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Abstract

We consider optimal monetary policy in New Keynesian mod-
els with inertia. First order conditions, which we call the MJB-
alternative, are found to improve upon the timeless perspective. The
MJB-alternative is shown to be the best possible in the sense that it
minimizes policymakers’ unconditional expected loss, and further, it
is numerically found to offer significant improvement over the timeless
perspective. Implementation of the MJB-alternative is considered via
construction of interest-rate rules that are consistent with its associ-
ated unique equilibrium. Following Evans and Honkapohja (2004), an
expectations based rule is derived that always yields a determinate
model and an E-stable equilibrium. Further, the “policy manifold”
of all interest-rate rules consistent with the MJB-alternative is clas-
sified, and open regions of this manifold are shown to correspond to
indeterminate models and unstable equilibria.

JEL classification: E52, E32, D83, D&84.
Keywords: Monetary Policy, Taylor Rules, Indeterminacy, E-stability.

1 Introduction

The benchmark, forward-looking, New-Keynesian models are closed by spec-
ifying the policy of the central bank. Preferences over different policy actions
are typically modeled using a quadratic loss criterion, which is either taken



as generic and so not tied to a particular specification of the economic model,
or alternatively, may be derived as a second order approximation to average
utility across private agents.!

Identification of the solution to the government’s optimization problem
depends on the surprisingly subtle definition of “optimality.” The subtlety
arises because, absent a commitment technology, the fully optimal rule is not
time-consistent. To address this issue, Woodford (2003) advises the timeless
perspective, which informally has policymakers ignore current (initial) condi-
tions, and operationally imposes that policymakers choose inflation to satisfy
a time-invariant first order condition (FOC). In effect, the policy maker im-
plements the policy she would have chosen in the distant past.?

The timeless perspective advises setting policy in a time-invariant man-
ner. On the other hand, the fully optimal solution to the government’s prob-
lem sets inflation in the current period differently than in future periods: see
Woodford (2003), Evans and Honkapohja (2006), and Section 3 below. As
Jensen and McCallum (2002) point out, because of the policy maker’s desire
to behave differently in the current period, policy from the timeless perspec-
tive is not time-consistent, and in this sense, a commitment technology is
implicitly assumed.

Given the assumption of a commitment technology capable of implement-
ing the timeless perspective, one is naturally led to wonder whether there is
a similar time-invariant policy that offers a superior performance, or even if
there is a metric that makes this question meaningful. Noting that under
certain conditions a reasonable policy implements an asymptotically station-
ary economy, Jensen and McCallum (2002), and separately, Blake (2002),
suggest evaluating various policies by computing the expected value of the
government’s criterion across initial conditions, where the initial conditions
are drawn from the associated asymptotic distribution. These authors have
proposed a rule (the same rule, which we call the MJB-alternative) that,
using this metric, improves upon Woodford’s timeless perspective; and fur-
thermore, Blake gives an argument showing the proposed rule is the best
among rules of a given form.? Jensen and McCallum, using a calibrated ver-

IFor a detailed analysis of the New-Keynesian model, its variants, and derivations of
the associated welfare functions, see Woodford (2003).

2For a characterization of policy that is optimal from the timeless perspective, see
Giannoni and Woodford (2002).

3Jensen and McCallum (2002) provide the rule only as an example of one superior to
Woodford’s, and do not explain how they obtained the rule.



sion of the model, show that the MJB-alternate is capable of implementing
a 10.6% improvement over the timeless perspective.

The results of Jensen and McCallum (2002) and Blake (2002) are specific
to the purely forward-looking New Keynesian model; however, substantial
levels of inertia in both the AS and IS relations are often present in applied
models of the economy. To assess the importance of the MJB-alternative’s
potential improvement over the timeless perspective, it is then necessary to
compare their performances in models with inertia: this is the first task of
our paper.

Blake’s argument does not appear to extend to models with inertia.
However, using alternative methods, we are able to generalize the MJB-
alternative. We then analyze its performance for various levels of inertia
and find that while under some calibrations of the model’s parameters the
improvement over the timeless perspective is insignificant, for other cali-
brations, and particularly when the government places priority on output
stabilization, the improvement may be high — as high as 17% for calibrated
models and much higher in case of strong serial correlation in the exogenous
shocks. Interestingly, the presence of inertia in the model tends to mitigate
this improvement, though the relationship between the degree of inertia and
the level of mitigation is complex and non-monotonic.

The timeless perspective and the MJB-alternative are first order con-
ditions which, together with the aggregate supply relation, define different
“second best” rational expectations equilibria. As discussed in Section 3.1,
some authors suggest taking these first order conditions as specific targeting
rules, and thereby implicitly assume that the government’s policy instru-
ment is inflation. While this is reasonable for theoretical results and stylized
models, practical implementation requires an alternate policy instrument.
To operationalize policy implied by the FOCs, we impose that policymakers
specify an interest-rate rule, often referred to as a T rule, which is consis-
tent with the FOCs’ implementation. The second task of our paper begins
with the specification of interest-rate reaction functions designed to be con-
sistent with optimal policy as determined by the timeless perspective or the
MJB-alternative.

However, our second task does not end there. It is well-known that clos-
ing New-Keynesian monetary models with interest-rate rules may yield in-
determinate steady states, and associated to these steady states are multiple
sunspot equilibria: see Evans and McGough (2005a) and Evans and Mc-
Gough (2005b). Since, in the presence of multiple equilibria, the equilibrium
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on which agents ultimately coordinate may exhibit unwanted properties, in-
determinacy is undesirable. Therefore it is of considerable interest, when
employing interest-rate reaction functions, to ascertain the determinacy prop-
erties of the model.

Even if the model has a unique REE under a given interest-rate rule, bad
outcomes may obtain if boundedly rational agents are unable to coordinate
on it. It is natural, then, for policymakers to desire that the equilibrium be
stable under learning. It has been shown that for many models, including
the models analyzed in this paper, stability under learning is governed by
the notion of E-stability: for details, see Evans and Honkapohja (2001).
Therefore it is necessary, when employing interest-rate reaction functions, to
ascertain the E-stability properties of the model.

Having specified a collection of rules capable of implementing our FOC,
we then examine their stability and determinacy properties. Similar exam-
inations have been conducted in other models. In a purely forward-looking
model, Evans and Honkapohja (2006) derive an interest-rate rule (which we
call the “EH-rule”) exhibiting dependence on agents’ expectations, as well as
on lagged endogenous variables and current shocks, which is consistent with
the timeless perspective, and which always yields a stable and determinate
steady state. We generalize this rule by deriving it for both the timeless per-
spective and the MJB-alternative when inertia is present in the model, and
show that the resulting model is always determinate. While analytic results
for E-stability are not available, we find numerically that for all calibrations
and inertial specifications considered in our paper, as well as for both the
timeless perspective and the MJB-alternative, the generalized EH-rule yields
an E-stable equilibrium.

