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Abstract

Under rational expectations and risk neutrality the linear projec-
tion of exchange rate change on the forward premium has a unit
coefficient. However, empirical estimates of this coefficient are sig-
nificantly less than one and often negative. We investigate whether
replacing rational expectations by discounted least squares (or “per-
petual”) learning can explain the result. We calculate the asymptotic
bias under perpetual learning and show that there is a negative bias
that becomes strongest when the fundamentals are strongly persis-
tent, i.e. close to a random walk. Simulations confirm that perpetual
learning is potentially able to explain the forward premium puzzle.

JEL classifications: D83, D84, F31, G12, G15
Keywords: Learning, exchange rates, forward premium.

1 Introduction

The ‘Forward Premium Puzzle’ is a long-standing empirical paradox in inter-
national finance. The puzzle refers to the finding that the forward exchange
rate consistently predicts the expected depreciation in the spot exchange
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rate but with a smaller magnitude and often the opposite sign than specified
by rational expectations. A large literature documents and attempts to ex-
plain the puzzle, but mostly with very mixed success. This paper proposes
a resolution from a new perspective.

According to theory, if the future rate of depreciation in the exchange rate
is regressed on the forward premium (the forward rate less the current spot
rate in logarithms), then the slope coefficient on the forward premium should
be unity provided the agents are risk-neutral and do not make systematic
errors in their forecast. More formally, if st is the natural log of the current
spot exchange rate (defined as the domestic price of foreign exchange), ∆st+1

is the depreciation of the natural log of the spot exchange rate from period
t to t+ 1, i.e., ∆st+1 = st+1 − st, and Ft is the natural log of the one-period
forward rate at period t, then in the true regression equation

∆st+1 = α + β(Ft − st) + ut+1, (1)

β is unity and ut+1 is uncorrelated with the forward premium Ft − st. It
follows that Eβ̂ = 1, where β̂ is the least squares estimate of the slope
coefficient on the forward premium.

This theoretical result is based on assumptions of risk-neutrality and
rational expectations. If agents are risk neutral then they must set to-
day’s forward rate equal to their expectation about the future spot rate, i.e.
Ft = Êtst+1, where Êtst+1 denotes their expectation of st+1 formed at time
t. If, moreover, their expectations are rational then Êtst+1 = Etst+1, where
Etst+1 denotes the true mathematical expectation of st+1 conditioned on in-
formation available at time t, assumed to include Ft and st. With rational
expectations, agents’ forecast errors ut+1 = st+1 −Etst+1 satisfy Etut+1 = 0,
i.e. agents do not make systematic forecasting errors. Combining risk neu-
trality and rational expectations we obtain

st+1 = Ft + ut+1,

and thus the depreciation of exchange rate from t to t+ 1 is given by

∆st+1 = (Ft − st) + ut+1

where Etut+1 = 0, which gives the theoretical prediction Eβ̂ = 1.
A large volume of research has empirically tested the hypothesis β = 1,

and concluded that the least squares estimate β̂ is significantly less than
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1. In fact, in the majority of cases, β̂ is less than zero.1 We reproduce
part of Table 1 from Mark and Wu (1998) documenting the existence of
the puzzle. In the table they used quarterly data ranging from 1976.I to
1994.I on USD (dollar) rates of GBP (pound), DEM (deutsche-mark) and
JAY (yen) as well as three cross rates2.The evidence thus strongly refutes
the theoretical prediction that β = 1, and hence apparently contradicts the
efficient market hypothesis. This is the much renowned “forward premium
puzzle” (or “forward premium anomaly”).

Table 1
Regressions of Quarterly Depreciation on 3-Month Forward Premium

∆st+1 = α + β(Ft − st) + εt+1

USD/GBP USD/DEM USD/JAY GBP/DEM GBP/JAY DEM/JAY

1976:I-1994:I

α̂OLS -1.340 0.638 3.294 1.622 7.702 1.041

(0.895) (0.886) (0.964) (1.116) (1.687) (0.648)
ˆβOLS -1.552 -0.136 -2.526 -0.602 -4.261 -0.755

(0.863) (0.839) (0.903) (0.782) (1.133) (1.042)

The key to the resolution of the puzzle seems to be hidden in the ordinary
least squares formula for β̂. Assuming β = 1 we have

β̂ =
ĉov(∆st+1, Ft − st)

v̂ar(Ft − st)
= 1 +

ĉov[(Ft − st), ut+1]

v̂ar(Ft − st)
,

where ĉov and v̂ar denote sample covariance and sample variance. Therefore,
ĉov[(Ft − st), ut+1] < 0 is needed to explain the downward bias in β̂.

