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THESIS ABSTRACT 

Addison Pletcher 

Master of Science in Geography 

Title: Remote Sensing of Lake Ice Dynamics in the Lower Kuskokwim River Basin, AK 

The formation and breakup of lake ice plays a critical role in the hydrology, ecology, and 

subsistence activities of Arctic regions. However, little research has examined ice phenology in 

small water bodies and complex deltaic environments, areas that are particularly responsive to 

climate changes and could provide early indicators of broader environmental shifts. This study uses 

Sentinel-2 optical imagery to map the timing of lake ice breakup in the Lower Kuskokwim River 

Basin in southwest Alaska from 2018 to 2023. We detect ice breakup timing in 145,955 lakes, as 

small as 0.001 km2, filling a gap in our understanding of finer scale lake ice dynamics. Our results 

indicate that the average ice breakup date across the study period is May 14, with a standard 

deviation of 9.6 days. Breakup timing shows significant interannual variability, with the earliest 

mean breakup occurring on May 6 in 2019 and the latest on May 27 in 2023. The standard 

deviation in breakup timing also varies, with certain years exhibiting wider variability (e.g., 2019 

and 2023) compared to others (e.g., 2018, 2020, 2021, and 2022). Temperature is a primary driver 

of breakup timing; we identify a statistically significant positive correlation between the date of the 

0°C isotherm and breakup timing. Smaller lakes (defined as lakes < 1 km2) tend to break up earlier 

than larger lakes (6 days earlier on average), demonstrating a faster thermal response to climatic 

conditions. We find that the lag interval between the 0°C isotherm and breakup date averages 8.4 

days, with smaller lakes exhibiting shorter lag intervals compared to larger lakes. Our analysis of 

145,955 lakes over six years demonstrates the utility of Sentinel-2 imagery in accurately detecting 

ice breakup, typically within 2.8 days of observed dates, despite challenges such as cloud cover, 

sensor resolution, and temporal gaps. The significant interannual variability, along with notable 

differences in breakup timing between smaller and larger lakes, underscores the responsiveness of 

small lakes to temperature fluctuations. These findings emphasize the importance of incorporating 

high-resolution satellite imagery to capture rapid environmental changes, providing a more 

nuanced understanding of climatic impacts across diverse lake types.  
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1 | Introduction  

Lakes are a dominant feature of high latitude regions and play a vital role in supporting 

habitat, subsistence activities, and freshwater resources (Watts et al., 2012; Duguay et al., 2003). 

These water bodies are seasonally covered by lake ice, which isolates the lake from the 

atmosphere and thus influences ecology, climate, travel opportunities, and greenhouse gas fluxes 

(Brown & Dugay, 2010).  Lake ice breakup is controlled by a combination of physical 

characteristics and climatological factors, including but not limited to temperature, precipitation, 

wind, geographical location, elevation, and morphometry (lake size/depth/shape) (Šmejkalová et 

al., 2016; Jeffries & Morris, 2007). Of these, temperature has been identified as the primary 

driver of ice breakup, with fluctuations in air temperature accounting for up to 70% of variation 

of breakup timing (Šmejkalová et al., 2016; Weyhenmeyer et al., 2004). Like other aspects of the 

Arctic cryosphere, lake ice is thus highly responsive to fluctuations in climate, particularly air 

temperature; shifts in its phenology, such as freeze-up and breakup times, are both indexed and 

established as robust proxies for tracking and evidencing broader climate changes (Schindler et 

al., 1990; Robertson et al., 1992; Futter, 2003; Weyenmeyer et al., 2004; Assel & Robertson, 

1995; Palecki & Barry, 1986; Blenckner et al., 2009; Šmejkalová et al., 2016; Zhang et al., 

2021). 

As the Arctic warms at rates 2-4 times faster than the rest of the globe (Rantanen et al., 

2022), lake ice is thus forming later and breaking up earlier (Šmejkalová et al., 2016; Bring et al., 

2016, Dibike et. al, 2011). Earlier ice breakup can impact ecology, seasonal water balance, 

biogeochemical processes, and greenhouse gas fluxes, as well as socio-economic activities 

(Brown and Duguay, 2010; Šmejkalová et al., 2016; Zhang et al., 2021).  This earlier transition 

can lead to longer growing seasons for aquatic plants, altering the food web dynamics and 

potentially affecting water quality, as well as increasing turbulent fluxes (heat, moisture, 

greenhouse gases) between lakes and the atmosphere (Vihma 2016; Wrona et. al, 2016). Due to 

the vast spatial extent of Arctic-Boreal lakes and wetlands, it is hypothesized that changes in 

inland ice phenology could have climatological impacts of a magnitude comparable to those of 

sea ice loss, although this equivalence has not yet been definitively established (Swart et al., 

2009; Prowse, 2011).  

Despite the importance of lake ice for ecosystems, local communities, and the broader 

Arctic hydrologic system, researching lake ice phenology across a range of spatial and temporal 
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scales remains challenging.  Many studies rely on in situ data, which is highly valuable for 

providing consistent, long-term records (Benson, et al., 2000), but is very limited in scope, as 

very few lakes have long-term in situ observations. On the other hand, models used to observe 

lake ice phenology have large uncertainties, and many climate models either exclude the 

influence of lakes entirely or underestimate their effects by including only the largest (Brown & 

Duguay, 2010).  Drivers of local-scale variability and the contribution of lake ice to seasonal 

hydrology, climatology, and the broader Arctic freshwater cycle thus lack consistent 

quantification. As such, our understanding remains incomplete, particularly concerning the finer 

scale drivers, their specific impacts on lake ice breakup, and the subsequent effects on the 

surrounding environmental systems (Arp et al., 2013; Vihma et al., 2016; Zhang et al., 2021). 

Relative to previous approaches, satellite data offers many advantages for researching 

lake ice processes by providing consistent observations over large areas. In Alaska, for example, 

previous satellite-based work has uncovered a variety of trends in lake ice phenology. One 

regional study found that shallow lakes on the North Slope typically experience breakup around 

July 5th (Surdu et al., 2011). Likewise, an Alaska-wide study identified that 88% of the 4,241 

lakes examined showed trends toward earlier breakup (Zhang et. al, 2021). Further observation 

from a different analysis indicated that the average breakup date for Alaskan lakes was May 

27th, with coastal areas showing later dates due to the influence of sea-ice on local climatology 

(Arp et. al, 2013). However, these previous satellite-derived analyses of lake ice breakup have 

primarily focused on large (> 1 km2) lakes despite the fact that small lakes and ponds (<1 km2) 

comprise the vast majority (98.7 %) of Alaskan water bodies (Wang et. al, 2016). These small 

lakes and ponds are particularly sensitive to temperature changes (Surdu et. al, 2011; Zhang & 

Pavelsky, 2019; Brown & Dugay, 2010; Palecki and Barry, 1986), making them critical yet often 

overlooked indicators of climate variability. Small lakes also exert outsized contributions to 

greenhouse gas emissions (Holgerson & Raymond, 2016) and are important for their role in 

biodiversity support (Smol & Douglas, 2007), and as sensitive indicators of climate change 

impacts on freshwater ecosystems (Zhang & Pavelsky, 2019). This exclusion of smaller water 

bodies from previous work means lake ice processes in small, highly connected lakes and 

complex wetlands remain largely unknown.  

In this study, we aim to investigate lake ice dynamics at fine spatiotemporal scales by 

assessing the use of Sentinel-2 imagery for ice breakup detection. We first build and test a 
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method for lake ice breakup detection in 10 m Sentinel-2 imagery. We then apply this method to 

track breakup timing in 145,955 lakes in the Kuskokwim Delta region in Southwest Alaska, a 

complex coastal wetland, over 2018-2023. We use the resulting dataset to examine spatial and 

interannual variability in breakup patterns and temperature controls in breakup timing. By 

examining breakup timing in previously unstudied small lakes and ponds, we provide new 

insight into lake ice dynamics in a complex wetland environment as well as the role of lake size 

in controlling breakup timing.  

1.1 | Background  

Ice phenology research has long relied upon in situ data to track ice formation and 

breakup patterns. These ice phenology records can span extremely long time periods, anywhere 

from 20 to 500 years (Benson, et al., 2000; Sharma et al., 2022). These records are invaluable for 

historical comparisons and for obtaining detailed, high-quality data which have contributed 

significantly to our understanding of ice dynamics. For example, detailed records like those from 

Lake Suwa, Japan, which have been documented since 1443 due to its cultural significance, have 

helped characterize the changing physical structure of ice over time (Benson, et al., 2000; Zhang, 

et al., 2023). In situ measurements have also been used to demonstrate ecological effects, such as 

changes in underwater light penetration affecting aquatic life (Yang et al., 2010). Despite their 

value, in situ datasets are inherently limited in spatial coverage and cannot fully capture the 

variability across different regions and smaller water bodies. Even the largest in situ ice 

phenology datasets, such as the Global Lake and River Ice Phenology (GLRIP) dataset, cover a 

relatively limited number of water bodies, totaling 865 lakes and rivers worldwide (Benson, et 

al., 2000), and recent work has created similar datasets for the northern hemisphere, 

encompassing 78 lakes spanning 578 years (Sharma et al., 2022). While they offer consistent, 

accurate, and long-temporal-scale data, the scope of in situ observations is inherently limited due 

to the logistical challenges and costs associated with maintaining widespread and continuous 

monitoring.  