The generalized EH-rule is not the unique interest-rate reaction function
consistent with the timeless perspective or the MJB-alternative. In fact, in
the purely forward-looking model Evans and Honkapohja (2006) also derive
what they called the “fundamentals based rule,” which does not depend on
agents’ expectations, but is consistent with optimal policy from the timeless
perspective. Further, they show that the resulting equilibrium is never E-
stable and the associated steady state may be indeterminate. We complete
the second task of the paper by extending this result and characterizing
the manifold of all policy rules within a given class that are consistent with
either the timeless perspective or the MJB-alternative; and numerically, we
classify their stability and determinacy properties. We find that open regions
of the manifold correspond to instability, indeterminacy, or both, as well as
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to the presence of sunspot equilibria that are stable under learning. This
finding serves as a caution to policymakers interested in employing rules,
like the generalized EH-rule, which are dependent on values of structural
parameters: precise knowledge of these parameters may be required to avoid
bad outcomes.

This paper is organized as follows: Section 2 reviews the model and the-
ory needed to obtain and discuss the paper’s main points, and in particular,
the technical issues regarding determinacy and stability under learning are
reviewed; Section 3 obtains, in the New Keynesian model with inertia, the
first order conditions necessary to implement optimal policy from the time-
less perspective, and presents the proposition describing the MJB-alternative;
Section 4 focuses on implementable policy in the form of interest-rate reac-
tion functions that are consistent with the timeless perspective or the MJB-
alternative, and then examines the stability and determinacy properties of
the New Keynesian model closed with these policy rules; and finally, Section
5 concludes. All proofs are contained in the Appendix.

2 Background

Here we discuss the necessary theory regarding determinacy and stability un-
der learning, as well as present the hybrid New-Keynesian model of interest.
These issues have been examined at length in other papers and so we keep
our discussion brief. Because the model under investigation is quite simi-
lar, we borrow, in this review section, from Evans and McGough (2005b). A
more detailed discussion of determinacy and learning as they pertain to these
types of monetary models may be found in Evans and McGough (2005a).

2.1 Determinacy

The analysis of this paper is based on the New Keynesian model, which we
present in Section 2.3. When closed with a specification of monetary policy
— either an interest-rate rule or specific inflation targeting rule — the model
yields a reduced form having the following expectational structure:

Yt = AEtyt+1 + Bytfl + Cgt (1)

Here y; is a vector of endogenous variables and ¢; is exogenous fundamental
noise, which we assume to be a stationary VAR(1) with damping matrix p.
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A rational expectations equilibrium (REE) is any non-explosive process ¥,
satisfying (1)*.

Existence and uniqueness of REE depend on the model’s parameters. As
is standard, we say that the model is determinate if there is a unique REE,
indeterminate if there are many REE, and explosive otherwise. Methods for
assessing whether a model is determinate, indeterminate, or explosive are well
known and we refrain from discussing them here: see Evans and McGough
(2005a) for a detailed analysis of determinacy in models of the form (1).

In case the model is determinate, the unique equilibrium has the form

ye = by 1 + ¢y, (2)

where the matrices b and ¢ may be computed using, for example, the method
of undetermined coefficients. If the model is indeterminate there will still be
at least one REE of the form (2), and we will call them minimal state variable
(MSV) solutions.” However, there will also be other REE that exhibit de-
pendence on extrinsic stochastic processes: these processes may be thought
of as capturing rational forecast errors, and are sometimes called sunspots.
For a detailed discussion of sunspot equilibria in models of the form (1) see
Evans and McGough (2005a).

2.2 Learning

If the model is determinate, so that there is a unique REE;, it is desirable that
the solution be stable under learning. By stability we mean that if agents
estimate the parameters of a forecasting model using least squares regression
and form their expectations accordingly, then the economy will eventually
converge to the equilibrium. Because the models are self-referential, that is,
because the evolution of the economy depends on how agents form expecta-
tions, the stability of an REE under least squares learning cannot be taken
for granted.

4The notion of a non-explosive process can be made precise with several alternate
definitions: see Evans and McGough (2005¢) for details.

°If the model is indeterminate there may be multiple equilibria of the form (2), de-
pending on whether certain eigenvalues are real or complex. Bennett McCallum, who
introduced the term “MSV-solution” in McCallum (1983), proposes an additional selec-
tion criterion so that the MSV-solution, by his definition, is always unique.



To fix ideas, assume the model is determinate and that agents have a
forecasting model of the form

ye=a~+byi_1 4+ cqy (3)

The functional specification of the forecasting model is often referred to as
a Perceived Law of Motion (PLM), and is typically taken to have a form
consistent with the REE of interest.® Under learning agents obtain least
squares estimates (ay, by, ¢;) of the PLM’s parameters using data through
time ¢, and then use the estimated PLM to form their forecasts E;y 1,
which in turn influences the path of y; through the reduced form model (1).7
The question is whether (ay, b;,c;) — (@, b,¢) as t — oo. If so, we say that
the solution is stable under learning.

Analysis of stability under learning is usually done using expectational
stability (E-stability). This is because, for a wide range of models and solu-
tions, E-stability has been shown to govern the local stability of REE under
least squares learning. In many cases this correspondence can be proved, and
in cases where it cannot be formally demonstrated the “E-stability princi-
ple” has been validated through simulations. For a thorough discussion of
E-stability see Evans and Honkapohja (2001).

The E-stability technique is based on a mapping from the PLM to the cor-
responding Actual Law of Motion (ALM) parameters. For the case at hand, if
agents believe in the PLM identified by (a, b, ¢) then their corresponding fore-
casts are given by Efy,11 = a+0Ey+cEf §i1. Using By, = a+by,—1+ gy,

0The functional form of (3) clearly nests that of the REE (2), but also includes a
constant term a. The REE lacks a dependence on a constant only because it has been
written in deviation from steady-state form. By including a constant term in agents’ PLM,
we are imposing the natural assumption that they do not know the value of the steady-
state, but rather, they must learn it, which is equivalent to learning that the REE value
of the perceived parameter a is zero. It is well known that the stability of a particular
REE may hinge on the presence of a constant in the PLM, especially when the model is
indeterminate.