Existing research follows two major approaches. One of them assumes
that investors in the foreign exchange market are risk-averse. Consequently,
the forward rate not only incorporates their expectation about the future
depreciation but also includes a risk-premium as a hedge against the risk from
investing in a more volatile asset characterized by a higher rate of return.
As a result, expected depreciation is not a conditionally unbiased forecast
of actual depreciation. Despite its intuitive appeal, empirical studies have
shown the difficulty of the risk premium approach in providing a satisfactory

1Froot and Thaler (1990) and Engel (1996) provide comprehensive reviews of this puz-
zling observation.

2For more details about the data see Mark and Wu (1998).
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explanation of the puzzle.3 This has led to a general skepticism of the risk-
premium explanation.

The other approach centers around the potential ability of non-rational
expectations to explain the results. This potential is apparent from some of
the other findings related to exchange rate behavior.4 Our paper is motivated
by this research, which suggests the importance of deviations from rational
expectations in foreign exchange markets. If traders do not have perfectly
rational expectations, their forecast errors may be correlated with previous
period’s information and this would introduce an observed bias in the forward
premium regression results.5 The question we want to examine is whether a
natural form of bounded rationality would yield cov[(Ft − st), ut+1] < 0 and
hence explain the systematic under-prediction of future depreciation.6

In fact, we require only a small and quite natural deviation from rational
expectations, based on the econometric learning approach increasingly uti-
lized in macroeconomics. Recent applications include the design of monetary
policy (Bullard and Mitra (2002), Evans and Honkapohja (2003), and Or-
phanides and Williams (2005a)), recurrent hyperinflations in Latin America
(Marcet and Nicolini (2003)), US inflation and disinflation (Sargent (1999),
Orphanides and Williams (2005b), Bullard and Eusepi (2005)), asset prices
(Timmermann (1993), Brock and Hommes (1998), Bullard and Duffy (2001),
Adam et. al. (2006)), and currency crises and exchange rates (Kasa (2004),

3Fama (1984) demonstrates that, for this to happen, the variance of the risk premium
must be greater than the variance of expected depreciation, and their covariance must be
negative.These requirements do not appear to be supported empirically.

4De Long et. al. (1990) demonstrated that the presence of both rational and non-
rational traders in the market tends to distort asset prices significantly away from the
fundamental values and therefore has the potential to explain many financial market anom-
alies. Mark and Wu (1998) demonstrated that the behavior of the variance and covariance
of the risk premium as required by Fama (1984) does not have empirical support, while
the existence of noise traders in the market under certain numerical assumptions yields
results compatible with the data.

5Chakraborty and Haynes (2005) demonstrate, in the context of deviations from ra-
tionality, that nonstationarity in the relevant variables can explain the related puzzle of
little or no bias in “level” specification between the future spot and current forward rate,
yet significant negative bias with frequent sign reversals in the standard forward premium
specification.

6In connection with the closely related issue of uncovered interest parity, McCallum
(1994) argues that monetary policy response to exchange rate changes may account for
the econometric findings. As he notes, this and the view that expectations are less than
fully rational are potentially complementary explanations.
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Kim and Mark (2005)).
In the present paper we show that when the fundamentals driving the

exchange rate are strongly persistent, a downward bias in β̂ necessarily arises
for arbitrarily small deviations from rational expectations due to learning,
and that this bias is potentially strong enough to reverse the sign of the
relationship.

Our key assumption is that while agents do know the true form of the
relationship between the fundamentals and the exchange rate that would
hold under rational expectations, they do not know the parameter values
and must estimate them from observed data.7 In the model we analyze, the
exchange rate st, under rational expectations, satisfies

st+1 = bvt + ut+1,

where vt is the observed value of the fundamentals, assumed exogenous, and
ut+1 is unforecastable white noise. Under rational expectations b takes a par-
ticular value b̄ that depends on the model parameters and on the parameters
of the stochastic process vt. The rational one-step ahead forecast is then
given by Etst+1 = b̄vt. However, we instead make the assumption that the
agents do not know the true value of b and must estimate it from the data
by running a regression of st+1 on vt.

