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DISSERTATION ABSTRACT

Alexandre Chen

Doctor of Philosophy in Computer Science

Title: High Performance Computing Methods for Earthquake Cycle Simulations

Earthquakes often occur on complex faults of multiscale physical features,

with different time scales between seismic slips and interseismic periods for multiple

events. Single event, dynamic rupture simulations have been extensively studied

to explore earthquake behaviors on complex faults, however, these simulations

are limited by artificial prestress conditions and earthquake nucleations. Over

the past decade, significant progress has been made in studying and modeling

multiple cycles of earthquakes through collaborations in code comparison and

verification. Numerical simulations for such earthquakes lead to large-scale linear

systems that are difficult to solve using traditional methods in this field of study.

These challenges include increased computation and memory demands. In addition,

numerical stability for simulations over multiple earthquake cycles requires new

numerical methods. Developments in High performance computing (HPC) provide

tools to tackle some of these challenges. HPC is nothing new in geophysics since

it has been applied in earthquake-related research including seismic imaging

and dynamic rupture simulations for decades in both research and industry.

However, there is little work in applying HPC to earthquake cycle modeling. This

dissertation presents a novel approach to apply the latest advancements in HPC

and numerical methods to solve computational challenges in earthquake cycle

simulations. This dissertation includes previously published material.
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CHAPTER I

INTRODUCTION

1.1 Introduction to earthquakes

Every year, around 20,000 earthquakes happen around the world.

Some are not noticeable, while others cause huge damage to property and life.

Earthquakes have been recorded for thousands of years. Over the past centuries,

with advancements in mathematics, physics, geology, and other natural sciences, we

have a more structured understanding of earthquakes today.

An earthquake represents a complex process of fault slip and energy release

within the Earth’s crust, driven by tectonic forces and resulting in the shaking

of the ground and potentially causing damage to structures and infrastructure.

An earthquake occurs due to the sudden release of accumulated stress along a

fault line, resulting in rapid movement known as fault slip. This movement can

be described in terms of several key components (Kanamori & Brodsky, 2004):

1.1.1 Fault rupture. The earthquake begins with the rupture of the

fault, where the stress accumulated along the fault plane exceeds the strength of

the rocks, causing them to fracture and slide past each other. This rupture initiates

the seismic event.

1.1.2 Sesmic waves. As the fault slips, it generates seismic waves

that propagate through the Earth’s crust and outward from the fault. These weaves

transmit energy in the form of vibrations, which cause the ground to shake.

1.1.3 Slip motion. Slip motions are the noticeable components of an

earthquake movement. The fault slips during an earthquake and involves two types

of movements
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– Primary slip (seismic slip): This is the sudden and rapid movement along the

fault plane during the initial rupture. It is usually associated with the intense

shaking and damage from the earthquakes

– Afterslip: Following the primary slip, there may be additional movement

along the fault. This ongoing slip can continue for days, weeks, or even

months after the initial earthquake.

1.1.4 Displacement. The amount of fault slip during an earthquake

is measured in terms of displacements. This is the distance that one side of the

fault moves relative to the other. Displacement can be horizontal, vertical, or both.

1.2 Seismic and aseismic slip

The slip motion of an earthquake can further be classified into seismic and

aseismic slips.

1.2.1 Seismic slip. Seismic slip refers to the sudden release of

accumulated tectonic stress along a fault plane, resulting in what is often called

an earthquake (Cowan, 1999). This type of fault slip is characterized by rapid and

dynamic movement, which generates seismic waves propagating through Earth’s

crust, causing ground shake and potential damages to infrastructures. Seismic fault

slip occurs when stress accumulated along a fault exceeds the frictional resistance

holding the fault surface, causing sudden slip and rupture.

1.2.2 Aseismic slip. Aseismic slip, also known as creep or slow slip,

refers to gradual continuous movement along a fault plane without generating

significant earthquakes and seismic waves (Cowan, 1999). Unlike seismic slip,

aseismic slip occurs at rates that are usually much slower and may not produce

noticeable ground shaking or seismic activity. Aseismic slip represents a steady

release of tectonic stress along the fault, often occurring in between larger seismic
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events. However, the stress could still increase during seismic slip, leading to

seismic slip in the future. Aseismic slip can contribute to the overall deformation

of the Earth’s crust and could play a potential role in seismic hazard assessments

and forecasting. Modeling the behavior of aseismic slip has been essential in order

to understand the nucleation of seismic slip and the mechanism behind multiple

cycles of earthquakes.

1.2.3 Budget. In the context of seismology, budget refers to the

distribution and allocation of accumulated tectonic stress or energy between seismic

and aseismic slip events (R. A. Harris & Archuleta, 1988). Understanding the

balance between seismic and aseismic slip budgets is important for assessing seismic

hazard and fault behavior. It helps researchers and geoscientists to understand the

mechanisms governing fault movement and stress release to forecast earthquakes.

A detailed discusssion on principles of fault slip budget determination and

observational constraints on seismic and aseismic slip can be found in this review

paper(Avouac, 2015).

1.3 Velocity weakening/strengthening

Understanding the frictional behavior along the fault is the key to

understanding the different behaviors of seismic and aseismic slip. Friction is

often associated with the velocity of the fault displacement. Based on the different

responses to sliding velocity, regions on the fault can be classified into two types:

velocity weakening and velocity strengthening.

1.3.1 Veclocity weakening region. In a velocity weakening region,

the frictional resistance between the fault surfaces decreases with an increasing slip

velocity. In other words, as the sliding velocity along the fault increases, the friction

strength decreases (Zheng & Rice, 1998).
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This phenomenon is crucial in earthquake dynamics because it promotes

the instability of the fault and facilitates the rapid release of accumulated stress

during earthquakes. When the friction resistance decreases with increasing velocity,

the fault becomes more prone to slip suddenly and can generate earthquake waves.

Velocity weakening regions are often associated with materials or conditions that

exhibit unstable slip behavior, such as fault gouge, pore pressure, and fluids.

1.3.2 Velocity strengthening region. In contrast to velocity

weakening region, a velocity strengthening region is characterized by an increase

in frictional resistance with increasing slip velocity (Perfettini & Ampuero, 2008).

The velocity strengthening regions tend to promote stable fault behavior, resisting

slip and preventing rapid release of stress that leads to earthquakes. Instead, fault

slip in these regions may occur aseismically.

Velocity strengthening is typically observed in the shallow crust and at

greater depths where ductile deformation mechanisms dominate. Conditions such

as high confining pressure and high temperature, which promote stable creep and

plastic deformation, contribute to this behavior.

1.4 Rate-and-state friction law

Since the recognition that earthquakes probably represent frictional slip

instabilities in the 1960s (Brace & Byerlee, 1966), interest in determining frictional

properties has been increased. The stability of frictional sliding depends on whether

frictional resistance increases or drops during slip. Laboratory experiments have

shown that frictional sliding is mainly a rate-dependent process in a steady-state

regime with constant stress and steady velocity. (Marone, 1998) Due to this, a state

variable needs to be introduced to describe
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– the transient behavior observed in non-steady-state experiments, denoted

as a. This parameter presents the direct effect of the fault slip rate on the

frictional resistance. In many friction laws, an increase in slip rate tends to

increase the frictional resistance, and a quantifies the strength of this effect.

A higher value of a means that the frictional resistance increases more rapidly

with slip rate

– healing in hold-and-stick experiments denoted as b. This parameter represents

the evolutionary effect of the fault slip on the frictional resistance. It

quantifies how the frictional resistance evolves over time due to slip history.

A positive value of b means that slip tends to decrease the frictional resistance

over time, making fault slip easier in the future. A negative value of b implies

the opposite, where slip tends to increase the frictional resistance over time,

making fault slips harder.

These parameters are often determined empirically through laboratory experiments

or field study. They play a crucial role in modeling the dynamics of earthquakes.

The formulation of such rate-and-state variable has significantly simplified the

impacts of several parameters from rheology on the slip rate, which enables

the development of numerical models to simulate earthquake cycles. For most

materials, it has been revealed by laboratory experiments on frictional sliding that

the following conditions exist:

– The resistance to sliding depends on the sliding rate at steady rate, along

with a logarithmic dependency of the coefficient of friction on the slip rate.
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– The resistance to sliding increases to a transient peak value when the imposed

slip rate is suddenly changed, with the peak value being a logarithmic

function of the slip rate.

– The friction coefficient is approximately a linear function with the logarithmic

of the time in hold-and-slip experiments.

Laboratory measurements at slow sliding rates can be reproduced relatively

well with a rate-and-state formalism on the order of microns per second. Various

laws have been proposed (Dieterich, 1979a, 1979b; Marone, 1998; Ruina, 1983).

One common such law is called the aging law, where

dθ

dt
= 1− V θ

Dc

(1.1)

θ is the state variable. Dc is the critical distance that characterizes staet evolution

distance, and V is the slip rate. For a single-degree-of-freedom system such as a

spring-and-slider system, the stability analysis shows that the slip can be stable

only if a − b > 0 and that unstable slip requires that a − b < 0 (Scholz, 2019). For

unstable slip to occur, it requires a− b that is smaller than a critical negative value,

defining an intermediate domain of conditional stability. For a crack with size L

embedded in an elastic medium with shear modulus G, the condition for unstable

slip is

a− b < −λGDc

Lσ′
n

(1.2)

where λ is on the order of unity. σ′
n is the effective normal stress with σ′

n − σn − P

where P is pore pressure(Scholz, 2019). In the limit when the pore pressure

becomes near lithostatic, the critical value becomes infinite. This implies that

high pore pressure should promote stable slip through the reduction of the effective

normal stress. The rate-and-state friction and many definitions here are important
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concepts in the earthquake cycle simulations that are going to be discussed in later

chapters.

1.5 SEAS project

The progress in understanding earthquake behaviors from rate-and-state

friction laws makes numerical modeling of earthquakes possible. Many numerical

models have been proposed to understand earthquake behaviors from single

earthquakes to multiple earthquake simulations.

1.5.1 The limits of dynamic ruptures and earthquake

simulators. For individual earthquakes, dynamic rupture simulations have been

applied to study the influence of fault structure, geometry, constitutive laws, and

prestress on earthquake rupture propagation and associated ground motion. These

simulations are limited to single-event scenarios with limited timescales (seconds to

minutes) and are affected by artificial prestress conditions and ad hoc nucleation

procedures. The other approaches use earthquake simulators aimed at producing

complex spatiotemporal characteristics of seismicity over millennial time scales,

but simplify and approximate several key physical features that could influence or

dominate earthquake and fault interactions to make these large-scale simulations

computationally tractable (Richards-Dinger & Dieterich, 2012; Tullis et al., 2012).

The missing physical effects, such as seismic slip, wave-mediated dynamic stress

transfers, and inelastic bulk response have the potential to dominate earthquake

and fault interactions but are not included these earthquake simulators

1.5.2 The importance of earthquake cycle simulations. A

modeling framework to capture features and missing parts of the dynamic rupture

simulations and earthquake simulators are simulations of sequences of earthquakes

and aseismic slip (SEAS) (B. A. Erickson et al., 2020). These SEAS models focus
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on smaller, regional-scale fault zones and are designed to figure out physical factors

that control the full range of observations of seismic slip, nucleation locations and

actual earthquakes (dynamic rupture), ground shaking, etc. Such SEAS models

can reveal initial conditions and earthquake nucleation for dynamic ruptures

and identify important physical ingredients, as well as appropriate numerical

approximations that could be later used in larger-scale, longer-term earthquake

simulators.

Earlier methods for SEAS simulations have simplified assumptions including

a linear elastic material response, approximate elastodynamic effects, and simple

fault geometries in the 2D domain to ease computational demands. The first two

benchmark problems proposed, BP1-QD and BP2-QD, use a relatively simple setup

(2D anti-plane problem, with a vertically embedded, planar fault) (B. A. Erickson

et al., 2020). They are designed to test the capabilities of different computational

methods in correctly solving a mathematically well-defined basic problem. Good

agreements across codes are obtained in terms of the number of characteristic

events and recurrence times, as well as short-term processes (maximum slip

rates, stress drops, and rupture speeds) when numerical parameters are chosen

properly, especially when the computational domain is chosen large enough with

sufficient resolution (small enough cell size) (B. A. Erickson et al., 2020). During

these code tests, pure volume-based codes need to discretize a 2D domain and

determine values for dimensions in 2D that are sufficiently large. Because of

this, the exploration of computational domain size is an expensive task. To ease

computations, grid stretching is applied to allow higher resolution around the

fault or in the vicinity of the frictional portion of the fault. However, this does not

propose a generic approach to tackle the computational challenge for these volume-
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based numerical methods, and the issue will be more challenging in simulations for

3D benchmark problems.

Chapter 4 of this thesis contains first-authored previously published work

in International Conference of Supercomputing (ICS 24’). Chapter 5 section 2

contains co-authored previouly published work in the Bulletin of the Seismological

Society of America with my advisor Brittany A. Erickson as the first author.
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CHAPTER II

METHODOLOGY

2.1 Numerical methods

Computational modeling of the natural world involves pervasive material

and geometric complexities that are hard to understand, incorporate, and analyze.

The partial differential equations (PDEs) governing many of these systems are

subject to boundary and interface conditions, and all numerical methods share

the fundamental challenge of how to enforce these conditions in a stable manner.

Additionally, applications involving elliptic PDEs or implicit time-stepping require

efficient solution strategies for linear systems of equations.

Most applications in the natural sciences are characterized by multiscale

features in both space and time which can lead to huge linear systems of equations

after discretization. Our work is motivated by large-scale (∼hundreds of kilometers)

earthquake cycle simulations where frictional faults are idealized as geometrically

complex interfaces within a 3D material volume and are characterized by much

smaller-scale features (∼microns) (B. A. Erickson & Dunham, 2014; Kozdon,

Dunham, & Nordström, 2012). In contrast to the single-event simulations, e.g.

(Roten et al., 2016), where the computational work at each time step is a single

matrix-vector product, earthquake cycle simulations must integrate with adaptive

time-steps through the slow periods between earthquakes, and are tasked with a

much more costly linear solve. For example, even with upscaled parameters so that

larger grid spacing can be used, the 2D simulations in (B. A. Erickson & Dunham,

2014) generated matrices of size ∼106, and improved resolution and 3D domains

would increase the system size to ∼109 or greater. Because iterative schemes

28



are most often implemented for the linear solve (since direct methods require a

matrix factorization that is often too large to store in memory), it is no surprise

that the sparse matrix-vector product (SpMV) arises as the main computational

workhorse. The matrix sparsity and condition number depend on several physical

and numerical factors including the material heterogeneity of the Earth’s material

properties, order of accuracy, the coordinate transformation (for irregular grids),

and the mesh size. For large-scale problems, matrix-free (on-the-fly) techniques for

the SpMV are fundamental when the matrix cannot be stored explicitly.

In this work, we use summation-by-parts (SBP) finite difference methods

(Kreiss & Scherer, 1974; Mattsson & Nordström, 2004; Strand, 1994; Svärd &

Nordström, 2014), which are distinct from traditional finite difference methods in

their use of specific one-sided approximations at domain boundaries that enable

the highly valuable proof of stability, a necessity for numerical convergence.

Weak enforcement of boundary conditions has additional superior properties over

traditional methods, for example, the simultaneous-approximation-term (SAT)

technique, which relaxes continuity requirements (of the grid and the solution)

across physical or geometrical interfaces, with low communication overhead for

efficient parallel algorithms (Del Rey Fernández, Hicken, & Zingg, 2014).

For these reasons SBP-SAT methods are widely used in many areas of

scientific computing, from the flow over airplane wings to biological membranes to

earthquakes and tsunamigenesis (B. A. Erickson & Day, 2016; Lotto & Dunham,

2015; Nordström & Eriksson, 2010; Petersson & Sjögreen, 2012; Swim et al., 2011;

Ying & Henriquez, 2007); these studies, however, have not been developed for linear

solves or were limited to small-scale simulations.
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With this chapter, we review the SBP-SAT methods and how they are

used to formulate linear systems. We then review several numerical methods

used to solve the linear system including multigrid methods. We contribute

a novel iterative scheme for linear systems based on SBP-SAT discretizations

where nontrivial computations arise due to boundary treatment. These methods

are integrated into our existing, public software for simulations of earthquake

sequences. Specifically, we make the following contribution in preconditioning

specifically:

Since preconditioning of iterative methods is a hugely consequential step

towards improving convergence rates, we develop a custom geometric multigrid

preconditioned conjugate gradient (MGCG) algorithm which shows a near-constant

number of iterations with increasing system size. The required iterations (and time-

to-solution) are much lower compared to several off-the-shelf preconditioners offered

by the PETSc library (Balay et al., 2023), a state-of-the-art library for scientific

computing. Furthermore, the ubiquity of SBP-SAT methods in modern scientific

computing applications means our work has the propensity to advance scientific

studies currently limited to small-scale problems.

2.2 SBP-SAT methods

SBP methods approximate partial derivatives using one-sided differences at

all points close to the boundary node, generating a matrix approximating a partial

derivative operator. In this work we focus on second-order derivatives, however

the matrix-free methods we derive are applicable to any second-order PDE. We

consider SBP finite-difference approximations to boundary-value problem, i.e.

on the square computational domain Ω̄; solutions on the physical domain Ω are

obtained by the inverse coordinate transformation.

30



In this work, we focus on SBP operators with second-order accuracy

which contains abundant complexity at domain boundaries to enable insight into

implementation design extendable to higher-order methods. To provide background

on the SBP methods we first describe the 1D operators, as Kronecker products are

used to form their multi-dimensional counterparts.

2.2.1 1D SBP Operators. We discretize the spatial domain −1 ≤

r ≤ 1 with N + 1 evenly spaced grid points ri = −1 + ih, i = 0, . . . , N with grid

spacing h = 2/N . A function u projected onto the computational grid is denoted

by u = [u0, u1, . . . , uN ]
T and is often taken to be the interpolant of u at the grid

points. We define the grid basis vector e⃗j to be a vector with value 1 at grid point j

and 0 for the rest, which allows us to extract the jth component: uj = e⃗Tj u⃗.

Definition 1 (First Derivative). A matrix Dr is an SBP approximation to the first

derivative operator ∂/∂r if it can be decomposed as HDr = Q with H being SPD

and Q satisfying u⃗T (Q+QT )v⃗ = uNvN − u0v0.

Here, H is a diagonal quadrature matrix and Dr is the standard central finite

difference operator in the interior which transitions to one-sided at boundaries. The

reason why the operator Dx is called SBP is that it mimics the integration-by-part

property ∫ 1

0

u
∂v

∂x
+

∫ 1

0

∂u

∂x
v = uv

∣∣∣∣1
0

, (2.1)

in a discrete form

u⃗THDxv⃗ + u⃗TDT
xH v⃗ = u⃗T

(
Q+QT

)
v⃗ = uNvN − u0v0. (2.2)

Definition 2 (Second Derivative). Letting c = c(r) denote a material coefficient,

we define matrix D
(c)
rr to be an SBP approximation to ∂

∂r

(
c ∂
∂r

)
if it can be
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decomposed as D
(c)
rr = H−1(−M (c) + cN e⃗N d⃗

T
N − c0e⃗0d⃗

T
0 ) where M (c) is SPD and

d⃗T0 u⃗ and d⃗TN u⃗ are approximations of the first derivative of u at the boundaries.