"The reduced form model (1), when capturing policy determined by an interest-rate
rule, incorporates private agents’ consumption Euler equation, thus this type of stability
analysis is sometimes called Euler equation learning. The assumption is that agents form
expectations of economic aggregates and then behave in a way that is consistent with
(a linearization of) their Euler equation. Alternate methods of stability analysis have
been suggested; most notably, Preston (2005) suggests that agents should be modeled
as behaving in a way consistent with their lifetime budget constraint. Whether a given
REE is stable under learning may depend on the way in which the stability analysis is
conducted; for simplicity, we focus on Euler equation learning for this study.
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and assuming for convenience that p is known so that E}¢,11 = pg:, yields
Efyip1r = (Io 4+ b)a + 0%yt + (be + cp) -

Inserting E}y;. 1 into (1) and solving for y; as a linear function of an intercept,
y;—1 and g, yields the corresponding ALM:

yr = A(lr + b)a + (AV” + B)y,1 + (A(be + cp) + C) gy,

which describes the actual evolution of y given the beliefs (a, b, ¢). The map
from perception to reality, then, is given by

a — Al +ba (4)
b — AV +B (5)
¢ — A(bc+cp)+C. (6)

To simplify notation, combine the regressors into the vector

Xt/ = (17 yé—l? gllf)
and write the perceived parameters as ¢ = (a,b,c)’. Then the PLM can be
written as y, = ©'X,, and equations (4)-(6) define a mapping from PLM
parameters O to the ALM parameter 7(0). The REE © = (a, b, ¢) is a fixed
point of this map and it is said to be E-stable if it is locally asymptotically
stable under the differential equation

de

The E-stability principle tells us that E-stable REE are locally learnable for
Least Squares and closely related algorithms. That is, if ©; is the time ¢
estimate of the coefficient vector ©, and if O, is updated over time using
recursive least squares, then © is a possible convergence point, i.e. locally
O, — O, if and only if © is E-stable. Computing E-stability conditions is
often straightforward, involving computation of eigenvalues of the Jacobian
matrices of (7).

The discussion so far has been restricted to the determinate case; however,
it is (relatively) straightforward to extend these ideas to sunspot equilibria in
case of model indeterminacy. Also, in the indeterminate case, stability under
learning of a given equilibrium may depend on the functional form of the
forecasting model used by agents when forming their expectations. Because
these issues are not central to our work here, we refrain from their discussion
and simply refer readers to Evans and McGough (2005a).
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2.3 The New Keynesian Model

We study a hybrid version of the New Keynesian monetary model as given
by

IS 2, = —¢(iy — Eymyqr) + 0B + (1 — 0)ae 1 + g (8)
AS LTy = 6("}’Etﬂ-t+1 + (]. — '7)7Tt—1) + )\I’t =+ uy. (9)

Here z; is the proportional output gap, 7 is the inflation rate, and g, and
u; are independent, exogenous, stationary, zero mean AR(1) shocks with
damping parameters 0 < p, < 1 and 0 < p, < 1 respectively.

The first equation is a formulation of the forward-looking IS curve amended
to include inertia. This functional form may be obtained from a linearized
model of optimization behavior on the part of consumers. In some cases we
also allow for an inertial term x,_q, which is present due to habit formation:
see for example Smets (2003). The second equation is the forward-looking
Phillips curve. When v = 1, equation (9) is the pure forward-looking New
Keynesian “AS” relationship based on “Calvo pricing,” and employed in
Clarida, Gali, and Gertler (1999) and Ch. 3 of Woodford (2003).% Here
0 < B < 1 is the discount factor. Again, this equation is obtained as the
linearization around a steady state. The specification of the AS curve in the
case 0 < v < 1 incorporates an inertial term and is similar in spirit to Fuhrer
and Moore (1995), the Section 4 model of Gali and Gertler (1999), and the
Ch. 3, Section 3.2 model of Woodford (2003), each of which allows for some
backward looking elements. Models with 0 < v < 1 are often called “hybrid”
models, and we remark that in some versions, such as Fuhrer and Moore
(1995), B = 1, so that the forward and backward looking components sum
to one, while in other versions 5 < 1 is possible.

The model may be closed by specifying monetary policy, and we consider
alternate optimal specifications below. Once a policy has been specified, the
model may be placed in the reduced form (1), and its determinacy and sta-
bility properties analyzed. While some analytic results are available, numeric
methods must be used in the general case, and this requires assigning values
to the model’s parameters. We consider four calibrations of the parameters
in the IS-AS curves, as due to Woodford (1999), Clarida, Gali, and Gertler
(2000), McCallum and Nelson (1999), and Jensen and McCallum (2002): the
relevant parameter values are given in Table 1.

8For the version with mark-up shocks see Woodford (2003) Chapter 6, Section 4.6.



Table 1: Calibrations

|Name | ¢ [ X |
W [ 1/.157].024
CGG | 4 .07
MN | 164 | 3
MJ [ 164 | .02

Table 2: Inertial Specifications

‘ Name ‘ v | ) |
Forward 1 1
Small Lag | .75 | .75
Medium Lag | .5 | .5
Large Lag | .25 | .25
Full Lag 01 .01

With these calibrations, we consider five inertial specifications, as given
by Table 2. Finally, for each calibration and inertial specification, we will
consider discount values of 5 = .98, = .99 and g = 1.

3 Optimal Policy

We model the preferences of policymakers over alternate equilibrium paths

as given by
E; (Z Bk(¢$?+k + W?Jrk)) . (10)
k=0

For some specifications of the New Keynesian model, a loss criterion of this
form may be taken as capturing a second order approximation to aggregate
private agent utility, in which case 1 is a function of the model’s deep para-
meters.” Rather than fixing the link between government preferences and the

9The loss criterion associated to models with inertia may include a dependence on
lagged endogenous variables.
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underlying model, we take (10) as a generic loss function parameterized by
1), which simply captures the relative importance of output stabilization over
inflation control. Note we have assumed, for simplicity, that the government
and private agents have the same discount factor.

To construct optimal monetary policy, we begin by identifying the opti-
mal REE, that is the REE which minimizes the government’s loss subject
to the Phillips curve constraint. In this sense, we are implicitly assuming
m; to be the government’s instrument: see Section 3.1 for more discussion.
This assumption makes the IS relation superfluous, and the associated re-
duced form model is obtained by combining aggregate supply with a first
order restriction characterizing government behavior. The associated time-
path of output and inflation represents the optimal REE consistent with the
government’s objective and the AS-relation. In Section 4, we will use the IS
relation to establish the time-path of the interest-rate consistent with this
optimal REE. Interpreting this time-path as an interest-rate rule will then
operationalize our optimal policy.

Taking 7 to be the instrument, the government’s problem is to minimize
(10) subject to (9) and the initial conditions m;_; and x;_; (and u;_1). Using
Lagrange’s method (and discounting the constraint appropriately), we obtain
the following first order conditions (see Appendix for details):

21

Wepk = STk (k>0) (11)
2y = —Witk + YWisk—1 + 52(1 — 7)) ErakWitkt1 (k>0) (12)
27Tt = —Ws + B2(1 — ’}/)Etthrl, (13)

where w; represents the Lagrange multiplier at time ¢. Equations (11) - (13)
characterize the fully optimal solution to the government’s problem. That
this solution is not time consistent is evident from equations (12) and (13),
which instruct the policy-maker to behave differently in the initial period
than in subsequent periods.