More specifically, agents estimate b by “constant gain” or “discounted”
least-squares learning of the type studied by Sargent (1999), Bischi and Ma-
rimon (2001), Cho et. al. (2002), Kasa (2004), Williams (2004) and Or-
phanides and Williams (2005a).8 Orphanides and Williams refer to this as
“perpetual” learning, since agents remain perpetually alert to possible struc-
tural change. We show that under this form of learning the agents’ estimates
bt are centered at the RE value b̄, but gradually and randomly move around
this value as the estimates respond to recent data. Because bt is not exactly
equal to b̄ in every period, we have a deviation from full rational expectations.
However, agents are in many ways very rational and quite sophisticated in
their learning: they know the form of the relationship and estimate the true
parameter value, adjusting their estimates, in response to recent forecast
errors, in accordance with the least squares principle.

7Lewis (1989) used Bayesian learning to provide an explanation for the forward pre-
mium puzzle. However, the model could not explain the persistence of prediction errors,
since the magnitude of the error shrinks, over time, to zero.

8For a general discussion of constant gain learning, see Chapter 14 of Evans and
Honkapohja (2001).
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Is this form of least-squares learning sufficient to explain the forward
premium puzzle? We argue that indeed it may. Using theoretical results
from the macroeconomics learning literature, we can derive the stochastic
process followed by bt under learning and derive an approximation for the
asymptotic bias of the least-squares estimate β̂

t
of the forward premium slope

coefficient. This bias turns out to depend on all the structural parameters
in the model, including the autoregressive coefficient ρ of the fundamentals
process, which we model as a simple AR(1) process. We are interested in
results for the case of large 0 < ρ < 1 and especially as ρ → 1, since in this
limiting case the exchange rate under rational expectations would follow a
random walk, in accordance with the well-known empirical results of Meese
and Rogoff (1983). Our principal finding is that precisely in this case the
downward bias is substantial. Perpetual learning therefore appears capable
of entirely explaining the forward premium puzzle.

2 Framework

2.1 A simple exchange rate model

To illustrate our central point we use a very simple monetary exchange rate
model based on purchasing power parity, risk-neutrality and covered interest
parity.9 The equations are as follows:

Ft = Êtst+1 (2)

it = i∗
t
+ Ft − st (3)

mt − pt = d0 + d1yt − d2it (4)

pt = p∗
t
+ st. (5)

Here st is the log of the price of foreign currency, Ft is the log of the forward
rate at t for foreign current at t+1, and Êtst+1 denotes the market expectation
of st+1 held at time t. Equation (2) assumes risk neutrality and equation (3)
is the closed parity condition, with it and i∗

t
the domestic and foreign interest

rate, respectively. Equation (4) represents money market equilibrium, where
mt is the log money supply, pt is the log price level and yt is log real GDP.
Finally the purchasing power parity condition is given by (5), where p∗

t
is the

log foreign price level. The parameters d1, d2 are assumed to be positive.

9See, for example, Frenkel (1976), Mussa (1976) and Engel and West (2005).
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These equations can be solved to yield the reduced form

st = θÊtst+1 + vt, (6)

where θ = d2/(1 + d2), so that 0 < θ < 1.

vt = (1 + d2)
−1(mt − p∗

t
− d0 − d1yt + d2i

∗

t
)

represents the “fundamentals.” We will treat vt as an exogenous stochastic
process, which implicitly assumes the “small country” case with exogenous
output.10 We will focus on the case in which vt is an observable stationary
AR(1) process11

vt = δ + ρvt−1 + εt

with serial correlation parameter 0 < ρ < 1. For application of the theoret-
ical learning results we need to make the technical assumption that vt has
compact support.12 Our results would also apply to the case in which vt is
trend-stationary, with compact support around a known deterministic trend
(and could be extended to the case in which the trend is unknown).

