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DISSERTATION ABSTRACT

Jacob Thompson

Doctor of Philosophy in Economics

Title: Essays in Behavioral Macroeconomics

This dissertation investigates a class of DSGE models with bounded rationality
where agents use recursively updated forecasts to form expectations of future vari-
ables The two chapters explore the implications of the model builder’s choice of initial
forecasting model with which to endow agents. Each chapter estimates a different
New Keynesian DSGE model, varying this initial model and finds that this has sub-
stantial impacts on parameter estimates as well as the ability of the model to fit
macroeconomic data series.

Chapter 1 estimates a small scale, purely forward-looking DSGE model but relaxes
the assumption of rational expectations. In so doing, it outlines the computational
challenges of estimating such a model and the solutions thereto. It also introduces
the reader to a new class of Bayesian posterior sampler called Sequential Monte Carlo
which has key advantages over Markov Chain Monte Carlo samplers for the estimation
of models with Adaptive Learning. I find two notable results: first, I find that one
can greatly improve the ability of the model to explain the data by training agents’
initial forecasting model on pre-sample data. Second, I find that, for this particular
DSGE model, the estimated slope of the Phillips Curve is significantly greater than
under Rational Expectations.

Chapter 2 estimates a small-scale DSGE model with habit persistence in household
consumption and inflation indexation by price-setting firm, thereby inducing mechan-
ical persistence in both the output and inflation processes. This chapter shows that
the improved data-fit from training sample based initial beliefs is robust to the in-
clusion of mechanical lags. It also shows how initial forecasting models trained on
pre-sample data cause the DSGE model to exhibit impulse response functions that
show the “price puzzle” despite the additional restrictions of the DSGE model, and
what restrictions to impose to avoid this outcome.
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CHAPTER 1

BAYESIAN COMPARISON OF INITIAL BELIEFS IN A FORWARD-LOOKING
NEW KEYNESIAN DSGE MODEL

1.1 Introduction and Literature Review

Owing to the apparent failure of Neo-Keynesian Macroeconomics in the 1970s
and the rise of New Classical Macroeconomics in the 1980s, macroeconomic modelers
have paid much closer attention to how firms’, workers’, and consumers’ expecta-
tions of the future affect the economy. As to how agents form such expectations,
the Rational Expectations Hypothesis provides one very natural baseline assump-
tion. In the context of macroeconomic modeling, this hypothesis posits that agents
will form expectations so as to match the same expectations that the model itself
would yield. While New Classical Macroeconomics had some early empirical success
in appearing to replicate important features of American business cycles, as argued
famously by Kydland and Prescott (1982), the New Keynesian framework has as-
cended to preeminence among micro-founded macroeconomic models, as documented
in the extensive review by Fernandez-Villaverde (2009). Throughout these successive
paradigm shifts macroeconomic modelers have retained the assumption of rational
expectations. The Rational Expectations Hypothesis faces withering criticism, how-
ever, including heroic informational assumptions on the part of the modeled agents.
Because of this, a nascent empirical literature has developed which follows the spirit
of New Classical Economics and models the economy as a dynamic equilibrium based
on optimizing behavior, but relaxes the assumption of rational expectations.

This chapter extends the empirical literature by estimating the benchmark model
of An and Schorfheide (2007), but under an alternative expectations formation hy-
pothesis. In my study, I relax the assumption of rational expectations and let agents
use reduced-form econometric models with incomplete information to form expecta-
tions. These models are updated recursively as agents observe new data according
to an Adaptive Learning algorithm. Because the the agents use a recursive updating
rule, the researcher must ultimately choose with which beliefs to initialize agents’
learning algorithm. My principal exercise investigates three choices of initial beliefs:
equilibrium-based initial beliefs, training-sample based initial beliefs, and jointly esti-
mated initial beliefs. I investigate how these choices affect the estimates of structural
parameters as well as the model’s ability to fit the data, as measured by the esti-
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mated marginal data density, a common measure for ranking model fit in Bayesian
econometrics.

I begin by reviewing the literature on solution and estimation methods of linear
DSGE models, with a special emphasis on Bayesian techniques, which have taken cen-
ter stage in contemporary research. I also include a review of the important results
from the Adaptive Learning literature, including some of the important asymptotic
properties of DSGE models with adaptive learning. I also review the important
empirical research, notably Milani (2007) and Slobodyan and Wouters (2012) that
estimates well-known DSGE models augmented to use expectations formed through
adaptive learning. These studies demonstrate many empirical improvements in re-
laxing the rational expectations hypothesis in favor of expectations formed through
Adaptive Learning.

After reviewing the relevant literature, I outline the unique computational and
econometric challenges presented by estimating a model with adaptive learning. These
challenges arise from the adaptive learning updating scheme, which is non-linear, and
incorporating it into an estimated linear dynamical system. I detail how to incorpo-
rate these non-linear updating rules into the linear system so as to make the model
amenable to estimation via Bayesian methods.

Finally, I present the results of the estimation exercise in the form of parameter es-
timates and estimated marginal data densities. I show that for this particular model,
jointly estimated initial beliefs demonstrate a marked improvement in marginal data
density over every other model, and that all learning models perform significantly
better than the rational expectations baseline.

By providing a rigorous analysis of a benchmark DSGE model with adaptive learn-
ing, this chapter both extends the empirical macroeconomics literature and provides
a toolkit for macroeconomic modelers to use when solving, simulating, and estimating
their own DSGE models with adaptive learning.

Bayesian Estimation of DSGE Models

I first review solution and estimation techniques for DSGE models, with a special
emphasis on those that relate to estimation of such models with adaptive learning.
Estimation of DSGE modeling currently uses likelihood-based methods rather than
moment-matching or older calibration methods. Fernández-Villaverde and Guerrón-
Quintana (2020) provides a few of the reasons for this outcome, one of which is that
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the ever-growing complexity of DSGE models has created far too many moments for
modelers to match. A numerical likelihood function, by contrast, captures all the
information in the relevant data. Likelihood based estimation methods fall under
either Frequentist or Bayesian categories. Of these, Maximum likelihood estimation
constitutes the most common Frequentist based estimation technique. However, for
many reasons outlined by Fernandez-Villaverde (2009), some of which I shall recount,
DSGE models are most commonly estimated via Bayesian methods instead of max-
imum likelihood. He observes that, first, the data with which DSGE models are
estimated are frequently very sparse quarterly data that date back to the 1960s at
the earliest and so have a relatively small sample size compared to the sort of data
sets that applied micro economists would commonly use. This small sample size
means that the asymptotic distributions used for inference in maximum likelihood
estimation are usually poor approximations to the true limit of the maximum of the
likelihood function. Second, most DSGE models have a great many structural pa-
rameters to be estimated by the researcher; even the simplest models can have up
to a dozen estimated parameters. This results in a state of affairs where multiple
clusters of parameter choices can give rise to the same data series, and therefore a
likelihood function of a DSGE model can have many local maxima. For these reasons,
Bayesian estimation is much less computationally intensive than maximum likelihood
estimation. Thus I recount the explanation offered in Fernandez-Villaverde (2009),
along with Herbst and Schorfheide (2016) at a fairly high level, the basics of Bayesian
econometrics

Let yT = {yt}Tt=1 ∈ Rn×T be a time series of data, with n ∈ N variables for T ∈ N
periods, with which an econometrician wants to estimate their DSGE model which
has k ∈ N parameters. A Bayesian model consists of three objects

1. A parameter set, Θ ∈ Rk,

2. A likelihood function: p(yT |θ) : Rn×T ×Θ → R,

3. A prior density function π(θ) : Rn×T ×Θ → R.

From these I obtain the fundamental object of interest, a posterior distribution of the
model parameters,

π(θi|yT ) =
p(yT |θi)π(θi)∫
p(yT |θ)π(θ)dθ

,
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which defines for every θi ∈ Θ the probability of this parameter vector given the data
series yT .

Bayesian inference requires only these three objects. Prior densities are defined
analytically, and so the challenge for the researcher is to compute the likelihood
function and to sample from the posterior distribution.

For (virtually) no DSGE models do analytic likelihood functions exist and thus, for
any parameter vector θi, the likelihood value p(yT |θi) for any DSGE model can only
be computed numerically. This requires the tools of filtering theory. As the model I
estimate in this chapter is a linear model with gaussian shocks, I limit my attention
to the Kalman filter, although there exists a growing empirical literature using non-
linear particle filters for estimating DSGE models, an introduction to which can be
found in Herbst and Schorfheide (2016). The assumption of gaussian innovations and
linear dynamics certainly does not come without cost, however, which I should admit.
First, as noted in Justiniano and Primiceri (2008), such assumptions do not allow for
the possibility of time-varying volatility in the shocks that affect the economy, which
many authors have found explains certain key features of US macroeconomic data.
Second, linear dynamics imposes certainty equivalence upon the agents in the model
and eliminates the possibility of precautionary saving. While this is a problem in
richer DSGE models such as that of Smets and Wouters (2007), this is not a problem
in the model I estimate presently as, in equilibrium, all output is consumed.

Recounting the explanation offered in Fernandez-Villaverde et al. (2015), I present
how a generic filter provides the likelihood function for a dynamic model with a
markov structure, which is described by the following measurement and transition
equations:

yt = Ψ(st, t; θ) + ut, ut ∼ Fu(·; θ),

st = Φ(st−1, ϵt; θ), ϵt ∼ Fϵ(·; θ). (1.1)

The first equation, the measurement equation, states how the time series yt relates to
the state st. This is the measurement equation. The second equation, the transition
equation states how the possibly unobserved state st evolves given st−1 and i.i.d.
shocks εt. Since one has a shock term ut ∼ Fu(·; θ) included in the transition function
Φ, the function Φ along with the distribution Fu generate a density function p(st|st−1)

This is because the Φ function depends only on the current state. Letting the prior
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distribution be p(s0) = p(s0|Y1:0), filter-based computation of the likelihood function
proceeds as follows

Algorithm 1 Generic Filtering Algorithm
1: Forecasting t given t− 1

• Transition equation: p(st|Y1:t−1) =
∫
p(st|st−1, Y1:t−1)p(st−1|Y1:t−1)dst−1

• Measurement equation: p(yt|Y1:t−1) =
∫
p(yt|st, Y1:t−1)p(st|Y1:t−1)dst

2: Updating: once yt becomes available, update the distribution of states st
• p(st|Y1:T ) = p(st|yt, Y1:t−1) =

p(yt|st,Y1:t−1)p(st|Y1:t−1)
p(yt|Y1:t−1)

Computing the integrals in the measurement and the transition equations, then,
presents the main challenge for the DSGE modeler. I limit my attention in this
chapter and the next to models with linear dynamics and Gaussian i.i.d. shocks.
This greatly simplifies the task of computing these integrals because the entirety of
a normal distribution, including those associated integrals, is described by its mean
and variance, and this generalizes to a multivariate normal distribution as well. Thus
to compute the likelihood function, the modeler need only keep track of a sequence of
means and variances of a sequence of distributions rather than the whole distribution
of states.

To obtain these means and variances, then, one must obtain the measurement and
transition equations for the DSGE model. As I use linear models in both chapters,
both the transition and measurement equations are matrix equations:

yt = A+Bst +Hut, ut ∼ Fu(·; θ),

st = Tc(t, θ) + T1(t, θ)st−1 + T0(θ)ϵt, ϵt ∼ Fϵ(·; θ).

The transition matrices Tc, T1, T0 cannot be obtained analytically and must be com-
puted numerically. For many linear rational expectations models this can be done
numerically using a Schur decomposition, as described first in Sims (2002), which is
also detailed in a highly accessible manner in Herbst and Schorfheide (2016). The
measurement equation, on the other hand, is defined analytically by the modeler
themselves. I recount now briefly the Schur decomposition method to solve linear
rational expectations models.

Consider some linearized DSGE model with a vector of variables xt and some
vector of forward-looking expectational terms Etxt+1. I seek to represent the model
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as a VAR(1) in the n × 1 state vector st = (xt, Etxt+1)
′. I proceed first by writing

the (unsolved) model in the following form:

Γ0(θ)st = Γ1(θ)st−1 +Ψ(θ)ϵt +Π(θ)ηt, (1.2)

where ϵt is a vector of i.i.d innovations and ηt is a vector of forecasting errors,
xt − Et−1xt. The system matrices Γ0,Γ1,Ψ,Π are explicit functions of the model
parameters θ.

For many DSGE models, including the ones I study in the present and next
chapters, a solution exists only if a set of transversality conditions are met, and
these transversality conditions met if and only if the associated law of motion for
st is non-explosive. For some parameter draw θi, the DSGE model is said to be
determinate if there exists a unique stable solution and indeterminate if there exist
multiple stable solutions. When drawing from the posterior distribution of parameters
p(θi|Y ), I discard all parameter draws except for those with unique, stable solutions.
To find a unique stable solution to this system, if one exists, I transform the above
system through a generalized complex Schur decomposition, (also known as a “QZ
decomposition"). This decomposition seeks to find n × n matrices Q,Z,Λ,Ω such
that the following matrix equations hold hold:

Q′ΛZ ′ = Γ0,

Q′ΩZ ′ = Γ1,

QQ′ = ZZ ′ = I,

wherein Λ and Ω are upper-triangular matrices. Letting wt = Z ′st, I then pre-multiply
(1.2) by Q to obtain the following:

[
Λ11 Λ12

0 Λ22

][
w1,t

w2,t

]
=

[
Ω11 Ω12

0 Ω22

][
w1,t−1

w2,t−1

]
+

[
Q1

Q2

]
(Ψϵt +Πηt).

Assuming that the system is ordered such that them×1 vector w2,t is purely explosive,
and that 0 ≤ m ≤ n, the second matrix equation in the above can be re-written thusly:

w2,t = Λ−1
22 Ω22w2,t−1 + Λ−1

22 Q2(Ψϵt +Πηt).
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Under the following conditions: that w2,0 = 0, that one can find an ηt for every
possible ϵt that offsets the effect of ϵt upon w2,t, or equivalently,

Q2Ψϵt +QtΠηt = 0,

there exists a non-explosive solution to the system of linear rational expectations
difference equations in (1.2).

Such a solution is unique if the number of forecasting errors equals the number
of explosive elements in wt. This is equivalent to the conditions for uniqueness and
existence in Blanchard and Kahn (1980). If such a unique solution exists, then the
sequence of forecasting errors that assure stability is:

ηt = −(Q2Π)
−1Q2Ψϵt.

With a solution for the path of forecasting errors ηt, one can obtain the path of non-
explosive solutions from st = Zwt. If the solution is unique, one can now represent
the path of st as a VAR(1):

st = Tc + T1st−1 + T0ϵt.

This constitutes the transition equation for our filter from 1.1. Having obtained the
transition equation, I now review how to compute the likelihood function.

The likelihood function for a DSGE model is computed through a prediction-error
decomposition. For this I rely principally upon Zivot (2006), Ljungqvist and Sargent
(2012), and Hamilton (1994). Suppose the DSGE model has a transition equation
st = Tc+T1st−1+T0ϵt, ϵt ∼ N(0, Ht) as derived above from the Schur decomposition.
Suppose further that the underlying state st relates to an observed data series yt
through the measurement equation yt = A + Bst + Cut, ut ∼ N(0, Qt), and finally
suppose that the system matrices Tc, T1, T0, A,B,C,Ht, Qt are time-invariant so that
one may compute numerically the initial state s0 and its variance P0. This numerical
computation may be done by a kronecker product vectorization technique as described
in Zivot (2006) or much more quickly using a Schur decomposition as described in
Villemot (n.d.).

