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Dissertation Abstract

Evan Hart

Doctor of Philosphy in Economics

Title: Sticky Information and Economic Dynamics

In this dissertation, I investigate economic dynamics under the sticky information model as-

sumption. First, I propose a novel method for evaluating the likelihood of a nonlinear model with

time-varying parameters and endogenous variables. Using this method, I estimate model param-

eters and unobserved time-varying parameters of the sticky information Phillips curve. Finally,

I adapt a bounded rationality assumption to an endogenous sticky information model, further

enriching our understanding of economic behavior under these conditions.

In Chapter 1, I propose a method to evaluate the likelihood of a nonlinear model with time-

varying parameters and endogenous variables. Existing techniques to estimate time-varying param-

eter models with endogenous variables are restricted to conditionally linear models. The proposed

approach modifies a Sequential Monte Carlo filter to evaluate the likelihood of a nonlinear process

with an endogenous variable. The modified filter augments the typical measurement and state

equations with an equation incorporating instrumental variables. I evaluate the performance of a

Bayesian estimator based on the likelihood calculation using simulations and find that the approach

generates accurate estimates of both parameters and the unobserved time-varying parameter.

In Chapter 2, I analyze the empirical evidence of variation in a structural parameter of the

sticky information Phillips curve. This involves scrutinizing both the statistical significance of the

variation and its economic implications. Upon examination, I discover a systematic trend in firms’

attention to relevant macroeconomic conditions, indicating a decline in attention over time.

In Chapter 3, I study the stability of equilibrium in a general equilibrium model with information

frictions. The equilibrium attentiveness rate is stable under a decreasing gain adaptive learning

scheme. This stability motivates a review of the transition between equilibrium rates; a drop in

the cost of gathering and processing information is used to shift the equilibrium. The attentiveness

rate immediately jumps and increases asymptotically, approaching the new equilibrium.
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1 A Sequential Monte Carlo Approach to Endogenous Time Vary-

ing Parameter Models

1.1 Introduction

I propose a method to evaluate the likelihood of a nonlinear model with time-varying param-

eters and endogenous variables. Existing techniques to estimate time-varying parameter models

with endogenous variables are restricted to conditionally linear models. The proposed approach

modifies a Sequential Monte Carlo filter to evaluate the likelihood of a nonlinear process with an

endogenous variable. The modified filter augments the typical measurement and state equations

with an equation incorporating instrumental variables. I evaluate the performance of a Bayesian

estimator based on the likelihood calculation using simulations and find that the approach generates

accurate estimates of both parameters and the unobserved time-varying parameter.

Complex models are becoming more prevalent and essential to understanding macroeconomic

dynamics. Many of these models allow for nonlinearities and shifts in parameters. Cogley and

Sargent (2005) use evidence about parameter drift and stochastic volatility to infer that mone-

tary policy rules have changed and that the persistence of inflation itself has drifted over time.

Fernández-Villaverde et al. (2007) show how the pricing parameters’ movements correlate with

inflation, casting doubt on the empirical relevance of Calvo models.

Time-varying parameter (TVP) models have gained considerable traction in various domains.

By allowing parameters to vary over time, TVP models provide a dynamic view of relationships

within data. Works by Cogley and Sargent (2005), Primiceri (2005), and Koop and Korobilis (2013)

have primarily delved into time-varying structural vector autoregressions (VAR). While scholars

like Young (2004) and Fernández-Villaverde et al. (2007) have extended the TVP assumption into

dynamic stochastic general equilibrium (DSGE) models, broadening its applicability. Notably,

many of these models adopt a random walk for TVP, the most versatile choice, capturing various

forms of parameter variation.

Within the realm of empirical macroeconomic research, scholars have explored conditionally

linear TVP models incorporating endogenous regressors. For instance, Peersman and Pozzi (2004)

and Kim (2006) have contributed significant insights in this area. Nonetheless, these studies often
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face challenges related to heteroscedasticity, stemming from substituting the fitted value from the

instrumenting equation for the actual value. Addressing this concern, Kim and Kim (2011) propose

a remedy utilizing a Kalman filter for linear models, although this method has not been extended

to nonlinear models.

A method to estimate a TVP model with nonlinearities, where the time-varying parameter is

on an endogenous variable and instrumental variables are available, is not previously defined in

the literature. I fill this gap in the literature by adapting the Sequential Monte Carlo filter to run

a joint estimation procedure. The Sequential Monte Carlo filter, also called a particle filter, finds

the likelihood of the data conditioned on a given set of parameters. It does this by proposing a

set of states for the time-varying parameter. The probability of each state is calculated and used

to sample from the initial proposal. This procedure is iterated for each period. The likelihood of

the data is the product across states of the average likelihood over the accepted particles for each

state.

I refine the likelihood estimation by modeling it as a multivariate normal distribution, where

potential errors are matched with instrumental errors. These potential errors are determined at

each period through a dual-sampling approach, while the instrumental errors are derived from static

parameters that initialize the particle filter and remain known during the sampling process. This

methodological adjustment offers a novel approach for estimating TVP models with nonlinearities,

endogenous variables, and instrumental variables, enhancing the analytical toolkit available for

modeling complex systems.

The proposed methodology is assessed through Monte Carlo simulations. Initially, I illustrate

that the unmodified Sequential Monte Carlo filter yields a biased estimation of the time-varying

parameter in the presence of endogeneity. Subsequently, I demonstrate that the modified Sequential

Monte Carlo filter produces estimates of the time-varying parameter that exhibit minimal bias. To

ascertain the robustness of the extended particle filter, I conduct simulations using a simple linear

model and contrast the outcomes when instrumental variables are and aren’t included. Further-

more, I enhance this robustness assessment by comparing the filter’s performance under misspecified

versions of the underlying distribution and examining resultant discrepancies in the estimated pa-

rameters. This comprehensive evaluation underscores the efficacy and reliability of the proposed

extended particle filter for estimating time-varying parameters in the presence of endogeneity and
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instrumental variables.

The rest of the paper has the following structure. First, I develop a TVP model with endogenous

regressors. Then, I explain the traditional method that can be used to estimate such a model but

fails to account for the endogeneity. I go on to explain a joint estimation modification to the existing

particle filter. Section 5 presents Monte Carlo experiments, in which I compare the performance of

the proposed joint method to the traditional method.

1.2 State Space Model

The state space model provides the foundation for time series data analysis. It is widely used

for forecasting, structural, and unstructured modeling. First I lay out a standard system, with

normal errors. Then I introduce the system of interest, in which a regressor is endogenous. A

particle filter can be adapted to estimate such a system.

The particle filter estimates the likelihood of a data set given a state space model and a set

of parameters to define that model. The particle filter does this with a number of assumptions.

The time path is conditional on given parameters, the distribution assumptions of the stochastic

terms, and the parameters to define those distributions. We must use a filter for estimation when

an unobserved state variable follows a time series process. When the measurement or the transition

equation is nonlinear, the particle filter can be used instead of the Kalman filter.

The Kalman filter stands as a preferred method in scenarios where errors conform to normal

distribution and the model maintains conditional linearity. However, when encountering distur-

bances deviating from normality in either the measurement or transition equation, the particle

filter emerges as a viable alternative to the Kalman filter. Its adaptability to nonnormal conditions

renders it a valuable tool in situations where traditional methods may falter, offering robustness

and flexibility in handling complex data dynamics.

Consider the following conditionally linear state space model with a random walk time varying

parameter:

yt = λtxt + νt, (1)

λt = λt−1 + ωt, ω v N(0, σ2
ω). (2)

The measurement equation (1) is defined by a set of parameters: θ, state variable λt, and a

9



stochastic error term: νt. This model includes a single exogenous regressor: xt. The transition

equation (2) gives structure to the process that governs the evolution of the time-varying parameter.

The procedure for the traditional particle filter will be discussed in terms of normally distributed

and independent identical draws of ν and ω for each period; the procedure can be extended to

other distributions.

To incorporate endogeneity into the model, I introduce the following assumptions. Initially, I

assert the existence of an instrumental variable zt. The instrument is a relevant predictor of the

endogenous variable and influences the dependent variable solely through this endogenous variable.

Subsequently, I presume that the joint distribution between vt and the disturbance term in the

equation linking an endogenous variable xt to the instrument zt is known. Particularly, I adopt a

joint normality assumption:

xt = mzt + ξt (3)

ν, ξ v N(0,Σ), Σ =

 σ2
ν ρ ∗ σν ∗ σξ

ρ ∗ σν ∗ σξ σ2
ξ

 (4)

Equation (3) links the endogenous variable to the instrumental variable. Equation (4) identifies

the endogeneity in the system. I assume joint normality. This is a crucial assumption. In a

model with a TVP on the endogenous regressor, a solution with a single compound error would

suffer from heteroscedasticity, stemming from substituting the fitted value from the instrumenting

equation for the actual value. Joint normality is a common assumption made in the literature. The

control function literature approach uses a similar assumption about the error terms. An example

of the control function literature: Heckman (1979) makes a similar assumption for a linear model

with an endogeneity issue.