In modeling expectation formation by the agents we make the assumption
that their forecasts Êtst+1 are based on a reduced form econometric model
of the exchange rate, specifically st = a + bvt−1 + η

t
, where η

t
is treated as

exogenous white noise, using coefficients that are estimated from the data
using discounted least-squares. Specifically, we assume that at the beginning
of time t, agents have estimates at−1, bt−1 of the coefficients a, b, based on data
through time t − 1. These, together with the observed current value of the
fundamentals vt, are used to forecast the next period’s exchange rate Êtst+1 =
at−1 + bt−1vt. The fundamentals, together with the forecasts, determine the
exchange rate according to (6), and then at the end of period t the parameter
estimates are updated to at, bt, for use in the following period. We now turn
to a detailed discussion of the learning rule and the theoretical results for the
system under learning.

10For the large country case see Chakraborty (2005, 2006).
11It would be straightforward to allow for an additional unobserved white noise shock.
12This rules out the normal distribution, but is compatible with a truncated normal

distribution in which the distribution is restricted to an (arbitrarily large) closed interval.
Our assumption of compact support ensures that vt has finite moments of all orders.
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3 Formal Results under Learning

3.1 Stochastic approximation results

For theoretical convenience we examine the system

st = θÊtst+1 + vt

vt = ρvt−1 + εt,

where εt ∼ iid(0, σ2
ε
) and 0 ≤ ρ < 1. Here we have normalized the intercept

to zero, which is equivalent to assuming that agents know its true value and
that we are looking at the system in deviation from the mean form. In the
RE (rational expectations) solution

st = b̄vt−1 + c̄εt, where b̄ = (1− ρθ)−1ρ and c̄ = (1− ρθ)−1.

Instead, market participants estimate the coefficient b by constant gain least
squares.13 This is most conveniently expressed in recursive form.14 The
estimate based on data through time t is given by the algorithm

bt = γR−1
t−1vt−1(st − bt−1vt−1)) (7)

Rt = γ(v2
t
−Rt−1),

where γ > 0 is a small positive constant. Rt can be viewed as an estimate of
the second moment of the fundamentals. Since forecasts are formed as

Êtst+1 = bt−1vt, (8)

the exchange rate under learning is given by

st = (θbt−1 + 1)vt. (9)

Using stochastic approximation results it can be shown that the mean
path of bt and Rt can be approximated by the differential equations15

db/dτ = R−1σ2
v
((θρ− 1)b+ ρ) (10)

dR/dτ = σ2
v
−R,

13
If δ �= 0 then the REE is st = ā + b̄vt−1 + c̄εt, where b̄, c̄ are unchanged and ā =

(1 − θ)−1(1 − ρθ)−1δ. Under learning agents would estimate (a, b) using constant gain
recursive least squares. The numerical results of Section 5 allow for δ �= 0.

14See, e.g., Marcet and Sargent (1989), Sargent (1999) or Evans and Honkapohja (2001).
15See the Appendix for technical details.
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where τ = γt. This differential equation system has a unique equilibrium
(b̄, R̄) = ((1−ρθ)−1ρ, σ2

v
) that is globally stable, so that, whatever the initial

values for the learning algorithm, we have Ebt → b̄ as t → ∞.
Under ordinary (“decreasing gain”) least-squares learning γ is replaced by

1/t and it can be shown that in the limit we obtain fully rational expectations,
i.e. bt → b̄ with probability one as t → ∞. We instead focus on the natural
modification in which ordinary least-squares is replaced by constant gain
least squares, as above, so that γ is a small fixed positive number, e.g. γ =
0.02 or γ = 0.05. This assumption — that agents weight recent data more
heavily than past data — is being increasingly studied in the macroeconomic
literature, as noted in the introduction.

Why would constant gain learning be natural to employ? As emphasized
by Sargent (1999), applied econometricians and forecasters recognize that
their model is subject to misspecification and structural change. Constant
gain least-squares is a natural way to allow for potential structural change
taking an unknown form, because it weights recent data more heavily than
older data. This procedure is well known in the statistics and engineering
literature, see for example, Chapters 1 and 4, Part I, of Benvensite et. al.
(1990). As noted by Orphanides and Williams (2005a), an additional theo-
retical advantage is that it converts the model under learning to a stationary
environment, so that results can be stated in a way that does not depend
on the stage of the learning transition. In effect, under constant gain least
squares, agents are engaged in perpetual learning, always alert for possible
changes in structure.