The Kalman Filter gives a sequence of predictive distributions of the unobserved
and observed variables according to the equations below
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yt = A+Bst + ut, ut ∼ N(0, Ht),

st = T1αt−1 + Tc + T0εt, εt ∼ N(0, Qt),

where yt is an N×1 vector of observable variables and st an m×1 vector of (possibly)
unobserved states. For a sequence of system matrices {A,B,Ht, T1, Tc, T0, Qt}t=T

t=1 , let
at = E(st|yt) be the optimal forecast of the state given information through time
t, and Pt = E((at − st)(at − st)

′|yt) be the variance of that optimal forecast. The
Kalman filter consists of prediction and updating equations.

The prediction equations describe E(at|yt−1) = at|t−1 and E(Pt|yt−1) = Pt|t−1.
Those prediction equations are:

at|t−1 = T1at−1 + Tc,

Pt|t−1 = BPt−1B
′ + T0QtT

′
0.

From these prediction equations, one can compute the optimal predictor of yt based
on the information set yt−1 ≡ {yt}t−1

0 , the prediction error vt and the prediction error
variance E(vtv′t)

yt|t−1 = A+Bat|t−1,

vt = yt − yt|t−1,

E(vtv
′
t) = Ft = BPt|t−1B

′ +Ht.

The updating equations allow one to update at and Pt:

at = at|t−1 + Pt|t−1B
′F−1

t vt,

Pt = Pt|t−1 − Pt|t−1B
′F−1

t BPt|t−1,

which, when the system is linear and the innovations Gaussian, allows us to derive
the prediction-error-decomposition of the likelihood function:

ln(L(θ|y)) = −NT
2
ln(2π)− 1

2

T∑
t=1

ln(|Ft(θ)|)−
1

2

T∑
t=1

vt(θ)
′F−1

t (θ)vt(θ).
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Once the researcher has obtained the likelihood function, they must choose an
appropriate algorithm to simulate the posterior distribution of the model parameters
in order to estimate the the model. One very popular class of models still in use
today is Markov Chain Monte Carlo models, such as the Metropolis Hastings Random
Walk (“MHRW” henceforth), first detailed in Metropolis et al. (1953). The MHRW
algorithm works as follows:

Algorithm 2 MHRW Chain Algorithm
1: Initialization

• Choose initial parameter θ0
2: Iterate: For each element i in the MHRW chain:

• Draw θ′ from a proposal density p(θ′|θi−1)

• Compute the acceptance probability: min
(
1, p(θ′|y)p(θ′)

p(θi−1|y)p(θi−1)

)

For approximately normal posterior distributions, a common choice of proposal
density is a multivariate normal distribution whose variance-covariance matrix is
equal to the negative inverse-Hessian matrix of the posterior at its mode, times a
tuning constant to target an acceptance rate, usually between 20% and 40%. This
requires said matrix to be a positive definite one, however for many DSGE models,
including the models studied in this and the next chapter, both under Adaptive
Learning and under Rational Expectations, for some datasets, this Hessian matrix
may not be positive definite. This lack of a positive definite matrix at the mode
of the posterior can reduce greatly the efficiency of an MHRW sampler and create
inconsistent monte carlo averages from one MHRW run to another. This inability of
numerical optimizers to find a positive definite inverse Hessian matrix is one of the
reasons I opt in both chapters to estimate the models with a Sequential Monte Carlo
sampler rather than a Markov Chain Monte Carlo sampler. I shall now describe,
recounting the explanation offered by Herbst and Schorfheide (2013) the Sequential
Monte Carlo method as it applies to estimation of DSGE models.

SMC samplers seek to simulate the posterior distribution by assigning probability
weights, or importance weights, to parameter vectors sampled from the posterior
distribution.
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Algorithm 3 Importance Sampling
1: For i = 1 to N , draw θi ∼ g(θ) and compute the unnormalized importance

weights wi = w(θi) =
f(θi)
g(θi)

. f(θ) is usually the product of the prior and likelihood
densities while g(θ) is a proposal density

2: Compute the normalized importance weights:

Wi =
wi

1
N

∑N
i=1wi

.

3: An approximation of Eπ[h(θ)] is given by:

h̄N =
1

N

N∑
i=1

Wih(θi).

One is thus left with the challenge of constructing a proposal density. SMC
samplers allow one to construct this proposal density sequentially. Letting {ρn}

Nϕ

n=1

be some sequence of zeros and ones that determine whether particles are resampled in
the selection step and let {ζn}

Nϕ

n=1 be a sequence of tuning parameters for the Markov
transition density in the mutation step.
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Algorithm 4 Generic SMC with Likelihood Tempering

1: Initialization. (ϕ0 = 0). Draw the initial particles from the prior: θi1
i.i.d.∼ p(θ)

and W i
1 = 1, i = 1, . . . , N .

2: Recursion. For n = 1, . . . , Nϕ,

• Correction. Reweight the particles from stage n− 1 by defining the incre-
mental weights

w̃i
n = p(Y |θin−1)

ϕn−ϕn−1 (5.4)

W̃ i
n =

w̃i
nW

i
n−1

1
N

∑N
i=1 w̃

i
nW

i
n−1

, i = 1, . . . , N. (5.5)

h̃n,N =
1

N

N∑
i=1

W̃ i
nh(θ

i
n−1). (5.6)

• Selection.

– Case (i): If ρn = 1, resample the particles via multinomial resampling.
Let {θ̂}Ni denote N i.i.d. draws from a multinomial distribution charac-
terized by support points and weights {θin−1, W̃

i
n}Ni and set W i

n = 1.

– Case (ii): If ρn = 0, let θ̂in = θin−1 and W i
n = W̃ i

n, i = 1, . . . , N . An
approximation of Eπn(h(θ)) is given by

hn,N =
1

N

N∑
i=1

W i
nh(θ̂

i
n). (5.7)

• Mutation. Propagate the particles {θ̂i,W i
n} via NMH steps of a MH algo-

rithm with transition density θin ∼ Kn(θn|θ̂in; ζn) and stationary distribution
πn(θ).

h̄n,N =
1

N

N∑
i=1

h(θin)W
i
n. (5.8)

3: For n = Nϕ(ϕNϕ
= 1), the final importance sampling approximation of Eπ(h(θ))

is given by:

h̄Nϕ,N =
N∑
i=1

h(θiNϕ
)W i

Nϕ
. (5.9)

Herbst and Schorfheide (2016) Use this algorithm to estimate the same model
under Rational Expectations which I estimate under Adaptive Learning. I choose
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this method for one additional reason and that is the parallelizability of the algorithm
and therefore the ability to make use of high performance computing. The Metropolis
Hastings Random Walk algorithm is a markov process which samples a sequence of
correlated draws from the posterior distribution. Because of this, one cannot allocate
different parts of the algorithm to different processing units on a CPU or GPU;
one cannot reduce the time needed to complete an MHRW simulation by increasing
the number of CPU or GPU cores devoted to the task. By contrast, because the
SMC method draws multiple particles and evaluates the likelihood function for each
independently of the other, the task of likelihood evaluation can be divided up among
different processing units. Thus one can reduce the time needed to complete an SMC
simulation by increasing the number of CPU cores used. The models estimated in this
dissertation were obtained using an Amazon Web Services Elastic Cloud Compute
instance using 96 physical CPU cores.

The methods described thus far are amenable to estimating models under ratio-
nal expectations with linear dynamics and gaussian innovations and time-invariant
transition dynamics. Introducing an adaptive learning behavioral rule can confound
estimation, however, because the transition matrices evolve in a manner which is non-
linear. However, as shown in Hamilton, 1994, for the transition and measurement
equations yt = A + Bst + Cvt, st = Tc + T1(t)st−1 + T0εt, as long as the transition
matrix T1(t) is a deterministic function of lagged values of yt, which is indeed the
case for the models studied in this dissertation.

I turn now to review just some papers which estimate such models that have
agents who use adaptive learning algorithms to form expectations. It is this litera-
ture to which I contribute by estimating a prototypical DSGE model and evaluating
systematically the impact of the choice of agents’ initial beliefs.

Prior Estimated DSGE models with learning

Primiceri (2006) Provides a New Keynesian DSGE model with adaptive learning,
estimated by maximum likelihood, to explain the curious rise and persistently high
inflation during the 1960s. In this model, the learning agent is the monetary author-
ity, while private agents in the model are a mix of rational agents and agents who
use adaptive expectations. The monetary authority is assumed to have incomplete
information about the economy including the persistence of inflation and the natural
rate of unemployment, but knows the structure of the economy. One important impli-
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cation the authors draw is that the persistently high inflation experienced by the US
in the 1960s and 1970s is unlikely going forward as the model suggests that the great
inflation resulted from the unlikely confluence of simultaneous mis-measurement of
both the natural rate of unemployment and the persistence of inflation.

Milani (2007) Provides one of the earliest Bayesian estimations of a DSGE model
with Adaptive Learning, and the model which I also estimate in the next chapter. A
persistent problem in the DSGE literature had been the failure to match the appar-
ent persistence of inflation and output in response to monetary policy shocks under
rational expectations. Some modelers had incorporated various sources of mechanical
persistence to address this. Some papers, notably including Fuhrer (2000), showed
that habit persistence in household consumption preferences is required to reproduce
characteristic "hump-shaped" impulse response functions that estimated reduced-
form vector-autoregressions seem to produce. Further still, New Keynesian models
under Rational Expectations require often exhibit significant improvement in model
fit from adding such mechanical persistence, as measured by the estimated marginal
data density. Milani estimates a five-equation New Keynesian model with mechanical
persistence arising from inflation indexation and from consumption habit-persistence.
Milani shows that such assumptions may, in fact, be superfluous if one instead al-
lows for agents in the model to have imperfect information about the economy and
to form expectations using models that are updated using constant-gain recursive
least-squares. When estimated under learning, the model of Giannoni and Woodford
(2004) does not support habit formation or inflation indexation.

Milani (2014) Extends this framework to a DSGE model wherein the gain pa-
rameter, that is the speed at which agents update their beliefs in response to new
information, varies endogenously. The mechanism is according to which this gain
changes is similar to one outlined in Marcet and Nicolini (2003), where gain switches
between a constant and a geometrically decreasing sequence. Under such an updat-
ing scheme, the canonical New Keynesian model is able to generate, endogenously,
time-varying volatility. The ability to recreate time-varying volatility is necessary for
a DSGE model to adequately explain the "Great Moderation" from about 1985 to
2007. Milani’s model contrasts with models such as that of Justiniano and Primiceri
(2008) that generate time varying volatility by allowing the variance of i.i.d shocks to
vary stochastically. The linear model estimated by Milani also avoids the additional
computational burden of particle-filter based likelihood functions that is required for
models that are not driven by gaussian shocks.
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Estimated models with adaptive learning have not been limited to small-scale
models, but also to the much richer medium-scale DSGE models such as that of Chris-
tiano et al. (2005) and Smets and Wouters (2003) that have been able to match the
marginal data densities of reduced-form VAR models. Slobodyan and Wouters (2012)
estimates a modified version of Smets and Wouters (2007) that omits the endogenous
flexible-price equilibria. In the model estimated by Slobodyan and Wouters, agents
form expectations using small (under-parameterized) forecasting models. Adaptive
learning in the paper takes the form of a Kalman filter updating scheme. Letting
βt|t be agents coefficients’ and Pt|t be the variance of those coefficients, beliefs are
updated according to the following equations:

βt|t = Bt|t−1 + Pt|t−1Xt−1(Σ +X ′
t−1Pt|t−1Xt−1)

−1 × (yft −X ′
t−1βt|t−1),

Pt|t = Pt|t−1 − Pt|t−1Xt−1(Σ +X ′
t−1Pt|t−1Xt−1)

−1 ×X ′
t−1Pt|t−1.

In it, the authors estimate the model both under rational expectations and adaptive
learning. The authors find some notable differences in important parameter estimates
between the adaptive learning and the rational expectations specifications. The wage
and price markup shocks in both RE and AL are assumed to follow ARMA(1,1) (au-
toregressive moving average) processes. The mean estimate for the AR(1) and MA(1)
terms for the wage markup process are .96 and .88 respectively, while the AR(1) and
MA(1) terms for the price markup are .85 and .7 respectively. Under Adaptive Learn-
ing, however, the mean estimates for the AR(1) and MA(1) terms for the wage process
are .53 and .43 respectively, and .28 and .48 for the price markup. Further, except
for the price markup MA(1) term, the 90% confidence intervals are non-overlapping.
Not all sources of mechanical persistence disappear under the adaptive learning spec-
ification, however, as the parameters describing wage and price stickiness do not
disappear, and that there is substantial overlap in the reported confidence bounds
between rational expectations and adaptive learning.

In addition to reducing or eliminating some estimates of mechanical persistence,
the time-varying nature of expectations allows the authors to reproduce macroeco-
nomic time series with time-varying volatility even though model has homoskedastic
shocks, implying that endogenous expectational changes explain the great inflation
and subsequent great moderation in US macroeconomic data. This result contrasts
sharply with Cogley et al. (2010), who identify an exogenous change in monetary
policy as the main explanation for this change in volatility. This introduction of
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time-varying beliefs, able to generate time-varying volatility, is a major reason for
the improved data-fit of many adaptive learning models over their rational expecta-
tions analogues.

As my primary subject of investigation is initial beliefs, I note also that the Slo-
bodyan and Wouters include a discussion on the initialization of learning dynamics
as a robustness check for their results. Under the baseline model, the initial beliefs
are assumed to be derived from the variable coefficients implied by the rational ex-
pectations solution. One other way the authors initialize the agents beliefs is to keep
the Σ, V, β1|0 matrices constant and to estimate the rest of the model. In yet another
experiment, the authors estimate the model wherein agents’ beliefs do not change,
and then use those estimated beliefs as the initial beliefs when estimating the model’s
structural parameters. Under such initializations, the authors find that the adaptive
learning still improves greatly the estimated model likelihood compared to that same
model estimated under rational expectations, and that this result is not sensitive to
the researcher’s choice of agents’ initial beliefs.

A newer approach for improving economic forecasting is the DSGE-VAR approach
of Negro and Schorfheide (2006). The authors propose an approach where the DSGE
model is nested within a more flexible VAR framework, allowing for systematic re-
laxation of the cross-equation restrictions imposed by the DSGE model. This DSGE-
VAR model serves as a tool to assess the empirical fit and forecasting performance
of the DSGE model, comparing its restrictions against the data-driven flexibility of
VARs. The authors apply their methodology to evaluate a version of the Smets and
Wouters (2003) model, examining the extent to which the DSGE model restrictions
need to be relaxed to optimize the fit of the DSGE-VAR model. They find that
certain ad hoc modifications and the introduction of frictions, such as price sticki-
ness and wage indexation, improve the empirical fit of the DSGE model but caution
against overreliance on such mechanisms due to their potential non-invariance to
policy experiments.

Cole and Milani (2019) apply such a framework to a small-scale New Keynesian
model but within the Adaptive Learning framework rather than the Rational Expec-
tations framework. The paper demonstrates within their model that while DSGE
restrictions are valuable when the model does not have to match observed expec-
tations, such as those that are gleaned from consumer or professional survey data,
imposition of such expectations necessitates a departure from DSGE restrictions, in-
dicating a misspecification in the model, and that the misspecification in the model
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lies in the choice of expectations formation mechanism. In exploring alternatives,
the authors examine models incorporating extrapolative, heterogeneous expectations
and find that these can somewhat reconcile the New Keynesian model with the ob-
served expectations. The authors find that the DSGE-VAR approach, with adjusted
prior restrictions informed by the DSGE model, offers a better fit to the data than
unrestricted VAR models.

The Framework of Adaptive Learning

It will prove valuable to review the general framework of adaptive learning within
the context of a DSGE model, as this will provide the reader a clear picture of what
I intend to investigate as the "initial beliefs" of agents in the model. Exploring the
framework of Adaptive Learning also provides readers another view at what it means
to actually "solve" a DSGE model under Rational Expectations beyond my earlier
description of the Schur decomposition technique. I turn now to a critically important
part of the AL framework, the expectational stability or "E-stability" principle.