Similarly, the operator D
(c)
xx mimics the integration-by-parts property∫ 1

0

u
∂

∂x

(
c
∂v

∂x

)
+

∫ 1

0

∂u

∂x
c
∂v

∂x
= uc

∂v

∂x

∣∣∣∣1
0

, (2.3)

in a discrete form

u⃗THD(c)
xx v⃗ + u⃗TA(c)v⃗ = cNuN d⃗

T
N v⃗ − c0u0d⃗T0 v⃗. (2.4)

With these properties, both Dr and D
(c)
rr mimic integration-by-parts in

a discrete form which enables the proof of discrete stability (Mattsson, Ham, &

Iaccarino, 2009; Mattsson & Nordström, 2004).

D
(c)
rr is a centered difference approximation within the interior of the

domain, but includes approximations at boundary points as well. For illustrative

purposes alone, if c = 1 (e. g. a constant coefficient case), the matrix is given by

D(c)
rr =

1

h2



1 −2 1

1 −2 1

. . . . . . . . .

1 −2 1

1 −2 1


,

which, as highlighted in red, resembles the traditional (second-order-accurate)

Laplacian operator in the domain interior.

2.2.2 2D SBP Operators. The 2D domain Ω̄ is discretized using

N + 1 grid points in each direction, resulting in an (N + 1) × (N + 1) grid of

points where grid point (i, j) is at (xi, yj) = (−1 + ih,−1 + jh) for 0 ≤ i, j ≤ N

with h = 2/N . Here we have assumed equal grid spacing in each direction, only

for notational ease; the generalization to different numbers of grid points in each
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dimension does not impact the construction of the method and is implemented

in our code. A 2D grid function u is ordered lexicographically and we let Cij =

diag(cij) define the diagonal matrix of coefficients, see (Kozdon, Erickson, &

Wilcox, 2020).

In this work we imply summation notation whenever indices are repeated.

Multi-dimensional SBP operators are obtained by applying the Kronecker product

to 1D operators, for example, the 2D second derivative operators are given by

∂

∂i
cij

∂

∂j
≈ D̃

cij
ij

= (H ⊗H)−1
[
−M̃ (cij)

ij + T
]
, (2.5)

for i, j ∈ {r, s}. Here M̃
(cij)
ij is the sum of SPD matrices approximating

integrated second derivatives (i.e. sum over repeated indices i, j) for example∫
Ω̄

∂
∂r
crr

∂
∂r
≈ M̃

(crr)
rr and matrix T involves the boundary derivative computations,

see (B. A. Erickson, Kozdon, & Harvey, 2022) for complete details.

2.2.3 SAT Penalty Terms. SBP methods are designed to work with

various impositions of boundary conditions that lead to provably stable methods,

for example through weak enforcement via the simultaneous-approximation-term

(SAT) (Carpenter, Gottlieb, & Abarbanel, 1994) which we adopt here. As opposed

to traditional finite difference methods that “inject” boundary data by overwriting

grid points with the given data, the SAT technique imposes boundary conditions

weakly (through penalization), so that all grid points approximate both the PDE

and the boundary conditions up to a certain level of accuracy. The combined

approach is known as SBP-SAT. Where traditional methods that use injection

or strong enforcement of boundary/interface conditions destroy the discrete
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integration-by-parts property, using SAT terms enables proof of the method’s

stability (a necessary property for numerical convergence) (Mattsson, 2003).

2.2.4 An example of the SBP-SAT technique for PDE. We

use the following example from (Ruggiu et al., 2018) to showcase an example of

applying the SBP-SAT method for PDEs. Let’s consider the advection problem in

1D.

ut + ux = 0, 0 < x < 1, t > 0

u(0, t) = g(t), t > 0

u(x, t) = h(x), 0 < x < 1

(2.6)

where both g and h are known for initial and boundary conditions. The

problem Equation 2.6 has an energy-estimate and is well-posed. We can easily learn

that the analytical solution for this equation is a right-traveling wave.

We discretize 1D domain with N + 1 points in a uniform grid on [0, 1]

using the method described in the previous section on the SBP-SAT methods. By

applying SBP-SAT discretization in space to Equation 2.6, we get

ut +D1u = P−1σ(u0 − g)e0, t > 0

u(0) = h

(2.7)

where u = [u0, . . . , uN ]
T ,h = [h0, . . . , hN ]

T , σ ∈ R is a penalty parameter which is

determined through stability condition. e0 = [1, 0, . . . , 0]T ∈ RN+1. To determine

the value for σ so that the problem Equation 2.7 is strongly stable, we have

||u(t)||2 ≤ K(t)(||h||2 + max
τ∈[0,t]

|g(τ)|2) (2.8)

The K(t) in Equation 2.8 is independent of the data and bounded for any finite

t and meshsize ∆x. Further details about K(t) are given in (Gustafsson, Kreiss,

& Oliger, 1995; Svärd & Nordström, 2014). Applying the energy method by

multiplying the equation Equation 2.7 with uTP and adding the transpose with
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the SBP property Equation 2.2, we find

d

dt
||u||2P = − σ2

1 + 2σ
g2 − u2

N +
[(1 + 2σ)u0 − σg]2

1 + 2σ
(2.9)

By time-integration, this leads to an estimate of the form Equation 2.8 for σ <

−1/2.

2.2.5 Poisson’s equation with SBP-SAT Methods. We consider

the 2D Poisson equation on the unit square Ω with both Dirichlet and Neumann

conditions for generality, as each appears in earthquake problems (e.g. Earth’s free

surface manifests as a Neumann condition, and the slow motion of tectonic plates is

usually enforced via a Dirichlet condition). This is an important and necessary first

step before additional complexities such as variable material properties, complex

geometries, and fully 3D problems. The governing equations are given by

−∆u = f, for (x, y) ∈ Ω, (2.10a)

u = gW, x = 0, (2.10b)

u = gE, x = 1, (2.10c)

n · ∇u = gS, y = 0, (2.10d)

n · ∇u = gN, y = 1, (2.10e)

where ∆u = ∂2u
∂x2 + ∂2u

∂y2
, the field u(x, y) is the unknown particle displacement, the

scalar function f(x, y) is the source function, and vector n is the outward pointing

normal to the domain boundary ∂Ω. The g’s represent boundary data on the west,

east, south, and north boundaries.

The SBP-SAT discretization of (Equation 2.10) is given by

−D2u = f + bN + bS + bW + bE, (2.11)
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where D2 = (I ⊗Dxx) + (Dyy ⊗ I) is the discrete Laplacian operator and u is

the grid function approximating the solution, formed as a stacked vector of vectors.

The SAT terms bN , bS, bW , bE enforce all boundary conditions weakly. To illustrate

the structure of these vectors, the SAT term enforcing Dirichlet data on the west

boundary is given by

bW = α
(
H−1 ⊗ I

)
(EWu− eT

WgW)−
(
H−1e0d

T
0 ⊗ I

)
(EWu− eT

WgW), (2.12)

where α again represents a penalty parameter, EW is a sparse boundary extraction

operator, and eT
W is an operator that lifts the boundary data to the whole domain.

Details of all the SAT terms can be found in (B. A. Erickson & Dunham, 2014).

System (Equation 2.11) can be rendered SPD by multiplying from the left by

(H ⊗H), producing the sparse linear system Au = b.

2.3 Iterative Methods

This section will present a brief review of iterative methods for solving large

linear systems in our research. Many concepts and theorems are presented in (Saad,

2003) and we will point the detailed information and proofs to the book.

2.3.1 Stationary Iterative Methods. Stationary iterative methods

can be expressed in the simple form

uk+1 = Quk + q (2.13)

where Q and q are placeholders for a matrix and a vector respectively, both

independent of iteration step k. Stationary iterative methods, such as the Gauss-

Seidel method, act as smoothers for damping high-frequency components of the

solution vectors. Further backgrounds of these iterative methods can be found in

(Saad, 2003)
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The considered problem for iterative methods is a linear equation system of

the form Au = f . We introduce splitting matrix S as follows:

A = S + (A− S) (2.14)

With this introduced splitting matrix S, we can rewrite the linear equation system

as

Su = (S −A)u+ f (2.15)

and the iterative scheme of the splitting method is defined as

uk+1 = S−1((S −A)uk + f) (2.16)

For further analysis, it is useful to introduce the iteration matrix M as

M = S−1(S −A) (2.17)

.

If we define Q = M and q = S−1f , then Equation 2.16 can be written as

u = Qu+ q, and it satisfies

ek+1 = Mek (2.18)

where ek is the error uk − u for the iteration step k. Because M is only

determined by the initial linear system and the splitting matrix S, and it is not

changed in each iteration step, this method is called the stationary iterative

method.

The spectral radius ρ is defined as the largest absolute eigenvalue of a

matrix. The stationary iterative method converges if and only if the spectral radius

ρ of the iteration matrix M satisfies the following condition

ρ(M ) < 1 (2.19)
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Such convergence holds for any initial guess u0 and any right-hand side f .

Different stationary iterative methods differ in the choice of splitting matrix S. We

will present the Jacobi method and the Gauss-Seidel method for comparison here.

2.3.1.1 The Jacobi Method. In the Jacobi method, the diagonal D

of the matrix A for the linear system is chosen as the splitting matrix S. Hence the

decomposition is expressed as

A = D + (A−D) or A = D + (−L−U) (2.20)

Where −L denotes the strictly lower triangle and −U denotes the strictly upper

triangle of the matrix A. Similar to Equation 2.16, the Jacobi method is then

uk+1 = D−1((L+U)uk + f) (2.21)

In terms of matrix indices, the Jacobi method can be written as

uk+1
i =

1

Aii

(fi −
∑

j=1,i ̸=j

Aiju
k
j ) (2.22)

For matrix-free forms, similar results can be obtained via slight modifications to

this form.

2.3.1.2 The Gauss-Seidel Method. In the Gauss-Seidel method, the

splitting matrix is chosen as S = (D −L). The decomposition is then expressed as

A = (D −L) + (A− (D −L)) or A = D −L+ (−U) (2.23)

Similar to Equation 2.16, the Gauss-Seidel method is then

uk+1 = (D −L)−1(Uuk + f) (2.24)

To derive the index form of the Gauss-Seidel method, some further

transformations are needed.

Duk+1 −Luk+1 = Uuk + f (2.25)
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and

uk+1 = D−1(Luk+1 +Uuk + f) (2.26)

and the index form is given as

uk+1
i =

1

Aii

(fi −
i−1∑
j=1

Aiju
k+1
j −

n∑
i+1

Aiju
k
j ) (2.27)

2.3.1.3 Comparison of the Jacobi and the Gauss-Seidel

Method. It might seem that in Equation 2.26 the right-hand side contains the

result from the iteration step k + 1 and such an iterative scheme would fail.

However, a closer observation would notice that the uk+1 is multiplied by the

negation of the lower triangle −L of the matrix A. This means for each element

j in the vector uk+1, only newly updated elements before index j are used, hence

there is no logical problem in this iterative scheme. This is more obvious in the

index form Equation 2.27

This is the most important difference between the Jacobi and the Gauss-

Seidel method. When computing the i-th element uk+1
i in the iteration step

k + 1, the Gauss-Seidel method already uses all available iterates uk+1
j with

j = 1 . . . (i − 1), while the Jacobi method only uses the iterates from the previous

iteration step k. In other words, while the Jacobi method adds all increments

simultaneously only after cycling through all degrees of freedom, the Gauss-Seidel

method adds all increments successively as soon as available. As a result, the

Gauss-Seidel method has the advantage that one vector is sufficient to update its

vector elements i successively, in contrast to the Jacobi method where an additional

vector is required. However, in terms of computational cost, the difference in

memory requirement is negligible in practice.
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On the other hand, the operations for the iteration of different vector

elements do not coincide in the Jacobi method, which means the parallelization

for the Jacobi method is straightforward. However, in the Gauss-Seidel method,

the nodal ordering influences the convergence behavior. There are various nodal

orderings summarized in (Hackbusch, 2013b), such as red-black, lexicographical,

zebra-line, and four-color ordering. More advanced algorithms are required for

the successful parallelization of the Gauss-Seidel method. Otherwise, uncontrolled

splitting of the process leads to the so-called chaotic Gauss-Seidel method.

In terms of convergence, both stationary methods depend on the spectral

radius of the corresponding iteration matrix Q, which is affected by the splitting

matrix S chosen for each of these two methods. If both methods converge, the

convergence rate of the Gauss-Seidel method is better as each iteration would use

the updated data as soon as available.

Specifically, it is sufficient for the Jacobi method to converge if the system

Matrix A is strictly diagonally dominant (Grossmann, 1994)

|Aii| >
n∑

j=1,j ̸=i

|Aij| for all i (2.28)

For a linear system that doesn’t satisfy this condition, convergence can be

achieved by additional damping. For the Gauss-Seidel method, other than the

given condition in Equation 2.28, the convergence is also guaranteed if the system

matrix A is positive definite. The second condition is usually satisfied for the finite

difference method or the finite element method if properly restrained and stabilized.

(Bathe, 2006) Other than directly used as standalone iterative solvers, the damped

Jacobi method or the Gauss-Seidel method can be applied as smoothers within the

multigrid method.
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2.3.1.4 Relaxation methods. Relaxation methods are also stationary

iterative methods, thus they can also be presented in the form Equation 2.13.

For each of the methods introduced previously, there also exists a corresponding

relaxation method. In comparison to the precedent methods, the relaxation

methods scale each increment by a constant relaxation factor ω. The general form

of the relaxation methods is given by the following simplified algorithmic expression

uk+1
i := (1− ω)uki + ωŭk+1

i (2.29)

where for each individual index i, the temporary variable ŭk+1
i is computed as

the uk+1
i of the Jacobi method in the case of the simultaneous over-relaxation

method (JOR method) or as the uk+1
i of the Gauss-Seidel method in the case of the

successive over-relaxation method (SOR method). Thus when ω = 1, the relaxation

scheme is identical to the Jacobi or the Gauss-Seidel method.

The optimum relaxation factor can be derived theoretically from the spectral

radius of the iteration matrix. However, this is expensive. For more practical use,

several methods for the determination of ω were proposed in (Grossmann, 1994)

and (Young, 2014).

2.3.2 Krylov Subspace Methods. Stationary iterative methods

have been applied for a long time in history, but over the last few decades, Krylov

subspace methods become more popular. These methods focus on building Krylov

subspaces, named after Aleksei Nikolaevich Krylov who used these spaces to

analyze oscillations of mechanical systems (Krylov, 1931). The Krylov subspace

takes the form

Kk(A,v) := span{v, Av, . . . , Ak−1v} (2.30)

where A ∈ Cn×n and v ∈ Cn
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2.3.2.1 Conjugate Gradient Method. The conjugate gradient (CG)

method was developed by Hestenes & Stiefel (Hestenes, Stiefel, et al., 1952) as

one of the first Krylov subspace methods, and has been one of the most popular

iterative methods in solving linear systems. Compared to the iterative methods

mentioned in previous sections which are known to be stationary, the CG method

is non-stationary. Let A ∈ Rn×n be a symmetric positive definite (SPD) matrix,

and f ∈ Rn be a real vector, then the minimization problem of the quadratic form

F (x) = min

F (u) =
1

2
uTAu− fTu (2.31)

is equivalent to getting its derivative

gradF (u) = Au− f (2.32)

equal to the zero vector

gradF (u) = 0 (2.33)

The CG method is an iterative minimizer of the given quadratic form and

therefore an iterative solver for the linear equation system Au = f when A is

SPD. The quadratic form is always minimized from an approximate vector uk in

the direction of a provided search vector pk ̸= 0, which can be written as

F (uk + λpk) = min (2.34)

where both uk and pk are constant vectors ∈ R and a scalar variable λ ∈ R. This

leads to the following parabola function of λ

(
1

2
pkTApk)λ2 + (pkTAuk − pkTf)λ+ ((

1

2
ukTAuk)− ukT ) = min

This quadratic form is minimized for

λ =
pkT (f −Auk)

pkTApk
(2.35)
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The ideal search direction pk would be the error e, however, this would

require us to know the exact solution u. As a compromise, the negative gradient

of the quadratic form at uk is the best intuitive search direction from the local view

of uk. The search direction corresponds to the residual rk is now

−gradF (uk) = f −Auk = rk (2.36)

with pk = rk. We define the following equations

λk =
rkTrk

rkTArk
(2.37)

uk+1 = uk + λkr
k (2.38)

to describe the iterative process for one iterative step, which is called the method

of steepest descent due to the fact that for any iteration step k, the search direction

pk is defined by (-gradF (uk)).

The method of the steepest descent is a key step in the CG method, but the

choice of search directions pk is not the optimal one. As uk+1 is optimized with

respect to the previous search direction pk = rk, it is clear that the successive

search directions are not orthogonal (−gradF (uk+1) ⊥ pk). It can be shown that

rk ⊥ rk+1 and rk+1 ⊥ rk+2, but it is general not true for rk ⊥ rk+2. Therefore,

uk+1 has lost its optimum with respect to the previously optimized direction rk.

If uk+1 is optimal with respect to pk ̸= 0, then this property is passed to

uk+1 if and only if

Apk+1 ⊥ pk (2.39)

The vectors pk+1 and pk are called conjugate. In the conjugate gradient

method, the search directions are pairwise conjugate. Each time a new search

direction is derived from the actual residual and conjugated with the prior search

direction. It is also conjugate to all previous search directions. Thus a system of
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conjugate search directions is obtained or equivalent to a system of orthogonal

residuals. This can be proven by induction. The initial values are defined as

r0 = f −Au0

p0 = r0 (2.40)

The following equations describe the algorithm of the conjugate gradient

method

λk =
rkTpk

pkTApk
(2.41)

uk+1 = uk + λkp
k (2.42)

rk+1 = rk − λkApk (2.43)

pk+1 = rk − rk+1TApk

pkTApk
pk (2.44)

As shown in (Grossmann, 1994), for an efficient implementation, it is

possible to use an alternative form for λk and pk+1

λk =
rkTrk

pkTApk
(2.45)

pk+1 = rk +
rk+1Trk

rkTrk
pk (2.46)

It can be proven that the CG method will converge to the exact solution

after given finite steps (Greenbaum, 1997). In theory, this method can achieve

the same level of accuracy as a direct solver. However, due to numerical round-

off errors, the orthogonality is often lost and such ideal theoretical results can

not be achieved. In practice, given reasonable error tolerance, the CG method

can generally be terminated after the convergence criteria have been met. This

supports the view of the CG method as an iterative method, while an iterative

method often would not converge to the exact solution, especially in theory. Thus

the CG method is sometimes treated as a semi-iterative method.
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2.4 Preconditioning and convergence

2.4.1 Preconditioner for Linear Systems. As we discussed

stationary iterative methods in subsection 2.3.1, we now review these methods from

a preconditioning perspective.

