihood estimates of future vent 

locations. Here assumptions relate to the inferred spatial stationarity of the magma source through 

time. Optimally, spatial and temporal data are used together, such that vents are clustered by both 

location and age (Condit and Connor, 1996; Gallant et al., 2021). Analysis of temporal recurrence 

rates, however, requires detailed analysis of vent/eruption ages, which is challenging for fields 

with hundreds of individual vents. Geomorphic measurements of scoria cone degradation provide 

potential age constraints, although they must be corrected for climatic variation (Fornaciai et al., 

2012; Jaimes-Viera et al., 2018; Grosse et al., 2020; O’Hara and Karlstrom, 2023). A spatio-

temporal analysis of the Springerville volcanic field, moreover, found a poor correlation between 

locations with high recurrence rates and sites of future eruptions (Condit & Connor, 1996). 

2.2.2  Regional Studies  

Here we provide a brief overview of a detailed study of a mafic distributed volcanic field 

(the Michoacán-Guanajuato Volcanic Field Mexico) followed by summaries of the volcanic fields 

that we analyze (Fig. 2.3). 

2.2.2.1 Michoacán-Guanajuato Volcanic Field, Mexico 

One comprehensive regional study of a large distributed volcanic field is Hasenaka and 

Carmichael’s (1985) analysis of the Michoacán-Guanajuato Volcanic Field (MGVF) in central 

Mexico. This study used topographic maps to analyze morphometric parameters of cinder cones 

and their associated lava flows. Important observations include a 1:10 relation between the 
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volumes of individual cones and related lava flows and the degradation of both cones and flow 

surfaces with time. Analysis of eruption ages further showed that the youngest vents occur only in 

the southern part of the field, consistent with recent evidence for trenchward migration of the 

volcanic arc because of slab rollback (Ferrari et al., 2012). An associated study of shield volcanoes 

(Hasenaka, 1994) showed that they represent almost twice the dense rock equivalent (DRE) 

volume of the cinder cones; adding these data thus greatly extends estimates of the magma 

production rate of this volcanic field (0.7 km3/1000 yr for the past 1Ma; 1.2 km3/1000 yr for 0.04 

Ma-present). Subsequent studies of the MGVF have examined the tectonic origin of vent 

alignments in parts of the field (Wadge and Cross, 1988; Cebriá et al., 2011; Gómez-Vasconcelos 

et al., 2020) and have used the Hasenaka and Carmichael database to test methods of cluster 

analysis (Connor, 1990; Mazzarini et al., 2010; Canón-Tapia, 2020), semi-automated 

identification of volcanic edifices (Di Traglia et al., 2014) and application of fractal analysis to 

crustal thickness determinations (Mazzarini et al., 2010). From a volcanic hazards perspective, it 

is important to note the repeated recent magma intrusions into the upper crust (six seismic swarms 

since 1997, with the most recent in 2021; Legrand et al., 2023) in close proximity to the youngest 

cinder cone, Parícutin, which last erupted in 1943-1952 (Luhr and Simkin, 1993). This activity 

raises questions about both conditions of pre-eruptive magma storage and possible triggers for 

future eruptive activity. 

2.2.2.2 Auckland Volcanic Field, New Zealand 

The Auckland Volcanic Field (AVF; Fig. 2.3a) is arguably the most intensely studied 

volcanic field globally, because of its clear threat to New Zealand’s largest city (population > 1.6 

million; Hopkins et al., 2020). In contrast to the >1000 cinder cones in the MGVF, the AVF hosts 

only 53 vents. The most recent eruption was ~500 years ago at Rangitoto, a shield volcano that is 
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also the only location of vent reoccupation. The volume of Rangitoto accounts for almost 50% of 

the total erupted volume of the field (Hopkins et al., 2020). Hydrovolcanism also played a key role 

in eruptions within the AVF, with 83% of the identified eruptions initiating with phreatomagmatic 

activity (Kereszturi et al., 2014). In contrast to the vent clustering observed in many volcanic fields, 

Poisson Nearest Neighbor analysis of vents in the AVF produces results that are indistinguishable 

from a Poisson distribution, that is, the vents are randomly distributed in space (Le Corvec et al., 

2013a). Age constraints on most vents provide important underpinning for probabilistic 

forecasting models. Statistical analysis of spatio-temporal data shows that within the AVF, there 

is no consistent pattern to vent location in time (Molloy et al., 2009; Bebbington and Cronin, 2011; 

Le Corvec et al., 2013a) although there is evidence for strong structural control on vent locations 

(Cassidy & Locke, 2010; Bebbington & Cronin, 2011) and some evidence that larger eruptive 

volumes may fill gaps in vent distributions (Bebbington, 2015). Geochemical studies show little 

evidence of crustal magma storage, but instead argue for small melt batches from a heterogeneous 

mantle that ascend rapidly to the surface (Brenna et al., 2018; Rowe et al., 2020). Taken together, 

studies of the AVF suggest that volcanism in this small volume field is likely controlled by 

conditions of mantle melting, with magma ascent from the mantle strongly influenced by crustal 

tectonics. 

2.2.2.3 Springerville Volcanic Field, Southwest United States  

A recent review of volcanic fields in the southwest US provides an overview of the 

petrology, geochronology, landforms and eruption recurrence rates for 37 recognized Quaternary 

volcanic fields, with detailed maps of vent locations for the 8 major fields (with >100 vents each). 

In planform shape, these fields range from highly elongate (e.g., Lunar Crater, NV; Portrillo, NM) 

to more equant (e.g., Springerville and San Francisco, AZ); some strong vent alignments document 
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fault control (e.g., Uinkaret, AZ). Vent distributions have been most extensively studied for 

Springerville (Fig. 2.3b), where detailed mapping (Condit et al., 1992; Condit & Connor, 1996; 

Mnich & Condit, 2018) provides both compositional and temporal constraints on the evolution of 

this large (409 vents) Quaternary field. A spatio-temporal analysis of vent distribution shows 

extensive clustering and rates of localized magmatism that have waxed and waned through time; 

interestingly evolved magmas occur only in locations of frequent activity. Comparison with 

gravity measurements shows a correlation between high spatial vent density and regions of inferred 

high magma flux (Deng et al., 2017). A similar analysis of the elongate Zuni-Bandera field shows 

it to be aligned with a steep gravity gradient caused by an abrupt change in crustal density, 

suggesting crustal controls on magma pathways to the surface. More broadly, mantle melting 

driving volcanism on the Colorado plateau is likely controlled by edge-driven convection (Reid et 

al., 2012). 

2.2.2.4 Cascade Volcanic Arc, Western United States 

The distribution of volcanic vents along the US portion of the Cascade arc has been 

compiled for the Quaternary by Guffanti and Weaver (1988), Hildreth (2007), Ramsey & Siebert 

(2017), and O’Hara et al. (2020). These compilations include not only cinder cones and mafic 

shields, but also domes and stratovolcanoes. Not surprisingly, composite volcanoes and large 

shield volcanoes (such as Newberry, OR) account for much of the erupted volume, while cinder 

cones comprise the largest number of vents (O’Hara & Karlstrom, 2020). Although most 

Quaternary vents are strongly aligned N-S, parallel to the offshore subduction zone, there is 

substantial ‘smearing’ of vents to the west in the vicinity of Portland OR, and to the east in regions 

of back arc volcanism in central Oregon (associated with Newberry volcano) and northern 

California (associated with Medicine Lake volcano and volcanic fields east of Lassen volcano). 
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Analysis of magma composition, volume and heat flux demonstrates the role of mantle-derived 

basalt in modulating along-arc patterns of volcanism (Till et al., 2019). A spatio-temporal 

comparison of the normalized spatial density of vents and the edifice volumes (both measured in 

along-arc bins of 0.5˚ latitude and across-arc bins of 0.5˚ longitude) shows strong clustering of 

distributed vents in central Oregon and northern California, particularly since the mid-Pleistocene.  

These clusters align with anomalies in heat flow, seismic tomography, gravity, and interseismic 

upper plate deformation (O’Hara et al., 2020). In large part, this pattern illustrates the influence of 

back-arc volcanism, centered particularly around Newberry and Medicine Lake volcanoes. 

Erosion rates of Cascade volcanoes mirror eruptive patterns, with E-W asymmetry associated with 

long-lived orographic precipitation gradients (O’Hara & Karlstrom, 2023). 

 
Figure 2.3. Vent locations across the (a) Auckland Volcanic Field (53 vents), (b) Springerville Volcanic Field 
(409 vents), (c) Central segment of the Cascades (588 cinder cone vents and 92 shield vents), and (d) 
Washington segment of the Cascades (88 cinder cone vents and 39 shield vents) used for Voronoi analysis 
and Kernel Density Estimation. 
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2.3  Methods 

2.3.1  Data Compilation 

         We obtained vent location data for the Auckland and Springerville volcanic fields as well 

as the Cascade volcanic arc from previous studies that each dealt differently with the challenge of 

defining vents. Fifty three discrete vents have been mapped in the Auckland Volcanic Field (AVF) 

using both traditional field methods and more recently, by remote sensing techniques such as Light 

Detection and Ranging (LiDAR) (Fig. 2.3a; Hayward & Hopkins, 2019; Hopkins, 2020). To 

remain consistent with the current definition of the vents in the AVF, we marked the location of 

the Rangitoto shield volcano with a single data point corresponding to a single vent location, while 

recognizing that, atypically, it has been the site of more than one eruption. The Springerville 

volcanic field (SVF), in contrast, has been mapped as 409 eruptive units with distinct locations 

(Fig. 2.3b; Condit & Connor, 1996); as single cones (vents) have been identified for most eruptive 

units, we assign each unit a ‘vent’ point, such that each point corresponds to an eruption. Vent 

location data for the Quaternary Cascades has been compiled by Ramsey & Siebert (2017) to 

identify 2836 vents, which include cinder cones, domes, shields, and composite centers. We 

analyzed only the cinder cone and shield data over latitudes from just south of Mt. Hood to the 

California state border (designated the Central Cascades segment, although we note that various 

arc segmentations have been proposed, e.g., Schmidt et al., 2008). We chose to start south of Mt. 

Hood to closer replicate the Oregon segment as defined in Hildreth (2007); we also omitted cinder 

cones and shields associated with Newberry volcano. The resulting catalog includes 588 cinder 

cones and 92 shield volcanoes (Fig. 2.3c). We then defined a Washington Cascades segment where 

we use cinder cones and shields north of the Washington-Oregon state border but omitted the older 

and off-axis Simcoe volcanic field. This produced a Washington segment that includes 88 cinder 
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cones and 39 shield volcanoes (Fig. 2.3d). Note that pre-Quaternary vents are not included in the 

Cascades dataset. 

         For each region of interest, we also compiled available supporting data. For example, 51 

of the 53 vents in the AVF have been dated, and type(s) of eruption at each vent (phreatic, 

phreatomagmatic, and dry magmatic) recorded (Hayward & Hopkins, 2019; Hopkins, 2017). Age 

data from both radiometric dating and stratigraphic analysis are also available for the SVF, with 

compositional data for 260 of the 418 vents (409 distinct location vents with additional 9 vents of 

associated erupted units). The Cascade dataset includes broad age and compositional classification 

in addition to edifice volumes for most vents (O’Hara et al., 2020; O’Hara & Karlstrom, 2023).   

2.3.2 Voronoi Analysis 

 Approaches to spatial statistics used to identify physically relevant features within volcanic 

fields compare the observed features with random behavior (Le Corvec et al., 2013; Mazzarini et 

al., 2003; Condit & Connor, 1996; Connor, 1990). We call such features structures, with common 

examples including clustering, periodicity, and dispersion. Structures are tied to how we define 

random, most commonly generated from a Poisson point process and using the distributions of 

distances between points as a measure of comparison. Vent locations are, however, two-

dimensional, and for this reason we used the two dimensional measure, area. This approach allows 

us to compare area- and distance-based metrics to explore the structures. 

 We describe the areas of the points’ distribution using Voronoi tessellations, which create 

a unique polygonal partition of the vents. Here each point is represented by a polygon that has an 

area that can be used to extract an intrinsic length scale from the vent location data. We use four 

steps; the first two steps are inspired from the methodology by Bray et al. (2014): (1) generate a 

Voronoi tessellation and bounding box, (2) simulate random data and calculate residuals, (3) 
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construct areal distribution functions from both observed and simulated data and (4) use the 

intersection point between these two function as an intrinsic length scale for clustering.  

 2.3.2.1 Generating Voronoi Tessellations and Bounding Boxes 

 The simplest construction of a Voronoi diagram is built from the successive intersection of 

half-planes formed between one point and each other point in a dataset. A more computationally 

efficient (albeit less intuitive) construction comes from a Delaunay Triangulation of the vent 

location data. The Delaunay triangulation maximizes the minimum of all the angles of the triangles 

and produces a boundary that serves as a convex hull for our set of points. With this triangulation 

(implemented in our work through the DelaunayTriangulation package in Julia), we construct the 

convex hull that will serve as the bounding box for analysis. While there are other methods to 

construct bounding boxes (e.g., a rectangular bounding box), we tested both geometries and found 

no discernable differences in the resulting area distributions (Fig. 2.S1). We chose to use the 

convex hull because it is constructed only from the location data, reducing the potential to 

introduce bias by involving additional area around the field. Although there are instances where a 

convex hull boundary at a specific time in the history of a volcanic field does not encapsulate the 

future footprint of the field, the convex hull provides an unbiased approximation of volcanic field 

boundaries that allow us to explore spatial structures in vent distributions. Each triangle from the 

constructed Delaunay Triangulation uniquely defines a circumscribed circle; a Voronoi diagram 

is constructed by connecting the centers of each circle (Fig. 2.4). 

 2.3.2.2 Simulating Random Data 

 We use this Voronoi diagram as an adaptive mesh over which we randomly scatter points 

contained within the boundary of the convex hull. We simulate five-thousand instances of 

randomly scattered vents. In each iteration, we (1) generate the number of vents to be scattered, k, 
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from a homogeneous Poisson distribution and (2) randomly scatter these k points over the Voronoi 

diagram mesh with the convex hull boundary. We choose the Poisson distribution for our random 

generating process because it maximizes entropy (assumes the least information) over the natural 

numbers: 

𝑝𝑝(𝑘𝑘) =  𝜆𝜆
𝑘𝑘𝑒𝑒−𝜆𝜆

𝑘𝑘!
  (1) 

 Equation 1 shows that the probability of generating k vents is controlled by 𝜆𝜆. For Poisson 

processes playing out through time 𝜆𝜆 represents the expected rate at which events will occur; for 

spatial processes it represents the density of expected events. We estimate 𝜆𝜆 by calculating the vent 

density within the bounding box (convex hull). For a field of N vents contained within a convex 

hull of area A, this yields the estimated density parameter 𝜆̂𝜆 = 𝑁𝑁/𝐴𝐴. Once our k vents are generated 

from our estimated density parameter, we scatter them randomly over the convex hull by 

leveraging the Delaunay triangulation and properties of Poisson and uniform distributions. A 

Poisson process conditioned over a constant number of points and a bounded area becomes 

uniformly distributed. A point can be uniformly distributed over the triangle in three steps.  

1. Let A, B, and C be vectors which define the three sides of a triangle. Without loss of 

generality, we can construct a parallelogram by reflecting the triangle over the midpoint of 

side C. 

2. Let u1, u2 be two random numbers generated from the uniform distribution on the closed 

interval from zero to one (U(0,1)). Then the linear combination of u1 ∙ A + u2 ∙ B yields a 

random point in the parallelogram. 

3. If u1 + u2 > 1 then the point falls outside of the original triangle. However, reflecting across 

C places the point back in the original triangle. Since the complement of the uniform 

distribution is also a uniform distribution, we can randomly scatter a point within our 
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original triangle by adding the constraint that if u1 + u2 > 1 we instead take the linear 

combination of v1  ∙  A + v2  ∙  B which are qual to 1 – u1 and 1 – u2 respectively. 

 

Figure 2.4. Simple Voronoi tessellation 
generation with ten cells contained within a 
rectangular bounding box. Observed 
locations are the orange numbered points 
while simulated locations are the blue points. 