Satellite-derived measurements provide a robust alternative to on the ground observations 

for detecting ice breakup accurately across thousands of lakes as they can be used to gather data 

for many water bodies simultaneously and thus expand the scale (and spatial and temporal 

resolution) of phenology measurements (Zhang, 2021). However, much existing satellite-derived 

ice phenology work relies on coarse resolution data from MODIS (250 m) or Landsat (30 m), 
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and thus focuses on larger lakes thereby excluding a significant portion of surface water area 

(Zhang et al., 2021; Arp et al., 2013; Šmejkalová et al, 2016). MODIS, for instance, cannot 

identify the majority of lakes in northern latitudes (Lehner and Döll, 2004; Downing et al., 

2006), resulting in data that may not be representative of landscape-scale ice cover loss (Arp et. 

al, 2013). This is important, as limited data availability constrains our understanding of the role 

that increased open water periods in small water bodies play in both local ecosystems and the 

broader climate system (Vihma et. al, 2016). The use of combined methodologies in ice 

phenology research is becoming increasingly commonplace, as demonstrated in studies by Zhang 

& Pavelsky (2019) and Tuttle et al. (2022), which use in situ data to enhance and validate the 

accuracy and reliability of findings by leveraging the strengths of each. Ice phenology studies 

often focus solely on regional areas or on specific subsets of lakes, which typically do not 

overlap, and use different variables for quantifying ice phenology (e.g., total ice cover duration, 

breakup start, breakup end, date of ice-free water) (Brown and Duguay, 2010). These differences 

thus pose challenges when examining ice phenology data across sources, as methodological 

inconsistencies can obscure trends and complicate comparisons (Prowse et al., 2007). 

Despite differences in data sources, methodologies and spatial temporal extents, previous 

studies have consistently found that lake ice cover across northern latitudes is experiencing 

earlier breakup and later formation, indicating a clear and pressing trend of diminishing ice cover 

(Bring et al., 2016; Šmejkalová et al., 2016). One of the earliest studies by Magnuson et al. 

(2000) compiled a large in situ dataset spanning from 1846 to 1995 that revealed a similar 

pattern of earlier breakup in both rivers and lakes in the northern hemisphere. Complementing 

these findings, Futter et al. (2003) analyzed volunteer-monitored ice phenology data in south-

central Canada, identifying a significant extension of the ice-free season from 1970 to 2003. 

More recent satellite data studies corroborate these observations; for instance, Surdu et al. (2011) 

documented that on Alaska’s North Slope, ice breakup has been advancing by approximately 

0.29 to 0.3 days per year from 1950 to 2011. Šmejkalová's (2016) pan-Arctic projections suggest 

that spring breakup could occur up to a month earlier in the coming decades. Additionally, 

Dibike et al. (2011) forecast significant reductions in the thickness (10-15 cm) and duration (15-

50 days) of lake ice by mid-century (2040-2079). Zhang et al. (2021) further confirmed these 

patterns of earlier breakup across Alaska, noting that the impacts of these changes are expected 

to be more pronounced at more southerly latitudes, in agreement with a review by Bring (2016). 
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Studies have also identified non-temperature drivers of breakup, primarily related to the physical 

characteristics and/or location of water bodies. Proximity to river channels and connectivity, as 

well as the relative closeness of lakes to one another, significantly affect ice timing, with lakes 

closer to rivers, highly connected, or near each other breaking up sooner (Dolan et al., 2021; 

Zhang & Pavelsky, 2019). Latitude and elevation have also been identified as influential to ice 

timing, with higher areas breaking up later than their lower/more southern counterparts 

(Williams & Stefan, 2006). Morphometry of lakes is yet another influencing factor, playing a 

role in heat storage, circulation, temperature, and the role of wind (Jeffries and Morris, 2007). Of 

morphological characteristics, depth has been found to be the most influential factor due to its 

influence on heating/cooling, though shoreline complexity has also been explored (Korhonen, 

2006; Arp et. al, 2013). Despite these many influencing factors, temperature remains at the 

forefront of ice phenology work due to its dominant effect in influencing breakup.  

Changes to breakup timing have profound effects on the local environment. Earlier ice 

breakup extends the open water season, leading to increased evaporation and heat transfer to the 

atmosphere, which in turn accelerates heating. This process not only increases evaporative flux, 

contributing more moisture to and from the atmosphere (Vihma 2016), but also significantly 

influences the surface energy balance of lakes. The alteration in lake ice phenology has the 

potential to affect both local and regional climate impacts, necessitating further investigation into 

the dynamics resulting from a longer open water season (Prowse, 2015; Šmejkalová et al., 2016; 

Brown and Duguay, 2010). The warming resulting from earlier breakup affects summer water 

temperatures, altering the water balance and productivity of lakes (Williams et al., 2004; 

Bengtsson, 2011; Prowse et al., 2011). These changes disrupt seasonal patterns, affecting the 

surrounding ecology through modifications in thermal stratification, light penetration, nutrient 

supply, and phytoplankton dynamics (Šmejkalová et al., 2016; Wrona et al., 2016; Zhang et al., 

2021). Moreover, as the temperature of lakes increases, so does the emission of greenhouse gases 

like carbon dioxide, methane, and nitrous oxide, due to enhanced metabolic activity and other 

processes in the warming waters (Walter et al., 2006; Zhang et al., 2021; Šmejkalová et al., 2016; 

Cory et al., 2014; Wik et al., 2016). Furthermore, the shift in ice cover seasonality impacts both 

natural and human systems. Altered ice conditions affect transportation and subsistence 

activities, as well as commercial and recreational uses of lake and river ice (Instanes et al., 2016; 

Šmejkalová et al., 2016). This loss of ice poses risks to the safety of local travel during winter 
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and spring and has significant implications for food security (for those relying solely on 

subsistence harvests) and economic opportunities in remote communities (Herman-Mercer et al., 

2011; Herman-Mercer et al., 2019). 

Despite widespread findings of earlier ice breakup pointing to the many environmental 

and socioeconomic impacts across the Arctic, existing research often overlooks lake ice 

processes in smaller water bodies and complex wetland environments, which are critical for 

more accurate regional climate and atmospheric flux projections. The global distribution of 

natural lakes is dominated by those less than 1 km² (Downing et al., 2006), a pattern that holds 

true in Alaska (Wang et al., 2016). These small water bodies influence heat and precipitation 

fluxes to the atmosphere, potentially altering local and regional climates (Vihma et. al, 2016). 

They are crucial for the hydrological cycle, affecting groundwater recharge, surface water flow, 

and evaporation rates, which are vital for understanding regional water balance, especially in 

areas with high lake density. Additionally, small lakes and wetlands are biodiversity hotspots 

(Smol & Douglas, 2007); changes to their ice cover can significantly impact aquatic ecosystems, 

creating inhospitable conditions for some species while potentially allowing new ones to thrive 

(Vincent et al., 2008). Due to their smaller heat capacity, they are more sensitive to temperature 

changes and climate effects, making them valuable indicators for early signs of climate change 

impacts on freshwater ecosystems (Zhang & Pavelsky, 2019).  This oversight highlights a crucial 

gap in our current knowledge and underscores the need for enhanced study of these smaller 

scales (Šmejkalová et al., 2016).  Better understanding lake ice dynamics at fine scales, 

particularly those previously underrepresented in this type of work, thus fills a key gap in our 

knowledge of ice phenology.  
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2 | Study Area 

Our study focuses on the Yukon-Kuskokwim River Delta (YKD) in southwest Alaska due 

to its lake dense nature and proximity to major rivers. This coastal lowland bordering the Bering 

Sea has been identified as the largest major lake district in Alaska (72,831 km²) (Arp & Jones, 

2009), characterized by an abundance of both small and large lakes. The large majority of the 

YKD is undeveloped and is a complex wetland delta made possible by low topographical relief 

and permafrost which restricts drainage (Arp & Jones, 2009; Benke & Cushing, 2011). Sedges, 

shrubs, willow, and alder are the predominant vegetation in the area, and have been designated as 

an important area for breeding waterfowl (Benke & Cushing, 2011). The YKD is an unglaciated 

area and is composed of primarily quaternary marine sedimentary rock, though has areas of 

volcanic rock (Arp & Jones, 2009). Due to the absence of glaciers during the last glacial 

maximum, the area acted as a refugium for both terrestrial and aquatic species; it therefore is 

home to several endemic species (Benke & Cushing, 2011). Permafrost exists within the region 

sporadically (10-50%), in isolated patches (0-10%), and discontinuously (50-90%) (Obu et al., 

2019), though this continues to change with a warming climate. The YKD receives relatively 

little precipitation compared to the rest of the state of Alaska, historically receiving ~43 

centimeters, mainly in the summer and fall seasons between June-October (Arp & Jones, 2009; 

Benke & Cushing, 2011). Spring temperatures average - 4°C and are generally consistent 

throughout the area, though summer temperatures are more varied throughout the region with 

western areas being ~ 4° cooler than their eastern counterparts (Arp & Jones, 2009).  