The Jacobi and Gauss-Seidel iterations are of the form

uk+1 = Quk + q (2.47)

in which

QJA = I −D−1A (2.48)

QGS = I −D −L−1A (2.49)

for the Jacobi and Gauss-Seidel iterations, respectively. Given the matrix

splitting

A = S − (S −A) (2.50)

a linear fixed-point iteration can be defined by the recurrence

uk+1 = S−1(S −A)uk + S−1f (2.51)

which has the form Equation 2.47 with

Q = S−1(S −A) = I − S−1A, q = S−1f (2.52)

For example, for the Jacobi iteration, S = D,S −A = D −A, while for the

Gauss-Seidel iteration S = D −L,S −A = D −L−A = U .

The iteration uk+1 = Quk + q can also be viewed as a technique for solving

the system

(I −Q)u = q (2.53)
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Since Q has the form Q = I − S−1A, this system can be rewritten as

S−1Au = S−1f (2.54)

We call this system that has the same solution as the original system Au = f

the preconditioned system and S the preconditioning matrix or preconditioner.

It’s often to use M to denote S when the splitting matrix S is used in the

preconditioning. In other words, a relaxation scheme is equivalent to a fixed-point

iteration on a preconditioned system. The preconditioning matrices can be easily

derived for the Jacobi, Gauss-Seidel, SOR and SSOR iterations as follows

MJA = D (2.55)

MGS = D −L (2.56)

MSOR =
1

ω
(D − ωL) (2.57)

MSSOR =
1

ω(2− ω)
(D − ωL)D−1(D − ωU) (2.58)

The matrix M−1 should be symmetric and positive definite. Even though

M is sparse most of the time, there is no guarantee that the M−1 is sparse. And

this limits the number of techniques that can be applied to solve the preconditioned

system. The computation of M−1b for any vector b should be small so the

actual solution to the problem can be easily obtained from the solution to the

preconditioned system.

2.4.2 General Convergence Results. In this section, we examine

the convergence behaviors of the general preconditioners above. The detailed

analysis can be found in (Saad, 2003). We choose the most important results to

present here with notations adapted to match the other sections of the thesis. All

methods seen in the previous section define a sequence of iterates of the form

uk+1 = Quk + q (2.59)
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where Q is the iteration matrix. We need to answer these two questions

– If the iteration converges, is the limit indeed a solution of the original system?

– Under which conditions does the iteration converge?

– How fast is the convergence?

If the above iteration converges to u, and it satisfies

u = Qu+ q (2.60)

Recall the definition in Equation 2.52, it’s easy to verify the u satisfies Au = f .

This answers the first question. We now consider the next two questions.

If I − Q is nonsingular, then there is a solution u∗ to the equation

Equation 2.60. Substracting Equation 2.60 from Equation 2.59 yields

uk+1 − u∗ = Q(uk − u∗) = · · ·Qk+1(u0 − u∗) (2.61)

If the spectral radius of the iteration matrix Q is less than 1, then uk − u0

converges to zero. And the iteration Equation 2.59 converges toward the solution

defined by Equation 2.60. Conversely, the relation

uk+1 − uk = Q(uk − uk−1) = · · ·Qk(q − (I −Q)u0)) (2.62)

shows that if the iteration converges for any u0 and q, then Qkb converges

to zero for any vector b. As a result, ρ(Q) must be less than 1. The following

theorem is proved:

Theorem 1. Let Q be a square matrix such that ρ(Q) < 1. Then I − Q is non-

singular and iteration Equation 2.59 converges for any q and u0. Conversely, if the

iteration Equation 2.59 converges for any q and u0, then ρ(Q) < 1

The theorem and its proof can be found in (Saad, 2003) Since it is often

expensive to compute the spectral radius of a matrix, sufficient conditions that
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guarantee convergence can be useful in practice. One such sufficient condition could

be obtained by utilizing the inequality ρ(Q ≤ ||Q||) for any matrix norm (Saad,

2003).

Corollary 1.1. Let Q be a square matrix such that ||Q|| < 1 for some matrix norm

|| · ||·. Then I −Q is non-singular and the iteration Equation 2.59 converges for any

initial vector u0

Other than knowing that Equation 2.59 converges, we can also know how

fast it converges. The error ek = uk − u∗ at step k satisfies that

ek = Qke0 (2.63)

The proof can be found in (Saad, 2003)

The global asymptotic convergence factor is equal to the spectral radius of

the iteration matrix. The general convergence rate differs from the specific rate

only when the initial error does not have any components in the invariant subspace

associated with the dominant eigenvalues. Since it is hard to know a priori, the

general convergence factor is more useful in practice. The above analysis can be

found in (Saad, 2003).

Using convergence analysis here, the convergence criteria for several iterative

methods such as Richardson’s Iteration, and regular splitting can be derived with

simpler forms. One type of matrices that is worth notice is diagonally dominant

matrices. We begin with a few standard definitions

Definition 3. A matrix A is

– (weakly) diagonally dominant if

|aj,j| ≥
i=n∑

i=1,i ̸=j

|ai,j|, j = 1, . . . , n (2.64)
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– strictly diagonally dominant if A is irreducible, and

|aj,j| >
i=n∑

i=1,i ̸=j

|ai,j|, j = 1, . . . , n (2.65)

– irreducibly diagonally dominant if

|aj,j| ≥
i=n∑

i=1,i ̸=j

|ai,j|, j = 1, . . . , n (2.66)

with strict inequality for at least one j

The diagonally dominant matrices are important as many matrices from the

discretization of PDEs are diagonally dominant. When solving these linear systems

with iterative methods, the spectral radius can be estimated using Gershgorin’s

theorem. Gershgorin’s theorem allows determination of rough locations for all

eigenvalues of A. In situations where A is so large that the eigenvalues of A are

unable to obtain, for example, a linear system from extremely fine discretization,

the spectral radius can be directly obtained via the entries of the matrix A. The

simplest such result is the bound

|λi| ≤ ||A|| (2.67)

for any matrix norm. Gershgorin’s theorem provides a more precise localization

result

Theorem 2 (Gershgorin). Any eigenvalue λ of a matrix A is located in one of the

closed discs of the complex plane centered at ai,i and has the radius

ρi =

j=n∑
j=1,j ̸=i

|ai,j| (2.68)

In other words,

∀λ ∈ σ(A),∃i such that|λ− ai,i| ≤
j=n∑

j=1,j ̸=i

|ai,j| (2.69)
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The theorem and its proof can be found in (Saad, 2003) This result also

holds for the transpose of A, so this theorem can also be formulated either based

on column sums or row sums. The n discs defined in the theorem are called

Gershgorin discs. The theorem states that the union of these n discs contains the

spectrum of A. It can also be shown that if there are m Gershgorin discs whose

union S is disjoint from all other discs, then S contains exactly m eigenvalues (with

multiplicities counted). Additional refinement which has important consequences

concerns of a particular case when A is irreducible is given here.

Theorem 3. Let A be an irreducible matrix and assume that an eigenvalue λ of

A lies on the boundary of the union of the n Gershgorin discs. Then λ lies on the

boundary of all Gershgorin discs

This theorem and its proof can be found in (Saad, 2003) where an

immediate corollary of the Gershgorin theorem and this theorem follows

Corollary 3.1. If a matrix A is strictly diagonally dominant or irreducibly

diagonally dominant, then it is nonsingular.

This leads to the following theorem

Theorem 4. If A is a strictly diagonally dominant or an irreducibly diagonally

dominant matrix, then the associated Jacobi and Gauss-Seidel iterations converge

for any u0.

For SPD matrices, the convergence condition is given as follows

Theorem 5. if A is symmetric with positive diagonal elements and for 0 < ω < 2,

SOR converges for any u0 if and only if A is positive definite.
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These theorems for convergence play an important role in the study of

various preconditioners and can be found in (Saad, 2003). More iterative methods

and preconditioners as well as their convergence criteria can be found in the same

book.

2.5 Multigrid Methods

The multigrid method is a scheme applied to solving a linear equation

system with iterative solvers. It provides a convergence acceleration that improves

the performance of these iterative solvers using grid coarsening (Fedorenko, 1973)

(Trottenberg, Oosterlee, & Schuller, 2000). In practice, it can be implemented

as a standalone method or as a preconditioner for other iterative methods such

as the conjugate gradient method (Tatebe, 1993). Various multigrid methods

are used in different branches of applied mathematics and engineering. such as

electromagnetics (Stolk, Ahmed, & Bhowmik, 2014) and fluid dynamics (Adler,

Benson, Cyr, MacLachlan, & Tuminaro, 2016).

The two important components of multigrid methods are the restriction and

prolongation operators which transfer information between fine grids and coarse

grids. These operators are typically based on linear interpolation procedures and

are connected through variational properties (Briggs et al., 2000) to ensure optimal

coarse-grid correction in the Ah-norm with Ah being the left-hand side of the linear

system defined on the fine grid. The multigrid method can be also applied to the

SBP-SAT method with specific grid transfer operators. In this section, we will

provide a brief review of the multigrid method and its implementation. We consider

the following steady-state problem:
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Lu = f, in Ω (2.70)

Hu = g, on ∂Ω (2.71)

where L is a differential operator on domain Ω, and H is a boundary

operator on the boundary ∂Ω. This is a generalization of many linear systems with

various boundary conditions.

2.5.0.1 The multigrid algorithm. In general, the construction of a

multigrid consists of the following four basic steps:

1. Fine-grid discretization

2. Error smoothing

3. Coarse-grid correction

4. Fine-grid update

Different combinations of these steps result in different multigrid schemes.

The most simple scheme is a two-level multigrid V cycle. We will expand these four

steps in the following sections.

2.5.0.2 Fine-grid discretization. Consider a fine grid meshing Ω1

on Ω. A discrete linear system associated to Equation 2.70 on this fine grid Ω1 has

the general form

L1u = F (2.72)

where L1 is the discrete version of the operator L in Equation 2.70 which

also include boundary conditions in Equation 2.71. The vector F approximates
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f on the grid points of Ω1 which already incorporates data for the boundary

conditiong in Equation 2.71. u is the discretization of the solution u in the steady-

state problem. We assume L1 to be positive definite which also implies that L1 is

invertible. This is property is usually satisfied from discretization methods.

2.5.0.3 Error smoothing. Error smoothing is required prior to grid

coarsening. Suppose we have an initial guess u0, the iterative approach towards the

solution to Equation 2.72 is through solving

wτ + L1w(τ) = F, 0 < τ < ∆τ (2.73)

w(0) = u(0) (2.74)

where ∆t > 0 is the smoothing step. The solution to this equation is

w(∆τ) = e−L1∆τu0 + (I1 − e−L1∆τ )L−1
1 F (2.75)

where I1 is the identity matrix on Ω1, and the following condition holds for any

norm if L1 is positive definite

||w(∆τ)− u|| < ||u(0) − u|| (2.76)

Smoothing technique for the solution can be defined as follows

wk = Swk−1 + (I1 − S)L−1
1 F, k = 1, . . . ν

w0 = u0

(2.77)

where S is the smoother. If S is an exponential smoother Sexp = e−L1∆τ ,

this will yield the pseudo time-marching procedure in Equation 2.73. This iterative

method would converge after ν steps to

w = Sνu0 + (I1 − Sν)L−1
1 F (2.78)
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The convergence criteria for this procedure is mentioned in the overview of iterative

methods.

2.5.0.4 Coarse-grid correction. Next, consider the error e =

L−1
1 F−w and the residual problem

L1e = F− L1w (2.79)

Instead of solving this system directly, we introduce a subset of Ω1 called the

coarse grid Ω2, and solve the associated coarse grid problem on Ω2

L2d = Ir(F− L1w) (2.80)

This problem is obtained from the finer grid problem Equation 2.79 by using

the following operators

1. a restriction operator Ir : Ω1 −→ Ω2

2. a coarse-grid operator L2: Ω2 −→ Ω2

The coarse-grid operator can be built by using the Galerkin condition

L2 = IrL1Ip (2.81)

where Ip : Ω2 −→ Ω1 is a the prolongation operator. In some situations, L2 can be

built independently through the direct use of discretization methods, but Ir and Ip

needs to be carefully defined so the Galerkin condition Equation 2.81 still holds.

The prolongation operator Ip is commonly chosen through linear

interpolation. Assume Ω1 had a grid spacing of ∆x = 1/N , and Ω2 consists of

the even grid points of Ω1. This leads to

(Ipv)m =


vj, m = 2j, j = 0, . . . , N/2

1
2
(vj + vj+1), m = 2j + 1, j = 0, . . . , N/2

(2.82)
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As we already define the prolongation operator, the restriction operator is

given as

Ir = ITp /C (2.83)

which is called the variational property. The C is a constant determined by the

discretization method. In this problem, the value for C is 2.

2.5.0.5 Fine-grid update. Finally, we update the fine grid solution

with correction d as

u(1) = w + Ipd (2.84)

The relation Equation 2.84, together with Equation 2.78 and Equation 2.80

provides an iterative method for solving the steady-state problem

un+1 =Mun +NF (2.85)

where

M = CSν (2.86)

C = I1 − IpL−1
2 IrL1 (2.87)

N = (I1 −M)L−1
1 (2.88)

M is called the multigrid iteration matrix here and C is referred to as the coarse

grid correction operator. Here, M plays a central role in the convergence of the

iterative method. We can see this by the definition of the error at step n e(n) =

u(n) − L−1
1 F as we get

e(n+1) =Me(n) (2.89)

which again leads to the same convergence criteria for the iterative method

depending on the spectral radius of M .
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To demonstrate the actual process of a multigrid scheme, we use the

following two-grid correction scheme as an example

1. Relax ν1 times on Lh
1u

(1) = F(1) on Ω1 with the initial guess v1

2. Compute the fine-grid residual r(1) = F(1)−L1v
(1) and restrict it to the coarse

grid by r(2) = Irr
(1)

3. Solve L2e
(2) = r(2) (or relax ν1 times) on Ω2

4. Interpolate the coarse-grid error to the fine grid by e(1) = Ipe
(2) and correct

the fine-grid approximation by v1 ←− v(1) + e(1)

5. Relax ν2 times on L1u
(1) = F(1) on Ω1 with the initial guess v(1)

There are more schemes for multigrid, and the main schemes are

summarized in Figure 1.

Earlier work in multigrid relies on the geometric structure to construct

coarse problems, thus this approach is called geometric multigrid. In problems

where the computational domain is not composed of well-structured meshes,

the multigrid method can be also applied via algebraic operators rather than a

geometric grid. This approach is called the algebraic multigrid. We will cover this

approach in the next subsection.

2.5.1 Algebraic Multigrid. The classical multigrid formed around

the geometric structure has been generalized that the multigrid is analyzed in terms

of the matrix properties (McCormick & Ruge, 1982). This algebraic approach to

theory was further extended to form the basis for much of the early development

that led to the so-called Ruge-Stüben or classical algebraic multigrid (CAMG)

method (Brandt, 1986; Mandel, 1988; Ruge & Stüben, 1987). A detailed overview
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Figure 1. Schedule of grids for (a) V-cycle, (b) W-cycle, and (c) FMG scheme, all
on four levels. (Briggs et al., 2000)
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of the algebraic multigrid can be found in this recent paper (Xu & Zikatanov,

2017). Here, we want to present it more concisely. We begin this subsection with

the following theorem in linear algebra taken from (Briggs et al., 2000).

Theorem 6 (Solvability and the Fundamental Theorem of Linear Algebra).

Suppose we have a matrix A ∈ Rm×n. The fundamental theorem of linear algebra

states that the range (column space) of the matrix, R(A), is equal to the orthogonal

complement of N (AT ), the null space of AT . Thus, spaces Rm and Rn can be

orthogonally decomposed as follows:

Rm = R(A)⊕N (AT ) (2.90)

Rn = R(A)⊕N (A) (2.91)

For the equation Au = f to have a solution, it is necessary that the vector f lie

in R(A). Thus, an equivalent condition is that f be orthogonal to every vector in

N (AT ). For the equation Au = f to have a unique solution, it is necessary that

N (A) = {0}. Otherwise, if u is a solution and v ∈ (A), then A(u+v) = Au+Av =

f + 0 = f , so the solution is not unique.

This is another point to view the coarse-grid correction scheme, and this

leads to the algebraic multigrid. More theories related to this topic and the spectral

picture of multigrid can be found in (Briggs et al., 2000).

The unique aspect of the CAMG is that the coarse problem is defined on a

subset of the degrees of freedom of the initial problem, thus resulting in both coarse

and fine points, which leads to the term CF-based AMG. A different approach to

constructing algebraic multigrid is called smoothed aggregation (SA) AMG, where

collections of degrees-of-freedom define a coarse degree-of-freedom (Vaněk, Mandel,
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& Brezina, 1996). Together, CF and SA form the basis of AMG and led to several

developments that extend AMG to a wider class of problems and architectures.

AMG does not depend on the geometry of the problem and discretization

schemes, and due to this generalizability, it has been implemented in different forms

in many software libraries. The original CAMG algorithm and its variants are

available as amg1r5 and amg1r6 (Ruge & Stüben, 1987). A parallel implementation

of the CF-based AMG can be found in the BoomerAMG package in the Hypre

library (Yang et al., 2002). The Trilinos package includes ML as a parallel SA-

based AMG solver (Gee, Siefert, Hu, Tuminaro, & Sala, 2006). PETSc adopts a

geometric algebraic multigrid (GAMG) based on smoothed aggregation (Balay

et al., 2023). Finally, PyAMG includes a number of AMG variants for testings,

and Cusp distributes with a standard SA implementation for use on a GPU (Bell,

Olson, & Schroder, 2022; Dalton, Bell, Olson, & Garland, 2014).

2.5.2 The Multigrid Method Within the SBP-SAT Scheme.

Since the SBP-SAT scheme is a framework for discretization to form a linear

system, it is compatible with the multigrid method and can be accelerated using

this technique. The key challenge from simply applying the common prolongation

and restriction operators with the Galerkin condition Equation 2.81 is that the

summation-by-parts property would not be preserved for the coarse grid operators.

In order to accurately represent the coarse-grid correction problem for the SBP-

SAT scheme, a more suitable class of interpolation operators needs to be proposed.

Many works have been done to address this issue (Ruggiu et al., 2018).

To overcome this issue, consider defining the restriction operator as

Ir = H−1
2 ITp H1 (2.92)

59



which was first introduced in (Ruggiu et al., 2018). This involves the coarse grid

SBP norm H2 and is obtained by enforcing that two scalar products

(ϕ1, ψ1)H1 = (ϕ1H1ψ1) (2.93)

(ϕ2, ψ2)H2 = (ϕ2H2ψ2) (2.94)

are equal for ϕ1 = Ipϕ2 and ψ2 = Irψ1. ϕ and ψ correspond to the u and v in the

previous section on iterative solvers. We use these new notations to avoid confusion

with the u used in the previous subsection on the multigrid method. As a result,

the interpolation operators Ir and Ip are adjoints to each other with respect to the

SBP-based scalar products defined in (Hackbusch, 2013b).