Now each point can be randomly scattered over the hull by first randomly selecting a 

triangle weighted by its area and then randomly placing the point within that triangle. The null 

hypothesis is that the observed vent location data was created from a Poisson process with the 

same intensity, thus by construction the expected number of points in each Voronoi cell of the 

mesh is one, and the residual becomes one subtracted by the number of simulated points that fall 

into each cell. This is illustrated in Figure 2.4 where the blue dots represent a simulation of points 

scattered over the mesh generated by the Voronoi tessellation of the orange dots. The residual in 

cell nine, for example, is negative one. These residuals help to visualize cells containing higher or 

lower than expected randomly simulated vents (Fig. 2.S1a-b). Areal and density functions are also 

constructed for each simulated iteration, with all five thousand functions being averaged to create 

one areal function to describe the simulated data. 

2.3.2.3 Constructing Areal Distribution and Density Functions  

We represent the distribution of Voronoi cell areas produced from the observed vent 

location data as a cumulative distribution function (CDF), with the x-axis normalized by the area 
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of the largest Voronoi cell of the tessellation. The result is an area distribution function that can be 

used to compare the computed CDF of the observed data and simulated random data for each study 

field (Fig. 2.5). Note that the CDF of the simulated data appears smoother because it is the average 

of five thousand CDFs.  

 
Figure 2.5. Areal CDFs for observed and simulated data for six study regions, (a) Auckland Volcanic Field, 
(b) Springerville Volcanic Field, (c) Central Cascades cinder cones, (d) Central Cascades shields, (e) 
Washington Cascades cinder cones, and (f) Washington Cascades shields. 
 

The CDF of the Auckland Volcanic Field (AVF) closely follows the curve for the random 

simulated data (Fig. 2.5a); the CDF for the Springerville Volcanic Field (SVF), in contrast, shows 

a pronounced early departure from the simulated random process. The disproportionate 

contribution of small Voronoi cells to the total area reflects compression of space between 

clustered points (Fig. 2.5b). This rapid growth transitions into slower discrete jumps, signifying a 

shift towards fewer but larger cells within the tessellation. The Central Cascades cinder cones CDF 
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shows similar behavior (Fig. 2.5c), while the CDF for the Central Cascades shields shows initial 

rapid growth but an earlier transition to discrete jumps, indicating fewer small Voronoi cells than 

its cinder cone counterpart (Fig. 2.5d). The large gap between the cinder cone groups in the 

Washington Cascades yields a CDF dominated by large jumps (Fig. 2.5e). The CDF behavior of 

the Washington Cascades shields is similar to the Central Cascades shields although with a few 

cells of much larger area (Fig. 2.5f). 

We can further emphasize the individual contribution of smaller Voronoi cell areas to the 

total distribution of areas by taking the derivative of the CDF to produce probability density 

functions (PDFs) of the observed and simulated data. Here the likelihood of having cells of a given 

size decreases as the interval over which the derivative is calculated decreases. This creates the 

jagged appearance of the density functions, and should be considered when setting the resolution 

for approximating the derivative.  

2.3.2.4 Deriving an Intrinsic Length Scale from the Intersection of Density Functions  

An intrinsic length scale can be derived for each study field of interest from the intersection 

of the observed and random density functions (Fig. 2.6), which peak at the most common values 

of Voronoi cell area. The simulated data have a PDF peak at 30-35% of the maximum cell area, 

consistent with the assumption of a Poisson random process; the peak of the observed data varies 

with the nature of each volcanic field. The intersection of the two PDFs indicates a change in 

behavior of the observed data relative to the random behavior of the simulated data. The first 

intersection point between the observed and simulated PDFs defines a corresponding point on the 

x-axis that represents a Voronoi cell area above which cells no longer contribute disproportionately 

to the total area of the Voronoi tessellation (they are no longer clustered). Note that in the Auckland 

volcanic field (AVF), the simulated and observed PDFs are similar, and there is no peak showing 
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a high contribution of smaller Voronoi cell areas. The resulting absence of an intersection point 

(Fig. 2.6a) indicates that the whole field can be described by random behavior, as noted by other 

studies (Le Corvec et al., 2013).   

 

 
Figure 2.6. Areal PDFs for observed and simulated data for six study regions, (a) Auckland Volcanic Field, 
(b) Springerville Volcanic Field, (c) Central Cascades cinder cones, (d) Central Cascades shields, (e) 
Washington Cascades cinder cones, and (f) Washington Cascades shields. 
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Once an intersection point is located, the value can be converted to an area by multiplying 

the area of the largest cell in the Voronoi tessellation. The resulting area can be converted to a 

length scale by setting the area as a circle and solving for the radius. The result is an intrinsic length 

scale that marks the maximum length scale of clustering, as summarized in Table 1. This length 

scale can be visualized initially by use of the Voronoi tessellation, or by using the length scale as 

a bandwidth for Kernel Density Estimation.  

2.3.3 Kernel Density Estimation  

Kernel Density Estimation (KDE) is one of many techniques used to estimate the 

probability density function producing a given set of discrete data points. The main equation 

governing KDE is: 

𝑓𝑓(𝑥𝑥)  =  
1
𝑛𝑛ℎ

�𝐾𝐾(
𝑥𝑥 − 𝑋𝑋𝑖𝑖
ℎ

) 
𝑛𝑛

𝑖𝑖=1

                 (2) 

where Xi represents the points of the data set, h is the bandwidth (smoothing parameter), K is the 

kernel function, and n is the number of data points (Silverman, 1986). Strengths of KDE are that 

it does not rely on binning data and each data point retains its original location via the kernel 

function, which changes each piece of data from a point located at Xi to an interval centered at Xi 

 (Węglarczyk 2018). User choices that affect the output of KDE are, most notably, the choice of 

kernel function and the bandwidth; while the kernel function can affect the results of the KDE (we 

use a quartic (biweight) kernel in ArcGIS), the choice of bandwidth has more impact (Silverman, 

1986; Cressie, 1991; Lutz and Gutmann, 1995; Condit and Connor, 1996; Connor et al., 2019). A 

bandwidth that is too small produces low bias in the resulting PDF but high variance 

(undersmoothing), while a bandwidth that is too large has the inverse properties of high bias and 

low variance (oversmoothing). One technique for choosing bandwidth is Silverman’s Rule of 
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Thumb (‘Silverman’s rule’; Silverman, 1986). It is adapted for use in two dimensions through 

ArcGIS’ Kernel Density tool and is as follows: 

ℎ =  0.9 ∗  𝑚𝑚𝑚𝑚𝑚𝑚(𝑆𝑆𝑆𝑆,�
1

𝑙𝑙𝑙𝑙(2)
∗ 𝐷𝐷𝑚𝑚) ∗  𝑛𝑛−0.2                  (3) 

and compares the standard distance (SD) and the median distance (Dm) from the calculated mean 

center of data points (h is the calculated bandwidth and n is the population of data points). SD 

measures the compactness of a distribution and is typically represented as a circle around the mean 

center. Dm is calculated as the median of the distance of each point from the mean center. 

Silverman’s rule compares both distances: the standard distance is more applicable for data without 

strong directional trends while the median distance works well in cases of skewed data. In this 

way, an appropriate bandwidth for KDE can be calculated for volcanic fields that vary in overall 

shape (Fig. 2.S2).  

 We perform KDE analysis on the four volcanic fields described above (Auckland, 

Springerville, Central Cascades and Washington Cascades) using the bandwidth produced by 

Silverman’s rule and the intrinsic length scale from the Voronoi methodology (Table 1). Each 

dataset is read into ArcGIS as a point layer with latitude and longitude coordinates. The coordinate 

system of the data is then converted from WGS84 to UTM to allow two-dimensional distance 

analyses. The boundary region used for each field is the convex hull generated for the Voronoi 

analysis. 

2.4  Results 

The goal of this work is to use the derived length scale to visualize clustering where present 

for the studied volcanic fields and to begin exploring structures that cause this clustering. To do 

this, we visualize the volcanic fields in two ways. The first is by shading the Voronoi diagram for 
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each field by the critical area, which provides an overview of how many vents are associated with 

cells within the critical area range and where they sit in the field. The second is through KDE maps 

produced using both the Silverman and Voronoi bandwidths (Table 2.1). Trends in clustering are 

identified by comparing KDE distributions between fields.   

2.4.1  Individual Field Results 

2.4.1.1 Auckland Volcanic Field (AVF)  

The spatial arrangement of AVF vents shows no intersection between the Voronoi cell and 

random distributions, indicating that the two are indistinguishable and that there is no Voronoi 

‘cluster’ distance to use as a bandwidth (Fig. 2.6a). The Voronoi tessellation of the AVF also 

shows cells of generally the same area across the field (Fig. 2.7a). Application of Silverman’s rule 

shows that the standard distance (SD) is smaller than the median distance (Dm) and is therefore 

Volcanic Field SD (m) Dm (m) Silverman’s 
Bandwidth (m) 

Voronoi 
Intersection (%) 

Voronoi 
Bandwidth (m) 

Auckland 8220 9608 3344 - - 

Springerville 17215 18459 4633  16 2125 

Central Segment of  
Cascades (Cinder 
Cones) 

72645 53528 13454 16.5 7633 

Central Segment of 
Cascades (Shields) 

77882 67320 24545 32 7702 

Washington Segment 
of Cascades (Cinder 
Cones) 

95414 47234 17359 17.5 17845 

Washington Segment 
of Cascades (Shields) 

29149 22916 9964 35 8683 

Table 2.1 Summary of Field Distances/Statistics. For each volcanic field and type of vent (cinder cone or 
shield) analyzed in this study, the standard distance, median distance, Silverman’s bandwidth, intersection 
percentage with Voronoi, and Voronoi bandwidth were calculated.  
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used for KDE analysis. The resulting bandwidth (3,344 m) produces KDE contours that show some 

higher density regions in the south; density values that peak at 0.384 km-2 in the western part of 

the field (Fig 2.7b). Note that the entire field is connected by a continuous contour, except for 

Rangitoto to the northeast (Fig. 2.7a). Rangitoto is also the largest by volume and the only vent to 

exhibit potential shield building, which might suggest a change in behavior. 

2.4.1.2 Springerville Volcanic Field (SVF) 

 Most cells in the Springerville Voronoi tessellation are smaller than the critical area found 

by the PDF intersection (Fig. 2.6b); cells larger than the critical area fall mostly in the northwest 

of the field while clustering is greater to the south (Fig. 2.8a). The clear PDF intersection (Fig. 

2.6b) yields a Voronoi length of 2,125 m (Table 1). The Silverman’s bandwidth (calculated using 

SD) of 4,633 m is more than double the Voronoi-derived bandwidth. The highest KDE density 

value from Silverman’s bandwidth (KDESil) is 0.642 km-2 and is located just west of the center of 

the field, near two additional high density regions to its east (Fig. 2.8c). Three distinct features on 

the northern edge of the field radiate outward in the NW, N, and NE directions. While KDESil 

shows a nearly continuous contour across the entirety of the field, the KDE using the smaller 

 
Figure 2.7. (a) Voronoi tessellation with convex hull boundary with vent locations plotted. (b) KDE contours 
for the AVF using the Silverman bandwidth (3,344 m). 
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Voronoi bandwidth (KDEVor) has numerous isolated contours, particularly in the NW (Fig. 2.8b), 

and shows a more elongated region of peak density values of 1.279 km-2. KDEVor also highlights 

the continuity of the N-trending feature. 

 

2.4.1.3 Central Cascades   

 The Voronoi tessellation for the Central Cascades cinder cones shows strong N-S variation 

with large cells to both the west and east (off-axis; Fig. 2.9a). The only isolated vent cluster is in 

the southwest. KDE densities for the Central Cascades cinder cones are highest near the center of 

the segment (Fig. 2.9b,c). Unlike the AVF and SVF, Dm < SD meant that Dm was used to calculate 

a Silverman bandwidth of 13,454 m, slightly less than double the Voronoi bandwidth of 7,633 m. 

KDESil forms narrow low density contours on the northern and southern edges of the segment, 

with higher densities (> 0.212 km-2) at the center, near the Three Sisters (TS; Fig. 2.9d). This large 

high density region lies within the transition zone between volcanism along the Cascade Volcanic 

Figure 2.8. (a) Voronoi tessellation with convex 
hull boundary with vent locations plotted and cells 
containing area less than the intersection area of 
14.19 km2 shaded orange. (b) KDE contours for the 
SVF using the Voronoi derived bandwidth (2,125 
m). (c) KDE contours for the SVF using the 
Silverman derived bandwidth (4,633 m).   
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Arc and the back-arc Newberry volcanic field (NB; Fig. 2.9). From this we conclude that despite 

our attempt to remove Newberry centers, the structural effects of Newberry could be influencing 

the results, as highlighted particularly by KDEVor. The peak vent density of 0.380 km-2 occurs in 

two high density regions between Mt. Jefferson (MJ) and the Three Sisters. Again the smaller 

bandwidth means that KDEVor defines more isolated contours than KDESil, such that only the 

central portion has a continuous contour (Fig. 2.9b).  

 
Figure 2.9. Voronoi tessellation for Central Cascades (a) cinder cones and (d) shields using convex hull 
boundary with vent locations plotted and cells containing area less than the intersection area shaded orange 
(183.059 km2 and .186.364 km2 respectively). KDE contours using the Voronoi derived bandwidth for (b) 
cinder cones (7,633 m) and (e) shields (7,702 m) and using the Silverman derived bandwidth for (c) cinder 
cones (13,454 m) and (f) shields (24,545 m). (MJ – Mt. Jefferson, TS – Three Sisters, CL – Crater Lake, NB 
- Newberry)  
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The Voronoi tessellation for the Central Cascades shields shows three main vent clusters; 

one group lies to the north, one in the center on the eastern side, and one in the southern portion 

of the field (Fig. 2.9d). While the north and east groups fall where the small cinder cone cells are 

located, the southern group of small shield cells appears correlative with a line of large area cells 

in the cinder cone tessellation (Fig. 2.9d). KDEs for the Central Cascades shield volcanoes vary 

substantially when using the Silverman and Voronoi bandwidths: Silverman’s bandwidth is 24,545 

m, more than three times the Voronoi bandwidth of 7,702 m. As a result, the peak density for 

KDEVor (0.105 km-2) is nearly an order of magnitude higher than for KDESil (0.018 km-2), and there 

are many more isolated density peaks for KDEVor (Fig. 2.9e,f). Both KDEs show the highest 

density region falling just west of the Three Sisters and between the two high density areas of the 

cinder cone vents (Fig. 2.9b,c); there is also less apparent influence from Newberry. 

2.4.1.4 Washington Cascades 

The Voronoi tessellation for the Washington Cascades cinder cones shows two main 

clusters (Fig. 2.10a). Corresponding KDEs show high density regions in the south, where most 

vents are located (Fig. 2.10b,c). Similar to the Central Cascades, Dm was used for Silverman’s 

Rule to produce a bandwidth of 17,359 m, nearly identical to the Voronoi bandwidth of 17,845 m; 

the similarity is likely a consequence of the large central Voronoi cell (Fig. 2.10a) and shows that 

the Voronoi bandwidth increases when small clusters of vents are far apart. As the two KDE results 

are nearly identical, we describe only KDEVor, which shows two high density regions, the first 

lying south of the midway point between Mt. St. Helens (MSH) and Mt. Adams (MA) and the 

second located directly south of Mt. Adams (Fig. 2.10c). The peak density of 0.045 km-2 only 

occurs in the first region. There are also two small regions of higher density values associated with 

the two small clusters to the north. 
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Shield volcanoes in the Washington Cascades lie only in the southern cluster and most cell 

areas are smaller than critical (Fig. 2.10d), with the exception of the western portion of the field. 

Again, Voronoi and Silverman bandwidths are similar, at 8,683 and 9,964 m respectively. The 

peak densities are also similar (Fig. 2.10e,f) with a location that lies between the two high density 

regions highlighted in the cinder cone KDEs (Fig. 2.10b,c). In this regard, the Washington and 

Central Cascades show a similar relationship between the peak density regions for cinder cones 

 
Figure 2.10. Voronoi for Washington Cascades (a) cinder cones and (d) shields using convex hull boundary 
with vent locations plotted and cells containing area less than the intersection area shaded orange (1000.487 
km2 and 236.881 km2 respectively). KDE contours using the Voronoi derived bandwidth for (b) cinder cones 
(17,845 m) and (e) shields (8,683 m) and using the Silverman derived bandwidth for (c) cinder cones (17,359 
m) and (f) shields (9,964 m).  (MB – Mt. Baker, GP – Glacier Peak, MR – Mt. Rainier, MSH – Mt. St. Helens, 
MA- Mt. Adams) 
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and shields, although the trend of shield volcanoes in the Washington segment narrows to the east 

and ends before Mt. Rainier (MR). 

