
On the Spatial and Temporal Safety of Multi-Language Applications

by

Samuel Mergendahl

A dissertation accepted and approved in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

in Computer Science

Dissertation Committee:

Stephen Fickas, Chair

Boyana Norris, Co-Chair

Thanh Nguyen, Core Member

Michal Young, Core Member

Sara Hodges, Institutional Representative

University of Oregon

Spring 2024

c© 2024 Samuel Mergendahl

This work is openly licensed via CC BY 4.0.

2

https://creativecommons.org/licenses/by/4.0/

DISSERTATION ABSTRACT

Samuel Mergendahl

Doctor of Philosophy in Computer Science

Title: On the Spatial and Temporal Safety of Multi-Language Applications

While the introduction of memory-safe programming languages into

embedded, Cyber-Physical Systems (CPS) offers an opportunity to eliminate

many system vulnerabilities, a pragmatic adoption of memory-safe programming

languages often necessitates incremental deployment due to practical development

constraints, such as the size of many legacy code bases. This incremental

deployment of memory safety leads to a new type of system configuration, called

Multi-Language Applications (MLA), where memory-safe and memory-unsafe

programming languages are co-resident on the system.

Unfortunately, the spatial and temporal safety of Multi-Language

Applications (MLA) remains understudied which contradicts the strict

confidentiality, integrity, and availability constraints of embedded, Cyber-Physical

Systems (CPS). Therefore, this dissertation investigates the new paradigm of MLA,

in which this report enumerates novel spatial and temporal safety violations that

can arise in this setting, and proposes a series of defense methodologies to ensure

spatial and temporal isolation between potentially compromised components.

Namely, because the memory-unsafe languages in an MLA offer an entry point

for an attacker, the system must adopt cyber-resilience to prevent an attacker from

spreading throughout the system and causing a critical system failure.

In particular, this report first introduces a new type of code-reuse attack

that specifically appears in Multi-Language Applications (MLA), called Cross-

3

Language Attacks (CLA). CLA takes advantage of conflicting assumptions

between languages to maneuver around deployed defenses. Correspondingly,

this report suggests two techniques to prevent CLA. First, a system should

provide language-aware memory allocation and second, adopt a newly proposed

language construct, called Pseudo-Pointers, to provide spatial isolation between the

languages in the MLA. However, even with the temporal safety benefits gained

from the thread isolation of Pseudo-Pointers, this report further demonstrates

that the system must account for advanced Denial-of-Service (DoS) attacks, called

Manipulative Interference Attacks (MIA), in which a compromised component

manipulates another component into delaying a third, victim component.

Additionally, an advanced form of MIA can arise, called Thundering Herd Attacks

(THA), that specifically targets kernel mechanisms which exist to ostensibly

enable temporal isolation as a means to inadvertently delay other high-priority

threads in the system; consequently, the required temporal isolation mechanisms

themselves act as an attack vector. Finally, in order to overcome this system

coordination dilemma, this report proposes an analysis framework to automatically

identify instances of MIA in a configured system. Specifically, the analysis

uses a hybrid approach that first leverages static analysis to identify software

components with influenceable execution times, and second, automatically

generates a formal, system-wide model to determine which compromised

protection domains can manipulate the influenceable components and trigger

Manipulative Interference Attacks (MIA).

This dissertation includes previously published and unpublished co-authored

material.

4

CURRICULUM VITAE

NAME OF AUTHOR: Samuel Mergendahl

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED:

University of Oregon, Eugene
University of Wisconsin, Madison

DEGREES AWARDED:

Doctor of Philosophy, Computer Science, 2024, University of Oregon
Master of Science, Computer and Information Science, 2020, University of

Oregon
Bachelor of Science, Mathematics and Computer Science, 2015, University of

Wisconsin - Madison

AREAS OF SPECIAL INTEREST:

Cybersecurity
Code-reuse Attacks
Denial-of-Service Attacks
Real-time Analysis
Requirements Engineering
Linear Temporal Logic

PROFESSIONAL EXPERIENCE:

Full Technical Staff, Secure Resilient Systems and Technology, MIT Lincoln
Laboratory, 2024

Associate Staff, Secure Resilient Systems and Technology, MIT Lincoln
Laboratory, 2020-2024

Teaching Assistant, College of Computer and Information Sciences,
University of Oregon, 2016-2020

Teaching Assistant, College of Mathematics, University of Wisconsin -
Madison, 2013-2016

5

GRANTS, AWARDS AND HONORS:

Erwin & Gertrude Juilfs Scholarship in Computer and Information Science,
2018

PUBLICATIONS:

Mergendahl, S., Fickas, S., Norris, B., & Skowyra, R. (2024, May).
Manipulative Interference Attacks. In 2024 ACM Conference on
Computer and Communications Security (CCS),(In Submission).

Mergendahl, S., Jero, S., Ward, B. C., Furgala, J., Parmer, G., & Skowyra,
R. (2022, May). The thundering herd: Amplifying kernel interference
to attack response times. In 2022 IEEE 28th Real-Time and Embedded
Technology and Applications Symposium (RTAS),(pp. 95-107).

Mergendahl, S., Burow, N., & Okhravi, H. (2022). Cross-Language Attacks.
Network and Distributed System Security (NDSS) Symposium.

Rivera, E., Mergendahl, S., Shrobe, H., Okhravi, H., & Burow, N. (2021,
December). Keeping safe rust safe with galeed. In Proceedings of the
37th Annual Computer Security Applications Conference (ACSAC),(pp.
824-836).

Mergendahl, S., & Li, J. (2020, June). Rapid: Robust and adaptive
detection of distributed denial-of-service traffic from the internet of
things. In 2020 IEEE conference on communications and network
security (CNS),(pp. 1-9).

Sisodia, D., Li, J., Mergendahl, S., & Cam, H. (2024). A Two-Mode,
Adaptive Security Framework for Smart Home Security Applications.
ACM Transactions on Internet of Things (TIOT),5(2), 1-31.

Hu, Z., Li, J., Mergendahl, S., & Wilson, C. (2022, April). Toward a
resilient key exchange protocol for IoT. In Proceedings of the Twelfth
ACM Conference on Data and Application Security and Privacy
(CODASPY),(pp. 214-225).

Shi, L., Mergendahl, S., Sisodia, D., & Li, J. (2020). Bridging Missing Gaps
in Evaluating DDoS Research. In 13th USENIX Workshop on Cyber
Security Experimentation and Test (CSET).

6

Mergendahl, S., Sisodia, D., Li, J., & Cam, H. (2018, July). FR-WARD:
Fast retransmit as a wary but ample response to distributed denial-of-
service attacks from the Internet of Things. In 2018 27th International
Conference on Computer Communication and Networks (ICCCN),(pp.
1-9).

Sisodia, D., Mergendahl, S., Li, J., & Cam, H. (2018, August). Securing the
smart home via a two-mode security framework. In 14th International
Conference of Security and Privacy in Communication Networks
(SecureComm),(pp. 22-42).

Mergendahl, S., Sisodia, D., Li, J., & Cam, H. (2017, November). Source-
end DDoS defense in IoT environments. In Proceedings of the 2017
workshop on internet of things security and privacy (IoT-S&P),(pp. 63-
64).

7

To my parents

8

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION . 19

1.1. Motivation . 19

1.2. Dissertation Overview . 22

1.2.1. Cross-Language Attacks (CLA) 23

1.2.2. Pseudo-Pointers . 24

1.2.3. Manipulative Interference Attacks (MIA) 25

1.2.4. Thundering Herd Attacks (THA) 26

1.2.5. MIA Discovery . 27

1.3. Contributions . 28

II. BACKGROUND . 31

2.1. Code Reuse Attacks . 31

2.2. Rust . 32

2.3. Go . 34

2.4. Component Isolation . 35

2.5. Temporal Interference . 36

2.6. µ-kernels . 38

2.7. seL4 . 39

2.8. Requirements Engineering 42

III. THREAT MODEL . 44

IV. CROSS-LANGUAGE ATTACKS 46

4.1. CLA Model . 48

4.1.1. Single-Language Applications (SLA) Threat Models 49

9

Chapter Page

4.1.2. Multi-Language Applications (MLA) Threat Models 51

4.1.3. CLA Attack Construction 53

4.2. CLA using Revenant Vulnerabilities 55

4.2.1. Overview . 55

4.2.2. Rust Bounds Check Bypass 58

4.2.3. Rust Lifetime Bypass 59

4.2.4. C/C++ Hardening Bypasses 60

4.3. CLA using Multi-Language-Specific Vulnerabilities 61

4.3.1. Corrupting Rust Dynamic Bounds 62

4.3.2. Double Frees . 63

4.3.3. Intended Interactions over FFI 64

4.3.4. Concurrency and CLA 66

4.4. Evaluation . 66

4.4.1. Methodology . 67

4.4.1.1. Source Language 67

4.4.1.2. Metrics . 68

4.4.2. Results . 69

4.5. Discussion . 73

4.5.1. CLA in Go . 74

4.5.2. CLA In Other Languages 74

4.5.2.1. Interpreted Languages 75

4.5.2.2. Multiple Safe Languages 75

4.5.2.3. CLA and Verified Code 76

4.5.3. CLA Beyond Memory Safety 76

4.5.4. Defense Strategies for CLA 77

10

Chapter Page

4.5.4.1. Preventing Unintended Interactions 77

4.5.4.2. Securing Intended Interactions 77

4.5.4.3. Alternative Defenses 78

V. PSEUDO-POINTERS . 79

5.1. Pseudo-Pointers Design . 80

5.1.1. Preventing Unintended Interactions via Heap Isolation 82

5.1.1.1. Heap Isolation 83

5.1.1.2. Heap Splitting 83

5.1.1.3. Access Policy 83

5.1.2. Securing Intended Interactions via Pseudo-Pointers 84

5.1.2.1. Pseudo-pointer Properties 86

5.1.2.2. Rust API 87

5.1.2.3. External Function Transformation 88

5.1.3. Pseudo-Pointers Security Guarantees 89

5.2. Pseudo-Pointers Implementation 90

5.2.1. Heap Isolation . 90

5.2.1.1. Heap Creation 90

5.2.1.2. Access . 90

5.2.2. Pseudo-Pointers . 91

5.2.2.1. Rust API 92

5.2.2.2. External Function Transformation 93

5.3. Evaluation . 93

5.3.1. Pseudo-pointers . 94

5.4. Practical Lessons Learned 95

5.4.1. Mixed-Language Application Security 95

11

Chapter Page

5.5. Limitations . 95

VI. MANIPULATIVE INTERFERENCE ATTACKS (MIA) 97

6.1. Manipulative Interference 100

6.1.1. Overview of MIA . 100

6.1.2. MIA Primitives . 102

6.2. Case Studies . 103

6.2.1. seL4 Microkit . 104

6.2.2. DARPA CASE . 105

VII. THUNDERING HERD ATTACKS (THA) 108

7.1. Traditional IPC Interference 109

7.1.1. Overview . 109

7.1.2. FIFO Endpoint Flood Interference 110

7.1.3. Priority Ceiling Processing Interference 112

7.1.4. Budget Drain Interference 113

7.1.5. Relationship to the System-Coordination Dilemma 114

7.2. Thundering Herd Attacks 115

7.2.1. Overview . 115

7.2.2. Endpoint Queue Sorting Attack 116

7.2.3. Replenishment Queue Sorting Attack 118

7.2.4. Replenishment Wakeup Processing Attack 120

7.3. Evaluation . 122

7.3.1. Experimental Setup 123

7.3.2. Traditional IPC Interference Results 123

7.3.3. Thundering Herd Attack Results 124

7.3.4. Red-Black Tree Mitigation Results 126

12

Chapter Page

7.3.5. Queue-per-priority Mitigation Analysis 127

7.4. Implications for System Provisioning 128

7.4.1. Experimental Design 128

7.4.2. Results . 130

7.5. Discussion and Related Work 130

7.5.1. Implications for µ-Kernel Design 131

7.5.2. Track metadata with O(log(n)) data-structures 131

7.5.3. Track wait queues with queue-per-priority data structures . . 132

7.5.4. Expanded use of preemption points 132

7.5.5. Partial processing of wakeups in interrupts 133

7.5.6. Other µ-Kernel Designs 133

7.5.7. Fiasco and Nova . 134

7.5.8. Thread migration in Composite 134

7.5.9. Static Partitioning Hypervisors 135

7.5.10. Summary . 136

VIII.MIA DISCOVERY . 137

8.1. Identifying MIA . 137

8.1.1. Cycle Detection . 139

8.1.2. Requirements Analysis 140

8.1.3. Triage . 141

8.2. Evaluation . 142

8.2.1. Static Analysis . 143

8.2.2. Goal-Conflict Analysis 145

IX. CONCLUSION . 147

APPENDICES

13

Chapter Page

A. CROSS-LANGUAGE ATTACKS (CLA) 149

B. MANIPULATIVE INTERFERENCE ATTACKS (MIA) 152

REFERENCES CITED . 155

14

LIST OF FIGURES

Figure Page

1. Cross-Language Attacks (CLA) transfer back and forth
between languages to circumvent deployed defenses. 48

2. Language Threat Models . 50

3. Our baseline attack variant on a program with Rust
(protected by its lifetimes, borrow checker, and dynamic
bounds checks) and C (protected by stack canaries and
CFI) colored over a graphical description of all Cross-
Language Attacks (CLA). 53

4. C/C++ is not subject to the Rust type system, so it can
dereference a pointer out-of-bound to a Rust function
pointer and make it point to an attacker chosen gadget. 56

5. Since Rust does not deploy a Shadow Stack due to its
memory safety, C/C++ can corrupt returns of previously
called Rust functions that will never be checked. 57

6. Sample code to illustrate how CLA can circumvent the Rust
type system to cause a OOB error. 58

7. Sample code to illustrate how CLA can coerce Rust into
causing a UaF error. 59

8. Sample code to show how CLA can corrupt a Rust function
pointer to execute a weird machine and circumvent CFI. 60

9. Example of C/C++ using an arbitrary write to corrupt the
size of Rust vector. 62

10. Sample code to illustrate how CLA can corrupt even data
intended to cross the FFI boundary. 65

11. Stacked bar plots to breakdown different types of statistics
found in Table 3. Y-axis is logarithmic. 71

12. The Cumulative Distribution Function (CDF) of each CLA
building block metric. 72

15

Figure Page

13. Possible memory accesses in Rust-C++ applications 81

14. Protections on memory accesses 82

15. Pseudo-Pointers restricts all accesses by default. 84

16. In our design, C/C++ uses pseudo-pointers (e.g., id(p)) to
request that Rust dereference Rust memory. 86

17. Transforming an example C++ function to use pseudo-pointers. 93

18. Pseudo-Pointer micro-benchmarks 94

19. Manipulative Interference Attacks (MIA) leverage a corrupt,
low-criticality component to influence a higher priority
component to cause interference on its behalf. 100

20. Mixed Criticality Scheduling used on seL4-MCS for Microkit
offers better system utilization, but still cannot prevent MIA. 104

21. Domain Scheduling used on seL4 for the DARPA CASE
program leads to complex IPC issues and ultimately
instances of MIA. 106

22. Legend used throughout attack examples. 110

23. FIFO Endpoint Flood Interference example schedule. 110

24. Priority Ceiling Processing Interference example schedule. 112

25. Budget Drain Interference example schedule. 114

26. Endpoint Queue Sorting Attack example schedule. 117

27. Replenishment Queue Sorting Attack example schedule. 119

28. Replenishment Wakeup Processing Attack example schedule. 121

29. HPI from the traditional IPC interference issues with
different numbers of threads and quantities of work for
each request. 124

30. HPI from the Thundering Herd attacks with a linked-list
kernel data structure. 125

31. HPI from the Thundering Herd attacks with a red-black
tree kernel data structure. 126

16

Figure Page

32. Sample schedulability graphs. All distributions uniformly
distributed. Medium per-task utilizations in [0.1, 0.4]. 129

33. We breakdown a system into three hierarchical
views to a facilitate a practical search for
Manipulative Interference Attacks (MIA) in which we limit
the overhead of each of our analysis components to only one
system view and combine their results. 138

34. Our analysis first identifies cycles that can be manipulated
and influenced, second automatically generates a model to
verify LTL properties related to MIA, and third triages the
identified failures by those that are triggered by components
with weak code reuse protection. 139

35. Cumulative Distribution Function (CDF) of our MIA LLVM
analysis compared to the baseline LLVM benchmark test-suite. 143

36. Influence analysis leads to large processing times, but
triggerable analysis is more performant and can still cause MIA. 144

37. LTL analysis is exponential with respect to the number of
protection domains and the number of clients to a IPC server. 145

1. Sample code to illustrate how CLA can circumvent Go to
cause a OOB error. 149

2. Sample code to illustrate how CLA can coerce Go into
causing a UaF error. 150

3. Sample code to show how CLA can corrupt a Go function
pointer to execute a weird machine and circumvent CFI. 150

4. Example of C/C++ using an arbitrary write to corrupt size
of a Go slice. 151

5. Sample code to illustrate how CLA can corrupt even data
intended to cross the FFI boundary. 151

17

LIST OF TABLES

Table Page

1. CLA Variants using Revenant Vulnerabilities 55

2. CLA Variants using Multi-Language-Specific Vulnerabilities 61

3. The prevalence of CLA building blocks. The number is
bold is the total number of each item in the binary. (X, Y)
represents the breakdown of the counts where X is the
fraction of the total items the specific item accounts for,
and Y is the fraction of those that come from the specific
language. For example, there are 12,118 transfer points
in Rust that constitute 3.70% of all call sites in Rust, and
5.32% of the transfer points in the entire binary come from Rust. 69

4. Heavy hitter functions in Firefox. 73

18

CHAPTER I

INTRODUCTION

To begin, this dissertation outlines the motivation for spatial and temporal

safety of embedded, Cyber-Physical Systems (CPS), as well as the need for spatial

and temporal isolation of Multi-Language Applications (MLA) in this setting.

Moreover, this section provides an overview of the remainder of this dissertation,

that describes the spatial and temporal safety issues that can arise specifically due

to MLA, as well as the proposed defense methodologies to provide the needed

cyber-resilience for MLA on a CPS system. Finally, this section organizes the

collective contributions of this dissertation.

1.1 Motivation

While embedded systems traditionally must overcome strict size, weight,

and power (SWaP) constraints, more recently, these systems have also begun to

instate cybersecurity requirements [156] to protect the confidentiality, integrity,

and availability (i.e., the CIA triad [23]) of the system. In particular, some

embedded systems, such as Cyber-Physical Systems (CPS), interface with the

physical world using hard real-time (HRT) tasks where an unexpected increase

in execution latency can cause deadline misses that can have catastrophic physical

consequences. Without cybersecurity protection, a compromised component in the

system could maliciously extract sensitive sensor data (confidentiality), modify

actuation commands (integrity), or trigger execution delay (availability) to cause a

catastrophic failure.

Unfortunately, malicious actors can compromise software components within

a system. For instance, memory safety vulnerabilities consistently pervade software

[57, 171], with which attackers can launch code-reuse attacks where the attacker

19

stitches together gadgets of code found within the instruction set in an unintended

execution order to achieve arbitrarily malicious execution from the compromised

software component. In fact, malicious actors continue to identify new, advanced

code-reuse attacks that can circumvent modern defenses [205, 71, 228]. For

example, popular defenses to code-reuse attacks, such as control-flow integrity

[14, 207], address space randomization [31, 32, 111, 28, 112], run-time monitoring

[160, 54], and stack protection [56, 60, 48, 100, 103], all have been shown to be

insufficient against a modern attacker [45, 76, 78, 186, 193, 91, 75]. Moreover,

recent data-only attacks can achieve arbitrary execution without modifying

the control flow of a program [51, 101, 106]. While memory-safe programming

languages have the potential to mitigate the heart of code-reuse attacks (i.e.,

memory corruption) [16, 63], their practical adoption into large and prevalent

legacy code bases requires incremental updates, which has been shown to be an

ineffective strategy against code-reuse attacks [143, 158]. Lastly, software supply

chain attacks, such as the SolarWinds [62], NetPetya [61], or the recent backdoor

found in the widely used compression utility, xz Utils [178], can corrupt the code

provided by the software vendor which can also lead to compromised software

components. Therefore, proper cybersecurity risk management for an embedded

system must assume that a compromised software component may exist and could

execute arbitrary malicious behavior in an attempt to trigger a catastrophic failure

in the system.

Component isolation is a defensive technique that can potentially

deliver the required cyber resilience against compromised software components.

With component isolation, each logical software module is placed into its own

compartment, often with the intention of maintaining spatial isolation between

20

components. Namely, a compromised component cannot directly read or modify

the memory associated with another compartment (which helps protect the

confidentiality and integrity of the system). The compartment boundaries may

be manually defined [94, 141], or even automatically derived [133, 58, 176, 136].

Moreover, these boundaries can be enforced with process isolation [40, 34, 152],

additional software checks [216, 74, 150, 229, 187], special hardware primitives

[231, 52, 161, 211, 98, 183, 174, 113, 141, 68, 222, 142], or constructs found in the

programming language [230, 126, 37, 153, 88]—each with different trade-offs.

However, embedded systems with hard real-time (HRT) tasks also require

that the compartments provide temporal isolation in order to guarantee tasks

can meet their strict deadline requirements (which helps protect the availability

of the system). In particular, the execution context of each component must be

separate to prevent priority interference on highly critical components in the

system. Typically, thread separation realizes the isolation of execution contexts,

but other designs without an operating system have also been proposed [73, 25].

One popular system design to provide both spatial and temporal isolation is

a µ-kernel [130]. Unlike a monolithic OS, such as Linux, a µ-kernel reduces overall

system privilege by deploying most OS functionality within isolated, userspace

protection domains. The majority of the OS instead operates as a “personality”

with lower privilege on top of the core kernel [50, 84, 124, 107]. Moreover, a

µ-kernel can dictate the allowed memory access of defined protection domains

and schedule threads based on priority and execution budget. In particular,

the delicate balance between Inter-Process Communication (IPC) efficiency

and temporal isolation on µ-kernels has motivated over five decades of research

[96, 155, 200, 191, 129, 38, 72]. For example, seL4 [119] is a capability-based

21

µ-kernel [67, 194, 87] that has seen extensive adoption in real-world systems

[213, 29, 97] due to its unique and comprehensive guarantees of formal verification

[118]. Namely, seL4 has formally proven its functional correctness (i.e., seL4

correctly implements its specification [190]), its integrity and information flow

security (i.e., seL4 has no spatial side channels [189, 147]), and offers high

assurance timing bounds and modern mixed-criticality scheduling mechanisms

[188, 137].

Unfortunately, real-time schedulability analysis often only adopts a semi-

honest threat model, in which each thread is assumed to execute from only a

well-defined set of actions. However, given the threat and prevalence of code-

reuse attacks, a malicious threat model must be considered where a thread can

execute potentially arbitrary behavior. In fact, recent research demonstrates that

low criticality, isolated components can sometimes trigger large execution times

elsewhere in the system [164, 127, 87, 144].

1.2 Dissertation Overview

In my dissertation, I plan to analyze the spatial and temporal safety of

Multi-Language Applications (MLA) on an embedded, cyber-physical system.

In many systems, the incremental development of parts of the application in the

safe programming language is performed to ‘enhance’ its security. For example,

in Firefox, the Servo CSS style calculation [12], the Dogear bookmark merger [6],

the MP4 metadata parser [9], and the neqo QUIC implementation [10] are all

implemented in Rust, while many other parts of Firefox are in C and C++, among

other languages. However, because the memory-unsafe languages in an MLA offer

an entry point for an attacker, the system as a whole must adopt cyber-resilience

to prevent an attacker from spreading throughout the system and causing a critical

22

system failure. Therefore, this dissertation will study this new paradigm of MLA,

in which it will identify issues with spatial and temporal safety in this setting, and

propose frameworks to ensure spatial and temporal isolation between potentially

compromised components.

1.2.1 Cross-Language Attacks (CLA). First, in order to study

the spatial safety of MLA, I will introduce a new type of code-reuse attack called

Cross-Language Attacks (CLA). In this attack, an attacker can leverage an

incompatible set of assumptions made by various languages where typical control-

flow hijacking is prevented by each language individually. In particular, I will

build a model of how various runtime exploit mitigation checks and language

safety checks attempt to break different stages of the code-reuse attack chain.

With this model, I will demonstrate that these differences create an incompatible

set of assumptions on each side such that an attacker can maneuver between

the languages in a way that allows the exploit to succeed without violating the

safety checks on either side. Namely, the introduction of a safe language creates

a conflicting set of assumptions in which CLA results in control-flow hijacks that

are otherwise prevented on each language individually. These findings illustrate

that incremental deployment of safe languages, if not done with extreme care,

can indeed be detrimental to security. Interested readers can find a series of

Cross-Language Attacks (CLA) attack examples online1. Chapter IV covers this

topic, and was previously published in Mergendahl, S., Burow, N., & Okhravi, H.

(2022). Cross-Language Attacks. Network and Distributed System Security (NDSS)

Symposium. with myself and the help of Nathan Burow and Hamed Okhravi as

authors.

1https://github.com/mit-ll/Cross-Language-Attacks/

23

1.2.2 Pseudo-Pointers. In order to restore spatial safety in MLA,

this dissertation will then describe a defense methodology to mitigate Cross-

Language Attacks (CLA). In practice, CLA arises for two reasons. First, when

memory-safe and memory-unsafe languages share an address space, with no

abstraction or isolation between them at runtime, an arbitrary-write vulnerability

in an unsafe language can alter memory that notionally belongs to the safe

language. Secondly, strict isolation between a safe and unsafe language is

challenging. Because the different programming languages reside in the same

application, the two languages must inevitably interact, often through a shared

pointer to memory. This shared pointer provides another opportunity for unsafe

code to cause CLA. Correspondingly, there are two aspects to the proposed

defense methodology to preserve the memory and type safety guarantees of a safe

language in Multi-Language Applications (MLA). First, the system must allocate

heap memory in a language-aware manner in which an unsafe language will by

default, not receive access to the safe language’s heap. Additionally, stack memory

should be isolated between languages, potentially acheived with thead separation.

This memory isolation by-default prevents unintended interactions between the

languages, but when interactions exist through a shared pointer, the second

aspect of the proposed defense methodology will introduce Pseudo-Pointers

to secure the intended interactions between the languages. Pseudo-Pointers are

implemented as an LLVM compile-time sanitizer that replaces raw memory pointers

passed across the language boundary with identifiers to memory objects, and turns

dereferences of such pointers into Inter-Process Communication (IPC) back to the

other language’s thread with the object ID and requested operation. Interested

24

readers can find an implementation of Pseudo-Pointers online2. Chapter V covers

this topic, and was previously published in Rivera, E., Mergendahl, S., Shrobe, H.,

Okhravi, H., & Burow, N. (2021, December). Keeping safe rust safe with galeed.

In Proceedings of the 37th Annual Computer Security Applications Conference

(ACSAC),(pp. 824-836). with myself and the help of Elijah Rivera, Howard

Shrobe, Hamed Okhravi, and Nathan Burow as authors. Elijah Rivera was the

primary author of this work.

1.2.3 Manipulative Interference Attacks (MIA). Next, in order

to study the spatial safety of MLA, I plan to introduce a new type of Denial-of-

Service (DoS) attack called Manipulative Interference Attacks (MIA). While

thread isolation separates the memory of the two languages, and further, provides

the basis for temporal isolation of execution context, intended interactions between

languages require Inter-Process Communication (IPC). If not analyzed carefully,

IPC can disrupt the temporal isolation of the system—critical to embedded,

cyber-physical systems. In particular, while DoS attacks on inter-component

messaging are not new [131, 195], MIA defines a novel type of attack in which a

compromised component manipulates another component into delaying a third,

victim component. In particular, an untrusted, malicious component creates

unexpectedly large amounts of processing for a trusted, high-priority component in

the system. Because the trusted component executes on behalf of the compromised

component, this higher-priority component may unknowingly delay a co-resident

victim task. When the victim task is a hard real-time task, MIA can cause

devastating, critical system failures. Chapter VI covers this topic, and is currently

unpublished, but submitted in Mergendahl, S., Fickas, S., Norris, B., & Skowyra,

2https://github.com/mit-ll/galeed/

25

R. (2024, May). Manipulative Interference Attacks. In 2024 ACM Conference on

Computer and Communications Security (CCS),(In Submission). with myself and

the help of Stephen Fickas, Boyana Norris, and Richard Skowyra as authors.

1.2.4 Thundering Herd Attacks (THA). Additionally, I will

introduce an advanced form of Manipulative Interference called Thundering

Herd Attacks (THA). In particular, these attacks target the synchronous IPC

and execution budget management mechanisms of an OS kernel (i.e., the attack

manipulates specifically the kernel to trigger long processing times). In the classical

Thundering Herd problem [180], many threads waiting on some event are woken

up but only one is actually able to proceed, causing the other threads to consume

resources before blocking again. Similarly, in our Thundering Herd Attacks (THA),

a large number of malicious application threads methodically use IPC facilities and

carefully consume budget in a manner that causes kernel execution commensurate

with the number of threads. Namely, the mechanisms added to ostensibly improve

temporal isolation inadvertently enable this class of attacks. Because most kernels

employ non-preemptive execution to control concurrency, when the kernel execution

caused by THA runs non-preemptively, long stretches of non-preemptive execution

interfere with and delay the activation of high-priority threads. This can further

threaten a high-priority thread’s ability to meet deadlines. This introduces what

I call the System Coordination Dilemma. Either the system deploys without

kernel-based temporal isolation mechanisms, and suffers from traditional temporal

interference, or the system deploys with the kernel-based defenses, and potentially

suffers from Thundering Herd Attacks (THA). Chapter VII covers this topic, and

was previously published in Mergendahl, S., Jero, S., Ward, B. C., Furgala, J.,

Parmer, G., & Skowyra, R. (2022, May). The thundering herd: Amplifying kernel

26

interference to attack response times. In 2022 IEEE 28th Real-Time and Embedded

Technology and Applications Symposium (RTAS),(pp. 95-107). with myself and the

help of Samuel Jero, Bryan C. Ward, Juliana Furgala, Gabriel Parmer, and Richard

Skowyra as authors.

1.2.5 MIA Discovery. Because the types of interactions that lead

to MIA (and subsequently THA) are potentially complex and easily overlooked,

I plan to present an analysis framework to automatically identify instances of

MIA in a configured system. Specifically, I will propose a hybrid approach that

first leverages static analysis to identify software components with influenceable

execution times, and second, automatically generates a system-wide model to

determine which compromised protection domains can manipulate the influenceable

components and trigger Manipulative Interference Attacks (MIA). I implement

the static analysis as an LLVM compiler pass and leverage the Labeled Transition

Set Analyzer (LTSA)—a formal system model capable of goal-conflict analysis

using Linear Temporal Logic (LTL)—to sort through complex system behavior

and identify any interactions that lead to MIA. However, because LTL analysis

typically requires expensive, technical expertise, I will additionally provide a tool,

called FSPGen, that automatically generates the required, formal system model

using widely available system build artifacts. In this way, the hybrid approach can

avoid typical pitfalls of static and LTL analysis, and offer a practical compile-time

tool for mixed-criticality systems. Interested readers can find MIA attack examples

and the analysis tools available online3. Chapter VIII covers this topic, and is

currently unpublished, but submitted in Mergendahl, S., Fickas, S., Norris, B.,

& Skowyra, R. (2024, May). Manipulative Interference Attacks. In 2024 ACM

3https://github.com/smergendahl/manipulative-interference-attacks

27

Conference on Computer and Communications Security (CCS),(In Submission).

with myself and the help of Stephen Fickas, Boyana Norris, and Richard Skowyra

as authors.

Throughout this dissertation, the new attacks and proposed defense

frameworks are instantiated on the seL4 µ-kernel, but the problem is fundamental

to mixed-criticality, multi-language, co-resident execution contexts. Moreover,

the presented attack examples will focus on Multi-Language Applications (MLA)

that mix Rust with C/C++ for simplicity of exposition, but generalize to Go

and other MLA combinations. In particular, Cross-Language Attacks (CLA) and

Manipulative Interference Attacks (MIA)—and their corresponding defense

frameworks—are extensible to any other system designs that attempt to spatially

and temporally isolate co-resident system components.

1.3 Contributions

In particular, my dissertation will make several contributions:

– It studies the spatial and temporal safety of Multi-Language Applications

(MLA). In particular, it develops a model to reason about the stages of an

exploit broken by each type of security check and illustrates that different

languages have incompatible defense assumptions.

– It introduces a new type of code-reuse attack called Cross-Language

Attacks (CLA) and illustrates that by leveraging conflicting defense

assumptions, an attacker can maneuver between languages in a way that

allows control-flow hijacking where none is possible in individual languages

alone.

28

– It automatically analyzes Firefox, a large, popular, and open source code

base to highlight the prevalence of opportunities for Cross-Language Attacks

(CLA). The findings illustrate that incremental deployment of safe languages,

if not done with proper care, can indeed be detrimental to security.

– It organizes spacial safety issues that lead to CLA in Multi-Language

Applications (MLA) into unintended and intended interactions.

– It proposes a runtime defense methodology for isolating and protecting the

Rust heap from unsafe code with a novel sanitizer to verify the security of

intended interactions between safe Rust and unsafe code called Pseudo-

Pointers.