We can gain some intuition from this simple model in the following way. Suppose the covariance

factor ρ is positive. As ξ gets larger, so does the conditional mean of ν. Therefore, as ξ gets larger,

positive nonzero values of ν should have a higher likelihood. This means that states with error of

zero will be selected less during the second sample period. A univariate distribution fixes the mean

at zero and fails to adjust to the larger expected value of ν, biasing the estimate of λt upward.
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1.3 Review of the Particle Filter

The particle filter can evaluate the likelihood of data given a state space model, a set of pa-

rameters to define that model, and exogenous independent variables. The state space model is

represented by equations: (1), (2), and (3). The particle filter finds the likelihood by estimating

a set of states for each period, then taking the average likelihood of the sample for each period

and taking the product between periods. The particle filter finds a sample for each period’s time-

varying parameter through a double-sampling process. The first sample is a naive sample based

on the parameters of the stochastic process governing the time series process. The second sample

is an informed sample that uses the relative probability of the states to resample from the naive

sample states.

The first sample of states is found using the transition equation, this sample is denoted: λ
t|t−1,i
0 .

Under the random walk assumption, each state is the sum of the previous value of λ and a random

variable ω. This fact is expressed in our notation: t|t − 1, each period λt is conditioned on the

previous value of λt−1. For each period, N values are simulated for ωt from the model distribution.

The first sample of ωt,i0 is denoted by i from 1 to N, notice that the first sample is not conditioned on

the previous value of λ. The first sample of states now has the following mathematical expression:

λ
t|t−1,i
0 = λt−1|t−2,i + ωt,i0 .

At time t = 1, the previous value: λ0 is not conditioned on a previous value, and we assume all N

paths start at the same value of λ0.

The second sample is an informed sample that uses the relative probability of the states. The

probability for each state is the likelihood of the error created by that state divided by the total

likelihood from all the sample errors. The likelihood of an error is the value of the density function

at the error: f(ν
t|t−1,i
0 ). We must know the distribution and have a suggestion for the parameters

that define the distribution. The error is the difference between each prediction and the observation

value. The prediction is found using the measurement equation. From these predictions, we find

the initial sample of errors ν
t|t−1,i
0 :

yt = h(Xt, θ, λ
t|t−1,i
0 ) + ν

t|t−1,i
0 .
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We then resample based on the relative probability of the suggestions:

p(λ
t|t−1,i
0 ) =

f(ν
t|t−1,i
0 )∑N

i=1 f(ν
t|t−1,i
0 )

This final sample is saved, now denoted λt|t−1,i with corresponding values of νt|t−1,i, and the process

is repeated for period t+1.

Using the error terms from the final sample of the states, we can calculate the likelihood of the

data. The per-period likelihood is the average likelihood of the final sample:

f(νt|t−1|θ) =
1

N

N∑
i=0

f(νt|t−1,i|θ).

Independence of ν across periods allows us to take the product of the per period likelihood to find

the likelihood of all the data:

L(Y T |θ) =
T∏
t=1

f(νt|t−1|θ).

The procedure defined above will provide a likelihood function that asymptotically peaks at the

correct value of the model parameters provided that Xt is exogenous. However, if Xt is endogenous,

the likelihood function will peak at the wrong values of model parameters. Estimation routines

built on this likelihood calculation will then produce biased estimates of model parameters and the

time-varying process λt. In the next section I present a modified version of the particle filter that

corrects for this bias.

1.4 A Modified Particle Filter Incorporating Instrumental Variables

If xt is endogenous, an estimate of our time varying parameters using an uncorrected particle

filter will be inconsistent. A particle filter using a joint distribution between the instrumental

and measurement error will estimate consistent parameters. Endogeneity here is represented by

a correlation between the variable and the measurement error. Assuming we have instrumental

variables, we can estimate an instrumental error, ξt, that contains the part of xt that is correlated

with vt:

xt = mzt + ξt

12



The particular filter procedure remains the same. However, the likelihood used for the second

sample is a multivariate distribution. After taking the initial naive sample and finding the error

term ν, we can use a joint distribution between the measurement and instrumental error to find

the likelihood of each state. The probability that a state is selected now considers the correlation

between ξt and νt|t−1,i:

p(λt|t−1,i) =
g(νt|t−1,i, ξt)∑N
i=1 g(νt|t−1,i, ξt)

Using the error terms from the final sample of the states and the instrumental error, we can

calculate the per period likelihood as the average likelihood between the instrumental error and

the final sample state errors:

g(νt, ξt|θ,m) =
1

N

N∑
i=0

g(νt,i, ξt|θ,m),

Independence still holds across periods, allowing us to take the product of the per-period likelihood

to find a likelihood that will give unbiased estimates of model parameters:

L(Y T |θ,m) =
T∏
t=1

g(νt, ξt|θ,m).

1.5 Benefits of an Extended Filter

To analyze the benefits of the particle filter, I will compare the output of an extended particle

filter to a traditional particle filter. The comparison is made across models and levels of covariance.

It is beneficial for the accuracy of the time-varying parameter and the accuracy of the static

parameters to include instruments when there is endogeniety. When covariance is zero, the extended

particle filter makes slightly less accurate estimates.

Any maximum likelihood method can be used to search over possible parameters; I choose to

implement a Bayesian Markov Chain Monte Carlo. In this estimation method, we collect samples

of the parameters of interest to specify a posterior distribution of the parameters. The sampler

needs specific prior beliefs about those parameters. I choose to implement flat priors for all my

variables. Flat priors will provide a clean starting point to see this bias. We have a burn-in period

for each iteration of the MH sampler, after which we collect 2000 samples of the parameters. Then,

I take the median of these samples.
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To assess the bias in the traditional particle filter, I conduct simulations for 102 datasets with

a length of T=250. At each iteration, I gather point estimates and a TVP path for both types

of filters. In tables, I compile the mean of the estimates and the standard deviation between

the samples to facilitate comparison. Furthermore, to evaluate the bias in the TVP, I graph and

contrast the average deviation between the true value and the filtered estimate of the TVP.

1.6 Model I

The first test will use a nonlinear model with an additive error. This sample model was chosen

because of its relation to a sticky information Phillips curve with drift in the rate of attentiveness.

Endogeneity is known to be an issue when estimating the Phillips curve, and more sophisticated

models will check for variation in the parameters. Each parameter will have a possible range shown

in Table 12. The model has the following form:

measurement equation:

yt =
1− λt
λt

x1,t + βx2,t + νt,

transition equation:

λt = λt−1 + ωt,

instrumental equation:

x1,t = mzt + ξt.

After gathering a deviation path for each dataset, I calculate the average deviation at each period

and plot this deviation in Figure 1. In the time series graph where the correlation coefficient is

zero, we can observe that both the particle filter and the extended particle filter exhibit deviations

ranging from -0.3 to 0.2, with the particle filter showing a slightly closer deviation to 0. The

extended particle filter estimates a slightly negative covariance, biasing the path downward, as

observed in Table 1. However, when we introduce endogeneity, the traditional particle filter exhibits

a significant downward skew, converging to a deviation of -2. In contrast, the extended particle

filter fluctuates slightly around 0. The bias in the TVP introduces a bias in the static parameters

under full estimation. This bias arises because the peak likelihood value is no longer at the correct

parameters. This bias is also evident in Table 2; the traditional particle filter struggles to identify
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the static parameter β. Both filters perform well in estimating the initial value of the TVP, but

they both overestimate the variance of the stochastic component of the random walk that forms

the structure of the TVP.

Figure 1: Absolute Deviation of λt, Model I.