2.4.2 Comparing Vent KDE Values 

 We have visualized which vents are associated with clustered Voronoi cells (cells with area 

less than our length scale where behavior transitions from clustered to random), and we have then 

produced Kernel Density Estimation (KDE) maps at two different bandwidths to see how density 

patterns change between a distance-based (Silverman) and area-based (Voronoi) metric. We now 

(1) normalize both KDESil and KDEVor for each volcanic field, (2) find the normalized density 

values from both KDE maps at points where vents are located, and (3) produce CDFs of the 

normalized density distributions (Fig. 2.11). Doing this allows us to compare behavior across fields 

and view relations between density values and vent characteristics (see discussion for the latter). 

Unlike our previous CDF curves of Voronoi cell areas where small cell areas were related to 

clustering (Fig. 2.5), now higher normalized density values are related to clustering.  

The normalized KDESil density values for Auckland create a linear CDF, with vents neither 

being located on very low (< 0.1) or very high (> 0.9) density regions (Fig. 2.11a). Meanwhile for 

Springerville, 60% of KDESil normalized density values for vents are ≤ 0.5, with 5% of values 

falling between 0.9 and 1. This difference in behavior of a known random field (AVF) and a known 

clustered field (SVF) is intuitive, as when clustering occurs, the densest cluster will produce high 

values while vents outside the cluster will have lower values. The Central Cascades and 

Washington Cascades cinder cones follow a similar initial increase to the SVF (Fig. 2.11a); then 

after reaching normalized density values of 0.5, the Central Cascades cinder cone CDF becomes 

approximately linear while the Washington Cascades cinder cone CDF is marked by discrete 

jumps in value (likely from the discrete clusters). The Washington shields CDF also shows discrete 
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steps, while having the highest percent of normalized density values ≤ 0.5 (70%). The Central 

Cascades shields CDF however, follows the AVF’s trend closely, except for tail values < 0.2 and 

> 0.9.   

 
Figure 2.11. CDF plots for normalized density values from (a) KDESil and (b) KDEVor at individual vents 
across each volcanic field (CC – Cinder Cones, SH – Shields).  
 

While CDFs based on KDESil densities can be used to compare behavior between a random 

field and a clustered field, KDEVor assumes clustering is present, and differences in CDFs of 

KDEVor density values at vents record details of clustering behavior. There is an ever further 

emphasized predominance of normalized density values ≤ 0.5 at vents for the SVF, Central 

Cascades cinder cones, and Central Cascades shields (Fig. 2.11b). The Central Cascades shields 

CDF experiences the most dramatic change (due to the length scales having the greatest 

difference), with 90% of its density values ≤ 0.5 with very few values ranging 0.5-0.9 and the 

remainder at high values > 0.9. CDFs derived from both KDEVor and KDESil are similar for the 

Washington Cascades cinder cones and shields, a result of the similar bandwidths for these fields. 

2.5  Discussion 
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2.5.1 Comparison with Previous Field Findings 

 A notable feature of the Auckland Volcanic Field (AVF) is that the PDF does not intersect 

that of the random distribution (Fig. 2.6a), indicating that there is no length scale where behavior 

transitions from random to clustered. Poisson (PNN) analysis of the AVF also finds the vent 

distributions to be consistent with a Poisson process (randomly distributed; Le Corvec et al., 

2013b). Additionally, the location of the older vents does not appear to provide a guide to younger 

vent locations (Bebbington & Cronin, 2011), although the spatial information may provide 

information on eruption volume, with larger eruptions filling in spatial gaps (Bebbington, 2015). 

KDESil (Fig. 2.7b) highlights the same higher intensity regions found using other isotropic kernel 

functions (Bebbington, 2013). The slight SW-NE alignment of the KDESil contours is further 

emphasized by KDEs produced with anisotropic kernels, indicating a structural control of vent 

alignments over the field (Bebbington & Cronin, 2011; Bebbington, 2013; 2015). 

 All other study regions have intersection points between observed and random PDFs, 

indicating that they all have a maximum distance of clustering before random behavior initiates. 

PNN analysis of Springerville (SVF) has also shown clustering behavior (Le Corvec et al., 2013a). 

For comparison we also performed PNN analysis on our fields of interest that have Voronoi length 

scales. All except the Central Cascades shields yielded R values less than one, indicating clustering 

(Table 2.S1). The R values for the Central Cascades and Washington Cascades cinder cones of 

0.49 and 0.43, respectively, are substantially less than that of the SVF, indicating a higher degree 

of whole field clustering. Similarly, CDFs derived from KDEVor show greater percentages of 

normalized densities > 0.5 for both the Central and Washington cinder cones than the SVF (Fig. 

2.11b). The R value for the Central Cascades shields is 1.005 which aligns with Poisson behavior. 

The shaded Voronoi diagram, however, shows distinct clusters of small cells separated by larger 
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area cells (Fig. 2.9d). Returning to the CDF from KDESil density values (Fig. 2.11a), the Central 

Cascades shields behave similarly to the AVF (known to have PNN values also around 1 indicating 

random behavior; Le Corvec et al., 2013a) except for the two end tails. This highlights an important 

feature of the Voronoi methodology: it can distinguish between fields with random vent locations 

(AVF) and fields that appear random with linear distance metrics but show clustering behavior by 

area (Central Cascades shields). In detail, PNN analysis of cinder cones around Crater Lake (CL 

– Fig. 2.9), in the southern part of the Central Oregon segment, yields R values of ~0.18-0.5 using 

50 ka bins (Karlstrom et al., 2015), which overlaps with an R value of 0.49 for the entire segment.  

We also calculated K-Ripley’s statistic in ArcGIS for the AVF and SVF as our known 

random and clustered field (Ripley, 1981). This function calculates the dominance of clustering or 

dispersion at different length scales. We calculate the statistic in ArcGIS for the AVF and the SVF 

for length scales ranging 500 to 10,000 m in 500 m increments across our convex hull areas for 

the fields; the resulting output gives 1) an observed K distance calculated from the field vents, 2) 

an expected K distance, and 3) upper and lower confidence envelopes of 99.9% (generated by 

running 999 permutations). If the observed K distance is higher than the expected K and the upper 

confidence limit, then there is statistically significant clustering, while is the observed K is lower 

than the expected K and lower confidence limit then there is statistically significant dispersion. At 

every length from 500 m to 10,000 m in 500 m increments, Auckland showed no significant 

clustering, while Springerville showed significant clustering at every length (Fig. 2.S3), marking 

agreement with previous findings as well as ours that Auckland doesn’t show clustering while 

Springerville does (we do note that using different confidence intervals it is possible to find length 

scales of potential clustering for Auckland; Magill et al., 2005). These methods provide a useful 
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benchmark for comparing our results, but we can take our spatial description further by evaluating 

different vent properties (e.g. composition, age) in comparison with our density values.  

2.5.2 Exploring Structures with Silverman and Voronoi  

To study structures within each of these fields, we combine spatial analysis data with 

available age and composition data. While the AVF does not show signs of clustering, the field 

includes pairs of vents that are in spatial (< 3 km) and temporal (< 7 ka) proximity to each other 

throughout the field (Fig. 2.12a). Most of these pairings are NE-SW aligned, similar to the features 

highlighted in the AVF KDESil (Fig. 2.7b) and occurring throughout the field’s eruptive history: 

Onepoto (ON) and Tank Farm (TF) vents erupted at 187.6 ka and 181.0 ka and Purchas Hill (PH) 

and Mount Wellington (MW) erupted at 10.9 and 10.0 ka. The NE-SW structural alignment of the 

paired vents further supports tectonic structural control on the AVF throughout the entire history 

of the field. In general, it seems that the AVF is random by all metrics with vents produced by 

magma rising quickly from the mantle (no crustal residence) and being influenced by tectonic 

structural controls.  

Regional tectonics have also influenced the SVF, dominated by NW-trending strike slip 

faults (Crumpler, 1992). Several NW-trending features appear in the KDESil for the SVF (Fig. 

2.8c), but in contrast to the AVF, Springerville vents are also clustered. The absence of fissure 

vents in the SVF (Crumpler, 1992) and the proximity of vents with differing magma compositions 

(Connor, 1992) suggests that these clusters are not purely tectonic. Comparison of normalized 

KDEVor density CDFs for vents of different compositions (Fig. 2.12b,c) shows that the alkali basalt 

vents CDF contains a higher percentage of high density values than CDFs for hawaiite and 

transitional basalt. This suggests that the clustering length scale found with the Voronoi 

methodology could be related to conditions of magma storage, while the absence of a 



 56 

compositional distinction in normalized density CDFs using the Silverman bandwidth may reflect 

more regional tectonic influence. 

In the Cascades, the lower age resolution, complex tectonics, and interplay between 

distributed and focused volcanism (including the dominant stratovolcanoes) makes the spatial 

structure of vents more difficult to interpret. We start by separating the normalized density values 

located at vents for each field by time epoch (Early Pleistocene, Middle Pleistocene, and Late 

Pleistocene/Holocene combined). Note that these density values are from KDE done on the present 

state of the fields (Fig 9,10), not individual KDEs for each epoch. For the Central Cascades cinder 

cones, density values are higher for younger vents, consistent with better preservation (Fig. 13a,b). 

The Central Cascades shields show the greatest discrepancy between KDESil and KDEVor, a result 

 
Figure 2.12. (a) Map of AVF with vents that erupted in spatial and temporal proximity notated. CDF plots of 
SVF normalized density values from (b) KDESil and (c) KDEVor at vents with three compositions (alkali basalt, 
hawaiite, and transitional basalt). (TF – Tank Farm, ON – Onepoto, AD – Auckland Domain, GR – Grafton, 
MW – Mt. Wellington, PH – Purchas Hill, MM – Māngere Mt., ML – Mangere Lagoon, PU – Pukeiti, OT – 
Ōtuataua, HP – Hampton Park, OH – Ōtara Hill, SS – Styaks Swamp, GM – Green Mt.) 
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of large differences between bandwidths. In contrast, epoch-based CDFs for the Washington 

Cascades cinder cones and shields are similar for KDESil and KDEVor because the bandwidths are 

nearly identical (Fig. 2.13e-h).  

When viewed by age, the Washington Cascades segments shows some interesting patterns. 

Here density values for cinder cones are higher in the Early and Late Pleistocene and lower in the 

Middle Pleistocene. The opposite pattern is seen for the shield volcanoes, with lower density 

values in the Early and Late Pleistocene and higher values in the Middle Pleistocene. These data 

suggest that dispersed volcanism (clustered cinder cones) dominated the Early and Late 

Pleistocene while volcanism was more focused (clustered shields) in the Middle Pleistocene. 

Interestingly, construction of the current main edifices of Mount Rainier and Mount Adams began 

in the Middle Pleistocene (Hildreth, 2007). The switch from distributed to focused volcanism in 

the southern portion of the Washington segment is also suggested by a volume-weighted Gaussian 

kernel analysis (O’Hara et al., 2020). In the Central Cascades segment, in contrast, the general 

increase in cinder cone density values with time might suggest a change from focused to distributed 

volcanism, consistent with evidence for extension across this segment of the arc (Wells & 

McCaffrey, 2013). Though again, this could also be an artifact of better preservation of later 

erupted vents. 

2.5.3  A Novel Clustering Length Scale  

An ongoing challenge with studying distributed volcanism is how to characterize spatial 

patterns of eruptive behavior. Here we suggest an area-based measure that differs from existing 

options in two important ways: (1) we choose to use area instead of distance because of the two-

dimensional nature of location data, and (2) we measure the observed departure of vents from the 

random distribution for vents rather than attempting to infer an underlying distribution.  
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2.5.3.1 Using Area as a Measure of Departure 

Our methodology aligns with the conventional use of a homogeneous Poisson process to 

describe a random distribution of vents. In nearest neighbor analysis, however, distributions of 

distances are used to compare to random expectations, which can be determined analytically but 

 
Figure 2.13. CDF plots for normalized density values from KDESil (a,c,e,g) and KDEVor (b,d,f,h) associated 
with vents for each field of interest in the Cascades. 
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are constrained to a one-dimensional measure of comparison. Voronoi tessellations, in contrast, 

allow the distribution of areas to be compared with the distribution of Voronoi cells generated by 

a homogeneous Poisson process (Hinde & Miles, 1980; Tanemura, 2003). 

 
Figure 2.14. Simulated vent locations (a-b) and Voronoi tessellations (c-d) for example A and example b 
respectively. (e) Areal CDFs produced by examples A and B.  
 

We emphasize the difference between using linear distance and area measures with a 

simple synthetic experiment (Fig. 2.14). Here examples A and B are constructed such that the 

nearest-neighbor distance for each point is one unit-length (Fig. 2.14a,b). For example A, this is 

ensured by putting two equilateral triangles (the diamond) one unit length away from an isosceles 

triangle. In example B we construct a regular hexagon. Both examples contain seven points with 

identical nearest neighbor distributions that cannot be distinguished using a measure of distance 

(e.g. Poisson nearest neighbors). Visually, however, they represent different spatial structures (not 

just rotations or reflections), and produce different Voronoi cell configurations (Fig. 2.14c,d). A 



 60 

comparison of areal CDFs for the two examples shows differences between resulting curves, even 

with only seven points (Fig. 2.14e). Derived PDFs would also produce two different clustering 

length scales. A strength of our methodology is the ability to distinguish between these alternate 

vent placements and produce measures that describe each.   

2.5.3.2 Avoiding Inferring an Underlying Distribution 

 A KDE is an approximate representation of an underlying probability density function 

(PDF) that depends on the bandwidth used. Bandwidth is usually selected based on its ability to 

minimize some error function between a trial PDF and the KDE. Even when assuming the same 

form, however, different selection methods can yield different results (Canon Tapia, 2022). Our 

approach side-steps this problem by using as reference the known underlying PDF for randomly 

scattered vents. This allows us to identify where an observed distribution departs from random in 

a way that signifies clustering, as in nearest neighbor analysis. The added value of our approach is 

that the resulting length scale determines when the behavior stops and which vents are associated 

with that length scale, allowing us to view changes in clustering across fields rather than describing 

the field as a whole. While this methodology does not attempt to recover the actual PDF and 

produces one length scale to describe behavior change when others might exist, it allows us to 

identify the length scale that identifies clustering. Furthermore, since this approach does not rely 

on assumptions about a potential underlying PDF it is easy to compare results between volcanic 

fields. To summarize, we define an easy-to-identify bandwidth that always means the same thing, 

which is the length scale for a volcanic field at which the areal clustering becomes less than 

expected when compared to a random process.    

2.5.4 Future Considerations  

2.5.4.1 Understanding Length Scales and Artifacts 
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 Many of the PDFs for the volcanic fields (Figure 2.6) show multiple peaks in the observed 

results, as well as multiple intersection points with the simulated random PDF. The nature of these 

peaks is an interesting point of study for future work, as they could characterize length scales that 

are more and less affected by the formation of clusters. One issue is the conservation of total area, 

such that an increase in the total area contributed by smaller cells must come at the expense of 

cells at some other length scale. This compensation does not have to be evenly distributed over the 

remaining cells, yielding peaks and troughs such as those present in the PDFs of the Central 

Cascades cinder cones and shields. 

This tradeoff in distribution of areas must be balanced against the presence of artifacts in 

large cells. Over multiple simulations, peaks occur at different places on the x-axis, creating spikes 

in the observed data (Fig. 2.15a). Sequential generation of a synthetic vent field from a normal 

distribution shows that the proportion of total mass in the first third of the curve remains fairly 

constant, while the mass in the tails is more erratic. This variability produces a thin tail when 

averaged over many simulations, (Fig. 2.15b). The second intersection point for the Springerville 

PDF (Fig. 6b), for example, is likely an artifact; an even clearer example can be found in the PDF 

of the Washington Cascade cinder cones (Fig. 2.6e). Here the spike at the right side of the PDF 

reflects the large distance between the cinder cones near Mt. Adams and the small groups of cinder 

cones near Glacier Peak and Mount Baker. We elected to keep these cones in our analysis to view 

how they would affect the distributions and clustering length scale for a segment spanning the 

northern reaches of Washington, but future analysis could remove these clusters to determine a 

clustering length scale for the cones around Mount Adams and Mount St. Helens.  