– It benchmarks these defense techniques to evaluate their security and

performance impact, finding that Multi-Language Applications (MLA) can

achieve spacial isolation between languages with less than 1% overhead.

– It introduces a new type of availability attack called

Manipulative Interference Attacks (MIA), that can cause temporal

safety violations and deadline misses in spatially isolated, embedded system.

– It leverages the recent DARPA Cyber Assured Systems Engineering (CASE)

program as a case study into the feasibility of MIA for real-world systems.

– It introduces a special form of MIA called Thundering Herd Attacks

(THA) in which an attacker can control non-preemptive kernel execution

to cause large temporal safety violations.

29

– It quantifies the impact of three instances of Thundering Herd Attacks

(THA) in seL4-MCS that target the improved temporal facilities for properly

prioritizing IPC and implementing budgets.

– It identifies two mitigations to Thundering Herd Attacks (THA),

implementing and empirically characterizing the performance of one, and

qualitatively examining the other.

– It proposes an admission-control test that determines if a system is

schedulable, despite the presence of Manipulative Interference Attacks (MIA)

or Thundering Herd Attacks (THA).

– It creates an analysis framework to automatically detect instances of MIA at

compilation time with a model generation tool called FSPGen.

– It evaluates our analysis framework and demonstrate that a risk analysis of

MIA is indeed efficient enough for compilation time analysis.

30

CHAPTER II

BACKGROUND

Memory corruption attacks and research into real-time schedulability have

both had extensive amounts of published literature. Therefore, in this section, we

provide an introductory background that focuses on topics required to understand

the rest of this report. For more information, interested readers should refer to

surveys and systematization of knowledge papers in these areas for a more thorough

discussion on memory corruption attacks and defenses [205, 197, 44, 199], µ-kernels

[55, 72], and mixed-criticality scheduling [41, 38].

2.1 Code Reuse Attacks

Memory corruption attacks have plagued computer systems for decades

[66]. Early defense strategies such as Data Execution Prevention (DEP) [21] helped

mitigate code injection attacks [157], but attacks evolved into more advanced code

reuse techniques such as return-to-libc [209] and return-oriented programming

(ROP) [192, 185]. In fact, this “Eternal War” between attack and defense research

has continued over the last few decades with modern attackers continuously

discovering new ways to circumvent state-of-the-art defenses [205]. For example,

Control Flow Integrity (CFI) [14, 207] and stack defenses, such as stack canaries

[60], shadow stacks [56], and SafeStack [48, 103], are popular run-time mitigation

mechanisms against code reuse attacks, but these defenses have been shown to only

provide partial protection at best. These exploit mitigations enforce policies loose

enough to allow an attacker to mount a successful attack without violating their

policy [45, 76, 78]. In particular, in order for an enforcement policy to mitigate

non-control, data-only attacks [51, 101, 106], it would need to be as fine-grained

as Data Flow Isolation (DFI) [47] which is often considered too expensive for real-

31

world deployment. Similarly, randomization techniques [31, 32, 111, 28, 112] are

another type of run-time exploit mitigation, but can suffer from various forms of

information-leakage attacks that limit their effectiveness [193, 186].

Because memory corruption is at the heart of code reuse attacks, a recent

trend is to move away from memory-unsafe programming languages like C/C++

that delegate security checks to the developer, and toward safer programming

languages, such as Rust or Go [140, 145]. Similar to sanitizers [199], these

languages have special checks to prevent spatial (e.g., buffer overflows) and

temporal (e.g., use-after-free) memory corruption bugs that attackers exploit to

launch code reuse attacks [227, 117, 27, 110].

2.2 Rust

Rust [140] is a multi-paradigm programming language that provides

strong performance and safety properties. Rust has a C-like syntax, but a strong

type system combined with compile-time and runtime checks to prevent large

classes of bugs, such as memory corruption and concurrency bugs. Rust’s small

language runtime makes it appropriate for systems programming, which has

resulted in multiple operating systems and low-level code being developed using

it [90, 18, 208, 92, 11, 8].

Rust has a strong type system and enforces both spatial and temporal

memory safety [116]. For spatial safety, Rust has a two pronged approach. For

statically-sized objects, it performs a compile-time size check to avoid out-of-bound

accesses. For dynamically-sized objects or for static objects with unknown indices

(e.g., an array with a variable index), Rust inserts proper instructions in the binary

to perform bounds checking at runtime. Rust also has a strong type system that

prevents raw pointers and unsafe casting.

32

For temporal memory safety, Rust’s solution is more innovative and at the

same time restrictive. Rust has a notion of ownership. Each value in Rust has

a variable that is its owner. Only one owner of a value can exist at a time and

when the owner goes out of scope, the value is destroyed. To allow values to be

passed between different parts of a code, Rust uses borrowing, which is a temporary

transfer of ownership. As a generalization of this principle, Rust only allows one

‘mutable reference’ (i.e., ‘pointer’ in other languages) or multiple immutable

references to exist to an object, but not both. The advantage of this design is that

when a value is destroyed, Rust can easily nullify any reference to it without the

need for heavy-weight garbage collection. This, in addition to other factors, make

Rust appropriate for system programming. By the same token, this rule is also

too restrictive at times. For example, in a doubly-linked list, there needs to be two

mutable references to each value at a time.

Rust’s mechanism for breaking out of these rules is the unsafe keyword.

Code enclosed in an unsafe block (herein simply referred to as ‘unsafe Rust’)

can dereference raw pointers and avoid ownership rules. Unsafe Rust is necessary

when interacting with low-level devices (e.g., writing to a memory-mapped I/O

device). It can also be used to develop data structures that are internally unsafe

(e.g., doubly-linked lists), but only expose safe interfaces in what is known as

interior mutability [140]. Many such data structures are formally shown to be

indeed safe [109]. The dangers of unsafe Rust have been acknowledged in the

literature [132, 122], and independently investigated [26]. Here, we primarily focus

on novel vulnerabilities from mixing safe Rust with unsafe languages.

Rust allows interactions with other languages through its foreign function

interface (FFI). FFI is inherently unsafe in Rust, and allows the exchange of

33

arbitrary data, including pointers, across the language boundary. FFI allows

the exchange of arbitrary data (including raw pointers) between Rust and other

languages, most notably C. Rust has additional rules to make FFI less dangerous;

for example, dynamically-sized types cannot be used for FFI. Having said that,

the boundary between Rust and a language like C is, by its very nature, unsafe.

Indeed, a call through Rust FFI requires the unsafe keyword.

We refer to transfers of control flow between languages in a MLA through

FFI as intended interactions. Unintended interactions are also possible as

applications within the MLA share an address space. While intended interactions

have been the subject of some prior work [152], and similarly, some previous

work encourages sandboxing safe language memory from unsafe languages [175],

we believe the relationship between intended/unintended interactions and

the preservation of language threat models in MLA have to date been under

investigated by the community.

2.3 Go

Go [145] is a multi-paradigm programming language that is statically-typed.

It provides spatial safety primarily through runtime bounds checks. It also performs

various optimizations at compile-time to eliminate unnecessary bounds checks such

as redundant checks inside a loop.

In order to provide temporal safety, Go deploys garbage collection (GC). Go

does not have any limitation on the number or usage of pointers, which allows the

development of complex data structures. On the other hand, the down side of GC

is latency and CPU utilization, which can be substantial (∼25% CPU utilization)

depending on the code [173]. This also makes Go’s language runtime significantly

34

more complex than that of Rust. By the same token, Go binaries are generally

larger than those of Rust.

Similar to Rust, Go can also interact with other languages. For example,

CGo [4] allows calling C code from Go. This includes passing Go pointers to C,

which can indeed become dangling [179]. Dangerously, Go also hides the inclusion

of C code during compilation without warning.

2.4 Component Isolation

Due to the prevalence of memory corruption [57, 171] and the

aforementioned “Eternal War” in memory [205], another strategy to limit an

attacker is through component isolation. Rather than prevent the attack, this

defense philosophy aims to contain the spread of an attack to a well-defined

boundary and instead, provide cyber resilience to the attack. In particular, security

research often aims to achieve spatial isolation in which the attacker cannot read or

write to memory associated with another component. Historically, these boundaries

are manually defined [94, 141], but more recently, ways to automatically define

component boundaries have also been proposed [133, 58, 176, 136].

Additionally, there are multiple strategies to enforce the defined boundaries

at run-time each with different trade-offs. For example, a common strategy to

provide isolation among cooperating software modules is to place each software

component in its own address space and let the operating system catch malicious

memory accesses [40, 34, 152]. With address space separation (i.e., process

isolation), an operating system can prevent an untrusted module from reading

or writing application data associated with a different software component. In

particular, both the heap and stack are isolated, and the software requires a context

switch to interact with another component. However, when software modules are

35

closely intertwined (e.g., they share a global state), process isolation can become

difficult to apply to legacy code bases. Instead, another popular strategy is to

insert additional software run-time checks that verify memory access is correct

[216, 74, 150, 229, 187]. This allows software components to remain in the same

address space, but the compiler-inserted checks can sometimes incur prohibitive

run-time costs.

Recently, special hardware primitives have been proposed to reduce run-time

cost, as software can rely on the hardware to perform the needed checks at a lower

cost [68]. For example, Intel Memory Protection Keys [105] have been shown to

offer an intra-process isolation primitive [161, 211, 98] which is especially helpful to

help prevent corruption from spreading in multi-language applications [174, 113].

Similarly, intra-process isolation primitives have been proposed for ARM-32 [231,

52], ARM-64 [141], and RISC-V [183] architectures.

As the lowest cost option, constructs found in the programming language

can also act as an isolation primitive [230, 88]. In fact, there have been a number of

proposals to pursue this strategy within an operating system [126, 37, 153]. While

language-defined boundaries offer strong compile-time guarantees, when a software

component itself contains memory corruption, it can still spread at run-time.

2.5 Temporal Interference

Real-time systems require system responsiveness, such that too slow of a

response (i.e., a missed deadline) may lead to critical system failure. In order

to maintain these strong temporal guarantees for tasks—or the schedulable

entities of the system—software separation must also provide temporal isolation

to limit the impact of malicious software. In particular, a real-time system will

often differentiate tasks based on priority where higher-priority tasks should take

36

precedence over lower-priority tasks. Priority interference occurs if a low-priority

task executes, while a higher-priority task is ready to execute. Namely, hard real-

time (HRT) tasks should be able to meet their real-time requirements even in the

presence of high demands placed on other aspects of the system.

Systems must often constrain the execution of low-assurance code to prevent

it from unduly interfering with other functionalities. Budget-driven servers1

are a traditional mechanism for limiting execution interference over time. For

example, deferrable servers [200] limit execution over fixed windows of time. A

thread’s budget has an initial value, and the budget is depleted corresponding to

a thread’s execution. When budget is exhausted, the thread is suspended awaiting

replenishment. A replenishment policy determines when the budget is increased for

a thread. For example, deferrable servers replenish up to the initial budget value

periodically.

However, isolated components may request services from other isolated

components through synchronous Inter-Process Communication (IPC) [129] which

can complicate budget-management policy. If not provisioned carefully, IPC

contention between multiple clients may impact the system’s response times [195].

For example, when a server computes on behalf of a client, it can deplete its own

budget or inherit budget from the client [202, 137]. The former can lead to budget

attacks [131], in which a client attempts to drain a server’s budget to prevent other

clients from accessing the service. The latter requires a policy for when the client

provides an insufficient budget which can complete the execution of the server’s

functionality. Additionally, IPC should process clients in priority order [137], and

servers may leverage priority inheritance [202, 201] from clients. If the system does

1“Servers” here refers to the logic associated with the budget. To disambiguate, we’ll refer
explicitly to budgets and budget management.

37

not adopt priority inheritance, the system designer must carefully assign priorities

to a server as the ceiling of each potential client where a server should never block

[99]. Such a policy represents the Immediate Priority Ceiling Protocol (I-PCP)

[191].

A relatively new type of temporal interference has been shown to occur

when a system service unexpectedly requires large amounts of processing on behalf

of a client. For example, a malicious component may carefully craft many timers

that all expire at the same time, and if not carefully processed, the higher-priority

server that processes these timers can delay other tasks [164]. Similarly, previous

research identified that even kernel processing of execution budgets [144], system

calls from another core [87], or virtualized network traffic [127] can delay tasks,

even when the system is deemed schedulable. While these examples of interference

are anecdotal, complex, and previously manually identified using system expertise,

they indicate a larger issue that may pervade many different real-time systems.

2.6 µ-kernels

µ-kernels move the majority of Operating System (OS) functionality into

user-level processes as servers. Unlike a monolithic OS design, a µ-kernel reduces

overall system privilege because the majority of OS services no longer need to

reside in highly privileged kernel space. Moreover, the OS can deploy as a patina

of userspace servers that follows the principle of least privilege (PoLP) for even

more security [107].

Typically, a userspace application will deploy on a µ-kernel within process-

isolated boundaries above the OS servers. Correspondingly, when software needs

the services provided by another server (either an OS server or other isolated

application compartments), the software will make a request using IPC. Because

38

of the context switch overhead of process isolation, µ-kernels have put significant

focus IPC optimization. In particular, L4 µ-kernel variants implement IPC as

synchronous rendezvous between threads [129, 130, 182, 72]. Synchronous IPC

features a control flow that mimics a function call such that the client thread blocks

until the server thread returns.

2.7 seL4

One L4 µ-kernel variant that has seen significant adoption is seL4 [119]. Its

popularity stems from its comprehensive formal guarantees of correctness [118].

In particular, seL4 has formally proven that its implementation correctly derives

its specification [190]. In fact, this proof extends to the binary implementation,

which means that seL4 is free of software bugs on multiple different architectures

(i.e., ARM-32, ARM-64, x86 64, and RISC-V). Moreover, seL4 has additional

proofs for integrity and information flow [189, 147], as well as high assurance timing

bounds [188]. seL4 has made several design decisions to facilitate such a complete

proof. For example, kernel execution is not concurrent nor parallel such that kernel

logic always executes a single sequential flow. On multicore systems, this forces

the kernel to run within a lock (i.e., the big kernel lock [166]). Because default

seL4 does not provide budget mechanisms to rate-limit component execution, seL4

offers extensions to the kernel (which we refer to as seL4-MCS) that provide mixed-

criticality systems additional flexibility for temporal isolation [137]. Namely, IPC

servers on seL4-MCS can inherit budget (but not priority) and seL4-MCS priority

sorts IPC queues based on client priority.

seL4 has a number of design decisions that represent trade-offs between

IPC efficiency, predictability, and the functional verifiability of the kernel code-

base [72]. One important design consideration is that kernel execution is not

39

concurrent nor parallel (i.e., a single sequential execution flow executes kernel

logic at a time). This makes functional verification possible and in practice, means

that the kernel executes with interrupts disabled (i.e., it is non-preemptible). On

multicore systems, it executes within a lock (i.e., a big kernel lock). This lock

is a demonstrated attack vector [87] whereby computation on one core can delay

processing on another core.

There is a tension that exists between the mutually exclusive execution of

the kernel and kernel operations that execute for a potentially unbounded number

of iterations [35] (e.g., revocation of capabilities). seL4 uses preemption points to

solve this, whereby kernel execution will back out of a loop after a fixed number of

iterations and process any pending interrupts. The thread resumes the loop where

it left off. This effectively adds controlled and explicit kernel preemptions.

Clients that use IPC to request service from a server awaiting IPC are

queued. The waiting server may be currently executing a request or blocked

on another operation. seL4’s default policy uses FIFO queueing of these client

threads. This FIFO order does not represent a priority-sorted order, but it does

guarantee client progress. Each client must only wait for a fixed number of threads

before it receives service. Servers do not inherit client priorities. Therefore the

system designer must carefully assign priorities at the ceiling of the clients should

predictable service be required. Such a policy represents the Immediate Priority

Ceiling Protocol (I-PCP) [191].

Default seL4 does not provide rate-limiting policies. However, the seL4

MCS extensions (henceforth referred to as seL4-MCS) [137] that are intended to

replace the existing seL4 mechanisms include mechanisms and policies for budget

management. Importantly, servers can be passive, inheriting the budget (though

40

not the priority) of client threads upon IPC. These budgets are implemented

as sporadic servers. If a budget is depleted while executing a server, a temporal

exception activates a policy server that can decide to provide enough budget to

finish server execution, or to take other remedial action (e.g., extending the budget

to include the rest of the server’s execution).

Additionally, seL4-MCS uses priority-sorted IPC wait queues. This has an

impact on IPC performance as it converts a simple constant-time operation to

enqueue a thread into an iterative operation. The priority-sorted wait queues use

simple linked lists, resulting in O(n) complexity.

seL4’s capability system provides the means to create and control threads.

All memory in the system is initially untyped and has to be retyped into

capabilities for use by the system, including as new threads, known as TCB

capabilities. To be usable, a thread will probably need an IPC buffer and stack,

which can also be created from untyped memory. Hence, untyped memory is

required to create new threads in seL4.

Using the previously mentioned TCB capability, a new thread can be started.

However, to adjust the priority of this thread, another TCB capability must be used.

This second TCB capability must have a maximum priority greater or equal to the

desired priority for the new thread. In practice, this means that a thread with

access to untyped memory and its own TCB capability can start more threads of

equal or lesser priority.

seL4-MCS extends the capability system with SchedContext capabilities.

These capabilities describe and track the budget and period of a thread. In seL4-

MCS, a SchedContext capability must be added to each TCB capability in order

for the thread to be runnable. While the SchedContext capability can be created

41

from untyped memory, configuring it requires access to a SchedControl capability

given to the root-task at boot. In practice, any component of a system that starts

new threads must either have a copy of this SchedControl capability or be able to

issue a request to an admission-control server that can populate the SchedContext

budget and period.

2.8 Requirements Engineering

Correct system software relies on a well-formed specification or set of goals

that the program should achieve. In fact, significant research has demonstrated the

benefits of formal, goal-oriented approaches to software development [123, 65, 64].

Goals are prescriptive statements of how the system should behave that can

guide the refinement of a specification and support the derivation of software

operations [19]. However, goals themselves are often initially too ideal and require

refinement [20]. For example, the goal may overly assume the benevolence of

a system component [64]. In particular, goals need inconsistency management

in which the system must identify contradictory low-level requirements [149].

Because inconsistency management is difficult, a weaker form of conflict, called

divergence, for goals has been proposed [212]. Divergence identifies goals that

are not contradictory (i.e., they can be simultaneously satisfied) but can become

inconsistent when certain conditions hold.

One way to represent the divergence of goals is to use Linear Temporal

Logic (LTL) [168]. LTL is a popular formalism that can state the properties of a

reactive system. While a transformational program is a more conventional type of

program that produces a final result at the end of a terminating computation, a

reactive system maintains an ongoing interaction with its environment. A canonical

example of a reactive program is an embedded cyber-physical system. LTL assumes

42

a lineal topology of time where each instant of the system is followed by a unique

future instant. LTL formulas are then evaluated over infinite system traces that

represent system execution [65]. In particular, situations that lead to divergent

goals can be captured formally as LTL assertions called boundary conditions.

Once a conflict (or divergence) is identified, goal-conflict analysis assesses

the likelihood and severity of the inconsistency. Rather than assume the system

designer should manually supply these likelihoods, modern approaches will restrict

to goal divergence and generate probabilistic information on the problem [64].

43

CHAPTER III

THREAT MODEL

In this work, we consider an embedded system implemented in multiple

programming languages. For example, the system may include both memory-unsafe

languages, such as C/C++, and memory-safe languages, such as Rust or Go that

interact using shared pointer references. Additionally, memory safety vulnerabilities

may exist within the memory-unsafe code regions with which an attacker may

attempt to launch a code-reuse attack to execute arbitrarily malicious actions.

Moreover, the system operates with mixed-criticality components in

which component boundaries aim to provide both spatial and temporal isolation.

In particular, the system operates on a µ-kernel that can separate software

components using process (and correspondingly thread) isolation. Namely, each

component resides in its own address space without access to memory within

another component, but with Inter-Process Communication (IPC) primitives

available for components to request service from each other and system calls

to interact with the µ-kernel. Moreover, each component receives a unique

execution context in which the system enforces assigned execution budgets on

each component. However, when desired by a system designer, IPC servers may

initially obtain no execution budget, and instead, inherit budget from clients. We

also assume that execution budgets are correctly provisioned to each component,

such that the system is deemed schedulable when each thread executes from its

well-defined set of actions.

As a mixed-criticality system, some of the application components may

be highly critical (e.g., a vehicle breaking system) and some of the application

components may be less critical (e.g., a vehicle infotainment system). In fact, this

44

is a common way to design a Cyber-Physical System (CPS), as system functionality

must be consolidated in order to meet strict Size, Weight, and Power (SWaP)

constraints.

While the system we study maintains isolation between each component,

we also assume that each isolated component deploys state-of-the-art code reuse

mitigations such as an ideal Control Flow Integrity (CFI) policy [14] and Stack

Canaries [60] or other stack protections. While many embedded systems may

adopt a less-than-ideal CFI policy for performance reasons [207], we show that

Manipulative Interference Attacks (MIA) are still possible even under an ideal

policy in which the control flow graph (CFG) of benign behavior is fully identifiable

(and enforceable) statically.

In this setting, we study how a compromised, low-criticality, low-priority

component contained in its compartment can cause spatial or temporal safety

violations in the system. While the attacker cannot directly modify the highly

critical processes, it seeks to influence them indirectly. In particular, the adversary

may use memory corruption to send maliciously formed IPC messages to other

components. Furthermore, we assume that all the other components in the system

are benign and not compromised.

45

CHAPTER IV

CROSS-LANGUAGE ATTACKS

As seen in Mergendahl, S., Burow, N., & Okhravi, H. (2022). Cross-

Language Attacks. Network and Distributed System Security (NDSS) Symposium.

A new generation of modern, safe programming languages have been

developed that perform security checks natively [116], motivated partly by the

limitations of defenses applied to unsafe languages (like C/C++) [46, 77, 106,

102, 205, 89]. Rust [140] and Go [145] are two such languages that prevent the

introduction of memory corruption bugs by virtue of having a strong type system

and by performing proper compile-time and runtime checks. For example, Rust’s

type system prevents arbitrary casting, performs compile-time ownership checks to

prevent temporal memory safety bugs, and enforces compile-time bounds checks

on static data combined with runtime bounds checks on dynamic data to prevent

spatial memory corruption bugs [140]. As another example, Go has a garbage

collector to provide temporal memory safety [145]. While these languages provide

keywords to ignore the safety checks of the language when necessary (e.g., the

unsafe keyword in Rust is used to interact with low-level hardware devices),

within the confines of the safe code, the applications written in these languages

are considered generally safe. In fact, these languages have been touted as the ‘best

chance’ to develop safe systems [108] and their gradual deployment is underway in

multiple popular applications and code bases. These include, but are not limited to:

Firefox [90], Tor [18], Microsoft Windows operating system [208], Google Fuchsia

OS [92], and multiple flavors of Linux [11, 8] developed in part in Rust, as well as,

Docker [5], Kubernetes [7], CockroachDB [2], and BoltDB [3] developed in part in

46

Go. This has resulted in the deployment of Multi-Language Applications (MLA), in

which two or more languages are used in development.

In this section, we analyze the spatial safety of MLA. Since unsafe languages

without additional protections are trivially vulnerable to memory corruption

attacks, we specifically focus on the case where some protection is applied to the

unsafe side (e.g., CFI for C/C++) and the safe side does not contain unsafe

code. In these cases, the incremental development of parts of the application in

the safe programming language is performed to ‘enhance’ its security. For example,

the Servo CSS style calculation in Firefox [12], Dogear (a bookmark merger for

Sync in Firefox) [6], the MP4 metadata parser in Firefox [9], and the neqo QUIC

implementation in Firefox [10] are all implemented in Rust, while many other parts

of Firefox are in C and C++, among other languages. We build a model of how

various runtime exploit mitigation checks and language safety checks attempt to

break different stages of an exploit. We further illustrate that these checks create

an incompatible set of assumptions on each side. Leveraging these incompatibilities

in the safety checks performed, we show that an attacker can maneuver between

the languages in a way that allows the exploit to succeed without violating the

safety checks on either side. In other words, the introduction of a safe language

creates a conflicting set of assumptions that indeed weakens the security of both

sides. We illustrate that a new vector of attack, Cross-Language Attacks (CLA),

becomes possible in such settings which results in control-flow hijacks that are

otherwise prevented on each language individually.

We study different variants of CLA with concrete code samples based on

the stages of an exploit that are broken by the security checks. Our examples

focus on Rust for simplicity of exposition, but generalize to Go and other language

47

Language 1 (e.g., C)

Language 2 (e.g., Rust)

Exploit PointTransfer PointCorruption Point

Program execution time

Execute Weird
Machine

Execute Rest of
Benign Program

Execution
Start

Memory
Protection

Control-flow
Protection

Figure 1. Cross-Language Attacks (CLA) transfer back and forth between
languages to circumvent deployed defenses.

combinations (see discussion in §4.5.1 and §4.5.2 and our Go code samples in §A).

Moreover, to illustrate the extent of this problem, we perform automated analysis

on Firefox, which we believe is representative of large, commonly-used code bases

and quantitatively assess the conditions that make CLA possible. Additionally, we

make our analysis and concrete code examples available online1.

Our findings illustrate that, incremental deployment of safe languages, if

not done with extreme care, can indeed be detrimental to security. An attacker

can leverage the incompatible set of assumptions made by various languages to

craft CLA where typical control-flow hijacking is prevented by each language

individually.

4.1 CLA Model

We build on existing work [205] presenting high-level threat models for

software security, and extend these models to hardened and Multi-Language

Applications (MLA). In particular, we show that the threat model for a MLA is

the union of the threat models of the constituent languages. In graphical terms,

creating a MLA threat model involves adding edges from each node in the threat

model to a new “language transfer” node. This can lead to MLA being weaker than

their constituent parts due to CLA, a concerning negative synergy.

1https://github.com/mit-ll/Cross-Language-Attacks

48

At a high-level, a CLA is illustrated in Figure 1. The CLA starts its

execution in one language (in this example, Rust). Because of the memory safety

checks in the safe language, corruption is not possible, so the CLA proceeds by

transferring to the unsafe language (in this example, C) for the actual memory

corruption. However, because of the protections applied to the unsafe language

(in this example, CFI), control-flow hijacking is not possible there, so the CLA

transfers back to the safe language to execute the weird machine [196]. The unsafe

language assumes that the hardening (e.g., CFI) prevents the hijacking of control

and the safe language assumes that the initial corruption is not possible, so it does

not check the transfer of control to a weird machine. Consequently, by carefully

maneuvering between the languages, the CLA can succeed in a MLA even when it

is not possible in individual languages separately. We describe the details of such

attack further in the upcoming sections.

In this section, we first discuss the threat models for prevalent programming

languages, focusing on compiled languages. We then present a novel graph-based

analysis of the threat models that demonstrates that MLA have the pair-wise

weaknesses of their constituent languages. The composition of language threat

models is illustrated in Figure 2.

4.1.1 Single-Language Applications (SLA) Threat Models.

Figure 2a illustrates the basic chain of events in a memory corruption based

software attack, and is modeled off C with only DEP [22], Stack Canaries [215],

and ASLR [165] protections (i.e., standard C with no added security). An attacker

steers execution towards a memory corruption, which is used to modify the

application’s memory layout per an attacker’s specifications (i.e., inject gadgets).

These gadgets are then used by the attacker to assume control over the application,

49

Start
Execution

Memory
Corruption

Inject
Gadgets

Control-
Flow Hijack

Data-Only
Attack

Weird
Machine

(a) C threat model

Start
Execution

Memory
Corruption

Inject
Gadgets

Data-Only
Attack

Weird
Machine

(b) C + CFI threat model

Start
Execution

Inject
Gadgets

Control-
Flow Hijack

Data-Only
Attack

Weird
Machine

(c) Rust/Go threat model

Start
Execution

Memory
Corruption

Inject
Gadgets

Data-Only
Attack

Weird
Machine

Inject
Gadgets

Control-
Flow Hijack

Data-Only
Attack

Weird
Machine

Language
Transfer

(d) CLA threat model

Figure 2. Language Threat Models

either directly by overwriting a code pointer in a control-flow hijack or more subtly

and indirectly in DOP [102] attacks. Once the attacker assumes control, they

execute the weird machine [196] that their memory corruption set up, and achieve

their goals. Attacks thus have four essential phases: i) memory corruption, ii)

gadget injection, iii) control-flow assumption, and iv) weird machine execution. To

stop an attack, it is sufficient for a defender to disrupt any of these steps, though in

practice defenses have focused on steps i and iii [205].

50

Figure 2b shows the updated threat model for C with (ideal) CFI [42]

hardening. Note that the “Control-Flow Hijack” node has been deleted, which is

the result of a perfect pointer protection defense (in practice, however, CFI falls

short of this standard [46, 77, 79]). Removing this node forces attackers to rely on

DOP [102] attacks to execute their weird machines, significantly raising the bar for

attackers.

Memory safety, as provided by modern languages such as Rust and Go,

offers a strong defense by removing the “memory corruption” node, see Figure 2c.

Removing the root cause of an attack removes all of the downstream variants, but

experience has shown it must be designed into the language; decades of attempts to

retrofit memory safety into C [205, 89, 199] have essentially resulted in only partial

protection at best.

4.1.2 Multi-Language Applications (MLA) Threat Models.

Given the SLA threat models in Figure 2a, Figure 2b, and Figure 2c, it is

important to correctly compose these underlying threat models for CLA. MLA

introduce a new primitive to the threat model: Language Transfer nodes. Language

transfers occur when an application deliberately interacts with a component in

another language (e.g., through FFI).

Conservatively, each node in the constituent language threat models must

connect to the Language Transfer node, as there is no way of knowing when

language transfers occur in an application. We cannot say, for example, that all

language transfers happen before any possible memory corruption. Consequently,

the threat models for MLA are fully connected and attacks eliminated by hardening

one language may become possible when composing languages.

51

Figure 2d illustrates how SLA threat models compose for a Rust, Figure

2c, and CFI hardened C, Figure 2b, MLA enabling an attack that is not possible

in either component. CFI hardened C applications prevent control-flow hijacking

by validating code pointers before they are used. Rust applications prevent the

same attack by enforcing memory safety. Note, however, that CFI hardened C is

not memory safe, and Rust does validate code pointers before they are used, as it

assumes memory safety. Consequently, an attacker can use a memory corruption in

C and a non-validated indirect call site in Rust to create a control-flow hijacking

attack in a Rust-C MLA.

The fundamental problem here is a mismatch of assumptions in the

individual language constituents of a MLA. MLA have the security of their

weakest constituent language. While we have illustrated the issue here with a

classic control-flow hijacking attack, the problem is much deeper than that. The

weakest link principle holds for any element of an application’s threat model that

varies across languages. For instance, if Rust were to introduce code signing and

validation to mitigate supply-chain attacks and C libraries did not, then a MLA

composed of those two languages would remain completely vulnerable to supply

chain attacks.

The most insidious case of the MLA threat model composition is when both

constituent languages have eliminated a threat, but have done so using different

assumptions. The MLA then undermines both sets of assumptions, resulting

in the combination of two “safe” languages itself being unsafe. Even for the

common scenario of hardening a legacy codebase, such as a C codebase, with a new

component written in a safe programming language, such as Rust, this “hardening”

can actually end up weakening the application’s security.

52

Temporal
Corruption

Spatial
Corruption

Heap
Corruption

Stack
Corruption

Intended
Interaction
Corruption

Unintended
Interaction
Corruption

Non-Control
Data

Modification

Control Data
Modification

Waiting for
Execution of

High-Impact Bug

Set of High
Impact Bugs

Attack execution

Protected by Rust

Protected by hardened C

CFI + Shadow Stack

Memory
Corruption Gadget Injection

Waiting for
Execution of

Gadget

Weird Machine
Execution

Wait for
Execution of

High-Impact bug

Memory
Corruption Gadget Injection

Waiting for
Execution of

Gadget

Weird Machine
Execution

Language
Transfer

Lifetimes + Borrow Checker
+ Dynamic Bounds Checks

Execution
Start

Backward Edge
Corruption

Forward Edge
Corruption

Data-only Attack
(DOP,

BOP, etc.)

Code Reuse
(ROP,

COOP, etc.)

CFI

Shadow Stack

Dynamic Bounds Checks

Lifetimes + Borrow Checker

C Code

Rust Code

1

2 3 4

5

7

9

1 9…

6

8

Figure 3. Our baseline attack variant on a program with Rust (protected by
its lifetimes, borrow checker, and dynamic bounds checks) and C (protected by
stack canaries and CFI) colored over a graphical description of all Cross-Language
Attacks (CLA).

4.1.3 CLA Attack Construction. Given the CLA threat model,

we next discuss more concretely the construction of an end-to-end CLA attack.

Then, in the next section, we focus on components of such attacks that are unique

to the CLA scenario, and introduce new attack primitives. To this end, we next

present a more detailed graphical description of CLA in Figure 3. Each node in the

graph represents a potential step in the attack, with arrows as indication of possible

sequences of steps. A successful attack is a traversal from Execution Start

to Weird Machine Execution. Any such traversal that contains the Language

Transfer node is a CLA.