Let T (ϕ) be a function that maps from agents’ subjective beliefs about economic
dynamics to actual economic dynamics. In the models which I estimate, this T-map
arises from substituting expectations formed through the adaptive learning algorithm
into the difference equations implied by the DSGE model. The rational expectations
solution to this T-map, then, is the fixed point, where the agents’ beliefs about the
economy match the true dynamics of the economy. For linear DSGE models, the
fixed point of this T-map is considered “expectationally stable” if around this fixed
point there exists a neighborhood of beliefs wherein the differential equation

dϕ

dτ
= T (ϕ)− ϕ

is asymptotically stable. This asymptotic stability is equivalent to having eigenvalues
strictly inside the unit circle.

For the models I study in this and the next chapter, agents use linear forecasting
models known as Vector Autoregressions that are updated using the algorithm of
constant-gain recursive least squares. Supposing that agents forecast a vector of
variables Zt using regressors Xt so that their linear model is Zt = ϕ′

tXt The formulae
for recursive least-squares are given below:

ϕt = ϕt−1 + γtΣ
−1
t X ′

t(Zt − ϕ′
t−1Xt)

′, (1.3)
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Σt = Σt−1 + γt(XtX
′
t − Σt−1), (1.4)

where Σt is E(XtX
′
t) and sometimes equivalent to the second moment matrix.

The sequence {γt}∞0 is a weakly decreasing sequence of real numbers. For re-
cursive least squares, which is asymptotically equivalent to ordinary least squares,
this sequence is 1/t. This gives all observations equal weight, so that the effect of
each subsequent observation disappears as t → ∞. In constant gain least squares,
the scheme which I use in both chapters, γt is a constant, γ̄ for all periods and is
estimated along with the structural parameters. This parameter, ¯gamma called the
"learning gain" parameter, describes the weight that agents place on the most recent
observations when updating their beliefs. Since this weight is non-decreasing, this
causes agents to place more weight on more recent observations than observations in
the more distant past. The motivation often given for this is that this allows agents
to update their forecasting models more quickly in response to regime switches or
parameter shifts in the underlying economy, updating that would not be permitted
if the economy parameters change after an arbitrarily long time.

In the models which I estimate in the present chapters, agents are using only
lagged endogenous variables to forecast the endogenous variables, so Xt = (1, Zt−1)

′.
Throughout both chapters, Agents use “Euler Equation Learning,” which is de-

scribed in Evans and Honkapohja (2001). This setup uses the linear model equations
from the DSGE model but substitutes into the DSGE model the expectations formed
through linear forecasting models for the assumed rational expectations. Described
more formally, suppose the economy evolves according to some DSGE model:

xt = Axt−1 +BEtxt+1 + Cεt

In such a setup, agents would arrive at period t with model coefficients ϕt and
second moments Σt based on information set Xt = {xi}t−1

0 . Then the i.i.d shocks εt
arrive and xt evolves according to

xt = Axt−1 +Bϕ2
tXt + Cεt

At which point agents their model coefficients to ϕt+1 and second moments Σt+1

based on xt
In some models, it is necessary to rely upon a “projection facility” to provide

stable dynamics. A projection facility is a behavioral rule that forces agents’ beliefs
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to lie within some compact set around the rational expectations equilibrium. Marcet
and Sargent (1989) show that agents’ beliefs formed and updated through a recursive
least squares algorithm will, if the rational expectations equilibrium is expectationally
stable and agents employ a suitable projection facility, converge with probability one
to the beliefs implied by the rational expectations equilibrium.

This property would seem to imply that agents’ initial beliefs should not matter
to model dynamics, and therefore should not affect model estimates. However, this is
only true asymptotically as t→ ∞. Since the models I estimate are estimated based
on quarterly data, I can only simulate such models for a few hundred quarters at most,
and within such a short time horizon initial beliefs can influence model dynamics.
Carceles-Poveda and Giannitsarou (2007) examines recursive least squares, stochastic
gradient learning, and other learning algorithms and documents the importance to
explaining short-run variation of the right initialization choice. The scheme agents
use in the models that I estimate is known as “Euler Equation Learning”. In such a
setup, model variables propagate according to the equations of the DSGE model, with
the twist that the agents’ expectations formed through the linear forecasting model
are substituted for the expectational terms in the DSGE rather than the rational
expectation. Such a setup can theoretically nest the rational expectations solution if
agents have the true model coefficients and observe all contemporaneous shocks when
forming such expectations. In such a setup, the expectations that agents form using
their linear models are equivalent to the rational expectations.

A more To embed Adaptive Learning into the model, I use a scheme described in
Evans and Honkapohja (2001) as “Euler Equation Learning.” Such a scheme uses the
same Euler equations derived from the Rational Expectations solution to the model,
but instead substitutes the expectations formed through small forecasting models
for the rational expectations. The adaptive learning algorithm I use in the present
chapter is constant gain recursive least squares, whose formulae I recount below,
which is one among several adaptive learning schemes in the literature including
shadow-price learning, infinite-horizong learning, or kalman-filter learning.

As these coefficients and second-moment matrices are updated recursively, it is
therefore ultimately a choice of the modeler themselves what to use as the initial
beliefs ϕ0,Σ0 when simulating and estimating a DSGE model with adaptive learning.
I explain now the three choices I use in both this and the next chapter

The first choice of initial beliefs is the rational expectations solution-implied be-
liefs. For each draw θi from the posterior distribution p(θ|Y ) for which there there
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exists a unique RE solution, such a solution can be cast into a VAR in the model
variables: st = Tc + T1st−1 + T0εt. ϕ0 then would be the coefficients from Tc, T1, T0,
and which elements of those matrices are used would depend on the variables agents
are assumed to use as regressors when forming forecasts of future variables. If agents
are assumed only to observe three endogenous variables, then ϕ0 would include only
the first three entries of Tc and the upper-right 3×3 matrix of T1. The initial second-
moment matrix Σ0 is obtained via a Schur Decomposition, just as I use to obtain the
second moments of a DSGE model. One important implication of this initialization
choice is that the initial beliefs are a strict function of the structural parameters θi.
In the case of training sample beliefs, initial beliefs are fixed, while in the case of joint
estimation, initial beliefs are allowed to vary across θi.

The second choice of initial beliefs uses a pre-sample time-series of data on en-
dogenous variables to estimate a VAR model of the set of forecasted variables. I
obtain point estimates using maximum likelihood, and once the VAR is estimated, I
set ϕ0 equal to the MLE coefficients and use a Schur decomposition to solve for Σ0.

The final choice of initial beliefs treats each unique element of ϕ0 and Σ0 as a
model parameter to be estimated along with the structural parameters of the model
θi. This means that each element of ϕ0 must be estimated, along with the upper-
triangular elements of Σ0 since E(XtX

′
t) is necessarily a symmetric matrix. This

requires the researcher to specify a prior distribution for each of these elements. As I
am comparing model performance according to the estimated marginal data density,
I want to be sure that improvements in this estimate are due to improvements in
the likelihood and not due to arbitrarily tight prior distributions. For this reason, I
univariate normal priors with mean zero and standard deviations of 1 for elements
of ϕ0. For the upper triangular elements of Σ0 I use these same priors. For the
diagonal elements of Σ0 I use a uniform prior bounded between 0 and 2. After several
estimation attempts, this prior seemed to be the best prior that did not result in
particle degeneracy due to too many particles having zero likelihood.

1.2 The Model

The model I estimate follows that of An and Schorfheide (2007). An important
assumption of this model, which is relaxed in the next chapter, is that the sole
sources of mechanical persistence come from the autoregressive shock processes and
the autoregressive coefficient in monetary policy. Many other DSGE models, such
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as that of Giannoni and Woodford (2004), which I estimate in the next chapter
under adaptive learning, allow for mechanical persistence in the inflation and output
equations. I will recount now the model’s microfoundations, as presented in a very
compact manner in Herbst and Schorfheide (2016). The model consists of households,
a monetary authority, a fiscal authority, intermediate-goods producing firms, and
final-goods producing firms. I turn first to the dynamic optimization problem faced
by price-setting firms in a monopolistically competitive setting.

Firms

The model assumes that production of goods takes place in two stages, first by
monopolistically competitive firms that produce intermediate goods, and then by
perfectly competitive firms producing a single final good for both household and
government consumption. These price-taking final good producing firms combine
a continuum of intermediate goods indexed by j ∈ (0, ) using the CES production
technology:

Yt =

(∫ 1

0

Yt(j)
1−νdj

) 1
1−ν

.

Final goods producers are perfectly competitive, and so the input prices Pt(j) and
the price of the final good Pt are given. Revenue from the sale of the final good is
PtYt while costs are

∫ 1

0
Pt(j)Yt(j)dj. The first order condition for maximizing profits,

which are:

Πt = Pt

(∫ 1

0

Yt(j)
1−νdj

) 1
1−ν

−
∫ 1

0

Pt(j)Yt(j)dj,

implies that the demand for the jth intermediate good is:

Yt(j) =

(
Pt(j)

Pt

)− 1
ν

Yt.

The parameter 1/v thus captures the elasticity of substitution between each of the
intermediate goods in the firm’s production technology and can be interpreted as
capturing the degree of monopoly power by firms in the economy, with a higher v
meaning a lower degree of monopoly power and greater degree of competition between
firms. The model assumes away entry costs, and that therefore producers enter
the market until profits equal zero. This zero-profit condition implies the following
relationship between intermediate goods prices and the price of the final good:
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Pt =

(∫ 1

0

Pt(j)
νdj

) 1
ν

.

The jth intermediate good is produced by a monopolist using the following production
technology

Yt(j) = AtNt(j).

At is an exogenous productivity process that does not vary across firms while Nt(j)

is the labor input of the jth firm. Labor is the only input to production and is hired
at the perfectly competitive wage rate Wt.

Nominal price stickiness is incorporated into the model via quadratic price ad-
justment costs a la Rotemberg (1982) according to the following cost schedule:

ACt(j) =
ϕ

2

(
Pt(j)

Pt−1(j)
− π

)2

Yt(j).

In this setup, ϕ determines the price rigidity in the economy while π determines
steady state price inflation of the final good. In the intermediate goods market, the
jth firm chooses its labor input Nt(j) and its price Pt(j) to maximize the expected
present discounted value of future profits:

∞∑
s=0

(
βsQt+s|t

(
Pt+s(j)

Pt+s

Yt+s(j)−Wt+sNt+s(j)− ACt+s(j)

))
,

where Qt+s|t is the time t value of a unit of the final consumption good in period t+s
to the household, which is treated as exogenous to the firm since the final good is
sold in a perfectly competitive market.

Households

A representative household derives utility from consumption Ct relative to a habit
stock, which is approximated by the level of technology At and real money balances,
Mt/Pt

U =
∞∑
s=0

βs

(
(Ct+s/At+s)

1−τ − 1

1− τ
+ χM ln

(
Mt+s

Pt+s

)
− χHHt+s

)
.

In the above, β is the discount factor, 1/τ is the intertemporal elasticity of substitu-
tion, and χM and χH are scale factors that determine the steady state money balances
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and hours worked respectively, the latter of which is set equal to one. The household
sells labor to the firm at a competitive wage rate Wt. The household has access to
a domestic bond market where nominal government bonds Bt are traded that pay
interest rate Rt. The household additionally receives profits Dt from the firms and
must pay taxes Tt. Thus the firm has the following budget constraint:

PtCt +Bt +Mt + Tt = PtWtHt + (Rt−1Bt−1) + (Mt−1 + PtDt + PtSCt),

where SCt is the net cash inflow from trading a full set of Arrow Debreau securities.

Monetary and Fiscal Policy

Monetary policy is described by an interest rate feedback rule of the form:

Rt = R∗1−ρR
t RρR

t−1e
ϵR,t ,

where ϵR,t is a monetary policy shock and R∗
t is the nominal target rate

R∗
t = rπ∗

( πt
π∗

)ϕ1
(
Yt
Y ∗
t

)ϕ2

, (1.5)

where r is the steady state real interest rate that is a function of the model’s parame-
ters, which I define below in 1.8, πt is the gross inflation rate defined as πt = Pt/Pt−1,
and π∗ is the target inflation rate. Y ∗

t is the level of output that would prevail in the
absence of nominal rigidities.

The fiscal authority consumes some fraction ζt of aggregate output Yt so that
Gt = ζtYt, and this fraction follows an exogenous process. The government levies
a lump sum tax Tt to finance short term falls in government revenues. Thus the
government’s budget constraint is as follows:

PtGt +Rt−1Bt−1 +Mt−1 = Tt +Bt +Mt.

Exogenous (shock) processes

The economy is driven by three exogenous processes. Aggregate productivity
evolves according to the following:

lnAt = ln γ lnAt−1 + ln zt, ln zt = ρz ln zt−1 + ϵzt.
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Government spending evolves according to the following process:

ln gt = (1− ρg) ln ḡ + ρg ln gt−1 + ϵgt,

where gt = 1/(1− ζt), where ζt was defined as the fraction of aggregate output that
was purchased by the government. Finally the monetary policy shock, ϵR,t is assumed
to be i.i.d. All three shocks are assumed to be i.i.d. and uncorrelated.

Equilibria

Intermediate goods producing firms are assumed to make identical decisions, so
that j subscripts are omitted. Thus the market-clearing conditions are given by:

Yt = Ct +Gt + ACt, Ht = Nt.

Households have access to the full set of Arrow Debreu securities, and thus

Qt+s|t =

(
Ct+s

Ct

)−τ (
At

At+s

)1−τ

.

Thus in equilibrium, households and firms are using the same stochastic discount
factor. It can also be shown that output, consumption, interest rates, and inflation
must satisfy the following optimality conditions:

1 = βEt

(
Ct+1/At+1

Ct/At

)τ
At

At+1

Rt

πt+1

, (1.6)

1 = ϕ(πt − π)

((
1− 1

2v

)
πt +

π

2v

)
, (1.7)

− ϕβEt

((
Ct+1/At+1

Ct/At

)−τ
Yt+1At+1

Yt/At

(πt+1 − π)πt+1

)
,

+
1

v

(
1−

(
Ct

At

)τ)
.

Equation 1.6 is the consumption euler equation that reflects the FOC with respect
to government bonds. Equation 1.7 characterizes the profit maximizing choice of
intermediate goods producing firms. The FOC depends on the wage rate Wt. In the
absence of nominal rigidities, aggregate output is given by:

Y ∗
t = (1− v)1/τAtgt,
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which is also the target level of output that appears in the monetary policy rule of
equation 1.5.

The model is approximated in a linear form using a first-order Taylor Series ap-
proximation around the steady state. Output and consupmption are detrended by
At so ct = Ct/At, yt = Yt/At, y

∗
t = Y ∗

t /At. The steady states are given by:

π = π∗, r =
γ

β
,R = rπ∗, (1.8)

c = (1− v)1/τ), y = gc = y∗.