Extended Particle Filter Particle Filter

β =1 0.959 (0.054) 0.976 (0.045)

σν = 1 0.957 (0.049) 0.963 (0.043)

λ0 =4 3.845 (0.384) 3.934 (0.239)

σω =0.1 0.167 (0.025) 0.151 (0.021)

σξ =1 1.005 (0.049) -

ρ = 0 -0.066 (0.074) -

m = 1 0.981 (0.049) -

Acceptance Rate 0.400 0.578

Table 1: Metropolis-Hastings Sampler Results for Model 1
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Extended Particle Filter Particle Filter

β = 1 0.971 (0.041) 0.841 (0.036)

σν = 1 0.897 (0.054) 0.784 (0.036)

λ0 = 4 3.735 (0.311) 3.736 (0.125)

σω = 0.1 0.181 (0.018) 0.167 (0.014)

σξ = 1 1.000 (0.048) -

ρ = 0.7 0.685 (0.041) -

m = 1 1.055 (0.048) -

Acceptance Rate 0.344 0.310

Table 2: Metropolis-Hastings Sampler Results for Model 1

1.7 The Role of Instruments

The joint normal assumption furnishes the necessary structure for estimating the models and

potentially enables us to directly model a relationship between the endogenous variable and the

measurement error. In this experiment, there actually is an instrument (m does not equal zero),

but the researcher assumes that m equals zero. A useful tool if a researcher doesn’t have access

to instruments or available instruments are weak. To test the effect of excluding instruments, I

will simulate a model with instruments and compare a particle filter that uses those instruments

and one that does not. To compare the effectiveness of the two filters, I will again provide the

estimation results of the static parameters and the per period mean squared error of the TVP. I

will again use an MH sampler and over 102 independent data sets; priors are in Table 13.

The test will use a linear model with an additive error. This sample model was chosen because

of its simplicity. The model has the following form:

measurement equation:

yt = λt ∗ x1,t + β ∗ x2,t + νt,

transition equation:

x1 = mzt + ξt,

16



instrumental equation:

λt = λt−1 + ωt.

The exclusion of instruments has had a minimal effect on the parametrization I have chosen

here. In Table 3, we can see that the estimation of static parameters is very close. However, the

per period mean squared error of the TVP is higher for the model that doesn’t implement the

instruments, as shown in Figure 2. I interpret this as motivation for utilizing instruments if they

are available. However, if instruments are not available or are weak, the extended particle filter

would be a robust choice.

Figure 2: Per-Period Mean Squared Error of λt
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With Instruments Without Instruments

σν = 1 0.933 (0.027) 0.995 (0.023)

β =1 1.001 (0.024) 1.000 (0.023)

λ0 =1 1.000 (0.024) 0.999 (0.023)

σω =1 1.009 (0.024) 1.002 (0.023)

σξ =1 1.001 (0.024) 1.011 (0.023)

ρ = 0.7 0.823 (0.040) 0.707 (0.016)

m=1 1.000 (0.024) -

Acceptance Rate 0.368 0.348

Table 3: Metropolis-Hastings Sampler Results for Linear Model

1.8 Robustness to Misspecification

The method relies heavily on the joint normal assumption between the variables. To test the

robustness of the extended particle filter to misspecification, I will compare particle filters when

the true error has a joint t-distribution with three degrees of freedom. One particle filter will use

the normal assumption, while the other correctly specifies a t-distribution with three degrees of

freedom. I will compare the particle filters using an MH sampler and the following priors using 102

independent data sets. The model again has the following form:

measurement equation:

yt = λt ∗ x1,t + β ∗ x2,t + νt,

transition equation:

x1 = mzt + ξt,

ν, ξ v T (0,Σ, df = 3), Σ =

 σ2
ν ρ ∗ σν ∗ σξ

ρ ∗ σν ∗ σξ σ2
ξ

 (5)

instrumental equation:

λt = λt−1 + ωt.

The change in the data-generating process of the ν and ξ to a t-distribution with three degrees
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of freedom has an interesting effect on the particle filter that incorrectly specifies a Normal Distri-

bution. While the estimates are fairly accurate, the acceptance rate is very low, and the variation

between the acceptance rates of independent draws is large. With accurate starting values, the

extended particle filter is robust to misspecification.

Figure 3: Per-Period Mean Squared Error of λt

T Distribution N Distribution

σν = 1 0.955 (0.026) 0.979 (0.023)

β =1 1.000 (0.024) 0.998 (0.023)

λ0 =1 1.000 (0.024) 0.998 (0.023)

σω =1 1.013 (0.024) 1.009 (0.023)

σξ =1 1.012 (0.024) 1.052 (0.027)

ρ = 0.7 0.777 (0.031) 0.739 (0.021)

m=1 1.002 (0.024) 0.998 (0.023)

Acceptance Rate 0.268 0.129

Table 4: Metropolis-Hastings Sampler Results for Non-Normal Model
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1.9 Conclusion

A method to estimate a TVP model with nonlinearities, where the time-varying parameter is

on an endogenous variable and instrumental variables are available, is not previously defined in the

literature. I fill this gap in the literature by adapting the particle filter to run a joint estimation

procedure. The IV estimation was shown to correct for bias in the TVP and static parameters

when there is endogeneity. In addition, I show results demonstrating the flexibility of this method.

We can run an estimation procedure without instruments. Finally, I show the method’s robustness

to misspecification.
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2 Time Variation in the Sticky Information Phillips Curve

2.1 Introduction

I analyze the empirical evidence of variation in the structural parameter of the sticky information

model. This involves scrutinizing both the statistical significance of the variation and its economic

implications. Upon examination, I discover a systematic trend in firms’ attention to relevant

macroeconomic conditions, indicating a decline in attention over time. This decline in attention is

found to have significant economic implications, particularly in relation to the expected volatility

of prices. By incorporating models proposed by Ball et al. (2003), I demonstrate that this trend in

attention is associated with a decrease in the expected volatility of prices. Comparisons between

fixed attention models and time-varying attention models reveal substantial differences in parameter

estimates. A Bayesian model comparison favors a fixed parameter model but does not eliminate the

time varying parameter model altogether. These findings underscore the importance of considering

time-varying attention in economic modeling and policymaking, as it provides valuable insights

into the evolving nature of decision-making processes in response to macroeconomic information.

In the Sticky Information Phillips curve, attention is used as a nominal rigidity. Firms strive

to set a profit-maximizing price path based on the current aggregate price and output, but they

do not have access to future data. Therefore, they must rely on forecasts of these variables to set

future prices in their path. Attention is modeled as a probability that they are given a current

history of relevant variables to use in their forecasts. Empirical research on attention to economic

conditions holds relevance for both macroeconomic policy and firm strategy. Identifying this ag-

gregate attention presents an opportunity for the Federal Reserve to enact policies that are more

effective. In my analysis of attentiveness, I identify variations that are important economically and

cannot be ruled out statistically.

Research into structural models employs various forms of imperfect knowledge. The first is

Lucas (1972a), where agents possess limited knowledge about changes in prices. A more recent

perspective introduced by Sims (2003) posits that agents suffer from limited attention, preventing

them from processing all available information. In my study, I employ the Phillips Curve developed

by Mankiw and Reis (2002), where the likelihood of setting a fixed price is substituted with the

probability of receiving new information. (Henceforth referred to as SIPC.)
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We may anticipate that the rate of attention changes over time. Branch et al. (2009) proposed a

model where the attention rate is an equilibrium value determined by the current state of the econ-

omy. For instance, the attention rate declines if the costs associated with acquiring and processing

information increase. These variations are significant because the level of attention influences the

economy’s responsiveness to external shocks. Therefore, I estimate a model that permits the rate

of attention to follow a random walk process. This approach enables the rate to change in every

period of the model, allowing the data to dictate the path instead of imposing a more structured

pattern such as a structural break.

Shifts in attentiveness have been explored through various frameworks. Coibion and Gorod-

nichenko (2015) utilize a method that links ex post mean forecast errors to ex ante revisions in the

average forecast among surveyed professionals, providing a benchmark for evaluating potential de-

viations by economic agents. On the other hand, Carroll (2003) constructs a model that compares

a survey of household expectations to the forecasts from the Survey of Professional Forecasters.

The empirical approach employed in this paper closely resembles that implemented by Coibion

(2010). The expectations of firms will be represented using data from the Survey of Professional

Forecasters, replacing the conventional rational expectations theory, wherein historical values of

the variable of interest would be used. In the SIPC, adopting historical values would result in an

error process highly correlated with the regressors and instruments. In addition, this model uses an

error term that is assumed to be additive to the inflation equation and drawn from an independent

and identically distributed (IID) process. This approach deviates from the AR(1) process used to

introduce uncertainty in the models of Ball et al. (2003) and Branch et al. (2009).

Using Bayesian estimation, I identify a downward trend in the rate of attention over the sample

period. To determine if the changes are economically significant, I turn to a general equilibrium

model developed by Ball et al. (2003). This enriched model uses a similar sticky information Phillips

curve but creates a general equilibrium model by specifying a demand curve and an objective

function by which monetary policy can be derived. Using this enriched model, I have uncovered

economically significant changes. Specifically, the shift in attention translates to a substantial

decrease in the expected volatility of aggregate price, ranging from 5.5% to 12.7%. These findings

highlight the potential impact of implementing the proposed adjustments, suggesting a notable

improvement in the stability of aggregate price movements.
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Bayesian model comparison allows us to gauge how credible two models are based on our data.