(Ip, ξ2, ξ1)H1 = (ξ2, Irξ1)H2 (2.95)

by using Equation 2.92, it is possible to build pairs of consistent and

accurate prolongation and restriction operators. The following definition of the

SBP-preserving interpolation operators was given in (Ruggiu et al., 2018), where

the operators were used to couple SBP-SAT formulations on grids with different

mesh sizes with numerical stability.

Definition 4. Let the row-vectors xk
1 and xk

2 be the projections of the monomial xk

onto equidistant 1-D grids corresponding to a fine and coarse grid, respectively. Ir

and Ip are then called 2q-th order accurate SBP-preserving interpolation operators

if Irx
k
1 − xk

2 and Ipx
k
2 − xk

1 vanish for k = 0, ..., 2q − 1 in the interior and for

k = 0, ..., q − 1 at the boundaries.

The sum of the orders of the prolongation and restriction operators should

be at least equal to the order of the differential equation. As a consequence, the

use of high-order interpolation is not required here to solve the linear system with
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Figure 2. The 2nd-order SBP-preserving restriction operator Ir (Ruggiu et al.,
2018)

the multigrid method. However, high-order grid transfer operators can be used in

combination with high-order discretization (Sundar, Stadler, & Biros, 2015).

SBP-preserving interpolation operators with minimal bandwidth are given in

Appendix A. The restriction operator Ir, which differs from the conventional one at

boundary nodes, is shown in Figure 2.

2.5.2.1 SBP-preserving interpolation applied to the first

derivative. Using Galerkin condition Equation 2.81 and SBP-preserving

operators, we can construct the linear system with the multigrid method. We

first consider the first derivative fine-grid SBP operator D1,1 and its coarse-grid

counterpart D1,2 constructed as follow

D1,2 = IrD1,1Ip (2.96)

We now show that D1,2 preserves SBP property in such ways. To start with, we

rewrite the left-hand side of the following SBP property

(ϕ,D1ψ)H = ϕNψN − ϕ0ψ0 − (D1ϕ, ψ)H (2.97)

with the adjoint relation Equation 2.95 as follows

(ϕ2, D1,2ψ2)H2 = (ϕ2, Ir(D1,1Ipϕ2))H2 = (Ipϕ2, D1,1(Ipψ2))H1 (2.98)
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Next, the SBP property for the finite-grid operator D1 leads to

(ϕ2, D1,2ψ2)H2 = (Ip, ϕ2)N(Ip, ψ2)N − (Ip, ϕ2)0(Ip, ψ2)0 − (D1,1(Ipϕ2), Ipψ2)H1 (2.99)

Both grids are conforming to the domain boundaries, and the prolongation

onto the boundary nodes of the fine grid is exact. Furthermore, by applying

Equation 2.95 to the right-hand side of Equation 2.99, we obtain

(ϕ2, D1,2ψ2)H2 = ϕ2,N/2ψ2,N/2 − ϕ2,0ψ2,0 − (D1,2ϕ2, ψ2)H2 (2.100)

And we’ve shown that the coarse grid operator D1,2 constructed in a such way

preserves the SBP property. Also, the coarse grid first derivative SBP operator D1,2

retains the order of accuracy of the original scheme at the interior nodes if 2qth

order SBP-preserving interpolations are used. The proof can be found in (Ruggiu et

al., 2018).

2.5.2.2 SBP-preserving interpolation applied to the second

derivative. The SBP-preserving interpolation can also be applied to the second

derivative operator. Similar to the proof for the first derivative operator, we can

prove that the coarse grid operator constructed in such ways preserves the SBP

property.

The interpolation operators in Equation 2.92 lead to a coarse-grid second

derivative operator D2,2 which preserves the summation-by-parts property in

Equation 2.4. We can show that by rewriting the left hand side of the Equation 2.4

for D2,2 and the two coarse-grid functions ϕ2 and ψ2 by using Equation 2.95.

(ϕ2, D2,2ψ2)H2 = (ϕ2, Ir, D2,1Ipψ2)H2 = (Ipϕ2, D2,1Ipψ2)H1 (2.101)

By applying the SBP property Equation 2.4 for the fine-grid second derivative D2,1,

we have

(ϕ2, D2,2ψ2)H2 = (Ipϕ2)N(SIpψ2)N − (Ipϕ2)0(SIpψ2)0− (SIpϕ2)
TA(SIpψ2)H2 (2.102)
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Both grids are conforming to domain boundaries, implying that (Ipϕ2)i =

ϕ2,i/2 and (SIpψ2) = (Sϕ2)i/2 for i ∈ {0, N}. Thus

(ϕ2, D2,2ψ2)H2 = ϕ2,N/2(Sϕ2)N/2 − ϕ2,0(Sϕ2)0 − (SIpϕ2)
TA(SIpψ2)H2 (2.103)

where S is equivalent to dT
0 which approximates the first derivative at the

boundaries as discussed in the previous section on the SBP-SAT methods.

Additional proofs or propositions to SBP-preserving interpolations can

also be found in (Ruggiu et al., 2018). Furthermore, several model problems

have been tested with multigrid iteration schemes using these SBP-preserving

interpolations. These problems include a Poisson equation, the anisotropic elliptic

problem, and the advection-diffusion problem. Numerical experiments show that

the SBP-preserving interpolation improves convergence properties of the multigrid

scheme for SBP-SAT discretizations regardless of the order of the discretization

and smoother chosen. Moreover, the excellent performance in combination with

the smoother SOR, clearly indicates that multigrid algorithms with SBP-preserving

interpolation can be designed to get fast convergence. The paper mainly covers the

steady model problem to compare the effect of different grid transfer operators.

For time-dependent problems, the effectiveness of multigrid algorithms with these

SBP-preserving interpolations needs to be tested (Ruggiu et al., 2018).

2.5.3 Multigrid Preconditioned Conjugate Gradient. In the

previous sections, we introduce the classical iterative solvers and Krylov subspace

methods as a solver. Moreover, we show that the classical iterative solvers can be

used in the multigrid method as smoothers. And we provide the basic knowledge on

preconditioners for iterative methods. However, using multigrid as a preconditioner

for the conjugate gradient is an alternative approach motivated by engineering

problems.
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The multigrid method is a very effective iterative method for the mechanical

analysis of heterogeneous material samples in (Häfner, Eckardt, Luther, & Könke,

2006). However, the increase in the ratio of Young’s moduli between matrix

material and inclusion leads to a significantly worse condition number of the

system, which slows the solution process. This could be also the result of the

worse material representation on coarse grids. For a similar problem, Poisson’s

equation with large coefficient jumps or differences of grid spacing in coordinate

transformation, the worse condition number will also lead to the slow solving

process with the iterative methods mentioned above. As Poisson’s equation is the

key challenge in earthquake cycle simulation, an effective approach to solving linear

systems with worse condition numbers is worth exploring. It has been shown that

the multigrid preconditioned conjugate gradient method has a superior convergence

rate over the multigrid method as a solver (Tatebe, 1993). This approach is less

dependent on the considered problem.

The conditions of the multigrid preconditioners are examined in (Tatebe,

1993). According to (Wesseling, 2004), the multigrid method will potentially

provide a valid preconditioner if the smoother is symmetric. For a derivation of the

preconditioned conjugate gradient method, we would introduce a matrix L which

satisfies M−1 = LTL as shown in (Wesseling, 2004) (Our notation M is equivalent

to H in the paper). The Equation 2.54 improves the convergence if the condition

number of the preconditioned matrix M−1A is lower than that of the original

matrix A, which can be determined from the analysis of eigenvalues as presented

in (Hackbusch, 2013a). If the preconditioning matrix is exactly M−1 = A−1, the

after one iteration step, the exact solution u is found. An ideal preconditioning

matrix M−1 should be a reasonably close approximation of A−1. With respect to
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the initial search direction, the vector p0 = M−1r0 would correspond to the error

−e0, if M−1 = A−1. An adequate matrix M−1 leads to an improved initial search

direction p0. Therefore, the preconditioned conjugate gradient method applies the

following start conditions

r0 = f −Au0; r̃0 = p0 = A−1r0 (2.104)

The following equations give a preconditioned conjugate gradient method

adapted from (Tatebe, 1993) in the notation of the conjugate gradient method in

subsection 2.3.2.

λk =
r̃kT rk

pkTApk
(2.105)

uk+1 = uk + λkp
k (2.106)

rk+1 = rk − λkApk (2.107)

r̃k+1 = M−1rk+1 (2.108)

pk+1 = r̃k+1 +
r̃k+1T rk+1

r̃kT rk
pk (2.109)

In each iteration step, preconditioning only takes place in Equation 2.108

and generates a new vector r̃k+1. The preconditioning matrix M−1 does not need

to be explicitly built. The operation defined in Equation 2.108 can be replaced

by a multigrid cycle that solves a linear system with rk+1 being the right hand

side, and the solution is then assigned to r̃k+1. The preconditioned conjugate

gradient method preserves a system of conjugate directions, while each increment

is optimized for each improved search direction based on the multigrid method.

Therefore, this optimization leads to considerably improved increments, if the

stiffness of the coarse meshes is generally overestimated.
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2.6 Geometric multigrid for SBP-SAT method

To apply multigrid efficiently for the SBP-SAT method on GPUs, we need

to develop a new geometric multigrid formulation that does not require using

algebraic coarsening or Galerkin’s condition.

Matrix-free iterative methods enable the solution to larger problems

compared to a direct solve that requires storing a matrix factorization. However,

the convergence of CG depends predominantly on the condition number and quality

of the initial guess. The condition number can be reduced through preconditioning

techniques, but the preconditioning matrix M has to be SPD and fixed, and

although it need not be explicitly assembled nor inverted, good preconditioners

should satisfy M ≈ A−1.

To our knowledge, preconditioning has not been explored for CG methods

applied to SBP-SAT discretizations. Existing work using multigrid as a solver for

problems with SBP-SAT methods focused on using SBP-preserving interpolation

operators with the Galerkin coarsening to build the coarse grid operators (Ruggiu

et al., 2018). Here the standard interpolation operators were modified for boundary

points to preserve the SBP property (Ruggiu et al., 2018). However, although

Galerkin coarsening or other algebraic multigrid methods produce coarse grid

operators automatically (and therefore can be seen as a “plug-in” solver for any

linear system (Stüben, 2001)), defining these matrix-free coarse grid operators in

this fashion requires writing a different kernel for every grid level, as well as more

memory for data storage (Brandt, 2006). Moreover, it also increases overhead in

pre-compiling matrix-free kernels for different Ns due to the just-in-time (JIT)

compiling mechanism in Julia. Therefore, to fully utilize the efficiency of our

matrix-free methods, as well as to reduce complexity in and number of kernels
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needed, developing geometric multigrid preconditioned CG (denoted MGCG) for

the SBP-SAT method becomes the key focus of our work.

Three key ingredients define multigrid methods, namely, interpolation

operators (prolongation and restriction), smoothers, and (if used) a direct

solve on a coarse grid. In this work we adopt the second-order SBP-preserving

prolongation/restriction operators from (Ruggiu et al., 2018), which maintain

accuracy at domain boundaries and correctly transfer residual vectors to the

coarser grids. The 2D restriction operator is given by

I2h
h = H−1

2h

(
Ih
2h

)T
Hh (2.110)

where Hh and H2h denote H ⊗H with grid spacing h and 2h, respectively. The

2D prolongation operator Ih
2h is defined by Ih

2h = Ih2h⊗Ih2h, where Ih2h is the standard

1D prolongation operator (Briggs et al., 2000), see Appendix A in (Ruggiu et al.,

2018).

One feature that differentiates our problem formulation from those in

(Ruggiu et al., 2018) is that our matrix in SBP-SAT methods is rendered SPD

only after the multiplication of (2.5) on the left by (H ⊗H), which introduces

additional grid information when calculating the associated residual vector. To

properly transfer this grid information we found improved performance when

further modifying the restriction operator to account for grid spacing. This is

achieved by excluding the (H ⊗H) term when computing the residual on the

fine grid, then restricting using Ir, and then re-introducing the grid spacing on

the coarse grid. This process requires “applying” the inverse: Given that (H ⊗H)

is a sparse diagonal matrix (thus its inverse is the diagonal matrix of reciprocal

values), GPU kernels for the multiplication of this matrix and its inverse can be
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easily implemented in a matrix-free manner. The pseudo-code for the geometric

multigrid method is given in Algorithm 1.

Algorithm 1 (k+1)-level MG for Ahuh = fh, with smoothing Sν
hk

applied ν times.
SBP-preserving restriction and interpolation operators are applied. Grid coarsening
(k → k + 1) is done through successive doubling of grid spacing until reaching the
coarsest grid. The multigrid cycle can be performed Nmaxiter times. r represents
the residual, and v represents the solution to the residual equation used during the
correction step. This algorithm is adapted from (Liu & Henshaw, 2023).

function MG(fhk
, Ahk

, u
(0)
hk
, k, Nmaxiter)

for n = 0, 1, 2, . . . , Nmaxiter do

u
(n)
hk

S
ν1
hk←−− u

(n)
hk

▷ Pre-smoothing ν1 times

r
(n)
hk

= f
(n)
hk
−A

(n)
hk

u
(n)
hk

▷ Calculating residual

r̃hk
= (Hk ⊗Hk)

−1r
(n)
hk

▷ Removing grid info

rhk+1
= (Hk+1 ⊗Hk+1)I

hk+1

hk
r̃hk

▷ Restriction
if k + 1 = kmax then

v
(n)
hk+1

S
ν2
hk+1←−−− 0hk+1

▷ Smoothing on coarsest grid
else

v
(n)
hk+1

= MG(rhk+1
, Ahk+1

, 0hk+1
, k + 1, 1)

▷ Recursive definition of MG
end if
vn
k = Ihk

hk+1
v
(n)
k+1 ▷ Interpolation

u
(n+1)
k = u

(n)
k + vn

k ▷ Correction

u
(n+1)
k

S
ν3
hk←−− u

(n+1)
hk

▷ Post-smoothing ν3 times
end for

end function

Many types of smoothers for multigrid methods can be explored for best

performance. In this work we choose the Richardson iteration given by xk+1 =

xk + ω(b−Axk) because it can be easily implemented with our existing matrix-free

kernel. Here ω is chosen to satisfy the convergence criteria and its optimal value

depends on the eigenvalues of A as ωopt = 2
λmax+λmin

, where λmax and λmin are

the largest and smallest eigenvalues of A respectively. We use Arpack.jl, which is

a Julia wrapper of ARPACK that uses the Implicitly Restarted Arnoldi Method to
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calculate eigenvalues for sparse matrices. For small N , we can compute λmax and

λmin directly, but for large N values, these become computationally intractable. We

use interpolation to approximate values for λmax and λmin for N ≥ 32 based on

observation of eigenvalues for N ≤ 32, namely,

λmin,2N = λmin,N/4,

λmax,2N = λmax,N + 0.6 ∗ (λmax,N − λmax,N/2),

where λmin,N represents the minimal eigenvalue of a linear system formed for

our 2D problem with N + 1 grid points in each direction and λmax,N is the

corresponding maximum value. In practice, these interpolated eigenvalues provide

a relatively tight lower and upper bound for the real eigenvalues and appear to be

sufficient according to our performance results. Alternative smoothers could be

considered, such as Jacobi iteration or SSOR, but these require the decomposition

of the linear system and the development of additional GPU kernels. We did test

these smoothers in experiments using the matrix-explicit formulation and found

that they perform at similar levels to the Richardson iteration when multigrid is

used as a preconditioner. We found that the total number of iterations required by

MGCG is largely determined by the number of grid levels and smoothing steps and

is less impacted by the choice of smoother itself.

Multigrid methods have many tunable parameters. For this initial study, we

implemented MGCG with 5 Richardson pre- and post-smoothing steps on every

level with a single V-cycle (i.e. taking ν1 = ν2 = ν3 = 5 and Nmaxiter = 1

in Algorithm 1), including on the coarsest grid (5 grid points in each direction).

This avoids using a direct solve on the coarse grid which would require conversion

between CPU arrays and GPU arrays. All operations in this MGCG algorithm can
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Figure 3. Log of error (difference from a direct solve) versus iteration count for
multigrid preconditioned conjugate gradient (MGCG), shown in blue circles,
using 5 steps of pre- and post-Richardson smoothing for every level versus
unpreconditioned conjugate gradient (CG), shown in orange circles, for N = 25.

be implemented in a matrix-free manner in a way that does not require storing

matrix A on any grid level.

To show the drastically different behaviors, we plot the discrete L2-error

against iteration counts for N = 32 for CG and MGCG in Figure 3. MGCG

converges after only ∼5 iterations. Additional iterations are coming from the

additional discrete L2-error requirement in the stopping criteria. Since the

complexity of each CG iteration step is O(N2), as N doubles the total time

increases by a factor of 4 for MGCG versus 8 for CG. In this section we present

a new formulation multigrid preconditioned conjugate gradient that can be
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implemented matrix-free with a Richardson smoother in order to solve 2D, variable

coefficient elliptic problems discretized with an SBP-SAT method.

2.7 Parallel Processing and HPC

2.7.1 Parallel Implementation of Iterative Methods. The

iterative methods are ideal for their low memory requirements, and this becomes

extremely important as the simulations in many fields of study have moved towards

three-dimensional models. Another appealing part of iterative methods is that

they are far easier to implement in parallel than sparse direct methods because

they only require a small set of computational kernels. However, iterative methods

are usually slower than direct methods, especially for smaller problems, requiring

suitable preconditioning techniques for accelerated convergence. The parallel aspect

of preconditioners also becomes very important naturally.

This subsection gives a short overview of various parallel architectures as

well as different types of operations in iterative methods that can be parallelized.

There are currently three leading architectures of parallel models around

which modern parallel computers are designed. These are

– The shared-memory model

– Single-instruction-multiple-data (SIMD)

– The distributed memory message passing model

2.7.1.1 Shared memory computers. A shared memory computer

has processors connected to a large global memory, and the address space is the

same for all processors. Data stored in a large global memory is readily accessible

to any processor. Traditionally, there are two possible implementations of shared

memory machines:
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– bus-based architectures

– switch-based architectures

Figure 4. A bus-based shared memory computer (Saad, 2003)

Figure 5. A switch-based shared memory machine (Saad, 2003)

These two architectures are illustrated in Figure 4 and Figure 5. So far,

the bus-based model has been used more often. Buses are the backbone for

communication between the different units of most computers, and usually have
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higher bandwidth for data I/O. The main reason why the bus-based model is more

common is that the hardware involved in such implementation is simpler (ADELI

& VISHNUBHOTLA, 1987). However, memory conflicts as well as the necessity to

maintain data coherence can lead to worse performance. Moreover, shared memory

computers can not take advantage of data locality in problems such as solving

PDEs. Some machines can even have logically shared but physically distributed

memory. Modern HPC CPUs have ring meshes and Non-Uniform Memory Access

(NUMA) to address challenges of scalability and communication (Blagodurov,

Zhuravlev, Fedorova, & Kamali, 2010; Ravindran & Stumm, 1997).