As in Figure 2d, we encode the defensive guarantees of Rust and CFI

hardened C in Figure 3. Rust’s type system, and in particular its borrow checker,

53

lifetimes, and dynamic bounds checks, provide memory safety which defends the

Memory Corruption node (shaded blue). The expansion of the Memory Corruption

node for Rust shows that the initial steps of memory corruption, the temporal or

spatial vulnerabilities, are removed by Rust. Similarly for CFI hardened C, the

Weird Machine Execution node is defended (shaded green). As the expansion

shows, CFI prevents an indirect call / jump from using an arbitrary attacker

controlled code-pointer2. Combined with a shadow stack [44] to protect returns,

hardened C on its own is also largely immune to control hijacking attacks, though

data-only attacks [101] remain a threat.

The red nodes in Figure 3 are a concrete instantiation of a CLA attack

for illustration, following the concrete attack presented by Papaevripides et al.

[159]. The attacker first steers execution towards a known memory safety bug,

À. This leads to the attacker obtaining a “write what where” vulnerability, Á,

and using it to inject gadgets, Â. The attacker then steers execution towards a

language transition, Ã–Ç, and finally, the attacker uses the corrupted code pointer

to launch their code reuse attack, È. The only complication here from a classic

code reuse attack is the need to find a language transfer point. At the binary

level where attacks are constructed, however, this problem is simplified to finding

an unprotected indirect call for the attack to target. With such a point and a

vulnerability, existing techniques such as Block Oriented Programming [106] can

successfully construct attacks.

The simplicity of constructing such attacks at the binary level makes CLA

significantly more dangerous. Namely, such attacks can be constructed unknowingly

by adversaries looking for classic attack patterns, as opposed to COOP [184] or

2An attacker can still redirect within the set of allowed targets, which has been shown to be
sufficient for attacks [46].

54

Table 1. CLA Variants using Revenant Vulnerabilities

Targeted Language Bypassed Defense
Memory Corruption Used Weird Machine Execution Origin
Spatial Temporal Forward Edge Corruption Backward Edge Corruption

Rust
Bounds Checks " " "

Lifetimes " "

C++
Shadow Stack " "

CFI " " "

DOP [102] attacks that require new primitives. We next discuss numerous CLA

variants, including first, using old vulnerabilities brought back to life by CLA (that

we denote as CLA using Revenant Vulnerabilities found in §4.2), and second, using

new vulnerabilities that only exist in MLA (that we denote as CLA using Multi-

Language-Specific Vulnerabilities found in §4.3).

4.2 CLA using Revenant Vulnerabilities

We present a series of attack variants demonstrating that vulnerabilities

typically mitigated by safety check/hardening techniques re-emerge as revenant

vulnerabilities using CLA in MLA. We focus our exposition on Rust-C/C++

applications, and show that key defensive primitives either built into or commonly

applied to Rust and C/C++ respectively are completely bypassed by CLA. An

overview of the attacks we present in this section is contained in Table 1. We

show that the spatial and temporal memory safety defenses of Rust are bypassed

by CLA, as are Shadow Stacks [44] and CFI [42] for C/C++. We facilitate our

discussion with a series of code examples—found in Figure 6,7,8,9, and 10—for

exposition. While our examples focus on Rust for simplicity of exposition, we

point the reader to §A for an illustration of similar examples in Go. Moreover, we

typically use C and C++ interchangeably throughout the following sections.

4.2.1 Overview. A key feature of Rust is memory safety, which

rests on two pillars: Rust’s expressive type system and its automatically inserted,

dynamic checks. The type system can prove many accesses to be spatially safe

55

Stack

fp2
ret2

cb_fptr

incrementer()

Heap

fp1
ret1

array_ptr_addr
a

attack()

Data.vals[2]
Data.vals[1]
Data.vals[0]

Data.cb

C/C++ & CFI

Safe Rust

St
ac

k
G

ro
w

th

Figure 4. C/C++ is not subject to the Rust type system, so it can dereference a
pointer out-of-bound to a Rust function pointer and make it point to an attacker
chosen gadget.

at compile time, but some accesses require simple checks at runtime against a

constant size bound (e.g., random access into a fixed size array). However, for

objects whose size is not known at compile time, such as vectors, Rust stores

the bounds information in memory, and performs bounds checks against it. All

indexes into objects are unsigned, meaning Rust only has to perform upper bounds

checks and not lower.3 All of this machinery is lost in MLA, however, as arbitrary

write vulnerabilities in C/C++ can effect any memory in the shared application’s

address space. Such attacks are simplified with a pointer to Rust memory, such as

a Rust heap object that contains a function pointer or the Rust stack, but by no

means require such a pointer. An example of such an attack is in Figure 4.

3It is interesting to note that these three categories of checks map nicely to the CCured [154]
type system that is now 16 years old, highlighting how long and winding the road to practical
memory safety has been.

56

Stack

fp2

ret2

cb_fptr

Heap

fp2

ret2

Func args

fp1

ret1

a

incrementer()

attack()

C/C++ & CFI

Safe Rust
St

ac
k

G
ro

w
th

Figure 5. Since Rust does not deploy a Shadow Stack due to its memory safety,
C/C++ can corrupt returns of previously called Rust functions that will never be
checked.

Rust’s temporal memory safety relies on the ownership model of its type

system, which is used for automatic memory management. While programmers can

force heap allocations, they are usually oblivious to whether a variable is stack or

heap allocated, and deallocation is handled automatically when the variable goes

out of scope. However, there is nothing preventing double frees as a result of FFI—

as we illustrate below—or preventing programmer error from causing a Use-after-

Free (UaF) as a result of FFI. Given that FFI requires unsafe code, responsibility

for memory management returns to the programmer, reintroducing such errors.

CFI is entering widespread usage in C/C++ applications, and is designed

to provided partial memory safety by protecting the integrity of code pointers. In

combination with Shadow Stacks, CFI offers the best combination of strength and

performance among runtime defenses to date. As discussed previously, Figure 2,

Rust does not use CFI as it provides full memory safety, rendering partial memory

safety redundant. Consequently, an arbitrary write vulnerability in C/C++ can

57

corrupt a code pointer used in Rust, bypassing CFI verification or shadow stack

protection. See Figure 5 for an example.

Note that all the examples contained below are simplified for discussion

here. One can find the full working versions online4.

1 fn rust_fn(cb_fptr: fn(&mut i64)) {

2 // Initialize some data

3 let mut x = Data {

4 vals: [1,2,3],

5 cb: cb_fptr ,

6 };

7

8 unsafe{ vuln_fn(/*Ptr to x.vals*/) }

9

10 // Uses corrupted function pointer

11 (x.cb)(&mut x.vals [0]);

12 }

(a) Rust code that calls C/C++ to modify a Rust struct.

1 // This function modifies a given array

2 // Can cause an OOB vulnerability

3 void vuln_fn(int64_t array_ptr_addr) {

4 // These values are set by a corruptible

5 // source , e.g., user input

6 int64_t array_index = 3;

7 int64_t array_value = get_attack ();

8

9 int64_t* a = (void *) array_ptr_addr;

10 a[array_index] = array_value;

11 }

(b) C/C++ code that performs an Out-of-Bounds (OOB) error.

Figure 6. Sample code to illustrate how CLA can circumvent the Rust type system
to cause a OOB error.

4.2.2 Rust Bounds Check Bypass. We first demonstrate a variant

of CLA that can bypass the simple bounds checks that Rust inserts on certain

memory accesses. As mentioned previously, for statically-sized objects in memory,

such as arrays, Rust will perform bounds checks on associated memory accesses. In

Figure 6a, the Data struct contains a field vals that is a statically sized array. If

Rust were to attempt to access the fourth element of x.vals, say on line 13, the

4https://github.com/mit-ll/Cross-Language-Attacks

58

1 fn rust_fn(cb_fptr: fn(&mut i64)) {

2 let heap_obj: /* Rust heap allocation */

3

4 unsafe{ vuln_fn(/*Ptr to heap_obj */) }

5

6 heap_obj [0] += 5; // UaF

7 }

(a) Rust code that uses a pointer wrongfully freed by C/C++.

1 // Frees object it does not own

2 void vuln_fn(int64_t obj_ptr_addr) {

3 int64_t* a = (void *) obj_ptr_addr;

4

5 //C/C++ frees Rust allocated object!

6 free(a);

7 }

(b) C/C++ code that leads to a Use-after-Free (UaF) error in Rust.

Figure 7. Sample code to illustrate how CLA can coerce Rust into causing a UaF
error.

program would either completely fail to compile or panic at runtime depending on

the optimizations of the Rust compiler. However, when Rust calls vuln fn on line

8, the unsafe C/C++ function is free to access (and modify) the fourth element of

x.vals. Because the “fourth” element of x.vals is actually the function pointer,

x.cb, in memory, C/C++ is able modify the Rust function pointer, achieving

a control-flow hijack and executing a weird machine when Rust later uses the

function pointer at line 11. Therefore, when Rust interfaces with FFI, the typical

spatial memory safety guarantees of Rust may silently fail.

4.2.3 Rust Lifetime Bypass. We next demonstrate how CLA can

bypass Rusts temporal memory safety guarantees in Figure 7. Rather than relying

on the programmer to properly allocate and free memory, the Rust type system

attaches a lifetime to each object and frees the object when it goes out of scope.

By default, Rust uses the libc malloc() implementation, meaning that Rust-

C/C++ applications in practice share a heap managed by the same allocator.

59

Thus, C/C++ may deallocate memory without Rust’s knowledge. On line 2 in

Figure 7a, Rust allocates a heap object.5 When C/C++ frees this object on line 6

in Figure 7b, Rust still believes this object is alive, and valid for use. Consequently,

Rust has no problem with the object being used at line 6 of Figure 7a, leading to

a UaF vulnerability despite Rust’s temporal memory safety guarantees. CLA can

thus cause Rust to silently perform a UaF.

1 fn rust_fn(cb_fptr: fn(&mut i64)) {

2 let fptr: /* Function pointer */

3

4 //C++ code overwrites fptr

5 unsafe{ vuln_fn () }

6

7 // No CFI checks!

8 fptr ();

9 }

(a) Rust code that uses a function pointer.

1 void vuln_fn () {

2 int64_t a[1] = {0}; // C/C++ array

3 // These values are set by a corruptible

4 // source , e.g., user input

5 int64_t array_index = 47;

6 int64_t array_value = get_attack ();

7

8 // Arbitrary Write to Rust fptr

9 a[array_index] = array_value;

10 }

(b) C/C++ that overwrites a Rust function pointer.

Figure 8. Sample code to show how CLA can corrupt a Rust function pointer to
execute a weird machine and circumvent CFI.

4.2.4 C/C++ Hardening Bypasses. While we have demonstrated

that CLA can bypass the memory safety of Rust, we now show that CLA can

also circumvent hardening techniques applied to C/C++ code. In particular, in

Figure 8, we illustrate how C/C++ can corrupt a Rust function pointer on the

stack which will lead to an opportunity for C/C++ to bypass CFI checks, which

5This can happen automatically, or be forced via the Box<> data structure.

60

Table 2. CLA Variants using Multi-Language-Specific Vulnerabilities

New Attack
Memory Corruption Used Weird Machine Execution Origin
Spatial Temporal Forward Edge Corruption Backward Edge Corruption

Corrupt Dynamic Bound " " "

Double Free " "

Intended FFI Interactions " " " "

Concurrency Safety " " " "

are not present in Rust code. On line 9 in Figure 8b, C/C++ performs a typical

OOB error and corrupts the fptr on the Rust stack to point to an attacker chose

location. When Rust uses this function pointer on line 8 of Figure 8a, the attacker

has successfully hijacked the application’s control flow to an arbitrary location

to execute a weird machine. If the corrupted pointer had instead been used in

C/C++, a CFI check would have detected the deviation from the application’s

CFG. The memory effects of this bypass are illustrated in more detail in Figure 4,

and we can note that Figure 5 demonstrates a similar attack, but one that bypasses

the Shadow Stack instead of CFI by overwriting a Rust return value.

While previous work has introduced similar C/C++ hardening bypasses

[159], we note that this is only one variant of our presented Cross-Language Attacks

(CLA). Most importantly, our work demonstrates that not only can we bypass

C/C++ hardening with CLA, but we illustrate how CLA causes Rust memory

safety guarantees to be violated. In fact, our goal is to demonstrate that the

philosophy of incrementally hardening memory unsafe code with memory safe

code can have serious flaws—beyond C/C++ hardening bypasses—if not handled

properly.

4.3 CLA using Multi-Language-Specific Vulnerabilities

Beyond reviving the threat of memory safety vulnerabilities in “safe”

languages, and bypassing existing partial memory safety defenses in unsafe

languages, MLA are vulnerable to variants of CLA that only arise in the context of

61

1 fn rust_fn(cb_fptr: fn(&mut i64)) {

2 //Rust vectors have dynamic bounds

3 let mut vecs: vec! [4];

4

5 unsafe{ vuln_fn(/*Ptr to vecs*/) }

6

7 // C++ changed vecs size to 128!

8 let vec_fp_addr: i64 = x.vecs [55];

9 }

(a) Rust code that passes a vector to C/C++.

1 void vuln_fn(int64_t vec_ptr_addr) {

2 // These values are set by a corruptible

3 // source , e.g., user input

4 int64_t array_index = 2;

5 int64_t array_value = 128;

6

7 int64_t* a = (void *) vec_ptr_addr;

8 a[array_index] = array_value;

9 }

(b) C/C++ code with an arbitrary write vulnerability.

Figure 9. Example of C/C++ using an arbitrary write to corrupt the size of Rust
vector.

MLA. In particular, we highlight four such new vulnerabilities. First, Rust’s spatial

memory safety can rely on bounds stored in memory which is only safe if the entire

application is memory safe. Second, Rust’s automatic memory management relies

on it being the only entity controlling the allocation status of memory. However,

Rust commonly uses the libc malloc() implementation under the hood, giving

rise to vulnerabilities in MLA. Third, we highlight two additional ways intended

interactions via FFI over the language barrier can go wrong: passing bad values

and more complex serialization/deserialization errors. Finally, we describe how

multi-threaded programs heighten vulnerabilities. An overview of the attacks we

present in this section is contained in Table 2. Moreover, we again point the reader

to §A for an illustration of similar examples in Go.

4.3.1 Corrupting Rust Dynamic Bounds. For objects whose size

is determined at runtime and may change, such as vectors, Rust stores the current

62

size of the object in memory. That value is then loaded and used in any required

bounds checks. By corrupting the recorded size of the object, an attacker can

enable a buffer-overflow of arbitrary length in Rust. While this attack is indirect,

we note that Rust is seeing adoption in input processing libraries precisely because

of its safety features. Consequently, corrupting the bound of a user facing object

may be an efficient way to achieve an arbitrary write in practice. Regardless, this

attack primitive is useful for attackers and undercuts Rust’s security guarantees in

MLA.

Concretely, we demonstrate this attack in Figure 9. Rust allocates a vector

on line 3 of Figure 9a. This vector is then passed by reference to the vulnerable

C/C++ function, vuln fn in Figure 9b. Because a vector in Rust allocates a

pointer to the heap for the data in the vector, a capacity field that denotes the

total possible length of the vector, and a len field that denotes the current length

of the vector all on the stack at initialization, C/C++ can set the current length

of the vector arbitrarily high on line 8 in Figure 9b. Thus, when Rust accesses the

55th element of the vector on line 8 of Figure 9a—an obvious OOB access—Rust

will not panic as it normally should. Therefore, Rust now operates in the same

level of spatial memory safety as C/C++. Namely, the Rust program—solely

written in Safe Rust outside its call to C/C++—can no longer claim

spatial memory safety if it successfully compiles.

4.3.2 Double Frees. In §4.2.3 we showed how UaF can arise in MLA.

Here we generalize that to other temporal errors. In particular, if C/C++ frees a

Rust object, Rust will still try to free that object at the end of its lifetime, giving

rise to a double free vulnerability. Prior work has shown that double frees can lead

to exploits in practice [70].

63

Looking back to our example in Figure 7, even if Rust did not directly

use the heap obj on line 6 after calling the vuln fn C/C++ function, when the

scope of rust fn finishes, Rust will cleanup any memory associated with heap obj.

While Rust lifetimes can become more complex than default with explicit lifetimes

and custom Drop traits that define the cleanup behavior, it will inevitably lead to

memory being freed twice. Thus, Rust could then overwrite the memory it just

freed, leading to a series of propagating UaF errors, and inevitably, undefined

behavior. Therefore, Rust now operates in the same level of temporal memory

safety as C/C++. Namely, the Rust program—solely written in Safe Rust

outside its call to C/C++—can no longer claim temporal memory safety

if it successfully compiles.

4.3.3 Intended Interactions over FFI. Interactions over FFI,

where Rust-C/C++ intend to share data can also give rise to CLA. While we saw

that the attacks in §4.2 are simplified when Rust shares a pointer with C/C++, we

observe more complex attacks that can occur when C/C++ shares data with Rust.

One version of this is where C/C++ hands Rust a pointer to a buffer to populate

(e.g., for user input sanitized by Rust). Another scenario is when Rust receives

a function pointer from C/C++ (e.g., for a callback function triggered on some

event). In either case, Rust has no way of verifying that the shared pointer—or its

contents—is valid, and must trust C/C++. This trust can be abused, leading to

CLA.

For example, in Figure 10a, Rust calls vuln cb fptr to ask C/C++ to

return a function pointer for its new callback function. If C/C++ returns malicious

information, as we see on line 3 in Figure 10b, then when Rust uses that function

pointer at line 4 of Figure 10a, the attacker successfully hijacks the application’s

64

1 // Uses a function pointer provided by C/C++

2 fn rust_fn(cb_fptr: fn(&mut i64)) {

3 unsafe { let mut fptr = vuln_cb_fptr (); }

4 fptr ();

5 }

(a) Rust code that calls C/C++ to receive a callback pointer.

1 // Returns a call back function to register

2 int64_t vuln_cb_fptr () {

3 int64_t fptr = get_attack ();

4 return fptr;

5 }

(b) C/C++ code that corrupts a return value to Rust.

Figure 10. Sample code to illustrate how CLA can corrupt even data intended to
cross the FFI boundary.

control and can execute their weird machine. Note that any unsafe function could

potentially be used to corrupt the return value from vuln cb fptr, perhaps on a

different thread, or a callee of that function. Rather than pass Rust corrupted data

as a return value, another variant of this attack is to have C/C++ directly pass

corrupted data to Rust as a function parameter when it invokes a Rust function.

However, the Rust compiler does emit warnings about function pointers

crossing the FFI boundary. In particular, Figure 10a is simplified; the programmer

must explicitly transmute the function pointer received from C/C++ to a function

pointer type within an unsafe block (this requirement is unique to function

pointers, as other data can often be coerced with the as keyword in Safe Rust).

While this helps identify which regions the programmer should likely sanitize, the

function pointer conversion can reside within the same unsafe block used to call the

C/C++ function, which may lead to bugs being overlooked.

More complex intended interaction errors are of course possible over the

FFI interface. For instance, C/C++ strings and Rust strings have different

representations, forcing conversion through null terminated C/C++ strings for

65

compatibility over FFI. This illustrates the need for serialization over the FFI

interface. Serialization is a well known source of errors [167], but it has primarily

been considered in inter-application scenarios (e.g., I/O to networks, Files, or IPC),

not intra-application scenarios where it arises as a type of CLA.

4.3.4 Concurrency and CLA. The preceding examples are all

single threaded. This imposes constraints on CLA attacks; typically Rust must call

into C/C++. However, in real applications such constraints are less relevant. All

threads have access to the entire memory space, meaning that a C/C++ function

executing on one thread that contains an arbitrary write can attack a Rust function

operating on a separate thread. This effectively removes ordering constraints.

CLA is thus more general than just FFI issues when the MLA is multi-

threaded.

4.4 Evaluation

In order to demonstrate the applicability of CLA, we collect a series of

metrics that demonstrate the prevalence of CLA building blocks in real-world

open source code bases. We focus on Mozilla Firefox [90], a large, open source

project that has been consistently ported piece-by-piece from C/C++ to Rust.

As Mozilla contributes to the creation of both Firefox and Rust itself, we believe

characteristics of Firefox will act as a representative showcase for features of

Rust and C/C++. We perform static analysis determine the order of magnitude

prevalence of CLA building blocks to assess the scope of the problem; our goal is

not to build proof-of-concept exploits. Thus, our two research questions for the

evaluation are:

RQ1 How prevalent are language transitions?

66

RQ2 What is the distribution of language transitions across functions (i.e., are

language transitions widespread among all functions or centralized in a few)?

4.4.1 Methodology. We analyze Firefox version 92.0a1 using a

debug build with optimizations disabled and the Rust v0 name mangling scheme,

which allows us to distinguish Rust and C++ mangled function names. Our

analysis utilizes pyelftools [30] to parse debug information, and objdump [203]

to find callsites. We opt to analyze the compiled file as we can extract all needed

information for our evaluation at the binary level and it is simpler than source level

analysis. Additionally, we make our analysis openly available online6.

4.4.1.1 Source Language. We use a novel set of fingerprinting

techniques to determine the source language of each function. Our fingerprinting

technique is based on the differences in name mangling between languages during

the compilation process. Name mangling is used by Rust and C++ to support

function overloading, while still presenting unique function names to the linker.

Name mangling encodes metadata about the function (e.g., return value and

argument types into the function name). For Rust v0 mangling, included with

the nightly compiler, the function type (i.e., normal, closure, or monomorphized)

and the types of the function signature are encoded in the function name. The

standard Rust mangling scheme is the same as C++, so we use the v0 scheme to

differentiate the source languages. Note that FFI between Rust and C++ uses C

style unmangled function names as the call target. Consequently, we assume that

unmangled calls in a known Rust or C++ function represent language transitions

(which will include a transition from C++ to C as a language transition). We do

6https://github.com/mit-ll/Cross-Language-Attacks

67

not assess the accuracy of this technique; we aim only to obtain a rough order of

magnitude understanding of the prevalence of CLA building blocks.

4.4.1.2 Metrics. As discussed in §4.1, CLA leverages control flow

transitions between source languages which motivates RQ1, and thus, the metrics

we collect must quantify the behavior and interactions of functions with other

languages. Namely, we want to observe how frequently, to which degree, and in

what manner Rust and C/C++ invoke each other.

We collect a total of seven metrics to quantify language transitions in

Firefox. First, we observe the total number of functions in each language to get a

sense of how significant the role of new languages such as Rust are in development.

Second, we collect the set of functions that each function calls, which we denote

as call targets, as well as the set of call sites (i.e., where control flow changes)

within the function. An important subset of call sites are the transfer points in

which one language is calling a function in a different language. Transfer points

are key building blocks of CLA. For each call site, we determine the type of call

used. Calls can be: indirect (i.e., the call target is in a register), dynamic (i.e.,

indirect through the program lookup table (PLT) used for functions in dynamically

linked libraries), or direct (i.e., to a constant address). Note that metrics on

direct calls are not reported. Indirect calls are frequently targeted by code reuse

attacks in the Weird Machine Execution phase, Figure 3. The PLT can similarly

be corrupted, leading to the same effect [221]. For each function, we also collect its

invocation points, or the set of functions that call it. We are particularly interested

in invocation points that come from a different language, which we denote as visitor

points.

68

Table 3. The prevalence of CLA building blocks. The number is bold is the total
number of each item in the binary. (X, Y) represents the breakdown of the counts
where X is the fraction of the total items the specific item accounts for, and Y is
the fraction of those that come from the specific language. For example, there are
12,118 transfer points in Rust that constitute 3.70% of all call sites in Rust, and
5.32% of the transfer points in the entire binary come from Rust.

(a) Total function metrics.

Rust C/C++ Entire Binary

Total
Functions

487,763
(100%, 26.68%)

1,340,347
(100%, 73.32%)

1,828,110
(100%, 100%)

(b) Call site metrics

Rust C/C++ Entire Binary

Call
Sites

327,653
(100%, 9.23%)

3,220,415
(100%, 90.77%)

3,548,068
(100%, 100%)

Transfer
Points

12,118
(3.70%, 5.32%)

215,778
(6.70%, 94.68%)

227,896
(6.42%, 100%)

Indirect
Calls

179,598
(54.81%, 64.04%)

100,843
(3.13%, 35.96%)

280,441
(7.90%, 100%)

Dynamic
Calls

126,710
(38.67%, 22.15%)

445,418
(13.83%, 77.85%)

572,128
(16.13%, 100%)

(c) Invocation metrics

Rust C/C++ Entire Binary

Invocations
346,469

(100%, 10.25%)
3,032,583

(100%, 89.75%)
3,379,052

(100%, 100%)

Visitor
Points

184,799
(53.34%, 81.09%)

43,097
(1.42%, 18.91%)

227,896
(6.74%, 100%)

4.4.2 Results. First, we obverse the raw totals of our metrics

collected in Firefox, including constituent libraries built from the Mozilla repo, in

Table 3. Table 3 is made of three subtables that each breakdown related classes of

69

statistics. In each cell of Table 3, we show the total number of each metric collected

in bold, the percentage of its class of metrics (i.e., transfer points are a subclass

of call sites) on the left, and the percentage of the metric that comes from each

language with respect to the entire binary on the right. For example, we found

12,118 transfer points in Rust functions with which we can conclude that 3.70% of

call sites in Rust are transfer points, but only 5.32% of transfer points come from

Rust. These results make sense when paired with the fact that only 9.23% of call

sites in Firefox are written in Rust, but have powerful implications for CLA in that

nearly one in 25 of all Rust function calls will call back to an unsafe language. In

fact, these results demonstrate significant opportunity for CLA. While a function

call within a Rust function is typically the target of the memory corruption found

in C/C++ for a CLA, in order for the unsafe language to corrupt Rust data, the

Rust data must remain “live” while the unsafe language operates. Namely, when

Rust calls C/C++, C/C++ has an opportunity to corrupt Rust data and create

exploit points. These results indicate this “liveliness” requirement will often be

met. Multi-threaded programs, such as Firefox, also relax this requirement as a

C/C++ function can corrupt a Rust function on another thread. Moreover, we

present a visualization of these statistics in a series of stacked bar plots found in

Figure 11. Note that the y-axis in these figures is logarithmic.

We highlight more results from Table 3 notable to CLA as follows. We

observe that 54.81% of call sites in Rust are indirect calls which indicate a use of a

function pointer to make the call. This is important because these function pointers

are the target of corruption in the forward-edge version of the CLA. Similarly,

38.67% of call sites in Rust are dynamic, which unsafe languages can corrupt for

more serious loss of memory safety in Rust, similar to the attack presented in

70

Rust C/C++ Entire Binary
Call Language

103

104

105

106

Nu
m

be
r o

f O
cc

ur
re

nc
es

Call Site Language Breakdown
Indirect
Dynamic
Transfer
Point
Other

(a) Call sites by language.

Call
Sites

Transfer
Points

Indirect
Calls

Dynamic
Calls

Call Type

103

104

105

106

Nu
m

be
r o

f O
cc

ur
re

nc
es

Call Site Type Breakdown
Rust
C/C++

(b) Call sites by type.

Rust C/C++ Entire Binary
Call Language

103

104

105

106

Nu
m

be
r o

f O
cc

ur
re

nc
es

Invocation Language Breakdown
Visitor
Point
Other

(c) Invocations by language.

Invocations Visitor
Points

Call Type

103

104

105

106

Nu
m

be
r o

f O
cc

ur
re

nc
es

Invocation Type Breakdown
Rust
C/C++

(d) Invocations by type.

Figure 11. Stacked bar plots to breakdown different types of statistics found in
Table 3. Y-axis is logarithmic.

Figure 3. On the other hand, we see that an overwhelming number of invocations

of Rust functions come from memory unsafe languages. Specifically, 53.34% of

invocations of Rust functions are visitor points, which indicates that C/C++

functions call Rust functions just as often as other Rust functions. Lastly, we point

out that while the percent of these calls are convincing, the magnitude of transfer

points (12,118) and visitor points (184,799) in Rust are also significant.

Next, we investigate Figure 12 to illuminate the trends of our metrics over

the entire set of functions to compliment the aggregate values of our metrics found

in Table 3. For example, from Figure 12a and Figure 12d, we see that the degree

of unique functions called by Rust and towards Rust respectively overall tends to

be less than C/C++ functions, while in Figure 12b and Figure 12c, we see that

71

0 10 20 30 40 50
Number of Call Sites

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000
Cu

m
ul

at
iv

e
Di

st
rib

ut
io

n
Fu

nc
tio

n
(C

DF
) Number of Call Sites

All Rust C/C++

(a) Call sites.

0 2 4 6 8 10
Number of Transfer Points

0.90

0.92

0.94

0.96

0.98

1.00

Cu
m

ul
at

iv
e

Di
st

rib
ut

io
n

Fu
nc

tio
n

(C
DF

) Number of Transfer Points

All Rust C/C++

(b) Transfer Points.

0 1 2 3 4 5
Number of Visitor Points

0.990

0.992

0.994

0.996

0.998

1.000

Cu
m

ul
at

iv
e

Di
st

rib
ut

io
n

Fu
nc

tio
n

(C
DF

) Number of Visitor Points

All Rust C/C++

(c) Visitor Points.

0 5 10 15 20 25 30
Number of Invocations

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Cu
m

ul
at

iv
e

Di
st

rib
ut

io
n

Fu
nc

tio
n

(C
DF

) Number of Invocations

All Rust C/C++

(d) Invocation Points.

0 2 4 6 8 10
Number of Indirect Function Calls

0.90

0.92

0.94

0.96

0.98

1.00
Cu

m
ul

at
iv

e
Di

st
rib

ut
io

n
Fu

nc
tio

n
(C

DF
) Number of Indirect Function Calls

All Rust C/C++

(e) Indirect Calls.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Number of Dynamic Function Calls

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Cu
m

ul
at

iv
e

Di
st

rib
ut

io
n

Fu
nc

tio
n

(C
DF

) Number of Dynamic Function Calls

All Rust C/C++

(f) Dynamic Calls.

Figure 12. The Cumulative Distribution Function (CDF) of each CLA building
block metric.

the subclass of functions we care about (i.e., transfer and visitor points), tends

to be similar between Rust and C/C++. Moreover, in Figure 12c, less than 1%

of C/C++ functions contain a visitor point. Thus, we can conclude that while

frequent, the number of unique functions that Rust calls that cross the language

boundary is limited. However, it is important to remember that there is a large

number of unique C/C++ functions (1,340,347), so even 1% of these functions

being relevant to CLA is still significant.

Because we observe a small number of influential functions, which we denote

as heavy hitters, with respect to CLA, we next present the top heavy hitters

for call sites, transfer points, invocation points, and visitor points in Table 4.

In this table, we present the top three heavy hitters for each language with its

respective count. The function name is followed by an ‘@’ symbol to indicate in

72

Table 4. Heavy hitter functions in Firefox.

Rust C/C++

Top Functions
with Call Sites

1. assert initial values match@libxul (588)
2. get longhand property value<alloc>@libxul (464)
3. get longhand property value<nsstring>@libxul (459)

1. CreateInstance@libxul (1,631)
2. generateBodyEv@libxul (1,160)
3. run@libxul (846)

Top Functions
with Transfer Points

1. main@crashreporter (55)
2. main@modutil (25)
3. main@logalloc-replay (24)

1. Unified cpp protocol http3@libxul (84)
2. UIShowCrashUI@crashreporter (54)
3. nsWindow@libxul (49)

Top Functions
with Invocations

1. as bytes@libxul.so (930)
2. state@libxul (554)
3. Unwind Resume@plt (520)

1. AnnotateMozCrashReason@libxul (134,254)
2. ReportAssertionFailure@libxul (131,545)
3. Array RelocateUsingMemutil@libxul (17,475)

Top Functions
with Visitor Points

1. Unwind Resume@std (488)
2. as str unchecked@libxul (25)
3. qcms transform data@libxul (24)

1. assert fail@GLIBC (4388)
2. ostream@GLIBC (3326)
3. strlen@GLIBC (1294)

which binary the function resides. Of note, we can see that the top visitor points

in C/C++ functions come from GLIBC, and have a large magnitude (e.g., 4,388 for

assert fail). This large magnitude indicates a long tail on the corresponding CDF

in Figure 12c and suggests many other functions in C/C++ will have only one or

two visitor points. Further, the library libxul tends to dominate the heavy hitters

list which indicates an ample opportunity for CLA.

Our findings indicate that the building blocks for CLA are abundantly

available and an attacker has a very large catalog of options when building such

attacks. These results highlight the prevalence of opportunities for CLA and

the fact that existing countermeasures are not sufficient to prevent them. New

countermeasures are necessary when applications are written in multiple languages

with mismatching threat models, which we further discuss in the next section.

4.5 Discussion

We have focused our discussion of CLA primarily on Rust and Go in

combination with C/C++. However, the issue of threat model mismatches extends

beyond these languages, and beyond issues of memory safety in MLA. In this

section, we discuss future research directions and the broader implications of CLA.

We also provide some thoughts on securing MLA.

73

4.5.1 CLA in Go. In contrast to Rust, which was designed as a

systems programming language that would have to integrate with C/C++ to be

adopted, Go is intended to largely be a stand alone programming language. While

Go supports MLA via CGo, and there are certainly projects that leverage CGo

(e.g., Docker, Kubernetes, and CockroachDB), several Go language developers

discourage use of CGo have written publicly about issues created by CGo [53] for

Go applications. In fact, some projects that initially leveraged CGo, later chose to

remove it (e.g., the Go implementation of git [1]). What direction Go will go in the

future remains to be seen.