Chib and Jeliazkov (2001) provide the framework for estimating the marginal likelihood when

implementing a Markov chain Monte Carlo estimation. The Bayesian model comparison places a

16% probability on the TVP model. This means it cannot be ruled out statistically.

Enriched attention models can inform us of the causes of these behaviors. In Branch et al.

(2005), firms will decrease their attention rate in response to an increase in the cost of absorbing

aggregate information. The increasing volume of available data is usually associated with increased

information costs. In Hart (2023), I extended the Branch et al. (2005) model by introducing a

bounded rationality assumption. In response to large shocks, firms will be temporarily more atten-

tive. This response is caused by the belief that the economic shocks are drawn from a distribution

with a higher standard deviation.

The rest of the paper has the following structure. First, I develop a TVP version of the SIGE.

Then, I explain what data will be used and how it is structured. I go on to explain the estimation

method and priors. Finally, I present and explore the results of the estimation.

2.2 Empirical Approach

2.3 Model

The assumption developed by Mankiw and Reis 2002 is used to model inflation. Firms use

outdated information until they are randomly “selected” to receive new information. The parameter

that measures firms’ attention is (1-λ), the probability of being selected. Aggregate price is assumed

to be a weighted average over firms’ expectation of the optimal price:

πt =
(1− λ)

λ
αxt +

J−1∑
j=0

(1− λ) ∗ λjEt−1−j(πt + α∆xt) + νt.

The weighting system is formed by the fixed probability of receiving new information. The

proportion of firms using the newest information set It−1 is (1 − λ). The proportion of firms

using the information set It−2 is (1− λ)λ, the probability of receiving new information last period

multiplied by the probability of staying in that information set. As an information set becomes

more outdated it will shrink by the probability of staying in that information set each period.

If we allow the probability of new information to change over time the weighting system is
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formed by the history of probabilities of receiving new information. The proportion of firms using

the newest information set It−1 is (1−λt). The proportion of firms using the information set It−2 is

(1− λt−1)λt, the probability of receiving new information last period multiplied by the probability

of staying in that information set. This time-varying parameter model has the following form of

the SIPC:

πt =
(1− λt)
λt

αxt +
J−1∑
j=0

at,j+1Et−1−j(πt + α∆xt) + νt, (6)

s.t

at,1 = (1− λt)

at,2 = λt ∗ (1− λt−1)

at,3 = λt−1 ∗ λt ∗ (1− λt−2)

at,4 = λt−2 ∗ λt−1 ∗ λt ∗ (1− λt−3)

at,5 = λt−3 ∗ λt−2 ∗ λt−1 ∗ λt ∗ (1− λt−4).

xt = δZt + ξt, (7)

λt = λt−1 + ωt. (8)

The transition equation is modeled as a random walk. The selection of a random walk stems from

uncertainty regarding the underlying process. Prior to this study, there has been no estimation

of an SIPC with a time-varying parameter. The lack of structure placed on the random walk

assumption allows the data to inform us on the underlying form.

2.4 Data

The data is naturally divided into two groups. First, we have realized times series data on

inflation, output and the natural rate of output. Second, we have firm’s expectation. Expectation

data of firms will be proxied using expectation data from the survey of professional forecasters.

The GDP price index forecasts are the median from the survey of Professional Forecasters.

Collected from the Philadelphia Federal Reserve website. This data set runs from 1968-10-01 to

2022-10-01. The file includes 9 columns, two are dedicated to the date, two are annual average

forecasts. The other 6 contain our expectation data. For a row labeled time t, we have the
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expectations using information set t−1. Using this information set, the median forecast is provided

starting with Pt−1 ending with Pt+4. Forecasts for the quarterly level of the chain-weighted GDP

price index can be used to construct an expectation of inflation using the following formula:

Et−1πt+i = log(Et−1Pt+i)− log(Et−1Pt+i−1) for i ∈ {0, 1, 2, 3, 4}

The Real GDP forecasts are the taken from the same source and have the same format. No

expectation data on the change in natural output is proxied with the actual change. The expected

change in the output gap can be broken into two pieces given our simplifying assumption. The

expectation data will form the first part. While the second part will use the actual change in the

output gap. Therefore, the expected change in the output gap has the following form:

Et−1α∆xt+i = α ∗ (Et−1∆yt+i −∆yNt+i)

s.t.

Et−1∆yt+i = log(Et−1(Yt+i))− log(Et−1(Yt−1+i)),

∆yNt+i = log(Y N
t+i)− log(Y N

t+i−1) for i ∈ {0, 1, 2, 3, 4}.

Inflation is measured using the implicit GDP price deflator. The output gap is the log difference

between real gross domestic product and the CBO measure of potential output.

2.5 Estimation Method

A particle filter will be used to evaluate the likelihood of the model, and the Metropolis-Hastings

algorithm used to simulate from the posterior. The highly nonlinear nature of the measurement

equation means that traditional estimation methods cannot be used. The Metropolis Hastings

algorithm is a simple algorithm for producing samples from the distribution that otherwise would

be hard to characterize.

The MH sampler can be used to take a sample of parameter values to characterize the posterior

distribution. The prior beliefs of this model use a gamma distribution to characterize the standard

deviation parameters and a normal distribution for α and λ0. There are 1,000 burn in draws

and 2,000 post convergence draws. Before beginning the sampler, we must choose a θ0 and the
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variance-covariance matrix R, used to create variation from the previously accepted value of theta.

The stochastic terms are assumed to be normally distributed. Standard deviations of the

stochastic terms in model equations are assumed to have a Gamma distribution with hyper-

parameters α and β.

σ−1
ν v Gamma(αν , βν) st αν = 100 βν = 4

σ−1
ω v Gamma(αω, βω) st αω = 80 βω = 1

σ−1
ξ v Gamma(αξ, βξ) st αξ = 45 βξ = 2

All the coefficients are assumed to be drawn for independent normal distributions. Hyper

parameters for Normal distribution describing prior for conditional mean parameters:

α v N(µα, σ
2
α) st µα = 0.1 σ2

α = .001

λ0 v N(µλ0 , σ
2
λ0) st µλ0 = 0.7 σ2

λ0 = 1

The priors for the conditional mean parameters in the instrumental variable equation are es-

tablished in this section. A diffuse prior is employed, wherein the hyperparameters dictate a mean

of 0 and a variance of 1. This choice aims to minimize the influence of the prior on our posterior

estimates.

δi v N(µδi , σ
2
δi

) st µδi = 0 σ2
δi

= 1 ∀i

Th covariance between the instrumental error: ξ and the measurement error: ν is also assumed to

be drawn from a normal distribution:

σν,ξ v N(µσ, σ
2
σ) st µσ = 0 σ2

σ = 1
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The assessment for weak instruments typically employs an F-test. The leading evaluation for

weak instruments in time series models is Olea and Pflueger (2013) approach. Nonetheless, this

technique hinges on the linear Ordinary Least Squares (OLS) estimates of the structural equation.

An alternative test, Stock and Yogo (2005), has been completed for this model by Coibion (2010)

and stands as the next viable option.

2.6 TVP Estimation

Estimating the SIPC with variation in the rate of attention gives us parameter estimates and a

time series of firms’ attentiveness to information relevant to price setting. The Metropolis Hasting

sampler drew 2000 samples of our parameters. These samples can be used to understand an estimate

of the parameter and the accuracy of the estimates.

The results of modeling time-varying attention to macroeconomic information are as follows.

The final acceptance rate of the draws stood at 0.44, surpassing the recommended threshold in the

literature, yet remaining within an acceptable range. The estimated values for α and 1 − λ0 are

0.06 and 0.46, respectively. The ensuing figures illustrate the generated samples. Each sample of

the static parameter models gave rise to a corresponding sample path of λ. By aggregating these

sample paths using a time-wise mean, a composite graph was constructed. Subsequently, the 95 %

confidence bounds per period were determined.

Figure 4: Proportion of firms using the newest information over time.
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Alpha Lambda0 HV HW HE Covariance

Mean 0.06 0.54 329.01 77.92 90.32 0.00
SD 0.01 0.03 17.88 8.97 5.07 0.00

Table 5: Measure Parameters in TVP Model

Parameter 1 Parameter 2 Parameter 3 Parameter 4 Parameter 5

Mean -0.00 0.81 0.20 -0.14 -0.11
SD 0.00 0.05 0.04 0.02 0.05

Table 6: IV Parameters in TVP Model

The time-varying parameter estimation reveals a consistent trend of declining attention over

the analyzed period. Commencing from January 1976, the estimated value of 1−λ stands at 0.457,

progressively decreasing to 0.443 by April 2022. To gauge the economic implications of this trend,

I will refer to the model introduced by Ball et al. (2003).