Of course the appropriate choice the of gain parameter γ will be an issue
of some importance. In principle this parameter might be chosen by agents in
an optimal way, reflecting the trade-off between tracking and filtering. This is
discussed in Benvensite et. al. (1990) and analyzed in a simple economic set-
up in Evans and Ramey (2006). In the current paper, in line with most of the
literature, we do not directly confront this issue, but instead investigate how
our results depend on the value of the gain. Empirical macroeconomic evi-
dence on forecaster expectations and forecast performance for GDP growth
and inflation,16 suggest values of the gain for quarterly data in the range
γ = 0.02 to γ = 0.05. Reasonable values for γ in our setting will depend on
the amount of perceived structural change in the link between the exchange
rate and fundamentals and may, therefore, be different.

16See Orphanides and Williams (2005b) and Branch and Evans (2006).
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Under constant gain learning, a natural result is obtained that goes be-
yond the decreasing gain asymptotic convergence result. Rational expecta-
tions can still be viewed as a limiting case, but constant gain learning turns
out to yield surprising results for small deviations from this limit. Our cen-
tral starting point is the unsurprising result that with a small constant gain
γ > 0, the parameter bt remains random as t → ∞, with a mean equal to
the RE value b̄, and with a small variance around b̄. We have the following:

Proposition 1 Consider the model under constant gain learning. For γ > 0
sufficiently small, and γt sufficiently large, bt is approximately normal with

mean b̄ and variance γC, where

C =
1− ρ2

2(1− ρθ)3
,

and the autocorrelation function between bt and bt−k is approximately e−(1−θρ)γk.

The proof is given in the Appendix. Thus, provided the process has been
running for sufficiently long so that the influence of initial conditions is small,
the distribution of bt at each time t can be approximated by

bt ∼ N(b̄, γC),

for γ > 0 small. Note that rational expectations arises as the limit in which
γ → 0, since in this case at each time t the parameter estimate bt has mean
b̄ and zero variance. Thus for small γ > 0 we are indeed making small
deviations from rationality.

Up to this point the results may appear straightforward and fairly un-
controversial: under perpetual gain learning with small constant gain γ > 0,
the agents’ estimate of the key parameter used to forecast exchange rates
has a mean value equal to its RE value, but is stochastic with a standard
deviation depending on the structural parameters and proportional to

√
γ.

However, the implications for the forward premium puzzle are dramatic, as
we will now see.

Using Proposition 1 we can obtain the implications for the bias of the
least squares estimate β̂, in the forward premium regression (1), under the
null hypothesis H0 : α = 0, β = 1, when private agents forecast exchange
rates using constant gain least squares updating with a small gain γ. For
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convenience we assume that α = 0 is imposed so that the econometrician
estimates a simple regression without intercept.17

The Appendix establishes the following result:

Proposition 2 Under the null hypothesis H0 the asymptotic bias plim β̂−1,
for γ > 0 sufficiently small, is approximately equal to

B(γ, θ, ρ) = − γ(1− θ)(1 + ρ)(1− θρ)

γ(1− θ)2(1 + ρ) + 2(1− ρ)(1− θρ)
.

Thus for all parameter values 0 ≤ θ < 1 and 0 ≤ ρ < 1, we have a negative
bias, which is particularly strong for ρ near 1. More specifically we have:

Corollary 3 B(γ, θ, ρ) < 0 for all 0 ≤ θ < 1, 0 ≤ ρ < 1 and 0 < γ < 1,
and the size of the approximate bias |B(γ, θ, ρ)| is increasing in γ and in

ρ and decreasing in θ. For γ > 0 sufficiently small, we obtain the limiting

approximations

lim
ρ→1

(plim β̂ − 1) = −1 and plim β̂ − 1 = − γ(1− θ)

γ(1− θ)2 + 2
if ρ = 0.

Corollary 3 implies that, for small γ, the value of plim β̂ approaches 0 as
ρ → 1. Below, in Section 3.2, we investigate the situation numerically and
find that small samples can further magnify the bias: for typical sample sizes
and plausible values of γ, median values of β̂ are negative as ρ → 1.