3.1 The Timeless Perspective

To address the inconsistency problem, Woodford advises the timeless per-
spective, which has policy-makers ignore (13). Equations (11) and (12) may
then be combined to obtain the following relation between current inflation
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and current, lagged and expected future output gap:

T = —% (21 — ywimr — (1 — V)Eu11) - (14)
We note that in case v = 1, (14) provides the same first order condition as
obtained by Evans and Honkapohja (2006) in case of no inflation inertia.

Policy described by (14) is time consistent in the sense that it is time-
invariant (unlike the policy described by (11) - (13)) and optimal in the sense
that it is the policy an optimizing policy maker from the distant past would
have chosen for today. However, it is not time consistent in the sense of
Kydland and Prescott (1977): each period policymakers have an incentive
to deviate from the planned policy.!Y For more discussion on the timeless
perspective, see Woodford (2003), McCallum (2005), and Dennis (2001).

Until now we have assumed, somewhat unrealistically, that inflation is the
government’s policy instrument, and that it can be set to satisfy (14). In-
deed, some authors suggest taking the first order condition (14) as a specific
targeting rule. Interpreted this way, and assuming policymakers can, in some
way not explicitly modeled, impose that (14) holds at every point in time,
then (9) and (14) comprise a fully specified reduced form model. Further-
more, arguments in Woodford (2003) guarantee this model to be determinate,
and hence yield a unique rational expectations equilibrium.!'! Whether the
unique REE is stable under learning must be determined numerically. We
find that for all calibrations and inertial specifications, and with all discount
factors, expectational stability always obtains.

Because the specific targeting rule interpretation does not provide a model
of policy maker behavior, some ambiguity remains concerning precisely how
monetary policy is implemented. We address this issue in Section 4. There
we design interest-rate reaction functions consistent with the optimal REE
defined by the timeless perspective or the MJB-alternative. However, like
Evans and Honkapohja (2006), we find that such policy rules do not neces-
sarily imply (14) is satisfied, and so the issues of determinacy and stability

10Tf the model is determinate and the equilibrium is E-stable, then there is an addi-
tional sense in which the timeless perspective is time consistent when agents form their
expectations based on least-squares learning: provided policymakers resist following dis-
cretionary policy, they do not have to worry about private agents “rationally” anticipating
discretionary behavior: see McCallum (1995).

1See Footnote 8 on page 542.
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must be revisited.'? Because of this, we recommend choosing instrument
rules consistent with (14) that also result in a determinate model with an
E-stable equilibrium.

3.2 The MJB-Alternative

As noted above, the timeless perspective implicitly assumes a commitment
technology. Furthermore, while it is optimal from the perspective of a pol-
icy maker in the distant past, one is led to wonder how good the timeless
perspective is from a current view point, or even if there is a natural metric
that may be used to address this question. Jensen and McCallum (2002),
and separately, Blake (2002), suggest considering the average value of the
government’s objective, where the average is taken across initial conditions
drawn with respect to their asymptotic distribution. These authors then
examine, in the purely forward-looking case (i.e. v = 1), whether there are
rules exhibiting the same linear dependence as (14), (i.e. incorporating the
same commitment technology) but which yield lower average losses. Both
Jensen and McCallum and Blake show numerically that the relationship

1

)

Ty = _X (fEt - 5%—1) (15)

is superior to the timeless perspective: Jensen and McCallum simply state it
as an example of an improvement; but Blake proceeds to show that in fact
(15) is the optimal rule of that form. As we noted in the introduction, the
method Blake uses to show his rule is optimal is not tractable in case v < 1.
However, in the Appendix, we present an alternate method that allows us to
derive an FOC of the form (14) minimizing the average government loss. In
this subsection we make precise the notion of optimality, state the optimal
rule, and then analyze its implications for determinacy and stability, and
in the next subsection we compare its outcomes to those of the timeless
perspective.
Consider the following linear relationship between inflation and output
gap:
T = Opxs_1 + 012y + 0o Byt (16)
Equations (9) and (16) comprise a fully specified reduced form model. Let
O be the set of all § € R? for which this reduced form model is determinate.

12Policy rules consistent with the timeless perspective’s first order condition may impart
indeterminacy and some of the associated equilibria will not satisfy (14).
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We know O is not empty because the timeless perspective defines one of its
elements. Given # € O, we may compute the associated unique REE

Yo = 0(0)yr—1 + c(O)us. (17)

This process is stationary, and therefore we may compute its second mo-
ments. Provided the initial conditions are assumed taken from the relevant
asymptotic distribution, choosing policy 6 to minimize the average value of
the government’s loss (10) is the same as choosing 6 to solve

Ioléiél YE(2?|0) + E(7*|0). (18)

Using (17), these second moments can be computed in terms of 6, and hence
the problem solved. This is the method used by Blake in the forward-looking
case. Unfortunately, computing b(f) and c(6) explicitly in case v < 1 does
not appear tractable, and therefore the relevant first order conditions can
not be written down. In the Appendix, we offer an alternate method of
obtaining the optimal FOC among rules of the form (16), by proving the
following result.

Proposition 1 There exists 3 € (0,1) so that for B € (3,1] the reduced
form model given by (9) and

¥

m=-7 (21 — Byai—r — B(1 — 7) Ereia) (19)

15 determinate and its unique stationary REE solves the minimization prob-
lem (18).

Analytic results for E-stability of the unique REE given by (9) and (19)
are not available, but we find numerically that for all calibrations and inertial
specifications, the associated REE is stable under learning.®

Notice that in case v = 1 so that there is no inertia in the Phillips curve,
(19) reduces to (15), the condition suggested by McCallum and Jensen, and
established as optimal by Blake. Notice, too, that for § = 1, (19) and
the timeless perspective are identical as expected. We call (19) the “MJB-
alternative.”

!3Here were are interpreting (19) as a specific targeting rule, and again, concerns re-
garding its implementation apply. We address these concerns by constructing explicit
interest-rate rules in Section 4.
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3.3 Comparing the Timeless Perspective and the MJB-
Alternative

The results of the previous section indicate that the MJB-alternative (19)
at least weakly dominates the timeless perspective (14); however, the MJB-
alternative is simply a small continuous transformation of the timeless per-
spective, and so it is quite natural to wonder how much improvement is ob-
tained. This question has been considered by Jensen and McCallum (2002)
in the non-inertial case, with A = .02, for varying values of v, 5, and p.
They obtain a maximum improvement of 10.26%. We conducted a similar
analysis, and some of the results we obtained are reported in Table 3.