The changes in attention may be driven by shifts in other parameters. The standard deviation of

the error used in the measurement equation could be shifting over time. To test for this possibility,

another model could be estimated and compared to the ones presented here.

Prior research conducted by Coibion and Gorodnichenko (2015) found that the frequency of

forecasts by professional forecasters surveyed does not change over time. Therefore, the shifts in

attention are isolated to the model presented and not the data.

2.7 Economic Implications

To analyze the economic impact of the identified shifts in the rate of attention, I use the model

developed in Ball et al. (2003). A similar model to the one estimated that incorporates a demand

and policy equation to form a general equilibrium model. The demand equation is a simple quantity

equation in which nominal spending is proportional to the money supply. The policy rule is derived

from maximizing the Woodford and Woodford and Walsh (2005) approximation of utility. In the

rational expectations equilibrium, the variance of price can be expressed in terms of the model

parameters and the rate of attention. The equation for price variance is given here:

σ2
p = V ar(εt)

∞∑
j=0

φ2
j
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φj =
ρj

α2ω + (1−λ)j+1

1−(1−λ)j+1

Using the parameterization in Branch et al. (2009) , the initial volatility registers at 1.66,

tapering down to 1.57 towards the end of the analyzed period. A discernible shift in volatility is

observed, a decrease of 5.5% in the variance of price. An alternative parameterization found in Ball

et al. (2003) increases the magnitude of the shift to -12.7%. This suggests that policymaking may

need adjustments in response to the time-varying estimates of attention. The parameterization

taken from that model is α = 0.1, ρ = 0.8, ω = 1, and σ2
ε = 1. The parameterization from Branch

et al. (2009) is α = 0.1, ρ = 0.8, ω = 20, and σ2
ε = 0.1.

2.8 Fixed Parameter Estimation

Fixed estimation is done using a Metropolis Hasting Sampler and a joint likelihood function

equivalent to the particle filter with zero variation. This likelihood method was chosen to provide

an equivalent measure of the marginal likelihood to compare to the time varying model. The results

of modeling fixed attention to macroeconomic information are as follows: the final acceptance rate

of the draws stood at 0.33, within the recommended threshold in the literature. The estimated

values for α and 1− λ are 0.07 and 0.45, respectively. The estimated value of λ implies that most

firms are expected to update their information twice a year.

Comparing the results for the two model types using the values 1−λ, I find that the mean value

of the TVP estimate is 0.45, similar to the fixed estimate. The fixed estimate of 0.55 is significantly

different to the value found by Coibion (2010), but similar to that found by Reis (2009). A Bayesian

model comparison will shed some light on which estimate is best.

Alpha Lambda HV HE Covariance

Mean 0.07 0.55 325.01 91.61 0.00
SD 0.01 0.03 17.56 4.55 0.00

Table 7: Measure Parameters in Fixed Model

Parameter 1 Parameter 2 Parameter 3 Parameter 4 Parameter 5

Mean -0.00 0.87 -0.03 0.02 0.03
SD 0.00 0.05 0.05 0.02 0.05

Table 8: IV Parameters in Fixed Model
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2.9 Bayesian Model Comparison

Bayesian model comparison can provide the relative plausibility of two models given our data.

To calculate the probability of a time-varying attention model, I find the ratio between the marginal

likelihood of the TVP model and the total marginal likelihood of both the TVP model and the fixed

parameter model. Chib and Jeliazkov (2001) provide the framework for estimating the marginal

likelihood when implementing a Markov chain Monte Carlo estimation.

The marginal likelihood of each model provides the foundation for a Bayesian model comparison:

p(Y |Mi) =
p(Y |θ)p(θ)
p(θ|Y )

The probability distribution of each model is equal to the marginal likelihood multiplied by the

prior probability assigned to each model. In this comparison, I set the prior probabilities equal to

each other. Thus, the relative probability of each model is the marginal likelihood of that model

divided by the sum of all the marginal likelihoods:

pi =
p(Mi|Y )

p(M1|Y ) + p(M2|Y )

The Metropolis-Hasting Sampler is used to sample from the posterior distribution, creating N

samples. I calculate the likelihood function and the prior density at the median of the samples.

Then to estimate the posterior ordinate we use the following equation:

p̂(θ̃|Y ) =

1
g

∑G
g=1 α(θ[g], θ̃)q(θ̃|θ[g])

1
J

∑J
j=1 α(θ̃, θ[g])

,

in which α(θ[g], θ̃) is the probability of accepting the median value instead of sample g and q(θ̃|θ[g])

is the likelihood of the variation between the median and the sample. J draws are taken by random

variation from the median, then α(θ̃, θ[g]) is the probability of accepting that draw instead of the

median. The probabilities are then averaged to get the numerator and denominator to get an

estimate of the ordinate.

A Bayesian model comparison between the fixed model and the TVP model favors the fixed

parameter model. The probability placed on the fixed parameter model is 0.84. This analysis
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favors a model that excludes a time-varying parameter for attention but it cannot be ruled out

statistically.

2.10 Conclusion

In conclusion, the estimation of the sticky information Phillips curve model with variation in

the rate of attention provides valuable insights into parameter estimates and the dynamics of firms’

attentiveness to macroeconomic information relevant to price setting.

The results from modeling time-varying attention reveal a declining trend in attention over the

analyzed period, indicating potential economic implications for inflation volatility. Incorporating

models proposed by Ball et al. (2003) suggests that policymakers may need to adjust their strategies

in response to these time-varying estimates of attention.

Overall, these findings underscore the importance of considering time-varying attention in eco-

nomic modeling and policymaking, as it provides valuable insights into the evolving nature of

decision-making processes in response to macroeconomic information.
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3 Bounded Rationality in an Endogenous Inattention Model

3.1 Introduction

This paper contributes to the existing literature by adding adaptive learning to an endogenous

inattention model. The equilibrium must be learned using a recursive system. In this model with

bounded rationality, the level of attentiveness is the probability of receiving optimal price forecasts

using the most recently estimated forecasting model and data.

The yeoman farmer model uses an average of all the firm’s prices to form the aggregate price,

and the firms set their prices according to the optimal price. In the sticky information system, firms

can set prices each period according to a forecast of the optimal price. The friction faced by firms

is the availability of these forecasts. Therefore some firms set prices according to forecasts that do

not utilize the most recent information. The rate of attentiveness is the probability of receiving a

forecast path using the most recent information.

In a sticky information system with bounded rationality, the equilibrium coefficients of the

forecasting model must be learned. Agents learn these values by gathering data and estimating

a forecasting model recursively. The information, in this case, is a set of the realizations of a

stochastic process.

An agent in the economic system calculates the rate of attentiveness by minimizing an expected

loss function. The equilibrium level of information attentiveness can be found using adaptive

learning. I replace rational expectations with a recursively estimated autoregressive moving average

model to demonstrate this. The agent then uses the estimated coefficients to find an implied best

level of attentiveness.

The adaption of complex tools for analysis has allowed companies to gather and process infor-

mation more quickly. An increased rate of information processing is a possible explanation for a

shift in the volatility of aggregate price marked by the end of the Great Moderation. This moti-

vates the use of a permanent decrease in the cost of obtaining and processing information in my

simulation studying transition dynamics.

The Great Moderation is a period during which the volatility in output and inflation decreased

considerably in the United States and other major industrial countries. Reduced volatility in

inflation makes financial planning easier for people. Lower output volatility stabilizes the job
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market by reducing the uncertainty faced by firms. This period would not last forever.

The end of the Great Moderation is marked by the bursting of the US housing bubble and

the subsequent financial crisis. There is no consensus on this new era of macroeconomic volatility.

Check and Piger (2021) find evidence in time series data that the Great Moderation continues with

only a burst in volatility during the financial crisis. However, this finding did not include data from

the Covid-19 epidemic.

3.2 Literature Review

This paper draws on a range of literatures, adaptive learning, information frictions and infor-

mation processing costs.

This study builds on the information processing literature. Mankiw and Reis (2002) develop an

exogenous system of information frictions to replace the sticky price assumption developed in work

by Taylor (1980), Rotemberg (1982), and Calvo (1983). Sims (2003) developed a rational inattention

model in which agents endogenously decide how much information to process. Sims’ model uses the

Shannon capacity limit mechanism to model how agents use up-to-date information with limited

capacity. This model has a major advantage over the Mankiw and Reis (2002) model, in which

agents endogenously decide what rates to absorb information. Branch et al. (2009) endogenize the

rate of inattention in the Ball et al. (2005) model (a micro-founded version of Mankiw and Reis

(2002)). This forms the major divergence in the information frictions literature. The Sims’ model

has agents constantly observing the most up to date information with some capacity for using the

information and the Ball et al. (2005) and Branch et al. (2009), in which agents sometimes use

extremely outdated information to make predictions. The former being more realistic and the latter

a more tractable model.