Regardless, the vulnerabilities in §4.2 and §4.3 nearly all directly translate

to Go from Rust (§A). The exception are the temporal safety vulnerabilities. Go

leverages garbage collection (GC) to provide temporal safety, in contrast to Rust’s

lifetimes. This opens the door to use-after-gc errors and more complicated double

free scenarios when Go interacts with C memory management.

4.5.2 CLA In Other Languages. CLA arises anytime two or

more languages are used in an application and have different threat models.

This extends beyond just Rust-C/C++ or Go-C/C++. For instance, the C++

language standards since C++11 have introduced a growing eco-system for safe(r)

programming practices, such as smart pointers. However, applications written in

C++11 and newer are still backwards compatible with older C++ standards and

C applications, and often feature code with older code standards (e.g., in included

libraries). Such older, and unsafer, components of the application can subvert the

additional safety guarantees offered by newer C++ features. Another instance of

this in language dichotomy is applications in Rust that contain unsafe Rust, which

has seen recent research interest [26, 132].

74

Note that while the FFI interface requires the unsafe keyword in Rust,

CLA is fundamentally much more dangerous than normal uses of unsafe. CLA

opens the door to the entire gamut of vulnerabilities present in unsafe languages,

whereas unsafe is usually used for relatively simple operations that can’t be

statically proven safe by Rust’s type system, and so are excluded. As Rustbelt [109]

has shown, such uses of unsafe are simple enough to be amenable to formal

verification, as opposed to the exponentially larger amount of code exposed via

FFI than can be leveraged in CLA attacks.

4.5.2.1 Interpreted Languages. Interpreted languages add another

dimension to possible threat model mis-matches. The Java Virtual Machine (JVM)

has been implemented in both C and C++, and the original Python interpreter

is written in C, though others exist today. Indeed – attacks against Java have

targeted the JVM [93]. All browsers have JavaScript interpreters, though attempts

are made to sandbox them [69, 17]. We leave a deep inspection of appropriate

threat models for mixed interpreted/compiled applications, particularly when the

interpreted language has safety guarantees that do not align with its interpreter, as

future work.

4.5.2.2 Multiple Safe Languages. CLA is possible in MLA even

if all component languages are themselves safe. For instance, Rust and Go both

provide memory safety, but because their strategy to provide memory safety differs,

an attacker could launch a CLA on such a multi-language program. In particular,

Rust and Go prevent temporal memory corruption with lifetimes and garbage

collection respectively. Should these different systems disagree on the state of

memory, double frees or UaFs are possible. We believe other subtle vulnerabilities

are likely, but do not explore them here.

75

4.5.2.3 CLA and Verified Code. Formal methods increasing

maturity is evidenced by the seL4 [119] microkernel and recent verification of

KVM [128]. Formal verification offers mathematical proof of certain properties,

as long as the assumptions used in the analysis hold and the underlying model

is accurate. The current approach is to formally verify a critical subset of code,

such as the OS/hypervisor or cryptographic libraries [232]. Such verified code

is then used as part of a larger, unverified application, enabling CLA. Note that

the mixture of verified and unverified code opens up new attack possibilities

not explored here, and the unverified code can be used to undermine any of the

assumptions/modeling used during formal verification.

4.5.3 CLA Beyond Memory Safety. CLA results from the

mixed assumptions of the different threat models in a MLA, and this extends

beyond memory safety. Different assumptions and threat models around type

safety enable type confusion [204, 95] attacks in MLA. This endangers schemes

for other purposes, including language-based isolation [138, 153, 36], general

verification [114], and information-flow control [148]. Correctness violations are

also possible—Rust’s type system notably provides significant concurrency safety

guarantees. Indeed, a selling point of Rust is “fearless concurrency” [116] in which

the type system removes many hard-to-debug concurrency errors. In MLA, CLA

can reintroduce data races as Rust’s guarantees no longer hold. While more benign

than memory safety violations, such errors can still lead to denial-of-service attacks.

Our insight that differing assumptions leads to adverse effects holds

generally—MLA must be explicit about the assumptions each component is

making, and care must be taken to ensure that the application as a whole is not

weaker than its constituent parts.

76

4.5.4 Defense Strategies for CLA. Next, we offer some thoughts

on general approaches for defending against CLA, and break the problem into two

components: preventing unintended interactions and securing intended interactions.

We end with a discussion on alternative approaches.

4.5.4.1 Preventing Unintended Interactions. Preventing

unintended interactions requires isolating—to the greatest extent possible—

the memory of the different language components. One such approach could

place each language component in its own process and rely on virtualization and

explicit shared memory to control interactions. In fact, this has been proposed by

Sandcrust [122]. Doing so is likely impractical, however, particularly if more than

two languages are involved. Consequently, intra-process isolation techniques will

need to be refined for this use case. For example, recent work shows that isolating

the heap between languages is a significant step in the right direction [175].

However, doing so will not be free, as there will be performance costs both for

the isolation technique and to allow data-flow across the language boundary.

Isolating the stack may require separate stacks per language, which will increase

the overhead of language transitions and requiring more intrusive changes. Finally,

while code isolation already exists outside of JIT systems courtesy of DEP [22],

preventing the corruption of generated code has also been studied for JIT [224],

and is largely a separate problem.

4.5.4.2 Securing Intended Interactions. Securing intended

interactions requires verifying that interactions across the FFI interface cannot

violate the security properties of either language. To date, there has been work

on using formal methods [109, 172, 217] to do so in a variety of contexts. In

particular, Rust FFI has been studied, building on existing literature (e.g., the

77

java native interface (JNI) [206]). Beyond formal methods, new sanitizers that

target interactions across FFI should be developed by the community, as well

as runtime defenses. For example, as discussed further in Chapter V, in order

to sanitize data meant to be shared between Rust and C/C++, Rivera et al.

propose a new pointer construct called pseudo-pointers [175]. Moreover, tagged

architectures [198, 225, 81, 177] that enable metadata to be added to data provide

a promising hardware based approach for mitigating CLA as well. Indeed, the

Cheri project [226] has proposed such an extension [223].

4.5.4.3 Alternative Defenses. Some recent work attempts to

solve specific subsets of CLA. For example, there is an ongoing effort to add CFI

checks to Rust code (e.g., Control Flow Guard (CFG) [24]). Such a defense will

help mitigate specific variants of CLA, such as the attack outlined in §4.2.4, since

defense assumptions between the two languages will now match for this particular

variant. However, as we have mentioned, CLA proposes a problem much deeper

than control-flow hijacking (e.g., loss of Rust memory safety guarantees) that

such a defense cannot solve. Similarly, incremental deployment of randomization

techniques, such as Address Space Layout Randomization (ASLR) [165, 33], offers

another alternative approach, but previous work has shown randomization can be

bypassed [181, 193]. Moreover, it is unclear if ASLR can address each variant of

CLA detailed in §4.2 and §4.3. Thus, we believe that while these defenses have

merit, they address a symptom of CLA rather than the cause.

78

CHAPTER V

Pseudo-Pointers

As seen in Rivera, E., Mergendahl, S., Shrobe, H., Okhravi, H., & Burow,

N. (2021, December). Keeping safe rust safe with galeed. In Proceedings of the 37th

Annual Computer Security Applications Conference (ACSAC),(pp. 824-836).

Next we consider ways to ensure spatial safety against Cross-Language

Attacks (CLA) in Multi-Language Applications (MLA) that consist of both a

memory and type safe component (Rust) and an unsafe component (C/C++).

As seen in Chapter IV, such applications pose two threats against their “safe”

components. The first is that in practice safe and unsafe languages share a heap,

with no abstraction or isolation between them at runtime, such as virtual addresses

between processes. This allows efficient communication, but also means that an

arbitrary-write vulnerability in C/C++ can alter memory that notionally belongs

to Rust. The second is through the programmer intended interactions, in which

Rust gives C/C++ a pointer to use.

In this chapter, we consider a defense that consists of two components:

1) a runtime defense that isolates Rust’s heap from manipulation by C/C++,

thereby preventing unintended interactions, and 2) a sanitizer, that we call

Pseudo-Pointers, that secures intended interactions between the safe and unsafe

programming language. This style of defense has also been proposed elsewhere

[175], and is not the main contribution of this dissertation. However, due to

popularity of this isolation methodology, we describe its structure in detail in

order to describe the state-of-the-art for spatial memory safety in Multi-Language

Applications (MLA).

79

In particular, Pseudo-Pointers protect safe code from possible corruptions

in the unsafe code with which it interacts. In this report, the considered runtime

defense is built on top of seL4, which enables the use of capabilities to remove

read/write access to the heap. However, the Pseudo-Pointers design is generic and

can work with any enforcement mechanism. For example, previous work has also

used Pseudo-Pointers in conjunction with Intel’s Memory Protection Keys (MPK)

[104] as access control to the heap [161, 211, 98, 183, 175]. The Pseudo-Pointers

sanitizer replaces pointers passed across the language boundary with identifiers to

Rust objects, and turns dereferences of such pointers into function calls back into

Rust with the object ID and request operation. The security guarantees of the

sanitizer are demonstrated on micro-benchmarks, which show reasonable overhead.

5.1 Pseudo-Pointers Design

In this section, we describe the design of Pseudo-Pointers. Pseudo-Pointers

has two components: a runtime defense for isolating the Rust heap from unintended

interactions, and a sanitizer for securing intended interactions. We describe each

component separately for ease-of-understanding, but they are both part of the

overall technique for preserving the memory safety guarantees of safe Rust when

it interfaces with unsafe code.

Rust is primarily being incrementally deployed: a longstanding codebase

written in a different unsafe language (most often C/C++) is typically converted

piece-by-piece to the equivalent Rust code. For example, the ubiquitous web

browser Firefox, started its migration from C/C++ to Rust in 2016 [146]. Mozilla,

the maintainers of Firefox, list Rust’s memory safety as primary reason for the

switch [146].

80

Rust Code

C/C++ Code

Rust
Allocated
Memory

C/C++
Allocated
Memory

Heap

Figure 13. Possible memory accesses in Rust-C++ applications

Mixing Rust with another language (e.g., C/C++) breaks the Rust memory

safety model, and leaves the mixed-language application more vulnerable to exploit

than a CFI [14, 43] hardened C/C++ implementation [159]. Our work is general to

any unsafe language that interfaces with Rust, but for the sake of simplicity in the

discussion below we focus on C/C++. C/C++ is not bound by the Rust memory

model, nor does it have to obey the restrictions of the Rust compiler. Calling into

C/C++ from Rust breaks any promises of memory safety, and thus such calls must

always be marked as unsafe in Rust.

In a mixed Rust-C/C++ application, there are 4 possible patterns of

memory access: Rust code accessing Rust-allocated memory, Rust code accessing

C/C++-allocated memory, C/C++ code accessing C/C++ allocated memory, and

C/C++ code accessing Rust allocated memory (see Figure 13). Rust code accessing

Rust memory should never be able to break Rust memory safety (by definition).

Additionally, Rust memory safety is independent of accesses to C/C++ memory.

81

Rust Code

C/C++ Code

Rust
Allocated
Memory

C/C++
Allocated
Memory

Heap
Access Protection

Figure 14. Protection via page-level memory isolation and permissions switching

In contrast, C/C++ accessing Rust memory (i.e., the red arrow in Figure

13) could cause any number of violations to Rust memory safety guarantees,

up to and including full control-flow hijacking [159]. We separate these memory

accesses further into two cases: intended and unintended accesses. An intended

access occurs when C/C++ is explicitly given the location of some part of Rust

memory by Rust code and then accesses that Rust memory, while any other access

is considered unintended. An example of an intended interaction is when Rust

parses a message and passes a pointer to it to C/C++ for further processing. An

example of an unintended interaction is when an arbitrary write gadget (e.g., a

dangling pointer in C/C++) is used to modify a data structure in Rust memory

when such an interaction was not conceived of by the developer.

5.1.1 Preventing Unintended Interactions via Heap Isolation.

First, we focus on preserving memory safety in the presence of unintended accesses,

and then we extend our discussion to secure intended accesses in §5.1.2.

In order to preserve Rust memory safety in the Rust component of a MLA,

we must isolate and restrict Rust memory such that it cannot be accessed by a

82

component written in another language. If only Rust can access Rust memory,

Rust memory safety is preserved.

5.1.1.1 Heap Isolation. Pseudo-Pointers approach to Rust memory

isolation is to make sure that all of the pages of Rust-allocated memory are in

the same page group, and then to set permissions on these pages in such a way

that external functions are unable to access the Rust memory. If only the given

Rust component can access its own memory, and accesses from other non-Rust

components to Rust memory are forbidden, then the program stays consistent with

the Rust memory model despite executing untrusted code in another language.

General memory safety for non-Rust components is out of scope of this work, and is

well-studied in literature [199, 150, 151, 187].

5.1.1.2 Heap Splitting. In order to isolate the Rust heap, we split

the unified program heap into safe language component heaps that are protected,

and a remaining unified unsafe language heap. Each safe language heap comprises

a distinct set of pages with its own access capability. This allows safe language

permissions to be controlled. Note that if, e.g., a page used for Rust heap contains

a C/C++ allocation, then access permissions that operate on the page-level can no

longer distinguish between the language heaps and thus appropriate permissions

regimes. Note also that the pages for each heap can be interleaved, so long as each

page in a language heap is dedicated exclusively to that heap.

5.1.1.3 Access Policy. Whenever a safe language is executing, its

heap and the unified unsafe language heap have full read and write permissions.

Leaving the unified unsafe heap accessible still prevents unintended interactions

while maintaining safety, see Figure 13. On language transitions, which happen

on function calls (and correspondingly thread context switches), permissions are

83

Rust
Allocated
Memory

Rust Code

C/C++ Code

Heap
Access Protection

*p

*p

p

Figure 15. Pseudo-Pointers restricts all accesses by default.

removed for the calling safe-language heap. This permission change is inverted

upon return. The Pseudo-Pointers policy invariant is that a safe language heap

is accessible if and only if a thread associated with that safe language is currently

executing. This policy results in full isolation of the language heaps, which is overly

restrictive in practice. We next discuss how to relax this regime while maintaining

safety with Pseudo-Pointers.

This heap isolation technique is a runtime defense (i.e., exploit mitigation);

a technique that is meant to run continuously when the application is running in

order to provide the protection discussed above. As such, its small performance

footprint is crucial for its adoption.

5.1.2 Securing Intended Interactions via Pseudo-Pointers.

Pseudo-Pointers default policy intentionally excludes intended accesses (i.e., times

when C/C++ is explicitly and intentionally given a pointer to Rust memory).

This most commonly occurs in FFI function calls, by passing a pointer as an

argument to a structure in memory instead of passing directly by value. In fact,

this pattern is employed by many Firefox modules, often due to performance or

84

storage considerations. Pseudo-Pointers’s default behavior breaks this intended

behavior, illustrated in Figure 15.

In particular, we present an option for data flow between safe Rust and

unsafe code that does not require breaking the safety guarantees provided by

Pseudo-Pointers’s default heap policy. Instead, when external functions need access

to Rust memory, we will force the external function to request that Rust make

the change in its own memory—a request that Rust can safety-check and reject.

We present a design for both the interfaces and underlying machinery required in

both the Rust and external functions, followed by an implementation of this design

specialized to Rust and C/C++.

We introduce the idea of Pseudo-Pointers as identifiers that pass to an

external function instead of raw pointers. Pseudo-Pointers keep an internal

mapping of identifiers to raw pointers. Any time a non-Rust component attempts

to dereference a Rust pointer, it must present a valid, non-expired identifier to Rust

via an exposed API, along with the information for the change it wishes to make

(if applicable). Rust verifies that the Pseudo-Pointer is valid and non-expired. In

the case of a write request, Rust also verifies that the value to write represents a

valid member of the type associated with the memory location. Once verified, Rust

executes the request. Since only Rust directly accesses Rust memory, we can keep

our heap isolation in place and ensure memory safety (see Figure 16).

In contrast to our heap isolation that is a runtime defense, our Pseudo-

Pointer technique is a sanitizer [199] meant to be used by the developer to detect

and remove vulnerability pre-release. Accordingly its performance budget is much

higher [199].

85

Rust
Allocated
Memory

Rust Code

C/C++ Code

Heap

Access Protection

id(p)

p

id pointer
id(p) *p

Figure 16. In our design, C/C++ uses pseudo-pointers (e.g., id(p)) to request that
Rust dereference Rust memory.

We break the design into three components to discuss further: necessary

properties of Pseudo-Pointers, the API which Rust exposes to other external

components, and the requirements on external functions.

5.1.2.1 Pseudo-pointer Properties. Pseudo-Pointers need to

have certain properties in order to function correctly as safe pointer identifiers:

uniqueness, automatic expiration, and forgery resistance.

Pseudo-Pointers must be unique to the memory they represent: each

Pseudo-Pointer must represent exactly one real memory location, and each memory

location must be represented by at most one Pseudo-Pointer. Not only is this

necessary for being able to look up the corresponding memory location, but also

it is necessary to comply with the Rust borrow-checker.

Pseudo-Pointers must automatically expire when the corresponding memory

is freed at the latest. If a Pseudo-Pointer is still treated as valid and used to access

memory even after its corresponding memory location has been freed, we have

violated Rust memory safety with a use-after-free error.

86

Pseudo-Pointers must be difficult to guess or forge. Ideally this applies

even between different runs of the same program, which requires some level of

randomization. It should be noted that while forging a valid Pseudo-Pointer

could potentially cause information leaks or even information replacement (both

important security risks), neither one has the possibility of breaking memory safety,

since the operations are still controlled by safe Rust and are valid operations within

the Rust memory model.

Pseudo-Pointer management should be automated, and transparent to the

developer. This is not a requirement for correct functionality, but is still critical in

the push to incorporate these safety changes into existing applications. The more of

the process that can be automated, the lower the burden on the developer. A fully-

automated, transparent system for introducing and using Pseudo-Pointers reduces

the possibilities for potential mistakes.

5.1.2.2 Rust API. Pseudo-Pointers are functionally useless without

the corresponding external-facing Rust API, consisting of functions which can

be called by another language in order to read from or write to the memory

represented by a Pseudo-Pointer. For any given structure that will be used in the

FFI, the Rust API will have a getter and setter for each field within that struct.

The function names for these getters and setters are automatically generated using

a naming strategy that includes both the struct type and the field name. These

functions will either be NOPs or raise errors when asked to perform a memory

operation that is inconsistent with its current internal understanding of that

memory location, including both type errors and expired Pseudo-Pointers. These

functions must also be entirely in safe Rust, where compile-time and run-time

checks automate most of this for us.

87

5.1.2.3 External Function Transformation. Pseudo-Pointers

are passed in place of pointers in every call to an external function, to avoid ever

passing a Rust memory location to another language. Before each external function

call, we create a Pseudo-Pointer for the pointer that would normally be passed, and

pass that instead. We invalidate the Pseudo-Pointer once the function returns, for

the reasons mentioned in §5.1.2.1.

If we rewrite calls to external functions to use Pseudo-Pointers, we will also

need to rewrite the external functions themselves to accept and use these Pseudo-

Pointers everywhere that they would have had a real pointer instead. Pointer

dereferences and writes need to be converted into the equivalent Rust API calls

as seen in §5.1.2.2.

Ideally, these rewrites can be done automatically, which would once again

mitigate the burden on the developer. In fact, full automation of these external

rewrites would allow secure calls to large existing legacy libraries with little to no

change, allowing for this technique to be used in cases like migration from a legacy

codebase in an unsafe language (e.g., Firefox, originally in C/C++). Additionally,

since developers are often hesitant to make changes (even automated ones) to

working legacy code, these rewrites should be able to be performed at compile time

instead of modifying the source file.

Aliasing in unsafe languages could stand as a barrier to the full automation

above, as it may be impossible to completely determine the full set of pointer

dereferences for a Rust object. We note that ours is a conservative approach

prioritizing guaranteed safety. In cases where alias analysis fails and a pointer

dereference is not transformed, that pointer dereference will be disallowed by the

memory access permissions and will not violate memory safety. The developer can

88

then debug the code to ensure that all the necessary pointers are transformed. We

did not encounter such cases in our analysis, although their possibility remains

open.

5.1.3 Pseudo-Pointers Security Guarantees. Pseudo-Pointers

have two security aims: 1) to prevent unintended interactions on the heap in Multi-

Language Applications (MLA) by providing a runtime defense, and 2) helping

developers identify vulnerabilities in intended interactions between languages by

providing a sanitizer. Heap isolation in turn has two components—the isolation

policy and the mechanism used to enforce it. The isolation policy is simple: a

safe-language heap is only accessible when code in that language is executing.

Enforcing this requires changing permissions whenever the executing language

changes, which is precisely what Pseudo-Pointers do. Such a policy is as sound

as its underlying enforcement mechanism. For example, Pseudo-Pointers could start

a new thread on a language transfer and use separate capabilities passed to the

separate threads on seL4 to enforce heap isolation due to seL4’s low context switch

overhead. Additionally, if a new memory-unsafe language thread is started for a

language transfer, Pseudo-Pointers could start a new memory-safe language thread

to receive the Inter-Process Communication (IPC) requests when the memory-

unsafe language makes getter and setter requests. This would provide additional

temporal safety (see Chapter VI) and stack isolation for further spatial safety.

The sanitizer ensures that all pointers given to C/C++ are still used in a

memory and type safe manner. It relies on Rust’s built in guarantees to do so, by

referring all pointer dereferences back to safe Rust for verification before they are

completed, and the result returned to C/C++. By removing all pointers to the

89

Rust heap from C/C++, Rust maintains the integrity of its heap against intended

interactions.

5.2 Pseudo-Pointers Implementation

We implemented a prototype for Pseudo-Pointers, specialized to interactions

between Rust and C/C++. The full source code for our implementation is available

online 1.

5.2.1 Heap Isolation.

5.2.1.1 Heap Creation. Rust provides machinery for writing a

custom allocator that can be imported as a crate and used in place of the default.

Our implementation does not separate the allocator into its own crate out of

convenience, but doing so would allow a developer to switch to this allocator with a

handful of lines of code.

Because seL4 does not provide an implementation for a page table, we also

assume there is an isolated memory allocation service that receives Inter-Process

Communication (IPC) requests for more memory, and can return seL4 capabilities

to these memory pages to the requesting thread. This service must be isolated to

prevent a compromised thread from corrupting memory allocation. Because IPC

requests are badged on seL4 (i.e., the memory allocation service knows the idenity

of the IPC sender), the memory allocation service can return access to the heap in

a language-aware manner.

5.2.1.2 Access. Code to switch heap permissions is included on either

side of all external function call sites. Namely, the code immediately preceding the

call site to another language sets up an Inter-Process Communication (IPC) call to

the other language thread. This effectively switches the selected heap permissions,

1https://github.com/mit-ll/galeed

90

as seL4 can track which thread is executing and consequently update memory

access based on the capability provided. Similarly, the code immediately following

the call site switches all permissions back on by returning from the IPC call. We

currently switch the Rust memory permissions to read-only at all call sites, but

permissions could be selected at each call site by swapping named constants.

5.2.2 Pseudo-Pointers. Pseudo-Pointers extend our heap isolation

mechanism to secure intended interactions between Rust and C/C++. We

implement Pseudo-Pointers for user-defined structs that are intended to be passed

across the language boundary as those are the primary vehicle Rust and C/C++

use to exchange data. For primitives like booleans, integers, and floating-point

numbers, we would normally expect these to be passed by value directly. For other

constructs in the language and/or standard library, further work is required to

implement the necessary transformations.

Pseudo-Pointers are implemented as a transparent struct containing

a single field, the ID of the Pseudo-Pointer as a signed 32-bit integer. The

struct also contains a PhantomData field that is the type of the pointed data.

PhantomData is used in Rust for fields that exist at compile time but not at

runtime. This allows us to make distinctions in code between Pseudo-Pointers that

represent different types, while still having confidence that they will still compile

down to 32-bit identifiers once all of the compiler checks are passed.

We also define a specific map struct for Pseudo-Pointers, including

a function that takes a Rust struct, adds it to the map, and returns the

corresponding Pseudo-Pointer, and the reverse function that takes a Pseudo-

Pointer, removes it from the map, and returns the Rust struct. Every time a

struct is added to the map, it will be added with a different ID, and every time

91

a struct is retrieved, that ID becomes invalid. This prevents external functions

from attempting to access a struct after Rust has reclaimed it.

It is worth noting that creating Pseudo-Pointers using this interface requires

having ownership of the object. One cannot just have a writable reference to

the object. This is how we ensure temporal memory safety, as Rush requires the

object’s lifetime must extend for at least as long as it is in the map.

Pseudo-Pointer support is implemented as an attribute macro that can be

added to a struct. This attribute macro creates the global map that will hold all

Pseudo-Pointers of this struct type. Additionally, the macro automatically creates

the API that will be exposed to external functions, as described in the next section.

5.2.2.1 Rust API. The attribute macro is able to generate getter

and setter functions for each field of a struct by name. The macro has access to

the type information of each field, so these functions are able to carry that type

information in their return value and arguments respectively.

These functions use the Pseudo-Pointer provided as an argument, and go

to the appropriate Pseudo-Pointer map to request access. If the Pseudo-Pointer is

valid, the function proceeds as expected, either reading or writing the appropriate

value. If the Pseudo-Pointer is invalid, the function will panic. Other reactions to

an invalid pointer (e.g., a NOP instruction instead of a panic) can also be easily

used as appropriate depending on the application.

In addition to generating the getter and setter functions based on the name

of a field, we also generate equivalent functions based on that field’s position in

the struct. This enables some of the low-level automation described in the next

section.

92

1 int add5(MyStruct* const p) {

2 p->x += 5;

3 }

(a) Before

1 int add5(ID <MyStruct > const p) {

2 x = get_x_in_MyStruct(p);

3 set_x_in_MyStruct(p, x+5);

4 }

(b) After

Figure 17. Transforming an example C++ function to use pseudo-pointers.

5.2.2.2 External Function Transformation. In order to

use this new Pseudo-Pointer interface, external C/C++ functions that once

accepted pointers to structs in memory must be modified to instead accept

Pseudo-Pointers, and operations on those pointers must be replaced with the

appropriate Rust API getters and setters above. Figure 17 shows an example of

this transformation.

Instead of placing the burden on developers to manually perform these

transformations, we automate this transformation process. We introduce a module-

level pass into the LLVM compiler which is enabled by a command-line flag. This

pass transforms identified functions by replacing the expected pointer argument

with a Pseudo-Pointer argument. It then traces usages of that argument through

the function, replacing load instructions with calls to the correct getter function

and store instructions with calls to the setter function. The information needed to

determine the correct function can be found in the type information that LLVM

preserves.

5.3 Evaluation

In this section, we evaluate our safety claims and calculate the performance

overhead costs for our prototype.

93

(a) Single Read (b) Single Write (c) Write then Read

Figure 18. Pseudo-Pointer micro-benchmarks

5.3.1 Pseudo-pointers. To evaluate the functionality and

performance of Pseudo-Pointers, we developed a proof-of-concept application in

which the C/C++ side has a “library” of functions which took in a pointer to

a Rust struct and read from and/or wrote to that struct. We are able to show

that the compiled unit for this application had replaced all pointer dereferences

and writes for the Rust struct with the corresponding Rust function calls for that

struct. Rust pointers were never accessed from C/C++, while other pointers not

from Rust were left unaffected.

We evaluate the performance overhead of adding these additional function

calls using micro-benchmarks (see Figure 18). We found that there is ∼3x overhead

for each individual read/write operation; however, when operations are chained the

overhead is not ∼6x as expected but instead ∼4.5x, indicating that the compiler

toolchain is inserting additional optimizations post-transformation.

This overhead is considered quite practical for sanitizers, many of which

have overheads ranging from 3x to over 10x [199].

94

5.4 Practical Lessons Learned

In this section, we discuss some of the lessons we learned during this effort

for practical deployment of a technique like Pseudo-Pointers, how alternative design

choices could impact them, and the directions for future work. It is our hope that

these lessons not only inform the reader about these practical considerations when

using Rust and Pseudo-Pointers, but also they can help researchers be cognizant of

some of the practical challenges and pitfalls when developing similar technologies.

5.4.1 Mixed-Language Application Security. This work is a first

attempt to address the security of mixed-language applications, and only considers

interactions between compiled languages. Future work should consider interactions

between compile and JIT compiled languages such as Python, or with the JVM.

Further work is also needed to examine, both statically and dynamically, the full

relationship between Rust and C/C++ applications.

5.5 Limitations

Pseudo-Pointers also has a number of limitations that we discuss here.

In our prototypes, we intentionally focused on preserving memory safety first,

sometimes to the detriment of performance. In the Pseudo-Pointer sanitizer,

we replace C/C++ pointer access with external thread-separated Inter-Process

Communication (IPC) calls, performing this step before either compiler has

a chance to potentially optimize some of these accesses away. In addition, in

both cases, we made no attempts to allow for LLVM’s cross-language link time

optimization (LTO).

Pseudo-Pointers can also be further automated, with the end goal being

a fully automated compiler process that requires little to no developer input.

We have already achieved this on the C/C++ end with the LLVM pass that

95

automatically replaces Rust struct pointers with pseudo-pointers and inserts the

correct function calls, but many opportunities are still available on the Rust side.

Moreover, in our Pseudo-Pointers prototype, we currently support flat user-

defined structs. This covers a large amount of use cases, but must be expanded to

accommodate current Rust/C/C++ interactions. For example, we do not support

strings, which are used in the parsing modules that Firefox has migrated to Rust.

Lastly, our prototype currently depends on having access to the original

source code for Rust, and at minimum the LLVM bytecode for C/C++. Future

work can investigate how to retrofit security in cases where only Rust/C/C++

binaries are available.

96

CHAPTER VI

Manipulative Interference Attacks (MIA)

As seen in the unpublished submission Mergendahl, S., Fickas, S., Norris,

B., & Skowyra, R. (2024, May). Manipulative Interference Attacks. In 2024 ACM

Conference on Computer and Communications Security (CCS),(In Submission).

While the spatial safety (i.e., memory safety) is important to embedded,

Cyber-Physical Systems (CPS) systems, timing predictability and correctness is

also a paramount design consideration in these systems. Many such systems include

hard real-time (HRT) tasks, where unexpected jitter or latency can cause deadline

misses that can have catastrophic physical consequences. It is therefore imperative

to maintain temporally correct execution for such tasks, even while processing other

workloads with less stringent temporal requirements. This fundamental challenge

has motivated over four decades of research dating back to seminal results such

as the sporadic server [200], and up through current research on mixed-criticality

scheduling (MCS) [214, 41].

A guiding philosophy of much work on temporal budgeting and mixed-

criticality scheduling is that of temporal isolation. Hard real-time safety-critical

tasks should be capable of meeting their real-time requirements even in the

presence of high demands placed on other aspects of the system. In its original

formation, the sporadic server was presented to improve the quality of service

(QoS) of aperiodic tasks while ensuring periodic HRT tasks could still safely

execute. More recently, much work on MCS is motivated by the fact that

determining task worst-case execution times is notoriously difficult, especially

on modern complex architectures. In the (hopefully) exceedingly rare case that

high-criticality jobs run longer than expected (e.g., due to rare microarchitectural

97

effects), MCS provides a means of maintaining the temporal-correctness guarantees

of high-criticality tasks.

While temporal-isolation mechanisms were principally designed for reliability

and QoS, they are also important for security. Without temporal isolation,

malicious actors could trivially perform denial of service (DoS) attacks to consume

processing time needed by HRT tasks, delaying or even preventing the execution of

safety-critical tasks.

The need for temporal isolation is also evident in the sharing of functional

services. Some Operating Systems (OSes) that focus on providing a secure

execution environment for embedded and real-time computation are structured

as µ-kernels. Services are implemented as user-level servers accessed by multiple

clients through Inter-Process Communication (IPC). Fast IPC between processes is

often synchronous [129] and mimics the control flow of function calls, switching

from the clients to server, and back. As synchronous IPC binds potentially

untrusting clients and servers, it is particularly security sensitive and has a history

of challenges [195]. Early performance-driven IPC mechanisms avoided scheduler

interaction on IPC, thus eliding proper client/server accounting [182]. Pairing

temporal isolation facilities based around limited thread execution budgets with

synchronous IPC opened systems to budget attacks in which clients attempt

to expend a server’s budget to prevent it servicing other clients [137, 202].

Additional improvements to the temporal properties of synchronous IPC have

included priority-order execution of clients [137] and adding priority [202, 201] and

budget [202, 137] inheritance.

As such, next, we introduce a new type of denial-of-service (DoS) attack

that we call Manipulative Interference Attacks (MIA). While DoS attacks

98

on inter-component messaging are not new [131, 195], MIA defines a novel type

of attack in which a compromised component manipulates another component

into delaying a third, victim component. In particular, an untrusted, malicious

component creates unexpectedly large amounts of processing for a trusted, high-

priority component in the system. Because the trusted component executes

on behalf of the compromised component, this higher-priority component may

unknowingly delay a co-resident victim task. When the victim task is a hard real-

time task, MIA can cause devastating, critical system failures.