For computational purposes, a smaller area of interest was chosen within the YKD; the 

Lower Kuskokwim River Basin (LKRB), as defined by the USGS identified 6-digit hydrologic 

unit (HU) basin (CONCAT 190305) (Seaber et al., 1987). The Kuskokwim River is the dominant 

feature of this basin and is the second largest and longest river in the state (1,130 km), second 

only to its northern neighbor, the Yukon River (Benke & Cushing, 2011). The Kuskokwim is 

sourced from snow and glacier melt, traveling from its source in the Alaska Range as a wide, 

braided river with many tributaries and a low gradient (Benke & Cushing, 2011). The LKRB is 

home to several towns including but not limited to Quinhagak, Eek, Tuntutuliak, Kipnuk, Bethel, 

Aniak, Crooked Creek, Red Devil, among others (Benke & Cushing, 2011); Bethel is the largest 

populated area in the region with 6,325 people (U.S. Census Bureau, 2020). The majority of land 

use is used to support subsistence activities, including hunting, fishing, and trapping; pacific 
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salmon and steelhead are the most commercially valuable fish caught in the area (Benke & 

Cushing, 2011). 

The LKRB alone is home to 148,847 lakes and ponds (conservatively), though when 

including ephemeral water bodies this number would be much higher. Of these, 99.4 % (148,022 

lakes) are < 1 km²; these lakes compose 45.84% of the total surface water area of the region. As 

such, there exists a strong need to study such lakes to better understand ice phenology processes 

at varied scales (Zhang, 2019), especially important in regions so densely populated with small 

water bodies like the YKD (Arp & Jones, 2009). Since no comprehensive ice phenology analysis 

currently exists for this area, this project will fill a data gap in both context-based information for 

larger lakes, and new information on the area’s smallest lakes.  

Figure 1: Lower Kuskokwim Basin in southwest Alaska. The Kuskokwim River, shown in teal, flows 

to the Bering Sea via the Kuskokwim Bay. Inset maps a, b, and c demonstrate the lake dense and 

complex nature of the region, characterized by 145,955 water bodies.  
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3 | Methods 

3.1 | Input Datasets 

We chose to test the use of Sentinel-2 imagery for ice breakup detection due to its wide 

availability and sufficient temporal (<5-day revisit) and spatial (10 m) resolution, as well as the 

ease of distinguishing between ice and water using optical imagery. Planet imagery offers 

improved spatial and temporal resolution compared to Sentinel-2; however, Sentinel-2 was 

favored due to both its free availability and its ease of access in Google Earth Engine. We 

analyzed data over the spring season (April 1st – June 30th) for 2018 to 2023.  

Central to detecting lake ice breakup is an accurate dataset of individual lake objects. 

Until recently, there were very few high-resolution lake datasets which contain lakes smaller than 

1 km². Previous ice phenology work has often used the Global Lakes and Wetlands Database 

(GLWD), which can underrepresent lake prevalence, often accounting for only the largest water 

bodies. Small lakes and wetlands specifically are often not included in such databases despite 

being a dominant feature of high latitude regions (Šmejkalová et al., 2016, Bring et. al, 2016). 

Studies that do have higher resolution masks (ie HydroLAKES) are limited by the resolution of 

the chosen sensor for ice detection (Zhang et al., 2021). To enable analysis of very small lakes, 

we used a novel lake mask product, the Alaska Lake & Pond Dataset (ALPOD), that includes all 

stable lakes within the region (Levenson et. al, in prep), to identify lakes to be used in our 

analysis. Further details about the method used to produce ALPOD can be found in Levenson et. 

al, (in prep) but a brief description is provided here. A Sentinel-2-derived product, ALPOD 

utilizes imagery from 2016-2021 to create an open water occurrence raster representative of 

maximum lake extent. To do this, a pre trained U-Net classification model was utilized to 

identify lake extent, followed by manual verification and adaptive NDWI thresholding to 

identify open water. This method proved extremely accurate with an F1 value of 0.999. Lakes 

from ALPOD were selected based on a 75% occurrence threshold, meaning they had to be 

identified as water at least 75% of the time in 2016-2021 to be included in our analysis. 

Ephemeral lakes as well as those < 0.001 km² were excluded to maintain a Minimum Mapping 

Unit (MMU) of 5x5 pixels, ensuring reliable ice classification as these smallest lakes often 

contained insufficient pixels to meet this threshold (Lesi, et. al, 2022). 

In total, this dataset includes 145,955 water bodies, with a median size of 0.005 km² and 

a mean of 0.0485 km2, skewed by the presence of a few large lakes. The largest water body in the 



. 16 

dataset is 151.98 km2, though 99.5% of the dataset (145,155 water bodies) is smaller than 1 km2, 

accounting for ~45% of the total lake area in our study region.  

3.2 | Detecting Ice Breakup 

We utilized the red band (Band 4: 665nm) of Sentinel-2 (Harmonized Sentinel-2 MSI: 

Level-1C) for ice classification, as ice is very distinguishable compared to water in red 

wavelengths and has been used for ice/water detection in previous studies (Pavelsky & Smith, 

2004, Zhang et. al, 2019, 2021). Additionally, while the red band can be used to distinguish 

between ice and water over all lakes, previous work has found performance improves over 

small/medium lakes (compared to larger lakes), further emphasizing its utility for our purposes 

(Zhang, 2021). We distinguished between ice and water using a static threshold of 950, which 

was chosen via manual inspection of reflectance curves from within the region. Images were 

cloud masked using the maskS2clouds function in Google Earth Engine, which uses the Sentinel-

2 QA60 band to create a cloud and cirrus bit mask (10 and 11, respectively) and masks images 

based on this. All classification and image processing utilized Google Earth Engine’s Python 

API. 

We acknowledge that there is uncertainty in this method of ice classification, as thin ice 

has an altered spectral profile which may lead to missed pixels/ incorrect classification as water, 

potentially resulting in a negative bias of breakup estimate (Zhang et al., 2021). There are other 

methods for distinguishing between ice and water that may be more accurate and precise in 

spectrally identifying ice (mNDWI, NDSI, Sentinel-2 Scene Classification; Barbieux et. al, 

2018; Zhang et. al, 2022; Liu et. al, 2021). However, these all rely on bands and/or derived 

products that only exist at >20m spatial resolution, and given that our analysis focuses on small 

lakes, we found classifications based on the 10m data were more suitable for our purposes. We 

also note a dynamic threshold would likely improve the accuracy of the classification on a lake-

by-lake basis but found the static threshold to be sufficient for the exploratory nature of this 

study.  

By applying the ALPOD dataset to classified Sentinel-2 images, we produced time series 

of ice fraction for each of our 145,955 water bodies for each year over April-May. We then 

filtered the resulting time series by removing ‘no data’ values as well as observations with more 

than 10% cloud cover. ‘No data’ values refer to dates or lakes where the classification did not 
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perform due to a lack of imagery, sensor error, or other external considerations. For 

computational purposes, ice classification was applied over a tiled scheme and run in batches.  

Thresholds for identifying breakup vary by study, ranging from ice coverage of 10-20% 

(Arp et al., 2013; Zhang et al. 2019, 2021). In this study, we define ice breakup using an ice 

fraction of 25% or less (i.e. at least 75% open water); this decision was driven by the large 

number of small lakes analyzed. Small lakes have a higher perimeter-to-area ratio, making them 

more susceptible to localized variations at their edges. Using a higher threshold helps mitigate 

the influence of these edge effects, as it ensures that the breakup detection is not prematurely 

triggered by minor edge melt and/or mixed-pixel contamination, thus providing a more accurate 

and representative measure of ice breakup. Due to cloud cover and the approximately 2-3 day 

temporal resolution of Sentinel-2 (at a latitude of ~60° N), there were often gaps in observations 

Figure 2: Time series for selected lakes during the 2022 breakup season, generated through 

classification of Sentinel-2 imagery. Each plot represents a single lake with pale blue dots 

representing the percentage of ice cover over the breakup period, brown dots indicating our Sentinel-

2 derived estimated breakup date using the 25% ice cover threshold (shown as the horizontal dashed 

line). Uncertainty, defined as the number of days between the observations bounding breakup date, is 

shown with a horizontal red line. 
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that required estimating the true breakup date. Linear interpolation between the two closest valid 

(cloud-free) observations was used to determine the breakup date, similar to the methodology of 

Zhang (2021). The uncertainty of the breakup date was defined as the number of days between 

these observations (Cooley et al., 2020).  