As expected, the MJB-alternative always yields an improvement over the
timeless perspective, and in the forward-looking case, with heavy weight
place on output stabilization, the improvement may be quite significant. In-
terestingly, the presence of inertia seems to mitigate the second-best nature
of the timeless perspective: for a hybrid model with v = .5, the maximum
improvement across calibrations is only .06%. Further examination of this
mitigating effect indicates a complex, non-monotonic pattern. Consider Fig-
ure 1, which plots the percent improvement of the MJB-alternative over the
timeless perspective for the Woodford calibration and varying v. As v in-
creases to .5, which corresponds to the Medium Lag inertial specification,
the improvement drops from 1.5% to near zero before rising again. This pat-
tern is qualitatively the same as seen across calibrations, with the minimum
improvement obtaining near v = .5.

Fig 1 here

The magnitude of the serial correlation in the markup shock also impacts
the improvement of the MJB alternative over the timeless perspective, with
the numerically obtained qualitative result being that for most calibrations
and inertia specifications, larger serial correlation leads to larger improve-
ment; however, for inertial specifications with v near .5, the relationship be-
tween serial correlation and improvement is again non-monotonic: see Figure
2 as an example.

Fig 2 here

For high serial correlation, the improvement may be very large: for exam-
ple, if the MJ calibration is used under the forward inertial specification, then
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Table 3: TP/MJB Comparison (Forward Model and Medium Lag, 5 = .98)

Forward Model Medium Lag
W CGG | MN MJ W | CGG | MN | MJ
2.42% | 45% | .04% | 3.08% | .04% | .01% | .00% | .04%
8.76% | 2.46% | .30% | 10.16% | .06% | .04% | .01% | .05%
16.12% | 8.81% | 1.79% | 17.08% | .01% | .05% | .03% | .01%

Sl =

with 8 = .99, ) = 10 and p = .999 the improvement is 1882%. We conclude
that the a-priori minor modification to the timeless perspective advocated
by the MJB-alternative can yield significantly superior results in terms of
average government loss, and so must be taken seriously.

4 Implementing Optimal Policy

We have characterized the optimal REE via first order conditions, taking
the AS relation as a constraint. Our goal now is to investigate how the
optimal REE can be implemented. That is, we look for interest-rate reaction
functions that, when combined with the AS and IS relations, result in the
optimal REE attaining according to determinacy and E-stability. To this end,
we “nest” the timeless perspective and the MJB-alternative in the following
generalized FOC:

2
Ty = —% <fEt — VL1 — %(1 - ’Y)Eﬂtﬂ) , (20)

where £ = 1 in case of the timeless perspective and ¢ = [ in case of the
MJB-alternative.

4.1 The Fundamentals Rule

As noted above, for 5 near 1, the system of expectational difference equations
(9) and (20) is determinate for either value of . Letting y = (z,7)’, the
unique stationary equilibrium can be written

Yo = byr1 + cup. (21)
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Now recall the IS-relation (8), repeated here for convenience:
vy =—¢(iy — Eymyir) + 0By + (1 — 0)x—1 + g1 (8)

To create an interest-rate rule consistent with the optimal REE, we follow
Evans and Honkapohja (2006) (EH) and assume agents form expectations
using (21). Imposing these expectations into the IS relation (8), we may
then solve for 7;, thus obtaining an interest-rate rule of the form

iy = &ty + a%5,. (22)

We call (22) the “fundamentals rule.” The values of the 1 x 2 matrices &”
and &9 depend on the model’s reduced form parameters as well as which
FOC is used.

We may now consider the full reduced form model, assuming monetary
policy is implemented by following the fundamentals rule. The model is
given by (9), (8), and (22). Results concerning a special case of this model
are known. Evans and Honkapohja (2006) obtained the fundamentals rule in
case v = 1 and the timeless perspective is assumed. They showed analytically
that the model may be indeterminate, and the equilibria are always unstable
under learning. Similarly, we find

Proposition 2 In case v = 0 = 1 and the MJB-alternative is used, under
the fundamentals based rule, the economy may be indeterminate, and the
equilibria are always unstable under learning.

The proof of this proposition mimics the proof by EH, and we suppress
the details.

Similar work can be done in case of inertia; however, we must proceed
numerically as analytic results are unavailable. Some of our results are col-
lected in Tables 4 and 5. Here § = .99 and the MJB-alternative is used.
To identify the stability and determinacy properties, we use the notation SD
(stable determinacy), UD (unstable determinacy), SI (stable indeterminacy,
that is, E-stable sunspot equilibria), and UI (unstable indeterminacy). Simi-
lar results obtain for other calibrations and inertial specifications and for the
timeless perspective.

Interpreting the first order conditions given by the timeless perspective
or the MJB-alternative as specific targeting rules, and assuming that policy-
makers are in some unspecified way able to achieve the specific targeting rule
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Table 4: Fundamentals Rule (Small Lag and Medium Lag)

Small Lag Medium Lag
v | W | CGG | MN | MJ | W | CGG | MN | MJ
| Ur| ur |Sb|ur|urf ur | SD |SD
1
10

Ub| UD | Ul Ul (UI| UI | SD | UI
UD| UD | Ul (UL |Ul| UD | UI | UI

Table 5: Fundamentals Rule (Large Lag and Full lag)

Large Lag Full Lag

v | W |[CGG | MN | MJ| W |CGG | MN | MJ
1 |SD| UI | SD |SD|SD| SD | SD | SD
1 (UL UI |[SD|SD|SD| SD | SD | SD
w|ur| ur | SD|SD|SD| SD | SD | SD

so that only the AS relation is considered as a restriction, both the timeless
perspective and the MJB-alternative resulted in stable determinacy. The
work of Evans and Honkapohja (2006) and the results here show that sim-
ply using the IS relation to design an interest-rate rule consistent with the
associated optimality condition can be destabilizing and hence ill-advised.

4.2 The EH-rule

The results reported in Proposition 2 and Tables 4 and 5 warn against the
use of the fundamentals rule. Evans and Honkapohja, in case v = 1 and
under the timeless perspective, faced a similar problem, and proposed the
following solution. Instead of forming a rule by first computing expectations,
EH suggest taking expectations as given. Specifically, combine the general
FOC (20) and the Phillips curve (9) and solve for z; to obtain

A (1~
v (%&wt_l + Wﬂwtﬂ — ByEmip — B(1 —y)m— — “t> :
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This equation may then be combined with the IS relation (8) to obtain a rule
of the form

'l:t = @fEtyt+1 + CAYLytfl + dggt (23)

where
o (AN B =) | By ) o
“ ( U R ) 24

o ((1 —9)( +X?) — € AB(1 - 7))
P(1h + A% o+ %)

; 1 A
o = - —— ). 26
(55w) 20
We call this the EH-rule and note that in case v = 1, § = 1 and the time-
less perspective is assumed, (23) reduces to the rule obtained by Evans and
Honkapohja.
Evans and Honkapohja showed analytically that their rule always resulted

in determinacy, and that the unique REE was always stable under learning.
Similarly,

(25)

Proposition 3 The reduced form model given by the IS and AS relations
(8) and (9) and closed with the EH-rule (23) is determinate for both & = 1
and & = f3.