Because the types of interactions that lead to MIA are potentially complex

and easily overlooked, later in Chapter VIII, we present an analysis framework

to automatically identify instances of MIA in a configured system. Specifically,

we propose a hybrid approach that first leverages static analysis to identify

software components with influenceable execution times, and second, automatically

generates a system-wide model to determine which compromised protection

domains can manipulate the influenceable components and trigger MIA. We

implement our static analysis as an LLVM compiler pass and leverage the Label

Transition Set Analyzer (LTSA)—a formal system model capable of goal-conflict

analysis using linear temporal logic (LTL)—to sort through complex system

behavior and identify any interactions that lead to MIA. However, because LTL

analysis typically requires expensive, technical expertise, we provide a tool that

automatically generates the required system model using widely available system

build artifacts. In this way, our hybrid approach can avoid typical pitfalls of static

and LTL analysis, and offer a practical compile-time tool for mixed-criticality

systems. Interested readers can find our analysis tools available online1.

1https://github.com/smergendahl/manipulative-interference-attacks

99

D
C

E

kernel
ipc_recv(recv_arg)

Protection Domain 1:
(Lowest) Priority 1

Protection Domain 3:
(Highest) Priority 3

A

B

😈
Variable Data

send_arg
… …

ipc_send(PD3, send_arg)

Protection Domain 2:
Priority 2

bad_val

Memory
Variable Data

recv_arg

… …

bad_val

Memory

loop_inv updated

F
G

I/O Fired

Missed
Deadline

Influenced
Loop

Memory
Corruption

IPC message Control Flow Data Flow External Event Influenced Value

Figure 19. Manipulative Interference Attacks (MIA) leverage a corrupt, low-
criticality component to influence a higher priority component to cause interference
on its behalf.

6.1 Manipulative Interference

In this section, we introduce a new type of attack that we call

Manipulative Interference Attacks (MIA), and describe the primitives required to

launch such an attack. Namely, we discuss how cycles in high-priority software

components can be influenced and/or triggered by other corrupt software

components in the system. In particular, MIA occurs when a corrupt software

component maliciously increases the number of times a cycle is taken as a means to

cause unexpectedly long processing at a high-priority component such that another

critical component in the system exhibits long delays.

6.1.1 Overview of MIA. We define

Manipulative Interference Attacks (MIA) as a scenario where an isolated,

low-priority, untrusted software component leverages an approved communication

pathway to manipulate another, higher-priority, trusted software component

into executing for unexpectedly large amounts of time. Because this targeted,

trusted software component maintains a higher priority than the compromised

component, the attacker essentially achieves privilege escalation with respect to

100

the temporal properties of the system. With this higher privilege, the attacker can

now delay other components with lower priority than the manipulated component.

In particular, the compromised component carefully crafts IPC messages to send

to the high-priority component such that the received IPC data influences a loop

invariant in the IPC receiver. Because IPC in a system must follow the Immediate

Priority Ceiling Protocol (I-PCP) [191, 99], the priority of the manipulated

component may be high enough to delay another critical component.

Figure 19 provides an overview of MIA. In this example, three software

components are separated by budget and priority. However, the lowest priority

component has an IPC path to the highest priority component. Additionally,

the control and data flow of each protection domain (PD) is shown. When the

untrusted component, PD1, contains a memory corruption vulnerability, it can

corrupt its own memory, but not the memory in a different PD. As such, at A,

the attacker uses memory corruption to change the value of send arg in its local

memory. Correspondingly, when PD1 sends an IPC message to PD3 at B, the IPC

message argument now contains the maliciously crafted bad val. When PD3 receives

this IPC message, it internally tracks bad val in its local memory. Later in the data

flow of PD3 at D, loop inv is updated with respect to bad val. Because loop inv

determines if the data flow cycle found at E should continue, PD1 has effectively

influenced PD3 to perform an unexpectedly long number of iterations around a

cycle. While PD3 continues to process this cycle, an external event fires for PD2

(in this case, an I/O event at F), in which PD2 has strict timing requirements to

process this event at G within a deadline. However, because PD3 has a higher

priority than PD2, the kernel will not schedule PD2 to handle this event until

PD3 completes its processing on behalf of PD1. When this execution continues a

101

sufficient number of times, PD1 has successfully caused PD2 to miss its deadline,

which may result in a critical system failure.

6.1.2 MIA Primitives. In order for MIA to occur, several primitives

must exist within the system. First, there must exist an approved communication

path between a compromised component and another, higher-priority component.

Because of the complexity of IPC optimization with budget and priority assignment

in the system, such a communication path is difficult to identify manually.

Moreover, this attack is notably not a budget drain type of attack [131]: MIA

does not attempt to drain the budget of a server as a means to prevent other

components from accessing the service. Instead, the attack stems from a privilege

escalation of the attacker’s execution context. Even if the IPC receiver is a passive

server (i.e., the receiver inherits budget from the sender), the compromised

component spends its budget at a higher priority than expected.

Secondly, this approved communication path must contain a server with a

manipulable path of execution. In particular, we define three features of a data flow

cycle that can meet this requirement:

– Influenceable Cycle: This is a cycle in which the invariant that determines

whether the cycle will exit or not is dependent on input from an external

source.

– Triggerable Cycle: This is a cycle in which the cycle exists on a control or

data flow path that directly follows after input from an external source.

– Unbounded Cycle: This is a cycle in which the cycle may never exit.

While this is a traditional issue typically identified in schedulability analysis,

malicious input may be able to cause a cycle to unexpectedly never exit.

102

In particular, these features can compound on each other. For example, a cycle

may be influenceable and triggerable if both the control flow to reach the cycle

and the cycle itself are dependent on the received data from IPC. Similarly, an

influenceable and unbounded cycle may be a cycle such that the maximum number

of iterations is also influenceable by received IPC data.

6.2 Case Studies

In this section, we introduce two systems built on seL4 and discuss how

Manipulative Interference Attacks (MIA) can threaten both system designs. As

a µ-kernel, seL4 offers a trusted core for a system, but application design requires

system orchestration (e.g., for spatial and temporal isolation properties), so we

investigate two popular choices for orchestration on seL4.

First, we describe the seL4 Microkit [125], formally known as the seL4 Core

Platform, that facilitates system deployment on the seL4-MCS version of the kernel

with mixed-criticality scheduling extensions. Second, we describe the series of

build artifacts created in the DARPA Cyber Assured System Engineering (CASE)

program [29] that facilitates system deployment on the original seL4 version of the

kernel.

Each version of the kernel has different benefits, and moreover, offers

different ways to provide temporal isolation, so we study the impact of MIA

in both situations. Specifically, the goal of this section is to discuss how MIA

can arise in both system designs, regardless of the temporal isolation strategy

used. Correspondingly, we create a toy example system that suffers from MIA,

and discuss how neither system design can inherently prevent the attack, and

instead, a system designer must check and account for MIA in either case. In

particular, Figure 20 and Figure 21 show our toy example system under mixed-

103

Thread 1
Budget

(Priority 4)

Thread 2
Budget

(Priority 3)

Thread 3
Budget

(Priority 2)

Thread 4
Budget

(Priority 1)

Expected
Execution Length

Job arrives Budgets Replenished

Blocked: No budgetExecuting

Time

IPC Received

I/O Fired

Job complete

Blocked: Low Priority (MIA)

Blocked: Low Priority

Send IPC

Influenced Cycle

😈

Send IPC

IPC Received

Wait on I/O Deadline Missed

A

B

C

D

E

Figure 20. Mixed Criticality Scheduling used on seL4-MCS for Microkit offers
better system utilization, but still cannot prevent MIA.

criticality scheduling and domain scheduling, respectively. Afterwards, in Section

8.2, we complementarily evaluate the performance of our automatic analysis tool.

The studied toy example system can be found in Appendix B. Moreover, the

automatically generated FSP model for the two systems can be found online,

and alternatively, one can recreate the vulnerable system on each kernel in our

experiments found with our analysis tool2.

6.2.1 seL4 Microkit. The Microkit system is an operating system

framework that provides a small set of simple abstractions to ease the design and

implementation of statically structured systems on the seL4-MCS extensions of

the seL4 kernel. In particular, Microkit helps deploy individual programs designed

to be isolated with the fundamental abstraction of a protection domain. Because

Microkit uses seL4-MCS [137], each protection domain is assigned a budget, period,

priority, and series of notification and protected procedure objects. Notification

objects facilitate shared memory channels, whereas protected procedure objects

2https://github.com/smergendahl/manipulative-interference-attacks

104

facilitate IPC. Importantly to MIA, systems built on Microkit deploy within

protection domains scheduled with respect to priority and budget.

In Figure 20, we discuss how seL4-MCS schedules threads. Namely, when

a job arrives for a high-priority thread, and the thread has a remaining budget, it

will execute until its budget is depleted (see A at Thread 1 in Figure 20). Once the

budget is depleted, the thread will block until seL4-MCS replenishes its budget.

However, when a job arrives for a lower-priority thread, and a higher-priority

thread is currently executing, seL4-MCS will not schedule the lower-priority thread

until the higher-priority thread blocks (see B at Thread 2 in Figure 20. Following

from research into MCS systems, Microkit can achieve high system utilization (e.g.,

the system is never idle in Figure 20).

However, when a high-priority thread acts as an IPC server (in this case,

Thread 2), a compromised thread has an opportunity to trigger MIA. When

Thread 4 sends a maliciously crafted IPC message to Thread 2 (see C in Figure

20), the message could influence a cycle at the receiver that triggers unexpectedly

long processing time (see D in Figure 20). During this processing, when Thread 2

receives an external event, seL4-MCS will not schedule Thread 2 due to the server’s

higher priority which will cause Thread 2 to miss its deadline (see E in Figure 20).

It is important to note that under a semi-honest threat model, where maliciously

crafted IPC messages are not considered, this system will operate as desired, and

meet all required deadlines.

6.2.2 DARPA CASE. The DARPA CASE program [15] introduced

several assurance tools to aid with the orchestration of critical systems. This

program was a giant leap forward for the usability of assurance tools and developed

a series of model-based systems engineering tools [134, 135, 59] for system

105

Thread 1
Budget

(Priority 4)

Thread 2
Budget

(Priority 3)

Thread 3
Budget

(Priority 2)

Thread 4
Budget

(Priority 1)

Executing

I/O Fired

Send IPC
😈

IPC
Received

Expected
Execution Length

Job arrives

Time

IPC
Received

Influenced
Cycle

Send IPC

Executing

Domain 4 Domain 1 Domain 2 Domain 3 Domain 4 Domain 1 Domain 2 Domain 3

Blocked: Wrong Domain

Deadline Missed

Blocked: Waiting for
Server (MIA)

System Idle

A

B
C

D

E

Figure 21. Domain Scheduling used on seL4 for the DARPA CASE program leads
to complex IPC issues and ultimately instances of MIA.

assurance. In particular, these tools realize cyber-resiliency requirements based on

an initial Architecture Analysis and Design Language (AADL) model [80] in which

components are automatically generated from formal specifications with verified

system design properties, such as information flow, using formal methods. One of

the tools, HAMR [29], automatically stitches the system together to deploy within

the popular CAmkES seL4 configuration environment [120].

However, unlike Microkit, these tools leverage the original seL4 kernel. This

is largely because seL4-MCS does not support the same level of system verification

as the original kernel. Since the program aims for system verification, the original

seL4 kernel acts as a stronger trusted compute base (TCB) to guarantee system

properties. But, without mixed-criticality scheduling, the CASE program instead

must rely on the domain scheduler offered by seL4 to ensure the temporal safety of

the system.

In Figure 21, we discuss how domain scheduling works on the original seL4

kernel. Like seL4-MCS, threads are assigned priority, notification objects, and

106

protected procedure objects, but are not assigned execution budgets. Instead, with

the domain scheduler, threads operate in a round-robin fashion where each thread

is guaranteed a timeslice to execute. Namely, a compromised thread that attempts

to exceed its scheduled timeframe cannot starve other tasks. However, this strict

schedule can lead to loss of system utilization. For example, if a job arrives before

the relevant timeslice, the thread remains blocked until the appropriate domain is

scheduled (see Figure 21 at A) which can lead to periods when the entire system

is idle (see Figure 21 at B). As such, a common strategy to achieve temporal

isolation on the formally verified version of the kernel is to deploy conservative

timing estimates and accept the loss of system utilization.

However, similar to with seL4-MCS, system IPC leads to an opportunity

for compromised components to trigger MIA. As before, when Thread 4 sends a

maliciously crafted IPC message to Thread 2 (see C in Figure 21), its message can

influence a cycle at the receiver that triggers an unexpectedly long processing time

(see D in Figure 21) which ultimately leads to a missed deadline (see E in Figure

21). Moreover, under a semi-honest threat model, this system will again operate as

desired, and meet all required deadlines.

Unfortunately, this toy example of a domain-based system highlights a

subtle insight previously unidentified. With domain scheduling, shared IPC cannot

follow the required IPC guidelines of seL4 [99]. Namely, a shared IPC server should

never block as it allows for low-priority IPC clients to be processed while a higher-

priority client requires service. However, the strict nature of domain scheduling

necessitates this behavior. We believe this is often overlooked, and system

designers need an analysis tool to be able to discover these subtle problems.

107

CHAPTER VII

Thundering Herd Attacks (THA)

As seen in Mergendahl, S., Jero, S., Ward, B. C., Furgala, J., Parmer, G.,

& Skowyra, R. (2022, May). The thundering herd: Amplifying kernel interference

to attack response times. In 2022 IEEE 28th Real-Time and Embedded Technology

and Applications Symposium (RTAS),(pp. 95-107).

This chapter introduces Thundering Herd Attacks on the synchronous-IPC

and budget-management mechanisms in OS kernels. In the classical Thundering

Herd problem [180], many threads waiting on some event are woken up but only

one is actually able to proceed, causing the other threads to consume resources

before blocking again. Similarly, in our Thundering Herd Attacks, a large number

of normal application threads methodically use IPC facilities and carefully consume

budget in a manner that causes kernel execution commensurate with the number of

threads. Many of the mechanisms added to ostensibly improve temporal isolation

inadvertently enable this class of attacks. Most kernels employ non-preemptive

execution to control concurrency. However, when the kernel execution caused by

the Thundering Herd runs non-preemptively, long stretches of non-preemptive

execution interfere with and delay the activation of high-priority threads. This can

threaten the high-priority thread’s ability to meet deadlines.

This leaves us with what we call the system-coordination dilemma: if we

use simple IPC mechanisms, then the system suffers from inter-client interference,

thread accounting is unpredictable, and execution is unconstrained; if we counter

inter-client interference by making IPC priority aware, then attacks on the kernel’s

priority mechanisms cause significant interference; if we counter unpredictable

system accounting and lack of execution isolation by using budgets, then the

108

budget-accounting mechanisms cause significant interference. The techniques

employed to increase the intelligence of thread coordination also lead to significant

attacks. Many of these issues are quite nuanced and not immediately obvious,

especially to application engineers instead of systems researchers. This chapter

therefore sheds light on this fundamental scientific dilemma, and illustrates specific

tradeoffs.

7.1 Traditional IPC Interference

In this section, we describe a series of well-known, synchronous-IPC-

based interference issues that delay high-priority tasks that use shared services.

These issues serve as the motivation for the mechanisms that are exploited by our

Thundering Herd Attacks in §7.2. In particular, though the academic community

has introduced these issues previously, in order to fully understand the system-

coordination dilemma that drives our Thundering Herd Attacks, we provide a

detailed analysis of these relevant interference issues known by the community.

For each interference issue, we provide an overview of the issue, describe the issue

in detail, and finally, discuss existing mitigations. Moreover, we later quantify the

negative effect of these interferences in §8.2.

7.1.1 Overview. In order to create these interferences, we leverage a

set of low-priority threads to cause a high-priority shared server to perform work

on behalf of low-priority threads, instead of either a) working for the high-priority

victim task or b) scheduling the high-priority victim task itself. We consider any

such work that the server executes on behalf of a low-priority thread to be High-

priority interference (HPI). Note that we assume that the shared server is executing

at a higher priority than any client. Lastly, for each attack example, we refer the

reader to Figure 22 for the notation found in each figure.

109

Work on Behalf
of Victim

Job Scheduled

Blocked on IPC
Endpoint

Replenishment
Period Budget Spent

Work for a Low-
Priority Thread Blocked on I/O Budget

Replenished

Replenishment
Queue Sort

Synchronous
IPC to Server

Request I/O

I/O Fired

IPC Endpoint
Queue Sort

Replenishment
Processing

Figure 22. Legend used throughout attack examples.

time

HPI

Server
Thread

Victim
Thread

Malicious
Thread 1

Malicious
Thread 2

Malicious
Thread n

Lowest
Priority

Highest
Priority

Figure 23. FIFO Endpoint Flood Interference example schedule.

7.1.2 FIFO Endpoint Flood Interference. The first HPI we

describe is the FIFO Endpoint Flood Interference discussed by Liedtkeet al. almost

25 years ago [131]. We depict this in Figure 23. In this HPI, a set of low-priority

threads all make synchronous IPC requests to a currently blocked shared server

before a high-priority victim task also makes a synchronous IPC request. If the IPC

endpoint queue is a first-in, first-out (FIFO) queue, as in seL4 and other common

µ-kernels, then this forces the shared server to receive and process the (low-priority)

requests from the low-priority threads before the request from the high-priority

task. This period in which the server executes on behalf of the low-priority threads

instead of the higher-priority client is HPI.

110

We note that a server executing on behalf of a client shares some

commonalities, at least analytically, with executing a critical section within a lock.

In the seminal work on the Priority Ceiling Protocol (PCP) [191], it was identified

that self-suspensions within critical sections invalidate the PCP analysis. This

interference effectively exploits this same phenomenon, and reinforces that neither

critical sections nor servers executing on behalf of a blocked client should suspend.

While seL4 has never, to the best of our knowledge, documented that servers should

never suspend, it has been part of the informal developer knowledge in the seL4

community for some time [99]. Additionally, we note that self suspensions are

difficult to analyze, and can have surprising consequences, as show by Chen et

al. [49] who demonstrated that many papers on the topic going back as early as

1994 are incorrect due to common misconceptions about suspensions.

Interference Mitigations. In order for this HPI to occur, there must

be a moment when both the victim task and the shared server are blocked. Thus,

one potential mitigation is to not allow either the victim task or the shared server

to block. For the victim task this is often an unreasonable request, as it may be

periodically activated or block waiting on some long-duration operation. For the

shared server, this is more reasonable, but may still be problematic, especially in

the case of a server for an I/O device, which may need to occasionally block waiting

for the I/O device to catch up. This momentary suspension of the shared server,

however, allows the lower-priority threads the opportunity to run and queue on the

server’s endpoint, resulting in this interference.

Instead, in order to mitigate this interference, seL4-MCS introduces priority

sorting for its IPC endpoint queues. Because the victim task has higher priority

111

time

Server
Thread

Victim
Thread

Malicious
Thread 1

Malicious
Thread 2

Malicious
Thread n

HPI

Lowest
Priority

Highest
Priority

Figure 24. Priority Ceiling Processing Interference example schedule.

than the malicious threads, it will sort to the front of the IPC endpoint queue, and

eliminate this particular set of HPI.

7.1.3 Priority Ceiling Processing Interference. We now describe

Priority Ceiling Processing Interference, depicted in Figure 24. This interference

again leverages the results from the Priority Ceiling Protocol (PCP) [191] work.

However, in this case, the IPC endpoint queue does not have to be FIFO; it may

be priority-sorted or arbitrarily ordered. Without loss of generality, we assume a

priority-sorted endpoint queue, like the one provided by seL4-MCS, as that protects

against the previous FIFO Endpoint Flood Interference. Similar to the previous

FIFO Endpoint Flood Interference, the victim is a high-priority task that performs

a synchronous IPC request to a shared server and a set of low-priority threads to

introduce interference. Again, the shared server executes at a higher priority than

all clients and we assume that it blocks, possibly due to handling I/O.

When the shared server is blocked, the victim task can run and perform its

IPC request to the server, resulting in it being queued on the endpoint. Now, all

the low-priority threads run and make IPC requests and queue on the endpoint.

112

Note that whatever order these clients run, the victim task will be sorted to the

front of the priority-ordered queue. When the server wakes up, it will process the

request from the victim task first. However, once that request is completed, the

server will go on to process the requests from the low-priority threads instead of

allowing the high-priority victim thread to be scheduled, because the shared server

runs at a higher priority than all its clients. Thus, this period between when the

shared server completes processing the request from the victim thread and when

that thread is actually scheduled is HPI.

Interference Mitigations. Previous studies have investigated the issues

with priority ceiling processing [191], and the general recommendation is that,

in order to prevent this problem, shared-server threads should be designed to

never block. When high-priority servers do not suspend, the low-priority threads

are handled as they arrive and there is no opportunity for a large queue to form.

Although seL4-MCS does not contain an explicit defense against this interference,

its design philosophy follows this recommendation that servers never block, as

evident in its sporadic-server design [210, 99].

7.1.4 Budget Drain Interference. Finally, we describe Budget

Drain Interference, which enables low-priority threads to delay a high-priority

victim task by making repeated requests to a shared server. In particular, as

discussed by Shapiro [195], low-priority threads can make repeated requests to a

shared server to drain its budget. Then, when the victim task makes a request

to the shared server, it must wait for the server’s budget to be replenished before

its request is processed. This requires an opportunity for the malicious threads to

make many requests to the shared server, but can have very large impacts. See

Figure 25 for more details of this HPI. The exact HPI that results scales with

113

Malicious
Thread 1

Server
Thread

Victim
Thread

Malicious
Thread 2

Malicious
Thread n

Lowest
Priority

Highest
Priority

time

HPI

Figure 25. Budget Drain Interference example schedule.

the replenishment period of the server’s budget. We refer to prior work on this

interference for a more exact measure of its impact [195].

Interference Mitigations. Mitigations to this HPI include sporadic

servers as well as budget inheritance/donation systems that allow servers to use a

client’s budget for processing their requests. seL4-MCS includes support for passive

threads, requiring budget donation, as well as support for sporadic servers that can

track a bounded number of replenishments [210].

7.1.5 Relationship to the System-Coordination Dilemma. As

discussed, a variety of mitigations exist to prevent these interferences. However, in

many cases, particularly priority-sorting IPC endpoint queues, providing sporadic

servers, and providing budget inheritance, these mitigations result in additional

complexity in µ-kernel implementations. Many µ-kernels, including seL4-MCS,

implement these additional features to protect against these kinds of HPI.

We show next that this additional complexity can be attacked, resulting in

our Thundering Herd Attacks. Thus, the system-coordination dilemma requires

114

that a system designer must choose between HPI from these traditional interference

issues, and HPI from Thundering Herd Attacks.

7.2 Thundering Herd Attacks

In this section, we introduce and describe our Thundering Herd Attacks.

These attacks target the mitigations deployed against the traditional IPC

interference issues (discussed in §7.1) to introduce additional non-preemptive kernel

processing into the system with the aim of causing schedule overruns for high-

priority tasks. We first provide an overview of these attacks and then discuss each

of them in detail.

7.2.1 Overview. We refer to these attacks as Thundering Herd

Attacks because they use many attacker-controlled threads to perform IPC and

consume budget in ways that force the kernel mechanisms necessary for handling

budgets and prioritized queues to do large quantities of non-preemptive work.

This kernel-level work supersedes execution of all user-space threads, and, when

combined with a non-preemptable kernel, like seL4 (see Chapter II), these attacks

can even supersede interrupts.

The kernel mechanisms we exploit are necessary to mitigate the previously

discussed IPC interference issues. In particular, we leverage priority-sorted IPC

endpoint queues and sorted queues of threads waiting for budget replenishment.

This forces a system-coordination dilemma on the user: either deal with the client-

interference issues illustrated in the traditional IPC interference issues or deploy

defense mechanisms against the traditional IPC interference issues and be exposed

to our Thundering Herd Attacks.

For each Thundering Herd attack, the attacker leverages a set of low-priority

threads. However, unlike the traditional IPC interference issues, a shared server

115

is no longer required. By manipulating its own threads, the attacker can cause

extended non-preemptive kernel processing that will delay any thread or interrupt

in the system. Similar to §7.1, we consider this kernel-level processing on behalf

of a low-priority thread, when the high-priority victim thread is ready, to be HPI.

We emphasize that this is possible even when the attacker threads and the victim

thread are completely disjoint with no shared servers or resources.

7.2.2 Endpoint Queue Sorting Attack. The first attack we

describe is the Endpoint Queue Sorting Attack. This attack takes advantage of

the fact that µ-kernels, such as seL4-MCS, often priority sort the threads blocked on

synchronous IPC endpoints. Recall from §7.1.2 that this is an essential technique to

mitigate the FIFO Endpoint Flood Interference. seL4-MCS uses a simple linked list

to implement this priority queue, making it O(n) to insert a new thread in sorted

order. Threads are added to the back of the queue and sorted forward in increasing

priority. The only requirement for an attacker to launch this attack is the ability to

either have or create both a single endpoint and many schedulable threads at three

different priorities. This is consistent with our threat model as a malicious thread

may spawn other threads. We reiterate that both the shared server and its clients

in this attack can be attacker controlled tasks of low priority and disjoint from the

rest of the benign system.

The Endpoint Queue Sorting Attack works as shown in Figure 26. First,

the attacker finds or creates an IPC endpoint and creates a server thread to listen

on this endpoint. This thread should have the lowest priority. Then the attacker

iteratively starts a series of attack threads with the middle priority and causes

them to perform a synchronous IPC on the IPC endpoint. This generates a long

queue of threads on the endpoint, but without any sorting as they are added. The

116

time

Victim
Thread

Attack
Client 1

Attack
Client 2

Attack
Client n

Attack
Server

HPI

Kernel

Highest
Priority

Lowest
Priority

Figure 26. Endpoint Queue Sorting Attack example schedule.

attacker then creates another thread with its higher priority that will repeatedly

perform a synchronous IPC on the IPC endpoint. When this occurs, the kernel

will sort this attacker thread to the front of the endpoint queue. At this point, the

attacker’s server thread runs, handling the attacker’s higher-priority thread and

allowing the attacker’s higher-priority thread to run again. The higher-priority

thread will immediately make another IPC call which will force it to be sorted

to the front of the endpoint queue again. When the high-priority victim thread

becomes runnable, often as a result of an interrupt, it will be delayed due to the

kernel non-preemptively sorting the endpoint queue, resulting in HPI.

Attack Mitigations. Because the kernel uses a linked list for its priority

queue, insertion is O(n). One way to mitigate this attack would be to use a

different data structure with smaller insertion complexity for the endpoint priority

queues. For example, a red-black tree would offer O(log(n)) worst-case performance

117

against our attack, which could reduce the impact of the attack, but not eliminate

it altogether (see §8.2).

Another option would be for the kernel to maintain a separate queue for

each priority level on each IPC endpoint (similar to the plist data structure found

in Linux [13]). If there were a separate queue for each priority, there would be no

need to sort the queues, which would eliminate the vector for this attack. With no

queues to sort, insertion would again be O(1), eliminating the HPI caused by the

Endpoint Queue Sorting Attack at the cost of a small amount of memory.

7.2.3 Replenishment Queue Sorting Attack. Next we introduce

the Replenishment Queue Sorting Attack. This attack leverages the fact that when

a thread expends its budget, it is placed on a queue of pending replenishments.

Replenishments are essential to budgets which, as discussed in Chapter II, are

critical to constrain the execution of low-assurance threads and prevent their

interference with other threads.

seL4-MCS implements replenishment as set of replenishment queues,

one for each core, with each queue sorted based on soonest period expiration

(i.e., the thread that will be replenished soonest). In seL4-MCS these are, again,

implemented as priority-ordered linked lists, making insertion of new threads O(n).

As a result, we can linearly increase the computation required to enqueue a thread

by increasing the length of this queue. The only requirements for an attacker are

the ability to either have or create many schedulable threads at the same priority

and to have some control over their budgets and periods. Note that this attack

does not rely on IPC.

The Replenishment Queue Sorting Attack works as shown in Figure 27. The

attacker creates and runs a large number of attack threads that execute infinite

118

time

Victim
Thread

Attack
Thread 1

Attack
Thread 2

Attack
Thread n

Kernel

HPI

Attack
Thread 3

Highest
Priority

Lowest
Priority

Figure 27. Replenishment Queue Sorting Attack example schedule.

loops to spend their budgets and be queued in the replenishment queue. The

periods of these threads, however, are carefully chosen. Since seL4-MCS inserts a

new thread at the front of the replenishment queue and then sorts it towards the

back, inserting threads with longer periods results in more sorting while threads

with shorter periods are O(1). As a result, each of the attack threads should have a

shorter period than the one before it, thus generating a large replenishment queue

without sorting. Finally, to trigger the attack, the attacker creates and executes a

thread with a period longer than any other thread. As a result, once this thread

exceeds its budget, it will be sorted all the way to the back of the replenishment

queue. When the high-priority victim thread becomes runnable, often as a result

of an interrupt, it will be delayed due to the kernel non-preemptively sorting the

replenishment queue, resulting in HPI.

The specifics of exactly how the replenishment queue is sorted are

immaterial to this attack. For example, if the kernel instead inserted threads at the

119

tail of the replenishment queue and sorted the soonest-to-be-refilled replenishments

to the front, the attacker would initialize periods in the opposite manner: the first

threads would have increasingly larger periods, with the last attack thread having

the shortest period.

Attack Mitigations. As with the Endpoint Queue Sorting Attack,

potential mitigations include data structures with lower insertion complexity (e.g.,

red-black trees). However, unlike the Endpoint Queue Sorting Attack, because the

Replenishment Queue Sorting Attack does not target a queue sorted by priority or

leverage threads of different priorities, separate queues per priority will not affect

the outcome of this attack. In particular, the replenishment queue is sorted based

on time-until-replenishment, not the priority of the respective thread.

7.2.4 Replenishment Wakeup Processing Attack. Finally, we

introduce the Replenishment Wakeup Processing Attack. Similar to the previous

attack, this attack takes advantage of the queue of pending budget replenishments

maintained by seL4-MCS. However, rather than focusing on the sorting that

occurs when a new thread is added to the replenishment queue, this attack

focuses on the processing that occurs when threads are ready to be replenished.

In particular, this attack attempts to cause a large number of attacker-controlled

threads to be replenished at the same moment, directly prior to the execution of

the high-priority victim thread. This will cause HPI as the low-priority attacker

threads are replenished instead of running the high-priority victim thread. The

only requirements for an attacker are the ability to either have or create many

schedulable threads and to have some control over their budgets and periods.

This could be realized by either having a copy of the SchedControl capability,

120

time

Victim
Thread

Attack
Thread 1

Attack
Thread 2

Attack
Thread n

Kernel

HPI

Attack
Thread 3

Highest
Priority

Lowest
Priority

Figure 28. Replenishment Wakeup Processing Attack example schedule.

or issuing a request that is serviced by an admission-control server to populate the

SchedContext budget and period.

The Replenishment Wakeup Processing Attack works as shown in Figure 28.

The attacker creates and runs a large number of attack threads. These threads

execute infinite loops to spend their budgets and be queued in the replenishment

queue. However, their budgets and periods need to be carefully chosen. In

particular, the attacker must choose the budget and period of each thread such that

all threads will be replenished at the same moment (or at least within the same

timer tick). This moment when all the threads need to be replenished is chosen to

be just before the high-priority victim thread is ready. As a result, when the high-

priority victim thread becomes runnable, often as a result of an interrupt, it will

be delayed due to the kernel non-preemptively processing the replenishment queue,

resulting in HPI.

121

Attack Mitigations. The Replenishment Wakeup Processing Attack

appears to illustrate a fundamental instance of the system-coordination dilemma.

Kernel processing of replenishments is fundamental to proper enforcement of

temporal budgets. Moreover, as we will see in §8.2, if a system designer deploys a

logarithmic data structure to alleviate the Replenishment Queue Sorting Attack,

such a logarithmic data structure will increase the effect of the Replenishment

Wakeup Processing Attack. Namely, while the logarithmic data structure decreases

insert processing from O(n) to O(log(n)), it also increases deletion from O(1) to

O(log(n)).

Lastly, because the kernel processes all available replenishments at once, a

separate queue per priority will not mitigate the Replenishment Wakeup Attack

alone. In particular, even if the replenishments were in different queues by priority,

the current design of the kernel requires it to process all replenishments to avoid

replenishment starvation (including replenishments associated with low-priority

threads). However, while separate queues per priority alone would not mitigate the

attack, such an implementation could enable a new priority-aware replenishment

processing scheme in the kernel. Unfortunately, such a design would require

significant structural changes to the kernel (e.g., a significant redesign of most

aspects of the system including the IPC path). Nonetheless, such a redesign could

prove fruitful, with the caveat of a careful examination of the trade-offs of such an

implementation.

7.3 Evaluation

In this section, we implement and quantify both the synchronous-IPC-

based interference issues that delay high-priority tasks using shared services

(§7.1) and our Thundering Herd attacks that introduce additional non-preemptive

122

kernel processing into the system (§7.2). We then empirically evaluate a possible

mitigation strategy for our Thundering Herd Attacks that modifies the seL4-

MCS kernel to use red-black trees to priority sort both the IPC endpoint queues

and replenishment queues that the kernel maintains with logarithmic complexity.

Finally, we analyze the impact of another mitigation strategy that uses a queue-

per-priority data structure.