2.7.1.2 Distributed Memory Architectures. The distributed

memory model can refer to distributed memory SIMD architecture or distributed

memory with memory passing interface. A typical distributed memory system

consists of a large number of identical processors and each processor has its own

memory. These processors are interconnected in a regular topology. This can be

shown with Figure 6. In these diagrams, each processor unit can be viewed as

a complete processor with its one memory, CPU, I/O subsystems, control unit,

etc. These processors are linked to a number of “neighboring” processors. In the

“message passing” model, no global synchronizations are performed of the parallel

tasks. Instead, computations are data driven because each processor performs a

given task only when the operands it requires become available. The programmer

needs to explicitly instruct data exchanges between different processors.

In the SIMD model, a different approach is used. A host processor stores

the program and each slave processor holds different data. The host broadcasts

instructions to each processor to execute them simultaneously. One advantage of
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Figure 6. An eight-processing ring (left) and 4 × 4 multiprocessor mesh (right)
(Saad, 2003)

this approach is that there is no need for large memories in each node to store the

main program since the same instructions are broadcast to each processor.

Unlike the shared-memory model, distributed memory computers can

easily exploit the data locality of data to reduce communication costs. Modern

GPUs are designed with the SIMD model (more accelerately Single-instruction-

multiple-threads, SIMT) (Owens et al., 2008), and clusters with multiple CPUs are

connected using a message passing interface (MPI) (Barker, 2015).

2.7.2 Key Operations in Parallel Implementation.

2.7.2.1 Types of Operations. We use the preconditioned Conjugate

Gradient (PCG) to demonstrate the typical operations involved that can be

parallelized. The PCG algorithm consists of the following types of operations:

– Preconditioner setup

– Matrix-vector multiplications

– Vector update
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– Dot Product

– Preconditioning operations

Matrix-vector multiplications, vector updates, and dot products are common

operations in so-called Basic Linear Algebra Subprograms (BLAS) that can

be easily parallelized and have been well studied and implemented for dense

matrices(Chtchelkanova, Gunnels, Morrow, Overfelt, & Van De Geijn, 1997;

Dongarra, Du Croz, Hammarling, & Duff, 1990; Freeman & Phillips, 1992). In

terms of the computational costs, the vector update and dot product are much

lower compared to the matrix-vector multiplication, which can still be carried

out very quickly on the latest GPUs. The tricky part or the bottleneck for both

memory and the runtime lies in the first step of preconditioner setup and the last

step of preconditioning operations. We will discuss these two key operations in the

next subsection. For now, let’s focus on the matrix-vector multiplication that has

much higher computational costs than the vector update and the dot product.

2.7.2.2 Sparse Matrix-Vector Products. The linear system coming

from the discretization in the finite difference method is often sparse, which allows

us to store them efficiently and use Sparse Matrix-Vector Products (SpMVs) for

efficient computation. Different formats for storing sparse matrices can be found

in (Saad, 2003). Compressed Sparse Row (CSR) sparse matrix format is one of the

earliest sparse formats developed. It is ideal for parallelization since the data from

each row can be handled independently. The SpMV algorithm for CSR format as

well as the demonstration of the storage scheme of the CSR format is shown in

Figure 7

A summary of different sparse matrix formats in the following table as

well as a detailed performance comparison of these different formats can be found
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Figure 7. The val array stores the nonzeros by packing each row in contiguous
locations. The rowptr array points to the start of each row in the val array.
The col array is parallel to val and maps each nonzero to the corresponding
column.(Mohammadi et al., 2018)

in (Stanimirovic & Tasic, 2009). There are also recent work on developing new

Short Name Short Name

DNS Dense Ell Ell-pack ItPack
BND Linpack Banded DIA Diagonal
COO Coordinate BSR Block Sparse Row
CSR Compressed Sparse Row SSK Symmetric Skyline
CSC Compressed Sparse column BSR Nonsymmetric Skyline
MSR Modified CSR JAD Jagged Diagonal
LIL Linked List

Table 1. A summary of different sparse matrix formats and their short names

sparse matrix formats for optimal performance for different use cases (Dongarraxz,

Lumsdaine, Niu, Pozoz, & Remingtonx, 1994; Smailbegovic, Gaydadjiev, &

Vassiliadis, 2005) or implementing SpMV algorithms on parallel architectures (Bell

& Garland, 2009; Li, Yang, & Li, 2014; Yan, Li, Zhang, & Zhou, 2014). Using
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the right sparse matrix formats and implementing them on suitable architectures

can reduce the time spent on these SpMV calculations significantly, which makes

iterative methods run faster. Another way to accelerate these iterative methods is

to use the preconditioners that we mentioned before. A parallel implementation of

these preconditioners becomes more challenging because of the complex arithmetic

operations compared to the SpMV or other BLAS operations. We will focus on the

parallel preconditioning technique in the next subsection.

2.7.3 Parallel Preconditioning.

2.7.3.1 Parallelism in Solving Linear Systems. Each

preconditioned step from the previous subsection requires the solution of a linear

system of equations of the form Mz = y. We consider traditional preconditioners

such as ILU or SOR or SSOR, in which a solution with M is the result of solving

triangular systems. Since these preconditioners are commonly used, it’s important

to explore their efficient parallel implementations for the iterative methods to

be parallel. These preconditioners are mostly implemented on shared memory

parameters. The distributed memory computers would use different strategies.

These preconditioners require some sort of factorization, and the parallelism is

done by sweeping through the lower triangular matrix or upper triangular matrix.

Typical parallelism can be seen using a forward sweep.

It’s typical for solving a lower triangular system that the solution is

overwritten onto the right-hand side. So there is only one array u needed for

both the solution and the right-hand side. The forward sweep for solving lower

triangular systems with coefficients A(i, j) and right-hand-side b is defined as

follows:
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Algorithm 2 Sparse Forward Elimination

1: for i← 2 to n do
2: for each j such that A(i, j) ̸= 0 do
3: u(i)← u(i)− A(i, j)× u(j)
4: end for
5: end for

Here A(i, j) refers to the element in the sparse matrix. The different sparse

matrix formats will have different implementations of locating this element, so the

inner for loop will be implemented differently and the A(i, j) will be replaced by

different indexing code in different sparse matrix formats.

2.7.3.2 Parallel preconditioners. Several techniques can be for

parallel implementations of the preconditioners. They can be summarized into

three types of techniques. The simplest approach is to use a Jacobi or block

Jacobi approach. In this case, a Jacobi preconditioner may be consist of a diagonal

or a block-diagonal of A To improve the performance, these preconditioners

can be accelerated by polynomial iterations. For example, the second level of

preconditioning is called polynomial preconditioning. A different strategy is to

enhance parallelism by using graph algorithms, such as graph-coloring techniques.

The gist of this approach is that all unknowns associated with the same color

can be determined simultaneously in the forward or backward sweeps. The third

strategy uses generalizations of “partitioning” techniques which can be also

called “domain decomposition” approaches. We will give a brief overview of these

methods in this part.

Overlapping block-Jacobi preconditioning is a parallel preconditioner similar

to the general block-Jacobi approach with overlapping blocks as shown in Figure 8.

Enlarging a system of algebraic equations by including duplicate copies of several
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rows, leads to an efficient iterative scheme on a multiprocessor MIMD array (Wait

& Brown, 1988).

Figure 8. The block-Jacobi matrix with overlapping blocks (Saad, 2003)

Polynomial preconditioners are another family of parallel preconditioners.

In polynomial preconditioners, the matrix M is defined by M−1 = s(A),

where s is a polynomial, typically of low degree. Thus the original system can be

preconditioned by

s(A)Au = s(A)f (2.111)
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Note that the s(A) and A commute, and as a result, the preconditioned matrix

is the same for left or right preconditioning. In addition, the matrix s(A) or

As(A) does not need to be formed explicitly in matrix form, which allows the

use of matrix-free methods. This approach was initially motivated by the good

performance of matrix-vector operations on vector computers. It has now become

more popular on iterative methods for GPU computing because of the similar

SIMD architecture. There are several ways to construct polynomials in this

method.

One of the most commonly studied approach is called the Chebyshev

iteration that can be found in (Saad, 2003). One nice feature of the Chebyshev

iteration is that it does not require inner products, and this is very attractive for

parallel implementation as it does not require reductions.

Other polynomials include least-squares polynomials. A comparison of

Chebyshev polynomials and least-square polynomials can be found in (Ashby,

Manteuffel, & Otto, 1992). So far, Chebyshev polynomials have been the most

popular for parallel implementation, especially in the matrix-free setting where

the assembly of the matrix can be very expensive. Multicolor preconditioners are

similar to ILU preconditioners in the sense that the construction and factorization

of the matrices are required. Methods like these can be done in parallel, but they

are not suitable for GPUs.

2.7.4 GPU architecture and CUDA. Given the increasing

importance and popularity of GPUs in modern supercomputers, this subsection is

dedicated to GPU architecture. As NVIDIA GPUs are mostly used in the industry

for scientific computing and machine learning, the GPU programming model will be

focused on CUDA (Compute Unified Device Architecture) toolkit.
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A GPU is built as a scalable array of multithreaded Streaming

Multiprocessors (SMs), each of which consists of multiple Scalar Processor (SP)

cores. To manage hundreds or thousands of threads, the multiprocessors employ

a Single Instruction Multiple Threads (SIMT) model with each thread mapped

into one SP core and executing independently with its own instruction address

and register state. Threads are organized in warps. A warp is defined as a group

of 32 threads of consecutive thread IDs. More detailed information on optimizing

memory access patterns can be found in (Wilt, 2013).

The NVIDIA GPU platform has various memory architectures. The types of

memory can be classified as follows:

– off-chip global memory

– off-chip local memory

– on-chip shared memory

– read-only cached off-chip constant memory and texture memory

– registers

The effective bandwidth of each type of memory depends significantly

on the access pattern. Global memory is relatively large but has a much higher

latency. Using the right access pattern such as memory coalescing and avoiding

bank conflicts will help achieve good memory bandwidth.

GPUs were initially designed for graphics-related calculations such as image

rendering. General-purpose GPU programming on NVIDIA GPUs is supported by

the NVIDIA CUDA toolkit. CUDA programs use similar syntax to C++. The main

code on the host (CPU) would invoke a kernel grid that runs on the device (GPU).
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The same parallel kernel is executed by many threads. These threads are organized

into thread blocks. Blocks and threads are the logical division of the GPU and are

mapped to the actual SMs. Thread blocks are split into warps scheduled by SIMT

units. All threads in the same block share the same shared memory and can be

synchronized by a barrier. Threads in a warp execute one common instruction at a

time. This is referred as warp-level synchronization (Wilt, 2013). It’s most efficient

when 32 threads of a warp follow the same execution path. Branch divergence

in which threads within the same warp are executing different instructions often

causes worse performance.

CUDA is only a lower-level tool for direct kernel programming. Libraries

built on top of CUDA allow users to directly use code and kernels written for

different tasks without manually programming and optimizing kernels themselves.

Existing common CUDA libraries that supports GPU SpMV operation include

CUDPP (CUDA Data Parallel Primitives)(M. Harris, Owens, Sengupta, Zhang, &

Davidson, 2007), NVIDIA Cusp library (Dalton et al., 2014), and the IBM SpMV

library (Baskaran & Bordawekar, 2009). In these packages, different formats of

sparse matrices are studied for producing high-performance SpMV kernels on

GPUs. These include the compressed sparse row (CSR) format, the coordinate

format (COO), the diagonal (DIA) format, the ELLPACK (ELL) format., and

a hybrid (ELL/COO) format. There are other recent sparse matrix formats

specifically designed for GPU computing, but we will not go into detail to cover

each of them.

For dense linear algebra computations, the MAGMA (Matrix Algebra for

GPU and Multicore Architectures) project hybrid multicore-multi-GPU system

aims to develop a dense linear algebra similar to LAPACK(Agullo et al., 2009).
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Since our numerical methods for PDEs would generate a sparse linear system, we

did not explore this library in this paper.
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CHAPTER III

SCIENTIFIC COMPUTING LIBRARIES AND LANGUAGES

3.1 PETSc

PETSc, which stands for Portable, Extensible Toolkit for Scientific

Computation, is a software library developed primarily by Argonne National

Library to facilitate the development of high-performance parallel numerical code

written in C/C++, Fortran and Python (Balay et al., 2023). It provides a wide

range of functionality for solving linear and nonlinear algebraic equations, ordinary

and partial differential equations, and also optimization problems (provided by

TAO) on parallel computing architectures. In addition, PETSc includes support

for managing parallel PDE discretizations including parallel matrix and vector

assembly routines.

Key features of PETSc include:

– Parallelism: PETSc is designed for parallel computing, especially distributed-

memory parallel computing architectures. It is intended to run efficiently on

parallel computing systems where multiple processors or nodes communicate

over the network via a message passing interface (MPI). These architectures

include clusters, supercomputers, and other HPC platforms.

– Modularity and Extensibility: PETSc is highly modular and extensible,

allowing users to combine different numerical techniques and algorithms

to solve complex problems efficiently. It provides a flexible framework for

implementing new algorithms and incorporating external libraries. It mainly

contains the following objects

∗ Algebraic objects
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· Vectors (Vec) containers for simulation solutions, right-hand sides of

linear systems

· Matrices (Mat) containers for Jacobians and operators that define

linear systems

∗ Solvers

· Linear solvers based on preconditioners (PC) and Krylov subspace

methods (KSP)

· Nonlinear solvers (SNES) that use data-structure-neutral

implementations of Newton-like methods

· Time integrators (TS) for ODE/PDE, explicit, implicit, IMEX

· Optimization (TAO) with equality and inequality constraints, first

and second order Newton methods

· Eigenvalue/Eigenvectors (SLEPc) and related algorithms

– Efficiency and Performance: PETSc is optimized for performance, with

algorithms and data structures designed to minimize memory usage and

maximize computational efficiency. It supports parallel matrix and vector

operations as well as efficient iterative solvers and preconditioners via the

objects mentioned previously

– Flexibility: PETSc supports a wide range of numerical methods and

algorithms and has built-in discretization tools. It provides interfaces for

solving problems in various scientific and engineering disciplines, including

computational fluid dynamics (CFD), solid mechanics, etc with documented

examples and tutorials for researchers.
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– PETSc is portable across different computing platforms and operating

systems, including UNIX/Linux, macOS, and Windows. It provides a

consistent interface and functionalities across different architectures, making

it easy to develop and deploy simulation code across multiple platforms.

3.2 AmgX

AmgX is a proprietary software library developed by NVIDIA to accelerate

the solution of large-scale linear systems arising from finite element and finite

volume discretizations typically found in computational fluid dynamics (CFD) and

computational mechanics simulations on NVIDIA GPUs (Naumov et al., 2015).

AmgX stands for Algebraic Multigrid Accelerated. It provides wrappers to work

with other libraries like PETSc and programming languages like Julia.

Key features of AMGX include:

– Preconditioning: AmgX offers a variety of advanced preconditioning

techniques, including algebraic multigrid (AMG), smoothed aggregation and

hybrid methods to accelerate the convergence of iterative solvers for sparse

linear systems. These preconditioners are designed for and tested in real-

world engineering problems in collaboration with companies like ANSYS, a

provider of leading CFD software Fluent.

– Parallelism: AmgX is optimized for NVIDIA GPUs and provides support for

OpenMP to allow acceleration via heterogeneous computing and MPI to run

large simulations across multiple GPUs and clusters.

– Flexibility and Customization: AmgX offers a flexible and extensible

framework for configuring and customizing the solver algorithms via JSON

files.
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The limitation of AmgX is due to its link with NVIDIA. It can not run on

GPUs from other vendors, such as AMD and Intel. Some of the latest exascale

supercomputers are built with CPUs and GPUs from AMD and Intel.

3.3 HYPRE

HYPRE is a software library of high performance numerical algorithms

including preconditioners and solvers for large, sparse linear systems of equations

on massively parallel computers Falgout, Jones, and Yang (2006b). The HPYRE

library was created to provide users with advanced parallel preconditioners. It

features parallel multigrid solvers for both structured and unstructured grid

problems. These solvers are called from application code via HYPRE’s conceptual

linear system interfaces Falgout, Jones, and Yang (2006a), which allow a variety of

natural problem descriptions.

Key features of HYPRE include:

– Scalable preconditioners: HYPRE contains several families of preconditioners

focused on scalable solutions of very large linear systems. HYPRE includes

“grey box” algorithms including structured multigrid that use more than just

the matrix to solve certain classes of problems more efficiently.

– Common iterative methods: HYPRE provides several common Krylov-based

iterative methods in conjunction with scalable preconditioners. This includes

methods for symmetric matrices such as Conjugate Gradient (CG) and

nonsymmetric matrices such as GMRES.

– Grid-centric interfaces for complicated data structures and advanced solvers:

HYPRE has improved usability from earlier generations of sparse linear solver

libraries in that users do not have to learn complicated sparse matrix data
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structures. HYPRE builds these data structures for users through a variety

of conceptual interfaces for different classes of users. These include stencil-

based structured/semi-structured interfaces most suitable for finite difference

methods, unstructured interfaces for finite element methods, and linear

algebra based interfaces for general applications. Each conceptual interface

provides access to several solvers without the need to manually write code for

new interfaces.

– User options for beginners through experts: HYPRE allows users with various

levels of expertise to write their code easily. The beginner users can set up

runnable code with a minimal amount of effort. Expert users can take further

control of the solution process through various parameters

– Configuration options for different platforms: HYPRE allows a simple and

flexible installation on various computing platforms. Users have options to

configure for different platforms during the installation. Additional options

include debug mode which offers more info and optimized mode for better

performance. It also allows users to change different libraries such as MPI and

BLAS.

– Interfaces to multiple languages: HYPRE is written in C, but it also provides

an interface for Fortran users.

3.4 Review of several languages for scientific computing

3.4.1 Fortran. There are many languages designed for high

performance computing. Traditionally, Fortran has been used to write high

performance numerical code. It is short for “Formula Translation”. As the name

suggest, it is one of the oldest and most enduring programming languages in
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scientific computing. Developed in the 1950s by IBM, it was designed to facilitate

numerical and scientific computations, particularly for high-performance computing

on mainframe computers.

Fortran was specifically designed for efficient numerical and scientific

computing, with optimized operations handling mathematical operations, arrays,

and complex computations (Backus, 1978). It provides a rich set of built-in

functions and libraries for numerical analysis, linear algebra, differential equations,

and other mathematical tasks. It is a statically typed language, meaning that

variable types are declared explicitly at compile time and do not change during

runtime. This allows compilers to perform extensive type checking and optimization

to generate efficient code for execution.

Fortran codes are also highly portable across different computing platforms.