Reis (2005) builds a micro-founded model that uses a basic assumption that agents face a cost

of thinking through information and set prices based on this process. This model makes many

contributions to justifying the foundations of time-contingent sticky information models. This

simple model outperforms autoregressive models at forecasting inflation, and it is robust to the

Lucas critique in that it can account moderately well for the inflation data under a different policy

regime in the pre-war United States.

Carroll (2003) uses literature on epidemiology to construct a model in which agents are exposed
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to information. The foundational argument can be used to argue the distribution of information

in the Mankiw and Reis (2002) model. However, Carroll develops an alternative model to study

expectations instead of a model to study realized inflation. He estimates this model using the

University of Michigan monthly survey of households and the Survey of Professional Forecasters.

Branch et al. (2009) endogenize the rate of inattention by modeling the choice of attentiveness

as a symmetric Nash equilibrium. This theoretical step forward allows the authors to demonstrate

a mechanism in which a more active monetary policy can decrease the rate of attentiveness, which

in turn affects price volatility and perhaps output volatility. This offers a potential explanation

for the decline and output and price volatility seen in the data during the great moderation. In

addition, they show the effect of information costs on the rate of information acquisition.

The sticky information hypothesis generalizes easily to replace other frictions. Mankiw and Reis

(2006) and Mankiw and Reis (2007) began work on a general equilibrium model to test hypothetical

monetary policy questions. Reis (2009) estimates an alternative to the standard DSGE model using

the sticky information assumption as the only friction in the savings market, the goods market,

and the labor market. Carlstrom et al. (2015) study forward guidance at the zero lower bound,

similar to the influential papers by Eggertsson and Woodford (2003) and Werning (2011). Kiley

(2016) compares the sticky information assumption with the sticky price assumption when studying

different puzzles in macroeconomics, using the standard model from Woodford (2003) containing a

pricing equation (aggregate supply), a simple IS curve, and a range of policy rules. First, the author

demonstrates that the sticky information model may provide a solution to the forward guidance

puzzle studied by Levin et al. (2010), Laséen and Svensson (2011) and Negro et al. (2012). Next, the

authors show conflicting conclusions on the welfare effects of fiscal expansion studied by Christiano

et al. (2011) and Werning (2011). They also study the paradox of toil and the paradox of volatility

Coibion and Gorodnichenko (2015) consider both types of models in an empirical study. Using

data from the US Survey of professional forecasters, the authors reject the null hypothesis of ra-

tional expectations. Their estimates also point to economically significant estimates of information

rigidities. They go on to draw the interesting conclusion that the great moderation played a causal

role in generating the great recession.

Sims (2003) has spawned a large series of articles. Sims (2010) surveys early work and Maćkowiak

et al. (2022) surveys later work. Woodford (2001) applies this limited capacity hypothesis to the
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Lucas island model developed in Phelps and Cagan (1984) and Lucas (1972b) to show it is possible

to explain not only real effects of purely nominal disturbances but real effects that may persist for

a substantial period of time. Paciello and Wiederholt (2014) use the rational inattention frame-

work to study optimal policy when firms must choose how much attention to devote to aggregate

conditions. Mackowiak and Wiederholt (2021) introduce rationally inattentive firms into the RBC

model; this allows the model to reproduce the persistence of productivity shocks that is found in

the data. The authors also find that rational inattention causes an increase in demand for labor

and investment on the impact of a positive news shock. Ilut and Valchev (2020) find that an in-

complete market model where agents have limited cognitive perceptions generates a more realistic

distribution of beliefs and actions than the standard model. Afrouzi and Yang (2020) build on

previous work Maćkowiak et al. (2018) to develop an efficient method to solve rational inattention

models that can be used for quantitative work. They use this method to study the effect of differ-

ent monetary policy regimes on the slope of the long and short-run Phillips curve. Mackowiak and

Wiederholt (2009) find that the inattentive model allows prices to respond at different speeds to

different shocks.

Forward-looking expectations have long been included in economic analysis; Thornton (1802)

details the effect of forward-looking expectations on the current value of government-issued paper.

Simple models that incorporate forward-looking expectations explicitly into a model are Hicks

(1939) and Cagan (1956).

Current mainstream beliefs follow rational expectations Muth (1961). The key idea is that

economic agents use all available information and understand the structure of the economy. Lucas

and Sargent (1981) collect much of the early work. Rational expectations are an essential step

in modeling the formation of expectations. However, rational expectations invoke a strong set of

assumptions about the agents in the economy. While the econometrician must estimate parameters,

agents are assumed to know their exact value. The rational expectations operator is replaced with

a forecasting rule to bridge the gap between economists and agents. Sargent (1993) surveys a

range of forecasting models, Evans and Honkapohja (2001) provide a foundation for using adaptive

learning in macroeconomic models.

Evans and McGough (2020) provide a survey of the most recent work in adaptive learning.

Application to monetary policy, the empirical fit of existing models, equilibrium when agents have
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a restricted perception of the economy, and equilibrium when agents have heterogeneous expec-

tations. Bullard and Mitra (2002) highlight the need for learnable equilibria when setting policy

rules—highlighting the coordination issue and how the failure of private sector expectation coor-

dination can cause the economic system to diverge. Orphanides and Williams (2004) show that

monetary policy that performs efficiently when agents form rational expectations and perform

poorly when expectations are imperfect. Adaptive learning is also a plausible way to increase the

empirical fit of models. Milani (2007) finds that a DSGE model estimated with adaptive learning no

longer needs habits in consumption and price indexation to match the data. Using likehood-based

Bayesian methods to estimate the model, he finds the values of habits and indexation are close to

zero. Branch and McGough (2004) study equilibria when agents have heterogeneous beliefs.

Horaguchi (1996) shows that information processing costs in a one-shot game leads to boundedly

rational behavior: the arrival at (not confess, not confess) in prisoner’s dilemma. Dong et al. (2016)

find a decrease in information processing costs reduces the delay in the effect of new information

on stock prices.

3.3 Existing Model

The Ball et al. (2005) model uses the “yeoman farmer economy” used in Rotemberg and Wood-

ford (1998) and Woodford (2003). The yeoman farmer economy allows us to derive pricing equations

using micro-foundations; this allows for a utility-based measure of deadweight loss.

3.3.1 Market Structure

The economy is populated by a continuum of monopolistically competitive farmers. These

farmers produce a good to sell to other agents and buy goods to consume. These farmers have risk

aversion: σ > 0, and a marginal disutility of labor: ψ > 0. Farmer i’s period t utility is given by

the following equation:

U(Cit, Yit) =
C1−σ
it − 1

1− σ
−
ÂY 1+ζ

it

1 + ζ
.

The elasticity of substitution between different goods, defined by (γ), is larger than one. The first

term uses a constant elasticity substitution aggregator Cit for the agent’s consumption of different

36



goods:

Cit = [

∫ 1

0
(Cjit)

γ−1
γ dj]

γ
γ−1 .

The second term is the disutility from producing Y. The production function is defined by Y =

AL, such that L is labor and A is technology. A follows a stochastic process and Â = A−(1+γ).

Agents maximize their expected discounted utility stream subject to their budget constraint

(including proportional sales tax τt) by choosing consumption and labor. This utility maximization

leads to the known log demand function yit for good i at time t:

yit = yt − γ(pit − pt),

where pi is the log price charged for good i. Not all farmer’s wages will be the same since not all

prices are set using the same information set. We assume there exists complete financial markets

such that these risks are shared. Taking the demand we can solve for producer’s optimal price to

maximize their utility function:

p∗it = pt + αyt + ut.

The parameter α is equal to (ζ + σ)/(1 + γζ). In this model we choose to set the technology

to a constant such that the natural output level is zero. There exists a proportional sales tax τ

on all goods. These tax revenues fund equal lump sum transfers back to all agents. Assuming τ

follows some stationary stochastic process is a convenient way to generate time-varying monopoly

markups. The shock u is equal to log((1−τ̄)/(1−τ))
1+ψγ . We focus on mark-up shocks modeled by AR(1)

process with the structure:

ut = ρut−1 + εt with 0 < ρ < 1.

3.3.2 Frictions

The Ball et al. (2005) model assumes that farmers are able to adjust prices each period. However,

only a fraction of the farmers use the most recent information set to forecast the optimal price.

Other firms must use a forecast based on outdated information. The current price level is a weighted

average of all farmer’s prices, therefore depends on past expectations of the current optimal price.
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Formally, each period a fraction of farmers are selected to use an updated price path; these

farmers are selected randomly from the continuum. The rest of the population must use outdated

information to set prices. The fraction of agents that obtain new information is denoted λ; each

firm has the same probability of being selected for new information. The result of this assumption

is what we expect to see, an exponential distribution of firms over the information sets, with the

largest group updating this period and the size of the group decreasing as information becomes

more outdated.