The proof of this proposition follows from the observation that solutions
to the system (8), (9) and (23) are bijective with those of (9) and the rel-
evant FOC. This proposition extends the determinacy result of Evans and
Honkapohja to models with inertia, and to rules implementing either the
timeless perspective or the MJB-alternative. Analytic results on stability
are not obtainable for us, but numerically, we find the same result as EH. In
particular, for all permutations of calibrations and inertial specifications, and
under both the timeless perspective and the MJB-alternative, the EH-rule
results in stability.

4.3 The Optimal Policy Manifold

Equations (22) and (23) indicate that there are at least two rules of the form
ir = o Byyrq + aPyq + adg, (27)
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consistent, with the optimal REE (21), and further show that rules imple-
menting the optimal REE may not impart the same stability and determinacy
properties. We are then led to wonder if the collection of all rules of the form
(27) can be classified, and how their associated stability and determinacy
properties may vary. We turn to these issues now.

Denote by © the set of all o = (af, a”, a9)’ so that (27) is consistent with
(21). We call © the optimal policy manifold, and note that it is a subset
of R, and furthermore is non-empty, as it contains both the fundamentals
rule (22) and the EH-rule (23). Now define the matrix ¢ = (0, ¢), so that the
optimal REE may be written vy, = by, 1 + ¢g,. Forming expectations with
respect to this REE and imposing them into (27) yields

ir = (a/D* + o) y_y + (&9 + of (bé + ép) g1,
which must be the same as the fundamentals rule. Thus a € 2 provided

ol = at (28)
ol (be+ép)+ad = afd. (29)

Equations (28) and (29) characterize the optimal policy manifold. Further-
more, notice that we may trivially solve (28) and (29) for o and o as linear
functions of /. Thus the optimal policy manifold is a two-dimensional hy-
perplane in R, given by

Q:{aeRﬁzElaf € R? with o = a" — afb? and ag:dg—af(bé-l—ép)}.

The stability and determinacy properties of rules associated to elements of
) can be characterized numerically. As an example, consider Figure 3. Here
the Woodford calibration is used together with the Lag inertial specification,
£ = .98, 1 = 10 and the timeless perspective is assumed. To create the
figure, a (—1,2) x (—1,2) lattice was imposed over the (af, af)-space, and
at each point on the lattice, the associated element of {2 was determined and
the stability and determinacy properties were recorded.'* The center of the
large gray dot indicates the location of the EH-rule, which lies in the interior
of the stable determinate region.

Figure 3 Here

HFor some points in the region of UL, there were an insufficient number of real eigen-
values for a CF-representation to exist. For details on this and other issues regarding
common factor representations in monetary models, see Evans and McGough (2005a).
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We have chosen this admittedly extreme case to emphasize that while
the EH-rule necessarily lies in the region of stable determinacy, it may be
very near a boundary and surrounded by all types of bad outcomes: unstable
determinacy and stable and unstable indeterminacy are all possibilities. We
conducted similar analysis on a (—5,5) x (=5, 5) lattice in (af, af)-space for
all combinations of calibration, inertia specification, S-value, 1-value, and
FOC-type, and we found the results of Figure 1 to be qualitatively universal,
with the caveat that the MN-calibration with various permutations of the re-
maining parameters may yield relatively large regions of stable determinacy,
and may house the EH-rule far from any problem region.

Analysis of the policy manifold indicates that arbitrarily choosing an op-
timal interest-rate rule among those available in 2 is unwise, for instability or
indeterminacy may result. These results also suggest that relying on an un-
constrained numerical algorithm to search for the optimal rule is ill-advised
for such an algorithm will be unable to distinguish between points on the
manifold — all points yield the same value of the government’s objective.
These searches must be constrained to those regions in policy space corre-
sponding to stable determinacy.'®

4.4 Model Uncertainty

While analysis of the policy manifold indicates potential problems for opti-
mal interest-rate rules, one may wonder about the relevance of these concerns
given the existence of the EH-rule, which yields stable determinacy for all
calibrations. And indeed if the structural parameters of the AS and IS re-
lations are known with precision, the EH-rule can be implemented and no
concern over potential indeterminacy or instability problems is warranted.
On the other hand, model uncertainty, which here takes the form of uncer-
tainty about the true values of the model’s structural parameters, may imply
bad outcomes even when the EH-rule is employed. To argue this point, notice
that the set of all policy rules (27) may be identified with R®. The optimal
policy manifold is precisely the subset of R® coinciding with those rules which
implement the relevant FOC. A simple “continuity of eigenvalues” argument
shows that since the optimal policy manifold has subsets corresponding to
instability, indeterminacy, and stable sunspots, which are non-empty and

15This point was emphasized for other interest-rate rules in Evans and McGough
(2005b).
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open in the relative topology, there must be corresponding non-empty open
subsets of R® whose associated policies induce indeterminacy, instability or
stable sunspots. Now suppose a policy maker chooses to use the EH-rule by
estimating the structural parameters of the model and setting policy accord-
ingly. The policy maker thinks she is choosing a point on the optimal policy
manifold and in a region corresponding to stable determinacy. However, if
her estimates of the structural parameters are off, it is very likely she is not
on the manifold, and, much more importantly, because the location of the
open sets in R® corresponding to stable determinacy are not where she thinks
they are, the associated model may be unstable, indeterminate, or have sta-
ble sunspot equilibria. As a concrete example of this phenomenon, we note
that if the policy maker with ¢ = .1 thinks the MN calibration with medium
lag prevails and sets policy according to the associated EH-rule under the
timeless perspective, but if in fact the true calibration is W or CGG then
the model may exhibit either unstable indeterminacy, stable indeterminacy,
or explosiveness depending on the inertial specification.

These problems indicate that, in case of model uncertainty, the optimal
rule should be chosen to have nice stability and determinacy properties across
possible model specifications, as well as to maximize some measure of welfare.
A technique for determining these types of rules is provided in Evans and
McGough (2005b).

5 Conclusion

To avoid the problem of time-inconsistency, Woodford offers the timeless
perspective, which induces an invariant linear restriction characterizing the
associated “optimal” REE. Jensen and McCallum, and separately, Blake, ar-
gue that assuming the commitment technology implicit in the timeless per-
spective, an alternate linear restriction, which we call the MJB-alternative,
is available that provides, on average, a smaller loss. We extend the results
of these authors to more realistic models that include lags in their structural
equations, and find that while the improvement over the timeless perspective
provided by the MJB alternative may be quite large, inertia in the model
may mitigate this effect.