3.3 | QA/QC of red band ice classification  

Satellite-derived ice breakup timing is best validated through local in situ observations; 

however, such data are scarce for this region. The absence of ground-level data necessitated the 

validation of lake ice breakup via manual analysis of satellite imagery. By employing a 

combination of PlanetScope, Sentinel-2, and Landsat imagery, we achieved the desired temporal 

resolution for this analysis. To verify the accuracy of our breakup date estimations, we manually 

determined the breakup timing for selected lakes using this integrated satellite imagery approach. 

175 lakes were randomly selected using a stratified sampling method to ensure variance of 

geographic location and lake size. As there are many more small than large lakes, we wanted our 

sampling method to be representative of each group. Lakes were binned by quintiles into five 

groups by size, and the number of lakes chosen for QA were thus proportionate to the prevalence 

of said group in the dataset (all groups being required to have at least one lake). To account for a 

varied geographic spread of samples, the ROI was split into quadrants, lakes being sampled from 

each. We then compared manually detected breakup dates with estimated breakup dates, 

computing the difference in estimations in days. We find the average performance of our 

Sentinel-2 derived breakup date estimation to be within 2.8 days of the manually detected 

breakup date. This level of precision indicates that while the automated method provides a 

reliable estimate, there is still a minor margin of error that can be attributed to factors such as 

cloud cover, sensor resolution, and temporal gaps between satellite overpasses, highlighting the 

need for continued refinement. 

3.4 | Temperature 

We use the ERA-5 Land reanalysis product (Muñoz-Sabater, 2019) for temperature data 

(2 meters) due to its comprehensive spatial and temporal coverage, which ensures a 

representative and accurate assessment of temperature variations across our study area. While 

local in situ temperature gauges provide valuable point measurements, they can be influenced by 

microclimatic conditions that are not suitable for extrapolation across larger regions. This high-
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resolution data is validated and widely used in climate and environmental research (Webb et al., 

2022; Cooley & Ryan, 2024), and has been shown to perform well in high latitude environments 

(Graham et al, 2019). Temperature data was acquired via the Copernicus ERA5 Daily Aggregate 

dataset, accessed via Google Earth Engine (2018-2020) and Copernicus’ Daily Statistics 

Calculator (2021-2023); due to internal site maintenance, GEE had limited records resulting in 

the necessary use of CDS’s aggregate product. Temperature data was then intersected with each 

lake’s geographic location.  

We choose to focus on the 0° Celsius isotherm date for assessing temperature controls on 

breakup timing, as previous work has shown it is useful in predicting ice breakup at the regional 

scale (Arp, 2013). The 0°C isotherm is defined as the day when daily mean air temperature 

crosses the 0°C threshold when smoothed over a 31-day period (Šmejkalová et al., 2016). In 

other words, it represents the first day when the temperature over the 31 days prior has averaged 

0°C or above. This metric has a proven relationship to ice phenology, with the 0°C isotherm 

typically preceding breakup by a few days up to a month (Brown et. al, 2006).  

To quantify the relationship between temperature and breakup, we difference the date of 

breakup from that of the 0°C isotherm to derive the approximate period between which melting 

begins and ends, defined as the lag interval. To assess the predictive power of lag intervals from 

the 0°C isotherm, we average the lag for each lake over 2018-2023, then add the average lag to 

the date of the 0°C isotherm to produce a temperature lag-estimated breakup date. We then 

compare lag estimated breakup to Sentinel-2 estimated breakup.  

3.5 | Lake Size 

A key question motivating this analysis is the relationship between lake size and breakup 

timing. To test this, we analyzed the breakup results by binning data into two groups, lakes larger 

and smaller than 1 km2. We choose this particular size grouping as most prior research has been 

limited to lakes > 1 km2. We then perform summary statistics and visualizations to examine 

breakup timing in each size group. Additionally, we investigated the relationship between the 

lake size and lag time, using the same grouping method to understand if and how the lag time 

varies with lake size. 
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4 | Results 

4.1 | Lake Breakup Results 

Over our 145,955 lakes over 2018-2023, we find that on average breakup occurs on May 

14, with an average standard deviation of 9.6 days over the 6-year period. The mean (median) of 

yearly breakup varies ranges from May 6 (May 3) in 2019 to May 27 (May 27) in 2023. The 

proximity of mean/median values within each year suggests a minimal skew in the data. The 

standard deviation in breakup timing also varies from year to year, with some years (2019, 2023) 

having wider variability with a standard deviation of ~12 days, whereas others (2018, 2020, 

2021, and 2022) demonstrate more concentrated distributions with standard deviations ranging 

between 7-9 days. Interquartile ranges (IQR) for lake ice breakup dates exhibit variability across 

the years studied, with a maximum range of 18 days in 2023 compared to narrower ranges of 9 

days in both 2020 and 2021. The first (Q1) and third (Q3) quartiles of breakup dates also show 

notable fluctuations, with Q1 ranging from April 29th in 2019 to May 18th in 2023, and Q3 

extending from May 12th in 2019 to June 5th in 2023. Notably, the year 2023 observed earlier 

Figure 3: Distribution of breakup date and associated uncertainty by year 
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breakup dates compared to 2019, as reflected in the broader span between the 25th and 75th 

percentiles (Figure 3a). 

The uncertainty in breakup dates (defined as the number of days between valid 

observations, i.e. the period over which linear interpolation occurs) averages ± 4.4 days but 

exhibits significant interannual variability, as shown by the broad range of maximum uncertainty 

values observed across different years (Figure 3b). The lowest mean uncertainties occur in 2020 

and 2022 (± 2 days), while 2018 and 2021 have the highest mean at ± 9.3 and 6.4 days. A similar 

pattern follows for the IQR, with the lowest spreads in 2019, 2020, and 2022 (± 1.5-2.5 days) 

and the highest in 2021 and 2018 (± 6.5-11.5 days). While most lakes each year exhibit low 

uncertainty in breakup dates, all years (except 2022) also experience high levels of uncertainty 

exceeding ± 5 days. That said, the proportion of lakes experiencing such high levels of 

uncertainty varies significantly by year. For instance, in 2022, nearly all lakes (99.8%) had 

uncertainty within ±5 days, indicating a highly precise year for breakup date estimations. 

Conversely, in 2021, less than half of the lakes (46.0%) showed this level of certainty, reflecting 

greater variability in breakup timing predictions within that year. The percentages of lakes with 

uncertainties within ±2 days also reveal interesting patterns; 2022 again shows the highest 

precision with 52.6% of lakes falling within this narrower uncertainty range, highlighting its 

consistency in predictions. On the other hand, 2021 displayed much lower precision, with only 

Figure 4: Estimated breakup date maps. Each dot represents an individual lake, and the line down 

the middle shows the location of the Kuskokwim River main channel. Earlier breakup is shown in 

yellow and later breakup in blue.  
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14.6% of lakes having breakup uncertainties within ±2 days, underscoring a year of considerable 

unpredictability in ice breakup timing. 

Spatial patterns in breakup timing generally reveal both interannual and spatial variability 

(Figure 4). In general, the areas closest to the southeast of the Kuskokwim River (directly to the 

east of the river in Fig. 4) break up first (~ May 13), whereas the higher elevation lakes to the 

southeast of our study area break up last (~ June 19). We also see later breakup dates in highly 

localized fashion toward the most western region near the ocean (end of May, start of June). Not 

all years follow these patterns exactly, indicating that while local physiography certainly plays a 

role in controlling breakup, interannual variability in climate and other conditions is also 

important.  

 We find, on average, breakup consistently occurs earlier in smaller lakes, with mean 

breakup for lakes < 1 km2 occurring on average 6 days earlier than larger lakes (ranging from 3 

days in 2021 to 9 days in 2022) (Figure 5). This pattern is consistent across all years and 

demonstrates that smaller lakes respond more rapidly to spring warming than larger lakes. The 

IQR for each year shows considerable variability and is more sensitive to interannual changes 

than to differences in lake size. For example, the IQR varies significantly between years, with an 

Figure 5: Yearly breakup date and associated uncertainty by size group. 
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average difference of 7.5 days (ranging from 7 days in 2021 to 14.5 days in 2023). In contrast, 

the IQR difference between lake sizes is narrower, with an average difference of 3.5 days (8.5 

days for large lakes and 12 days for small lakes). This wide interannual range of possible 

breakup dates (7-14.5 days), observed across all years and lake sizes, underscores that while lake 

size does influence the timing of breakup, it is just one of many factors. The persistent breadth of 

this range highlights that while size influences the timing of breakup, other factors such as local 

climatic conditions and specific lake characteristics also play significant roles. Uncertainty varies 

little by lake size and is similarly more tied to interannual variability. We observe this through 

the similarity of means within years; each yearly mean varies at most by 2 days between small 

vs. large lakes, while interannually means vary by an average of ~7 days. This suggests that the 

primary drivers of uncertainty in breakup dates are yearly climatic conditions rather than lake 

size. Overall, while smaller lakes tend to break up earlier, the variability and uncertainty in 

breakup dates are more strongly controlled by interannual climatic variability than by lake size 

alone.  