Letting x̂t = ln(xt/x) be the percentage deviation of any variable xt from its own
steady state value, we can write the the laws of motion for each variable in terms of
percent deviations from their respective steady states:

1 = βEt

(
e−τ ĉt+1+τ ĉt+R̂t−ẑt+1−π̂t+1

)
,

0 =
(
eπ̂t − 1

)((
1− 1

2v

)
eπ̂t +

1

2v

)
,

− βEt(e
π̂t+1 − 1)e−τ ĉt+1+τ ĉt+ŷt+1−ŷt+π̂t+1 ,

+
1− v

vϕπ2
(1− eτ ĉt),

eĉt−ŷt = e−ĝt − ϕπ2g

2
(eπ̂t − 1)2,

R̂t = ρRR̂t−1 + (1− ρR)ϕ1π̂t,

+ (1− ρR)ϕ2(ŷt − ĝt) + ϵR,t,

ĝt+1 = ρgĝt−1 + ϵg,t,

ẑt+1 = ρz ẑt−1 + ϵz,t,

Log linearizing the first three equations above yields the following system of equations
that determine the path of output, inflation, and interest rates in the model studied:

ŷt = Et(ŷt+1)−
1

τ

(
R̂t − Et(π̂t+1)

)
+ ĝt − Et(ĝt+1),

π̂t = βEt(π̂t+1) + κ(ŷt − ĝt),

R̂t = ρRR̂t−1 + (1− ρR)ψ1π̂t + (1− ρR)ψ2(ŷt − ĝt) + εRt,
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κ = τ
1− ν

νπ2ϕ
, (1.9)

Under Euler Equation learning, agents are assumed to form forecasts using a VAR
of the form xt = A + Bxt−1 + Cεt so that Et−1xt+1 = A + BA + B2xt−1. Matri-
ces A,B are populated with elements from ϕt−1 which is updated according to the
CGL formulae of 1.3 and 1.4. By substituting directly the formulae for expectations
formed through adaptive learning, I obtain the transition equation for the state space
model. Note that I assume that agents only have knowledge of endogenous variables
(ŷt−1, π̂t−1, R̂t−1)

′ and not ĝt−1, ẑt−1 or i.i.d. shocks. Giving agents a forecasting model
in which they use lagged exogenous shock processes renders impossible updating the
second moment matrix, and so I limit attention in this chapter to models where
agents observe only (ŷt−1, π̂t−1, R̂t−1)

′ when forming expectations. I expound upon
this problem later when I compare my three initialization choices.

The Data

I now explain the data I use and how the data relate to the underlying state
variables. The measurement equations I use are as follows

Y GRt = γQ + 100(ŷt − ŷt−1 + ẑt),

INFLt = πA + 400π̂t,

INTt = πA + rA + 4γQ + 400R̂t,

Y GRt is the observed quarter-over-quarter growth rate in per capita real GDP,
INFLt is the observed quarter-over-quarter inflation rate, and INFLt is the ob-
served annualized nominal interest rate.

The parameters γQ, πA, rA are related to the steady states of the model as follows:

γ = 1 +
γQ

100
,

β =
1

1 + rA/400
,

π = 1 +
πA

400
,

These three parameters are structural parameters to be estimated from the posterior
distribution. As ν and ϕ are not separately identifiable, the model is expressed in
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terms of κ as defined in 1.9. For estimation of the structural parameters, I follow
An and Schorfheide (2007) and use quarterly data from 1982:2002. To construct per
capita real output growth, I use

Growth = 100

(
ln

(
GDPt

POPt

)
− ln

(
GDPt−1

POPt−1

))
,

For GDP, I use the FRED series "GDPC1" and for population I take the quarterly
average of the civilian non-institutional population, FRED series CNP16OV/ (BLS
series LNS10000000). To construct annualized inflation I use

inflation = 400 ln

(
CPIt
CPIt−1

)
,

using the FRED series "CPIAUCSL" for the CPIt. For the nominal interest rate, I
just use the federal funds rate, FRED series "FEDFUNDS."

To construct the pre-sample data series for the training sample initial beliefs, I
use the the same procedure for annualized inflation and the federal funds rate, but
use the FRED series A939RX0Q048SBEA, which is FRED’s series for Real Gross
Domestic Product per capita. I use 50 quarters of pre-sample data to train agents’
VAR. I limit myself to the relatively short 1982-2002 data series as the computational
burden grows significantly as the time series is expanded. Adding pre-1982 data may
be of dubious value as well since it pre-dates the great moderation while data post-
2002 approaches the housing bubble and the great recession, and thus each choice
increases the risk of an unidentified regime switch. With a full description of the
measurement equations and the data series on which I estimate the model, I turn
now to an exposition of the initial belief choices.

1.3 Initial Beliefs

Equilibrium Based Initials

The equilibrium based initial beliefs centers the coefficients ϕ0 and elements of Σ0

from 1.3 and 1.4 around the solution obtained from the rational expectations solution.
To obtain this solution, I use the Schur decomposition method described earlier, which
gives the general solution xt = Tc+T1xt−1+T0εt where xt = (ŷt, π̂t, R̂t, ĝt, ẑt)

′. Agents
are assumed to only observe (ŷt−1, π̂t, R̂t−1)

′ when forming expectations E(ŷt+1, π̂t+1).
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Thus I substitute elements from T1 into B from the formula for agents’ individual
expectations Et−1xt+1 = A+BA+B2xt−1.

To obtain the Σ0 matrix, I use the Schur decomposition as described in Villemot
(n.d.). This gives the second moment matrix for the state variables of a DSGE model.
I use this because the model variables (ŷt−1, π̂t−1, R̂t−1)

′ are zero mean processes, and
so
E(ŷt−1, π̂t−1, R̂t−1)(ŷt−1, π̂t−1, R̂t−1)

′ = cov(ŷt−1, π̂t−1, R̂t−1). I then substitute the last
three rows and columns of this numerically computed matrix into my Σ0 matrix. As
I am allowing agents to regress endogenous variables on a constant, the first column
and row are zeros save for the top-left element, which is 1.

I omit estimation of models wherein agents use a forecasting model that regresses
(ŷt, π̂t, R̂t)

′ upon (ŷt−1, π̂t−1, R̂t−1, gt−1, zt−1)
′. This is because in the rational expec-

tations solution, the endogenous variables and the shock processes are collinear and,
as a result, the Σ0 matrix is non-invertible. This can be confirmed by computing the
determinant of the second-moment matrix from the rational expectations solution
and verifying that it is very close, to within a rounding error, to zero. This renders it
impossible to update coefficients via recursive least squares as the updating equation
inverts this second moment matrix, as shown in 1.4.

I depart from Milani (2007) in omitting a constant from agents’ forecasting mod-
els as well, so that expectations of future economic variables depend only upon a
combination of previous economic variables. I impose this assumption for two rea-
sons; first, one can argue that such a model is more consistent with the informational
assumptions placed upon the agents. If agents are assumed to know the structure
of the economy but not its parameters, then agents would know that the true value
of the constant term in the Rational Expectations solution to the DSGE model does
not include any constant terms. Recall that the regressors that agents use in their
updating equations are the kalman filtered estimates of ŷt−1, π̂t−1, R̂t−1, which are
determined by the transition equations which do not have constant terms, thus the
constant parameters γQ, πA, rA would not map onto agents’ constant terms in their
updating equations. Second, omitting a constant term reduces the computational
burden of estimating the model. Future variations of this study that include constant
terms in agents’ forecasting models may, however, prove fruitful.

This problem does not present when estimating initial beliefs jointly with struc-
tural parameters or when initializing beliefs via a training sample because such models
do not necessarily produce collinearity in the transition equation in the way that the
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DSGE model solution does. As I did not want to “stack the deck” in favor of other
models, I omit from my final comparison models that include richer information sets.

Training Sample Based Initial Beliefs

The next choice of initial beliefs I employ are those which are formed through
a training sample. This strategy is employed, among others, by Milani (2014). In
my case, I use a method similar to the method explored in Berardi and Galimberti
(2017). The first step of choosing initial beliefs is to maximize the likelihood function
implied by a state-space model of the following form:

• State equation:
xt+1 = Φxt +Ψwt,

• Observation equation:
yt = Hxt.

When estimating my reduced-form VAR, I used identity matrices for H and Ψ to sim-
plify estimation. The state vector xt, then, consists of the output process, inflation
process, and the nominal interest rate. Because the Federal Reserve has a positive in-
flation target, the observed inflation and interest rates cannot have zero unconditional
means, and so I used the de-meaned values for both of these processes while using
the ordinary values for GDP growth. Estimation was then performed by maximizing
a likelihood function, which was computed numerically via prediction-error variance
decomposition through a Kalman Filter. This gives an estimate Φ̂MLE, which I use
as my ϕ0 matrix, and the variances wt. With this information I can also compute
the second moment matrix Σ0 with a Schur Decomposition. These matrices ϕ0,Σ0

do not vary across the posterior distribution of structural parameters, in contrast to
both equilibrium-based initial beliefs and jointly-estimated initial beliefs.

Jointly Estimated Initial Beliefs

Joint estimation treats initial beliefs as parameters to be estimated along with
the rest of the structural parameters of the model. A procedure like this is performed
in Milani (2009), but the impact of this choice on the marginal data density is not
provided. Thus, for there to be a posterior distribution of the initial beliefs, I must
define prior distributions of the initial beliefs. As I am investigating whether joint
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estimation can improve the performance of a DSGE model, I seek to allow the data
to drive the results of the model and use fairly diffuse priors. For each element of
ϕ0, I use a standard normal distribution. A diffuse distribution with a large standard
deviation samples many particles that lead to unstable dynamics and can lead to
particle degeneracy, which causes the SMC algorithm to crash. However, as I discuss
in the section on Data-Fit Comparison, the marginal data density is not particularly
sensitive to the standard deviation of this prior.

A possible candidate for a prior distribution that may improve upon the results
obtained in both this chapter and the next for the second moment matrix Σ0 might be
a Wishart prior distribution. A Wishart prior distribution first draws a p× n matrix
where each nth column is drawn from a p-variate normal distribution. Then the p×n
matrix G premultiplies its own transpose to generate a positive semi-definite matrix
GGT .

For ϕ0, One could use a prior that generates random matrices with eigenvalues
uniformly distributed within the unit circle using a straightforward combination of
random orthogonal matrices and uniform eigenvalues. This method would generate
an orthogonal matrix of a given size n and generate a diagonal matrix of eigenvalues,
and then combine the matrix to generate a PSD matrix whose eigenvalues lie within
the unit circle. This would assure that all draws of initial beliefs satisfy the assumed
stability property

Berardi and Galimberti (2017) include a discussion on joint estimation of initial
beliefs. In that paper, Berardi and Galimberti generate data using a two-equation
New Keynesian Phillips Curve model and then use GMM techniques to estimate
model parameters along with the agents’ initial beliefs. The authors find that the
accuracy of the estimation of initial beliefs deteriorates as the sample size increases,
and that biases in the estimates of initial beliefs can actually have spillover effects
onto the estimates of other parameters. It is important to note, however, that my
own study differs fundamentally in that I use Bayesian estimation of initial beliefs and
structural parameters. Therefore, this dependence between the estimates of initial
beliefs and structural parameters is modeled explicitly by the simulated posterior.
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1.4 Results

Priors

For structural parameters, I follow the priors used by Herbst and Schorfheide
(2016) as I am seeking to find the effect of learning upon the data fit of the model,
ceteris paribus. For the learning gain, I used a uniform prior distributed between
0 and .05 to match common findings in the DSGE learning literature, as well as
to avoid particle degeneracy in my SMC algorithm when jointly estimating initial
beliefs. Larger gain values both in estimation and in simulation often resulted in
unstable dynamics. Moving from a diffuse to narrow prior for the gain parameter
had no impact on model likelihood for equilibrium-based or training-sample based
initial beliefs. The priors distributions are reported in A.1 and are graphed along
with marginal posterior distributions in B.1 through B.4. rA and πA, which are
functions of the the steady state natural interest rate and inflation rate, are gamma
distributions and bounded below from one. γQ is the steady state growth rate and is
not bounded but is centered at a positive value, .4. τ is the risk aversion parameter
and has a gamma prior distribution with a shape parameter of 2 and a scale parameter
of .5. κ, the slope of the Phillips Curve, has a uniform distribution bounded between
0 and 1. ψ1 and ψ2 are the inflation and output feedback rules for monetary policy,
respectively, while ρR is the feedback rule on lagged interest rates for monetary policy.
ρg, ρz have uniform priors to assure stability, while the variance of the shock processes
have inverse gamma distributions. I use a uniform prior from 0 to .05 for the learning
gain to use as diffuse a prior as possible to avoid particle degeneracy and to assure
that the covariance matrix of my SMC algorithm stays positive definite. However,
a more diffuse distribution likely could have been used had I imposed a projection
facility that restricted agents’ beliefs to a stable set of beliefs.

Parameter Results

Estimates of structural parameters are quite robust to the choice of initial beliefs
or even to the choice of expectations formation mechanism, as can be seen in tables
C.2 through A.5. One notable difference in parameter estimates, however, is the
slope of the Phillips Curve, κ, between the Rational Expectations baseline and the
equilibrium-based initials. The mean estimate under the baseline is .85 while the
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mean estimate under equilibrium-based initial beliefs is .49. The 95% confidence
intervals are also nearly non-overlapping.

Table 1.1. Estimates of Phillips Curve Slope, κ

Mean 5% Interval 95% Interval
Rational Expectations 0.85 0.62 0.99
Equilibrium Inits 0.49 0.34 0.67
Training Sample Inits 0.57 0.41 0.78
Jointly Estimated Inits 0.56 0.33 0.87

Data-Fit Comparison

Within the wider context of Bayesian econometrics, model selection is often done
using the marginal data density, which is the likelihood function integrated over the
prior density function. For a given model M, data series Y, and parameter distribution
θ, the marginal data density for model M is defined as

p(Y |M) =

∫
p(Y |θ,M)p(θ|M)dθ.

This integral cannot be evaluated analytically for a DSGE model, and so must
be approximated via monte carlo methods. This can be done from the output of a
Metropolis Hastings algorithm using either the method of Geweke (1998) or Chib
and Jeliazkov (2001). The SMC algorithm used to estimate the models in the present
chapters, however, provide a straightforward approximation from the unnormalized
particle weights that, unlike the MCMC methods, do not require additional computa-
tions of the likelihood function. Herbst and Schorfheide (2016) show that the monte
carlo product of unnormalized particle weights

∏Nϕ

n=1

(
1
N

∑N
i=1 w̃

i
nW

i
n−1

)
converges to

the marginal data density under suitable regularity conditions. Unlike the method
of Chib and Jeliazkov or Geweke, this does not require additional computations of
the likelihood function. This estimate also yields the Bayesian analog to the classi-
cal Likelihood Ratio test called the “Bayes Factor” which compares the ratio of the
absolute likelihoods.

I seek to find the initialization scheme that can maximize the marginal data density
so as to best fit the DSGE model parameters to macroeconomic data. To this end,
I ran 5 SMC estimations for each of my three initialization schemes. The average
and standard deviation of the estimated marginal data densities are reported in table
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A.6. I provide 5 SMC runs for each model due to the cost constraints of estimation,
but also to assure that one would not get wildly different parameter estimates from
one SMC run to the next due to coding errors or particle degeneracy.

The marginal likelihoods show very promising improvements to in-sample data fit
that can be gained from relaxing the assumption of rational expectations. Under the
baseline model there is an average marginal likelihood of -336, but under the worst-
performing learning model, that with equilibrium-based initial beliefs, the marginal
likelihood averages -315. This implies a Bayes Factor of over 1.5 billion in favor of
the learning model over the Rational Expectations model. The model with training
sample based initial beliefs performs better still with an average estimated marginal
data density of -311, and a Bayes Factor of 71 over the equilibrium-based initials.
Finally, the model with jointly-estimated initial beliefs had an average estimated
marginal likelihood of -309 for a Bayes Factor of 8.7 over the model with beliefs
trained on pre-sample data, and a Bayes Factor of just over 1 trillion over the Rational
Expectations baseline model. The performance of joint estimation offers considerable
promise as it does not require the researcher to have access to pre-sample data.
The joint estimation does not come without costs, however, as the marginal data
density is less precisely estimated, with a higher standard deviation and, as revealed
in the graphs of the marginal posterior densities, less precisely estimated structural
parameters in some cases.

1.5 Summary and some Limitations

I have in this chapter estimated one New Keynesian DSGE model following An and
Schorfheide (2007) and found striking results on the effect of initial beliefs upon in-
sample data fit of the DSGE model studied. The measure I chose by which to evaluate
this was the marginal data density, and on this measure the jointly-estimated initial
beliefs performed the best. This might seem surprising at face value since asymptotic
properties of adaptive learning models imply that initial beliefs should not matter to
the dynamic properties of such models. However, as I am estimating and implicitly
simulating models with only 80 quarters of data, these initial beliefs can affect the
model dynamics considerably, and the differing ability of the models to fit the data
show this.