7.3.1 Experimental Setup. We implement each studied attack on

seL4 (or seL4-MCS) version 12.0.0 and quantify their impact using the popular

Zynq-7000 XC7Z020 SoC, which includes a dual-core Arm Cortex-A9 processor

running at 667 MHz and a Xilinx FPGA. We use only a single core for this

evaluation and do not use the FPGA at all. We use gcc version 8.3.0 (Debian

8.3.0-2) for arm-linux-gnueabi-gcc to compile seL4 and our test code. We use

the on-chip performance counters to determine overheads. Unless otherwise noted,

all results are computed from 100 iterations. Because of the high accuracy of our

testbed and test suites standard deviations are frequently very small and may not

be visible in all graphs.

7.3.2 Traditional IPC Interference Results. We implemented

FIFO Endpoint Flood Interference in our testbed using seL4 and minimal client

and server applications and report its impact in Figure 29a. We observe that

significant impacts are possible, with a thousand low-priority threads causing over

1 million cycles (1.5ms) of interference. Further, as the number of low-priority

threads increases we see that HPI increases linearly. We additionally perform

experiments where the server performs different amounts of work for each request,

which we refer to as overhead. For example, with overhead 400, the server performs

approximately 400 cycles of work for each request, while with overhead 1200 the

123

0 250 500 750 1000 1250 1500 1750 2000
Number of Attackers

0

1000000

2000000

3000000

4000000

5000000

Ad
di

tio
na

l D
el

ay
on

 V
ict

im
 T

hr
ea

d
(c

yc
le

s) Overhead 0: f(x) = 1270.01x + -6761.11 (R=1.00)
Overhead 400: f(x) = 1679.19x + -6272.61 (R=1.00)
Overhead 800: f(x) = 2088.38x + -7200.79 (R=1.00)
Overhead 1200: f(x) = 2515.60x + -5101.14 (R=1.00)

Overhead 0 (50th%)
Overhead 400 (50th%)
Overhead 800 (50th%)
Overhead 1200 (50th%)

Overhead 0 (25th%)
Overhead 400 (25th%)
Overhead 800 (25th%)
Overhead 1200 (25th%)

Overhead 0 (95th%)
Overhead 400 (95th%)
Overhead 800 (95th%)
Overhead 1200 (95th%)

(a) FIFO Endpoint Flooding.

0 250 500 750 1000 1250 1500 1750 2000
Number of Attackers

0

1000000

2000000

3000000

4000000

5000000

Ad
di

tio
na

l D
el

ay
on

 V
ict

im
 T

hr
ea

d
(c

yc
le

s) Overhead 0: f(x) = 1494.66x + -6669.46 (R=1.00)
Overhead 400: f(x) = 1899.77x + -4828.37 (R=1.00)
Overhead 800: f(x) = 2302.85x + -4561.91 (R=1.00)
Overhead 1200: f(x) = 2738.24x + -3903.62 (R=1.00)

Overhead 0 (50th%)
Overhead 400 (50th%)
Overhead 800 (50th%)
Overhead 1200 (50th%)

Overhead 0 (25th%)
Overhead 400 (25th%)
Overhead 800 (25th%)
Overhead 1200 (25th%)

Overhead 0 (95th%)
Overhead 400 (95th%)
Overhead 800 (95th%)
Overhead 1200 (95th%)

(b) Priority Ceiling Processing.

Figure 29. HPI from the traditional IPC interference issues with different numbers
of threads and quantities of work for each request.

server performs approximately 1200 cycles of work for each request. Thus, the

imposed delay also increases linearly with respect to the amount of work the server

performs for each request.

We also implemented Priority Ceiling Processing Interference in our testbed

using seL4-MCS, which priority sorts the endpoint queue, and report the impact

of this HPI in Figure 29b. Much like the prior interference issue, we observe that

HPI scales linearly with both the number of low-priority threads and the amount of

work the server performs on behalf of each client. Compared to the FIFO Endpoint

Flood Interference, we observe that this interference is slightly more powerful in

terms of the HPI from each low-priority thread.

7.3.3 Thundering Herd Attack Results. Next, we empirically

evaluate the impact of the Endpoint Queue Sorting Attack on seL4-MCS in

Figure 30a. We observe that significant impacts are possible, with 1,000 attack

threads introducing about 100,000 cycles (150 µs) of HPI. The introduced HPI

is also linear with the number of attack threads. It is also interesting to note

that, unlike the IPC interference issues discussed previously, it takes a number of

attacker threads (∼ 125) before an impact is noticeable. This is likely due to a

combination of cache effects, where for very small numbers of threads everything

124

0 1000 2000 3000 4000 5000
Number of Attackers

0

200000

400000

600000

800000

1000000

Ad
di

tio
na

l D
el

ay
on

 V
ict

im
 T

hr
ea

d
(c

yc
le

s)

Linked List: f(x) = 98.22x + -912.13 (R=1.00)

Linked List (50th%) Linked List (25th%) Linked List (95th%)

(a) Endpoint Queue
Sorting.

0 1000 2000 3000 4000 5000
Number of Attackers

0

200000

400000

600000

800000

1000000

Ad
di

tio
na

l D
el

ay
on

 V
ict

im
 T

hr
ea

d
(c

yc
le

s)

Linked List: f(x) = 185.72x + -18834.10 (R=1.00)

Linked List (50th%) Linked List (25th%) Linked List (95th%)

(b) Replenishment
Queue Sorting.

0 200 400 600 800 1000
Number of Attackers

0

20000000

40000000

60000000

80000000

100000000

Ad
di

tio
na

l D
el

ay
on

 V
ict

im
 T

hr
ea

d
(c

yc
le

s) Linked List: f(x) = 128425.98x + -30944619.21 (R=0.95)

Linked List (50th%) Linked List (25th%) Linked List (95th%)

(c) Replenishment
Wakeup Processing.

Figure 30. HPI from the Thundering Herd attacks with a linked-list kernel data
structure.

may be in L2, and the difficulty of targeting the attack when it introduces only a

small delay.

Similarly, we empirically evaluate the impact of the Replenishment Queue

Sorting Attack on seL4-MCS in Figure 30b. We see that the impact of this attack

grows linearly with the number of attacker threads and that it requires a number

of attack threads before the attack becomes noticeable. However, this attack has a

larger impact for each individual attacker thread of approximately 185 cycles.

Lastly, we implemented the Replenishment Wakeup Processing Attack

on seL4-MCS and demonstrate its impact in Figure 30c. This attack is more

challenging than the others to properly orchestrate since we must predict execution

times very accurately so that all attacker threads will be replenished at the same

instant as the victim thread becomes runnable. For a small number of attacker

threads, we are unable to precisely align the attack with the victim thread, as seen

on the left of Figure 30c. However, once we get above about 450 attackers, the

impact of the attack becomes large enough that we can reliably impact the victim.

While this attack is harder to execute, it is also much more powerful, as each

thread causes about 100,000 cycles of HPI. The impact also grows linearly with the

number of threads, meaning that 1,000 attack threads can introduce approximately

100 million cycles (150ms) of interference.

125

0 1000 2000 3000 4000 5000
Number of Attackers

0

1000

2000

3000

4000

5000

Ad
di

tio
na

l D
el

ay
on

 V
ict

im
 T

hr
ea

d
(c

yc
le

s)

Red-Black Tree: f(x) = 534.93log(x) + -2764.54 (R=0.96)

Red-Black Tree (50th%) Red-Black Tree (25th%) Red-Black Tree (95th%)

(a) Endpoint Queue
Sorting.

0 1000 2000 3000 4000 5000
Number of Attackers

0

1000

2000

3000

4000

5000

Ad
di

tio
na

l D
el

ay
on

 V
ict

im
 T

hr
ea

d
(c

yc
le

s)

Red-Black Tree: f(x) = 384.62log(x) + -442.99 (R=0.97)

Red-Black Tree (50th%) Red-Black Tree (25th%) Red-Black Tree (95th%)

(b) Replenishment
Queue Sorting.

0 200 400 600 800 1000
Number of Attackers

0

20000000

40000000

60000000

80000000

100000000

Ad
di

tio
na

l D
el

ay
on

 V
ict

im
 T

hr
ea

d
(c

yc
le

s) Red-Black Tree: f(x) = 128781.04x + -31263079.52 (R=0.95)

Red-Black Tree (50th%) Red-Black Tree (25th%) Red-Black Tree (95th%)

(c) Replenishment
Wakeup Processing.

Figure 31. HPI from the Thundering Herd attacks with a red-black tree kernel data
structure.

7.3.4 Red-Black Tree Mitigation Results. We now consider

one possible mitigation for our Thundering Herd Attacks: the use of red-black

trees instead of linked lists for the sorted queues in the kernel. Because a red-

black tree maintains a O(log(n)) insert complexity, this would seem to be an

attractive means to mitigate the Endpoint Queue Sorting and Replenishment

Queue Sorting Attacks. As a result, we replaced the linked list implementation

for kernel metadata processing in seL4-MCS with a red-black tree and repeated the

same tests from §7.3.3.

Indeed, in Figure 31a and Fig. 31b, we can see that the red-black tree

limits the Endpoint Queue Sorting Attack and Replenishment Queue Sorting

Attack respectively to a logarithmic increase in HPI based on the number of attack

threads. However, these data structures do not mitigate the attack completely, as

an increase of up to 2,000 cycles and 3,000 cycles respectively is still demonstrated.

In contrast, we see from Figure 31c that using a red-black tree still results

in similar impacts for the Replenishment Wakeup Processing Attack. Just as for

the linked-list version (Fig. 30c) we see the attack become effective at about 450

attackers and cause about 100,000 cycles of HPI per attacker above that point. If

we investigate the differences between the linked list and red-black tree versions,

we find that the red-black tree increases the impact of the attack by around

126

1,500 cycles. We posit this effect comes from the fact that while the red-black

tree decreases insert complexity from O(n) to O(log(n)), it also increases removal

complexity from O(1) to O(log(n)), but we leave a detailed investigation for future

work.

7.3.5 Queue-per-priority Mitigation Analysis. We consider

one final mitigation strategy for our Thundering Herd Attacks: the use of a data

structure with separate queues per priority level, similar to the plist structure

found in Linux [13]. A common implementation would be an array of queues, one

for each priority level. seL4-MCS has 256 priority levels (0-255), so such a data

structure would have 256 queues.

For our Endpoint Queue Sorting Attack, this data structure would

completely eliminate the attack. This is because if there were a separate queue for

each priority, there would be no need to sort the queues. With no queues to sort,

insertion would be O(1). The only cost is a small amount of additional memory.

For the Replenishment Queue Sorting Attack, a data structure with separate

queues for each priority level would have no impact. This is because the queue

being attacked is not sorted by priority, but rather by time of next replenishment.

As a result, a data structure with separate queues per priority would merely

move the sorting into the per-priority queues rather than eliminate it. Further,

an attacker would still be able to create a large number of threads with the same

priority to cause extensive sorting in these per-priority queues.

Finally, for the Replenishment Wakeup Processing Attack, this kind of data

structure could provide benefits, but only with extensive kernel-wide modifications.

In particular, it would be desirable to only process wakeups for processes of greater

or equal priority to the currently running process. This would prevent wakeups

127

for lower-priority processes from causing HPI and those lower-priority processes

would not be run immediately anyway. While this is a promising idea, it requires

extensive redesign of seL4-MCS, which we leave for future work, to check for

pending wakeups on every context switch, including along the IPC hot path.

7.4 Implications for System Provisioning

A promising mitigation to these attacks is to explicitly provision a system to

be resilient to the HPI that attackers can induce using these attack techniques.

Specifically, if a system is provisioned with sufficient slack time, it is resilient

to attacker-induced HPI. Next we demonstrate through simple schedulability

experiments the utilization loss associated with such provisioning. Systems that

are not provisioned with such slack are vulnerable to Thundering Herd Attacks,

which can potentially maliciously cause timing violations.

7.4.1 Experimental Design. For our schedulability experiments, we

consider a simple sporadic task system scheduled with fixed-priority scheduling,

as is implemented in seL4. In particular, we consider a task system as a system of

n tasks Γ = {τ1, . . . , τn}. Each task τi = (Ci, Ti) is a recurring sequence of jobs,

each of which has an execution time of Ci, which are released sporadically with a

minimum separation of Ti time units. We assume implicit deadlines, and thus the

deadline of each job is Ti time from its release. The utilization of τi is defined as

ui = Ci/Ti, and the utilization of the task system U(Γ) =
∑

τi∈Γ = ui.

We randomly generated task systems using commonly used task-system

distributions. We considered all combinations of task-utilization and period

distributions used in Brandenburg’s dissertation [38] and codified in the associated

Schedcat library [39]. This resulted in 54 unique task-utilization and period

combinations. For each such combination, we varied U(Γ) ∈ {0.01, 0.02, . . . , 1.0},

128

0.0 0.2 0.4 0.6 0.8 1.0
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

H
R

T
 S

ch
e
d
u
la

b
ili

ty

Original

Attack-925

Attack-1875

Attack-7500

Attack-45000

(a) Short periods:
[3, 33]ms.

0.0 0.2 0.4 0.6 0.8 1.0
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

H
R

T
 S

ch
e
d
u
la

b
ili

ty

Original

Attack-925

Attack-1875

Attack-7500

Attack-45000

(b) Moderate periods:
[10, 100]ms.

0.0 0.2 0.4 0.6 0.8 1.0
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

H
R

T
 S

ch
e
d
u
la

b
ili

ty

Original

Attack-925

Attack-1875

Attack-7500

Attack-45000

(c) Long periods:
[50, 250]ms.

Figure 32. Sample schedulability graphs. All distributions uniformly distributed.
Medium per-task utilizations in [0.1, 0.4].

which resulted in 54 unique schedulability graphs. Three sample graphs from this

larger study are depicted in Figure 32.

We evaluated schedulability using the classic response-time analysis.

We model the High-priority interference induced by our attack techniques as

the highest-priority task in the system, τHigh-priority interference. The period of

τHigh-priority interference is defined to be hyperperiod, or the least-common multiple

of all task periods. This represents the possibility that an attacker can induce

HPI at any time, but cannot necessarily trigger such attacks multiple times to

trigger compounding effects. The execution time τHigh-priority interference is chosen

to reflect the amount of HPI that an attacker is assumed to be able to induce.

Based on our previous results, we chose to evaluate CHigh-priority interference ∈

{0.975, 1.875, 7.5, 45}ms. These values are chosen from the FIFO Endpoint

Flood Attack hpi with 500 and 1000 attackers (0.975ms, 1.875, resp.), and the

Replenishment Wakeup Attack with 500 and 1000 attackers (7.5ms, 45ms, resp.),

as representative values to demonstrate the potential range of consequences of

Thundering Herd Attacks.

An admission-control test that considers this interference derives this

overhead from the number of threads in the system paired with the results in §8.2.

129

7.4.2 Results. These results demonstrate that, for task systems

with shorter periods and hence tighter timing constraints, the HPI that these

attacks can induce can significantly impact schedulability. Indeed, the short periods

considered (uniformly distributed among [3, 33]ms) are less than the HPI from the

Replenishment Wakeup Processing Attack (45ms), and therefore no such tasks

can be guaranteed to meet their deadlines if such attacks are possible. Even if the

attacker is assumed to only be able to spawn fewer threads and therefore induce

less HPI, there can still be significant utilization loss.

In addition to enabling a proper admission-control test to mitigate the

Thundering Herd Attacks, these results can also be interpreted as demonstrating

what systems are vulnerable to Thundering Herd Attacks. Any task system that

is deemed schedulable without considering HPI but is not schedulable with HPI

is vulnerable to an attack that can trigger a deadline overrun. This is true even

in budgeted systems where temporal interference from one task to another is

controlled, as the HPI can be induced by low-priority tasks with minimal budgets.

These evaluations demonstrate the schedulability-related implications of the

system-coordination dilemma in light of our Thundering Herd Attacks. We next

discuss alternative means of mitigating these attacks and resolving this dilemma.

7.5 Discussion and Related Work

Synchronous IPC mechanisms have been studied as an attack vector [195]

as synchronous IPC ties the execution of clients to a server’s computation and

introduces inter-client interference when execution is serialized through server

threads. We have demonstrated in §7.2 and §8.2 that the kernel mechanisms for

maintaining the necessary IPC and execution metadata – which track the state

of communication and properly schedule threads – can themselves become attack

130

targets. A common characteristic of each attack is that kernel processing on this

metadata is not constant-time, and can thus be targeted by attackers. These

attacks are enabled by the non-preemptive nature of the kernel, made worse by

multicore systems that prevent parallel kernel execution using a lock.

While we study attacks on seL4-MCS, the core challenges generalize to other

systems with non-preemptive processing of IPC and budget-management data

structures. For example, µ-kernels commonly use non-preemptive spin-locks to

protect data-structures and disable interrupts during timer processing. Thus these

attacks might be more broadly impactful.

In the rest of this section we discuss implications of these findings for

µ-kernel design and highlight related work.

7.5.1 Implications for µ-Kernel Design. §7.4 discusses how to

integrate the measured overheads from the various attacks into schedulability

analysis. This test can be integrated into the system’s admission controller.

Unfortunately, we demonstrate that doing so can cause significant utilization

loss. Here we qualitatively suggest and assess a number of alternate kernel-design

options.

7.5.2 Track metadata with O(log(n)) data-structures. IPC

endpoint wait queues are tracked with linked lists and are sorted in seL4-MCS.

Replacing these with balanced binary trees will asymptotically decrease the cost

of adding threads to the queue, which would comparably decrease the amount of

non-preemptible execution, as shown in §7.3.4. This does not defeat the attacks,

but does lessen their impact. This effect has been observed when using O(log(n))

data structures for other potentially contended kernel data structures such as

timers [164] and futexes [233].

131

Logarithmic structures can also be used to track replenishments, which

would similarly decrease the asymptotic overheads for replenishment attacks.

Unfortunately, this is not a clear benefit. Though adding threads to the

replenishment queue on budget depletion would benefit, the overhead for processing

replenishments during seL4’s timer will increase, as shown in §7.3.4. Each of the n

replenishments that require processing will increase from constant to logarithmic

overhead. Our results suggest this may be a reasonable trade off.

7.5.3 Track wait queues with queue-per-priority data

structures. Instead of using a balanced tree, a constant-time structure common

in fixed-priority scheduling implementations could be used for IPC endpoint wait

queues. This is an array with one entry per priority, each containing a list of

waiting threads. A bitmap (or nested bitmaps) are used to track which priorities

have waiting threads. The constant-time overhead of this approach would defeat

the attacks on kernel IPC endpoint queues. The primary cost of this approach

would be a minor increase in IPC endpoint memory consumption commensurate

with the number of potential priorities.

7.5.4 Expanded use of preemption points. Preemption points are

explicit closures that capture a kernel in-progress operation and allow interrupts

to be processed, later continuing kernel execution from the closure. If they could

be applied to bound the cost of the wait-queue and replenishment operations,

they could be an important part of a solution. Preemption points add significant

complexity to the system and require kernel operations to be iteratively computed.

For example, preemption points are used to enable capability revocation to revoke a

limited number of resources, enable preemptions, and later resume revocation from

where it had previously left off. Unfortunately, iterating through a wait queue, or

132

through a queue of replenishments, does not fall into the traditional type of logic

that preemption points are designed for, as each iteration does not remove work

from the computation to be done after a preemption point. Such an iteration could

not be resumed after a preemption point as the preemption implies that the queue’s

structure could have been updated by intervening operations (e.g., removing the

thread from the wait queue referenced by the current iterator). Preemption point

logic would need to increase in complexity to handle wait-queue operations and

budget depletion.

Preemption points also cannot be added to the replenishment processing.

Preemption points rely on being able to resume a thread that continues kernel

processing from where it had previously left off. Despite preemption point’s

superficial applicability to these problems, unfortunately it won’t help with all

attacks, particularly with replenishment processing in timer-interrupt context.

7.5.5 Partial processing of wakeups in interrupts.

TimerShield [164] represents a potential solution to the replenishment-processing

problem. The key insight is that if replenishments can be tracked per-priority, then

all replenishments for time t do not need to be processed at that time. Instead, at

each scheduling decision, the replenishment queue can be consulted and processed

if the highest-priority threads requiring replenishments have the same or higher

priority than the highest-priority thread in the run queue. Though this approach is

appealing, it complicates the system, requiring the design of the replenishment logic

to be considered more broadly within the system as a whole.

7.5.6 Other µ-Kernel Designs. Although seL4 is based on the L4

µ-kernel heritage, it is a unique µ-kernel with functional verification as its primary

goal. Below we discuss other µ-kernel designs.

133

7.5.7 Fiasco and Nova. Fiasco [202] takes a different view on

priority and budget management during IPC. In Fiasco, servers execute using

the budget of the client requesting their service (as in seL4-MCS). However, in

both Fiasco and Nova [201] the server inherits the highest priority of any client

transitively waiting on the service. This can add overhead to the scheduling path as

the dependencies of the highest-priority thread (and its dependencies’ dependencies,

etc.) are traversed to find the server to execute. Additionally, Fiasco adds vCPU

budgets [121], which require depletion and replenishment processing.

Generally, these kernels execute preemptively, which prevents Thundering

Herd attacks on kernel structures from causing global interference. However, both

use spin-locks to protect kernel structures, which selectively disable interrupts while

processing data structures, and both disable interrupts for interrupt execution. We

have not assessed if Fiasco or Nova exhibit similar attacks on their non-preemptive

access to data-structures. The lessons of this research should inform the assessment

of their vulnerability to such attacks.

7.5.8 Thread migration in Composite. Thread-migration-based

IPC [82, 84, 162] is a different mechanism for synchronous coordination between

client and server. A server process is the target of the IPC, not a server thread.

IPC from a client triggers execution in the server that proceeds within the same

scheduler context as in the client process. It is called “thread migration” because

the same thread simply continues execution in the server, though spatial isolation

is maintained by splitting client/server execution across separate stacks and register

contents. Since the same schedulable client thread executes in the server, the same

scheduler abstractions such as priority and budget are maintained. This structure

imposes a few requirements:

134

1. servers are concurrent by default and thus require synchronized access to

shared data structures, and

2. server stacks must be allocated upon IPC to the server as the first action

within the server’s computation.

Both of these challenges can be addressed by efficient, predictable mechanisms for

stacks and mutual exclusion for both fixed [219], and dynamic [220] sets of threads.

Thread migration can avoid blocking semantics in the kernel; instead, schedulers

can be implemented in user-level processes [163, 86]. Even where budgets are

tracked in the kernel [85], replenishments are exported from the kernel to user-level

schedulers.

As thread migration enables the policies for contention, scheduling, and

budget management to be extracted from the kernel, all kernel operations can be

constant-time as demonstrated by [218]. However, within the scheduling processes

that maintain wait queues, budgets, and priorities, it is possible that Thundering

Herd Attacks could be impactful. Though interrupts are never disabled for user-

level processing, critical sections within the scheduler might comparably be

attacked, delaying necessary scheduling decisions.

7.5.9 Static Partitioning Hypervisors. Another potential solution

to these attacks is to use a static partitioning hypervisor, such as Jailhouse [115] to

statically isolate untrusted parts of the system from one another. This is perhaps

a reasonable solution for coarse-grained isolation of untrusted and uncooperating

components, provided that there are sufficient hardware resources to be dedicated

to individual partitions. However, µ-kernels such as seL4 enable more fine-grained

isolation, enabling the principle of least privilege to be employed in system

design, such as in Patina [107]. For example, many trusted, but not trustworthy,

135

components may communicate and collaborate and therefore need to be co-

located within a single static partition. But even a trusted component may be

compromised, and a component-based architecture, and resource sharing and

strong isolation enabled by a trustworthy µ-kernel such as seL4 limit the damage

an attacker can do. A static partitioning hypervisor can therefore help ameliorate

some of these concerns, but does not fundamentally solve the system-coordination

dilemma.

7.5.10 Summary. While we’ve discussed several potential solutions to

Thundering Herd Attacks in seL4, they all present trade-offs. We’ve also analyzed

different systems and shown that Thundering Herd Attacks are a more general

concern.

136

CHAPTER VIII

MIA DISCOVERY

As seen in the unpublished submission Mergendahl, S., Fickas, S., Norris,

B., & Skowyra, R. (2024, May). Manipulative Interference Attacks. In 2024 ACM

Conference on Computer and Communications Security (CCS),(In Submission).

8.1 Identifying MIA

In this section, we describe a methodology to automatically

identify when the primitives required to successfully execute

Manipulative Interference Attacks (MIA) exist within a system configuration.

Due to the complexity of MIA primitives (e.g., the delicate interplay between

budget, priority, and IPC or the dependence of data flow), we argue that an

automated approach will have the most success in identifying instances of MIA,

rather than solely relying on manual, technical expertise. Moreover, similar to the

triage of software vulnerabilities, we must prioritize any instances of MIA for a

system designer to perform a proper risk assessment of the system.

A key insight of our methodology is to leverage different tools where they

excel and avoid common pitfalls where the tools may fail. In particular, Figure

33 describes three different views of a system configuration and what tools we

use to identify the different MIA primitives. First, because of the difficulty to

manually determine if a component can become manipulated, we leverage static

analysis to automatically identify any cycles in each software component in

the system, and label each of these cycles as influenceable, triggerable, and/or

unbounded, with respect to an external entry point in the component (e.g., an IPC

receive path). However, the performance of inter-procedural static analysis may

become challenging, and further, performing static analysis across binaries is often

137

Priority: 2
Budget: 1

Priority: 5
Budget 9

Priority: 3
Budget 5

Priority: 2
Budget: 2

System Configuration of
Protection Domains

Control Flow Graph
of Domain Binary

Data Flow Graph
of Function

Priority: 1
Budget: 5

IPC

IPC

Shared
Memory

LTSA LTL Analysis LLVM Triage Analysis LLVM Cycle Analysis

Figure 33. We breakdown a system into three hierarchical views to a facilitate a
practical search for Manipulative Interference Attacks (MIA) in which we limit the
overhead of each of our analysis components to only one system view and combine
their results.

prohibitive. As such, we scope our static analysis to only identify data flow cycles,

and do not attempt to study the complex interplay between budget, priority, and

IPC assignment using solely static analysis.

Instead, we make a key connection that goal-oriented conflict analysis

is better suited to identify conflicts at the system configuration level. Namely,

we track priority, budget, and IPC assignment as goals in the system, and

instantiate these goals using Linear Temporal Logic (LTL) to identify divergent

goals that arise after considering the results from our static analysis. However,

if we were to leverage LTL analysis comprehensively to identify conflicts and

manipulable components, it would also suffer from prohibitively long analysis times.

Additionally, creating system models capable of LTL analysis requires expensive

technical expertise, so we take a revolutionary approach that automatically

generates the system model with readily available system build artifacts.

138

Stage 3

Stage 1

FSP
Generator

(Rust)

Identified
cycle

locations
& triggers

(json)

System
Model
(FSP)

Additional
Timing

Requirements
(Optional LTL)

LLVM Analysis
Pass

(Rust)

Labeled
Transition

System
Analyzer

Protection
Domain

Source-code
Artifacts

Protection
Domain

Source-code
Artifacts

Protection
Domain

Source-code
Artifacts

System
Topology

(XML)

Failure
Traces
(json)

LLVM Analysis Pass
(Rust)

Prioritized
List of

Manipulative
Interference

Attacks
(MIA)

Protection
Domain
Binaries
Protection

Domain
Binaries

Protection
Domain

Source-code
Artifacts

Cycle
invariant
detection

Taint
analysis

CFG
creation

Likelihood
Estimate

Triage
algorithm

Stage 2

CFG
creation

Figure 34. Our analysis first identifies cycles that can be manipulated and
influenced, second automatically generates a model to verify LTL properties related
to MIA, and third triages the identified failures by those that are triggered by
components with weak code reuse protection.

Finally, in order to assess the severity of goal inconsistencies, we draw

from previous work to create a metric of the likelihood that a component could

become compromised and trigger MIA. Technical expertise may not be available

to digest the results of our LTL analysis, so an automated triage process is instead

preferred. Namely, we leverage the analysis of CFInsight [83] to prioritize which

MIA instances are more likely.

8.1.1 Cycle Detection. In the first stage of our analysis, as seen

in Figure 34, we leverage the LLVM analysis framework to find cycles in high-

priority components that could become manipulated. LLVM is a set of compiler

and toolchain technologies designed around a language-independent intermediate

representation (IR) portable to any instruction set architecture. LLVM is

structured to perform a variety of transformations over multiple passes. For cycle

detection, we write a LLVM pass in Rust that first identifies the control flow

graph (CFG) of the analyzed component, and then studies the CFG for cycles

139

and their features. In particular, after we identify a list of cycles in the CFG, we

use the CFG to also identify which cycles follow directly after an IPC receive call.

Because IPC is typically a system call on the µ-kernel, we can find the cycles that

are triggerable from an external component. Additionally, we also leverage taint

analysis on the data flow of the program to identify which cycles are influenceable

from the data received on IPC. We mark the variable that holds the IPC message,

and track which other variables this message impacts. When the taint analysis

touches a loop invariant, we consider that cycle to be influenceable. However,

in order to identify a more complete set of influenced values, multiple passes are

required for this process. Notably, we do not need to transform the program to

perform this analysis, so we can simply ingest the system build artifacts.

8.1.2 Requirements Analysis. In the second stage of our analysis,

as seen in Figure 34, we contextualize the identified cycles from the first stage of

our analysis with respect to the priority, budget, and communication paths of

the system configuration. To accomplish this, we model the protection domains,

their interactions, and the µ-kernel in the formal modeling language, Finite State

Processes (FSP) [139]. FSP is a language used to represent software processes

(and compositions of processes), including constants, ranges, sets, actions, and

safety/progress properties of a system, defined in terms of a Labeled Transition

System (LTS). Moreover, FSP can be analyzed using the Labeled Transition

System Analyzer (LTSA) [139]. In particular, we represent the system topology

(i.e., IPC communication paths as well as shared memory communication paths),

budgets, and priorities in FSP, and convert the timing requirements for a system

into FSP fluents that act as asserts in LTL. LTSA then searches the possible

execution paths for a conflict in the LTL asserts. For example, we can check if each

140

protection domain successfully executes (to prevent starvation that might occur

under MIA):

∀pd,�(pdblocked =⇒ ♦pdexecuting) (8.1)

This LTL formula verifies that for all protection domains in the system, it is always

the case, that if a domain is blocked, it will eventually execute again.

Additionally, we take a revolutionary approach in that we automatically

generate the FSP model of the system given appropriate system configuration.

Namely, we wrote a tool in Rust, FSPGen, that consists of a front-end to ingest

and convert the system configuration into an intermediate Rust representation,

and a back-end that converts the Rust representation into FSP based on a

desired µ-kernel. In particular, our front-end currently supports the XML system

configuration used in the seL4 microkit [125] and the system build artifacts from

the DARPA CASE study [213, 29, 97]. Moreover, our back-end currently supports

the original seL4 kernel and its seL4-MCS extensions. However, our tool is flexible

enough to add support for additional µ-kernels, system configuration, or other LTL

languages in the future.

8.1.3 Triage. In the final stage of our analysis, as seen in Figure

34, we compute a stand-in metric for the likelihood of the identified failure found

by LTSA. Of course, all identified instances of MIA are attacks that should

be addressed, but we take a hierarchical approach to triage instances of MIA.

First, because we run LTSA iteratively where we only assume one compromised

component, we can order failures based on the priority of the compromised

component. In particular, the lower the priority (and thus, less trusted) of a

compromised component, we raise the severity of the failure. This follows a typical

risk assessment of a system in that higher trusted components must be more

141

trusted to support the system, whereas lower trusted components are more assumed

to be isolated.

Secondly, for failures that arise from components with the same priority,

we draw from previous work that assesses the risk posture of code-reuse attacks.

Originally, CFInsight builds on other metrics that evaluate CFI policies by

introducing a novel metric called CFGInsulation that quantifies how easy it is for

an attacker to build an exploit under CFI [83]. Namely, CFGInsulation considers

the number and length of paths in the CFG to a system call with the insight that

a common attacker goal in a code-reuse attack is to invoke a system call with

controlled parameters and perform the next stage of the attack. Indeed, since a

critical primitive for MIA is to send a maliciously crafted IPC message (i.e., a

system call), CFGInsulation is a reasonable stand-in for the “likelihood” of an

attack.

8.2 Evaluation

In this section, we evaluate the performance of our MIA analysis

tool. In particular, we want to show reasonable analysis times, as we

hope our tool can integrate into the compilation process for an embedded

system. For example, we imagine system designers could integrate our

analysis into their Continuous Integration (CI) test infrastructure. Because

Manipulative Interference Attacks (MIA) are a new type of attack, we do not have

other analysis tools to directly compare our performance, so instead, we compare to

baseline analysis times of similar aspects of a CI test infrastructure. However, we

hope to inspire others to find novel methodologies to identify new instances of MIA,

142

0 5 10 15 20 25 30 35
Analysis Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0
Cu

m
ul

at
iv

e
Di

st
rib

ut
io

n
Fu

nc
tio

n
(C

DF
) Compilation Time

Baseline
Trigger Analysis

Influence Analysis
Comprehensive Analysis

(a) Full distribution.

0 25 50 75 100 125 150 175
Analysis Time (ms)

0.9800

0.9825

0.9850

0.9875

0.9900

0.9925

0.9950

0.9975

1.0000

Cu
m

ul
at

iv
e

Di
st

rib
ut

io
n

Fu
nc

tio
n

(C
DF

) Compilation Time (Trigger Outliers)

Baseline
Trigger Analysis

Influence Analysis
Comprehensive Analysis

(b) Trigger outliers.