4.2 | Temperature Analysis  

Across all years, the average date of the 0°C isotherm is May 5 (Figure 6). Interestingly, 

we find a general trend with an increasing 0°C isotherm date over 2018-2023, with 2023’s 

average crossing date (May 17) occurring 16 days later than that of 2018 (May 1). The IQR is 

small for most years (1-5 days), with the exception of 2019 (20 days), indicating consistent 

crossing dates among most lakes within years. 2019’s wide variability range is reflected in 

Figure 6 where we observe a higher spread of isotherm dates compared to other years. The 

yearly mean for isotherm date generally falls between April 30 and May 7, though 2023 is 

notably colder with a mean isotherm date of May 17. Spatially, isotherm dates follow similar 

patterns through time, with the earliest dates occurring in the central area near the Kuskokwim 

River and the latest dates occurring at the northwestern and southeastern areas of the study area. 
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Some years show generally consistent isotherm dates throughout the entire study area (2021, 

2023), while others are more variable (2018, 2020, 2022 and especially 2019).  

4.2.1 | Relationship between Temperature and Breakup 

To investigate if warmer years break up earlier and/or faster than colder years, we examine 

the relationship between the timing of the 0°C isotherm and breakup (Figure 7). Across all years, 

there exists a positive correlation between isotherm date and breakup timing (R2 = 0.31, p < 

0.0001), suggesting that earlier warming leads to earlier breakup, and vice versa. While the 

relationship between isotherm date and breakup timing is positive and statistically significant 

within each year individually as well, there is some notable interannual variability in the strength 

of this correlation. For example, in 2018 the correlation is weaker (R2 = 0.0004, P < 0.0001), 

perhaps due to the increased uncertainty in breakup timing this year. The statistically significant 

but low R2 values indicate that while temperature does have a significant role in breakup timing, 

there are other factors influencing the breakup date (wind, connectivity, lake size, as well as 

breakup detection uncertainty). These findings highlight the complexity of lake ice breakup  

prediction and underscore the need for a robust approach to accurately forecast these events. 

Figure 6: Distributions of yearly temperature patterns from 2018-2023. a) Yearly distribution of the 

0°C isotherm dates b) Yearly maps of temperature patterns, visualized as the date of the 0°C 

isotherm over each lake. Areas in grey indicate no available data.  
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4.2.2 | Yearly Lag Interval 

The mean lag interval between the 0°C isotherm and breakup date across all lakes and all 

years is 8.4 days, ranging from 5 days in 2020 to 14 days in 2018 (Figure 8(a)). In other words, 

on average breakup occurs 8.4 days after the date of the 0°C isotherm. In all years some lakes 

(18.7% on average) break up before the 0°C isotherm; however, the vast majority of lakes 

breakup after the date, suggesting it may have some predictive capacity.  The wide IQRs in lag 

interval (15-16 days) in 2019 and 2023 indicates the widest variability in lag interval, pointing to 

a range of conditions among lakes during that year. In contrast, 2020-2021 are characterized by 

more consistent lag intervals (IQRs of 9 and 8), while 2018 and 2022 fall in the middle with 

IQRs of 13 and 11.   

Spatially, lag intervals display some regional patterns, though interannual variability 

appears to be generally larger than the effect of geographic location (Figure 8b). Variability 

within years is likely influenced by local climatic conditions. For example, in 2018, the maps 

predominantly show longer lag intervals, while 2019 exhibits a mix of longer and shorter lag 

intervals, suggesting more variability in how lakes responded to temperature changes that year. 

Figure 7: Relationship between 0°C isotherm date and breakup date for all years; Red line 

indicates linear regression. 
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Notably, the years 2019 and 2022 display higher variability in lag intervals, which might be 

indicative of specific climatic events or anomalies affecting those years. 

When examining lag interval by lake size, we find the mean lag interval for small versus 

large lakes to be 8.3 and 14.1 days, respectively. We observe small lakes to consistently have a 

shorter mean lag interval than larger lakes by an average of 5.8 days, ranging from 3.6 days 

earlier in 2021 to 7.9 days in 2022 (Figure 9). We note this is approximately the same as the 

difference in breakup timing as there is not a statistically significant difference in 0°C isotherm 

date between small vs. large lakes. This consistent pattern again implies the faster thermal 

response of smaller lakes to climatic conditions compared to larger lakes. Furthermore, the IQR 

for lag interval in small lakes, averaging 12 days, is wider than that of large lakes, which 

averages 9.6 days. Despite these differences in lag variance by size, there is still considerable 

variability in lag interval across all lakes, suggesting that factors such as localized conditions 

also play a crucial role in influencing breakup dynamics. 

Interestingly, when investigating the relationship between temperature and lag interval, 

we observe a general pattern where later 0°C isotherm dates are associated with shorter lag 

intervals towards breakup timing (R2 = 0.02, p value = 0.0) (Figure 11). In other words, colder 

years breakup faster after the 0°C isotherm than warmer years. This negative correlation between 

Figure 8: Distribution of yearly lag interval (in days) from 2018-2023.  
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0°C isotherm date and lag interval is evident in both the overall dataset and when comparing 

warm and cold years separately.  

4.2.3 | Lag Interval as Breakup Predictor 

To investigate the efficacy of using average lag time to predict breakup dates, we 

compared lag-estimated breakup dates to previously estimated breakup dates from Sentinel-2 

(S2) imagery (Figure 11a). Our analysis reveals a general pattern where the lag prediction 

method tends to overestimate breakup timing early in the season (March 31-April 20) and 

underestimate it later in the season (May 30-June 29). There is strong agreement between both 

methods during the middle of the season (April 20-May 30), reflected by the lowest mean 

absolute error (5-10 days), where the highest density of lakes aligns most closely with the 1:1 

line. However, this alignment could be due to the higher data availability in this period rather 

than improved accuracy, as most data points fall between April 30-May 20. 

When examining the predictive power of the lag time breakup estimation across different 

lake sizes, we found that both size groups performed similarly. The mean absolute error for 

smaller lakes is approximately one day longer than that for larger lakes (6.8 vs. 5.7), suggesting 

Figure 9: Yearly lag interval by size group, computed as the difference 

between the date of the 0°C isotherm and breakup 
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that larger lakes are estimated slightly more accurately. Additionally, smaller lakes exhibit higher 

variability in their error compared to larger lakes, with standard deviations of 5.7 and 4.7, 

respectively. 

Figure 10: Relationship between temperature isotherm date and lag interval, showing a general trend 

of shorter lag interval with later isotherm date occurrence. The downward sloping linear regression is 

shown in red.   

Figure 11: (a) Efficacy of lag as a breakup estimator for all years combined. Red dashed line indicates a 

1:1 relationship; (b) Error over time. Solid red line indicates a smoothed trend line (fitted with a 

generalized additive model). 
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5 | Discussion 

Our analysis of 145,955 lakes over six years suggests that Sentinel-2 imagery can be used 

for accurately detecting breakup timing in very small water bodies with an uncertainty due to 

cloud cover of ± 4.4 days (ranging from ± 2 days in 2020 and 2022 to ± 9.3 days in 2018) and an 

error (compared to manually detected breakup date) of 2.8 days. Cloud cover was the strongest 

contributor to uncertainty and error, particularly during the breakup season and in SW Alaska, 

where clouds are especially persistent during the shoulder seasons (Zhang 2021). Over the 

region, cloud cover reduced data availability by approximately 50%, leading to significant data 

gaps and impacting the accuracy of analyses. Consequently, there remains uncertainty due to 

estimation during cloudy periods. The interannual variability of uncertainty emphasizes the need 

for continued refinement of this method. However, the generally small uncertainty windows and 

our ability to accurately detect breakup in very small water bodies suggests that despite issues 

with cloud cover, Sentinel-2 can be used to advance understanding of ice phenology at a fine -

scale. Overall, the application of Sentinel-2 for tracking lake ice breakup provides valuable and 

large-scale information on the areas smallest water bodies; the level of precision observed 

underscores the utility of Sentinel-2 as a reliable tool for monitoring ice breakup. Our large 

dataset of ice breakup timing derived from Sentinel-2, novel in its scale which includes many 

thousands of small lakes, thus enables novel insights into lake ice processes. 