I have throughout this chapter labored under a significant limitation, however,
namely that my model has not integrated any of the numerous frictions such as
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consumption habit persistence, inflation indexation, or investment adjustment costs
that DSGE modelers have integrated into the current generation of such models.
The model of An and Schorfheide is ex hypothesi a purely forward looking model
and, under Adaptive Learning, the only possible source of persistence in the inflation
and output equations is through agents’ forecasting processes. This limits the sort
of features that one can integrate into the model, and as we saw earlier due to
the collinearity in the DSGE solution, it also limits the kind of forecasting model
agents can use for adaptive learning algorithms. In the next chapter, I study a New
Keynesian model following Giannoni and Woodford (2004), which was estimated with
agents that use Adaptive Learning by Milani (2007). I then evaluate systematically
the initial beliefs and information sets and their effects on the data fit and parameter
estimates of interest.
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CHAPTER 2

BAYESIAN COMPARISON OF INITIAL BELIEFS IN A NEW KEYNESIAN
PHILLIPS CURVE MODEL WITH MECHANICAL PERSISTENCE

2.1 Introduction and Literature Review

In this chapter, I estimate a small scale New Keynesian model with adaptive learn-
ing that has two additional sources of mechanical persistence so that inflation and
output depend mechanically upon their lagged values, extending the seminal paper
of Milani (2007). The primary subject of my inquiry is the impact of agents’ initial
beliefs upon parameter estimates and the upon ability of the models to fit macroeco-
nomic data. The additional sources of persistence in the models I estimate presently
consist of habit formation in household’s consumption decisions and indexation in
firms’ pricing decisions. Early DSGE models had trouble fitting macroeconomic data
because endogenous variables displayed far too much persistence relative to the i.i.d.
fundamental shocks that were assumed to drive macroeconomic events. A cottage
industry of sorts within the DSGE modeling literature arose that sought to find
micro-founded sources of mechanical persistence to integrate into the DSGE frame-
work. These additional sources of persistence improved the ability of DSGE models
to fit the data by delaying the adjustment of model variables back to their “long run”
values after experiencing exogenous shocks. I review some of the important proposed
sources of mechanical persistence in the literature that have also contributed to the
Adaptive Learning DSGE literature.

The seminal paper of Fuhrer (2000) showed the importance of embedding con-
sumption habit persistence in household behavior in order to match DSGE models to
the data. Earlier models assuming fully rational, neoclassical consumers treated con-
sumption as “jump” variables that should follow a random walk that responds to new
information regarding lifetime income, but aggregate data had displayed an appar-
ent excessive smoothness for this model of consumer behavior. Fuhrer proposes then
to modify the consumers’ utility function in order to provide a fully micro-founded
explanation for this persistence. The proposed utility function is of the form:

Ut =
1

1− σ

(
Ct

Cη
t−1

)1−σ

.

Fuhrer derives a household consumption function from this utility specification and
compares shows that it can produce the hump-shaped response in consumption to
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income shocks, the very same impulse response displayed by estimated VAR models.
The model of Giannoni and Woodford (2004) includes a utility function with this

sort of habit persistence for households, along with inflation indexation by firms.
In the model, prices are adjusted according to the Calvo mechanism, where some
fraction 0 < α < 1 of firms are able to set prices to maximize expected discounted
profits. The rest of the firms choose prices according to the rule

log pt(i) = log pt−1(i) + γπt−1,

where 0 ≤ γ ≤ 1 measures the degree of indexation to the most recently available
inflation measure. Under rational expectations, both my and Milani (2007) find very
high estimated values of this parameter. One substantial difference between my own
and Milani’s results, however, is that Milani finds that the estimated value of both
the inflation indexation parameter and the habit persistence parameter fall to nearly
zero when the model is estimated under adaptive learning, while my estimates do
so only under some choices of information set and initial beliefs, none of which were
present in the original paper.

A much richer model developed by Christiano et al. (2005) incorporates the stan-
dard New Keynesian features of sticky prices and sticky wages, along with several
other frictions. The model includes the habit persistence in household consumption
as in Fuhrer, variable capital utilization, investment-specific costs, and a rule that
businesses must borrow capital to finance their wage costs. The authors begin by
estimating a reduced form VAR(4) based on data from 1965 to 1995. The variables
included in the vector autoregression include real gross domestic product, real con-
sumption, the GDP deflator, real investment, the real wage, labor productivity, the
federal funds target rate, real profits , and the growth rate of the M2 component of
the money supply. The ordering of the variables just listed contains the identifying
assumption that real gross domestic product, real consumption, the GDP deflator,
real investment, the real wage, labor productivity do not respond contemporaneously
to a monetary policy shock while the federal funds target rate, real profits , and the
growth rate of the M2 component of the money supply all do respond contempo-
raneously to such a shock. Impulse response functions show that an expansionary
monetary policy shock increases output and increases inflation, and that both have
hump-shaped responses to monetary shocks. So it would be very desirable of any
DSGE model to display such a hump-shaped response of output and inflation to an

43



expansionary monetary policy shock.
The model parameters are chosen via a combination of methods including cal-

ibration to match long-run steady state values, impulse response matching to the
estimated VAR model, and GMM estimation. The authors find that sticky prices
play only a limited role in explaining the persistence of output and inflation to mon-
etary shocks. This finding is reached by showing that other parameter estimates and
impulse responses differ little when estimating the model under the assumption of
perfectly flexible prices. Inflation indexation, similarly, is found to play little role
in explaining the hump-shaped response to policy shocks. Wage stickiness, variable
capital utilization and investment adjustment costs, on the other hand, are estimated
to play a crucial role in explaining aggregate fluctuations in the model, by the same
criteria.

Since the study I undertake is ultimately an exercise in Bayesian econometrics, and
since I aim to introduce the reader to important extensions to the DSGE framework,
no such literature review would be complete without a review of the Smets and
Wouters (2007) model. Smets and Wouters provide medium-scale DSGE model of
the US macroeconomy that is estimated using Bayesian methods. Importantly, the
authors provide the first such model that is able to match the in-sample data-fit, as
measured by the marginal data density, of that provided by vector autoregression
models.

The model is based on a time series of seven variables: real GDP, hours worked,
consumption, investment, real wages, prices, and the short-term nominal interest rate.
The frictions of interest incorporated into the model include sticky nominal price and
wage, backward inflation indexation, habit formation in consumption and investment
adjustment costs, variable capital utilization and fixed costs in production. The model
dynamics are driven by seven i.i.d. shocks including a total factor productivity shock,
a risk premium shock, investment-specific technology shock, wage and price markup
shocks, and fiscal and monetary policy shocks.

Bayesian likelihood-based methods provide a natural framework for testing the
empirical performance of each nominal friction. The authors do so by restricting each
of the nominal frictions equal to zero, estimating the model, and then comparing the
posterior mode of the rest of the parameters, along with the estimated marginal data
density. A large change in the posterior mode or a statistically significant decrease
in the marginal data density provides a straightforward measure of the empirical
significance of each friction. With these evaluative criteria, the authors find, contra
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Christiano et al. (2005), approximate parity between price and wage stickiness in
empirical importance for fitting the model to the data. Inflation indexation is found
to be relatively unimportant, and investment adjustment costs are found to be the
most important.

The models surveyed so far date back prior to the great recession of 2008. A
criticism of then-existing DSGE models that arose in the literature was the failure of
such models to forecast the great recession, even after financial crisis had reached its
tipping point, namely the collapse of the investment bank Lehman Brothers. This
failure of DSGE forecasts to match the path of the macroeconomy is detailed in
Wolters and Wieland (2012). A promising line of research has sought to integrate
another source of persistence and volatility into DSGE models in the form of financial
frictions. The model of Del Negro et al. (2015) combines the model of Smets and
Wouters (2007) with a financial accelerator model of B. Bernanke et al. (1996). It will
be helpful to first review the financial accelerator mechanism proposed by Bernanke,
Gertler, and Gilchrist. The financial accelerator model is a model of credit markets
with asymmetric information. In contrast to the result of Modigliani and Miller
(1958) wherein the structure of a firm’s financing will not affect its economic activity,
in credit markets with asymmetric information, firms with low net equity face higher
external borrowing costs. This implies that if a firm’s net worth falls, its need for
external borrowing rises simultaneously with higher external borrowing costs. These
simultaneous events will cause a reduction in the firm’s output. The authors formalize
this by showing the firm’s collateral-in-advance constraint in the following way.

Suppose the firm produces output in two periods, 0 and 1, and the firm buys
variable input x1 and uses fixed input K in period 0 to sell in period 1 at a price of q1
according to production technology a1f(x1). The firm begins with cash flow from the
previous period a0f(x0 and debt burden from the previous period r0b0. The firm’s
budget constraint on the purchase of the variable input x1 is as follows:

x1 = a0f(x0) + b1 − r0b0.

Supposing then that unsecured lending is not possible so that all debt is fully secured,
the borrowing constraint then is:

b1 ≤ (q1/r1)K,

which implies:
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x1 ≤ a0f(x0) + (q1/r1)K − r0b0.

These equations show very straightforwardly that changes in the firm’s net worth,
by changing the value of K, will very directly affect the firm’s output x1. This
highly simplified model underlies the intuition behind how a change in asset prices
can have real effects; much like changes in wealth levels have real effects on household
consumption behavior, credit constraints can can cause changes in firms net worth
to affect their real behavior in the same manner. The authors integrate this financial
accelerator model into a larger dynamic general equilibrium model of the economy
in B. S. Bernanke et al. (1999). Del Negro, Giannoni, and Schorfheide integrate
financial accelerator mechanism into the DSGE model of Smets and Wouters (2007)
and, estimating parameters up until Fall of 2008, show that the model is able to
predict the sharp contraction in output following the period of severe financial distress
immediately following the collapse of Lehman Brothers.

At a micro-level, financial frictions are added to the model of Smets Wouters by
assuming a pooling equilibrium between more risky and less risky firms in the market
for credit. Banks take funds from households and lend them to firms and charge a
spread over the riskless rate of return. This spread is affected by firms’ net worth,
just as in the Bernanke, Gertler and Gilchrist model of credit constrained firms.

The model is estimated based on nine time series, namely the original seven used
to estimate the Smets and Wouters model along with 10-year inflation expectations,
which are obtained from the Blue Chip Economic Indicators survey and the Survey
of Professional Forecasters, and a time series measuring bond yield spreads between
riskless and risky assets, for which the authors use the Baa Corporate Bond Yield
spread over the 10-Year Treasury Note Yield at constant maturity. The authors show
that the model, from Fall 2008 to 2013, is able to predict the path of GDP remarkably
well compared to other DSGE models. Further, the DSGE model does not, contra
most other DSGE models of the time, predict a sharp disinflation. This is due to
how the authors chose to model the Zero Lower Bound condition, using the solution
technique of Cagliarini and Kulish (2013) that allows one to solve linear rational
expectations models with anticipated structural changes. The model’s predictions
fared significantly worse for marginal costs and interest rates, however, which the
authors argue was due to adverse shocks and significantly accomodative monetary
policy.
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While surveying a small cross section of the varieties of mechanical persistence that
have been used in DSGE modeling, I have limited my attention to those which retain
the Rational Expectations Hypothesis, as very few such models, much less estimated
models, relax this assumption as I do in the present study. One of the earliest and
most cited examples of an estimated DSGE model with bounded rationality appears
in Milani (2007), who estimates a small-scale New Keynesian DSGE model with both
habit formation and inflation indexation. This DSGE model consists of five equations,
plus two definitions:

x̃t = Etx̃t+1 − (1− βη)σ (it − Etπt+1 − rnt ) ,

π̂t = ξp
(
ωxt + ((1− ηβ)σ)−1x̂t

)
+ βEtπ̂t+1 + ut,

it = ρit−1 + (1− ρ)(ϕππt + ϕxxt) + εi,t,

rnt = ϕrr
n
t−1 + vrnt ,

ut = ϕuut−1 + vut ,

π̂t ≡ πt − γπt−1,

x̃t ≡ (xt − ηxt−1)− βη (Et(xt+1 − ηxt)) ,

where xt is the output gap, πt is the inflation rate, it is the nominal interest rate,
rnt is the natural interest rate, and ut is a cost-push shock process. It is this model
which I also estimate in the present chapter and investigate agents initial beliefs and
information sets, and their effects on the model’s in-sample forecasting performance
and impulse response functions. In contrast to the Rational Expectations Hypothesis,
agents in the model use simple linear models in order to form expectations, which
are updated according to an adaptive learning algorithm, as described in Evans and
Honkapohja (2001), called constant gain recursive least squares, which I describe later
when detailing my own estimation procedure. When estimating the model under Ra-
tional Expectations, Milani finds that both habit persistence and inflation indexation
are important features in explaining features of business cycle data. However, when
relaxing rational expectations, these sources of mechanical persistence become much
less important and their estimated values, measured in their posterior mean values,
fall significantly.

A similar result is obtained in Slobodyan and Wouters (2012), who estimate a ver-
sion of the model Smets and Wouters (2007) but in which agents form expectations
using small (under-parameterized) forecasting models. Adaptive learning in the pa-
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per takes the form of a Kalman filter updating scheme. In it, Slobodyan and Wouters
estimate the model under both rational expectations and adaptive learning. Wage
and price markup shocks in both RE and AL are assumed to follow ARMA(1,1) (au-
toregressive moving average) processes. The posterior mean estimate for the AR(1)
and MA(1) terms for the wage markup process are .96 and .88, while the AR(1)
and MA(1) terms for the price markup are .85 and .7. Under the Adaptive Learn-
ing specification the posterior mean estimate for the AR(1) and MA(1) terms for
the wage process are .53 and .43 respectively, and .28 and .48 for the price markup.
Further, save for the price markup MA(1) term, the 90% confidence intervals are non-
overlapping. Estimates for the degree of price and wage stickiness remain statistically
significant, however.

The authors also include a discussion on the initialization of learning dynamics
as a robustness check. Under the baseline Adaptive learning model, initial beliefs
are derived as a function of the structural parameters from the rational expectations
solution. One other way the authors initialize the agents beliefs is to keep the Σ, V, β1|0
matrices constant across the sampling of parameters and to estimate the rest of
the structural parameters. In another specification, the authors estimate the model
wherein agents’ beliefs do not change, and then use those estimated beliefs as the
initial beliefs when estimating the model again. Under such a specification, the
authors find that an adaptive learning rule still improves appreciably the marginal
likelihood compared to that same model estimated under the rational expectations
hypothesis. The authors do not find that this particular result is sensitive to the
researchers’ choice of initial beliefs.

2.2 The Model

The model estimated here follows the basic New Keynesian model of Woodford
(2003), which was estimated under Adaptive Learning by Milani (2007). The critically
important difference between this model and the one estimated in the previous chapter
is the presence of additional rigidities in the IS equation and the Phillips Curve
equation. I recount the microfoundations of the model, in a manner similar to that
of Milani (2007), to elucidate how these rigidities are incorporated into the model.
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Households

The economy is populated by a continuum of households uniformly distributed on
the [0, 1] interval who seek to maximize a sum of expected, discounted future utilities
that take the form:

Et

(
∞∑
T=t

βT−t
(
U(CT − ηCT−1; ζT ) + v(hiT (j); ζT ) dj

))
.