2.5.4.2 Additional Statistical Analysis 
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 Additional methods used to apply KDE to volcanic fields include bandwidths found using 

a cross validation method (Duong et al., 2007) or methods such as Least Squares Cross Validation 

(LSCV) or Sum of Asymptotic Mean Squared Error (SAMSE; Duong & Hazelton, 2003). Often 

these methods are used when producing spatio-temporal or spatio-volumetric models of volcanic 

fields with the intent to forecast future vent locations or hazards (Bebbington, 2013; Kiyosugi et 

al., 2010). Comparison between our length scale and these methods, as well as deeper exploration 

between distance-based methods such as Poisson Nearest Neighbor and K-Ripley’s statistic, could 

provide additional insight into ways in which our length scale compares to other metrics. Our goal 

for this work, however, was to find a length scale based on the area between vents that would 

represent the same characteristic across multiple volcanic fields. This characteristic is the 

maximum length at which clustering occurs before transitioning to random behavior. We 

compared our Voronoi derived bandwidths with Silverman’s bandwidth because, while simplistic, 

the latter is a measure based on distance between vents that provided a useful comparator for our 

area-based measure. Importantly, our focus is describing clustering behavior of vents in existing 

fields without reference to future activity. 

 2.5.4.3 Limitations of Current Data  

While data on the clustering and alignment of volcanic vents is important for understanding 

the structure of volcanic fields, there are limits to analysis based on the data available. First is the 

question of how to define a vent, as illustrated by our datasets. In the AVF, vents are allocated by 

edifice, even where those edifices may have been constructed by more than one eruption, and may 

include more than one vent (Bebbington and Cronin, 2011). In the SVF, the question of ‘vents or 

events’ has been posed, given that multiple vents can be assigned to the same eruptive product 

(e.g., a lava flow) and vice versa, with multiple distinct products associated with one vent (Condit 
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et al., 1996). If the same classification were used for the AVF, then Rangitoto, for example, would 

have multiple vents, one associated with each new lava flow and the highest density region of the 

resulting KDE would skew toward the shield (Linnell et al., 2016). The Central and Washington 

segments of the Cascades have both numerous shields and composite centers with associated 

basaltic vents (i.e., Three Sisters, Mount Adams). Here the question is whether cinder cones 

represent single events or are part of a composite eruption; answering this question requires a 

combination of location, age, and composition data that does not exist for most fields. Particularly 

important are age data that allow analysis of temporal, in addition to spatial, clustering behaviors. 

Where such data are unavailable, the analysis of topography (e.g., O’Hara et al., 2020) may help 

answer the question of whether edifices represent single or composite events.  

 
Figure 2.15. (a) Three PDFs for simulated normally distributed scattered vents. While there is a relatively 
constant mass for x-values less than 0.4, we see a large variance in how the mass manifests in the tails of the 
simulations. (b) The averaged PDF of 5,000 simulations. 
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Another limitation relates to the larger question of how to designate volcanic fields (Canon-

Tapia, 2016; Deligne et al., 2016). Discrete fields can be defined using a convex hull connecting 

the outermost vents (Le Corvec et al., 2013b; Fig. 2.2), the widest isocontour of a KDE (Germa et 

al., 2013), or a geometric shape. An example of the latter is the AVF, which has a well-defined 

boundary that has been approximated as an ellipse (Bebbington, 2015). The Cascade volcanic arc 

and its segments, in contrast, contain cinder cones that are dispersed among not only shield 

volcanoes, but also domes and stratovolcanoes; the result is a near continuous field that shifts 

between focused and distributed volcanism across various segments (Hildreth, 2007; O’Hara et 

al., 2020). Including all vent types in our analysis would allow us to further explore relations 

between focused and distributed volcanism in space and time. Ultimately, these data could be 

extended to assess the nature of the underlying magmatic system. 

2.6  Conclusions 

 We have explored some of the current statistical methods used to characterize volcanic 

fields and developed a methodology for identifying volcanic fields that have an intrinsic length 

scale that signifies the transition from clustering to random behavior. We do this by comparing the 

distribution of area between vents, as depicted in Voronoi diagrams for each volcanic field, with 

the distribution of areas generated by a random Poisson process. All but one examined field, the 

Auckland Volcanic Field, have clustering length scales which vary in size. We also use 

Silverman’s rule to calculate a simple distance-based length scale for each field. For the 

Springerville Volcanic Field and cinder cones of the Central Cascades, the Voronoi (area-based) 

length scale is half the value of the Silverman’s (distance based) length scale. The shields of the 

Central Cascades, however, have a Silverman’s length scale more than three times the Voronoi 
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length scale, while both the cinder cones and shields of the Washington Cascades have similar 

Silverman and Voronoi length scales.  

 Both length scales provide bandwidths for Kernel Density Estimation (KDE) to produce 

maps that visualize patterns of vent density. For Auckland and Springerville volcanic fields, 

KDESil highlights linear features that reflect regional tectonic forces. The smaller KDEVor for 

Springerville, in contrast, shows smaller clusters that could reflect locations of magma storage. 

Contrasting clustering behavior of cinder cones and shield volcanoes through time, particularly in 

the Washington Cascades, suggests an increase in magma focusing in the Middle Pleistocene that 

appears consistent with growth of stratovolcanoes. In the central Cascades, in contrast, temporally 

persistent volcanism, both cinder cones and shield volcanoes, at Three Sisters and Crater Lake 

may indicate places along the subduction zone that promote magma ascent; indeed, these are both 

locations where major fault systems intersect the Cascades. 

 Future extensions of this work include further statistical analysis, addition of more data, 

and physics-based modeling of clustering. Our work focuses on where and at what length scales 

in volcanic fields the pattern of vents departs from random behavior and begins to address causes 

for such departures. Comparison of bandwidth selection methods could help to identify key 

comparator distributions other than Poisson. Additional data could better distinguish between 

vents and events and identify the relative importance of tectonic and magmatic drivers. Variations 

in edifice volume, and by extension magma supply rate, could extend Voronoi and KDE analysis 

if properly weighted. Improving spatial coverage of geochemistry and age data would allow 

analysis of the role of crustal storage on distributed volcanism in arc settings like the Cascades. 

Finally, modeling crustal processes, including both magma storge dynamics and tectonic faulting, 

could help to constrain controls of temporal changes in vent location and magma composition. As 
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an initial step, this work shows that it is possible to derive intrinsic length scales at which clustering 

occurs and what these length scales mean across each field, which should lead to general tools for 

assessing structure in distributed volcanic fields.   
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2.8 Data and Code Availability 

The original datasets used for this analysis, as well as Kernel Density raster images are 

available at the following Github (https://github.com/rcbussard/Length_Scale_Data). Codes used 

for calculating Voronoi mesh and diagrams as well as volcanic field CDFs and PDFs can be found 

at the following Github (https://github.com/charperflow/voronoi_clipped). Figures were made 

with MATLAB 2020, ArcGIS, and Julia, and then compiled with Adobe Illustrator.  

2.9 Bridge 

 This chapter has focused on mapping distributed volcanic fields with statistical methods 

that are able to characterize clustering in these fields to begin addressing questions of magma 

storage and ascent in these areas. The methods presented in this chapter can be used to compare 

volcanic fields and address questions of magma storage and field evolution when other methods 

of individual sampling or monitoring might not be as affective. The next two chapters focus on 

using a different technique of monitoring on focused volcanic systems to show how monitoring 

can be affected. The next chapter will focus on how monitoring efforts can be affected by a 

https://github.com/rcbussard/Length_Scale_Data
https://github.com/charperflow/voronoi_clipped
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volcano’s environment and the extent of change between sensors in monitoring. Chapter IV will 

then focus on monitoring at a different focused center in the Cascades, Medicine Lake, and how 

subsurface processes can be explored with monitoring data. 
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2.10 Supporting Information  

 
Figure 2.S1. Voronoi diagrams for Springerville Volcanic Field colored by residuals for the (a) rectangular and 
(b) convex hull boundaries. CDF plots for the SVF cell areas for the (c) rectangular and (d) convex hull 
boundaries. 
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Figure 2.S2. Mean center (large blue/orange circle), standard distance (red) and median distance (black) for 
the (a) AVF, (b) SVF, (c) Central Cascades segment, and (d) Washington Cascades segment.  
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Figure 2.S3. Plots showing the expected value, observed value, and 99.9% confidence interval for the (a) AVF 
and (b) SVF.  
 

Volcanic Field of Interest R Value 
Springerville Volcanic Field 0.9460 

Central Cascades Cinder Cones 0.4921 
Central Cascades Shields 1.0005 

Washington Cascades Cinder Cones 0.4338 
Washington Cascades Shields 0.939 

 
Table 2.S1. Table listing calculated R-values for Poisson Nearest Neighbor (PNN) analysis for each of the 
clustered fields.  
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CHAPTER III 

QUANTIFYING THE EFFECTS OF VOLCANO SNOW COVER 

ON INSAR COHERENCE USING A COMPUTATIONALLY 

INEXPENSIVE NEURAL NETWORK 

 

This chapter contains co-authored material and is in preparation to be submitted for 

publication. The writing of this chapter was done solely by me with co-authors Josef Dufek, 

Christelle Wauthier, and Meredith Townsend providing editorial assistance. I conceptualized the 

work presented in this chapter and performed all analyses. 

3.1  Introduction  

Over the last half century, remote sensing has become a vital tool for monitoring volcanoes 

because it improves our ability to detect unrest, monitor active volcanic hazards, and track decadal 

processes at volcanic systems (e.g., Poland & de Zeeuw-van Dalfsen, 2021). One remote sensing 

method that is often used for tracking ground deformation in response to processes such as dike 

propagation, magma chamber volume change, and flank instability is Interferometric Synthetic 

Aperture Radar (InSAR) (Anderson et al., 2019; Dzurisin et al., 2006; Gonzalez-Santana et al., 

2022). SAR satellites, both airborne and spaceborne, emit radar waves that travel through the 

Earth’s atmosphere, reflect off of the ground surface, and return back carrying both amplitude and 

phase information (Rosen et al., 2000; Bürgmann et al., 2000; Massonnet et al., 1993). When a 

SAR satellite images the same area multiple times, the phase information from one acquisition 

date can be differenced from the phase information from another date to create an interferogram 

(the process of interferometry) to show movement of the Earth’s surface. While the use of radar 
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waves allows SAR satellites to image the Earth’s surface regardless of time of day or cloud cover, 

the coherence (quality of signal) between two SAR images can still be impacted by a variety of 

factors: atmospheric effects (Williams et al., 1998; Lohman & Simons, 2005; Stephens et al., 

2020), high magnitude ground deformation happening within a short period of time, or land cover 

changes such as vegetation and snow. While some radar bands can penetrate vegetation cover to 

retrieve signal, snow cover impacts coherence for all radar bands because the placement, melting, 

and refreezing of snow changes radar wave scattering properties of the ground between satellite 

acquisitions (Zebker & Villasenor, 1992; Zebker et al., 2007). Given the number of volcanoes that 

are high enough to experience persistent partial or total snow cover, coherence loss from snow can 

present challenges to volcano monitoring (Kumar & Venkataraman, 2011). A tool that efficiently 

and systematically identifies snow cover across volcanic systems and tracks the spatial extent of 

snow cover through time would enable quantification of seasonal signal decorrelation and where 

across the region decorrelation would be expected. Knowing this would provide guidance to 

network construction for interferogram stacking and help determine if InSAR is an applicable tool 

for the area of interest. 

 Machine Learning (ML) has emerged as an efficient means of image classification in a 

number of disciplines including process of identifying and categorizing pixels in an image based 

on certain identifying information (Lary et al., 2016). Classification can either be supervised, 

where classes for grouping pixels are known and defined, or unsupervised, where pixels are 

grouped into clusters based on statistical properties (Maxwell et al., 2018; Duda & Canty, 2010). 

One type of supervised ML used for image classification is a neural network which is designed to 

mimic the connection networks in brains and is therefore composed of layers of neurons that are 

all connected to each other (Lary et al., 2016; Maxwell et al., 2018). These connections are 
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assigned weights, random at first, but change with repeated iterations; weight combinations that 

improve the classification ability of the network are used for successive classifications (Sun et al., 

2020; Zhou, 2020; Taye, 2023).  

In this work we develop a neural network trained on Landsat-8 imagery and test if the 

network can accurately detect snow cover, and quantify the effects of snow cover on InSAR signal 

coherence across Mount St. Helens using snow cover prediction outputs from the neural network. 

We test the accuracy of our computationally inexpensive neural network trained to classify snow 

cover by comparing its output predictions to Normalized Differenced Snow Index (NDSI) images 

of the same area, to assess whether pixels with higher NDSI values correspond to higher snow 

prediction values. We quantify snow cover through time over three chosen areas in the region 

surrounding Mount St. Helens that have different land cover characteristics, and then measure 

changes in InSAR coherence of these areas across different seasons. Finally, we simulate ground 

inflation due to a point source at depth and mask the deformation with snow cover from dates with 

high and low snow cover to understand how much ground deformation signal is potentially lost to 

incoherence from snow cover at Mt. St. Helens throughout the year. 

3.2  Geologic Setting 

Mount St. Helens is a composite stratovolcano located in southwestern Washington along 

the northern stretch of the U.S. Cascade Volcanic Arc. The volcano’s flank collapse and 

subsequent explosive eruption in 1980, as well as renewed activity from 2004-2008, have 

encouraged both remote and in situ observation to prepare for future hazards (Criswell, 1987; 

Christiansen et al., 1981; Sherrod et al., 2008). InSAR is one remote method that was used to study 

ground deformation occurring prior to and during the 2004-2008 renewed activity, finding 

volcano-wide co-eruptive deflation centered on Mt. St. Helens’ summit crater (Poland & Lu, 
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2008). In addition to this deflation, InSAR spanning pre-eruptive and co-eruptive periods of the 

2004-2008 activity located several regions of subsidence within the pumice plain emplaced in 

1980 to the north of the volcano. However it can be difficult to retrieve deformation signal at Mt. 

St. Helens, because forested land surrounds the volcano, the region experiences heavy precipitation 

for much of the year (Dzurisin et al., 2008; Poland & Lu, 2008), and the volcano plus its 

surrounding area are often partially or fully snow covered. 

3.3 Methods 

For this work, we use an InSAR dataset composed of 151 descending Sentinel-1 SAR 

scenes (Track 115) processed using the topsStack workflow from the ISCE2 software to create 

730 interferograms spanning 2014-2020 (Rosen et al., 2012) (Fig. 3.S1a). The interferograms as 

well as their companion coherence maps were loaded into MintPy (Yunjun et al., 2019) and 

geocoded using a 30 m SRTM DEM (Farr & Kobrik 2000). The optical dataset consists of 30 

Landsat 8 (Path 46 Row 28) images (30 m resolution) with less than 5% of cloud cover (Fig. 3.1a) 

spanning 2014-2021. These images were downloaded using Google Earth Engine in addition to 

the 2016 National Land Cover Database (NLCD), a product developed by the U.S. Geologic 

Survey and the Multi-Resolution Land Characteristics (MRLC) Consortium that classifies the 

entire contiguous U.S., Alaska, and Hawaii into various land cover types at 30 m resolution using 

a combination of satellite and field data (Jin et al., 2019). Once downloaded, the NLCD product is 

cropped to cover the same area as the Landsat 8 images and then used to create a label file for the 

neural network by assigning a value of one to whole pixels labeled as perennial ice/snow and by 

assigning a value of zero to pixels with all other labels.  