 

5.1 | Interannual Variability and Spatial Patterns 

Our results indicate that interannual variability generally exceeds spatial variability in ice 

breakup timing in the Lower Kuskokwim River Basin. This result is perhaps unsurprising given 

the comparatively small size (88,811 km²) and small elevation range (0 – 4815 m) of our study 

region. However, it does imply that local physiography and geomorphological features such as 

connectivity and proximity to the river may not be as important as climatic processes and 

therefore that breakup timing observed in a handful of lakes is likely representative of overall 

breakup patterns within that region. Our finding of comparatively minimal spatial variability in 

breakup timing across a large number of lakes (145,995) thus yields confidence to 

analyses/conclusions of large-scale trends in lake ice breakup based on in situ records as it 

suggests that individual lake time series are likely to be broadly representative of regional 

patterns.  
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5.2 | Temperature Influence on Breakup and Lag Interval 

We found a statistically significant, positive relationship between air temperature and 

breakup timing, with warmer years generally experiencing earlier breakup. This relationship is 

supported by previous studies that point to air temperature as a primary driver of lake ice 

phenology (e.g., Schindler et al., 1990; Robertson et al., 1992; Futter, 2003). However, the 

variability in the strength of this correlation as well as in lag time between the start of thaw and 

ice breakup suggests that other factors, such as local climatic conditions and specific lake 

characteristics, likely also contribute to breakup patterns.  

The lag interval method (i.e. using a lake’s average lag interval as a breakup predictor) 

demonstrates moderate effectiveness as a predictive tool for breakup timing, achieving an 

average accuracy of ± 6.8 days. However, its performance varies throughout the breakup season; 

it overestimates breakup dates early in the season and underestimates them later. This pattern 

could be influenced by several factors, including the physical properties of ice and seasonal 

climatic variations, which may affect the ice melting processes differently at different times of 

the year. The observed discrepancies in early and late-season predictions point to potential areas 

for refining the lag interval method. Interestingly, the size of the lakes does not significantly 

impact the predictive success of the lag interval method. This suggests that the method's core 

parameters may be robust across different scales, but also indicates that lake-specific 

characteristics such as depth and water composition, which are not necessarily size-dependent, 

could be affecting the breakup dynamics.  

Accurate predictions of ice breakup have the potential to enhance public safety and the 

efficiency of subsistence practices. With timely information and/or advance knowledge of local 

ice conditions, communities can better plan and execute essential activities such as fishing and 

hunting, while minimizing the risk of accidents associated with unexpected ice loss (Herman-

Mercer et al.). Future research should focus on integrating more comprehensive environmental 

variables to better represent these the complex interactions at play in ice breakup more 

effectively. Additionally, extending the analysis to include a broader range of geographical 

locations could help verify the method's applicability and identify specific conditions under 

which it performs best.  

Notably, we find a negative correlation between temperature and lag interval, indicating 

that colder years break up sooner after the 0°C isotherm date than in warmer years. We 
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hypothesize that the differences in breakup timing across years can be largely attributed to 

variations in solar insolation, which is influenced by seasonal changes in the sun angle. In 

warmer years, ice begins to thaw earlier in the season when solar insolation is lower. Due to this 

lower sun angle, sunlight is less direct and is spread over a larger area, diminishing the amount of 

solar energy available to thaw ice. Conversely, in colder years, thaw typically initiates closer to 

the summer solstice (~June 21), benefiting from a higher sun angle and, consequently, more 

direct solar insolation. This not only increases the rate of thaw but also amplifies the ice-albedo 

feedback (Ingram et al., 1989; Austin et al., 2007; Lang et. al, 2017), leading to more rapid 

changes in ice conditions and hence shorter lag intervals. The ice-albedo feedback is crucial, as 

thawing ice exposes darker surfaces that absorb more sunlight, accelerating local temperature 

increases and further ice loss. This effect is especially pronounced in colder years when breakup 

starts later but occurs under more direct sunlight, intensifying the feedback loop. This 

relationship between temperature and lag interval has important implications for lake ice breakup 

in a warming climate that warrant additional investigation. While we expect breakup to occur 

earlier as the climate continues to warm, some of this warming effect may be mitigated by the 

weaker solar insolation earlier in the spring, suggesting both a potentially longer melt season and 

a potential non-linearity in future changes in breakup timing.  

5.3 | Influence of Lake Size 

Our novel analysis of breakup timing in thousands of lakes as small as 0.001 km² reveals 

that smaller lakes tend to break up sooner than larger lakes consistently across all years. Smaller 

lakes also exhibit shorter lag intervals, indicating a faster thermal response to climatic 

conditions. This is likely due to the smaller heat content required to break up ice in smaller lakes 

as well as increased warming from the surrounding land. While previous studies have not 

identified a strong relationship between lake size and breakup timing (Zhang et. al, 2021), this 

work did not include lakes smaller than 1 km2, the central focus of this study. Our results support 

the hypothesis that small lakes will be more responsive to temperature changes under climate 

change conditions (Vihma et al., 2016). Additionally, the presence of bedfast ice in small lakes, 

where ice is in contact with the lakebed, could contribute to earlier breakup dates compared to 

floating ice within the same region; previous studies have shown that bedfast ice can break up 

approximately 15 days earlier than floating ice (Arp et al.). 
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5.4 | Anomalous Year: 2019 

Though our record only spans six years, 2019 had notably anomalous ice breakup 

patterns. Breakup occurred 8 days earlier in 2019 than the 2018-2023 mean (Figure 3), and the 

0°C isotherm also occurred earlier. While the mean isotherm date in 2019 was 5 days before 

2018-2023 mean, the range in isotherm date in 2019 was much larger, with some areas hitting the 

0°C isotherm as much as 20 days before the 6-year mean. These observations broadly agree with 

anomalous conditions observed in 2019 throughout Alaska, as well as the Arctic more broadly. 

This year marked the second lowest winter sea ice extent in the Bering Sea since records began, 

which contributed to record-breaking warm ocean temperatures (Richter-Menge, 2019). 

Additionally, the overall sea ice extent for 2019 hit a historic low (since 1979), and the average 

annual land surface temperature north of 60° N was the second warmest since 1900 (Richter-

Menge, 2019). Further, it was found to be the second highest decline in sea ice recorded (Yadav 

et. al, 2020). On a more local scale, a recent study within the same region (Yukon-Kuskokwim 

Delta) found that 2019 also had highly anomalously low landfast ice extent and earlier breakup 

timing (Cooley & Ryan, 2024). These similarities between the anomalous lake ice breakup in 

2019 and other climate records thus emphasize connections between lake ice and other Arctic 

climate and cryosphere characteristics.  

The anomalous characteristics observed in 2019 also serve as an illustration of the effects 

that increasing air temperatures may have on Arctic lake ice dynamics. If we presume that the 

conditions in 2019 may be indicative of future climate scenarios under continued global 

warming, we would expect not only earlier breakup occurrence but also increased spatial 

variability in breakup dates and a longer breakup season. This increased variability and longer 

breakup season length not only complicates predictions of breakup timing in the future but also 

amplifies the challenges faced by Arctic ecosystems and communities dependent on the stability 

and predictability of inland ice. Understanding and adapting to these shifts will thus be crucial in 

mitigating the impacts of climate change in Arctic regions. 

5.5 | Future Work 

The exploratory nature of this work meant that it was limited in scope, particularly 

regarding factors beyond temperature. Based on our findings that small lakes break up sooner 

and have a shorter lag interval, future work should investigate factors such as connectivity, 

morphometry, and precipitation in small lake environments. This will help determine if and how 
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small lakes behave differently than large lakes. Additionally, investigating permafrost conditions, 

subsurface and surface water connectivity, and the proximity to major rivers and oceans could 

provide valuable context to the patterns observed in this study. Additionally, since small lakes 

consistently exhibit a wider interquartile range (IQR) of breakup dates compared to large lakes, 

further research is warranted. This variability suggests there are nuances in the ice breakup 

processes of small lakes that were not fully explored in this study. Future work should utilize 

Synthetic Aperture Radar (SAR) for detecting bedfast ice (Engram et al., 2018; Antonova et al., 

2016) and examine the unique interactions and phenologies of small water bodies. Such research 

could uncover valuable details about the differences between bedfast and floating ice, providing 

a deeper understanding of the factors influencing ice breakup in small lakes. This is crucial for a 

comprehensive understanding of lake ice dynamics, particularly given the significant role small 

lakes play in regional hydrology and climate systems.  