Fraction λ of the farmers set a price according to time t information, where ut is observable at

time t and ρ is known. That implies that the fraction λ(1 − λ) set price according to time t − 1

information, the fraction λ(1 − λ)i set price according to time t − i information. The aggregate

price is given by:

pt = λ
∞∑
j=0

(1− λ)jEt−j(pt + αyt + ut).

The authors derive the second order approximation of farmers’ utility function:

−V ar(yt)− wE[V ari(pit − pt)] + t.i.p., (9)

where w = ψ+γ−1

(ψ+σ) and t.i.p. stands for terms independent of policy. The second term is the variation

of output across firms, this variation at the firm level causes loss in utility due to the departure

from the efficient level in the labor supply.

In this case, we use a simple demand; the quantity theory approach. Nominal GDP is equal to

the aggregate price level times output, presented here in logs:

y = m− p− e.

We study monetary policy with the objective to minimize equation (9), by controlling the

quantity of money m. Here, w is considered to represent the relative importance the policy maker

places on cross-sectional price variance as opposed to output variance. The first order conditions
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for minimization give us the following:

Et−1yt = −αwEt−1pt.

Combine this equation with aggregate demand equation gives a policy rule based on a fixed quantity

of money:

mt = (1− αw)Et−1pt.

Assuming policy makers follow this rule, the rational expectations equilibrium paths for optimal

price, aggregate price and output are as follows:

pt =

∞∑
j=0

φjεt−j ,

yt =
∞∑
j=0

ϕjεt−j ,

p∗t =
∞∑
j=0

θjεt−j .

3.3.3 Nash Equilibrium

Above, we considered λ to be exogenous, this is a convenient assumption, but optimizing agents

would adjust their rate of inattention in response to changes in the economy. Branch et al. (2009)

develop a model in which λ is the result of a symmetric simultaneous Nash equilibrium, successfully

combining elements of time dependence and state dependence into a single model. The firms in

their model minimize a loss function to choose λ; this allows information updating to be affected

by other factors in the model economy.

All firms are choosing λ independently at the same time. From any specific firm’s perspective,

there exists an economy-wide probability λ̄ chosen by other firms. We arrive at a symmetric Nash

equilibrium when the best choice of λ equals to the economy wide choice λ̄.

pt(λ̄) and yt(λ̄) are the equilibrium price and output given that all agents have used λ̄ for the

history of the economy. In order to solve for equilibrium, Branch et al. (2009) first redefine the

optimal price p∗t in terms of λ̄:
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p∗t (λ̄) = pt(λ̄) + αyt(λ̄) + ut

We must proceed carefully here, firms are not choosing a length of time in which to update

their information set. They are choosing a probability to update. This process can be thought

of in the following way. Each period every firm flips a coin, this coin says “update” (U) on one

side and “don’t update” (DU) on the other. The probability the coin lands on update is the firms

choice of λ. Let S be a function such that St(U) = 1 and St(DU) = 0, this function is a random

variable. Let p̂t(λ) be the price set by a firm at time t that is determined by the random variable

in the following way:

p̂t(λ) =


p∗t (λ̄) if st = 1

Et−kp
∗
t (λ̄) if st−k = 1, st−k+1 = 0, ...., st = 0.

The expected profit loss is proportional to the expected squared error between the price set by the

firm p̂t(λ) and the actual optimal price p∗t (λ̄):

L(λ, λ̄) = E[(p̂t(λ)− p∗t (λ̄))2].

If it were free to adjust price, firms would choose λ to equal one. This would reduce the loss to zero.

Sticky information is motivated by a cost of data gathering and reoptimization. To approximate

the cost agents face, Cλ2 is used.

Now, using this cost of information accrual and the loss firms face when setting λ we have the

following minimization problem:

T (λ̄) = arg minλ[L(λ, λ̄) + Cλ2].

T (λ̄) is a best-response function, it maps the economy choice of lambda to the optimal choice by

the firm. We arrive at a symmetric Nash equilibrium when λ∗ = T (λ∗).

Branch et. al. (2009) show in equilibrium this loss is equivalent to:

L(λ, λ̄) = (1− λ)ψ̄0 − λ
∞∑
j=1

(1− λ)jψ̄j .
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3.4 Incorporating Learning into the Existing Model

Branch, Carlson, Evans and McGough studied what value of λ agents would choose if the

equilibrium values for MA process that governs optimal price and aggregate price are known, this

is the rational expectations equilibrium (REE). Expanding the existing model by adding adaptive

learning will allow us to study the stability of equilibrium, study structural changes and potentially

help with the empirical fit of the model. Structural changes are convenient to study using adaptive

learning because the equilibrium values of the price coefficients are a function of all past realization

of λ, solving for an infinite number of coefficients using an infinite history of lambdas would be

very challenging for the agents in the model and for the researcher.

In REE both the firms and the policy maker are making forecasts of a variable that follows

an MA(∞) process. Though the moving-average process is a basic time series model, estimation

via maximum likelihood is intractable. I follow a similar method to the classical two step process

outlined in Durbin (1959). First, both types approximate the true process using an ARMA(1,5)

model estimated via recursive least squares. Next, we can find MA expression of the estimated

ARMA model.

I will implement adaptive learning at the aggregate level; all agents must update with the same

probability λt. It is convenient to assume a consultant is calculating optimal price paths, λt and

randomly selecting firms to give a price path estimated using the most up to date coefficients. This

consultant is collecting data and running a regression to estimate ARMA(1,5) forecasting model.

The key assumption in the Ball et al. (2005) model is that firms follow a pre-set price path. The

consultant uses the estimated model to create this price path for firms. Using the estimated MA

coefficients she can calculate λ using the loss function, this λ is calculated for all the firms by the

consultant.

It is also assumed that both the consultant and policy makers can observe markup shocks and

know the form of the shocks and the values in the process. This assumption gives the agents

access to the history of ε. Given this assumption, agents are able to run a regression to estimate

coefficients using collected data.
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3.4.1 Policy

For any particular period t, policy makers implement optimal policy; m̂t. This policy take a

period to implement. Therefore, the policy maker must forecast pt using the prior information

set t − 1. Aggregate price follows an MA(∞) process in REE, here policy makers will use an

ARMA(1,5) model. This model has a single autoregressive coefficient to capture the long term

effects of shocks and five moving average coefficients for the most recent shocks in the series, this

allows us to accurately approximate the effect of all shocks:

Êt−1pt = at−1pt−1 + b1,t−1εt−1 + b2,t−1εt−2 + b3,t−1εt−3 + b4,t−1εt−4 + b5,t−1εt−5.

This estimation gives us the following policy:

m̂t = (1− αω)Êt−1pt

or

Êt−1pt = c′p,t−1xp,t,

s.t.

c′p,t−1 = [at−1, b1,t−1, b2,t−1, b3,t−1, b4,t−1, b5,t−1],

x′p,t = [pt−1, εt−1, εt−2, εt−3, εt−4, εt−5],

that is estimated via recursive least squares,

cp,t = cp,t−1 + γtR
−1
p,txp,t−1(pt − c′p,t−1xp,t−1)

Rp,t = Rp,t−1 + γt(xp,t−1x
′
p,t−1 −Rp,t−1).

Coefficients are estimated recursively each period when new data becomes available. cp,t is a

vector of the ARMA(1,5) coefficients, Rp,t is the second moment matrix of the regressors. γt is the

gain sequence, under RLS this gain is equal to t−1, because all past data points count equally. A

fixed gain sequence will weight more recent observation more than older observations, this is useful

if there are structural changes in the system.
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3.4.2 Firms

The consultant will use an ARMA(1,5) model to approximate an MA(∞) process. The consul-

tant forms expectation Êtp
∗
t+k. When k = 0, we have the following forecast rule:

p∗t = αp∗t−1 + β0εt + β1εt−1 + β2εt−2 + β3εt−3 + β4εt−4

or

Êtp
∗
t = c′c,t−1xc,t,

s.t.

c′c,t = [αt, β0,t−1, β1,t−1, β2,t−1, β3,t−1, β4,t−1],

x′c,t = [p∗t−1, εt, εt−1, εt−2, εt−3, εt−4],

that is estimated via recursive least squares,

cc,t = c′c,t−1 + γtR
−1
c,t xc,t−1(p∗t−1 − c′c,t−1xc,t−1),

Rc,t = Rc,t−1 + γt(xc,t−1x
′
c,t−1 −Rc,t−1).