While early versions of Fortran (66, 77) were designed for specific hardware

architectures, modern Fortran standards, such as Fortran 90, 95, 2003, 2008,

and 2018 (formerly 2015) have introduced features that enhance portability and

interoperability with other languages and systems. Fortran is also known for

its excellent backward compatibility, with newer language standards preserving

compatibility with older databases. This allows legacy Fortran programs to

continue running without modification on modern compilers and systems, ensuring

long-term viability and support for existing applications, which is very important

in scientific research where many simulation codes are built on top of decades of

previous work.

Because of these reasons, despite its age, Fortran remains widely used in

scientific and engineering computing.
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3.4.2 C and C++. C was created in 1972 as a general-purpose

programming language. C++ was created in 1979 to enhance C language with

object-oriented design (Stroustrup, 1986). Standard template libraries were

introduced in C++ in 1990s to improve code reusability and standardization

(Josuttis, 2012). Despite the historical dominance of Fortran in scientific and

engineering computing, C and C++ have gradually replaced Fortran in many

scientific computing and HPC codes due to their performance, flexibility, and rich

ecosystem of tools and libraries.

While Fortran continues to be used in certain domains, particularly in legacy

codebases and specialized applications, the adoption of C and C++ as the default

language in many modern packages reflects the evolving needs and preferences of

HPC developers for modern, versatile programming languages.

C and C++ are known for their performance and efficiency. In fact, they are

often used as the standard to compare the performance of various programming

languages. This is because they provide low-level control over hardware resources

and memory management, allowing programmers to write code that executes

with high speed and minimal overhead. The performance is crucial for HPC

applications, which often involve computationally extensive tasks and large-

scale simulations. Known as somewhat high-level languages, C and C++ strike

a balance between high-level abstractions and low-level control. They support

multiple programming paradigms including procedural, and object-oriented. C/C++

can also be extended to handle parallel processing via pragma directives. This

allows the creation of modular, reusable code with encapsulation, inheritance,

polymorphism, and templates. Standard Libraries built on top of these features

provide implementations of fundamental data structures, algorithms, and utilities.
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In addition to their language features, C and C++ offer support for

concurrency and parallelism via low-level features like threads, mutexes, condition

variables, atomic operations, and parallel algorithms. Modern C++ standards

(such as C++11, C++17 and C++20) have introduced high-level features to manage

asynchronous execution, parallel computation, and parallelism-aware data

structures. All these efforts further enhance the capability of C and C++ as high

performance computing languages.

As general-purpose programming languages, C and C++ codes are highly

portable across different platforms and architectures. The portability is essential

for deploying HPC applications on diverse computing platforms, including

cloud servers, clusters, and supercomputers. C and C++ also have excellent

interoperability with other programming languages and systems. They can be

easily integrated with libraries and tools including most common HPC languages

like Fortran, Python, and CUDA. This interoperability allows developers to

leverage existing software components and take advantage of specialized and

optimized libraries for specific computational tasks. However, the impact on the

performance needs to be considered carefully when interoperating C and C++ with

other languages.

3.4.3 MATLAB. MATLAB is a high-level programming language

usually used in an interactive development environment (IDE) from the software

with the same name (Higham & Higham, 2016). Developed by MathWorks,

it is widely used for numerical computing, data analysis, visualization, and

algorithm development. Compared to compiled languages that can generate

binary executables running natively on operation systems, MATLAB requires an

interpreter (usually by MATLAB) to “translate” the code whenever the code is run.
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To avoid ambiguity, we refer to both the language and the IDE as MATLAB here.

As a proprietary language and tool, MATLAB offers limited access to the source

code, and it is prohibitively expensive for people outside of academia without an

educational license. GNU Octave is used as an open source alternative to MATLAB

as it is mostly compatible with MATLAB. Octave is free and lightweight, however,

it often comes with the cost of worse performance. Despite being a proprietary

software, MATLAB is still often used in scientific computing, especially in academia

for the following reasons:

MATLAB is easy to use because of its intuitive syntax for mathematicians

and comprehensive set of built-in functions for numerical computing, including

matrix manipulation, linear algebra, and optimizations. For these functions,

MATLAB offers extensive examples and tutorials, making it a great choice for

beginners for learning and advanced users for writing code.

MATLAB has an interactive environment with visualization tools that

enable users to iterate quickly on algorithms. It offers a command-line interface

that is similar to read-evaluate-print-loop (REPL) in interpreted languages like

Python, and also integrates many common functionalities via UI buttons in its

IDE. Like many IDEs, MATLAB provides tools for organizing code, debugging,

profiling, and version control. More importantly, MATLAB’s functionality can be

extended through its proprietary and third-party toolboxes, which are collections

of specialized functions and algorithms for specific domains of applications such as

signal processing, control theory, and statistics.

Because of these features and accessibility via academic licenses through

educational institutes, many people start numerical coding in MATLAB and

continue to develop in MATLAB for research purposes. Although MATLAB is
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designed to run numerical calculations efficiently and also provides some limited

support for parallel and GPU computing, it was not designed as a HPC language

running on clusters, supercomputers, and cloud infrastructures. Researchers often

use MATLAB for quick implementation and testing during the prototyping stage

and then rewrite their code in HPC languages such as FORTRAN and C/C++.

This raises the so-called “two-language” problem which inspires the development of

the Julia language.

3.5 Julia langauge

Julia is a dynamically typed language for scientific computing designed with

high performance in mind (Bezanson, Edelman, Karpinski, & Shah, 2017). Julia

supports general-purpose GPU computing with the package CUDA.jl. Through

communications in LLVM intermediate representations with NVIDIA’s compiler,

it is claimed that CUDA.jl achieves the same level of performance as CUDA C

according to previous research(Besard, Foket, & De Sutter, 2018). Aimed to

address the “two-language” problem, Julia enables implementation ease of complex

mathematical algorithms while achieving high performance, an ideal match for

computational scientists without expertise in low-level language-based HPC. Julia

has gained attention among the HPC community, with notable examples including

The Climate Machine (Sridhar et al., 2022), a new Earth System model written

purely in Julia that is capable of running on both CPUs and GPUs by utilizing

KernelAbstractions.jl (Churavy et al., 2024), a pure Julia device abstraction similar

to Raja, Kokkos, and OCCA (Beckingsale et al., 2019; Carter Edwards, Trott,

& Sunderland, 2014; Medina, DS and St-Cyr, A. and Warburton, T, 2014). In

addition, because a large body of researchers studying SBP methods use Julia in

serial, e.g. (Kozdon et al., 2020; Ranocha & Nordström, 2021), our developments
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will enable these users to gain HPC capabilities in their code with minimal

overhead.
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CHAPTER IV

MATRIX-FREE SBP-SAT METHODS ON GPUS

4.1 Matrix-free GPU kernels

In this chapterr, we develop custom, matrix-free GPU kernels (specifically

for SBP-SAT methods) for computations in the volume and boundaries,

which show improved performance as compared to the native, matrix-explicit

implementation while requiring only a fraction of memory. GPU-acceleration of our

resulting matrix-free, preconditioned iterative scheme shows superior performance

compared to state-of-the-art methods offered by NVIDIA.

Stencil computations have proven efficient in utilizing GPU resources

to achieve optimal performance (Krotkiewski & Dabrowski, 2013; Vizitiu, Itu,

Niţă, & Suciu, 2014). In this work we implement a similar GPU kernel for our

2D problem by matching each spatial node to a GPU thread, however, our work

requires specialized treatment for domain boundaries. The most computationally

expensive operator is the volume operator M̃
cij
ij , which differs from traditional

finite difference operators in that it involves derivative approximations at domain

boundaries. However, the use of else statements in GPU kernels tends to lead to

warp divergence and should be avoided. We construct the matrix-free action of

A, referred to as mfA!() based on node location. Kernel 3 provides the partial

pseudocode, i.e. it includes pseudocode for the M̃
cij
ij calculation; boundary

condition calculations are further detailed in code block 1. At interior nodes the

action of M̃
cij
ij is defined by a single stencil (with spatially varying coefficients).

The action of M̃
cij
ij on boundary nodes, however, has a different stencil depending

on the face number and whether the node is at a corner of the domain. To avoid

race conditions at corners (while minimizing conditional statements), only normal

95



components of M̃
cij
ij are computed (as they correspond to the same stencil). For

example on face 1 only the action of M̃ crr
rr and M̃ crs

rs are computed at the corners,

see Figure 9. The action of the remaining components of M̃
cij
ij on the corner nodes

are computed in computations associated with adjacent faces (faces 3 and 4).

At boundary nodes we must also compute boundary condition operators

Ck, with differing stencils depending on face number and whether a node is an

interior node, an interior boundary node (i.e. not a corner), or a corner node. Code

block 1 provides the pseudocode for nodes on face 1; stencils are differentiated with

superscripts int, sw, nw, corresponding to the interior boundary, northwest, and

southwest corner nodes, respectively. Figure 9 further illustrates the nodes involved

in each computation: black dots correspond to nodes within the 2D domain. Black

circles correspond to the interior nodes that are modified by the action of M̃
cij
ij . On

the western boundary (face 1), the three-node layer adjacent to face 1 is used to

compute the actions of the volume and boundary operators. Blue diamonds and red

stars correspond to nodes that are modified by the different components of M̃
cij
ij .

Green squares correspond to the nodes that are modified by the boundary operator

C1 in order to impose the Dirichlet condition (in this case a layer of three nodes

normal to the face. More rows are involved for higher order p).

4.2 Performance: Matrix-free GPU kernels

4.2.1 Performance Comparison. With mfA!() we can carry

out the matrix-vector product without explicitly storing the matrix. In this

section, we compare its performance against the matrix-explicit cuSPARSE SpMV

implementation available through CUDA.jl. We note that this is not an exhaustive

comparison against all possible sparse matrix data structures. Our goal is to

establish a baseline comparison of our matrix-free implementation against the
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Figure 9. Schematic of 2D computational domain; nodes denoted with solid black
dots. mfA!() modifies interior nodes, denoted with circles. For face 1, contributions
to mfA!() from coordinate transformation matrices modify nodes corresponding
to different shapes. Calculations by boundary operator C1 modify nodes in green
squares.
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Algorithm 3 Matrix-Free GPU kernel Action of matrix-free A for interior nodes.

function mfA!(odata, idata, crr, crs, css, hr, hs)
i, j =get global thread IDs()
g = (i− 1) ∗ (N + 1) + j ▷ compute global index
if 2 ≤ i, j ≤ N then ▷ interior nodes

odata[g] = (hs/hr)(- (0.5crr[g-1] + 0.5crr[g])idata[g-1] +
+ (0.5crr[g-1] + crr[g] - 0.5crr[g+1])idata[g] +
- (0.5crr[g] + 0.5crr[g+1])idata[g+1]) +

▷ compute Mrr stencil

+ 0.5crs[g-1](-0.5idata[g-N -2] + 0.5idata[g+N ]) +
- 0.5crs[g+1](-0.5idata[g-N ] + 0.5idata[g+N+1]) +

▷ compute Mrs stencil

+ 0.5crs[g-N -1](-0.5idata[g-N -2] + 0.5idata[g-N ]) +
- 0.5crs[g+N+1](-0.5idata[g-N ] + 0.5idata[g+N+2]) +

▷ compute Msr stencil

- (0.5css[g-N -1] + 0.5css[g])idata[g-N -1] +
+ (0.5css[g-N -1] + css[g] + 0.5css[g+N+1])idata[g] -
- (0.5css[g] + 0.5css[g+N+1])idata[g+N+1]))

▷ compute Mss stencil
end if
. . . ▷ boundary nodes, e.g. Algorithm 4
return nothing

end function
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Algorithm 4 Matrix-Free GPU kernel Action of matrix-free A for west boundary
(face 1).

if 2 ≤ i ≤ N and j = 1 then ▷ interior west nodes
odata[g] = (M int

rr +M int
rs +M int

sr +M int
sr + Cint

1 ) (idata)
▷ apply boundary M and C stencils

odata[g+1] = Cint
1 (idata) ▷ apply interior C stencil

odata[g+2] = Cint
1 (idata) ▷ apply interior C stencil

end if
if i = 1 and j = 1 then ▷ southwest corner node

odata[g] = (M sw
rr +M sw

rs + Csw
1 ) (idata)

▷ apply southwest partial M and C stencils
odata[g+1] = Csw

1 (idata) ▷ apply southwest interior boundary C stencil
odata[g+2] = Csw

1 (idata) ▷ apply southwest interior boundary C stencil
end if
if i = N + 1 and j = 1 then ▷ northwest corner node

odata[g] = (Mnw
rr +Mnw

rs + Cnw) (idata)
▷ apply northwest partial M and C stencils

odata[g+1] = Cnw(idata) ▷ apply northwest interior boundary C stencil
odata[g+2] = Cnw(idata) ▷ apply northwest interior boundary C stencil

end if

standard sparse matrix format CSR in CUDA.jl, with a focus on integration with

preconditioning for improving CG performance.

We set up our benchmark as follows: We discretize the domain Ω̄ in each

direction using N + 1 grid points, varying N from 24 to 213, so the matrix A is of

size (N + 1)2 × (N + 1)2. Figure 10 and Figure 11 compare the performance of

the matrix-free implementation against the matrix-explicit SpMV provided with

cuSPARSE using the CSR format on both the A100 GPU and V100 GPU. The

performance is measured by profiling 10,000 SpMV calculations with NVIDIA

Nsight Systems, and the time results shown in the figures represent the time to

perform one SpMV calculation. For problem sizes large enough for GPUs with

N greater than 210, we see consistent speedup from mfA!() kernel with higher

speedup achieved for larger problem sizes. On the A100 GPU, our speedup ranges
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from 3.0× to 3.1×, . On the V100 GPU, we see a similar trend, with our speedup

ranging from 3.1× to 3.6×.

The mfA!() kernel has a low arithmetic intensity of 0.28 based on the

computation of the interior points (which accounts for more than 99% of the total

computation and data access). This puts the mfA!() kernel in the bandwidth-

limited regime (Ding & Williams, 2019). If we plot this on the Roofline model, as

shown in Figure 12 as the left red dot, we see that our kernel achieves performance

that is higher than what is possible for the given arithmetic intensity. If we

calculate the arithmetic intensity based on the assumption that the data is

read from the DRAM only once (i.e., the ideal case when the kernel only incurs

compulsory cache misses), as shown in Figure 12 as the right red dot, we see a

higher arithmetic intensity of 1.85 and our achieved performance falls below the

Roofline. This suggests that a large portion of our data is coming from the fast

memory (e.g., L1 or L2 caches), leading to performance that is better than what

can be achieved if the data is only coming from the DRAM.

To confirm our hypothesis, we use NVIDIA Nsight Compute to profile our

code for the problem size of N=213. The profile shows that we achieved 72% L1

cache hit rate and 57% L2 cache hit rate, which indicates that the majority of

our data is coming from the L1 and L2 caches (approximately 88%), and that

our DRAM reads are due mostly to compulsory cache misses (i.e., when the input

data is read for the first time). This explains why our code performs better than

the DRAM-bounded performance. Figure 13 shows the Roofline model generated

by Nsight Compute, based on performance counter measurements of how much of

the overall data is coming from different levels of the memory hierarchy. Figure 13

confirms that the majority of our data comes from the L1 cache, followed by L2
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Figure 10. Performance of SpMV vs matrix-free mfA!() on A100 GPU. Total time
for matrix-free (red) and matrix-explicit CSR (blue) formats are shown in charts
plotted against N , where the matrix is size (N + 1)2 × (N + 1)2.

and DRAM. It also suggests that we can further improve the performance of our

mfA!() kernel by improving data reuse in the L1 cache, which will yield up to 3.8×

speedup.

In future work, we will target improved performance of mfA!(), for example

through additional memory optimization techniques to improve L1 cache hit

rate, especially with respect to its performance on newer architectures. In the

present work, however, we focus on utilizing mfA!() to solve the linear system with

preconditioning.
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Figure 11. Performance of SpMV vs matrix-free mfA!() on V100 GPU. Total time
for matrix-free (red) and matrix-explicit CSR (blue) formats are shown in charts
plotted against N , where the matrix is size (N + 1)2 × (N + 1)2.
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Figure 12. Roofline model analysis for our matrix-free mfA!() on the A100 GPU.
The red dot on the left represents the performance achieved by our kernel and
its arithmetic intensity (0.28). The red dot on the right represents the same but
assuming data is loaded only once from DRAM (i.e., compulsory misses), which
yields a higher arithmetic intensity (1.85). The fact that our kernel (red dot)
achieves higher performance than what is predicted by the Roofline model suggests
that a large portion of our data is coming from the caches.
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Figure 13. Roofline model generated by Nsight Compute, based on performance
counter measurements of how much of the overall data is coming from different
levels of the memory hierarchy. This confirms our hypothesis that the majority of
our data is coming from the L1 cache, and that further improving data reuse in L1
will yield up to 3.8× speedup.
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N m nzval memory size

210 1050625 9447429 0.1596 GB
211 4198401 37769221 0.6379 GB
212 16785409 151035909 2.5509 GB
213 67125249 604061701 10.2020 GB

Table 2. Number of nonzero values (nzval) for CSC or CSR sparse matrices with
different N , where matrix size is (N+1)2×(N+1)2. The matrices are SPD. Here, m
represents the number of rows, and nzval represents the number of nonzero values.
The total memory size (last column) is calculated using previous columns.

4.2.2 Memory Usage Comparison. Next we compare the memory

usage of mfA!() against the SpMV kernel via the built-in memory status function

in CUDA.jl. CUDA.jl currently has good support for only three different sparse

matrices: CSR, CSC, and COO. In Julia, the default sparse matrix format is

CSC, but in CUDA.jl, the default sparse matrix format is CSR, and thus, there

is a necessary conversion between these two formats when converting the CPU

arrays to GPU arrays in Julia. However, for our problem, where the matrix is

SPD, both CSR and CSC formats use exactly the same amount of memory; the

only difference is in the use of row pointer rowptr values (for CSR) instead of

column pointer values colptr (for CSC), and the order of nonzero values nzval.

To avoid redundancy, we merge key results in memory consumption for CSC and

CSR formats into three different numbers for each N . The collected data is given in

Table 2.

For the matrix-free method, memory consumption is reported in Table 3.

In order to perform the matrix-vector product, we need to allocate memory to

store the coefficients crr, css and crs; each requires the same size of memory as the

numerical solution and must be stored on each grid level when using geometric

multigrid as a preconditioner. In addition, we must compute and store the
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N crr/css/crs Ψ1/Ψ2 total memory size

210 0.008405 GB 8 KB 0.02523 GB
211 0.03359 GB 16 KB 0.1008 GB
212 0.1343 GB 32 KB 0.4029 GB
213 0.5370 GB 65 KB 1.6111 GB

Table 3. Memory allocation for matrix-free methods where matrix size is (N +1)2×
(N + 1)2. Here crr, css, and csr correspond to coefficient matrices of size (N + 1)2.
Ψ1 and Ψ2 are used in Dirichlet boundary conditions and are vectors of length N +
1. Total memory allocated (last column) is calculated using previous columns.

minimum coefficient values Ck,min
rr on faces 1 and 2, as specified in the previous

section, which we denote Ψ1 = and Ψ2, respectively.