Our study area contains multiple communities who rely on lake ice and have local 

knowledge of its short- and long-term fluctuations. In this study, we did not have the opportunity 

or resources to work with such communities. However, we want to note that combining Western 

scientific findings with Indigenous knowledge would likely offer a more comprehensive 

approach to understanding changes in ice timing and quality. Indigenous observations provide 

essential on-the-ground information that is often missing from studies utilizing satellite-derived 

data. Engaging local communities in research from its inception enhances contextual 

understanding and improves the practical application of findings, creating potential for aiding in 

planning and increasing safety in the area (Herman-Mercer et al., 2011). Future work should 

make every effort to engage with local communities when appropriate and prioritize local 

questions; this is especially true in satellite-based research, which has a history of being 

extractive and/or out of context (Bennett, et. al, 2022).  
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6.0 | Conclusions 

The annual formation and breakup of lake ice plays a crucial role in the hydrology, 

ecology, and socio-economic activities of Arctic regions. This study aimed to utilize Sentinel-2 

optical imagery to investigate lake ice breakup dynamics in the Lower Kuskokwim River 

Watershed (LKRB) in Alaska, focusing on a large dataset of 145,955 lakes over a six-year 

period. Our findings demonstrate that Sentinel-2 imagery is effective for estimating ice breakup 

dates, with an average precision within 2.8 days of manually detected dates. The novel dataset 

created from this analysis offers valuable insights into the ice breakup patterns of both large and 

small lakes, filling a significant gap in our understanding of lake ice phenology in complex 

wetland environments.  

Across our 6 year study period, we find that interannual variability generally exceeds 

spatial variability in breakup timing and that temperature (which also varies more interannually 

than spatially) is dominant driver of breakup patterns across varied lake sizes. We identify a 

consistent pattern of smaller lakes breaking up earlier than larger, which aligns with the 

hypothesis that smaller lakes, due to their lower heat capacity, respond more rapidly to 

temperature changes. Similarly, our results reveal smaller lakes break up sooner after the 0°C 

isotherm, indicating a faster thermal response to climatic conditions. These findings highlight the 

importance of including small lakes in climate models to improve their predictive capabilities 

and enhance our understanding of regional and local climatic conditions. Future work should 

explore previously studied factors (connectivity, morphometry, temperature) on small lake 

environments to better understand if and how small lakes behave differently than large lakes.  
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 Appendix 

Table 0: QA/QC results for ~175 randomly selected lakes between manually detected breakup date (via 

available satellite imagery) and novel Sentinel-2 methodology detected breakup. Performance indicates 

the number of days ‘off’ one estimate is from the other. 

Lake ID 
Manually 
Observed 
Breakup 

Sentinel-2 
Estimated 
Breakup 

Performance 
(Days Off) 

813 5/14/2022 5/12/2022 2.00 
854 5/15/2022 5/14/2022 1.00 
1607 5/7/2022 5/9/2022 2.00 
1831 5/7/2022 5/9/2022 2.00 
1874 5/7/2022 5/9/2022 2.00 
2131 4/29/2022 5/13/2022 14.00 
3525 5/11/2022 5/13/2022 2.00 
3923 4/29/2022 5/1/2022 2.00 
4763 5/8/2022 5/13/2022 5.00 
6739 4/29/2022 5/1/2022 2.00 
7263 5/20/2022 5/21/2022 1.00 
7347 5/5/2022 5/4/2022 1.00 
7863 5/9/2022 5/18/2022 9.00 
8124 5/7/2022 5/13/2022 6.00 
8802 5/18/2022 5/18/2022 0.00 
9211 5/9/2022 5/11/2022 2.00 
9705 5/18/2022 5/18/2022 0.00 
10605 5/20/2022 5/21/2022 1.00 
11277 5/11/2022 5/12/2022 1.00 
11287 5/3/2022 5/13/2022 10.00 
11707 5/15/2022 5/13/2022 2.00 
12031 4/29/2022 5/2/2022 3.00 
13551 5/11/2022 5/13/2022 2.00 
13758 5/11/2022 5/12/2022 1.00 
14614 5/15/2022 5/14/2022 1.00 
14743 5/16/2022 5/16/2022 0.00 
14759 5/11/2022 5/13/2022 2.00 
16389 5/18/2022 5/18/2022 0.00 
16557 5/9/2022 5/13/2022 4.00 
17630 5/9/2022 5/13/2022 4.00 
17764 5/13/2022 5/13/2022 0.00 
18330 5/9/2022 5/13/2022 4.00 
18368 5/11/2022 5/13/2022 2.00 
18416 5/12/2022 5/13/2022 1.00 
18909 5/15/2022 5/16/2022 1.00 
20882 5/9/2022 5/11/2022 2.00 

21107 5/12/2022 5/11/2022 1.00 
21679 5/16/2022 5/17/2022 1.00 
23944 5/16/2022 5/16/2022 0.00 
25321 5/3/2022 5/12/2022 9.00 
27147 5/7/2022 5/12/2022 5.00 
28941 5/10/2022 5/13/2022 3.00 
29663 4/29/2022 4/30/2022 1.00 
29687 5/15/2022 5/14/2022 1.00 
29958 5/7/2022 5/3/2022 4.00 
31535 5/9/2022 5/12/2022 3.00 
32527 5/12/2022 5/12/2022 0.00 
33252 4/29/2022 4/30/2022 1.00 
33804 4/29/2022 4/30/2022 1.00 
34109 5/17/2022 5/16/2022 1.00 
34546 5/9/2022 5/12/2022 3.00 
34586 5/9/2022 5/12/2022 3.00 
35295 5/9/2022 5/12/2022 3.00 
38430 4/30/2022 4/29/2022 1.00 
39087 5/9/2022 5/12/2022 3.00 
40307 5/12/2022 5/12/2022 0.00 
42106 5/9/2022 4/30/2022 9.00 
42300 4/29/2022 4/28/2022 1.00 
43516 5/2/2022 5/2/2022 0.00 
44386 5/9/2022 5/12/2022 3.00 
44600 5/15/2022 5/14/2022 1.00 
46784 5/6/2022 5/4/2022 2.00 
49012 4/29/2022 4/30/2022 1.00 
49552 5/12/2022 5/13/2022 1.00 
49893 4/30/2022 5/1/2022 1.00 
50128 5/9/2022 5/12/2022 3.00 
51092 5/12/2022 5/11/2022 1.00 
51445 5/7/2022 5/11/2022 4.00 
53800 5/12/2022 5/13/2022 1.00 
54442 5/15/2022 5/14/2022 1.00 
54721 5/12/2022 5/12/2022 0.00 
55777 5/7/2022 5/13/2022 6.00 
57094 5/7/2022 5/9/2022 2.00 
57810 5/11/2022 5/11/2022 0.00 
58349 5/11/2022 5/13/2022 2.00 
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58428 5/15/2022 5/15/2022 0.00 
59135 5/5/2022 5/12/2022 7.00 
60470 5/7/2022 5/17/2022 10.00 
60626 5/10/2022 5/18/2022 8.00 
60746 5/15/2022 5/16/2022 1.00 
60818 5/18/2022 5/18/2022 0.00 
61029 5/15/2022 5/15/2022 0.00 
62356 5/12/2022 5/11/2022 1.00 
62860 4/23/2022 5/12/2022 19.00 
63411 5/1/2022 4/30/2022 1.00 
63623 5/18/2022 5/1/2022 17.00 
63726 5/11/2022 5/13/2022 2.00 
63870 5/10/2022 5/12/2022 2.00 
64144 5/19/2022 5/17/2022 2.00 
66376 5/15/2022 5/13/2022 2.00 
68209 5/16/2022 5/16/2022 0.00 
68716 5/15/2022 5/15/2022 0.00 
69483 5/23/2022 5/22/2022 1.00 
70452 5/7/2022 5/11/2022 4.00 
71238 5/19/2022 5/17/2022 2.00 
72082 5/15/2022 5/15/2022 0.00 
72220 4/29/2022 5/3/2022 4.00 
72240 5/9/2022 5/12/2022 3.00 
72919 5/7/2022 5/12/2022 5.00 
72950 5/2/2022 5/1/2022 1.00 
73395 5/1/2022 5/1/2022 0.00 
74062 5/15/2022 5/13/2022 2.00 
74473 5/13/2022 5/7/2022 6.00 
74791 5/18/2022 5/17/2022 1.00 
74835 5/19/2022 5/20/2022 1.00 
76528 4/29/2022 4/30/2022 1.00 
76938 5/6/2022 5/13/2022 7.00 
77277 5/11/2022 5/13/2022 2.00 
77590 5/4/2022 5/11/2022 7.00 
78229 5/13/2022 5/13/2022 0.00 
80207 5/2/2022 5/1/2022 1.00 
81216 4/29/2022 4/29/2022 0.00 
81423 5/7/2022 5/5/2022 2.00 
81562 5/3/2022 5/3/2022 0.00 
86256 4/28/2022 4/1/2022 27.00 
89428 5/9/2022 5/12/2022 3.00 
90014 5/9/2022 5/12/2022 3.00 
90203 5/9/2022 5/12/2022 3.00 
90239 5/8/2022 5/12/2022 4.00 