This model has an optimal price for each period: p∗t . Firms would like to set their price

equal to this optimal price each period. A consultant must forecast the optimal price given a fixed

information set. The consultant gives this forecast path of the optimal price to selected firms. The

firms then use this price path to set their price each period. The forecasting technique of an ARMA

model is simple. First, a forecast is made using the available information:

Êtp
∗
t = αtp

∗
t−1 + βt,0εt + βt,1εt−1 + βt,2εt−2 + βt,3εt−3 + βt,4εt−4.

To forecast past p∗t+1, we replace the realized value of p∗t−1 with the predicted value Êtp
∗
t and replace

εt with the expected value: 0 and shift the realized shocks down in the following manner:

Êtp
∗
t+1 = αtÊtp

∗
t + βt,00 + βt,1εt + βt,2εt−1 + βt,3εt−2 + βt,4εt−3.
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This technique can be continued to form an optimal price path:

Êtp
∗
t+2 = αtÊtp

∗
t+1 + βt,10 + βt,20 + βt,3εt + βt,4εt−1 + βt,5εt−2

Êtp
∗
t+3 = αtÊtp

∗
t+2 + βt,10 + βt,20 + βt,30 + βt,4εt + βt,5εt−1

Êtp
∗
t+3 = αtÊtp

∗
t+3 + βt,10 + βt,20 + βt,30 + βt,40 + βt,5εt

Êtp
∗
t+3 = αtÊtp

∗
t+4 + βt,10 + βt,20 + βt,30 + βt,40 + βt,50

...

3.4.3 Optimal λ

The consultant must now use the conditional expected squared error between the price set by

the firm p̂t(λ) and the actual optimal price p∗t to find optimal λt:

L(λt) = Et[(p̂t(λt)− p∗t )2],

λt = arg minλt [L(λt) + Cλ2
t ].

We can find an infinite-order MA model representation of the recursively estimated ARMA model.

The consultant uses an ARMA(1,k) model and must find the MA equivelant: θ̂ for the calculation

of the optimal lambda. Explicitly the model has the following form:

Ep∗t = coefAR ∗ p∗t−1 + coef1 ∗ εt+, ...,+coefk ∗ εt−k.

We can solve for the implied values:

θ̂0 = coef1.

θ̂1 = coef2 + coefAR ∗ coef1.

θ̂2 = coef3 + coefAR ∗ coef2 + coef2
AR ∗ coef3.
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Now, we can summarize the pattern for coeffecient i such that i ∈ {0, 1, .., k − 1}

θ̂i =
i∑

j=0

coef jAR ∗ coefi−j+1,

and for coeffecient i such that i ≥ k

θ̂i =
k∑
j=0

coef
j+(i−k)
AR ∗ coefk−j+1.

Using the estimated MA values, we can follow the steps in Branch et al. (2009) to obtain the

following:

L(λt) = (1− λt)ψ̂t,0 − λt
∞∑
j=1

(1− λt)jψ̂t,j ,

s.t.

ψ̂t,j = σ2
ε

∞∑
k=j

θ̂2
t,k.

We must assume that firms are told how often to update information by the consultant. This means

that firms have access (second hand) to the most up-to-date coefficients. Since firms are choosing a

probability to update, they cannot receive a 1 step ahead prediction for each period without cost.

The cost is “paid” each period given probability λt. Another critical assumption made is that the

consultant has perfect knowledge of σ2
ε .

3.4.4 Economic System

Aggregate price is now a function of a history of λ. Denote Λt as the set that contains the

history of λt s.t.

λt−i ∈ Λt ∀i ≥ 0.

Now we can compute aggregate and optimal price:

pt(Λt) =
∞∑
j=0

λt−j ∗Πj−1
i=0 (1− λt−i) ∗ Êt−jp∗t ,

p∗t (Λt) = (1− α)pt(Λt) + αmt + ut.
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The recursive causal ordering that describes the model economy:

Êt−1pt = at−1pt−1 + b1,t−1εt−1 + b2,t−1εt−2 + b3,t−1εt−3 + b4,t−1εt−4 + b5,t−1εt−5,

mt = (1− αω)Et−1pt,

ut = ρut−1 + εt,

Êtp
∗
t+k ∀k ≥ 0,

λt = argminλt∈[0,1][L(λt) + Cλ2
t ],

pt(λt,Λt−1) =
∞∑
j=0

λt−j ∗Πj−1
i=0 (1− λt−i) ∗ Êt−jp∗t ,

p∗t (λt,Λt−1) = (1− α)pt(λt,Λt−1) + αmt + ut.

3.5 Calibration

The primary goal of calibration is to provide a qualitative example. However, the initial values

are chosen to roughly match variance in price and output to those observed in the data. The model

parameters are as follows; C = 5, α = 0.1, σ2
ε = 0.1, σ2

e = 0, and ρ = 0.85. I examine the dynamics

when C shifts to 4 from 5, holding other parameters fixed.

The magnitude of this shift has a heterogenous effect on the costs of updating at different rates.

This is due to the parametric cost function: λ2C. Below we can see that the cost of never updating

information remains constant. While the cost of updating with a probability of 1 decreases by 20%.
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Figure 5: Shift in Cost

3.6 Stability and Restricted Perceptions Equilibrium

To test the stability of the chosen calibration, I simulate the system and check the outcome

visually for convergence. This result will be studied using a decreasing gain: γt = t−1. In the

initial calibration with C = 5 shown in figure 1 below, λt converges to approximately 0.10. In the

secondary calibration with C = 4 shown in figure 2, λt converges to approximately 0.14. A visual

inspection indicates stability at both equilibrium, this motivates a review of the transition between.

RPE Coefficients at ARMA(1, 5)

RPE Coefficients for Firms [ 0.852 1.082 -0. 0.004 0.004 0.002]

RPE Coefficients for Policy Maker [0.918 0.067 0.046 0.034 0.018 0.015]

Table 9: Equilibrium values at C= 5

RPE Coefficients at ARMA(1, 5)

RPE Coefficients for Firms [0.874, 1.119, 0.001, 0.007, 0.007, 0.004]

RPE Coefficients for Policy Maker [0.929, 0.099, 0.069, 0.052, 0.029, 0.024]

Table 10: Equilibrium values at C= 4
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Figure 6: Stability with C set to 5
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Figure 7: Stability with C set to 4

To investigate the robustness of my analysis, I repeated it using an AR(1) forecasting rule. How-

ever, this approach proves to be too volatile for the system, and convergence is not consistent when

employing an AR(1) forecasting rule. Introducing a single MA coefficient allows for convergence

into an equilibrium.

3.7 Transition Dynamics

To examine the transition between Nash equilibrium, I set C to 4 for an initial period length

of 300 periods. At that time, C shifts to 5. This causes an immediate jump in λ. A increase in

cost makes choosing a smaller λ immediately a better choice. Subsequently, λ slowly converges to

the new Nash equilibrium value as the ARMA coefficients converge to their new equilibrium value.

This result is robust to a range of gain selections.

First, I test the standard decreasing gain sequence t−1. This gain does a good job converging to

the initial equilbrium value. We see a sizeable immediate jump in the value of λ, but the algorithm
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fails to converge to the equilibrium value quickly.

Figure 8: Transition Standard Decreasing Gain

A learning algorithm using a modified decreasing gain of t−0.8 is able to pick up better on changes

in the economy. However, it doesnt accuratly converge to the intial equilbrium value. After the

the shift in model parameters it converges quickly towards the new equilibrium.
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Figure 9: Transition Modified Decreasing Gain

3.8 Convergence to REE

A forecasting rule for which the RPE is close to the REE would justify the use of studying this

system using the REE values. To do this, I graph a selection of ARMA(1, k) models. In addtion

to the ARMA values, I have plotted the REE values to study the convergence of our PLM. The

value of k = 10 converges closely to the REE value.

51



Figure 10: Transition Modified Decreasing Gain

Model Equilibrium Lambda

1 0.130030

5 0.125100

10 0.113555

REE 0.111600

Table 11: RPE values for different k

3.9 Conclusion

This study focuses on the addition of adaptive learning to an endogenous attention model. These

modifications enable us to explore stability and transitions to equilibrium. I find that the equilib-

rium is stable under learning and that the rational expectations equilibrium can be approximated

with an ARMA(1,10) model.
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5 Appendix of Chapter 1

Hyperparameters

beta σν λ0 σω M σξ ρ

start 0 0 3 0 0 0 -1

end 2 2 5 0.2 2 2 1

Table 12: Metropolis-Hastings Priors Model 1

Hyperparameters

beta σν λ0 σω M σξ ρ

start 0 0 0 0 0 0 -1

end 2 2 2 2 2 2 1

Table 13: Metropolis-Hastings Priors, Role of Instruments
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