These are associated with Dirichlet boundary conditions and are

significantly smaller in size, and thus reported in KB. Adding up these

contributions, we can compute the total memory size, which we provide in the

last columns of Tables Table 2 and Table 3: We can see that there is a significant

reduction in additional required memory for the matrix-free method than the

memory to store sparse matrices in CSC or CSR format. When calculating the

total memory used for an SpMV operation (including writing results into output

vectors), we need to add additional memory allocated for the input data and

output data, which require the same memory as the coefficients (the first column of

Table 3). A simple calculation can show that the total memory required when using

an SpMV kernel is a constant 4.2× of that required for the matrix-free method.

4.3 Performance: Matrix-free MGCG

4.3.1 Preconditioning performance. MG methods have many

tunable parameters. For this initial study, we explored the MGCG performance

varying the number of Richardson pre- and post-smoothing steps on every level

between 1 and 5. We considered a single V-cycle (i.e. taking ν1 = ν2 = ν3 = 5 and
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Table 4. Iterations and time to converge for N = 210 using 1 smoothing
step in PETSc PAMGCG with V cycle (first three rows) vs. our MGCG using
Richardson’s iteration as smoother (last row)

mg levels ksp type mg levels pc type iters time

chebyshev
sor 18 4.105 s
jacobi 22 3.382 s
bjacobi 17 3.945 s

richardson
sor 18 3.581 s
jacobi 49 3.729 s
bjacobi 16 3.729 s

cg
sor 17 4.081 s
jacobi 23 3.849 s
bjacobi 16 3.971 s

richardson none 11 0.086 s

Nmaxiter = 1 in Algorithm 1), including on the coarsest grid (5 grid points in each

direction). For all tests in this work we initialize the iterative scheme with the zero

vector. All algorithms stop when the relative residual is reduced to less than 10−6

times the initial residual.

Comparisons against an unpreconditioned CG are not generally appropriate

as most real-world applications require preconditioning to make any solution

tractable. The Portable, Extensible Toolkit for Scientific Computing (PETSc)

(Balay et al., 2023) is one of the most widely used parallel numerical software

libraries, featuring extensive preconditioning methods, many of which can be tested

by users via relatively simple command-line options. We experimented with several

of PETSc’s off-the-shelf algebraic multigrid preconditioned CG solvers (denoted

PAMGCG). PETSc’s PAMGCG is similar to our MGCG and only requires loading

PETSc formatted A and b (from which it forms the coarse grid operators).
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Table 5. Iterations and time to converge for N = 210 using 5 smoothing
steps in PETSc PAMGCG with V cycle (first three rows) vs. our MGCG using
Richardson’s iteration as smoother (last row)

mg levels ksp type mg levels pc type iters time

chebyshev
sor 10 10.76 s
jacobi 14 10.20 s
bjacobi 9 10.58 s

richardson
sor 9 10.13 s
jacobi DV 9.24 s
bjacobi 8 10.28 s

cg
sor 9 10.47 s
jacobi 13 10.54 s
bjacobi 8 10.45 s

richardson none 8 0.069s

We tested PAMGCG with various configurations against our custom

MGCG, applying the same stopping criterion (here based on the relative norm

of the residual vector reduced to 1E-6), with results provided in Table 4 and

Table 5. The mg levels ksp type and mg levels pc type in the tables stand for

Krylov subspace method types and preconditioner types used at each level of the

multigrid in PAMGCG. When classical iterative methods are used as smoothers,

mg levels ksp type is set as richardson and the particular smoother (e.g. Jacobi)

is set by mg levels pc type. Since our MGCG uses Richardson’s iteration as the

smoother for multigrid, we report mg levels ksp type as richardson and

mg levels pc type as none to maintain coherence across the columns.

Iterations and total time to converge are reported. We found that the Jacobi

iteration is not a good choice as smoother in PAMGCG. When using 1 smoothing

step, it takes more iterations than other configurations. It does not converge

(denoted as DV) when using 5 smoothing steps. Aside from this configuration,
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Table 6. Time to perform a direct solve after LU factorization on CPUs vs PCG on
GPUs. We report time in seconds and iterations to converge. For AmgX, we report
setup + solve time. For our MGCG, setup time is negligible. “ns” is short for the
number of smoothing steps. GPU results are tested on A100.

N Direct Solve AmgX (ns = 1) AmgX (ns = 5)

210 0.912 s (0.0319 s + 0.0243 s) / 25 (0.0321 s + 0.0435 s) / 17
211 6.007 s (0.086 s + 0.161 s) / 55 (0.086 s + 0.311 s) / 38
212 22.382 s (0.310 s + 0.235 s) / 24 (0.323 s + 0.488 s) / 15
213 134.697 s (1.334 s + 1.643 s) / 24 (1.217 s + 1.865 s) / 16

Table 7. Time to perform a direct solve after LU factorization on CPUs vs PCG on
GPUs. We report time in seconds and iterations to converge. For AmgX, we report
setup + solve time. For our MGCG, setup time is negligible. “ns” is short for the
number of smoothing steps. GPU results are tested on A100.

N Direct Solve SpMV-MGCG (ns = 5) MF-MGCG (ns = 5)

210 0.912 s 7.019E-2 s / 8 2.851E-2 s / 8
211 6.007 s 0.158 s / 7 0.0605 s / 7
212 22.382 s 0.564 s / 7 0.207 s / 7
213 134.697 s 5.028 s / 7 0.865 s / 7

other PETSc configurations in the table exhibit comparable performance in both

the number of iterations and the convergence time. We found that additional

options within PAMGCG play relatively minor roles in performance. Our MGCG

results (reported in the last rows), however, show superior performance in terms of

both iteration counts and overall time.

4.3.2 Performance on GPUs. With the matrix-free action of A

established, we can solve system with a matrix-free version of our custom MGCG

method (MF-MGCG). Other than low-level GPU kernels, Julia also supports high-

level vectorization for GPU computing, which we utilize extensively in our MGCG

code for convenience. In this section, we compare its performance against MGCG

using the cuSPARSE (matrix-explicit) SpMV (SpMV-MGCG) and also against the

state-of-the-art off-the-shelf methods offered by NVIDIA, namely, AmgX - the GPU
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accelerated algebraic multigrid. The solvers and preconditioners used by AmgX

are stored as JSON files. We explored different sample JSON configuration files

for AmgX in the source code and found that CG preconditioned by classical AMG

performed best for our problem. To maintain a multigrid setup comparable to our

MGCG, we modified the PCG CLASSICAL V JACOBI.json to use 1 and 5 smoothing

steps with block Jacobi as the smoother. All algorithms stop when the relative

residual is reduced to less than 10−6 times the initial residual. We report results

from AmgX in Table 6 and our MGCG in Table 7. Also included in the table are

results using a direct solve (using LU factorization in LAPACK in Julia) only

because it is so often used in the earthquake cycle community for volume based

codes (B. A. Erickson et al., 2020) and our developed methods offer promising

alternatives. As illustrated, the GPU-accelerated iteratives schemes achieve much

better performance for the problem sizes tested.

The results from Table 6 and Table 7 show that our MGCG method uses

fewer iterations to converge compared to AmgX, while iterations for both remain

generally constant with increasing problem size. When we increase smoothing

steps from 1 to 5, the AmgX sees reduced iterations, but the time to solve also

increases by roughly 3×. Because we apply rediscretization (rather than Galerkin

coarsening) for MGCG, the setup time is negligible. The setup time in the AmgX is

comparable to the solve time however, which adds additional cost to use AmgX

as a solver. Our SpMV-MGCG is roughly 2× slower than the AmgX using 1

smoothing step, but our MF-MGCG is faster than AmgX, up to 2× speedup for

N = 213. Compared to our SpMV-MGCG, our MF-MGCG achieves more than 2×

speedup, and the speedup is more obvious at N = 213, indicating that the MF-

MGCG is suitable for large problems.
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In this chapter, we present a matrix-free implementation of the multigrid

preconditioned conjugate gradient in order to solve 2D, variable coefficient

elliptic problems discretized with an SBP-SAT method. Our customed multigrid

preconditioner achieves similar preconditioning performance against the multigrid

using Galerkin’s condition from previous work, and it is more suitable for GPU

code. The MGCG algorithm requires a nearly constant number of iterations

to converge for various problem sizes. We used Nsight Compute to analyze the

performance of our matrix-free kernel. This offers us more insights into the

achieved computation and memory performance, which points to directions for

future kernel-level optimizations on newer GPU architectures.

This work is a fundamental first step towards high-performance

implementations to solve linear systems using SBP-SAT methods. Future work will

target SBP-SAT methods with higher-order accuracy in 3D, as well as explorations

of additional GPU kernel optimization and multi-GPU implementation. We also

plan to improve the performance of the preconditioner by systematic experiments

with different preconditioner configurations using PETSc and applying second-order

smoothers that have exhibited improved performance in the multigrid method as

well as the mixed-precision techniques (Abdelfattah et al., 2021; Golub & Varga,

1961; Gutknecht & Röllin, 2002).
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CHAPTER V

SEAS BENCHMARK PROBLEMS

5.1 SEAS problems

5.1.1 Modeling Environment. The applications are motivated

by the study of quasi-static deformation of the solid Earth over the time scales

of earthquake cycles. In both the interseismic and coseismic phases, the off-fault

material response is modeled as elastic-plastic.

ρü = ∇ · σ + F, σ = C : (ϵ− ϵp) (5.1)

Here, ρ is the material density, u is the vector of particle displacements,

F is the body fordce, C is the stiffness tensor of elastic moduli, and ϵ and ϵp are

the elastic and plastic strains. A fault network (an example shown in Figure 14) is

composed of faults governed by non-linear, rate-and-state friction which determines

the relationship between the slip velocity V to shear traction τ with the (effective)

norm stress σ̄, the friction coefficient f and a state variable Ψ.

τ = σ̄f(V,Ψ),Ψ = G(V,Ψ) (5.2)

The form of the state evolution law G can take several forms such as the aging law

in which the state evolves in the absence of slip or the slip law with strong rate-

weakening.

During the interseismic phase, the inertial terms in the governing

Equation 5.1 are set 0 (ü = 0). Tectonic loading is imposed through time-

dependent boundary conditions and the slip on faults are incorporated through

friction law Equation 5.2. The evolution of Ψ constraints the time step, and

very large time steps can be used during the interseismic phase. The main

computational challenge comes from solving the large linear systems of equations
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Figure 14. A 3D image of the complex fault network from EMC earthquake; image
generated using scripts from (Marshall et al., 2017)
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that come from the discretization of the steady-state version of the Equation 5.1.

During the interseismic phase, tectonic loading determines the boundary conditions

and the stress on faults as the result of elastic deformation. Once an event

begins to nucleate, we enter the coseismic phase and inertial terms of governing

Equation 5.1 are retained. It is more efficient to use explicit integration during

this period because it simplifies the computation. In both phases, the governing

equation can be solved using the SBP-SAT methods mentioned in the previous

section.

5.1.2 3D Problem Setup. The 3D problem setup described below is

taken from the BP5 problem description (Jiang & Erickson, 2020). The medium is

assumed to be a homogeneous, isotropic, linear elastic half-space defined by

x = (x1, x2, x3) ∈ (−∞,∞)× (∞,∞)× (0,∞) (5.3)

with a free surface at x3 = 0 and x3 as positive downward. A vertical, strike-slip

fault is embedded at x1 = 0, We use the notation “+” and “-” to refer to the

different sides of the fault.

We assume 3D motion, letting ui = ui(x, t), i = 1, 2, 3 denote the

displacement in the i-direction. Hooke’s law for linear elasticity is given by

σij = Kϵkkδij + 2µ(ϵij −
1

3
ϵkkδij) (5.4)

for bulk modulus K and shear modulus µ. The strain-displacement relations are

given by

ϵij =
1

2

[
∂ui
∂xj

+
∂uj
∂xi

]
(5.5)

The description of these benchmark problems can be found in (B. Erickson &

Jiang, 2018; Jiang & Erickson, 2020). To simulate the SEAS problems using the

quasi-static method, it usually follows these steps.
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Algorithm 5 Quasi-static Formulation Algorithm

1: Step 1: Initialize boundary conditions and state variables
2: while simulation time not reached do
3: Step 2: Solve steady-state problems to obtain displacements
4: Linear solve of equations of static elasticity
5: Step 3: Calculate stress from displacements
6: Step 4: Calculate slip velocity using rate-and-state friction
7: Step 5: Determine time step size (dt) using ODE solver
8: Step 6: Integrate state variables using aging law and dt
9: Step 7: Update boundary conditions using slip velocity and dt
10: end while

The DifferentialEquations.jl package provides powerful adaptive ODE solvers

based on Runge-Kutta methods and useful ODE interfaces that allow us to modify

data and write to outputs. The key challenge here is step 2 which requires solving

a large linear system that is formed with the SBP-SAT methods. It’s difficult to

apply direct methods due to their high memory requirements and computational

inefficiency. In the next two chapters, we will go into detail to first formulate the

linear systems using the SBP-SAT methods and then apply HPC algorithms to

solve such problems.

5.1.3 Solving for rate-and-state friction. Rate-and-state friction

plays a central role in all SEAS problems. The friction coefficient function f in

SEAS problems is given as a regularized formulation

f(V, θ) = a sinh−1[
V

V0
exp

f0 + b ln(V0θ/L)

a
] (5.6)

L is the critical distance, which is sometimes denoted with Dc. f0 represents

the reference friction coefficient. V0 represents slip rate, and a and b are rate-

and-state parameters. For benchmark problem 1 and 5, b is constant as b0, but a

varies throughout computational domain Ωf in order to define velocity-weakening
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and velocity-strengthening regions. We will define them in respective sections

differently.

The state variable θ evolves according to the aging law

dθ

dt
= 1− V θ

L
(5.7)

The fault strength is given as

F = σ̄nf(V, θ)
V

V
(5.8)

where F and V are vectors and V is the norm of the V. The rate-and-state

friction where shear stress on fault is equal to fault strength F. In Quadsi-static

simulations, fault displacements are solved given governing equations and boundary

conditions. Shear stress is calculated using displacements on fault. In Equation 5.8

and Equation 5.6, we can solve for V and then calculate components of V based

on components of F. This significantly simplifies the calculation and improves

numerical accuracy due to the magnitude differences between different components

of F and V.

Once all parameters in Equation 5.6 and Equation 5.8 are known along

shear stress calculated from displacements, it is common to apply Newton’s method

given in Algorithm 6 to solve the non-linear equation to obtain V .

In our problem with high nonlinearity from the sinh−1 function, to improve

numerical stability, we also need to apply the “safe-guarded” method. One

commonly used method is called bisection, it uses a similar approach to binary

search. Based on the functional values of a close range [xL, xr], it updates the

search range of the root x. Newton’s method modified with Bisection is given in

Algorithm 7.
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Algorithm 6 Newton’s Method

1: Initialize x0
2: Set tolerance ϵ
3: Set maximum number of iterations Nmax

4: for k = 0, 1, 2, . . . , Nmax do
5: Compute f(xk) gradient ∇f(xk)
6: Determine search direction dk = −(∇f(xk))−1f(xk)
7: Perform line search to find step size αk such that f(xk + αkdk) < f(xk)
8: Update xk+1 = xk + αkdk
9: if ∥∇f(xk+1)∥ < ϵ then
10: Convergence achieved
11: break
12: end if
13: end forreturn xk+1

Algorithm 7 Newton’s Method with Bisection

1: Initialize x0, bounds [xL, xR], and x = (xL + xR)/2
2: Set tolerance ϵa, ϵr and step size αk = xR − xL
3: Set maximum number of iterations Nmax

4: for k = 0, 1, 2, . . . , Nmax do
5: Compute f(xk) and gradient ∇f(xk)
6: Compute fL, fR as f(xL), f(xR)
7: Determine search direction dk = −(∇f(xk))−1f(xk)
8: Perform line search to find step size αk such that f(xk + αkdk) < f(xk)
9: Update xk+1 = xk + αkdk
10: if xk < xL or xk > xR then
11: xk = (xL + xR)/2
12: αk = (xR − xL)/2
13: end if
14: if f(xk) ∗ fL > 0 then
15: (fL, xL) = (f, xk)
16: else
17: (fR, xR) = (f, xk)
18: end if
19: if ∥∇f(xk+1)∥ < ϵa and ∥αk∥ < ϵa + ϵr ∗ (∥αk∥+ ∥x∥)) then
20: Convergence achieved
21: break
22: end if
23: end forreturn xk+1
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Because V is solved for each grid point independently, the above methods

can be implemented using vectorized approach either on CPUs or GPUs. Logical

operations used in the control branch can be implemented using masks, which is

a common technique in parallelization. The above calculations, although complex

in numerical form and involving key concepts in earthquake cycle simulations and

rate-and-state friction laws are actually very cheap and can be accelerated easily

using vectorized operations. It is not the focus of this thesis.

5.1.4 Methods of Lines. Governing equations in SEAS problems,

like many other PDEs, involve both time and space. Methods of Lines (MOL) is

a common approach to solving these PDEs. The basic idea of MOL is to replace

the spatial derivatives in PDE with algebraic approximations such as the SBP-

SAT method in our work. Once this is done, the spatial derivatives are no longer

explicitly dependent on spatial independent variables. Thus, the only variable

left is t. In other words, we have a system of ODEs that approximate the original

PDE and use various ODE solvers to solve the original PDE. Since ODE solver

is not the focus of this thesis, we use the default and the mostly recommended

ODE solver tsit5() provided in DifferentialEquations.jl (Tsitouras, 2011). This

is an adaptive ODE solver based on the Runge-Kutta pair of orders 5(4). The

numerical stability of ODE solvers plays an important role in numerical solutions to

PDEs, and they affect the simulation results and running time significantly in our

research. However, this thesis is on the spatial discretization part of the MOL using

the SBP-SAT method, which we will discuss in the next section in detail for BP1

and BP5 separately. Contents related to ODE solvers will only be briefly mentioned

without detailed discussion and analysis.
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Figure 15. BP1 considers a planar fault embedded in a homogeneous, linear elastic
halfspace with a free surface. The fault is governed by rate-and-state friction down
to the depth Wf and creeps at an imposed constant rate Vp down to the infinite
depth. The simulations will include the nucleation, propagation, and arrest of
earthquakes, and aseismic slip in the post- and inter-seismic periods. The figure
and the description are given in (B. Erickson & Jiang, 2018)

5.2 BP1-QD problem

This section of Chapter 5 contains co-authored previously published work in

the Bulletin of the Seismological Society of America with my advisor Brittany A.

Erickson as the first author.

5.2.1 Problem description. The problem setup is similar to the 3D

problem setup described in section 5.1. Here, we assume antiplane shear motion

that is invariant in the y-direction. The displacement vector u = u(x, y, z), and the

only non-zero component of the displacement vector is in the y-direction. We use

the scalar value u to denote this displacement component.