In the above, β ∈ (0, 1) represents the household discount factor, Ci
T is an index of

the household’s consumption of each of the differentiated goods supplied in period t,
hiT (j) is the amount of labor supplied for the production of good j while ζT is a vector
of exogenous aggregate preference shocks. The parameter η ∈ (0, 1) is the degree of
habit formation and the source of mechanical persistence in the household consump-
tion problem. U(·) is increasing and concave in both ζ and deviations of current
consumption CT from a stock of consumption CT−1. Et is the expectations opera-
tor, which can denote either rational expectations or those formed through adaptive
learning. In setting up the microfoundations I follow Woodford (2003) and assume
rational expectations but when estimating the moodel I substitute those expecta-
tions formed through adaptive learning. The consumption index is of the common
Dixit-Stiglitz constant elasticity of substitution form:

Ci
t ≡

(∫ 1

0

cit(j)
θ−1
θ dj

) θ
θ−1

,

and the associated price index is of the form:

Pt ≡
(∫ 1

0

pt(j)
1−θ dj

) 1
1−θ

,

where θ > 1 is the elasticity of substitution between differentiated goods and can be
thought to represent the degree of monopoly power that differentiated firms have.
Household i’s optimal consumption of good j is:

cit(j) = Ci
t(pt(j)/Pt)

−θ,

where pt(j) is the price of differentiated good j at time t. To simplify computation of
equilibria, financial markets are assumed to be complete and fiscal policy is assumed
to be Ricardian.
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Thus with habit formation, the first-order condition for consumption implies:

λt = Uc(CT − ηCT−1; ζT )− βEtUc(CT+1 − ηCT ; ζT+1). (2.1)

Importantly, the marginal utility of additional inflation-adjusted income in period t,
equal to the period t lagrange multiplier λt, is no longer equal to the marginal utility
of consumption in that period. However the marginal utility of income still satisfies
the following equality:

λt = βEt

(
λt+1 (1 + it)

Pt

Pt+1

)
, (2.2)

where it denotes riskless one-period nominal interest rates. Here one can take a
log linear approximation of the household’s Euler equation and substitute 2.1 and 2.2
and derive:

C̃t = EtC̃t+1 − (1− βη)σ
(̂
it − Etπ̂t+1−

)
+ gt − Etgt+1,

where C̃t is defined thusly:

C̃t = Ĉt − Ĉt−1 − β
(
EtĈt+1 − Ĉt

)
,

and where the elasticity of intertemporal substitution of consumption is defined as
σ ≡ −Uc

C̄UCC
> 0. Exogenous preference shocks are given by gt ≡ σUCζζt

Uc
and the

circumflex operator̂on Ct, it, πt denotes log-deviations of those variables from their
steady state values. The model assumes away investment so that all output, in the
aggregate, is consumed, so that Ct = Yt, and the output gap is xt ≡ Yt−Y n

t where Y n
t

is the natural rate of output, or the rate of output sans sticky prices. This definition
yields the following:

x̃t = Etx̃t+1 − (1− βη)σ (it − Etπt+1 − rnt ) ,

where x̃t is defined thusly:

x̃t ≡ (xt − ηxt−1)− βη (Et(xt+1 − ηxt)) ,

and the natural interest rate, or the flexible-price interest rate, is
rnT ≡ ((1− ηβ)σ)−1((Y n

t+1 − gt+1)− (Y n
t − gt)).
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Firms

The model assumes a continuum of monopolistically competitive firms with sticky
prices in the manner of Calvo (1983). A fraction of firms, α ∈ (0, 1) are allowed to
change their prices optimally in a given period while the prices of the remaining firms
are also adjusted but indexed to previous prices according to the following rule:

log pt(i) = log pt−1(i) + γπt−1,

where γ measures the degree of inflation indexation. This particular rule was proposed
by Christiano et al. (2005), but inflation indexation has been used in a variety of
DSGE models.

Each monopolistically competitive firm i supplies its good using to the production
technology yt(i) = Atf(ht(i)) where At is an exogenous technology process, ht(i) is
the labor input, and the production function f is increasing and concave. The capital
stock is fixed across t so the only variable input to production is labor. Each i firm
faces the same demand curve so yt(i) = Yt

(
pt(i)
Pt

)
for their differentiated product,

where Yt =
(∫ 1

0
yt(i)

θ−1
θ

di
) θ

θ−1 is the aggregate output and Pt is the aggregate price
index, which the firm takes as a given. Both the price indices and output indices use
the Dixit-Stiglitz CES aggregator because they allow for monopolistic competition
without requiring individual firms to consider how other firms will react to their own
pricing decisions, avoiding the curse of dimensionality. Since all firms face identical
decision problems, they would set a common price p∗t sans staggered price adjustment.
From this it follows that the aggregate price index evolves according to the following
law of motion:

Pt =

(
α

(
Pt−1

(
Pt−1

Pt−2

)γ)1−θ

+ (1− α)p∗1−θ
t

) 1
1−θ

.

What is left is to compute p∗t . Firms set this price to maximize the expected dis-
counted future sum of of profits:

Πt(p) = Et

∞∑
T=t

αT−tQt,T

(
ΠT

(
p∗t (i)

(
PT−1

Pt−1

)γ))
.

where Qt,T = βT−t Pt

PT

λT

λt
is the stochastic discount factor while ΠT (·) denotes the

nominal profits in period-T , which are revenues minus wage costs:
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Πt(p) = p∗t (i)

(
PT−1

Pt−1

)γ

YT

p∗t (i)
(

PT−1

Pt−1

)γ
PT

−θ

−wt(i)f
−1

 YT
AT

p∗t (i)
(

PT−1

Pt−1

)γ
PT

−θ
 .

Profits are discounted at the rate α since the optimal price chosen at date t can be
expected to apply in period T with probability αT−t at discount factor Qt,T .

One can log-linearize this first order condition around the steady state solution
to yield the following:

p̂t(i) = Et

∞∑
T=t

(αβ)T−t

(
1− αβ

1 + ωθ

(
ωŶT − λ̂T +

vyζ
vy
ζT

)
+ αβ(π̂T+1 − γπ̂T )

)
.

where p̂∗t ≡ log(p∗t/Pt) and ω ≡ vyyȲ /vy is the elasticity of marginal disutility of
producing output with respect to an increase in output. Log linearizing the law of
motion for the aggregate price index gives p̂∗t = α

1−α
(π̂t−γπ̂t−1) which can be plugged

into the previous expression for p̂∗t t to yield the law of motion for inflation:

π̂t = ξp
(
ωxt + ((1− ηβ)σ)−1x̂t

)
+ βEtπ̂t+1 + ut,

where

π̂t ≡ πt − γπt−1, (2.3)

x̂t ≡ (xt − ηxt−1)− βηE(xt+1 − xt),

ξp =
(1− α)(1− αβ)

α(1 + ωθ)
,

and where ut ≡ vyζ
vyξp

ζt represents an aggregate supply shock. Here, xt represents the
deviation of the sticky price equilibrium output from the flexible price equilibrium
output.

Closing the model, I assume that monetary policy follows a Taylor Rule

it = ρit−1 + (1− ρ)(ϕππt + ϕxxt) + εi,t,

where ρ, ϕπ, ϕx are structural parameters to be estimated. For the purpose of sim-
plifying estimation, I assume that these coefficients do not vary over time. For the
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natural interest rate and cost-push processes rnt and ut respectively, I assume each
follow univariate, AR(1) processes:

rnt = ϕrr
n
t−1 + vrnt , vrnt ∼ N(0, σrn),

ut = ϕuut−1 + vut , vut ∼ N(0, σu).

I am thus left with five linear equations and two definitions, which I will summarize
here:

x̃t = Etx̃t+1 − (1− βη)σ (it − Etπt+1 − rnt ) , (2.4)

π̂t = ξp
(
ωxt + ((1− ηβ)σ)−1x̂t

)
+ βEtπ̂t+1 + ut, (2.5)

it = ρit−1 + (1− ρ)(ϕππt + ϕxxt) + εi,t,

rnt = ϕrr
n
t−1 + vrnt ,

ut = ϕuut−1 + vut ,

π̂t ≡ πt − γπt−1,

x̃t ≡ (xt − ηxt−1)− βη (Et(xt+1 − ηxt)) .

How Agents Learn to Forecast

To embed Adaptive Learning into the model, I use a scheme described in Evans
and Honkapohja (2001) as “Euler Equation Learning.” Such a scheme uses the same
Euler equations derived from the Rational Expectations solution to the model, but
instead substitutes the expectations formed through small forecasting models for the
rational expectations. The adaptive learning algorithm I use in the present chapter
is constant gain recursive least squares, whose formulae I recount below, which is
one among several adaptive learning schemes in the literature including shadow-price
learning, infinite-horizong learning, or kalman-filter learning.

Suppose agents regress a vector of variables yt on Xt. In the cases studied in the
present chapter, yt is a 3× 1 vector of time t endogenous variables while Xt can be a
4× 1, 6× 1 or 9× 1 vector in the case of the minimal, limited, and full information
sets respectively. Suppose further that agents have the linear model yt = ϕ′Xt. Let
ḡ > 0 be some small constant. With these elements, the formulae for Constant Gain
Recursive Least Squares are as follows:
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ϕt = ϕt−1 + ḡΣ−1
t X ′

t(yt − ϕ′
t−1Xt)

′,

Σt = Σt−1 + ḡ(XtX
′
t − Σt−1),

where Σt is E(XtX
′
t) referred to variously as the “second-moment matrix.” As ex-

pectations depend mechanically upon previous values of endogenous variables, this
embeds an additional source of persistence into the model, thereby fitting the model
better to the data. A more natural choice might be to use decreasing-gain least
squares rather than constant-gain least-squares. Decreasing-gain least squares learn-
ing, which is asymptotically equivalent to ordinary least squares, chooses γt = t−1.
Constant-gain least squares, by contrast, chooses a constant scalar for γt = ḡ. This
learning structure places larger weight on more recent observations, and thus allows
beliefs to adapt more quickly in the face of structural change. Further, as Branch
and Evans (2007) note, since the volatility of endogenous variables differs, agents be-
having optimally will use different values for each endogenous variable. For the sake
of reducing computational burden, I omit this feature from my estimated models and
assume that agents’ gain parameter does not vary across the three endogenous vari-
ables. However, the model of Milani (2014) does feature varying gain parameters for
different forecasted variables.

I depart from Milani (2007) in omitting a constant from agents’ forecasting mod-
els as well, so that expectations of future economic variables depend only upon a
combination of previous economic variables. I impose this assumption for two rea-
sons; first, one can argue that such a model is more consistent with the informational
assumptions placed upon the agents. If agents are assumed to know the structure of
the economy but not its parameters, then agents would know that the true value of
the constant term in the Rational Expectations solution to the DSGE model does not
include any constant terms. Second, omitting a constant term reduces the computa-
tional burden of estimating the model. Future variations of this study that include
constant terms in agents’ forecasting models may, however, prove fruitful.

Timing of Expectations Formation

In standard estimations of the rational expectations models, expectations of time
t+1 endogenous variables are formed in time t, that is, such expectations are realized
simultaneously with the model’s endogenous variables. One should note that in the
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models estimated in this chapter, expectations of time t + 1 endogenous variables
are formed at time t − 1. That is to say, at time t agents enter the period with
expectations formed during t− 1 of endogenous variables to be realized at time t+1.
These expectations then interact with the exogenously determined variables, ut, gt,
to determine the time t endogenous variables.

The researcher further has a choice in deciding the timing of monetary policy,
and how monetary policy relates to agents’ expectations. Bullard and Mitra (2002)
evaluate several such rules including contemporaneous data specifications, in which
the monetary authority uses contemporaneous realizations of endogenous variables,
lagged data specifications, in which time t − 1 data is used to determine the time
t interest rate target, forward looking specifications and finally current expectations
based rules. The authors find that forward looking rules produce determinate rational
expectations equilibria that, importantly, agents are able to learn through standard
adaptive learning algorithms and that lagged data specifications often do not produce
learnable, determinate equilibria.

In the model I estimate, agents form expectations of xt, πt based on current beliefs
and up-to-date information on state variables and possibly information on contem-
poraneous shocks. Let st be the 5× 1 vector of state variables, in which case agents
PLM is

st = a+ Φst−1 +Ψεt,

where st is an augmented state vector containing endogenous and exogenous variables
while εt is a vector of i.i.d shocks with variance-covariance matrix Σε Expectations of
these variables at time t, t+ 1, t+ 2 can be computed by iterating forward this PLM
thusly:

Etst = a+ st−1 +Ψεt,

Etst+1 = a+ Φ(a+ Φst−1 +Ψεt) = a+ Φa+ Φ2st−1 + ΦΨεt,

Etst+2 = a+ Φ(a+ Φa+ Φ2st−1 + ΦΨεt) = a+ Φa+ Φ2a+ Φ3st−1 + Φ2Ψεt.

This provides a very direct way of solving for the VAR(1) form of the system. Recall
the original form of the DSGE model: st = P + Qset+1 + Rst−1 + Sεt. From the
above system describing the expectations, one can substitute for set+1 for the matrix
function a+ Φa+ Φ2st−1 + ΦΨεt to yield
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st = P +Q(a+ Φa+ Φ2st−1 + ΦΨεt) +Rst−1 + Sεt

= P +Qa+QΦa+ (QΦ2 +R)st−1 + (R + ΦΨ)εt,

which is itself the transition equation of the state space model whose likelihood func-
tion I will evaluate using a Kalman Filter. It will thus be useful to define clearly the
transition and measurement equations for my state-space model.

Let st = (xt, πt, it, r
n
t , ut)

′ be the partially-observed state variables. These are the
output gap, inflation rate, federal funds rate, natural interest rate, and a productivity
shock process. The first three are observed directly while the last two are assumed
to be observed by agents in the model. The observable vector of variables, yt =

(xt, π̂t, ît)
′, contains the output gap, taken from the Federal Reserve Bank of St.

Louis, defined by the data series 100*(Real Gross Domestic Product-Real Potential
Gross Domestic Product)/Real Potential Gross Domestic Product. The inflation rate
is defined as the annualized log-difference in the Consumer Price Index for all urban
consumers, or “CPIAUCSL”, and the it is the annualized effective federal funds rate,
defined by the FRED series “FEDFUNDS”. Thus π̂t, ît are divided by four to yield
the state variables πt, it.

The timing of expectations formation is important to define when simulating and
estimating the adaptive learning algorithm. At time-t, agents arrive with their beliefs
ϕt = (at, Bt, Ct) and they observe st−1 and possibly εt. They then form expectations
Etxt+n for n = 0, 1, 2. After these expectations are formed, the endogenous variables
arise according to the DSGE model. Once they observe the new state variables st,
they update their beliefs according to constant-gain least-squares to ϕt+1, Rt+1 and
the process repeats. This implies that the transition matrix at time−t is determined
only by agents’ beliefs. When computing the Kalman Filter, agents are assumed to
observe the Kalman-filtered states.

In the previous chapter I limited agents to observing only lagged endogenous
variables. This was due to collinearity in the DSGE solution for (xt, πt, it, r

n
t , ut)

′,
resulting in a non-invertible second moment matrix for the DSGE model. One impor-
tant consequence of including mechanical lags in the IS and Phillips Curve equations
of the model, however, is the disappearance of this collinearity. When solving the
model for η, γ > 0, the second moment matrix becomes invertible, but when forcing
η = γ = 0, or for values very close to zero, the determinant of this second moment
matrix becomes zero, and thus the matrix is non-invertible.
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2.3 Results

Priors on Parameters

As I am attempting to show the impact of initial beliefs by themselves, ceteris
paribus, on forecasting performance, I seek to match the common conventions in the
DSGE literature when choosing prior distributions for my parameters. I use inverse
gamma distributions for the variances of shock processes, partly to bound them from
below zero. Each of my prior distributions for my three i.i.d shocks has a mean of
one and a standard deviation of .5.