 In addition to the label file from the NLCD, the neural network needs training data. Of the 

30 available Landsat scenes, the scene from September 13th 2016 was chosen as the training dataset 
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because of the lack of cloud cover and the availability of an image from the same year as the 

NLCD, which reduced variability between the data and the label file. Pixel values from bands 2-7 

(spanning optical, near infrared, and short wave infrared wavelengths) for the training image are 

randomly split into training (60%), validation (20%), and testing (20%) subsets. The training 

dataset is used to help the model learn patterns in the dataset, the validation data are used to 

evaluate model performance during the training, and the testing data are used after the model is 

trained to provide an unbiased performance evaluation of the model. The 60-20-20 split used for 

this neural network has been used in previous studies (e.g., Wu et al., 2013). For this dataset the 

split produces enough data to both train and test the model without overfitting.  

The architecture of the neural network is kept simple to optimize computational time, 

consisting of an input layer, a hidden layer, and an output layer. The input layer contains six nodes; 

one node for each of the six bands being read into the neural network. For the hidden layer, the 

number of nodes can be set by the user but should be placed at a value to minimize model loss 

(error of the model). For this neural network setup, a hidden layer with twenty nodes results in the 

least amount of loss (Fig. 3.S2a). In addition to node amount, the hidden layer needs an activation 

function; activation functions help train the neural network by producing outputs that describe the 

complex relationships in the data. The ReLU activation function is a piecewise linear function that 

outputs the value from a node if the value is greater than zero, and outputs zero if the value is less 

than zero. ReLU was selected because it promotes computational efficiency (Ide & Kurita, 2017). 

We chose the softmax activation function to transform the raw output from the hidden layer into 

vectors of probabilities (in this case probability of snow presence) for the output layer of the neural 

network (Dunne & Campbell, 1997). Two nodes were needed for the output layer: the first node 
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outputs a value per pixel representing the probability of snow being present, and the second outputs 

a value per pixel stating the probability of snow not being present.  

Three epochs (training cycles) were selected for the neural network, as this allowed the 

loss to be repeatedly minimized without overtraining (Fig. 3.S2b) (Maxwell et al., 2018). When 

the trained neural network was run on the testing data, it produced an accuracy of 99%, a P-score 

of 0.943, and an R-score of 0.199 (Fig. 3.S3). For neural networks, the P-score represents the 

precision of the model while the R-score represents model sensitivity. While it is preferable to 

have high values for both P and R scores to minimize the number of Type I errors (false positives) 

and Type II errors (false negatives), the low amount of snow pixels resulting from a label file 

describing land cover over Mt. St. Helens in September makes it difficult to achieve a high R-

score during training. Therefore each snow prediction image was compared with a Normalized 

Difference Snow Index (NDSI) image produced with the Landsat 8 images (Fig. 3.1b). NDSI 

images are calculated using the following ratio: 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 3 − 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 6)
(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 3 + 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 6)

 

In this ratio, values greater than zero typically indicate presence of snow cover. There is 

no singular value for NDSI that determines the presence of snow, as values ranging from 0.3-0.8 

have been used as the threshold for identifying glaciers with accuracies of 75-96% (Singh et al., 

2021, Zhang et al., 2019). There are also methods such as the Difference Snow Index (DSI) and 

Ratio Snow Index (RSI) that have similar success with classifying snow (Lin et al., 2012). For the 

purposes of this work, comparing NDSI and snow prediction values from the neural network 

provides one option of an external metric beyond the confusion matrix to test how the neural 

network performs.   
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Figure 3.1. Optical image with natural color band combination (a), Normalized Differenced Snow Index (NDSI) 
image (b), and snow prediction image output (c) for the Landsat 8 scene collected May 1st, 2019. (d) Scatter plot 
of NSDI and Snow Prediction % values > 0.9 for corresponding pixels for four dates across 2019, including 
2019-05-01. Patches used for yearly snow cover tracking are annotated with colored boxes in (a). 
 
3.4  Results  

The snow prediction images produce regions of high snow prediction values (> 0.9) with 

pixels of lower prediction values along the edges of these regions (Fig. 3.1c). When comparing the 

NDSI value against the snow prediction value for each pixel across the 29 dates, we find that 

generally as NDSI values increase, snow prediction values increase (Fig. 3.S4). Dates from 2019, 

which span a range of months and seasons, all have high prediction values that correspond with 

positive NDSI (Fig. 3.1d). One way in which the neural network outperforms NDSI is through a 

clearer distinction between Spirit Lake and the surrounding snow. While the NDSI image for May 

1st 2019 (Fig. 3.1b) shows positive values for the surface of the lake, the snow prediction data for 
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the same date shows a prediction of zero for the lake and a value near one for nearby snow (Fig 

3.1c). Instances of high snow prediction values at negative NDSI values are due to isolated clouds 

in the images. As these clouds did not cover the study areas focused on in this work (Fig. 3.1a), 

these dates were retained for subsequent analysis. To produce snow masks for each image, we use 

pixels with snow prediction values > 0.9 because this will produce a confident conservative 

estimate for snow cover in each image. 

With the generated snow masks, we calculate the percent of pixels with snow cover for 

three areas of interest across the twenty-nine dates spanning 2014-2021 (Fig. 3.2a-c). The first area 

of interest, referenced hereafter as patch 1, covers the southern slopes of Mt. St. Helens, and the 

second area, patch 2, contains pixels across the pumice plain (Fig. 3.1a). The third area, patch 3, 

covers an area of vegetated ridgeline to the northeast of Mt. St. Helens. This patch was chosen to 

see how snow cover over vegetated areas impacts coherence; patch 1 and 2 are bare rock when 

there is no snow. For Patch 1, there is almost always a non-zero amount of snow cover, which is 

to be expected given the high elevation. During the winter season, snow cover of Patch 1 stays 

consistently over 80%, while the spring and fall months show snow cover ranging anywhere from 

20-60%. Even during the summer months snow cover stays above zero, in contrast to the pumice 

plain that usually fluctuates between > 80% snow cover from December through March and < 20% 

snow cover for the rest of the year (Fig. 3.2a; Fig. 3.2b). Patch 3 typically shows snow cover values 

between the two end members of patches 1 and 2. Similar to patch 1, patch 3 retains non-zero 

snow cover into the spring months, but at a lower percent. 

 The temporal resolution of the Sentinel-1 data is twelve days, while for the Landsat data it 

is sixteen days, so the satellites do not image the same area on the same day most of the time. 

Therefore to directly compare the InSAR and optical datasets, we chose dates that are close enough 
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together in time (imaged 1-3 days apart) to ensure that snow cover doesn’t change dramatically 

and that the snow prediction images are still accurate. InSAR coherence maps are associated with 

both a reference and secondary date; for this work we chose coherence maps whose reference dates 

were close in time to the optical dates as having even one date with snow cover impacts coherence.  

 
Figure 3.2. Time series spanning 2014-2020 showing the percent of pixels covered with snow for the three 
designated patches on (a) the southern slopes of Mt. St. Helens, (b) the pumice plain, and (c) a vegetated region 
to the east of Spirit Lake. 
 

Figure 3.3 shows four date pairs that fit within this range and are also from four different 

seasons of the year. These provide a representative view of snow cover and coherence over time 

at Mt. St. Helens. The December 5th 2017 snow mask shows snow cover across Mt. St. Helens, the 

pumice plain, and the ridges to the north (Fig. 3.3a). Coherence for the interferogram with the 

December 2nd 2017 reference date is high across the Toutle River deposits, in addition to some 

areas to the west. Snow cover stays widespread for the March 11th 2018 snow mask, with the 

coherence image for the March 8th 2018 InSAR reference date showing similar high value patches 
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to the west and North Fork Toutle River but no areas of high coherence across the snow-covered 

regions (Fig. 3.3b). The May 1st 2019 snow mask and coherence image with the May 2nd 2019 

reference date clearly highlight the effect snow cover has on coherence; the high coherence across 

the pumice plain terminates right where snow cover on the northern edge of the volcano begins 

(Fig. 3.3c). The last pair from August 2020 shows only a small amount of snow cover close to the 

summit of Mt. St. Helens with high coherence across the slopes and pumice plain (Fig. 3.3d).  

 
Figure 3.3. Snow cover masks paired with corresponding InSAR coherence maps (a-d). Frequency of 
coherence values for Patch 1 (e-h), Patch 2 (i-l), and Path 3 (m-p) for five InSAR coherence maps with the 
chosen reference dates. Red and black dashed lines in each histogram represent coherence values of 0.3 and 
0.7 respectively. 
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To measure the effect of snow on coherence, we plot the frequency of coherence values 

from five coherence maps associated with the four chosen InSAR reference dates (December 2nd 

2017, March 8th, 2018, May 2nd, 2019, and August 24th, 2020) across the three patches of interest 

(Fig. 3.3e-p). Each coherence map are is generated from pairs with temporal baselines of twelve, 

twenty-four, thirty-six, forty-eight, and sixty-four days to minimize coherence loss from surface 

change across long time periods. These histograms show that coherence values significantly 

increase when there is no snow cover. Patch 2 specifically highlights this, with the peak frequency 

of its coherence values jumping from 0.28 to 0.99 when snow cover is not present (both the May 

and August dates; Fig. 3.3k-l). A similar trend can be seen in patch 1 for the August date (Fig. 

3.3h), although there are still pixels with low coherence values, likely from a small amount of 

snow still present toward the summit of the volcano. As expected, Patch 3 does not experience a 

swing to high coherence values when snow is not present, because vegetation cover alone can 

degrade coherence. It is worth noting, however, that Patch 3 does have more high coherence pixels 

when it is isn’t snow-covered (Fig. 3.3p). Patch 1 also shows an increase in variation of coherence 

for the May date as values on the tail of the frequency distribution reach values approaching one 

(Fig. 3.3g). 

3.5  Discussion  

The efficacy of InSAR for measuring volcano deformation relies on the ability to maintain 

coherence between the reference and secondary date. This analysis has shown that snow-cover has 

a significant impact on coherence. For this reason, selecting dates from June through September, 

when snow cover is zero or close to zero across most of the region, is likely to produce the most 

coherent pairs (barring significant artifacts from weather or other significant surface change). 

There is no certainty, however, that future magmatic activity and unrest at Mount St. Helens will 
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be confined to the months June-September; the 2004-2008 eruption included large ash and steam 

plumes in October, March, and December when there is usually snow cover across the volcano’s 

slopes (Fig. 3.2a). 

To explore how much deformation signal from an inflation event could be lost from 

coherence degradation in interferograms, we model a point source in a homogeneous elastic half-

space (Mogi, 1958) centered beneath Mt. St. Helens at a depth of 10 km with a volume increase 

of 30 million m3 (Anderson & Segall, 2013). We then mask the vertical deformation from the 

inflation source with snow masks from March 11th 2018 and August 23rd 2020, as these dates 

represent two end members of snow cover at Mt. St. Helens. This allows us to replicate signal loss 

from coherence degradation (Fig. 3.4a-b). We focus on vertical deformation, as the typical Line of 

Sight (LOS) deformation retrieved by InSAR is often converted to vertical for geophysical 

analysis, and only one direction of horizontal motion (E-W) is easily retrievable from InSAR data 

(Bürgmann et al., 2000; Varugu & Amelung, 2021; Wicks et al., 2002). While snow cover doesn’t 

always correspond to a total loss of phase signal, as seen in the high coherence areas located within 

the snow covered pumice plain in December 2017 (Fig. 3.3a), the stark boundary between snow 

cover and the high coherence pumice plain in May (Fig. 3.3c), as well as the general shifts in 

coherence values from close to or at 1.0 to ≤ 0.3 indicates that these snow masks could represent 

regions where the InSAR phase signal could not be retrieved due to snow cover. The March snow 

cover masks a large portion of the deformation and reduces the pattern to a ring of uplift around 

the volcano (Fig. 3.4a). Meanwhile, the August snow cover allows for almost the entire 

deformation pattern to be viewed (Fig. 3.4b).  

We then test a range of source depths (5-15 km) and volume increases (10-60 million m3) 

to see how widespread snow cover similar in pattern to the March snow cover mask would affect 
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the visibility of these different scenarios. After modeling the deformation from each source, we 

count the number of pixels with centimeter scale (> 1cm) of deformation, if present, before and 

after applying the March 11th, 2018 snow mask. While there are cases where millimeter scale 

deformation indicate magmatic processes, deformation on a centimeter and greater threshold is 

often measured with InSAR during magmatic activity and is therefore used as the threshold in this 

work (Dzurisin et al., 2009; Sigmundsson et al., 2024; Varugu & Amelung, 2021). Across all 

combinations, the amount of viewable cm-scale deformation for the point source is reduced to less 

than 60% (Fig. 3.4c). At higher volume increases (30-60 million m3), shallower sources show a 

greater reduction in cm-scale pixels, due to higher magnitude deformation being concentrated 

toward the center where snow cover is heaviest. At a volume increase of 25 million m3, sources of 

all depths have the same percentage of viewable cm-scale deformation at below 50%. For volume 

increases less than 25 million m3, greater depth sources have lower viewable pixel percentages, 

with some sources between 13-15 km depth having less than a third of cm-scale pixels viewable 

for the lowest modeled volume increase (10 million m3; Fig. 3.4c). This substantial decrease in the 

amount of viewable cm-scale deformation during periods of widespread snow cover (as seen in 

December and March) indicates the potential difficulties for InSAR satellites to retrieve enough 

signal to detect, let alone characterize, magmatic activity at Mt. St. Helens during these periods. 

These percent values are also likely high estimates as there are other causes of coherence 

loss at Mt. St. Helens such as atmospheric artifacts, topography, and vegetation. To characterize 

the effects of these causes on coherence in the future, this neural network framework could be 

adapted to include additional optical datasets such as Sentinel-2 to both increase the amount of 

images available for viewing snow cover at Mt. St. Helens and for increasing the amount of 

training data for the neural network. Additional adaptations to the neural network framework could 
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produce outputs that give the likelihood of multiple different land cover types (e.g. snow, clouds, 

deciduous vegetation, coniferous vegetation, etc.) simultaneously and compare coherence changes 

in response to each type throughout the year for an even more detailed understanding of viewing 

conditions for InSAR at Mt. St. Helens or other potential volcanoes of interest. 

 

Figure 3.4. Maps of deformation from a Mogi point source at 10 km depth with a volume increase of 30 
million m3 masked with snow cover from 20180311 (a) and 20200823 (b). The yellow line in each map 
indicates the limit of centimeter scale deformation for this combination of source parameters. (c) Line plot 
shows the relation between inflation source depth and volume change with amount of centimeter scale 
deformation viewable when masked with snow cover from 20180311.  
 
3.6  Conclusion 

In this work we successfully classify snow cover with a computationally inexpensive 

neural network framework using Landsat 8 optical satellite imagery. We then compare snow cover 

at different patches across Mount St. Helens with InSAR coherence data and find that coherence 

over regions of bare rock (the slopes of Mount St. Helens and the pumice plain) can be reduced as 

drastically as 70%. Even in vegetated areas that already suffer from degraded coherence, snow 
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cover significantly decreases the amount of high coherence pixels available. Forward modeling an 

inflation event from a point source indicates that during periods of high snow cover at Mount St. 

Helens, the amount of centimeter scale deformation that could be viewed without significant 

coherence degradation is below 60% for magma reservoirs at a range of depths and volume 

increases, while deeper and lower volume inflation might be nearly completely hidden to InSAR 

by snow cover. The potential inability of InSAR to detect enough signal to discern deformation 

associated with processes that could lead to an eruptive event, or to have enough signal to 

accurately characterize the parameters associated with these processes, has significant monitoring 

implications for Mount St. Helens and other volcanic systems that experience persistent snow 

cover. While InSAR can be a useful tool for volcano monitoring on large spatial scales and 

detecting ground movement over time, additional remote (e.g. GNSS, thermal remote sensing) and 

ground based monitoring tools are recommended for volcanoes that lose regions of coherence to 

snow cover.  
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3.8  Data and Code Availability 

Data from Landsat-8, the National Land Cover Database, and Sentinel-1 were used in the 

work described by this manuscript. Landsat-8 and NLCD data were downloaded through Google  

Earth Engine, and Sentinel-1 Single Look Complex (SLC) data was downloaded through the 

Alaska Satellite Facility Vertex Platform (https://search.asf.alaska.edu/#/). These SLC’s were then 

https://search.asf.alaska.edu/#/
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processed using the ISCE2 software developed by NASA (https://github.com/isce-

framework/isce2). Figures were made with MATLAB 2020 and compiled with Adobe Illustrator. 