The 3D problem is then reduced to a 2D problem
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0 =
∂σxy
∂x

+
∂σyz
∂z

(5.9)

in the domain (x, z) ∈ (−∞,∞)× (0,∞), where

σx,y = µ
∂u

∂x
; σyz = µ

∂u

z
(5.10)

The above is essentially a Poisson’s equation that we solve in Section 4. The

formulation of the linear system for the BP1-QD problem is similar to what is

described in Chapter 4. Instead of using methods of manufactured solutions to

verify our solution and convergence, we verify our results via comparison with

results from the simulations of other researchers. The formulation of the linear

systme for BP1-QD problem is similar to what is described in Chapter 4. Instead of

using methods of manufactured solutions to verify our solution and convergence,

we verify our results via comparison with results from the simulations of other

researchers.

Most parameters and boundary and initial conditions are given in the SEAS

problem description. In this problem, a varies with the depth

a(z) =



a0, 0 ≤ z < H

a0 + (amax − a0)(z −H)/h, H ≤ z < H + h

amax, H + h ≤ z < Wf

(5.11)

Below depth Wf , the fault creeps at an imposed constant rate, given by the

interface condition

V (z, t) = Vp, z ≥ Wf (5.12)
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Figure 16. Long-term behavior of BP1-FD models. Our model name is Thrase in
this figure. (a) Shear stress and (b) slip rates at the depth of 7.5 km across codes
with sufficiently large computational domain sizes. Also shown (in dashed black)
are those for the quasi-dynamic counterpart BP1-QD. The color version of this
figure is available only in the electronic edition. (B. A. Erickson et al., 2023)

For the simulation, we discretize our problem on a 401 × 401 grid points

in each direction after discretization on a 2D domain with around 160k unknowns.

The conjugate gradient method without a preconditioner on GPUs is fast enough

for the simulation to be complete in ∼ 2 days on a V100 GPU after solving linear

system ∼ 300000 times. It takes around 0.5 seconds to solve linear systems, update

values, and perform other data operations. The results for this simulation are

published in (B. A. Erickson et al., 2023) under the model name Thrase.

Figure 16 shows our results along with simulation results from other

researchers. When using different methods to solve the same benchmark problem,

we achieve comparable results regarding the time between two slip events and the

slip rate.

For the 2D problem with more than 1000 grid points in each direction or

a 3D problem with recommended resolutions from benchmark problem 5, we will

be solving linear systems with millions or tens of millions of unknowns. The above

approach is too slow even on the latest GPUs. We need more advanced algorithms

like the MGCG method described in Chapter 4.
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Figure 17. This benchmark considers 3D motion with a planar fault embedded
vertically in a homogeneous, linear elastic whole-space. The fault is governed by
rate-and-state friction in the region 0 ≤ x3 ≤ Wf and |x2| ≤ lf/2, outside of which
it creeps at an imposed constant horizontal rate Vp (gray). The velocity weakening
region (the rectangle in light and dark green; hs + ht ≤ x3 ≤ hs + ht + H and
|x2| ≤ l/2) is surrounded by a transition zone (yellow) of width ht to velocity
strengthening regions (blue). A favorable nucleation zone (dark green square with
width w) is located at one end of the velocity-weakening patch. (Jiang & Erickson,
2020)

5.3 BP5-QD problem

5.3.1 Problem description.

5.3.2 Boundary and Interface conditions. At x1 = 0, the fault

defines the interfaces. A free surface lies at x3 = 0, where all components of

traction have 0 value. This condition is written in the following form

σj3(x1, x2, 0, t) = 0, j = 1, 2, 3 (5.13)

We assume a “non-opening condition” on the fault

u1(0
+, x2, x3, t) = u1(0

−, x2, x3, t) (5.14)

122



For j = 2, 3, we define the slip vector as the jump in horizontal and vertical

displacements across the fault.

sj(x2, x3, t) = uj(0
+, x2, x3, t)− uj(0−, x2, x3, t), j = 2, 3 (5.15)

We require that components of the traction vector be equal and opposite across the

fault, which yields three conditions

−σ11
(
0+, x2, x3, t

)
= −σ11

(
0−, x2, x3, t

)
, (5.16)

σ21
(
0+, x2, x3, t

)
= σ21

(
0−, x2, x3, t

)
, (5.17)

σ31
(
0+, x2, x3, t

)
= σ31

(
0−, x2, x3, t

)
, (5.18)

We denote these three common values as σ (positive means compression), τ and

τz respectively. In the simulation, τ and τz are key values calculated from the

displacements and are used in the rate-and-state friction. We also export the log

of these two values to the output files.

Most parameters are given in the problem description. The key value is the

rate-and-state friction a, given in the following form

a(x2, x3) =



a0, (hs + ht ≤ x3 ≤ hs + ht +H) ∩ (|x2| ≤ l/2)

amax, (0 ≤ x3 ≤ hs) ∪ (hs + 2ht +H ≤ x3 ≤ Wf )

∪(l/2 + ht ≤ |x2| ≤ lf/2)

a0 + r(amax − a0), other regions

(5.19)

where r = max(|x3 − hs − ht −H/2| −H/2, |x2| − l/2)/ht.
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Outside the domain Σf (|x3| > Wf or |x2| > lf/2 as denoted in the grey

region in the Figure 17), the fault creeps horizontally at an imposed constant rate

V2(x2, x3, t) = Vp (5.20)

V3(x2, x3, t) = 0 (5.21)

where Vp is the plate rate.

We also need to specify the initial conditions for the simulation. We assume

that slip on the fault separating identical materials does not change normal

traction, so σn remains constant.

The initial state and prestress on the fault is chosen so that the model can

start with a uniform fault slip rate, given by V = [Vinit, Vzero] where Vzero is chosen

as 10−20m/s to avoid infinite log values in the output, and τ 0 = τ 0V/V .

The initial state variable is chosen as the steady state at slip rate Vinit over

the entire fault

θ(x2, x3, 0) = L/Vinit (5.22)

For the BP5-QD problem, we also need to specify an initial value for the

slip, which we set to be zero.

sj(x2, x3, t) = 0, j = 2, 3 (5.23)

The scalar pre-stress τ 0 is chosen as the steady-state stress

τ 0 = σ̄na sinh
−1[

Vinit
2V0

exp(
f0 + b ln(V0/Vinit

a
)] + ηVinit (5.24)

To break the symmetry of the problem and facilitate comparisons of different

simulations, we choose a small region as a favorable location for nucleation to

impose a smaller critical slip distance (L = 0.13m) and higher initial slip rate along
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the x2-direction (Vi = 0.03m/s) while keeping the initial state variable θ(x2, x3, 0)

unchanged. The means we impose higher pre-stress along the x2-direction.

We use the recommended parameters from the problem description and

perform initial simulations for 1800 years.

5.3.3 SBP-SAT formulations for BP5-QD. For this 3D problem,

we use SBP-SAT methods similar to (Almquist & Dunham, 2021) to formulate

our linear system. To solve the linear elasticity in 3D, we need to solve for the

displacements in x, y, and z directions for each point. We denote the displacement

vector as u = [u1, u2, u3]. To turn the tensor formulation from (Almquist &

Dunham, 2021) into a matrix formulation for iterative solvers, we first stack the

displacements for a point in x, y, z directions, and then for all points in x, y, and z

directions. We label the faces for 3D simulation in the following order as shown in

Figure 18

The first step is to derive values for σ tensor in 3D.
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Figure 18. We set up the 3D coordinate and denote faces 1 to 6 using different
colors. Face 1 and Face 2 are perpendicular to the x-axis denoted using blue color.
Face 3 and Face 4 are perpendicular to the y-axis denoted using green color. Face
5 and Face 6 are perpendicular to the z-axis denoted using red color. We impose
Dirichlet boundary conditions on Face 1 and Face 2. For Face 3 to Face 6, we
impose traction-free (Neumann) condition.
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σ11 = Kϵkk + 2µ(ϵ11 −
1

3
ϵkk) = (K − 2

3
µ)(

∂u1
∂x1

+
∂u2
∂x2

+
∂u3
∂x3

) + 2µ
∂u1
∂x1

(5.25)

σ12 = 2µϵ12 = µ(
∂u1
∂x2

+
∂u2
∂x1

) (5.26)

σ13 = 2µϵ13 = µ(
∂u1
∂x3

+
∂u3
∂x1

) (5.27)

σ21 = 2µϵ21 = µ(
∂u2
∂x1

+
∂u1
∂x2

) (5.28)

σ22 = Kϵkk + 2µ(ϵ22 −
1

3
ϵkk) = (K − 2

3
µ)(

∂u1
∂x1

+
∂u2
∂x2

+
∂u3
∂x3

) + 2µ
∂u2
∂x2

(5.29)

σ23 = 2µϵ13 = µ(
∂u2
∂x3

+
∂u3
∂x2

) (5.30)

σ31 = 2µϵ31 = µ(
∂u3
∂x1

+
∂u1
∂x3

) (5.31)

σ32 = 2µϵ32 = µ(
∂u3
∂x2

+
∂u2
∂x3

) (5.32)

σ33 = Kϵkk + 2µ(ϵ33 −
1

3
ϵkk) = (K − 2

3
µ)(

∂u1
∂x1

+
∂u2
∂x2

+
∂u3
∂x3

) + 2µ
∂u3
∂x3

(5.33)

Here, we also use 1, 2, 3 to denote the components of σ in x, y, z directions

to simplify the notation. Then we can rewrite governing equations in terms of the

x, y, z components.
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ρ
∂2u1
∂t2

=
∂σ11
∂x1

+
∂σ12
∂x2

+
∂σ13
∂x3

= (K − 2

3
µ)(

∂2u1
∂x21

+
∂2u2
∂x1∂x2

+
∂2u3
∂x1∂x3

) + 2µ
∂2u1
∂x21

+ µ(
∂2u1
∂x22

+
∂2u2
∂x2∂x1

) + µ(
∂2u1
∂x23

+
∂2u3
∂x3∂x1

) (5.34)

ρ
∂2u2
∂t2

=
∂σ21
∂x1

+
∂σ22
∂x2

+
∂σ23
∂x3

= µ(
∂2u2
∂x21

+
∂2u1
∂x1∂x2

) + (K − 2

3
µ)(

∂2u1
∂x2∂x1

+
∂2u2
∂x22

+
∂2u3
∂x2∂x3

)

+ 2µ
∂2u2
∂x22

+ µ(
∂2u2
∂x23

+
∂2u3
∂x3∂x2

) (5.35)

ρ
∂2u3
∂t2

=
∂σ31
∂x1

+
∂σ32
∂x2

+
∂σ33
∂x3

= µ(
∂2u3
∂x21

+
∂2u1
∂x1∂x3

) + µ(
∂2u3
∂x22

+
∂2u2
∂x2∂x3

)

+ (K − 2

3
µ)(

∂2u1
∂x3∂x1

+
∂2u2
∂x3∂x2

+
∂2u3
∂x23

) + 2µ
∂2u3
∂x23

(5.36)

We can use them to impose the SAT terms for displacements in x, y, z

directions using formulations from (Almquist & Dunham, 2021). For Neuman
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boundary conditions, we have

SAT1 =−H−1[e3H3(e
T
3 [T

3
11u1 + T 3

12u2 + T 3
13u3]− g31)]

−H−1[e4H4(e
T
4 [T

4
11u1 + T 4

12u2 + T 4
13u3]− g41)]

−H−1[e5H5(e
T
5 [T

5
11u1 + T 5

12u2 + T 5
13u3]− g51)]

−H−1[e6H6(e
T
6 [T

6
11u1 + T 6

12u2 + T 6
13u3]− g61)] (5.37)

SAT2 =−H−1[e3H3(e
T
3 [T

3
21u1 + T 3

22u2 + T 3
23u3]− g32)]

−H−1[e4H4(e
T
4 [T

4
21u1 + T 4

22u2 + T 4
23u3]− g42)]

−H−1[e5H5(e
T
5 [T

5
21u1 + T 5

22u2 + T 5
23u3]− g52)]

−H−1[e6H6(e
T
6 [T

6
21u1 + T 6

22u2 + T 6
23u3]− g62)] (5.38)

SAT3 =−H−1[e3H3(e
T
3 [T

3
31u1 + T 3

32u2 + T 3
33u3]− g33)]

−H−1[e4H4(e
T
4 [T

4
31u1 + T 4

32u2 + T 4
33u3]− g43)]

−H−1[e5H5(e
T
5 [T

5
31u1 + T 5

32u2 + T 5
33u3]− g53)]

−H−1[e6H6(e
T
6 [T

6
32u1 + T 6

32u2 + T 6
33u3]− g63)] (5.39)
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For Dirichlet conditions, we have

˜SAT1 = H−1(T 1
11 − Z1

11)
T e1H1(e

T
1 u1 − g11)

+H−1(T 1
21 − Z1

21)
T e1H1(e

T
1 u2 − g12)

+H−1(T 1
31 − Z1

31)
T e1H1(e

T
1 u3 − g13)

+H−1(T 2
11 − Z2

11)
T e2H2(e

T
2 u1 − g21)

+H−1(T 2
21 − Z2

21)
T e2H2(e

T
2 u2 − g22)

+H−1(T 2
31 − Z2

31)
T e2H2(e

T
2 u3 − g23) (5.40)

˜SAT2 = H−1(T 1
12 − Z1

12)
T e1H1(e

T
1 u1 − g11)

+H−1(T 1
22 − Z1

22)
T e1H1(e

T
1 u2 − g12)

+H−1(T 1
32 − Z1

32)
T e1H1(e

T
1 u3 − g13)

+H−1(T 2
12 − Z2

12)
T e2H2(e

T
2 u1 − g21)

+H−1(T 2
22 − Z2

22)
T e2H2(e

T
2 u2 − g22)

+H−1(T 2
32 − Z2

32)
T e2H2(e

T
2 u3 − g23) (5.41)

˜SAT3 = H−1(T 1
13 − Z1

13)
T e1H1(e

T
1 u1 − g11)

+H−1(T 1
23 − Z1

23)
T e1H1(e

T
1 u2 − g12)

+H−1(T 1
33 − Z1

33)
T e1H1(e

T
1 u3 − g13)

+H−1(T 2
13 − Z2

13)
T e2H2(e

T
2 u1 − g21)

+H−1(T 2
23 − Z2

23)
T e2H2(e

T
2 u2 − g22)

+H−1(T 2
33 − Z2

33)
T e2H2(e

T
3 u3 − g23) (5.42)

Detailed formulation of these matrices will be provided in the code for paper

submission in the future.

5.3.4 Results. We discretize the problem on a truncated 128km ×

128km × 128 km domain. The simulation parameters are chosen to be the values
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in (Jiang & Erickson, 2020). We export results on stations on the fault according

to the problem description. We run our simulations for 1800 years and compare our

results with results from other researchers on similar problems.

We compare our results with results obtained using boundary element

methods (BEMs) from Cattania’s group. BEMs only require solving problems on

the fault surface, and does not require domain truncation. Previous results have

shown that domain truncation in volume-based methods would affect earthquake

cycles We first look at the changes in shear stress along the slip direction for a

sample location on the fault. We compare our results with Cattania’s group using

boundary element methods and plot the result in Figure 19. We see similar ranges

of state variables and similar behaviors of jumps in state variables during the

transition between aseismic slips and seismic slips. We then compare the slip for

the same location on the fault and plot them in Figure 20.

Last we look at changes in the state variable for two sample locations on the

fault, one inside and one outside of the nucleation favorable region. The figures are

shown in Figure 21 and Figure 22.

Preliminary results have shown agreement in the modeling of the same

problems using different methods. Both our model and the model from comparison

group can capture different behaviors of earthquakes for fault stations inside and

outside of the nucleation favorable regions. Current results from other simulations

are mainly based on boundary element methods, which take hours to run. Our

methods are volume-based and have more than 100 times higher degrees of

freedom. With the GPU-accelerated MGCG as a solver, our simulation time is cut

to around 8 hours, with around 0.2s for each round of solving linear system and
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Figure 19. Comparison of shear stress along slip directions
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Figure 20. Comparison of shear stress along slip directions
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Figure 21. Comparison of the state variable inside the nucleation favorable region
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Figure 22. Comparison of the state variable outside the nucleation favorable region
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updating values. This is down from years of estimated time using direct methods if

we have sufficient large enough memory for matrix factorization.
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CHAPTER VI

CONCLUSION

6.1 Conclusion

In this thesis, I present the research work during my PhD to apply HPC

methods to earthquake cycle simulations. In particular, I focus on designing

efficient iterative solvers for the numerically stable SBP-SAT finite difference

methods. There are mainly two novel contributions of the work. Firstly, I design

matrix-free GPU kernels for SBP-SAT methods based on traditional stencil

computation. Secondly, I designed a geometric multigrid preconditioner that is

compatible with my matrix-free GPU kernels based on the existing work of the

SBP-preserving interpolation operators. The combined approach has been proven

efficient in solving linear systems formed with the SBP-SAT methods, and we are

outperforming the state-of-the-art implementations from well-known scientific

computing libraries and proprietary software. We then apply this approach to

solving SEAS modeling problems and achieve more than 100x speedup compared

to traditional methods. More importantly, this approach is memory efficient that

allows us to solve a 3D simulation problem formulated with the SBP-SAT method

that can not be solved by factorization-based direct methods. The work presented

in this thesis is valuable not only to Earth science research but also to numerous

other scientific fields where SBP-SAT methods can be applied.

6.2 Future Work

This thesis is focused on the second-order SBP-SAT methods. SBP-

SAT methods are known to be high order accuracy, and using higher-order SBP

operators will increase arithmetic intensity that will increase the performance of

matrix-free GPU kernels compared to SpMV operators.
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In addition, the matrix-free kernels presented in this paper are only

implemented on a single GPU. Although this is enough to solve the problems

presented in this paper, it would be more important in the HPC aspect to

design matrix-free kernels that can run on multiple GPUs across different

nodes. ParallelStencils.jl is a Julia package that enables large-scale stencil-based

computations using built-in modules that utilize MPI for communication. It’s also

built on top of KernelAbstractions.jl, a Julia package that targets heterogeneous

platforms. Our code on matrix-free SBP-SAT methods can be developed with

ParallelStencils.jl to run on supercomputers built with CPUs/GPUs from different

vendors.

In this thesis, we only apply Richardson iteration as the matrix-free

smoother for our multigrid preconditioners. During our research, we observed

faster convergence with higher-order Krylov subspace methods as smoother. These

methods are also highly suitable for GPU architectures and can be implemented

matrix-free. In future work, we can explore using higher order second-order

Richardson methods and Chebyshev iterations as smoothers in multigrid methods

to further reduce steps till convergence for CG.

We focused on solving the PDEs using the SBP-SAT methods in the thesis.

However, ODE solvers also play an important role impacting the performance

of simulations. In future work, more research will be needed to improve the

performance of ODE solvers in junction with the integration of the GPU-

accelerated solvers for the SBP-SAT methods.
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