When constructing the timeless perspective and the MJB-alternative, the
policy instrument is somewhat unrealistically taken to be inflation. In the
second part of the paper, we then turn to issues of implementing these first
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order conditions by deriving appropriate interest-rate rules. We extend the
results of Evans and Honkapohja to find an expectations based rule, which
we call the EH-rule, that always produces a stable and determinate outcome.
However, in characterizing all possible optimal policy rules, we find that
many are associated to instability, indeterminacy, or stable sunspots. These
findings suggest that in the presence of estimation error, bad outcomes may
obtain even in case the EH-rule is employed. This serves as a strong caution
to policymakers and suggests policy that is robust to parameter uncertainty
and other types of model uncertainty is important.
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6 Appendix

Fully Optimal FOC

For generality, assume the government’s discount factor is 0, and thus may
be different from private agents’ discount factor (we will use this generality
when proving Proposition 1 below). Set

R, =6 (vEymia + (1 —y)m—1) + Az + uy.

Ignoring expectations for the moment, the Lagrangian for the government’s
problem may be written

L= Z 5 ((af + 77) + wilm — Ry)) (30)

t=0
where w; is the associated sequence of Lagrange multipliers. Differentiation
yields

L. = 23t7rt + 5twt — 5t+1ﬂ(1 — Y)Wy — 5%167%,1 fort >1 (31)

[:7r0 = 27T0 —wp + 6(1 - 7)8(-‘)17

L., = 26, — 8 Ay (33)

Setting these equations equal to zero, incorporating expectations and setting
0 = (8 yields the equations in the text.

Proof of Proposition 1

We begin with three lemmas.

Lemma 4 Fora € (0,1), let f,, f : [a,1] — R be continuous, and assume
fn converges to f uniformly. Then

lim (1—2) ) a"fa(z) = f(1). (34)

T—1—
n>0

Proof. Define S : [a,1) — R by S(z) = (1 —2)>_,-,2"fa(z). Notice
that {f,} is uniformly bounded (sup-norm) so that the sum is absolutely
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convergent. In particular, S is well-defined and continuous. That the sum
is absolutely convergent allows us to rearrange terms, thus yielding the first
equality in the following displayed system:

[S(@) = f] = [1—2) ) a"(fule) = f(1)) (35)
< (I-=x) Zﬂf” () = SO+ (1 —2) Z 2" |(fulz) = FD)]-

Now let ¢ > 0 and choose M so that n > M = |f,(x) — f(z)| < ¢/4 for all x
(by uniform convergence). Now choose §; € (0,1) so that = € (61, 1) implies
|f(z) — f(1)| < /4. Then

(=) 3 o™ (fale) = FO)] < 5,

n>M

for all x € (61,1). Now notice that

lim(1—2) Yo" |(fule) = f(1)] = 0,

so we may choose § > d; so that z € (0, 1) implies

(10> (fule) ~ T < 5,

which completes the proof. B

Lemma 5 Leta € (a,1). For all 0 € [a, 1], let y,(0) be a stationary VAR(1)
process given by
Yr = A(0)ye—1 + &1, (36)

where A : [a, 1] — R™" is continuous and &, iid. Pick arbitrary a € R™. For
t >0 let

Vi(0) = E(yu(6)*|yo(9) = o) (37)
V() = E(yp)- (38)

Then Vi — V' uniformly on [a, 1].
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Proof. We prove this in case n = 1, but the extension to the general case is
clear. Writing the process y:(9)| (yo(d) = «) in terms of the initial condition
and subsequent shocks, and computing expectations of the second moments
yields

o - ot (A0

Fact 1: Notice that (A(8)2)" — 0 uniformly. Indeed, by continuity of A and
compactness of [a, 1], as well as the assumed stationarity of y(d), we have
that

sup A(6)* =M < 1.

6€fa,1]

Thus for all § € [a, 1], (A(6)?)" < M* — 0.

Fact 2: Notice that if hy, h, g : [a,1] — R are continuous and h; — h uni-
formly then f, = g - h; converges to ¢ - h uniformly. Indeed, let ¢ > 0 and
N = sup|g(z)| < oco. Choosing T so that ¢ > T implies |h, — h| < ¢/N
completes this argument.

We may now use Facts 1 and 2 to complete the proof. Let k(0) =
a? (A(6)2), g(8) = 02 (1 — A(6)?) ", and hy(6) = (A(6)?)". Then

Vi(0) = k:(0) — g(0)h4(9) + g(9). (40)

But k; and h; converge uniformly to zero and g(0) = V(0), so the proof is
complete. B

Lemma 6 The MJB-alternative and the AS relation yield a determinate
system.

Proof. Using (31) - (33), we obtain the following FOC, which, for § < 1,
corresponds to the timeless perspective in case the government’s discount o
potentially differs from the discount factor of private agents:

Ay = —p(xy — 7§$t—1 — (1 = 7)B0Ex441). (41)

With § < 1, this equation, together with (46) is determinate (see Woodford
(2003)). Our goal is to show that this system is determinate for § = 1. To
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do this, we proceed by contradiction: assume the system is not determinate.
To obtain our contradiction we require three steps.

Step 1. At least three of the relevant eigenvalues have norm greater than or
equal to one.

To argue step 1, first notice we may assume the model is non-stochastic
and that agents have perfect foresight. The FOC and AS relations may
then be combined to eliminate the dependence on inflation, resulting in the
following discrete dynamic system:

Tpyo — Axy + By — Axy 1 + 140 =0, (42)
where
A= (=) and B = (0§ Tt S
Now notice that
(z — py)(z — i)(z — py) (2 — i) =2~ AP+ B2 — Az + 1,
H1 Ha

where

211 u2+1 201N\ /1241
A=—<”1Jr ks >andB=<2+(M1+ )(”2+ ))
Hq o Hq 25!

which demonstrates that the roots of the characteristic polynomial associated
to our system (42) have the form u,, y, and their reciprocals. Step one is
proved if at least three of these roots have norm less than or equal to one.
So assume at least two roots have norm larger than one. Because we have
assumed our model is not determinate, it must be that at least three roots
have norm larger than or equal to one (two roots outside the unit circles and
two roots inside the unit circle would imply determinacy). So either there
exists 7, so that |u;| > 1 and |1/p,;| > 1 or there exists ¢ such that |p,| > 1
and |1/p;| > 1: either implication is a contradiction.