The neural network Python notebooks, snow cover prediction images (in GeoTIFF format), and 

MATLAB scripts are published on GitHub (https://github.com/rcbussard/neuralnet-proj).  

3.9  Bridge 

This chapter focused on using a neural network to better understand the challenge of 

coherence loss for InSAR data due to snow cover across Mt. St. Helens. Work done in this chapter 

can be used to help decide which seasons of the year radar acquisitions should be used to construct 

interferograms over volcanoes in environments like the Cascade Volcanic Arc. In addition, this 

chapter showed how snow cover can obscure potential indicators of magmatic activity. The final 

chapter utilizes InSAR data to update existing knowledge on ground deformation at Medicine Lake 

volcano as well as different modeling tools to determine causes of this deformation. Constraining 

the cause of deformation at Medicine Lake can help determine if there is any local hazard present 

and can better explore different processes at volcanic caldera complexes.  
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3.10  Supporting Information 

 
Figure 3.S1. Perpendicular baseline plot for Sentinel-1 Track 115 acquisition dates. 

 

 
Figure 3.S2. (a) Loss as a function of node amount for the hidden layer of the neural network. While loss 
stays at the same magnitude for various node amounts, 20 nodes produces the lowest loss and was selected 
for usage with classifying data. (b) Loss as a function of epochs, with the most notable decrease in loss 
occurring at the second epoch and leveling out at the third epoch. 

 



 88 

 
Figure 3.S3. Confusion matrix for test dataset snow prediction accuracy with P-score and R-scores listed. 

 

 
Figure 3.S4. NDSI values compared with snow prediction values for each pixel in the twenty-nine Landsat 
8 acquisitions. A vertical line denoting the NDSI value of zero has been displayed for each image.   
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CHAPTER IV 

INVESTIGATING SUBSIDENCE AT MEDICINE LAKE 

VOLCANO USING INSAR, GNSS, and MCMC MODELING 

 

This chapter contains co-authored material and is in preparation to be submitted for 

publication. The writing of this chapter was done solely by me with co-authors Josef Dufek, 

Christelle Wauthier, and Meredith Townsend providing editorial assistance and helping 

conceptualize the work presented in this chapter. Codes for the MCMC model were provided by 

Meredith Townsend. I performed the analysis presented in this chapter. 

4.1  Introduction  

The ability to monitor volcanic systems is crucial for discerning magma storage region 

characteristics and their change over time, as well as measuring potential unrest that could precede 

an eruption. One type of volcanic unrest is ground deformation, the movement of the Earth’s 

surface in response to a variety of processes occurring at or beneath the surface. At volcanoes, 

common types of deformation include broad uplift or subsidence reflecting an influx or outflux 

respectively of magma to/from a central chamber (Wicks et al., 2002; Henderson et al., 2017; 

Rodríguez-Molina et al., 2021), or coincident regions of uplift and subsidence indicating dikes 

transporting magma (Lungren et al., 2013; Varugu & Amelung, 2021). In some cases such as the 

2018 Kilauea eruption, ground deformation was used to see change at both a central caldera and 

along the eastern flank (known as the East Rift Zone) where a conduit was also depressurizing 

(Roman & Lundgren, 2023).   
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 Interferometric Synthetic Aperture Radar (InSAR) is one type of method for measuring 

ground deformation. Airborne and spaceborne SAR satellites image the Earth’s surface using radar 

waves, which travel through the atmosphere, scatter off the Earth’s surface, and return to the 

satellites; the phase and amplitude of the returning waves carry information about the surface 

(Rosen et al., 2000; Bürgmann et al., 2000; Massonnet et al., 1993)). For InSAR, the phase of radar 

waves scattered off the same region of the surface on two different days (also referred to as 

acquisitions) is differenced to create an interferogram, and in ideal cases the interferogram 

describes how the ground has moved between those two dates. Realistically, there are often several 

corrections that need to be applied to interferograms that remove phase changes associated with 

the Earth’s atmosphere and the topography of the region imaged. The strength of the InSAR signal 

can also be degraded by surface change such as vegetation and snow cover that scatters the radar 

waves before they reach the ground (Williams et al., 1998; Lohman & Simons, 2005). Even with 

these challenges however, InSAR is still a useful tool for monitoring volcanic systems, as it can 

map an entire region’s deformation between acquisitions, as opposed to other deformation 

measuring methods such as Global Navigation Satellite System (GNSS) and tiltmeter stations that 

monitor ground change continuously at a single point (Anderson & Johanson, 2022; Wicks et al., 

2002). Interferograms spanning January 2018-May 2018 and December 2017-June 2018 from the 

ALOS-2 satellite were used to track the aforementioned ground deformation during the Kilauea 

2018 eruption, continuously covering a distance of hundreds of kilometers (Roman & Lundgren, 

2023).  

At volcanic caldera systems in general however, the link between deformation and eruption 

is still relatively unclear, as there have been numerous instances of deformation occurring at 

caldera systems without a following eruption (Biggs et al., 2014). This is partially due to the fact 
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that ground deformation shows net change of the surface, which could be from one or multiple 

interacting causes (some of which might not even be volcanic in origin; tectonic forces, 

groundwater, etc.). There are also volcanic surface processes, such as cooling and compaction of 

lava flows (Wittmann et al., 2017; Ebmeier et al., 2012; Purcell et al., 2022) as well as volcanic 

flank creep (Gonzalez-Santana et al., 2022; González et al., 2010). This can lead to a volcanic 

caldera system with a complex deformation signal that is difficult to assign one cause.  

 Such is the case for Medicine Lake volcano, located in northern California, U.S., at the 

southern extent and eastern edge of the Cascade Volcanic Arc (Fig. 4.1). While Medicine Lake’s 

last eruption occurred ~1ka, the central caldera and broad edifice that make up Medicine Lake 

have experienced apparent constant subsidence since 1954, with peak subsidence rates occurring 

within the central caldera. Multiple previous works have mapped this subsidence with a variety of 

techniques (leveling, GNSS, InSAR) that each have their own coverage across Medicine Lake’s 

broad edifice (Dzurisin et al., 2002; Poland et al., 2006; Parker et al., 2014). This work seeks to 

add to the geodetic record over Medicine Lake by processing Sentinel-1 InSAR data spanning 

2017-2021 to produce time series and average velocity maps that span the caldera and edifice. We 

utilize techniques for maintaining InSAR signal strength and correcting for phase artifacts for data 

over the Medicine Lake region that experiences seasonal snow cover, widespread vegetation, and 

atmospheric changes. We then further explore causes of the subsidence at Medicine Lake by 

inverting for three volume loss sources using Markov Chain Monte Carlo (MCMC) modeling; a 

point source, a sill with constrained length and width (1 x 1 km), and a sill with unconstrained 

length and width. The best fitting (most likely) point source has a depth of 7.7 km and volume 

change of -0.0013 km3/yr, while the best fitting constrained and unconstrained sill sources have 

depths of 12.1 and 10.1 km and volume changes of -0.0014 km3/yr and -0.0016 km3/yr 
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respectively. When loading is also considered as a contributing factor to the edifice-wide 

subsidence up to 1.5 mm/yr, the best fitting models for each volume loss source become shallower 

in depth and have lower volume changes.  

4.2 Geologic Setting 

Medicine Lake is a complex volcanic system covering an area of 2200 km2 with broad 

shield-like slopes that steepen to a 7 x 12 km central caldera (Donnelly-Nolan et al., 2008). Its 

eruptive history spans the past 500 ka, erupting primarily basaltic and basaltic andesite magmas 

 
Figure 4.1. Map of region surrounding Medicine Lake. The extent of the broad edifice is highlighted in white, 
as well as the central caldera. Regional faults (tan) trend N-S and NW-SE and mostly curve around the edifice. 
Major Holocene erupted products (all younger than 5 ka) are highlighted by composition: basaltic andesite 
(yellow), andesite (blue), dacite (green), rhyolite (red). 
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on the far reaches of the edifice with more evolved dacitic and rhyolitic products typically 

occurring around or within the central caldera (Fig. 4.1; Anderson, 1941; Donnelly-Nolan & 

Lanphere, 2005; Donnelly-Nolan et al., 1991; Champion & Donnelly-Nolan, 1994). The last 

eruption at Medicine Lake was ~1 ka and produced the rhyolitic Glass Mountain flow on the 

eastern edge of the caldera that runs down the eastern slopes. While Medicine Lake lies east of the 

main axis of the Cascade Volcanic Arc at the intersection of the Klamath Graben and Walker Lane 

fault zone (Grose et al., 1989; Hildreth, 2007), the volcano has erupted subduction-related magmas 

(Donnelly-Nolan et al., 2008; Magna et al., 2006; Kinzler et al., 2000), indicating its connection 

to the volcanic arc. There is also evidence of extensional tectonics from the neighboring Basin and 

Range province in the form of N-S trending open ground cracks around the edifice (Fig. 4.1). 

There was little recorded seismic activity at Medicine Lake until August 1st 1978 when a M 4.6 

earthquake was located midway between Mt. Shasta and Medicine Lake, followed by hundreds of 

shallow M ≥ 2 earthquakes over the next 24 hours (Cramer, 1978; Bennet et al., 1979). Another 

seismic swarm began on September 29, 1988, consisting of shallow (within 2 km of the surface), 

primarily M ≤ 3 earthquakes located beneath the caldera (Dzurisin et al., 1991; Walter & Dzurisin, 

1989). This seismicity carried into the following year, retaining the same characteristics except for 

a small cluster in April 1989 at depths 3-4 km and a long period M 2.7 earthquake that occurred 

15 km beneath the western edge of the caldera on December 1st, 1989. Since that swarm, seismicity 

has remained primarily beneath the caldera with most events occurring at depths shallower than 

10 km. Geothermal drilling revealed a high temperature geothermal system (~ 300 ºC) (Hulen & 

Lutz, 1999; Bargar, 2001) and an intrusive body > 6 km in diameter beneath the caldera (Donnelly-

Nolan, 2006; Lowenstern et al., 2003) that is also evident in gravity (Finn & Williams, 1982), 

seismic refraction (Zucca et al., 1986; Fuis et al., 1987), magnetotelluric (Stanley et al., 1990), and 
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tomography (Evans & Zucca, 1988; Chiarabba et al., 1995; Ritter & Evans, 1997) data. Seismic 

tomography studies have also identified a small silicic magma body beneath the eastern part of the 

caldera, located at 3-7 km depths with a volume of ~10 km3.  

4.2.1 Edifice Deformation  

Several studies across Medicine Lake that have revealed past and ongoing deformation 

across the edifice and within the central caldera. Initial leveling surveys in 1954, 1988, and 1989, 

spanning a 193 km path around Medicine Lake and Mt. Shasta, revealed that the summit had 

subsided as much as 302 ± 30 mm over that time period, marking a steady subsidence rate of 8.6 

± 0.9 mm/yr in the center of the caldera and broad radially decreasing subsidence across the rest 

of the edifice (Fig. 4.2; Dzurisin et al., 1991; Dzurisin et al., 2002). Interferometric Synthetic 

Aperture Radar (InSAR) data collected by ERS-1/2 satellites that spanned 1993-2000 also 

measured radially symmetric subsidence across the caldera with a line of sight rate of 10 mm/yr 

(Poland et al., 2006). Campaign GPS vertical velocity data from a station located in the center of 

the caldera in 1996, 1999, 2003, and 2004 matched this rate at 11 mm/yr (Fig. 4.2). Additional 

InSAR data from Envisat and ALOS satellites spanning 2004-2011 also measured subsidence rates 

of ~10 mm/yr in the central caldera (Parker et al., 2014).  

While there is general agreement between datasets on the central caldera subsidence rate, 

other aspects of the signal make modeling and therefore constraining the process causing the 

subsidence challenging. When the elevation data alone was initially inverted to find the parameters 

of a potential source of the subsidence (termed volume loss source for the remainder of this work 

to match previous terminology; Dzurisin et al., 2002, Poland et al., 2006, Parker et al., 2014), a 

best fit point source (Mogi, 1958) of depth 10 km and volume change -0.0031 km3/yr and a best 
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fit sill (Okada, 1985) of depth 11 km and volume change -0.002 km3/yr were found with both 

located under the southern part of the caldera (Dzurisin et al., 2002). 

 
Figure 4.2. Hillshade map of region surrounding Medicine Lake. The extent of the broad edifice is highlighted 
in white, as well as the central caldera. Mt Shasta to the southwest labeled with red triangle. Leveling route 
from Dzurisin et al., 2002 (blue), campaign GPS from Poland et al., 2006 (purple), and present continuous 
GPS stations labeled. 
 

However, volume loss was believed to play a minor role in producing the deformation; the 

subsidence was thought to be a combination of gravitational loading of the 600 km3 edifice 

(Donnelly-Nolan et al., 2008) and intrusive rocks on the crust below and thinning of locally 

weakened crust by Basin and Range extension. Inverse modeling of just the campaign GPS data 

put potential volume loss sources at 6 and 5 km for point and sill sources respectively, both of 
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which poorly replicate the 1954-1989 leveling data (Poland et al., 2006). In addition, the GPS 

horizontal velocity data showed radial inward deformation was only present at stations within 10 

km of the caldera instead of broadly across the edifice, further disfavoring the major influence of 

a local volume loss source on the deformation.  

Subsidence due to thermal contraction of a larger scale cooling body was investigated by 

modeling thermal contraction of a hot (800 ºC) cylindrical volume that runs vertically from 4 km 

below the volcano to the base of the crust (Poland et al., 2006). Cooling of this hot cylindrical 

volume alone can match vertical deformation rate and pattern, but overestimates horizontal 

deformation rates. A surface load model of a point source on a thin weak shell representing 

Medicine Lake on a thermally weakened crust matches the pattern of vertical deformation but is 

not expected to produce the magnitude measured (Poland et al., 2006; Brotchie & Silvester, 1969; 

Brotchie 1971; Dzurisin et al., 1991). The improved coverage of the Envisat and ALOS InSAR 

data was used to further reinvestigate volume loss sources, with a best fit point source at 6.2 km 

depth with a volume change of -0.0012 km3/yr and a best fit sill source at depth 9.2 km with a 

volume change of -0.0012 km3/yr (Parker et al., 2014). 

4.3 Methods 

To create the InSAR timeseries over Medicine Lake, 131 ascending (Track 137) and 139 

descending (Track 115) acquisitions were downloaded, along with a 30 meter Digital Elevation 

Model covering the region from the Shuttle Radar Topography Mission (SRTM) (Farr & Kobrik, 

2000). The acquisitions were processed with the InSAR Scientific Computing Environment 

(ISCE2) stackSentinel workflow to produce wrapped and unwrapped interferograms for each 

acquisition pair as well as coherence maps (Rosen et al., 2012). These outputs were then loaded 



 97 

into the Miami InSAR Time-series software in Python (MintPy) for post processing (Yunjun et 

al., 2019).  

4.3.1 Network Modification and Post-Processing 

 Medicine Lake poses several challenges for obtaining strong InSAR signal. While the 

region to the north is bare rock, which is ideal for maintaining coherence, the caldera, slopes, and 

southern extent are covered by vegetation (Fig. 4.1). This vegetation can be difficult for the C-

band radar waves used by Sentinel-1 to penetrate, causing random scattering and resulting in 

coherence loss (Chen et al., 2021). The only non-vegetated patches near the caldera are the flows 

from different eruptions, which produce small areas of higher coherence. These patches, however, 

experience prolonged snow cover due to their higher elevation relative to surrounding ground. The 

Medicine Lake region also experiences long periods of rainfall and cloud cover through the fall 

into spring, producing atmospheric phase delays that impact InSAR signal. 

Due to these factors, we implemented Small Baseline Subset (SBAS) with a perpendicular 

baseline limit of 300 meters and a temporal baseline limit of 180 days. The network of 

interferograms is not altered in any other way (Fig. 4.3a-b). We inverted for the timeseries, 

correcting for topography and removing a linear phase ramp to isolate the subsidence signal 

(Fattahi & Amelung, 2013). We then manually inspected the interferograms for any significant 

noise or artifacts and excluded these interferograms; we then reran the inversion with the same 

baseline limits. After the new inversion, we compared the Root Mean Square (RMS) of residual 

phase for each date in the first and second inversion. Residual phase includes noise due to residual 

tropospheric effects, ionospheric turbulence, and remaining decorrelation. If the excluded 

interferograms reduced the RMS residual phase associated with their acquisition date by > 1 mm, 

then the interferograms remained excluded; otherwise they were returned to the network. Dates 
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that had RMS residual phase > 1 cm for both inversions were removed from the network entirely. 