For the inflation indexation value, I used a uniform prior on zero to one. I use a
tightly bound beta distribution for the discount rate, centered at .99 with a standard
deviation of .01. For the elasticity of substitution of consumption I used a gamma
prior with a mean of .125 and a standard deviation of .09. For the habit persistence
parameter I used a uniform parameter from 0 to 1. For the feedback rule on inflation
in the monetary authority’s Taylor rule, I used a normal distribution centered at
1.5 with a standard deviation of .25. This was to assure that few draws fell outside
the region of determinacy, as a feedback rule on inflation that is less than one often
leads to indeterminacy. For the Taylor Rule feedback parameter on output, I used a
normal distribution with a mean of .5 and a standard deviation of .25. The prior for
the autoregressive parameter in the natural interest rate shock process is a uniform
prior distributed from 0 to .97, as is the prior for the autoregressive productivity
process. Finally for the gain parameter I used a beta distribution with a mean of
.031 and a standard deviation of .022.

When jointly estimating initial beliefs, I do not estimate each element of the R0

matrix, as this greatly increases the number of estimated parameters, and therefore
can lead to inconsistent SMC estimates of model parameters and of the marginal
data density. Instead, I assume that agents begin life with a simple VAR model of
the following form:


xt

πt

it

rnt

ut

 = a+ Φ


xt−1

πt−1

it−1

rnt−1

ut−1

+


c11 c12 c13

c21 c22 c23

c31 c32 c33

0 1 0

0 0 1

 εt, εt ∼ N

0,

σi 0 0

0 σrn 0

0 0 σu


 .
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The above describes additional restrictions that I use when estimating agents’
initial beliefs, namely that agents are assumed to know that the economy is driven by
three i.i.d shocks that drive monetary policy and two latent autoregressive processes,
and that the autoregressive shock processes are affected directly only through their
individual i.i.d. shocks. I estimate elements of the Φ matrix and elements c11, ..., c33
using normal distributions that I obtained using from the monte carlo posterior from
the model estimated under Rational Expectations. The mean of this multivariate nor-
mal was obtained by stacking the elements of the ΦRE(θi) from the posterior p(θi|Y )

from the estimated model under rational expectations, and its covariance matrix was
the monte carlo covariance, with the diagonal elements set to the maximum of the
monte carlo variance and one. For elements of c11, ..., c33, I used unit standard normal
distributions for each element.

The Data

The model equations to be solved are given in 2.5 which yield the transition
equation for the model. The measurement equation for the model to be estimated is
a straightforward

yt = I
3×3
st,

where yt is the data series available to the researcher while st is the latent vector
containing the output gap process, the inflation process, and the nominal interest
rate process.

For the output gap process, I used the log difference between the real gross domes-
tic product per capita, as provided by FRED data series GDPC1, and real potential
gross domestic product per capita as estimated by the Congressional Budget Office,
as provided by FRED series GDPPOT. For the inflation process, I first constructed
an inflation series by taking the log difference of the consumer price index, provided
by FRED series CPIAUCSL, and then using the de-meaned values of that time se-
ries. For the nominal interest rate process, I used the de-meaned values of the federal
funds rate, provided by FRED series FEDFUNDS. I use de-meaned values for these
series because the Federal Reserve maintains a positive inflation target, and this is
incompatible with a zero value for steady state observed inflation or nominal interest
rate. As a useful approximation, I assume that the Federal Reserve has achieved its
goal of keeping average inflation and interest rates around its long-term target. The
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data on which I estimate my models span 1961 to 2005. I omit data near the great
recession to avoid risk of regime switches confounding my estimates. I use data from
1955 to 1961 to form a training sample on which to train agents’ initial beliefs in
models wherein agents use a reduced-form VAR to form initial beliefs.

Important Parameter Estimates

I report parameter estimates from the models with equilibrium-based initial beliefs
in C.3 and C.4. Important to note are the estimates of the degree of habit persistence
in household consumption, η, and the degree of inflation indexation by price-setting
firms, γ. The choice of information set consistently affects the mean estimate of each
parameter, however for both parameters the 95% confidence intervals overlap. Finally,
the in-sample forecasting performance of each model, as measured by the estimated
marginal data density, is somewhat higher for the model wherein agents use the full
information set available to them. The high estimated values for inflation indexation
and habit persistence would appear to contradict the findings of Milani (2007) who
finds that habit formation and inflation indexation drop to nearly zero when agents
are assumed to form expectations using VAR and MSV learning rules. My estimates
of inflation indexation and habit persistence, however, do seem to comport with Cole
and Milani (2019) who estimate the model of Giannoni and Woodford (2004) under
several expectations formations mechanisms in addition to Rational Expectations,
and find little change in η, γ. The significant difference between Milani (2007) uses
a single-chained metropolis-hastings random walk estimate, while Cole and Milani
(2019) reports estimates from a DSGE-VAR model.

Table 2.1. Estimates of Habit Persistence Parameter, η

Mean 5% Interval 95% Interval
Rational Expectations 0.46 0.28 0.66
Equilibrium Initials, Full Info 0.51 0.33 0.73
Equilibrium Initials, Limited Info 0.79 0.65 0.89
Training Sample Initials, Full Info 0.70 0.46 0.79
Training Sample Initials, Limited Info 0.93 0.86 0.99
Jointly Estimated Initials, Full Info 0.78 0.70 0.86
Jointly Estimated Initials, Limited Info 0.77 0.64 0.98
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Table 2.2. Estimates of Inflation Indexation Parameter, γ

Mean 5% Interval 95% Interval
Rational Expectations 0.91 0.81 0.99
Equilibrium Initials, Full Info 0.91 0.82 0.99
Equilibrium Initials, Limited Info 0.81 0.59 0.97
Training Sample Initials, Full Info 0.80 0.61 0.97
Training Sample Initials, Limited Info 0.94 0.53 1.00
Jointly Estimated Initials, Full Info 0.48 0.33 0.66
Jointly Estimated Initials, Limited Info 0.72 0.44 0.98

I report estimated marginal data densities in C.14. The model with full informa-
tion performs roughly as well if not somewhat better than the rational expectations
baseline, while the model with limited information can perform better than the ra-
tional expectations baseline when there is available pre-sample data on which to
train agents’ initial beliefs. The model estimated under a minimal information set,
where agents use only the lagged endogenous variables to forecast inflation and out-
put, shows the most consistent improvement over the rational expectations baseline,
outperforming in 3 of 4 initialization choices.

One important difference between the model with lags and the model without lags
is the impact of learning upon the estimated slope of the Phillips Curve. The model
of An and Schorfheide, 2007 has a very steep Phillips Curve, with a slightly flatter
Phillips Curve under the model estimated with Adaptive Learning. This finding is not
preserved in the model with lags, as the estimated Phillips Curve is almost perfectly
flat.

The slope of the Phillips Curve in this model is not captured in a single parameter
like the previous model, however. It is instead a function of multiple deep parameters,
namely ξp

σ(1−βη)
. From looking at the prior distribution in C.1, it might initially appear

that this is due to a dogmatically tight prior restriction on the calvo parameter ξp,
which has a standard deviation of only .011. However, as I have the slope of the
Phillips curve as a function of the model parameters, I can construct the mean and
standard deviation of the prior distribution via monte carlo methods. Drawing one
million particles, I find the prior mean value of this slope to be roughly 1.3 and
the prior standard deviation of this slope to be roughly 12. One can construct the
marginal posterior density of the slope of the Phillips Curve from the monte carlo
simulated joint posterior of the parameters θ fairly easily. I report the means and
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standard deviations of this slope for each initial belief choice and information set
in table C.13. The only specification for which there is a significant change is the
jointly estimated initial beliefs with the “limited” information set in C.13, which has
an average estimated slope of 0.31. All other specifications have average estimated
slope values of 0.11 or less.

Impulse Response Functions

A curiosity arises from differing initial beliefs in the form of differing impulse
response functions, namely the recurrence of the “price puzzle” first observed in Sims
(1986). It is observed widely in the time series literature that small VAR models with
output, inflation, and nominal interest rates frequently generate impulse response
functions with inflationary responses to contractionary monetary policy, an effect
that runs entirely contrary to accepted monetary and business wisdom. Of note for
the present study is that the price puzzle remains even after the additional restrictions
imposed by the DSGE models, as the agents’ initial beliefs work only through DSGE
model equations. While causally identified models are certainly the most useful tools
for policy analysis, agents in the DSGE model are assumed to use such models only
for the purpose of forecasting future variables. Thus one would need some micro-
founded motivation for agents to use causally identified models rather than optimal
forecasting models when training initial beliefs on pre-sample data. One speculative
reason might be to suppose that agents in the model seek forecasting models that
are invariant to regime shifts in monetary policy which would confound predictions
of the theretofore optimal forecasting model. Thus one may reasonably assume when
training initial beliefs that agents use a minimal set of restrictions on their VAR, such
as those offered by Estrella (2015). I do so for the model and then re-estimate the
DSGE structural parameters with training-sample based initial beliefs, but instead
of using an unrestricted VAR, I estimate a VAR of the following form:

πt = a1πt−1 + a2xt−1 + εt,

xt = b1xt−1 + b2(it−1 − πt) + vt,

it = c1it−1 + c2πt + c3xt + µt,

with the restrictions a1 > 0, a2 > 0, b1 > 0, b2 < 0, ci > 0,

Letting Xt = (πt, xt, it)
′ the model may be written as
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A0Xt = A1Xt−1 + et−1,

Xt = A−1
0 A1Xt−1 + A−1

0 et−1,

Xt = BXt−1 + A−1
0 et−1, (2.6)

where A−1 is lower triangular and B has the restriction that (1, 3) element, the
coefficient of inflation on lagged interest rates, is zero. Imposing these restrictions
on the VAR used to train agents’ initial beliefs gives impulse response functions
that show a deflationary response to a negative monetary policy shock. It would
stand to reason, then, that a model which has more “reasonable” impulse response
functions would also fit the data better, and this prior belief is in fact borne out by
the estimated marginal data density of a DSGE model whose agents’ initial beliefs
are based on a VAR with such restrictions. This model has a Bayes Factor of almost
20 above the Rational Expectations baseline and a similar Bayes factor above any
of the equilibrium-based initialization schemes. Since this particular VAR assumes
that three i.i.d. shocks that drive the three endogenous variables, it is not compatible
with any of the other information sets and, for this reason, this exercise is done only
with the minimal information set. I plot the impulse response function for the DSGE
model with this initialization scheme in figure D.11

Data-Fit and Model Comparison

The other goal of this chapter is to find the method of initializing beliefs that
best fits a DSGE model to the data. The framework of Bayesian econometrics offers
a natural measure of this in the form of the marginal data density. To recap, the
marginal data density is an average of the model’s likelihood function over the space
of possible parameter values, weighted by the prior density function. It provides the
likelihood of observing the sequence of data {yt}t=T

t=0 given the model Mi. The ratio
of the marginal data densities between two models Mi/Mj, called the Bayes Factor,
is a Bayesian analog to the classical Likelihood Ratio test.

The marginal data density is an integral, namely
p(Y |M) =

∫
p(Y |θ,M)p(θ|M)dθ. This integral cannot be computed analytically

for any model estimated presently, so I estimated it numerically using the output
from my SMC algorithm. For each model estimated, I drew 5,000 particles with 300
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stages, except for the jointly estimated initial beliefs. For those, I drew 10,000 par-
ticles, as models with more estimated parameters need a greater number of particles
to obtain consistent estimates. I report the means and standard deviations of the log
marginal data densities in C.14. While the highest average estimate belongs to the
model with training sample based initial beliefs, this model also has the greatest vari-
ance, owing to one run that had an unrealistically high marginal likelihood of -145.
Discarding that run would have resulted in an average estimated marginal data den-
sity of -896. The next highest marginal likelihood belonged to the model with jointly
estimated initial beliefs and limited information. While the high standard deviation
of estimated marginal likelihoods ought to worry practitioners, none of the SMC runs
under jointly estimated initial beliefs had lower marginal likelihoods than any of the
SMC runs under Rational Expectations. The Bayes Factor for the Jointly Estimated,
Limited Information model over the Rational Expectations baseline is almost 15,000.

When jointly estimating agents’ initial beliefs, I sought priors that were as diffuse
as possible while allowing for the SMC algorithm to remain tractable without sam-
pling too many particles from regions that lead to unstable learning dynamics, which
then lead to particle degeneracy. Diffuse priors are desirable when ranking models
as a diffuse prior will penalize a model with very low average likelihood by sampling
over a large space with low likelihood, while models that explain data well will tend
to have likelihood functions that drive the shape of the posterior and minimize the
effect of the prior distribution.

Sensitivity of MDD to Priors

When jointly estimating agents’ initial beliefs, the researcher must specify a prior
distribution for those beliefs. For the results reported in table C.7 through C.11 I
used, for the elements of the transition matrix, a multivariate normal distribution with
an identity covariance matrix multiplied by five to generate a diffuse prior that did
not generate too many transition matrices that caused non-invertible second-moment
matrices or have eigenvalues with greater than unity in magnitude, as this would
cause particle degeneracy in the SMC sampler. As can be seen in C.12, estimates for
structural parameters are not particularly sensitive to the choice of prior for initial
beliefs as the 95% confidence intervals for all parameters, including the learning gain,
overlap between the two posteriors. On the other hand, the estimated marginal data
density does exhibit some sensitivity to the choice of prior for the estimated initial
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beliefs, as using a narrow prior results in an average log likelihood of -826.0820 with
a standard deviation of 2.6463 across five SMC runs. One likely reason for this
outcome relates to the stability properties of adaptive learning algorithms, as initial
beliefs that produce unstable dynamics or non-invertible second moment matrices are
severely penalized by the likelihood function, and a diffuse prior samples over a large
space that contains such unstable beliefs. A multivariate normal distribution centered
around 0N with a small standard deviation will sample most beliefs from inside the
unit circle. One cannot, however, arbitrarily increase the marginal data density by
narrowing the prior density of the initial beliefs. When re-estimating the model with
a multivariate normal whose covariance matrix is an identity matrix scaled by 0.5, I
obtain an average likelihood of -827.8112 with a standard deviation of 1.6225. This
indicates that the marginal likelihood is not being arbitrarily raised by increasing the
prior density.

2.4 Summary and Conclusions

In this dissertation I sought to investigate the importance of the choice of agents
initial beliefs in a DSGE model with adaptive learning. In the first chapter I examined
a purely forward-looking model without any mechanical persistence in the inflation
or output equations. In that chapter I found that the choice of initial belief set
had notable implications for the fitting of the model to the data and had important
effects on parameter estimates that have exciting policy implications. I found that
training initial beliefs on pre-sample data resulted in the best-fitting model, with a
much higher marginal data density than any specification estimated.

In the second chapter I relaxed the rather stringent assumption of no mechanical
persistence in the inflation or output processes and estimated a model with habit
persistence and inflation indexation. The importance of agents’ initial beliefs was
studied in three main areas of interest, namely the estimates of structural parameters,
the models’ predicted response to monetary policy changes, and finally the ability of
the models to match macroeconomic data series.