Step 2. Let § < 1 and assume the X, Ty time series is generated by the unique

solution to (46) and (41) when p = 0. Set W@) = E(Ya} + 7). Then for
any M > 0 there exists 0 € (0,1) so that 6 € (0,1) implies W () > M.
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The idea behind this step is straightforward: step one shows that, under
our maintained assumption, the MJB alternative yields an explosive system.
Here we exploit the fact that the MJB alternative is the limit of the timeless
perspective as o — 1 to show that, again under our maintained assumption,
the variances implied by the timeless perspective become large as b gets near
one.

Equations (46) and (41) give rise to the timeless perspective; write its
unique stationary solution as

ye = A®)yi—1 + B()er. (43)
Denote by A;i(6) the eigenvalues of A(9). By step 1 and the stationarity of (43)
for all < 1, for all € > 0 there exists a 0 so that 0 € (§,1) = |A;(9)] > 1 —e¢,
for at least one of the A;, which we assume is A; without loss of generality.
Decompose A as S(A; @ Ay)S 1, and set z = S~ 1y. Then (43) becomes

2= (A1(6) ® As(0))z—1 + B(0)zy, (44)

where B(d) = S 'B(0).

We claim that either [Ay(8)] — 1 as 6 — 1 or that By(1) # 0. To
demonstrate this, we proceed by contradiction. Assume |Ay(1)| < 1 and
Bi(1) = 0. Then, for § = 1, there is a stationary solution to (44) is given
by z;; = 0 and 2z = Ag((AS)th,l + Bg(g)é‘t. But this implies the existence
of a stationary solution to (46) and (41), which contradicts step one, which
showed any such solution is explosive.

We also claim that B(1) # 0. Indeed, if it does then, for & = 1, there is
a stationary solution to (44) is given by z; = 0, which implies the existence
of a stationary solution to (46) and (41): again, a contradiction.

The two claims above show that there is an ¢ such that A;(d) — 1 and
B;(1) # 0. For simplicity, assume i = 1. Because B(0) is continuous in
0, there is a 1 so that & € (dy,1] implies |B;(0)] > %|Bl(1)| = N. Then
6 € (6y,1) implies

—o00as ) — 1.

N2g2
var(zyy) > 8(

1—A(0)

Now, as a brief aside, consider three random variables a, b, ¢ with ¢ = a + b,
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and assume @ and b have finite first and second moments. Then

Ec? E(a® 4 b*) + 2|Eab|
E(a* + b*) + 2E|ab|

B(a® +b%) + 2 (Ba?)? (Eb?)?,

VARVAN

IN

where the first line is from the triangle inequality, the second is from Jensen’s
inequality, and the third is from the Cauchy-Schwartz inequality. We con-
clude that var(zy;) — oo as 0 — 1 implies that E(2?) — oo or E(y?) — oo
as 0 — 1, which completes the proof of step 2.

Step 3. Step 2 contradicts the full optimality of the timeless perspective when
coupled with the FOC' corresponding to initial conditions, i.e.

Ao = —)(xo — (1 — ~)B0Egx1). (45)

To obtain a contradiction, which is thus a contradiction of the maintained
~t ~t ~1
assumption, pick § € (0,1) and let z4(0 ) and 7,(¢ ) be determined by (45),
(41), and (46). For arbitrary ¢ € (0, 1), let

M) =(1-¢ EOZcS by (8)2 + mi(8)2).

By Lemma 4, M is well-defined and continuous on [0, 1], and so is uniformly
bounded by some value M*. Now choose d by step 2 associated to the value
2M*. Set

Wa(8) = (1 - 0)Ey Y 8 (wai(8) +mi(5)2),

t>n

where, again, 2,(5) and 7,(9) are determined by (45), (41), and (46). Notice
that the fully optimal solution corresponds to the timeless perspective under
the initial condition z_; = 0. Thus, by Lemma 5, for 6 € (8,1)

Ey(¢a(8)* +m(8)%) — B(a(8)* + mi(9)?) > 2M”

uniformly as t — oco. Pick N so that t > N implies Eo(z/)xt( )2+ 7rt(5) ) >
S3M* for all 6 € (6,1). Then Wo(d) > W,(0) > 3M*(5 — 3M* as 5 — 1.
Thus for large enough &, Wy(8) > M*. But this means that (45), (41), and
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(46) can not be optimal for the given 0 because policymakers could always

N N

implement the policy that yielded x:(d ), (6 ) and thus an objective value
at least as low as M*. This contradiction completes step 3.1

We are now ready to attack the main problem, which we restate for clarity.
Let © be the collection of all # € R? so that the system

T = PyEumga + 61— y)m + Az + w (46)
Ty = 90%571 + (91{13,5 + 92Etxt+1 (47)
is determinate. We want to find § € © to minimize En? + y Ex?.

To this end, we consider an alternate problem. For given initial condition
2o = (xq, mo, up), and for 0 < 1,

min(l — §)F Z 8 (my + Y}) (48)

ot t>1

so that (46) holds. Applying Lagrange’s method as usual yields the following
FOC:

Ay = —(z — ?wt_l — (1 =7)BoExq), for t>1 (49)
Amy = —i(z1 — (1 —7)BdE1xs). (50)

For fixed 9, call (49) “R(0)” (i.e. the “Rule” associated to the discount
rate 0). While we have analyzed the problem (48) only for 0 < 1, we may
still consider the rule R(1), which we note is the MJB-alternative. Recall
that Woodford shows his timeless perspective, when combined with an AS
relation like (46), results in a determinate model, thus the system (46) and
R(§) is determinate for 6 < 1. Also, according to Lemma 6, R(1), together
with (46) is determinate.

We claim that (1) is the desired solution, that is, the time path of 7
and z minimizing E7? + ¢ Ex? subject to (46) and (47). To see this let g,
be any process obtained by solving (46) and (47) for some 6§ € . Recall
Y1 (0) = (24(9), m(5))". Write

V(6) E (m,(0)* + va4(8)?) (51)
Vi) = B (m(6)* + 1, (5)?|20) (52)
V(6) E (7] + i) (53)
Vi(6) = E (7 +1i7|2) (54)



Noticing that the solution () can be stacked with the u; to be in VAR(1)
form with damping matrix continuous in §, we may conclude using Lemma
5 that V; converges to V uniformly. Also, the dependence of V and V; on &
is trivial, so convergence of V; to V is trivially uniform.

Now assume zy = 0. Then the FOCs (49) and (50) coincide. This means
that for 6 < 1, the conditional process :(0)|zo solves the problem (48). In
particular,

(1=0)) 0'Vi(8) < (1—-0) > 8Vi(9). (55)
t>1 t>1
Now let § — 1 and apply the lemmas to get that V(1) < V(1), which is
precisely what we wanted to prove. H.
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Improvement

Figure 1: MJB/TP Improvement for Varyingy
Woodford calibration, y=1
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