The resulting networks (Fig. 4.3c-d) contain fewer interferograms than the original networks but 

the average RMS residual phase is reduced in both cases. These final networks were used for a 

third inversion; in addition to deramping and correcting for topography, tropospheric corrections 

were also performed using an empirical height model and ERA5 weather model implemented 

through PyAPS (Doin et al., 2009; Jolivet et al., 2011). These tropospheric corrections vary in 

utility between regions and in some cases introduce more noise (Stephens et al., 2021), which is 

why both methods were tested in addition to no tropospheric correction. The resulting geocoded 

average velocity maps for 2017-2021 with each tropospheric correction are shown in Figure 4.S1, 

with low coherence pixels masked out. There are no dramatic differences between the velocity 

maps, so we compare the time-series data with data from continuous GPS stations to determine 

which correction method to choose (Fig. 4.4). 

 
Figure 4.3. Perpendicular baseline plots for Track 137 Ascending original (a) and modified (c) networks as 
well as Track 115 Descending original (b) and modified (d) networks. Each point represents an acquisition 
date and each connection between points represents one interferogram (colored by average spatial coherence). 
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Figure 4.4. Timeseries data for ascending (a,c,e) and descending (b,d,f) InSAR data at continuous GPS 
stations at Medicine Lake.  
 

There are three continuous GPS stations located within the edifice of Medicine Lake (Fig. 

4.2); data from each of these sites was downloaded and projected into line of sight displacement 

to compare with the timeseries from different tropospheric corrections (Fig. 4.4). All three time 

series fit far field site P672 well with little variation. There is also little variation between 

corrections at P673 (located in the center of the caldera) for both the ascending and descending 

data. However, P674 sees the most noise in the InSAR timeseries and greatest difference in 
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correction methods; the station is located on the eastern slope of Medicine Lake where coherence 

is degraded due to a combination of snow cover in winter months, steep topography, and vegetation 

cover and the station has data missing from early 2020 into 2021. Generally, it appears the weather 

model correction timeseries provides the best fit across all stations for both ascending and 

descending data and is selected as the dataset to use for further analysis. 

The corrected timeseries has a few acquisitions per station that do not match the GPS data 

regardless of correction used. There are two main instances of this: for the descending data at GPS 

station P672, the timeseries data in June 2021 are considerably offset from the GPS data (Fig. 

4.4b), while the second instance occurs for the ascending data at date July 2020 for P674 (Fig. 

4.4e). However, these dates do not have deformation data that diverge from GPS data at all stations, 

so we keep these in the timeseries inversion. Beyond these instances, the InSAR timeseries data 

and error for the weather model data fits well with the GPS data (Fig. 4.S2). 

4.4 Results 

4.4.1 Velocity Data 

The ascending and descending datasets corrected with the weather model are then subset 

with MintPy to an area viewed by both modes and combined into one vertical velocity map (Fig. 

4.5a). While MintPy provides E-W velocity maps, only vertical velocity is used as the horizontal 

data is noisier. Across the northern and eastern portions of the edifice, where coherence is stronger, 

there is broad subsidence on the order of 1-7 mm/yr. Velocity transects across the edifice show 

that the subsidence rate increases linearly from the edge of the caldera towards the center; the peak 

value of the subsidence sits at ~ 1.4 cm/yr (Fig. 4.5b-d). The E-W velocity transect (Fig. 4.4b) also 

shows small rates of uplift on each side of the caldera before returning to subsidence on the outer 

extent of the transect. On the edifice’s eastern side, there is a region of subsidence that has been  



 101 

 
Figure 4.5. (a) Vertical velocity map over Medicine Lake, with east-west transect (b), north-south transect (c) 
and radial transect (d) extents marked.  
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previously measured with InSAR (Parker et al., 2014). It is difficult to constrain how long this 

subsidence has existed, as the original leveling route did not cover this region nor did any of the 

campaign GPS stations (Dzurisin et al., 2002; Poland et al., 2006). The N-S velocity transect (Fig. 

4.4c) has most of its southern portion removed due to low coherence but still shows subsidence 

increasing closer to and within the caldera. The radial transect (Fig. 4.5d) shows the subsidence 

extending out to the northeast approximately 25 km from the caldera center. 

4.4.2 MCMC Model Setup 

To model potential sources of the deformation, the vertical velocity data is downsampled 

by a factor of ~10 as the data covers a large region, removing pixel columns on the west edge of 

the velocity map to exclude agricultural fields with high subsidence readings. This downsampled 

velocity data is then used to solve for a volume loss source using a Markov Chain Monte Carlo 

(MCMC) model in a Bayesian framework, as described in Townsend & Huang (2022).  

 We use two analytic source models - a point source in a homogenous elastic half space 

(Mogi, 1958) and a sill-like intrusion (Okada, 1985) - as both have been used in previous studies. 

For the point source model, we vary the depth, volume change, center latitude and center longitude 

of the source and assume a Poisson’s ratio of 0.25. We model deformation from the point source 

using the following equation: 

𝑧𝑧 =  
(1 − 𝑣𝑣)∆𝑉𝑉

𝜋𝜋
𝑑𝑑

(𝑟𝑟2 + 𝑑𝑑2)3/2       (1) 

In this setup, v is Poisson’s ratio, ∆𝑉𝑉is volume change, d is depth, and r is radial distance. For the 

sill-like intrusion, we model two different scenarios based on past results. The first scenario retains 

the length and width of the sill-like intrusion at 1000 meters (Parker et al., 2014), which allows the 

model to vary the depth, strike, opening, center latitude, and center longitude of the sill. The second 
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scenario allows the length and width of the sill to vary (Dzurisin et al., 2002; Poland et al., 2006) 

in addition to the previous parameters of scenario one. We use the rectangular sill code package 

from dMODELS to model the deformation (Battaglia et al., 2013), with bounds reported in Table 

4.1 below; each run has 50,000 iterations split into five chains of 10,000 iterations.   

Point Source Bounds 
 Lower Bound Upper Bound 

Depth (m) 3,000 15,000 
Volume Change (km3/yr) -0.01 0.00001 

Center Latitude 41.50 41.625 
Center Longitude  -121.65 -121.4 

Sill Source Scenario 1 Bounds (length = 1km, width = 1km) 
 Lower Bound Upper Bound 

Depth (m) 3,000 15,000 
Strike 180 360 

Opening (m/yr) -1.5 -.01 
Center Latitude 41.50 41.625 

Center Longitude -121.65 -121.4 
Sill Source Scenario 2 Bounds 

 Lower Bound Upper Bound 
Depth (m) 3,000 15,000 

Strike 180 360 
Opening (m/yr) -1.5 -.01 
Center Latitude 41.50 41.625 

Center Longitude -121.65 -121.4 
Length (m) 9,000 20,000 
Width (m) 4,000 10,000 

Table 4.1. Upper and lower bounds for each variable parameter in point and sill source scenario 1 and 2 
inversions. 
 
4.4.3 MCMC Model Results 

The results for the point source inversion show a primary relationship between source depth 

and volume change, with no visible trends in location and depth or volume change (Fig. 4.S3). The 

mean depth (7.9 ± .8 km) sits between the depths found for modeled point sources in previous 

studies (shallower than the source modeled for leveling data and deeper than the source for GNSS 

and InSAR data), while the mean rate of volume change (-0.0013 ± .0001 km3/yr) matches 

previous estimates from GNSS and InSAR (Parker et al., 2014). The model that produces the best 

fit (minimizes the residual vector and produces the greatest likelihood) is a point source at 7.7 km 
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depth and -0.0013 km3/yr volume change centered at 41.5366º, -121.4421º (Fig. 4.6). These 

coordinates center the volume loss source to the east of the caldera, notably where the southeast 

subsidence patch sits. When running the MCMC inversion, after a short burn-in period, each of 

the chains converge quickly, with chains 1 and 5 converging slightly before chains 2,3, and 4 (Fig. 

4.6e).  

 
Figure 4.6. Distribution of depths (a), volume loss (b), center latitude (c), and center longitude (d) accepted 
guesses for MCMC point source model. Note that the burn in values (first 100 iterations of each chain) have 
been removed from the distributions for easier visualization of distribution shape. Black vertical line on each 
plot indicates the value of the best fit point source for each parameter. (e) Likelihood plot of each chain over 
10,000 iterations. 
 

For the scenario 1 sill inversion, where length and width are kept constant at 1 km, the 

source is deeper than the point source estimates but centered at a similar location. There is no 

greatly favored value of strike, and no distinct trends between the different varied parameters (Fig. 

4.S4). The mean values of depth (11.8 ± .7 km), latitude (41.5375º ± 0.0051º), and longitude (-

121.4447º ± 0.0081º) all contain the best fit depth of 12.1 km, latitude of 41.5374, and longitude 

of -121.4452 (Fig. 4.7a-d). For strike, the best fit value of 337 sits barely inside the mean range of 

(282 ± 55). The best fitting opening rate is -1.4 m/yr, and the distribution of opening rates for this 

sill scenario one reaches the upper bound of -1.5 m/yr repeatedly (Fig. 4.7e). This is due to the 

model wanting a larger volume to fit the widespread subsidence and using a larger opening rate as 
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the length and width are constrained to smaller values of 1 km each. Each chain in the inversion 

reaches conversion fairly quickly, within the first few hundred iterations of the model (Fig. 4.S5).  

 For the scenario 2 sill inversion, there are no obvious trends between any of the parameters 

varied, likely because the length and width results cover the full parameter space with no obvious 

peaks (Fig. 4.S6). While the mean length is 14.9 ± 2.8 km and width is 7.2 ± 1.6 km, the best fit 

sill favors a long, narrow sill of 19 x 4 km (76 km2). There is better agreement between the mean 

values of depth (10.6 ± 1.3 km), strike (254 ± 22), center latitude (41.5403º ± 0.0074º), and center 

longitude (-121.4578º ± 0.0274º), with the best fit sill 10.1 km deep with a strike of 272, 41.5414 

for latitude, and -121.4713 for longitude (Fig. 4.8a-f). Since the length and width of the sill are 

larger, the opening rate is several magnitudes smaller, with the best fitting opening rate at -0.02 

m/yr (note that this is the same magnitude as the subsidence rate; Fig. 4.8g). Conversion takes 

longer than for the point source, approximately 1000 iterations for chains 1, 2, 4 and 5 and 1500 

iterations for chain 3 (Fig. 4.S7).  

 
Figure 4.7. Distribution of depths (a), strike (b), center latitude (c), center longitude (d), and opening rate 
(e) accepted guesses for MCMC sill source model (scenario 1). Note that the burn in values (first 100 
iterations of each chain) have been removed from the distributions for easier visualization of distribution 
shape. Black vertical line on each plot indicates the value of the best fit sill source (scenario 1) for each 
parameter.  
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When the two sill source scenarios are compared, the best fit constant length and width sill 

yields center coordinates to the east, similar to the best fit coordinates for the point source (Fig. 

4.9a). These values are noticeably different from center locations from previous modeling 

(Dzurisin et al., 2002; Poland et al., 2006; Parker et al., 2014), but as previously stated, this study 

considers the broader edifice deformation including the subsidence patch to the southeast. 

Inclusion of the broader subsidence is also likely the cause of the deeper mean and best fit depths 

for the sill sources than previous studies (5 km for GNSS, 9.5 km for InSAR; Parker et al., 2014). 

When volume is calculated for the two sill model distributions, the mean volume change for 

scenario 1 sill is -0.0014 ± 0.0001 km3/yr, which closely matches the mean volume change of point 

source estimates, both from this study as well as volume change estimates from modeling of 

previous InSAR data (-0.0012 km3/yr; Parker et al., 2014). For the scenario 2 sill, the mean volume 

change is -0.0026 ± 0.0087 km3/yr. While the mean volume matches previous estimates of sill 

 
Figure 4.8. Distribution of depths (a), strike (b), center latitude (c), center longitude (d), length (e), width (f) 
and opening rate (g) accepted guesses for MCMC sill source model (scenario 2). Note that the burn in values 
(first 100 iterations of each chain) have been removed from the distributions for easier visualization of 
distribution shape. Black vertical line on each plot indicates the value of the best fit sill source (scenario 2) 
for each parameter.  
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volume change from leveling (-0.002 km3/yr; Dzurisin et al., 2002) and GNSS (-0.0025 km3/yr; 

Poland et al., 2006), standard deviation is higher when the length and width are not well 

constrained.  

4.5 Discussion 

Multiple causes of volume loss at depth have been discussed in previous models of 

Medicine Lake (Dzurisin et al., 2002; Poland et al., 2006; Parker et al., 2014). As the last eruption 

was ~1ka, the volume loss is likely not due to deflation of a source from that event. There is also 

volume loss due to cooling and crystallization of magma at depth, which was explored in each 

work, with Poland et al. (2006) also modeling the thermoelastic contraction of a hot cylindrical 

volume beneath Medicine Lake although they found that it did not fully explain the deformation. 

Parker et al. (2014) emphasize the contribution of volume loss, stating that the most likely cause 

of volume loss is either drainage from a reservoir deeper beneath Medicine Lake or cooling and 

crystallization of material within the intrusive complex imaged beneath the volcano. The best 

fitting sill model for scenario 2 suggests a long, narrow sill that spans nearly 20 km. This could 

also reflect a larger intrusive complex that is cooling and crystallizing over time, however if the 

subsidence is due to volume loss of such a large complex, then other large scale processes ,such 

as loading from the edifice, should be taken into consideration.   

4.5.1 Effects of Edifice Loading 

In addition to volume loss at depth, surface loading from Medicine Lake’s large edifice 

over a thermally weakened crust may explain subsidence. There is evidence to suggest thermal 

weakening occurs in the crust beneath Medicine Lake (Dzurisin et al., 1991; Blakely et al., 1997), 

reducing Young’s modulus to lower values (109) that have still been observed at volcanic systems 

(Rubin & Pollard, 1987; Schultz, 1993). We use an axisymmetric solution for a point source load 
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on the surface of a spherical, liquid filled shell from Brotchie & Silvester (1969) and Brotchie 

(1971) that was modeled for Medicine Lake by Poland et al. (2006). Vertical deformation due to 

loading can be described by this model as: 

𝑧𝑧 =
𝑃𝑃𝑙𝑙2

2𝜋𝜋𝜋𝜋
𝑘𝑘𝑘𝑘𝑘𝑘(𝑥𝑥)            (2) 

𝐷𝐷 =  
𝐸𝐸 ∗ 𝑇𝑇3

12 ∗ (1 − 𝑣𝑣2)
       (3)  

𝑙𝑙 = �
𝐷𝐷

�𝐸𝐸 ∗ 𝑇𝑇𝑅𝑅2 � +  𝜌𝜌
�

1/4

       (4) 

In equation 2, P is the load on the surface (kg), l is the radius of relative stiffness (m), D is 

the flexural stiffness of the shell cross section (N • m), x is the distance on the surface from the 

center of the load, and kei is a zero order Bessel-Kelvin function (Brotchie & Silvester, 1969). In 

equation 3, E is Young’s modulus (N/m2), T is shell thickness (m), v is Poisson’s ratio (set to 0.25); 

in equation 4 R is the radius of the middle surface (m) and 𝜌𝜌 is the mean relative density (kg/m3). 

To model deformation using the “thin, weak shell” scenario presented in Poland et al. (2006), T is 

set to 10,000 m and E is set to 109 Pa. While a velocity rate cannot be constrained with an elastic 

model, an alternative approach assumes that the peak yearly deformation due to loading is 1.4 

mm/yr, 10% of the maximum caldera subsidence rate of 1.4 cm/yr. We then vary the load and 

model the pattern of subsidence produced by a point source over a thin weak shell with 1.4 mm/yr 

at the center of the pattern (assumed beneath the center of the caldera). It is important to note that 

this choice is meant as an exploration of how inversion results will change if any of the deformation 

is attributed to loading; constraining the actual ratio of deformation from edifice loading to volume 

loss at depth requires additional modeling and data outside the scope of this work. The deformation 

from loading is then subtracted from the velocity data produced with InSAR, and the updated 
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deformation map is used in the same Bayesian MCMC modeling framework for one chain of 

10,000 iterations for each source.  