0 5000 10000 15000 20000
Analysis Time (ms)

0.9800

0.9825

0.9850

0.9875

0.9900

0.9925

0.9950

0.9975

1.0000

Cu
m

ul
at

iv
e

Di
st

rib
ut

io
n

Fu
nc

tio
n

(C
DF

) Compilation Time (Influence Outliers)

Baseline
Trigger Analysis

Influence Analysis
Comprehensive Analysis

(c) Influence outliers.

Figure 35. Cumulative Distribution Function (CDF) of our MIA LLVM analysis
compared to the baseline LLVM benchmark test-suite.

or improve our analysis times. In particular, we make our tool (and evaluation

artifacts) available online1.

8.2.1 Static Analysis. There are two places where we leverage static

analysis to identify MIA. First, in Stage 1 of our tool, we leverage the LLVM

compiler infrastructure to find influenceable, triggerable, and unbounded cycles.

Additionally, unlike the original CFInsulation metric [83], we analyze LLVM IR

rather than the binary for our triage analysis.

Figure 35 shows a Cumulative Distribution Function (CDF) of our analysis

times compared to the baseline LLVM test-suite used by the compiler infrastructure

project [169, 170]. In particular, Figure 35a shows that while the highly optimized

baseline test-suite for LLVM is generally faster than our analysis, the strong

majority of our influcenceable, triggerable, and unbounded cycles analysis along

with our triage analysis occurs in a reasonable amount of time. Namely, 98.5% of

our analysis occurs under 35ms. While compilation times should be fast, we believe

35ms is indeed reasonable to identify primitives for MIA. Moreover, in Figure 35b,

we see that even the highly optimized analysis times for vanilla LLVM tests can

1https://github.com/smergendahl/manipulative-interference-attacks

143

0 20 40 60 80 100
Tests with Highest Analysis Time

0

5000

10000

15000

20000

Co
m

pi
la

tio
n

Ti
m

e
(m

s)
Compilation Time Breakdown for Outliers

Total Processing Time
Influence Analysis

Triggerable Analysis
Triage Analysis

Figure 36. Influence analysis leads to large processing times, but triggerable
analysis is more performant and can still cause MIA.

also reach this length of analysis times. However, in Figure 35c, we see that roughly

1% of the time, our analysis can trigger exceptionally long analysis times: MIA

analysis can take up to 25s.

We investigate these outlier analysis times in Figure 36. In particular,

for the top 100 test times, influenceable analysis is the cause of decrease in

performance. As such, for users of our tool that can afford to identify some, but

not all, instances of MIA, the system designer can turn off the analysis pass that

searches for influenceable cycles. Instead, only triggerable cycles will be identified,

but at times that compare to the baseline tests. Notably, if MIA only invokes a

144

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Number of System Component

101

102

103

104

An
al

ys
is

Ti
m

e
(s

)

LTSA Analysis Time

seL4-MCS Nodes
seL4-MCS Clients

seL4-MCS Channels
seL4 Nodes

seL4 Clients
seL4 Channels

Figure 37. LTL analysis is exponential with respect to the number of protection
domains and the number of clients to a IPC server.

triggerable cycle (but not necessarily an influenceable cycle) missed deadlines can

still arise in the system.

8.2.2 Goal-Conflict Analysis. We also study the analysis time of

the second stage of our tool that ingests the results from our cycle analysis and

identifies timing requirement failure traces due to MIA. Namely, we create and

benchmark 30 different example systems built on both seL4 and seL4-MCS. This

suite of benchmark systems helps us differentiate the impact of different system

features on analysis time. In particular, our benchmark systems vary in the number

of protection domains, number of IPC channels, and degree of each IPC channel

(i.e., the average number of clients to a particular IPC server) from 1 to 5, and

we record the length of analysis time for each system with a timeout of 3000s.

We pause to highlight the success of our FSPGen tool. Manually generating 30

different models of 30 different system configurations for two different µ-kernels

145

would be extremely daunting, and the fact that we can leverage our FSPGen tool

to automatically generate the FSP models of each system under test facilitates the

possibility for such an evaluation.

Specifically, in Figure 37, we load each model into LTSA, and benchmark

the time to compile each system. First, all studied systems with 3 or less protection

domains require roughly 10s or less to analyze. Because many embedded systems

will only need a handful of protection domains, we believe this tool will be usable

by seL4 systems. However, we do note that analysis time is roughly exponential

with respect to the number of protection domains, so analysis may become

expensive for very complex systems. Moreover, as the number of IPC channels (as

well as shared memory channels) increases, the analysis time is linear rather than

exponential. Additionally, these trends also hold as the degree of IPC endpoints

increases: increasing the degree of a channel increases the number of protection

domains and channels to analyze, but a linear increase in the degree of a channel

is only linear plus exponential increase, rather than doubly exponential. Lastly, we

note that analysis is slightly more expensive for seL4-MCS, as the system model has

complex budget and period management to track.

146

CHAPTER IX

CONCLUSION

In this dissertation, I presented the first security model for applications

developed in multiple programming languages, a type of system I refer to as Multi-

Language Applications (MLA). I specifically focused on cases where the application

is written well (limited or no usage of unsafe code in the parts written in the safe

language) and where advanced protections are applied to the parts written in

the unsafe language. I illustrated that because of mismatching threat models, an

attacker can maneuver between various stages of an exploit in such a way that

avoids triggering safety/hardening checks, while succeeding in hijacking control.

Dubbed Cross-Language Attacks (CLA), these attacks can non-intuitively result

in weakening of the overall application security when parts of the application are

ported to a safe programming language. I illustrated different variants of CLA

and performed automated analysis on large code bases to measure the prevalence

of CLA building blocks. My findings illustrate that CLA building blocks are

abundantly found in Firefox, and that a new class of countermeasures must be

developed to secure MLA, and sketch their design goals for such future defenses.

Moreover, I introduced a new type of attack to cause temporal safety

violations that can circumvent spatial and temporal isolation boundaries in a real-

time, embedded system in order to delay hard real-time tasks and cause critical

system failure. I call these attacks Manipulative Interference Attacks (MIA), and

introduce a special form of MIA when the attacker can create many malicious

threads, called Thundering Herd Attacks (THA). I further proposed a methodology

to automatically identify instances of MIA given readily available system build

artifacts. Our analysis takes a hybrid approach that combines static analysis with

147

goal-oriented, conflict analysis to identify situations where conflict can arise in

the budget and priority assignments of a mixed-criticality system when a low-

criticality component may become compromised. We instantiate our tool on the

seL4 µ-kernel, and show that both the original seL4 kernel and seL4-MCS extensions

are vulnerable to MIA.

148

APPENDIX A

Cross-Language Attacks (CLA)

In this section, we provide code examples of Cross-Language Attacks (CLA)

in Go-C/C++ applications that correlate to the code examples presented in

§4.2 and §4.3. In particular, Figure 1, Figure 2, and Figure 3 correspond to the

attacks presented in §4.2.2, §4.2.3, §4.2.4 respectively while Figure 4, and Figure 5

correspond to the attacks presented in §4.3.1 and §4.3.3 respectively.

1 func go_fn(cb_fptr *func(* int64)) {

2 // Initialize some data

3 x := Data {

4 vals: [3] int64{1,2,3},

5 cb: cb_fptr ,

6 }

7

8 C.vuln_fn(/*Ptr to x.vals*/)

9

10 // Uses corrupted function pointer

11 (*x.cb)(&x.vals [0])

12 }

(a) Go code that calls C/C++ to modify a Go struct.

1 // This function modifies a given array

2 // Can cause an OOB vulnerability

3 void vuln_fn(int64_t array_ptr_addr) {

4 // These values are set by a corruptible

5 // source , e.g., user input

6 int64_t array_index = 3;

7 int64_t array_value = get_attack ();

8

9 int64_t* a = (void *) array_ptr_addr;

10 a[array_index] = array_value;

11 }

(b) C/C++ code that performs an Out-of-Bounds (OOB) error.

Figure 1. Sample code to illustrate how CLA can circumvent Go to cause a OOB
error.

149

1 func go_fn(cb_fptr *func(* int64)) {

2 heap_obj := new(/* Go heap allocation */)

3

4 C.vuln_fn(/*Ptr to heap_obj */)

5

6 heap_obj [0] += 5 // UaF

7 }

(a) Go code that uses a pointer wrongfully freed by C/C++.

1 // Frees object it does not own

2 void vuln_fn(int64_t obj_ptr_addr) {

3 int64_t* a = (void *) obj_ptr_addr;

4

5 //C/C++ frees Go allocated object!

6 free(a);

7 }

(b) C/C++ code that leads to a Use-after-Free (UaF) error in Go.

Figure 2. Sample code to illustrate how CLA can coerce Go into causing a UaF
error.

1 func go_fn(cb_fptr *func(* int64)) {

2 fptr := /* Function pointer */

3

4 //C++ code overwrites fptr

5 C.vuln_fn ()

6

7 // No CFI checks!

8 (*fptr)()

9 }

(a) Go code that uses a function pointer.

1 void vuln_fn () {

2 int64_t a[1] = {0}; // C/C++ array

3 // These values are set by a corruptible

4 // source , e.g., user input

5 int64_t array_index = 47;

6 int64_t array_value = get_attack ();

7

8 // Arbitrary Write to Rust fptr

9 a[array_index] = array_value;

10 }

(b) C/C++ that overwrites a Go function pointer.

Figure 3. Sample code to show how CLA can corrupt a Go function pointer to
execute a weird machine and circumvent CFI.

150

1 func go_fn(cb_fptr *func(* int64)) {

2 //Go slices have dynamic bounds

3 slice := []int64{4, 5}

4

5 C.vuln_fn(/*Ptr to slice*/)

6

7 // C++ changed the slice size to 128!

8 slice_fp_addr := slice [55]

9 }

(a) Go code that passes a slice to C/C++.

1 void vuln_fn(int64_t slice_ptr_addr) {

2 // These values are set by a corruptible

3 // source , e.g., user input

4 int64_t array_index = 2;

5 int64_t array_value = 128;

6

7 int64_t* a = (void *) slice_ptr_addr;

8 a[array_index] = array_value;

9 }

(b) C/C++ code with an arbitrary write vulnerability.

Figure 4. Example of C/C++ using an arbitrary write to corrupt size of a Go slice.

1 // Uses a function pointer provided by C/C++

2 func go_fn(cb_fptr *func(* int64)) {

3 fptr := C.vuln_cb_fptr ()

4 (*fptr)()

5 }

(a) Go code that calls C/C++ to receive a callback pointer.

1 // Returns a call back function to register

2 int64_t vuln_cb_fptr () {

3 int64_t fptr = get_attack ();

4 return fptr;

5 }

(b) C/C++ code that corrupts a return value to Go.

Figure 5. Sample code to illustrate how CLA can corrupt even data intended to
cross the FFI boundary.

151

APPENDIX B

Manipulative Interference Attacks (MIA)

In this section, we show an example of a vulnerable system to

Manipulative Interference Attacks (MIA). In particular, this code can run on seL4-

MCS in the Microkit environment, or on seL4 in the environment created under the

DARPA Case Program.

152

1 // System specific headers

2 // includes system specific wrapper functions

3 // for print , send_ipc , recv_ipc , recv_notif , reply

4 #include <system.h>

5 // Server specific functions

6 int counter(int h) {

7 int count = 0;

8 int start = 0;

9 if (height %2==0) {

10 // Example of a triggerable ,

11 // but not influenceable cycle

12 for (int i=1; i < 400000000; i++) {

13 count ++;

14 }

15 }

16 // influenceable cycle

17 for (int i=1; i<= height; i++) {

18 count ++;

19 }

20 // Cycle directly influencable

21 // by function return value

22 for (int i=1; i<= dir_len(start ,height); i++) {

23 count ++;

24 }

25 // cycle indirectly influencable

26 // by function return value

27 for (int i=1; i<= indir_len(start ,h); i++) {

28 count ++;

29 }

30 return count;

31 }

32 // Return value is directly influencable

33 int dir_len(int n, int height) {

34 // influenceable cycle

35 // with condition set by an addition

36 for (int i=1; i<=n+height; i++) {

37 n = n+i;

38 }

39 return n;

40 }

41 // Return value is indirectly influencable

42 int indir_len(int n, int height) {

43 int r = 0;

44 // influenceable cycle

45 // with condition set by an addition

46 for (int i=1; i<=n+height; i++) {

47 r = r+i;

48 }

49 return r;

50 }

51 // Startup Function

52 void init(void) {

53 print("SERVER|INFO: initializing ...\n");

54 /* Nothing to initialise */

55 }

56 // Function called when a notification is signaled

57 void recv_notif(int sender) {

58 print("SERVER|ERR: unexpected notification\n");

59 }

60 // Function called when an IPC message is received

61 void recv_ipc(int sender , int msg) {

62 int count = 0;

63 print_int("SERVER|INFO: From %d\n", sender);

64 count = counter(msg);

65 print_int("SERVER|INFO: %d\n", count);

66 return reply(count);

67 }

(a) Server application in the toy example.

153

68 // System specific headers

69 // includes system specific wrapper functions

70 // for print , send_ipc , recv_ipc , recv_notif , reply

71 #include <system.h>

72 #define SERVER_CH 0

73 void handle_deadline(int n) {

74 print("BEGIGN_CLI|INFO: deadline handled .\n");

75 }

76 void init(void) {

77 print("BENIGN_CLI|INFO: initializing ...\n");

78 /* Nothing to initialise */

79 }

80 void recv_notif(int sender) {

81 print("BENIGN_CLI|ERR: I/O received .\n");

82
83 /* message the server */

84 let resp = send_ipc(SERVER_CH , val);

85
86 handle_deadline(resp);

87 }

(a) Benign Client in the toy example.

88 // System specific headers

89 // includes system specific wrapper functions

90 // for print , send_ipc , recv_ipc , recv_notif , reply

91 #include <system.h>

92 #define SERVER_CH 0

93 void init(void) {

94 int a[1] = {0};

95 int val = 10;

96 print("M_CLI|INFO: init function running\n");

97 while (1) {

98 // These values are set

99 // by a corruptible source

100 int array_index = 2;

101 int array_value = corrupted ();

102

103 // Buffer overflow

104 a[array_index] = array_value;

105

106 /* message the server */

107 send_ipc(SERVER_CH , val);

108 }

109 }

110 void recv_notif(int sender) {

111 print("M_CLI|ERR: unexepected notification\n");

112 }

(a) Malicious Client in the toy example.

154

REFERENCES CITED

[1] Go-git. https://github.com/go-git/go-git.

[2] Why go was the right choice for cockroachdb, 2015.
https://www.cockroachlabs.com/blog/

why-go-was-the-right-choice-for-cockroachdb/.

[3] Bolt, 2021. https://github.com/boltdb/bolt.

[4] cgo, 2021. https://pkg.go.dev/cmd/cgo.

[5] Docker, 2021. https://github.com/docker/.

[6] Dogear, 2021. https://github.com/mozilla/dogear.

[7] Kubernetes, 2021. https://github.com/kubernetes.

[8] Mesalock linux, 2021.
https://github.com/mesalock-linux/mesalock-distro.

[9] mp4parse-rust, 2021. https://github.com/mozilla/mp4parse-rust.

[10] Neqo, an implementation of quic written in rust, 2021.
https://github.com/mozilla/neqo.

[11] Redox operating system, 2021. https://www.redox-os.org/.

[12] Servo, 2021. https://github.com/servo.

[13] plist.h, 2022.

[14] Abadi, M., Budiu, M., Erlingsson, U., and Ligatti, J. Control-flow
integrity principles, implementations, and applications. ACM Transactions
on Information and System Security (TISSEC) 13, 1 (2009), 1–40.

[15] Agency, D. A. R. P. Memory safety.

[16] Agency, N. S. Software memory safety.

[17] Agten, P., Van Acker, S., Brondsema, Y., Phung, P. H., Desmet, L.,
and Piessens, F. Jsand: complete client-side sandboxing of third-party
javascript without browser modifications. In Proceedings of the 28th Annual
Computer Security Applications Conference (2012), pp. 1–10.

[18] Alexander Færøy. Rustintor, 2020.
https://gitlab.torproject.org/legacy/trac/-/wikis/RustInTor.

155

https://github.com/go-git/go-git
https://www.cockroachlabs.com/blog/why-go-was-the-right-choice-for-cockroachdb/
https://www.cockroachlabs.com/blog/why-go-was-the-right-choice-for-cockroachdb/
https://github.com/boltdb/bolt
https://pkg.go.dev/cmd/cgo
https://github.com/docker/
https://github.com/mozilla/dogear
https://github.com/kubernetes
https://github.com/mesalock-linux/mesalock-distro
https://github.com/mozilla/mp4parse-rust
https://github.com/mozilla/neqo
https://www.redox-os.org/
https://github.com/servo
https://gitlab.torproject.org/legacy/trac/-/wikis/RustInTor

[19] Alrajeh, D., Kramer, J., Russo, A., and Uchitel, S. Learning
operational requirements from goal models. In 2009 IEEE 31st International
Conference on Software Engineering (2009), IEEE, pp. 265–275.

[20] Alrajeh, D., Kramer, J., Van Lamsweerde, A., Russo, A., and
Uchitel, S. Generating obstacle conditions for requirements completeness.
In 2012 34th International Conference on Software Engineering (ICSE)
(2012), IEEE, pp. 705–715.

[21] Andersen, S. Changes to functionality in microsoft windows xp service pack
2. Microsoft technical document, August (2004).

[22] Andersen, S., and Abella, V. Data execution prevention. changes to
functionality in microsoft windows xp service pack 2, part 3: Memory
protection technologies, 2004.

[23] Anderson, J. P. Information security in a multi-user computer environment.
In Advances in Computers, vol. 12. Elsevier, 1972, pp. 1–36.

[24] Andrew Paverd. Control flow guard for clang/llvm and rust, 2020.
https://msrc-blog.microsoft.com/2020/08/17/

control-flow-guard-for-clang-llvm-and-rust/.

[25] Asmussen, N., Haas, S., Lackorzynski, A., and Roitzsch, M.
Core-local reasoning and predictable cross-core communication with m3.

[26] Astrauskas, V., Matheja, C., Poli, F., Müller, P., and Summers,
A. J. How do programmers use unsafe rust? Proceedings of the ACM on
Programming Languages 4, OOPSLA (2020), 1–27.

[27] Balasubramanian, A., Baranowski, M. S., Burtsev, A., Panda, A.,
Rakamarić, Z., and Ryzhyk, L. System programming in rust: Beyond
safety. In Proceedings of the 16th Workshop on Hot Topics in Operating
Systems (2017), pp. 156–161.

[28] Barrantes, E. G., Ackley, D. H., Forrest, S., and Stefanović, D.
Randomized instruction set emulation. ACM Transactions on Information
and System Security (TISSEC) 8, 1 (2005), 3–40.

[29] Belt, J., Hatcliff, J., Shackleton, J., Carciofini, J., Carpenter,
T., Mercer, E., Amundson, I., Babar, J., Cofer, D., Hardin, D.,
et al. Model-driven development for the sel4 microkernel using the hamr
framework. Journal of Systems Architecture 134 (2023), 102789.

[30] Bendersky, E. Pyelftools, 2012. https://github.com/eliben/pyelftools.

156

https://msrc-blog.microsoft.com/2020/08/17/control-flow-guard-for-clang-llvm-and-rust/
https://msrc-blog.microsoft.com/2020/08/17/control-flow-guard-for-clang-llvm-and-rust/
https://github.com/eliben/pyelftools

[31] Bhatkar, S., DuVarney, D. C., and Sekar, R. Address obfuscation: An
efficient approach to combat a broad range of memory error exploits. In
USENIX Security symposium (2003), vol. 12, pp. 291–301.

[32] Bigelow, D., Hobson, T., Rudd, R., Streilein, W., and Okhravi, H.
Timely rerandomization for mitigating memory disclosures. In Proceedings
of the 22nd ACM SIGSAC Conference on Computer and Communications
Security (2015), pp. 268–279.

[33] Bigelow, D., Hobson, T., Rudd, R., Streilein, W., and Okhravi, H.
Timely rerandomization for mitigating memory disclosures. In Proceedings
of the 22nd ACM Computer and Communications Security (CCS’15) (Oct
2015).

[34] Bittau, A., Marchenko, P., Handley, M., and Karp, B. Wedge:
Splitting applications into reduced-privilege compartments. USENIX
Association.

[35] Blackham, B., Shi, Y., Chattopadhyay, S., Roychoudhury, A., and
Heiser, G. Timing analysis of a protected operating system kernel. In
Proceedings of the 32nd IEEE Real-Time Systems Symposium (RTSS)
(2011), IEEE Computer Society, pp. 339–348.

[36] Boos, K., Liyanage, N., Ijaz, R., and Zhong, L. Theseus: an experiment
in operating system structure and state management. In 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 20)
(2020), pp. 1–19.

[37] Boos, K., and Zhong, L. Theseus: A state spill-free operating system. In
Proceedings of the 9th Workshop on Programming Languages and Operating
Systems (2017), pp. 29–35.

[38] Brandenburg, B. B. Scheduling and Locking in Multiprocessor Real-Time
Operating Systems. PhD thesis, The University of North Carolina at Chapel
Hill, 2011.

[39] Brandenburg, B. B. SchedCAT: The schedulability test collection and
toolkit, 2022.

[40] Brumley, D., and Song, D. Privtrans: Automatically partitioning programs
for privilege separation. In USENIX Security Symposium (2004), vol. 57.

[41] Burns, A., and Davis, R. Mixed criticality systems - a review. Tech. rep.,
Department of Computer Science, University of York, 2013.

157

[42] Burow, N., Carr, S. A., Nash, J., Larsen, P., Franz, M.,
Brunthaler, S., and Payer, M. Control-flow integrity: Precision,
security, and performance. ACM Computing Surveys (CSUR) 50, 1 (2017),
1–33.

[43] Burow, N., Carr, S. A., Nash, J., Larsen, P., Franz, M.,
Brunthaler, S., and Payer, M. Control-flow integrity: Precision,
security, and performance. ACM Comput. Surv. 50, 1 (Apr. 2017).

[44] Burow, N., Zhang, X., and Payer, M. Sok: Shining light on shadow
stacks. In 2019 IEEE Symposium on Security and Privacy (SP) (2019),
IEEE, pp. 985–999.

[45] Carlini, N., Barresi, A., Payer, M., Wagner, D., and Gross, T. R.
{Control-Flow} bending: On the effectiveness of {Control-Flow} integrity.
In 24th USENIX Security Symposium (USENIX Security 15) (2015),
pp. 161–176.

[46] Carlini, N., Barresi, A., Payer, M., Wagner, D., and Gross, T. R.
Control-flow bending: On the effectiveness of control-flow integrity. In 24th
USENIX Security Symposium (USENIX Security 15) (2015), pp. 161–176.

[47] Castro, M., Costa, M., and Harris, T. Securing software by enforcing
data-flow integrity. In Proceedings of the 7th symposium on Operating
systems design and implementation (2006), pp. 147–160.

[48] Chen, G., Jin, H., Zou, D., Zhou, B. B., Liang, Z., Zheng, W., and
Shi, X. Safestack: Automatically patching stack-based buffer overflow
vulnerabilities. IEEE Transactions on Dependable and Secure Computing 10,
6 (2013), 368–379.

[49] Chen, J., Nelissen, G., Huang, W., Yang, M., Brandenburg, B. B.,
Bletsas, K., Liu, C., Richard, P., Ridouard, F., Audsley, N. C.,
Rajkumar, R., de Niz, D., and von der Brüggen, G. Many
suspensions, many problems: A review of self-suspending tasks in real-time
systems. Real-Time Systems 55, 1 (2019), 144–207.

[50] Chen, J. B., and Bershad, B. N. The impact of operating system structure
on memory system performance. In Proceedings of the fourteenth ACM
symposium on Operating systems principles (1993), pp. 120–133.

[51] Chen, S., Xu, J., Sezer, E. C., Gauriar, P., and Iyer, R. K.
Non-control-data attacks are realistic threats. In USENIX Security
Symposium (2005), vol. 5.

158

[52] Chen, Y., Reymondjohnson, S., Sun, Z., and Lu, L. Shreds:
Fine-grained execution units with private memory. In 2016 IEEE
Symposium on Security and Privacy (SP) (2016), IEEE, pp. 56–71.

[53] Cheney, D. Cgo is not go.
https://dave.cheney.net/2016/01/18/cgo-is-not-go.

[54] Cheng, Y., Zhou, Z., Miao, Y., Ding, X., and Deng, R. H. Ropecker:
A generic and practical approach for defending against rop attack.

[55] Cheung, W., and Loong, A. H. Exploring issues of operating systems
structuring: from microkernel to extensible systems. ACM SIGOPS
Operating Systems Review 29, 4 (1995), 4–16.

[56] Chiueh, T.-c., and Hsu, F.-H. Rad: A compile-time solution to buffer
overflow attacks. In Proceedings 21st International Conference on
Distributed Computing Systems (2001), IEEE, pp. 409–417.

[57] Cimpanu, C. Microsoft: 70 percent of all security bugs are memory safety
issues, Feb 2019.

[58] Clements, A. A., Almakhdhub, N. S., Bagchi, S., and Payer, M.
{ACES}: Automatic compartments for embedded systems. In 27th USENIX
Security Symposium (USENIX Security 18) (2018), pp. 65–82.

[59] Cofer, D. Case overview: Cyber assured systems engineering. seL4 Summit
(2022).

[60] Cowan, C., Pu, C., Maier, D., Walpole, J., Bakke, P., Beattie, S.,
Grier, A., Wagle, P., Zhang, Q., and Hinton, H. Stackguard:
automatic adaptive detection and prevention of buffer-overflow attacks. In
USENIX security symposium (1998), vol. 98, San Antonio, TX, pp. 63–78.

[61] Crosignani, M., Macchiavelli, M., and Silva, A. F. Pirates without
borders: The propagation of cyberattacks through firms’ supply chains.
FRB of New York Staff Report, 937 (2021).

[62] CrowdStrike, Inc. 2021 global threat report, 2021.

[63] Cybersecurity, U., et al. The case for memory safe roadmaps: Why both
c-suite executives and technical experts need to take memory safe coding
seriously.

[64] Degiovanni, R., Castro, P., Arroyo, M., Ruiz, M., Aguirre, N., and
Frias, M. Goal-conflict likelihood assessment based on model counting. In
Proceedings of the 40th International Conference on Software Engineering
(2018), pp. 1125–1135.

159

https://dave.cheney.net/2016/01/18/cgo-is-not-go

[65] Degiovanni, R., Ricci, N., Alrajeh, D., Castro, P., and Aguirre, N.
Goal-conflict detection based on temporal satisfiability checking. In
Proceedings of the 31st IEEE/ACM International Conference on Automated
Software Engineering (2016), pp. 507–518.

[66] Denning, P. J. The science of computing: The internet worm. American
Scientist 77, 2 (1989), 126–128.

[67] Dennis, J. B., and Horn, E. C. V. Programming semantics for
multiprogrammed computations. Commun. ACM 26, 1 (1983), 29–35.

[68] Devietti, J., Blundell, C., Martin, M. M., and Zdancewic, S.
Hardbound: architectural support for spatial safety of the c programming
language. ACM SIGOPS Operating Systems Review 42, 2 (2008), 103–114.

[69] Dewald, A., Holz, T., and Freiling, F. C. Adsandbox: Sandboxing
javascript to fight malicious websites. In proceedings of the 2010 ACM
Symposium on Applied Computing (2010), pp. 1859–1864.

[70] Dobrovitski, I. Exploit for cvs double free () for linux pserver, 2003.

[71] Duta, V., Freyer, F., Pagani, F., Muench, M., and Giuffrida, C. Let
me unwind that for you: Exceptions to backward-edge protection. In NDSS
(2023).

[72] Elphinstone, K., and Heiser, G. From L3 to seL4 what have we learnt in
20 years of L4 microkernels? In Proceedings of the 24th ACM Symposium on
Operating Systems Principles (SOSP) (2013), ACM, pp. 133–150.

[73] Engler, D. R., Kaashoek, M. F., and O’Toole Jr, J. Exokernel: An
operating system architecture for application-level resource management.
ACM SIGOPS Operating Systems Review 29, 5 (1995), 251–266.

[74] Erlingsson, Ú., Abadi, M., Vrable, M., Budiu, M., and Necula,
G. C. Xfi: Software guards for system address spaces. In Proceedings of the
7th symposium on Operating systems design and implementation (2006),
pp. 75–88.

[75] Evans, I., Fingeret, S., Gonzalez, J., Otgonbaatar, U., Tang, T.,
Shrobe, H., Sidiroglou-Douskos, S., Rinard, M., and Okhravi, H.
Missing the point (er): On the effectiveness of code pointer integrity. In
2015 IEEE Symposium on Security and Privacy (2015), IEEE, pp. 781–796.

160

[76] Evans, I., Long, F., Otgonbaatar, U., Shrobe, H., Rinard, M.,
Okhravi, H., and Sidiroglou-Douskos, S. Control jujutsu: On the
weaknesses of fine-grained control flow integrity. In Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security
(2015), pp. 901–913.

[77] Evans, I., Long, F., Otgonbaatar, U., Shrobe, H., Rinard, M.,
Okhravi, H., and Sidiroglou-Douskos, S. Control jujutsu: On the
weaknesses of fine-grained control flow integrity. In Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security
(2015), pp. 901–913.

[78] Farkhani, R. M., Jafari, S., Arshad, S., Robertson, W., Kirda, E.,
and Okhravi, H. On the effectiveness of type-based control flow integrity.
In Proceedings of the 34th Annual Computer Security Applications
Conference (2018), pp. 28–39.

[79] Farkhani, R. M., Jafari, S., Arshad, S., Robertson, W., Kirda, E.,
and Okhravi, H. On the Effectiveness of Type-based Control Flow
Integrity. In Proceedings of IEEE Annual Computer Security Applications
Conference (ACSAC’18) (Dec 2018).

[80] Feiler, P. H., Gluch, D. P., and Hudak, J. The architecture analysis &
design language (aadl): An introduction.

[81] Ferraiuolo, A., Zhao, M., Myers, A. C., and Suh, G. E. HyperFlow:
A processor architecture for nonmalleable, timing-safe information flow
security. In Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security (CCS) (2018), ACM Press, pp. 1583–1600.

[82] Ford, B., and Lepreau, J. Evolving Mach 3.0 to a migrating thread model.
In Proceedings of the Winter 1994 USENIX Technical Conference (1994),
USENIX Association, pp. 97–114.

[83] Frassetto, T., Jauernig, P., Koisser, D., and Sadeghi, A.-R.
Cfinsight: A comprehensive metric for cfi policies. In NDSS (2022).

[84] Gabber, E., Small, C., Bruno, J. L., Brustoloni, J. C., and
Silberschatz, A. Pebble: A component-based operating system for
embedded applications. In USENIX Workshop on Embedded Systems (1999),
USENIX Association, pp. 55–65.

[85] Gadepalli, P. K., Gifford, R., Baier, L., Kelly, M., and Parmer, G.
Temporal capabilities: Access control for time. In 2017 IEEE Real-Time
Systems Symposium (RTSS) (2017), IEEE Computer Society, pp. 56–67.

161

[86] Gadepalli, P. K., Pan, R., and Parmer, G. Slite: OS support for near
zero-cost, configurable scheduling. In IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS) (2020), IEEE, pp. 160–173.

[87] Gadepalli, P. K., Peach, G., Parmer, G., Espy, J., and Day, Z.
Chaos: A system for criticality-aware, multi-core coordination. In 25th IEEE
Real-Time and Embedded Technology and Applications Symposium (RTAS)
(2019), IEEE, pp. 77–89.

[88] Ghosn, A., Kogias, M., Payer, M., Larus, J. R., and Bugnion, E.
Enclosure: language-based restriction of untrusted libraries. In Proceedings
of the 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (2021), pp. 255–267.

[89] Gil, R., Okhravi, H., and Shrobe, H. There’s a hole in the bottom of the
c: On the effectiveness of allocation protection. In 2018 IEEE Cybersecurity
Development (SecDev) (2018), IEEE, pp. 102–109.

[90] GitHub. How much rust in firefox?, 2021.
https://4e6.github.io/firefox-lang-stats/.

[91] Göktaş, E., Athanasopoulos, E., Polychronakis, M., Bos, H., and
Portokalidis, G. Size does matter: Why using {Gadget-Chain} length to
prevent {Code-Reuse} attacks is hard. In 23rd USENIX Security Symposium
(USENIX Security 14) (2014), pp. 417–432.

[92] Google. Git repositories on fuchsia, 2021.
https://fuchsia.googlesource.com/.

[93] Govindavajhala, S., and Appel, A. W. Using memory errors to attack a
virtual machine. In 2003 Symposium on Security and Privacy, 2003. (2003),
IEEE, pp. 154–165.

[94] Gudka, K., Watson, R. N., Anderson, J., Chisnall, D., Davis, B.,
Laurie, B., Marinos, I., Neumann, P. G., and Richardson, A.
Clean application compartmentalization with soaap. In Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications Security
(2015), pp. 1016–1031.

[95] Haller, I., Jeon, Y., Peng, H., Payer, M., Giuffrida, C., Bos, H.,
and Van Der Kouwe, E. Typesan: Practical type confusion detection. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security (2016), pp. 517–528.