90840 5/7/2022 5/12/2022 5.00 
91831 4/28/2022 4/29/2022 1.00 
93029 5/2/2022 4/30/2022 2.00 
93916 5/7/2022 5/11/2022 4.00 
94599 4/29/2022 4/30/2022 1.00 
95181 4/29/2022 4/30/2022 1.00 
95248 5/15/2022 5/11/2022 4.00 
96316 4/4/2022 5/4/2022 30.00 
96664 5/14/2022 5/12/2022 2.00 
96860 5/11/2022 5/11/2022 0.00 
97386 5/2/2022 5/3/2022 1.00 
97620 5/5/2022 5/2/2022 3.00 
98339 5/3/2022 5/3/2022 0.00 
99707 5/3/2022 5/2/2022 1.00 
101541 5/7/2022 5/1/2022 6.00 
103534 5/7/2022 5/1/2022 6.00 
105747 5/9/2022 5/13/2022 4.00 
105784 5/20/2022 5/19/2022 1.00 
106231 5/15/2022 5/16/2022 1.00 
107463 5/21/2022 5/21/2022 0.00 
109705 5/18/2022 5/17/2022 1.00 
111177 5/11/2022 5/13/2022 2.00 
111362 5/3/2022 5/13/2022 10.00 
111376 4/29/2022 4/30/2022 1.00 
111379 5/17/2022 5/16/2022 1.00 
112573 5/18/2022 5/16/2022 2.00 
112645 5/9/2022 5/13/2022 4.00 
115816 5/12/2022 5/13/2022 1.00 
117115 5/13/2022 5/13/2022 0.00 
118501 5/7/2022 5/15/2022 8.00 
120865 4/29/2022 5/3/2022 4.00 
122237 5/12/2022 5/12/2022 0.00 
123020 5/2/2022 4/30/2022 2.00 
129030 5/18/2022 5/17/2022 1.00 
129273 5/9/2022 5/5/2022 4.00 
129899 5/20/2022 5/20/2022 0.00 
130637 5/14/2022 5/12/2022 2.00 
130679 5/20/2022 5/25/2022 5.00 
130887 5/15/2022 5/14/2022 1.00 
131882 5/18/2022 5/17/2022 1.00 
136690 5/7/2022 5/12/2022 5.00 
137227 5/9/2022 5/12/2022 3.00 
137693 5/9/2022 5/12/2022 3.00 
137811 5/12/2022 5/11/2022 1.00 



. 37 

138709 5/14/2022 5/13/2022 1.00 
139442 5/18/2022 5/16/2022 2.00 
139451 5/18/2022 5/17/2022 1.00 
139533 5/20/2022 5/20/2022 0.00 
139601 5/15/2022 5/15/2022 0.00 
140243 5/19/2022 5/18/2022 1.00 
141001 5/6/2022 5/3/2022 3.00 

143242 5/11/2022 5/11/2022 0.00 
143908 4/29/2022 5/3/2022 4.00 
144043 5/7/2022 5/9/2022 2.00 
144787 5/9/2022 5/14/2022 5.00 
145927 5/3/2022 5/4/2022 1.00 
147937 4/29/2022 5/1/2022 2.00 
148598 4/29/2022 5/1/2022 2.00 

 

Table 1: Breakup date (DOY) and associated uncertainty summary (± X days) statistics (corresponding to 

Figure 3) 

 Breakup 

Year Mean Med. SD Q1 Q3 IQR 

2018 136.22 136 9.21 131 141 10 
2019 126.16 123 12.29 119 132 13 
2020 128.00 127 8.70 124 133 9 
2021 137.40 139 7.67 133 142 9 
2022 128.77 132 8.16 121 134 13 
2023 147.50 147 11.70 138 156 18 

 Uncertainty   

Year Min Max. Mean Med. SD IQR 
% lakes 
± 2 days 

% lakes 
± 5 days 

2018 0.5 32.5 9.290 7.5 7.28 11.5 15.22 41.27 
2019 0.5 29 4.306 3.5 3.86 2.5 26.19 81.69 
2020 0.5 22.5 2.442 2.5 1.98 1.5 48.91 93.57 
2021 0.5 21.5 6.366 6 3.58 6.5 14.63 45.96 
2022 0.5 6.5 2.149 1.5 1.26 1.5 52.62 99.79 
2023 0.5 13.5 4.630 4.5 2.98 4 28.98 65.54 

 

Table 2: Breakup Date (DOY) and associated uncertainty (± X days) summary statistics by size group 

(corresponding to Figure 5) 

Breakup 
Year Size Min. Max. Mean Med. SD IQR 
2018 Large 92 179 141.28 140 8.30 10.25 
2018 Small 92 179 136.20 136 9.22 10 
2019 Large 96 175 133.68 132 10.56 11 
2019 Small 92 179 126.13 123 12.29 13 
2020 Large 111 163 134.82 134 8.02 7 
2020 Small 97 180 127.97 127 8.69 9 
2021 Large 102 171 140.54 142 5.87 5 
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Table 3: Yearly 0°C isotherm date (DOY) summary statistics (corresponding to Figure 6) 

Year Mean Med. SD Min. Max. IQR 
2018 121.7262 122 3.337939 113 145 5 
2019 120.8425 125 13.1037 51 142 20 
2020 122.9637 122 3.185129 115 132 4 
2021 127.871 128 0.906341 125 135 1 
2022 121.9687 122 3.668923 115 143 5 
2023 137.7503 138 1.254097 135 150 1 

 

Table 4: Yearly correlation for relationship between 0°C Isotherm (corresponding to Figure 7) 

  

 

2021 Small 99 175 137.39 139 7.68 9 
2022 Large 100 165 136.21 137 6.54 7 
2022 Small 102 178 128.73 132 8.16 13 
2023 Large 96 179 151.85 152 9.78 11 
2023 Small 94 179 147.48 147 11.71 18 

Uncertainty 
Year Size Min. Max. Mean Med. SD IQR Count 
2018 Large 0.5 32.5 8.80 6 7.77 11.5 800 
2018 Small 0.5 32.5 9.29 7.5 7.28 11.5 145011 
2019 Large 0.5 22.5 5.48 4 3.99 4 789 
2019 Small 0.5 29 4.30 3.5 3.86 2.5 145012 
2020 Large 0.5 21 3.03 2.5 2.53 2 797 
2020 Small 0.5 22.5 2.44 2.5 1.98 1.5 145040 
2021 Large 0.5 17.5 6.33 6 3.58 6.5 799 
2021 Small 0.5 21.5 6.37 6 3.58 6.5 145152 
2022 Large 0.5 5.5 1.70 1.5 1.02 0.5 785 
2022 Small 0.5 6.5 2.15 2 1.26 1.5 144861 
2023 Large 0.5 13.5 4.54 5 2.95 4 778 

2023 Small 0.5 13.5 4.63 4.5 2.98 4 144660 

Year R2 P Value 
2018 0.000428 2.96E-15 
2019 0.308299 0 
2020 0.097284 0 
2021 0.328071 0 
2022 0.09344 0 
2023 0.065598 0 
All Years 0.311095 0 
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Table 5: Yearly lag interval summary statistics (corresponding to Figure 8) 

Year Min. Max. Mean Med. SD IQR 
2018 -35 62 14.51516 13 9.734849 13 
2019 -41 96 5.305053 2 11.99033 15 
2020 -26 57 5.010175 5 8.284086 9 
2021 -29 46 8.847601 10 7.164621 8 
2022 -28 57 6.902601 9 7.975815 11 
2023 -48 41 9.795289 10 11.54773 16 

 

Table 6: Yearly lag interval summary statistics by size group (corresponding to Figure 9) 

Year Lake Size Min. Max. Mean Med. SD IQR 
2018 Large -27 47 19.92139 20 8.459711 12 
2018 Small -35 62 14.48614 13 9.733169 13 
2019 Large -26 65 11.50828 10 11.4481 13 
2019 Small -41 96 5.271427 2 11.9845 15 
2020 Large -13 42 11.92714 11 8.1557 9 
2020 Small -26 57 4.971905 5 8.268739 9 
2021 Large -26 40 12.30374 14 5.798457 5 
2021 Small -29 46 8.671567 10 7.257265 8 
2022 Large -21 33 14.75152 16 6.911894 8 
2022 Small -28 57 6.860164 9 7.960199 11 
2023 Large -32 40 14.45611 14.5 9.246686 11 
2023 Small -48 41 9.770744 10 11.55369 16 

 

Table 7: Summary statistics of error between Sentinel-2 estimated breakup date and lag interval 

estimated breakup date (corresponding to Figure 11b). Additionally broken up by size for comparison 

between size groups. 

Lake Size Mean Median SD Max. 
Large 5.768471 4.666667 4.720732 39.33333 
Small 6.821086 5.4 5.716695 74 
All Lakes 6.815419 5.4 5.712316 74 
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