 
Figure 4.9. (a) Map of Medicine Lake edifice and caldera with best fitting source locations identified. Red 
box indicates inset image to the right zoomed in on center source locations. Light blue box indicates span of 
the edifice mapped by InSAR velocity and extent of Fig. 4.10. (b) Scatter plot comparing depth and volume 
change of accepted guesses for point and sill scenarios 1 and 2. (S1 – Scenario 1, S2 – Scenario 2, NL – No 
Loading, L – Loading). Best fitting sources are denoted by stars.  
 

The inclusion of the loading deformation produces shallower best fit depths for each of the 

sources: 5.9 km for point source, 9.3 km for sill scenario 1, and 8.3 km for sill scenario 2 (Fig. 

4.9b). While the center coordinates for the point source do not change considerably, the best fit 

sill source for scenario 1 is centered even more to the east (41.5355º,-121.4320º) than without 

loading (41.5374º, -121.4452º), and the best fit scenario 2 sill moves further south and further east  

(41.5372º,-121.4282º) (Fig. 4.9). There is still no agreement between the best fit scenario 2 sill 

source and the mean values for length and width, although the addition of deformation due to 

loading does broaden the dimensions of the best fitting sill. For the point source best fit, in addition 

to a shallower depth, there is a lower best fit volume change of -0.0008 km3/yr, consistent with the 

trend we see between the variables in the inversion without loading deformation where shallower 

depths are associated with smaller volume changes (Fig. 4.S3). The volume changes for both best 
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fit sill scenarios are also reduced to -0.0009 km3/yr for scenario 1, and -0.001 km3/yr for scenario 

2 (Fig. 4.9b). 

4.5.2 Comparing Model Residuals  

For each best fit source, the likelihood increases when loading is taken into consideration. 

The most likely volume loss source is the scenario 2 volume loss sill of depth 8.2 km and volume 

loss of 0.001 km3/yr, although the residuals from each best fitting source do not show noticeable 

differences (Fig. 4.10). The highest negative residuals occur within the caldera because the eastern 

subsidence caused most estimates to be centered between the two patches. The highest positive 

residuals are on the eastern flank, where uplift is indicated by vertical velocity results (Fig. 4.5a). 

While it is somewhat difficult to match velocity data when a significant portion is masked out due 

to incoherence, and there are several distinct patterns of deformation, the volume loss model for a 

larger sill with loading assumed having the highest likelihood opens the door for potential further 

study into the dynamics between edifice loading and localized volcanic signals.  

4.6 Conclusion 

 Using ascending and descending Sentinel-1 InSAR, we constrain deformation across 

Medicine Lake’s edifice from 2017-2021. We minimize residual phase across ascending and 

descending networks of interferograms to reduce noise and correct for tropospheric artifacts using 

the ERA5 weather model.  

 We find a similar pattern of radial subsidence peaking in the center of the caldera at 1.4 

cm/yr and then decreasing outward from the caldera to similar previous studies (Dzurisin et al., 

2002; Poland et al., 2006; Parker et al., 2014). Our vertical velocity data also reveals a patch of 

subsidence to the east of the caldera extending southward, in an area not covered by leveling or 

GNSS data. This signal was previously imaged by InSAR spanning 2004-2011 (Parker et al., 
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2014). We then model the deformation using a MCMC model in a Bayesian framework for three 

different volume loss sources; a point source in an elastic half space, a sill with its length and width 

constrained to one kilometer, and a sill with variable length and width. The variable length and 

width sill has the best fit for volume loss, potentially suggesting that a larger mass, such as the 

sub-solidus intrusive complex beneath Medicine Lake, could be experiencing volume loss due to 

cooling and contraction.  

When edifice loading contributes to 10% of the peak subsidence within the caldera, we 

produce models that better fit the data, though the best fitting source is still the sill with larger 

length and width. This best fitting source sits at 8.3 km depth and has a volume loss of 0.001 

km3/yr. The potential interplay between loading and volume loss could be further explored by 

either (1) assuming a variety of ratios of loading to volume loss deformation or (2) creating a more 

 
Figure 4.10. Maps of residuals for each best fitting source modeled including modeling without loading (a-
c) and modeling with loading (d-f). Residual values are reported in centimeters on the color bars (S1 – 
scenario 1, S2 – scenario 2). 
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complex model (finite element or finite volume) that considers both processes. There is also the 

opportunity to further explore the dynamic between the eastern subsidence patch and the caldera 

subsidence and how these two have interacted throughout time. While only one source was 

modeled for volume loss in this work, potentially combining multiple sources of volume loss with 

deformation due to loading could address the complex deformation signal at Medicine Lake. 

Understanding how these different signals interact at a system such as Medicine Lake that has not 

experienced an eruption for ~1ka could be useful for isolating signal related to magma activity 

from larger scale longer term signals at active caldera systems.  
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4.9  Supporting Information 

 
Figure 4.S1. InSAR ascending (a-c) and descending (d-f) line of sight velocity maps for a weather model 
(ERA5) tropospheric correction (a,d), an empirical height correction (b,e) and no tropospheric correction 
(c,f).  
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Figure 4.S2. InSAR ascending (a, c, e) and descending (b, d, f) timeseries compared with GNSS data from 
P672 (a, b), P673 (c, d) and P674 (e, f) stations. Error bars calculated from variance of surrounding pixels to 
pixel corresponding to GNSS location. 
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Figure 4.S3. Histogram plots showing distribution of accepted guess values for point source inversion 
parameters (depth, volume change, center latitude, and center longitude) as well as corresponding Kernel 
Density Estimation plots showing trends between the values. Note that the burn in values (first 100 
iterations of each chain) have been removed from the distributions for easier visualization of distribution 
shape. 
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Figure 4.S4. Histogram plots showing distribution of accepted guess values for sill source inversion 
scenario 1 parameters (depth, strike, opening, center latitude, and center longitude) as well as corresponding 
Kernel Density Estimation plots showing trends between the values. Note that the burn in values (first 100 
iterations of each chain) have been removed from the distributions for easier visualization of distribution 
shape. 
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Figure 4.S5. Likelihood plot for each of the five chains in the MCMC sill scenario 1 inversion. 
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Figure 4.S6. Histogram plots showing distribution of accepted guess values for sill source inversion 
scenario 2 parameters (depth, strike, center latitude, center longitude, length, width, and opening) as well as 
corresponding Kernel Density Estimation plots showing trends between the values. Note that the burn in 
values (first 100 iterations of each chain) have been removed from the distributions for easier visualization 
of distribution shape. 
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Figure 4.S7. Likelihood plot for each of the five chains in the MCMC sill scenario 2 inversion. 
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CHAPTER V 

CONCLUSIONS AND FUTURE DIRECTIONS 

The central theme of each chapter in this dissertation is using mapping techniques that suit 

different volcanic systems to understand surface and sub-surface processes occurring at these 

systems. Determining the magmatic evolution of volcanoes through time and quantifying how well 

we are able to observe this evolution into present day is crucial for preparing for future changes to 

these systems and what local and global volcanic hazards might occur as a result. 

 Chapter II used statistical analysis methods on a variety of distributed volcanic fields to 

determine if vent clustering occurred in the fields, where it occurred, and potential clustering 

mechanisms. By using the area between vents mapped with Voronoi tessellations, we found that 

the Springerville Volcanic Field, the cinder cones and shield volcanoes of the Central Cascades, 

and the cinder cones and shields of the Washington Cascades all experienced clustering. When the 

length scale from the Voronoi analysis was compared with a distance based metric through Kernel 

Density Estimation, we found that in fields where the two length scales differ (Springerville, 

Central Cascade cinder cones, Central Cascade shields), the area-based clustering length scale 

tends to pick up clustering as a result of magma storage in the crust, while the distance based length 

scale emphasizes alignments in fields produced by regional tectonic controls. In regions where 

length scales did not substantially differ, Washington cinder cones and Washington shields, this 

indicated that changes in density reflected changes in eruption type and subsequently vent type 

(cinder cone vs. shield) through time. This work was a useful comparative study of clustering 

between different volcanic fields and explored the use of a new area based metric for defining 

clustering length scales, offering several avenues of further study. 
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 The results of Chapter II focus only on the six fields of interest, with Auckland and 

Springerville being the only fields of the study where no focused stratovolcanoes are present. 

While the dynamics between distributed and focused volcanism are relatively unexplored in the 

Cascades, which informed our decision to study them, performing the same analysis as detailed in 

this work on other intraplate volcanic fields could lead to more direct comparisons with Auckland 

and Springerville. Potential options for other fields to compare with include the distributed 

volcanic fields across the southwestern U.S. that neighbor Springerville, as they all have dozens 

to hundreds of vents and share the same tectonic region, albeit to different degrees based on the 

field location (Valentine et al., 2021). Comparing the clustering length scales at these fields could 

show how different regions across the Colorado Plateau and Basin and Range are influenced by 

the extensional tectonics present.  

 In addition to analyzing other volcanic fields, the length scales produced with our Voronoi 

methodology could be compared with other bandwidth selection methods besides Silverman’s. 

These include methods such as cross validation (Duong et al., 2007) or Asymptotic Mean Squared 

Error (Duong & Hazelton, 2003). Comparison between our metric and these could determine if 

there are any systematic differences and what these differences might represent in terms of physical 

processes. We could also explore the use of asymptotic kernels for the Kernel Density Estimation, 

and adjust the bounding region shape (e.g. use our convex hull bounding region and add a buffer 

of constant distance). These additional comparisons and statistical tests would provide further 

context for how our methodology compares with existing methods and how these methods can 

complement each other during analysis.  

 While the use of spatial analysis allows us to draw observations for distributed fields based 

solely on vent locations, to get at mechanisms affecting the fields, additional data such as age, 
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composition, and eruption type are required. In the future this would require additional field 

campaigns to either augment existing datasets that cover some field vents (e.g. composition data 

at Springerville) or sampling all of the vents to get data. Having these data available would help 

characterize clustering in fields over time, and could answer questions of how long magma stays 

in the crust when ascending; does it rise fairly quickly as in Auckland or stall and assimilate 

(producing more evolved compositions) as in Springerville? 

 Chapter III focuses on the ability of the remote sensing method InSAR to capture ground 

deformation measurements at Mt. St. Helens volcano located in southwestern Washington. Ground 

deformation has identified as a precursor of potential magmatic activity, and even when eruptions 

don’t occur, ground deformation measurements at a volcano can be useful for constraining 

properties of its magmatic system. However, surface change such as snow fall can degrade InSAR 

and make wide regions around volcanoes (as well as the volcanoes themselves) difficult to image. 

We utilize a computationally fast, inexpensive neural network to classify snow cover in 29 

Landsat-8 optical images spanning 2014-2021 and find that snow cover emplaced over bare rock 

regions reduces coherence from 1 to 0.3. We model inflation of a magma chamber as a point source 

at a range of depths (5-15 km) experiencing a range of positive volume changes (10-60 million 

m3) and find that during times of high snow cover, the amount of visible pixels with centimeter 

scale deformation is reduced by 40% for all cases and is reduced ~85-90% for deep, low-volume 

increase cases. This suggests that for Mt. St. Helens, additional methods of viewing ground 

deformation such as GNSS should be enhanced with more site installations to monitor the volcano 

during months when there’s widespread snow cover.  

 The neural network only produces a binary output of snow cover or no snow cover for each 

pixel in the optical imagery it classifies, but there are other naturally occurring land types besides 



 123 

snow cover that degrade coherence such as vegetation (both deciduous and coniferous). A future 

step for this work involves adapting the neural network to read in multiple land cover types at once 

and output files that classify different surface covers in the same image. Being able to track various 

types of vegetation as well as snow cover over time would be useful for comparing how each land 

cover type degrades coherence. The model could also be applied to other volcanoes in the Cascade 

Volcanic Arc where snow cover is less prevalent but vegetation covers significant portions of the 

region (e.g. Newberry, Medicine Lake). The neural network could also be implemented on other 

arcs in various environments such as the Central American Volcanic Arc where there is less snow 

cover but prevalent tropical vegetation, as well as the Andes Volcanic Arc that experiences a 

combination of vegetation and snow cover similar to the volcanoes of the Cascades.  

 There is also the option to expand the data that the neural network utilizes for training and 

classification. Currently, six bands of Landsat-8 optical data are used, with the requirement that 

these bands come from acquisition dates that have less than 5% cloud cover. As a result, over a six 

year period there were only twenty nine usable Landsat-8 images to track snow cover. This number 

of available images could be augmented by adding in other satellites such as Sentinel-2 that also 

has multi-spectral optical capabilities. Other datasets beyond just optical could be utilized as well, 

either from bands such as the thermal band on Landsat-8 or from other satellites with thermal 

imaging capabilities such as ASTER. This would require adapting the model to train off various 

pixel values based off the different satellites, but could increase the amount of acquisitions 

available and bolster classification ability by utilizing various attributes of snow covered pixels.  

 Chapter IV maps vertical deformation at Medicine Lake Volcano with combined ascending 

and descending Sentinel-1 InSAR data spanning 2017-2021. Individual acquisitions as well as 

specific interferograms are removed to limit noise in the ascending and descending networks which 
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are then combined to create a vertical velocity map over Medicine Lake’s edifice. This deformation 

is then used by a Markov Chain Monte Carlo (MCMC) model in a Bayesian framework to 

constrain sources of volume loss at depth beneath the edifice. The vertical velocity map indicates 

two patches of subsidence: (1) at the center of the caldera and (2) on the eastern side of the edifice. 

These two patches compete for determining where the volume loss source should be located, and 

as a result the source estimates sit between the two. The same MCMC model is run again on 

deformation data that assumes loading is contributing a constant percent of subsidence to the total 

velocity. The best fitting source comes from a sill at depth 8.2 km with a volume loss of 0.001 

km3/yr with loading assumed.   

 For the work in Chapter IV, the models utilized assume constant deformation rates and 

behave elastically. Realistically however, in a region such as Medicine Lake where there is thought 

to be a large body of heat beneath the surface, viscoelastic behavior is likely occurring. One way 

to begin addressing the presence of viscoelastic deformation would be using a simple analytic 

model of a spherical chamber with a spherical viscoelastic shell surrounding it (Dragoni, 1989). 

This would provide another way to model volume loss while also considering the temporal 

evolution of the deformation, and timeseries of data could be used at various points around 

Medicine Lake as opposed to average velocity maps. Deformation data from this study as well as 

previous works could also be combined to (1) view points at Medicine Lake that have the temporal 

evolution of deformation more constrained (i.e. where the leveling, GNSS, and InSAR datasets 

intersect spatially) and (2) create timeseries at these points spanning decades. The viscoelastic 

shell model used could constrain additional properties such as the viscosity of the surrounding 

material as well as the potential start time of the subsidence. Constraining this start time, as well 

as the rate of decrease in subsidence (the taper over time often shown with the viscoelastic shell 
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modeling) would allow for better constraints on the mechanism causing the subsidence; if the start 

of the deformation was recent (last fifty years) and is tapering off soon, then the cause likely has 

to do with magma transport instead of a combination of long term processes such as edifice loading 

and cooling that are currently suggested.  

 There is also the challenge of understanding the region of subsidence to the east of the 

caldera where the initial leveling route did not cover and where there are no current continuous 

GPS stations. Given that the subsidence region to the east of the caldera is present both in InSAR 

data spanning 2004-2011 and 2017-2021, this could suggest another source of volume loss in the 

crust. It is crucial to understand the interplay between this eastern source of subsidence and the 

cause of caldera subsidence, as how these two regions deform could suggest connection between 

the two sources and a more active storage region than initially thought. Also, while gravity surveys 

have recently performed over the caldera, it could be useful to also perform a survey over this 

eastern region to see if any anomalies could be detected and what that might suggest for potential 

storage to the east of the caldera. 

 Throughout each of these chapters, the abilities, and challenges of different mapping 

techniques over volcanoes are displayed. Understanding the capabilities of each technique at 

different volcanic systems and what their data means as well as potential biases are crucial for 

determining the mapping methods that will provide the most insightful and helpful knowledge on 

volcanic systems when we are trying to mitigate their hazards. 
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