Both chapters showed consistent improvements in the ability of models with learn-
ing to match economic data over their rational expectations counterparts, and both
chapters showed that it was indeed possible to improve further still upon this data-fit
by an appropriate choice of initial beliefs. In both chapters, training beliefs based
on pre-sample data provided the most reliable method of improving the fit of DSGE
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models to the data. This, however, is not always available to the DSGE model
builder. In the absence of available or reliable pre-sample data, the model builder
may wish to use joint estimation of initial beliefs, as this did seem to, under reason-
able informational assumptions, improve the fit of DSGE models to the data over the
equilibrium-based initial beliefs.
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APPENDIX A

TABLES, CHAPTER 1

Table A.1. Prior Distribution for Structural Parameters

Name Domain Prior Density Para (1) Para (2)
Steady State Related Parameters θss

rA R+ Gamma 0.50 0.50
πA R+ Gamma 7.00 2.00
γQ R Normal 0.40 0.20

Endogenous Propagation Parameters θendog
τ R+ Gamma 2.00 0.50
κ [0, 1] Uniform 0.00 1.00
ψ1 R+ Gamma 1.5 0.25
ψ2 R+ Gamma 0.50 0.25
ρR [0, 1) Uniform 0.00 1.00

Exogenous Shock Parameters θexog
ρG [0, 1) Uniform 0.00 1.00
ρZ [0, 1) Uniform 0.00 1.00
100σR R+ InvGamma 0.40 4.00
100σg R+ InvGamma 1.00 4.00
100σz R+ InvGamma 0.50 4.00

Adaptive Learning Parameters θAL

gain [0, .0.05] Uniform 0.00 0.05
ϕ̂0 elements [−10, 10] Uniform -10.00 10.00
Σ̂0 diagonal elements [0, 5] Uniform 0.00 5.00
Σ̂0 off- diagonal elements [−10, 10] Uniform -10.00 10.00
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Table A.2. SMC Estimates, 2000 particles with 100 stages, Rational Expectations, 5
runs

Parameter Mean 5% Interval 95% Interval
τ 2.27 1.57 3.19
κ 0.85 0.62 0.99
ψ1 1.85 1.51 2.20
ψ2 0.59 0.22 1.04
rA 0.46 0.05 1.05
πA 3.40 2.76 4.02
γQ 0.59 0.37 0.79
ρR 0.76 0.70 0.82
ρg 0.98 0.95 1.00
ρz 0.92 0.88 0.96
σR 0.22 0.18 0.26
σg 0.65 0.57 0.75
σz 0.20 0.16 0.24

Table A.3. SMC Estimates, 2000 particles with 100 stages, Equilibrium Initials,
minimal Information, 5 runs

Parameter Mean 5% Interval 95% Interval
τ 2.41 1.74 3.10
κ 0.49 0.34 0.67
ψ1 1.47 1.13 1.87
ψ2 0.33 0.15 0.58
rA 0.64 0.05 1.55
πA 3.66 2.91 4.52
γQ 0.53 0.30 0.77
ρR 0.83 0.78 0.87
ρg 0.93 0.87 0.98
ρz 0.87 0.80 0.94
σR 0.18 0.15 0.20
σg 0.80 0.59 1.06
σz 0.38 0.32 0.43
gain 0.0189 0.0029 0.0393
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Table A.4. SMC Estimates, 2000 particles with 100 stages, Training Sample Initials,
minimal Information, 5 runs

Parameter Mean 5% Interval 95% Interval
τ 2.04 1.41 2.89
κ 0.57 0.41 0.78
ψ1 1.45 1.12 1.86
ψ2 0.55 0.20 1.04
rA 0.24 0.01 0.71
πA 5.19 4.00 6.21
γQ 0.50 0.29 0.67
ρR 0.95 0.91 0.98
ρg 0.82 0.72 0.92
ρz 0.74 0.58 0.87
σR 0.18 0.15 0.20
σg 0.73 0.56 0.92
σz 0.39 0.32 0.47
gain 0.0297 0.0031 0.0559

Table A.5. SMC Estimates, 2000 particles with 100 stages, Jointly Estimated
Initials, minimal Information, 5 runs

Parameter Mean 5% Interval 95% Interval
τ 1.95 1.41 2.54
κ 0.56 0.33 0.87
ψ1 1.33 1.07 1.64
ψ2 0.38 0.18 0.62
rA 0.42 0.04 1.00
πA 4.54 3.69 5.44
γQ 0.54 0.39 0.69
ρR 0.91 0.86 0.96
ρg 0.83 0.64 0.95
ρz 0.72 0.55 0.85
σR 0.18 0.15 0.21
σg 0.73 0.51 1.03
σz 0.38 0.32 0.44
gain 0.0267 0.0031 0.0535
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Table A.6. Mean and Standard Deviation of Natural Logarithms of the Marginal
Likelihoods, 1982-2002 data

Full Information Limited Information
Rational Expectations -336.3391 (1.3285) N/A
Equilibrium Initials 0.0000 (0.0000) -315.1337 (0.5108)

Training Sample Initials 0.0000 (0.0000) -310.8610 (0.2914)
Jointly Estimated Initials 0.0000 (0.0000) -308.6947 (1.5541)
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APPENDIX B

CHAPTER 1 FIGURES

Figure B.1. Prior and Posterior distributions, Rational Expectations
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Figure B.2. Prior and Posterior distributions, Equilibrium Based Initial Beliefs
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Figure B.3. Prior and Posterior distributions, Training Sample Initial Beliefs
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Figure B.4. Prior and Posterior distributions, Jointly Estimated Initial Beliefs
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APPENDIX C

TABLES, CHAPTER 2

Table C.1. Prior Distributions for Model Parameters

Parameter Description Prior(mean, std)

η Habit persistence UNIFORM[0,1]
β Discount factor BETA[.99,.01]
σ Intertemporal Elasticity of Substitu-

tion (IES)
GAMMA[0.125, 0.09]

γ Inflation indexation UNIFORM[0,1]
ξp Phillips Curve slope GAMMA[0.015, 0.011]
ω Marginal Disutility of Work NORMAL[0.8975, 0.4]
ρ Taylor Rule Feedback on Interest UNIFORM[0, 0.97]
ξπ Taylor Rule Feedback on Inflation NORMAL[1.5, 0.25]
ξx Taylor Rule Feedback on Output NORMAL[0.5, 0.25]
ϕr Natural Interest Rate Coefficient UNIFORM[0, 0.97]
ϕu Productivity Shock Coefficient UNIFORM[0, 0.97]
σe Monetary Policy Variance INV_GAMMA[1, 0.5]
σr Natural Interest Rate Variance INV_GAMMA[1, 0.5]
σu Productivity Variance INV_GAMMA[1, 0.5]
ḡ Learning Gain BETA[.031, .022]

Table C.2. SMC Estimates, 5000 particles with 100 stages, Rational Expectations, 5
runs

Parameter Mean 5% Interval 95% Interval
η 0.46 0.28 0.66
β 0.99 0.97 1.00
σ 0.11 0.06 0.20
γ 0.91 0.81 0.99
ξp 0.00 0.00 0.00
ω 0.87 0.24 1.51
ρ 0.89 0.86 0.93
ξπ 1.45 1.15 1.77
ξx 0.38 0.20 0.62
ϕr 0.85 0.73 0.93
ϕu 0.02 0.00 0.07
σe 0.26 0.24 0.28
σr 1.82 0.97 3.24
σu 0.44 0.39 0.48

74



Table C.3. SMC Estimates, 5000 particles with 300 stages, Equilibrium Initials, Full
Information, 5 runs

Parameter Mean 5% Interval 95% Interval
η 0.51 0.33 0.73
β 0.99 0.97 1.00
σ 0.11 0.05 0.20
γ 0.91 0.82 0.99
ξp 0.00 0.00 0.00
ω 0.87 0.26 1.56
ρ 0.89 0.86 0.93
ξπ 1.44 1.15 1.76
ξx 0.39 0.20 0.63
ϕr 0.81 0.68 0.91
ϕu 0.02 0.00 0.06
σe 0.26 0.23 0.28
σr 2.67 1.00 5.49
σu 0.44 0.39 0.48
gain 0.0266 0.0045 0.0623

Table C.4. SMC Estimates, 5000 particles with 300 stages, Equilibrium Initials,
Limited Information, 5 runs

Parameter Mean 5% Interval 95% Interval
η 0.79 0.65 0.89
β 0.99 0.96 1.00
σ 0.33 0.18 0.54
γ 0.81 0.59 0.97
ξp 0.01 0.00 0.01
ω 0.80 0.18 1.44
ρ 0.91 0.87 0.94
ξπ 1.49 1.16 1.83
ξx 0.38 0.18 0.64
ϕr 0.22 0.11 0.32
ϕu 0.03 0.00 0.08
σe 0.26 0.24 0.28
σr 12.20 6.85 20.06
σu 0.44 0.40 0.48
gain 0.0126 0.0067 0.0198
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Table C.5. SMC Estimates, 5000 particles with 300 stages, Training Sample Initials,
Full Information, 5 runs

Parameter Mean 5% Interval 95% Interval
η 0.70 0.46 0.79
β 0.98 0.95 1.00
σ 0.34 0.17 0.80
γ 0.80 0.61 0.97
ξp 0.01 0.00 0.02
ω 0.70 0.18 1.25
ρ 0.94 0.92 0.96
ξπ 1.53 1.17 1.88
ξx 0.63 0.28 1.00
ϕr 0.86 0.82 0.89
ϕu 0.05 0.00 0.13
σe 0.26 0.24 0.28
σr 3.19 0.99 4.51
σu 0.46 0.39 0.53
gain 0.0522 0.0402 0.0598

Table C.6. SMC Estimates, 5000 particles with 300 stages, Training Sample Initials,
Limited Information, 5 runs

Parameter Mean 5% Interval 95% Interval
η 0.93 0.86 0.99
β 0.98 0.95 1.00
σ 0.23 0.09 0.41
γ 0.94 0.53 1.00
ξp 0.00 0.00 0.00
ω 0.79 0.20 1.42
ρ 0.93 0.89 0.96
ξπ 1.47 1.11 1.84
ξx 0.40 0.14 0.72
ϕr 0.43 0.29 0.59
ϕu 0.13 0.01 0.30
σe 0.26 0.24 0.28
σr 0.87 0.71 1.07
σu 0.43 0.39 0.47
gain 0.0088 0.0045 0.0137
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Table C.7. SMC Estimates, 10000 particles with 500 stages, Jointly Estimated
Initials, Full Information, 5 runs

Parameter Mean 5% Interval 95% Interval
β 0.99 0.99 1.00
σ 0.24 0.19 0.29
γ 0.48 0.33 0.66
ξp 0.01 0.00 0.01
ω 0.77 0.51 0.98
ρ 0.90 0.88 0.93
ξπ 1.60 1.46 1.72
ξx 0.27 0.19 0.34
ϕr 0.89 0.83 0.93
ϕu 0.09 0.02 0.15
σe 0.26 0.24 0.28
σr 1.30 1.11 1.47
σu 0.52 0.42 0.58
gain 0.0071 0.0054 0.0089

Table C.8. SMC Estimates, 10000 particles with 500 stages, Jointly Estimated
Initials, Limited Information, 5 runs

Parameter Mean 5% Interval 95% Interval
η 0.77 0.64 0.98
β 0.97 0.94 1.00
σ 0.26 0.14 0.39
γ 0.72 0.44 0.98
ξp 0.01 0.00 0.01
ω 1.19 0.68 1.70
ρ 0.93 0.89 0.96
ξπ 1.49 1.27 1.69
ξx 0.46 0.19 0.75
ϕr 0.74 0.09 0.94
ϕu 0.04 0.00 0.11
σe 0.26 0.24 0.29
σr 1.00 0.65 1.51
σu 0.43 0.40 0.46
gain 0.0106 0.0035 0.0276
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Table C.9. SMC Estimates, 5000 particles with 300 stages, Equilibrium Initials,
Minimal Information, 5 runs

Parameter Mean 5% Interval 95% Interval
η 0.74 0.64 0.83
β 0.99 0.96 1.00
σ 0.29 0.16 0.43
γ 0.20 0.00 0.92
ξp 0.00 0.00 0.01
ω 0.79 0.19 1.41
ρ 0.92 0.88 0.94
ξπ 1.50 1.19 1.82
ξx 0.41 0.20 0.64
ϕr 0.30 0.17 0.44
ϕu 0.63 0.01 0.86
σe 0.25 0.23 0.28
σr 10.76 6.28 17.11
σu 0.43 0.39 0.47
gain 0.0157 0.0099 0.0231

Table C.10. SMC Estimates, 5000 particles with 300 stages, Training Sample
Initials, Minimal Information, 5 runs

Parameter Mean 5% Interval 95% Interval
η 0.66 0.44 0.83
β 0.99 0.96 1.00
σ 0.30 0.17 0.47
γ 0.82 0.58 0.98
ξp 0.01 0.00 0.01
ω 0.87 0.24 1.53
ρ 0.92 0.88 0.95
ξπ 1.51 1.17 1.87
ξx 0.43 0.20 0.70
ϕr 0.32 0.16 0.49
ϕu 0.05 0.00 0.13
σe 0.26 0.23 0.28
σr 9.03 4.37 16.44
σu 0.42 0.39 0.46
gain 0.0071 0.0007 0.0191
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Table C.11. SMC Estimates, 10000 particles with 500 stages, Jointly Estimated
Initials, Minimal Information, 5 runs

Parameter Mean 5% Interval 95% Interval
η 0.22 0.05 0.40
β 0.99 0.98 1.00
σ 0.37 0.25 0.52
γ 0.16 0.01 0.41
ξp 0.01 0.00 0.02
ω 0.79 0.28 1.29
ρ 0.92 0.90 0.95
ξπ 1.60 1.29 1.91
ξx 0.49 0.29 0.70
ϕr 0.55 0.33 0.83
ϕu 0.79 0.67 0.88
σe 0.26 0.24 0.28
σr 2.81 1.97 3.81
σu 0.39 0.36 0.43
gain 0.0060 0.0013 0.0125

Table C.12. SMC Estimates, 10000 particles with 500 stages, Jointly Estimated
Initials, Minimal Information, narrow prior 5 runs

Parameter Mean 5% Interval 95% Interval
η 0.38 0.15 0.58
β 0.99 0.98 1.00
σ 0.30 0.20 0.42
γ 0.25 0.02 0.54
ξp 0.01 0.00 0.02
ω 0.84 0.27 1.42
ρ 0.90 0.87 0.94
ξπ 1.40 1.12 1.69
ξx 0.36 0.18 0.57
ϕr 0.30 0.14 0.47
ϕu 0.81 0.70 0.91
σe 0.26 0.24 0.28
σr 4.36 2.80 6.15
σu 0.40 0.36 0.43
gain 0.0076 0.0025 0.0142
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Table C.13. Monte Carlo Mean and Standard Deviation of Phillips Curve Slope

Full Info Limited Info Minimum Info
Rational Expectations 0.04 (0.01) N/A N/A
Equilibrium Initials 0.04 (0.01) 0.07 (0.03) 0.07 (0.00)
Training Sample Initials 0.07 (0.03) 0.11 (0.00) 0.08 (0.00)
Jointly Estimated Initials 0.08 (0.04) 0.31 (0.25) 0.05 (0.01)

Table C.14. Mean and Standard Deviation of Natural Logarithms of the Marginal
Likelihoods

Full Info Limited Info Minimum Info
Rational Expectations -834.92 (0.43) N/A N/A
Equilibrium Initials -835.40 (0.75) -841.13 (1.41) -834.79 (0.84)
Training Sample Initials -746.10 (336.06) -831.02 (0.44) -833.61 (0.60)
Jointly Estimated Initials -831.9359 (11.8306) -825.32 (5.36) -836.97 (2.29)
Restricted VAR N/A N/A -831.94 (0.42)
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APPENDIX D

FIGURES, CHAPTER 2

Figure D.1. Prior and Posterior distributions, Rational Expectations
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Figure D.2. Prior and Posterior distributions, Equilibrium Initials, Full Information
Set
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Figure D.3. Prior and Posterior distributions, Equilibrium Initials, Limited
Information Set
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Figure D.4. Prior and Posterior distributions, VAR Initials, Full Information Set
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Figure D.5. Prior and Posterior distributions, VAR Initials, Limited Information Set
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Figure D.6. Prior and Posterior distributions, Jointly Estimated Initials, Full
Information Set
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Figure D.7. Prior and Posterior distributions, Jointly Estimated Initials, Limited
Information Set
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Figure D.8. Impulse Response to Expansionary Monetary Shock, Rational
Expectations
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Figure D.9. Impulse Response to Expansionary Monetary Shock, Training Sample
Initial beliefs, limited information
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Figure D.10. Impulse Response to Expansionary Monetary Shock, Unrestricted
VAR(1)
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Figure D.11. Impulse Response to Expansionary Monetary Shock, Nearly
Unrestricted VAR(1)
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