[96] Hansen, P. B. The nucleus of a multiprogramming system. Communications
of the ACM 13, 4 (1970), 238–241.

162

https://4e6.github.io/firefox-lang-stats/
https://fuchsia.googlesource.com/

[97] Hardin, D. S., and Slind, K. L. Formal synthesis of filter components for
use in security-enhancing architectural transformations. In 2021 IEEE
Security and Privacy Workshops (SPW) (2021), IEEE, pp. 111–120.

[98] Hedayati, M., Gravani, S., Johnson, E., Criswell, J., Scott, M. L.,
Shen, K., and Marty, M. Hodor: Intra-process isolation for
high-throughput data plane libraries. In 2019 {USENIX} Annual Technical
Conference ({USENIX}{ATC} 19) (2019), pp. 489–504.

[99] Heiser, G. How to (and how not to) use seL4 IPC, 2019.

[100] Hiser, J., Nguyen-Tuong, A., Co, M., Hall, M., and Davidson,
J. W. Ilr: Where’d my gadgets go? In 2012 IEEE Symposium on Security
and Privacy (2012), IEEE, pp. 571–585.

[101] Hu, H., Shinde, S., Adrian, S., Chua, Z. L., Saxena, P., and Liang,
Z. Data-oriented programming: On the expressiveness of non-control data
attacks. In 2016 IEEE Symposium on Security and Privacy (SP) (2016),
IEEE, pp. 969–986.

[102] Hu, H., Shinde, S., Adrian, S., Chua, Z. L., Saxena, P., and Liang,
Z. Data-oriented programming: On the expressiveness of non-control data
attacks. In 2016 IEEE Symposium on Security and Privacy (SP) (2016),
IEEE, pp. 969–986.

[103] Huang, K., Huang, Y., Payer, M., Qian, Z., Sampson, J., Tan, G.,
and Jaeger, T. The taming of the stack: Isolating stack data from
memory errors. In NDSS (2022).

[104] Intel. Intel R©64 and IA-32 architectures software developer’s manual, 2021.

[105] Intel, I. and ia-32 architectures software developer’s manual. Volume 3A:
System Programming Guide, Part 1, 64 (64), 64.

[106] Ispoglou, K. K., AlBassam, B., Jaeger, T., and Payer, M. Block
oriented programming: Automating data-only attacks. In Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communications Security
(2018), pp. 1868–1882.

[107] Jero, S., Furgala, J., Pan, R., Gadepalli, P. K., Clifford, A., Ye,
B., Khazan, R., Ward, B. C., Parmer, G., and Skowyra, R.
Practical principle of least privilege for secure embedded systems. In 27th
IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS) (2021), IEEE, pp. 1–13.

163

[108] Joab Jackson. Microsoft: Rust is the industry’s ‘best chance’ at safe
systems programming, 2020. hhttps://thenewstack.io/
microsoft-rust-is-the-industrys-best-chance-at-safe-systems-programming/.

[109] Jung, R., Jourdan, J.-H., Krebbers, R., and Dreyer, D. Rustbelt:
Securing the foundations of the rust programming language. Proceedings of
the ACM on Programming Languages 2, POPL (2017), 1–34.

[110] Jung, R., Jourdan, J.-H., Krebbers, R., and Dreyer, D. Safe systems
programming in rust: The promise and the challenge. Communications of
the ACM (2020).

[111] Kc, G. S., Keromytis, A. D., and Prevelakis, V. Countering
code-injection attacks with instruction-set randomization. In Proceedings of
the 10th ACM conference on Computer and communications security (2003),
pp. 272–280.

[112] Kil, C., Jun, J., Bookholt, C., Xu, J., and Ning, P. Address space
layout permutation (aslp): Towards fine-grained randomization of
commodity software. In 2006 22nd Annual Computer Security Applications
Conference (ACSAC’06) (2006), IEEE, pp. 339–348.

[113] Kirth, P., Dickerson, M., Crane, S., Larsen, P., Dabrowski, A.,
Gens, D., Na, Y., Volckaert, S., and Franz, M. Pkru-safe:
Automatically locking down the heap between safe and unsafe languages. In
Proceedings of the Seventeenth European Conference on Computer Systems
(2022), pp. 132–148.

[114] Kirzner, O., and Morrison, A. An analysis of speculative type confusion
vulnerabilities in the wild. In 30th USENIX Security Symposium (USENIX
Security 21) (2021).

[115] Kiszka, J. Jailhouse hypervisor, 2022.

[116] Klabnik, S., and Nichols, C. The Rust Programming Language (Covers
Rust 2018). No Starch Press, 2019.

[117] Klabnik, S., and Nichols, C. The Rust programming language. No Starch
Press, 2023.

[118] Klein, G., Andronick, J., Elphinstone, K., Murray, T., Sewell, T.,
Kolanski, R., and Heiser, G. Comprehensive formal verification of an
os microkernel. ACM Transactions on Computer Systems (TOCS) 32, 1
(2014), 1–70.

164

hhttps://thenewstack.io/microsoft-rust-is-the-industrys-best-chance-at-safe-systems-programming/
hhttps://thenewstack.io/microsoft-rust-is-the-industrys-best-chance-at-safe-systems-programming/

[119] Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D.,
Derrin, P., Elkaduwe, D., Engelhardt, K., Kolanski, R.,
Norrish, M., et al. sel4: Formal verification of an os kernel. In
Proceedings of the ACM SIGOPS 22nd symposium on Operating systems
principles (2009), pp. 207–220.

[120] Kuz, I., Liu, Y., Gorton, I., and Heiser, G. CAmkES: A component
model for secure microkernel-based embedded systems. Journal of Systems
and Software 80, 5 (2007), 687–699.

[121] Lackorzyński, A., Warg, A., Völp, M., and Härtig, H. Flattening
hierarchical scheduling. In Proceedings of the 12th International Conference
on Embedded Software (EMSOFT) (2012), ACM, pp. 93–102.

[122] Lamowski, B., Weinhold, C., Lackorzynski, A., and Härtig, H.
Sandcrust: Automatic sandboxing of unsafe components in rust. In
Proceedings of the 9th Workshop on Programming Languages and Operating
Systems (2017), pp. 51–57.

[123] Lamsweerde, A. v. Requirements engineering: from system goals to UML
models to software specifications. John Wiley & Sons, Ltd, 2009.

[124] Leslie, B. GrailOS: A micro-kernel based, multi-server, multi-personality
operating system. In Workshop on Object Systems and Software
Architectures (WOSSA 2006) (2006).

[125] Leslie, B., and Heiser, G. The sel4 core platform.
TS/sel4cp/2011-draft-spec.pdf (2020).

[126] Levy, A., Campbell, B., Ghena, B., Giffin, D. B., Pannuto, P.,
Dutta, P., and Levis, P. Multiprogramming a 64kb computer safely and
efficiently. In Proceedings of the 26th Symposium on Operating Systems
Principles (2017), pp. 234–251.

[127] Li, C., Sisu, X., Chenyang, L., Gill, C. D., and Guerin, R.
Prioritizing soft real-time network traffic in virtualized hosts based on xen.
In 2015 IEEE 21st Real-Time and Embedded Technology and Applications
Symposium (RTAS) (2015), IEEE, pp. 95–107.

[128] Li, S.-W., Li, X., Gu, R., Nieh, J., and Hui, J. Z. A secure and formally
verified linux kvm hypervisor. In Proceedings of the IEEE Symposium on
Security and Privacy (2021).

[129] Liedtke, J. Improving ipc by kernel design. In Proceedings of the Fourteenth
ACM Symposium on Operating Systems Principles (SOSP) (1993),
pp. 175–188.

165

[130] Liedtke, J. On µ-kernel construction. ACM SIGOPS Operating Systems
Review 29, 5 (1995), 237–250.

[131] Liedtke, J., Islam, N., and Jaeger, T. Preventing denial-of-service
attacks on a µ-kernel for WebOSes. In Proceedings of The Sixth Workshop
on Hot Topics in Operating Systems (HotOS) (1997), IEEE Computer
Society, pp. 73–79.

[132] Liu, P., Zhao, G., and Huang, J. Securing unsafe rust programs with
xrust. In Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering (2020), pp. 234–245.

[133] Liu, S., Tan, G., and Jaeger, T. Ptrsplit: Supporting general pointers in
automatic program partitioning. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security (2017),
pp. 2359–2371.

[134] Loonwerks. Case: Cyber assured systems engineering.

[135] Loonwerks. Case-final.

[136] Lu, K. Practical program modularization with type-based dependence
analysis. In 2023 IEEE Symposium on Security and Privacy (SP) (2023),
IEEE, pp. 1256–1270.

[137] Lyons, A., McLeod, K., Almatary, H., and Heiser, G.
Scheduling-context capabilities: A principled, light-weight operating-system
mechanism for managing time. In Proceedings of the Thirteenth EuroSys
Conference (2018), ACM, pp. 26:1–26:16.

[138] Maffeis, S., and Taly, A. Language-based isolation of untrusted
javascript. In 2009 22nd IEEE Computer Security Foundations Symposium
(2009), IEEE, pp. 77–91.

[139] Magee, J., and Kramer, J. State models and java programs. wiley
Hoboken, 1999.

[140] Matsakis, N. D., and Klock, F. S. The rust language. ACM SIGAda Ada
Letters 34, 3 (2014), 103–104.

[141] McKee, D. P., Giannaris, Y., Ortega, C., Shrobe, H. E., Payer,
M., Okhravi, H., and Burow, N. Preventing kernel hacks with hakcs.
In NDSS (2022), pp. 1–17.

[142] Mera, A., Chen, Y. H., Sun, R., Kirda, E., and Lu, L. D-box:
Dma-enabled compartmentalization for embedded applications. arXiv
preprint arXiv:2201.05199 (2022).

166

[143] Mergendahl, S., Burow, N., and Okhravi, H. Cross-language attacks.
In NDSS (2022).

[144] Mergendahl, S., Jero, S., Ward, B. C., Furgala, J., Parmer, G.,
and Skowyra, R. The thundering herd: Amplifying kernel interference to
attack response times. In 2022 IEEE 28th Real-Time and Embedded
Technology and Applications Symposium (RTAS) (2022), IEEE, pp. 95–107.

[145] Meyerson, J. The go programming language. IEEE software 31, 5 (2014),
104–104.

[146] Mozilla Foundation. Oxidation. https://wiki.mozilla.org/Oxidation.
Accessed on 2021-05-14.

[147] Murray, T., Matichuk, D., Brassil, M., Gammie, P., Bourke, T.,
Seefried, S., Lewis, C., Gao, X., and Klein, G. seL4: From general
purpose to a proof of information flow enforcement. In 2013 IEEE
Symposium on Security and Privacy (2013), IEEE, pp. 415–429.

[148] Myers, A. C. Jflow: Practical mostly-static information flow control. In
Proceedings of the 26th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages (1999), pp. 228–241.

[149] Mylopoulos, J., Chung, L., Nixon, B., et al. Representing and using
nonfunctional requirements: A process-oriented approach. IEEE
Transactions on software engineering 18, 6 (1992), 483–497.

[150] Nagarakatte, S., Zhao, J., Martin, M. M., and Zdancewic, S.
Softbound: Highly compatible and complete spatial memory safety for c. In
Proceedings of the 30th ACM SIGPLAN Conference on Programming
Language Design and Implementation (2009), pp. 245–258.

[151] Nagarakatte, S., Zhao, J., Martin, M. M., and Zdancewic, S. Cets:
compiler enforced temporal safety for c. In Proceedings of the 2010
International Symposium on Memory Management (2010), pp. 31–40.

[152] Narayan, S., Disselkoen, C., Garfinkel, T., Froyd, N., Rahm, E.,
Lerner, S., Shacham, H., and Stefan, D. Retrofitting fine grain
isolation in the firefox renderer. In 29th USENIX Security Symposium
(USENIX Security 20) (2020), pp. 699–716.

[153] Narayanan, V., Huang, T., Detweiler, D., Appel, D., Li, Z.,
Zellweger, G., and Burtsev, A. Redleaf: Isolation and communication
in a safe operating system. In 14th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 20) (2020), pp. 21–39.

167

https://wiki.mozilla.org/Oxidation

[154] Necula, G. C., Condit, J., Harren, M., McPeak, S., and Weimer,
W. Ccured: Type-safe retrofitting of legacy software. ACM Transactions on
Programming Languages and Systems (TOPLAS) 27, 3 (2005), 477–526.

[155] Needham, R. M., and Walker, R. D. The cambridge cap computer and
its protection system. ACM SIGOPS Operating Systems Review 11, 5
(1977), 1–10.

[156] of Standards, N. I., and Technology. The nist cybersecurity framework
(csf) 2.0.

[157] One, A. Smashing the stack for fun and profit. Phrack magazine 7, 49 (1996),
14–16.

[158] Papaevripides, M., and Athanasopoulos, E. Exploiting mixed binaries.
ACM Transactions on Privacy and Security (TOPS) 24, 2 (2021), 1–29.

[159] Papaevripides, M., and Athanasopoulos, E. Exploiting mixed binaries.
ACM Transactions on Privacy and Security (TOPS) 24, 2 (2021), 1–29.

[160] Pappas, V., Polychronakis, M., and Keromytis, A. D. Transparent
{ROP} exploit mitigation using indirect branch tracing. In 22nd USENIX
Security Symposium (USENIX Security 13) (2013), pp. 447–462.

[161] Park, S., Lee, S., Xu, W., Moon, H., and Kim, T. libmpk: Software
abstraction for intel memory protection keys (intel {MPK}). In 2019
{USENIX} Annual Technical Conference ({USENIX}{ATC} 19) (2019),
pp. 241–254.

[162] Parmer, G. The case for thread migration: Predictable IPC in a
customizable and reliable OS. In Proceedings of the Workshop on Operating
Systems Platforms for Embedded Real-Time applications (OSPERT) (2010),
p. 91.

[163] Parmer, G., and West, R. Predictable interrupt management and
scheduling in the Composite component-based system. In Proceedings of the
29th IEEE International Real-Time Systems Symposium (RTSS) (2008),
IEEE Computer Society, pp. 232–243.

[164] Patel, P., Vanga, M., and Brandenburg, B. B. TimerShield:
Protecting high-priority tasks from low-priority timer interference. In 2017
IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS) (2017), IEEE Computer Society, pp. 3–12.

[165] PaX, T. Pax address space layout randomization (aslr). http://pax.
grsecurity. net/docs/aslr. txt (2003).

168

[166] Peters, S., Danis, A., Elphinstone, K., and Heiser, G. For a
microkernel, a big lock is fine. In Proceedings of the 6th Asia-Pacific
Workshop on Systems (2015), pp. 1–7.

[167] Pietraszek, T., and Berghe, C. V. Defending against injection attacks
through context-sensitive string evaluation. In International Workshop on
Recent Advances in Intrusion Detection (2005), Springer, pp. 124–145.

[168] Pnueli, A. The temporal logic of programs. In 18th Annual Symposium on
Foundations of Computer Science (sfcs 1977) (1977), ieee, pp. 46–57.

[169] Project, L. C. I. llvm-test-suite.

[170] Project, L. C. I. Llvm test-suite guide.

[171] Projects, T. C. Memory safety.

[172] Reed, E. Patina: A formalization of the Rust programming language.
University of Washington, Department of Computer Science and
Engineering, Tech. Rep. UW-CSE-15-03-02 (2015).

[173] Rick Hudson. Getting to go: The journey of go’s garbage collector, 2018.
https://blog.golang.org/ismmkeynote.

[174] Rivera, E., Mergendahl, S., Shrobe, H., Okhravi, H., and Burow,
N. Keeping safe rust safe with galeed. In Proceedings of the 37th Annual
Computer Security Applications Conference (2021), pp. 824–836.

[175] Rivera, E., Mergendahl, S., Shrobe, H., Okhravi, H., and Burow,
N. Keeping safe rust safe with galeed. In Annual Computer Security
Applications Conference (2021), pp. 824–836.

[176] Roessler, N., Atayde, L., Palmer, I., McKee, D., Pandey, J.,
Kemerlis, V. P., Payer, M., Bates, A., Smith, J. M., DeHon, A.,
et al. µscope: A methodology for analyzing least-privilege
compartmentalization in large software artifacts. In Proceedings of the 24th
International Symposium on Research in Attacks, Intrusions and Defenses
(2021), pp. 296–311.

[177] Roessler, N., and DeHon, A. Protecting the stack with metadata policies
and tagged hardware. In 2018 IEEE Symposium on Security and Privacy
(May 2018), IEEE, pp. 478–495.

[178] Rose, K. Did one guy just stop a huge cyberattack? The New York Times
(2024).

169

https://blog.golang.org/ismmkeynote

[179] rsc. Do not let go pointers end up in c, 2014.
https://github.com/golang/go/issues/8310.

[180] Ruane, L. M. Process synchronization in the UTS kernel. Computing
systems 3, 3 (1990), 387–421.

[181] Rudd, R., Skowyra, R., Bigelow, D., Dedhia, V., Hobson, T.,
Crane, S., Liebchen, C., Larsen, P., Davi, L., Franz, M., et al.
Address oblivious code reuse: On the effectiveness of leakage resilient
diversity. In NDSS (2017).

[182] Ruocco, S., et al. Real-time programming and l4 microkernels. In
Proceedings of the 2006 Workshop on Operating System Platforms for
Embedded Real-Time Applications, Dresden, Germany (2006).

[183] Schrammel, D., Weiser, S., Steinegger, S., Schwarzl, M.,
Schwarz, M., Mangard, S., and Gruss, D. Donky: Domain
keys–efficient {In-Process} isolation for {RISC-V} and x86. In 29th USENIX
Security Symposium (USENIX Security 20) (2020), pp. 1677–1694.

[184] Schuster, F., Tendyck, T., Liebchen, C., Davi, L., Sadeghi, A.-R.,
and Holz, T. Counterfeit object-oriented programming: On the difficulty
of preventing code reuse attacks in c++ applications. In 2015 IEEE
Symposium on Security and Privacy (2015), IEEE, pp. 745–762.

[185] Schwartz, E. J., Avgerinos, T., and Brumley, D. Q: Exploit hardening
made easy. In USENIX Security Symposium (2011), vol. 10.

[186] Seibert, J., Okhravi, H., and Söderström, E. Information leaks
without memory disclosures: Remote side channel attacks on diversified
code. In Proceedings of the 2014 ACM SIGSAC conference on computer and
communications security (2014), pp. 54–65.

[187] Serebryany, K., Bruening, D., Potapenko, A., and Vyukov, D.
Addresssanitizer: A fast address sanity checker. In Presented as part of the
2012 {USENIX} Annual Technical Conference ({USENIX}{ATC} 12)
(2012), pp. 309–318.

[188] Sewell, T., Kam, F., and Heiser, G. Complete, high-assurance
determination of loop bounds and infeasible paths for WCET analysis. In
2016 IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS) (2016), IEEE, pp. 1–11.

[189] Sewell, T., Winwood, S., Gammie, P., Murray, T., Andronick, J.,
and Klein, G. seL4 enforces integrity. In International Conference on
Interactive Theorem Proving (2011), Springer, pp. 325–340.

170

https://github.com/golang/go/issues/8310

[190] Sewell, T. A. L., Myreen, M. O., and Klein, G. Translation validation
for a verified OS kernel. In Proceedings of the 34th ACM SIGPLAN
conference on Programming language design and implementation (2013),
pp. 471–482.

[191] Sha, L., Rajkumar, R., and Lehoczky, J. P. Priority inheritance
protocols: An approach to real-time synchronization. IEEE Transactions on
computers 39, 9 (1990), 1175–1185.

[192] Shacham, H. The geometry of innocent flesh on the bone: Return-into-libc
without function calls (on the x86). In Proceedings of the 14th ACM
conference on Computer and communications security (2007), pp. 552–561.

[193] Shacham, H., Page, M., Pfaff, B., Goh, E.-J., Modadugu, N., and
Boneh, D. On the effectiveness of address-space randomization. In
Proceedings of the 11th ACM conference on Computer and communications
security (2004), pp. 298–307.

[194] Shapiro, J., Smith, J., and Farber, D. EROS: A fast capability system.
In 17th ACM Symposium on Operating systems principles (December 1999),
ACM, pp. 170–185.

[195] Shapiro, J. S. Vulnerabilities in synchronous IPC designs. In Proceedings of
the 2003 IEEE Symposium on Security and Privacy (2003), IEEE Computer
Society, pp. 251–262.

[196] Shapiro, R., Bratus, S., and Smith, S. W. Weird machines. In In
Proceedings of the 7th USENIX Workshop on Offensive Technologies
(WOOT) (2013), p. 11.

[197] Shoshitaishvili, Y., Wang, R., Salls, C., Stephens, N., Polino, M.,
Dutcher, A., Grosen, J., Feng, S., Hauser, C., Kruegel, C., and
Vigna, G. Sok: (state of) the art of war: Offensive techniques in binary
analysis. In 2016 IEEE Symposium on Security and Privacy (SP) (2016),
IEEE, pp. 985–999.

[198] Song, C., Moon, H., Alam, M., Yun, I., Lee, B., Kim, T., Lee, W.,
and Paek, Y. Hdfi: Hardware-assisted data-flow isolation. In 2016 IEEE
Symposium on Security and Privacy (SP) (2016), IEEE, pp. 1–17.

[199] Song, D., Lettner, J., Rajasekaran, P., Na, Y., Volckaert, S.,
Larsen, P., and Franz, M. Sok: Sanitizing for security. In 2019 IEEE
Symposium on Security and Privacy (SP) (2019), IEEE, pp. 1275–1295.

[200] Sprunt, B., Sha, L., and Lehoczky, J. Aperiodic task scheduling for
hard-real-time systems. Real-Time Systems 1, 1 (1989), 27–60.

171

[201] Steinberg, U., and Kauer, B. Nova: A microhypervisor-based secure
virtualization architecture. In Proceedings of the 5th European conference on
Computer systems (EuroSys) (2010), ACM, pp. 209–222.

[202] Steinberg, U., Wolter, J., and Härtig, H. Fast component interaction
for real-time systems. In Proceedings of the 17th Euromicro Conference on
Real-Time Systems (ECRTS) (2005), IEEE Computer Society, pp. 89–97.

[203] Stevanovic, M. Linux toolbox. In Advanced C and C++ Compiling.
Springer, 2014, pp. 243–276.

[204] Switzer, J. F. Preventing ipc-facilitated type confusion in rust. Master’s
thesis, Massachusetts Institute of Technology, 2020.

[205] Szekeres, L., Payer, M., Wei, T., and Song, D. Sok: Eternal war in
memory. In 2013 IEEE Symposium on Security and Privacy (2013), IEEE,
pp. 48–62.

[206] Tan, G., Appel, A. W., Chakradhar, S., Raghunathan, A., Ravi, S.,
and Wang, D. Safe java native interface. In Proceedings of IEEE
International Symposium on Secure Software Engineering (2006), vol. 97,
Citeseer, p. 106.

[207] Tice, C., Roeder, T., Collingbourne, P., Checkoway, S.,
Erlingsson, Ú., Lozano, L., and Pike, G. Enforcing
{Forward-Edge}{Control-Flow} integrity in {GCC} & {LLVM}. In 23rd
USENIX security symposium (USENIX security 14) (2014), pp. 941–955.

[208] Tino Caer. How microsoft is adopting rust, 2020. https://medium.com/
@tinocaer/how-microsoft-is-adopting-rust-e0f8816566ba.

[209] Tran, M., Etheridge, M., Bletsch, T., Jiang, X., Freeh, V., and
Ning, P. On the expressiveness of return-into-libc attacks. In International
Workshop on Recent Advances in Intrusion Detection (2011), Springer,
pp. 121–141.

[210] Trustworthy Systems Team, Data61. seL4 reference manual: Version
12.0.0, 2020.

[211] Vahldiek-Oberwagner, A., Elnikety, E., Duarte, N. O., Sammler,
M., Druschel, P., and Garg, D. {ERIM}: Secure, efficient in-process
isolation with protection keys ({MPK}). In 28th {USENIX} Security
Symposium ({USENIX} Security 19) (2019), pp. 1221–1238.

[212] Van Lamsweerde, A., Darimont, R., and Letier, E. Managing
conflicts in goal-driven requirements engineering. IEEE transactions on
Software engineering 24, 11 (1998), 908–926.

172

https://medium.com/@tinocaer/how-microsoft-is-adopting-rust-e0f8816566ba
https://medium.com/@tinocaer/how-microsoft-is-adopting-rust-e0f8816566ba

[213] VanderLeest, S. H. The open source, formally-proven sel4 microkernel:
considerations for use in avionics. In 2016 IEEE/AIAA 35th Digital
Avionics Systems Conference (DASC) (2016), IEEE, pp. 1–9.

[214] Vestal, S. Preemptive scheduling of multi-criticality systems with varying
degrees of execution time assurance. In 28th IEEE International Real-Time
Systems Symposium (2007), IEEE Computer Society, pp. 239–243.

[215] Wagle, P., Cowan, C., et al. Stackguard: Simple stack smash protection
for gcc. In Proceedings of the GCC Developers Summit (2003), pp. 243–255.

[216] Wahbe, R., Lucco, S., Anderson, T. E., and Graham, S. L. Efficient
software-based fault isolation. In Proceedings of the fourteenth ACM
symposium on Operating systems principles (1993), pp. 203–216.

[217] Wang, H., Wang, P., Ding, Y., Sun, M., Jing, Y., Duan, R., Li, L.,
Zhang, Y., Wei, T., and Lin, Z. Towards memory safe enclave
programming with rust-sgx. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security (2019),
pp. 2333–2350.

[218] Wang, Q., Ren, Y., Scaperoth, M., and Parmer, G. SPeCK: A kernel
for scalable predictability. In Proceedings of the 21st IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS) (2015), IEEE
Computer Society, pp. 121–132.

[219] Wang, Q., Song, J., and Parmer, G. Stack management for hard
real-time computation in a component-based OS. In Proceedings of the 32nd
IEEE Real-Time Systems Symposium (RTSS) (2011), IEEE Computer
Society, pp. 78–89.

[220] Wang, Q., Song, J., Parmer, G., Venkataramani, G., and Sweeney,
A. Increasing memory utilization with transient memory scheduling. In
Proceedings of the 33rd IEEE Real-Time Systems Symposium (RTSS)
(2012), IEEE Computer Society, pp. 248–259.

[221] Ward, B. C., Skowyra, R., Spensky, C., Martin, J., and Okhravi,
H. The leakage-resilience dilemma. In European Symposium on Research in
Computer Security (2019), Springer, pp. 87–106.

[222] Watson, R. N., Woodruff, J., Neumann, P. G., Moore, S. W.,
Anderson, J., Chisnall, D., Dave, N., Davis, B., Gudka, K.,
Laurie, B., et al. Cheri: A hybrid capability-system architecture for
scalable software compartmentalization. In 2015 IEEE Symposium on
Security and Privacy (2015), IEEE, pp. 20–37.

173

[223] Wei, N., and Sim, S. Strengthening memory safety in rust: exploring cheri
capabilities for a safe language. In Master’s Thesis: Wolfson College (2020).

[224] Wei, T., Wang, T., Duan, L., and Luo, J. Secure dynamic code
generation against spraying. In Proceedings of the 17th ACM conference on
Computer and communications security (2010), pp. 738–740.

[225] Woodruff, J., Watson, R. N., Chisnall, D., Moore, S. W.,
Anderson, J., Davis, B., Laurie, B., Neumann, P. G., Norton, R.,
and Roe, M. The CHERI capability model: Revisiting RISC in an age of
risk. In Proceeding of the 41st Annual International Symposium on
Computer Architecuture (Piscataway, NJ, USA, 2014), ISCA ’14, IEEE
Press, pp. 457–468.

[226] Woodruff, J., Watson, R. N., Chisnall, D., Moore, S. W.,
Anderson, J., Davis, B., Laurie, B., Neumann, P. G., Norton, R.,
and Roe, M. The cheri capability model: Revisiting risc in an age of risk.
In 2014 ACM/IEEE 41st International Symposium on Computer
Architecture (ISCA) (2014), IEEE, pp. 457–468.

[227] Xi, H., and Pfenning, F. Eliminating array bound checking through
dependent types. In Proceedings of the ACM SIGPLAN 1998 conference on
Programming language design and implementation (1998), pp. 249–257.

[228] Xu, J., Di Bartolomeo, L., Toffalini, F., Mao, B., and Payer, M.
Warpattack: bypassing cfi through compiler-introduced double-fetches. In
2023 IEEE Symposium on Security and Privacy (SP) (2023), IEEE,
pp. 1271–1288.

[229] Yee, B., Sehr, D., Dardyk, G., Chen, J. B., Muth, R., Ormandy,
T., Okasaka, S., Narula, N., and Fullagar, N. Native client: A
sandbox for portable, untrusted x86 native code. In 2009 30th IEEE
Symposium on Security and Privacy (2009), IEEE, pp. 79–93.

[230] Zhou, F., Condit, J., Anderson, Z., Bagrak, I., Ennals, R.,
Harren, M., Necula, G., and Brewer, E. Safedrive: Safe and
recoverable extensions using language-based techniques. In Proceedings of
the 7th symposium on Operating systems design and implementation (2006),
pp. 45–60.

[231] Zhou, Y., Wang, X., Chen, Y., and Wang, Z. Armlock: Hardware-based
fault isolation for arm. In Proceedings of the 2014 ACM SIGSAC conference
on computer and communications security (2014), pp. 558–569.

174

[232] Zinzindohoué, J.-K., Bhargavan, K., Protzenko, J., and
Beurdouche, B. Hacl*: A verified modern cryptographic library. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security (2017), pp. 1789–1806.

[233] Zuepke, A., and Kaiser, R. Deterministic futexes: Addressing WCET and
bounded interference concerns. In 2019 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS) (2019), IEEE, pp. 65–76.

175

	 Introduction
	Motivation
	Dissertation Overview
	Cross-Language Attacks (CLA)
	Pseudo-Pointers
	Manipulative Interference Attacks (MIA)
	Thundering Herd Attacks (THA)
	MIA Discovery

	Contributions

	 Background
	Code Reuse Attacks
	Rust
	Go
	Component Isolation
	Temporal Interference
	-kernels
	seL4
	Requirements Engineering

	 Threat Model
	 Cross-Language Attacks
	CLA Model
	Single-Language Applications (SLA) Threat Models
	Multi-Language Applications (MLA) Threat Models
	CLA Attack Construction

	CLA using Revenant Vulnerabilities
	Overview
	Rust Bounds Check Bypass
	Rust Lifetime Bypass
	C/C++ Hardening Bypasses

	CLA using Multi-Language-Specific Vulnerabilities
	Corrupting Rust Dynamic Bounds
	Double Frees
	Intended Interactions over FFI
	Concurrency and CLA

	Evaluation
	Methodology
	Source Language
	Metrics

	Results

	Discussion
	CLA in Go
	CLA In Other Languages
	Interpreted Languages
	Multiple Safe Languages
	CLA and Verified Code

	CLA Beyond Memory Safety
	Defense Strategies for CLA
	Preventing Unintended Interactions
	Securing Intended Interactions
	Alternative Defenses

	 Pseudo-Pointers
	Pseudo-Pointers Design
	Preventing Unintended Interactions via Heap Isolation
	Heap Isolation
	Heap Splitting
	Access Policy

	Securing Intended Interactions via Pseudo-Pointers
	Pseudo-pointer Properties
	Rust API
	External Function Transformation

	Pseudo-Pointers Security Guarantees

	Pseudo-Pointers Implementation
	Heap Isolation
	Heap Creation
	Access

	Pseudo-Pointers
	Rust API
	External Function Transformation

	Evaluation
	Pseudo-pointers

	Practical Lessons Learned
	Mixed-Language Application Security

	Limitations

	 Manipulative Interference Attacks (MIA)
	Manipulative Interference
	Overview of MIA
	MIA Primitives

	Case Studies
	seL4 Microkit
	DARPA CASE

	 Thundering Herd Attacks (THA)
	Traditional IPC Interference
	Overview
	FIFO Endpoint Flood Interference
	Priority Ceiling Processing Interference
	Budget Drain Interference
	Relationship to the System-Coordination Dilemma

	Thundering Herd Attacks
	Overview
	Endpoint Queue Sorting Attack
	Replenishment Queue Sorting Attack
	Replenishment Wakeup Processing Attack

	Evaluation
	Experimental Setup
	Traditional IPC Interference Results
	Thundering Herd Attack Results
	Red-Black Tree Mitigation Results
	Queue-per-priority Mitigation Analysis

	Implications for System Provisioning
	Experimental Design
	Results

	Discussion and Related Work
	Implications for -Kernel Design
	Track metadata with O(log(n)) data-structures
	Track wait queues with queue-per-priority data structures
	Expanded use of preemption points
	Partial processing of wakeups in interrupts
	Other -Kernel Designs
	Fiasco and Nova
	Thread migration in Composite
	Static Partitioning Hypervisors
	Summary

	 MIA Discovery
	Identifying MIA
	Cycle Detection
	Requirements Analysis
	Triage

	Evaluation
	Static Analysis
	Goal-Conflict Analysis

	 Conclusion
	 Cross-Language Attacks (CLA)
	 Manipulative Interference Attacks (MIA)
	REFERENCES CITED