Finally we can also examine the t-statistic for the test of H0 : β = 1,
given by tβ̂ = (β̂− 1)/RE(β̂). Since for all 0 ≤ ρ < 1 we have plim β̂− 1 < 0
it follows that:

Corollary 4 For γ > 0 sufficiently small, tβ̂ → −∞ as the sample size

T → ∞.

Our results are stated for sufficiently small γ because this is needed to
invoke the stochastic approximation results. Below we look at the quality of
the approximation for plausible values of γ > 0. The theoretical results are
illustrated in Figure 1, which shows the approximation plim β̂ = 1+B(γ, θ, ρ),
as a function of ρ over 0 ≤ ρ ≤ 1, for fixed θ = 0.6, and for three values
γ = 0.01, 0.05 and γ = 0.10.

17This makes no difference asymptotically. Below we numerically investigate how inclu-

sion of the intercept in the test regression affects the small sample results.
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Figure 1: Theoretical plim(β̂) for θ = 0.6 and γ = 0.01, 0.05 and 0.10.

As expected, the asymptotic bias depends upon γ, and for sufficiently
small γ > 0 the size of the bias, given ρ, is proportional to γ. For any given
0 ≤ ρ < 1, as γ → 0 we approach the rational expectations limit and in this
limit the bias of β̂ is zero. However, a striking and surprising feature of our
results is the behavior of plim β̂ as ρ → 1 for fixed γ: given γ, the asymptotic
bias of β̂ approaches −1 as ρ → 1, regardless of the size of γ. The intuition
for this result is given below, in Section 4. Here we emphasize the powerful
implications for the forward premium test, which we state as follows:

Corollary 5 For any ε > 0 there exists γ > 0 and ρ̂ < 1 such that for all

ρ̂ ≤ ρ < 1 we have both E(bt − b̄)2 < ε for all t and plim β̂ < ε.

Thus, for learning gain parameters sufficiently small, provided the auto-
correlation parameter of the fundamentals process is sufficiently high, the
deviation from rational expectations will be arbitrarily small, at every point
in time, as measured by mean square error, and yet the downward bias in
the forward premium regression can be made arbitrarily close to −1.
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3.2 Numerical and Small Sample Results

To determine the quality of the approximation we have simulated paths of
bt, using equations (7) and (9), and computed numerical estimates of E(bt)
and

√
var(bt). The results are given in Tables 2 and 3.18 The approximation

appears generally satisfactory although the quality deteriorates as ρ → 1,
especially for larger values of γ. These findings are to be expected: our
theoretical results give the limiting results for small γ and rely on stationarity
of the fundamental process vt. Although the theoretical results hold for all
|ρ| < 1, provided γ > 0 is sufficiently small, it is not surprising to see
deviations for fixed γ as vt approaches a nonstationary process via ρ → 1.19

Table 2 clearly shows that the sample mean is quite close to the predicted
RE value b̄ for most parameter values, with sample means slightly less than
b̄ for larger values of γ. Table 3 shows a fairly good match with theory for
most parameter values, with the main deviation being underprediction of the
standard deviation for large ρ and γ.

We next look at numerical results concerning the forward premium regres-
sions. We first examine the quality of the theoretical approximation results
given in Proposition 2 and then determine the small sample properties. Our
focus now is on the predicted bias that arises in the forward premium re-
gression (1) when agents forecast using perpetual least squares learning with
a small constant gain. Table 4 reports the simulation results for a large
sample T = 20, 000. Tables 5a and 5b give the small sample results, for
T = 120 and T = 360, realistic samples sizes with quarterly and monthly
data, respectively, both for β̂ and for the t-statistic of the test of H0 : β = 1.

Table 4 presents the comparison between β̂ values predicted by Propo-
sition 2 and the mean values generated by simulations under learning with
different combinations of parameter values. Although our theoretical results
have not been formally demonstrated for the limit case ρ = 1, a pure random
walk, we include simulations for this value as well. Again, it appears that
the theoretical prediction is fairly accurate for small values of γ. As noted
earlier, deviations for larger γ are understandable since the theory developed
here is valid for small γ. The key qualitative predictions of Proposition 2,
and Corollary 3, hold in the numerical results of Table 4. In particular, an

18In all of our numerical results we have chosen εt to be iid with a standard normal

distribution. We have also set δ = 0 unless otherwise specified.
19Very small values of γ > 0 present numerical difficulties since extremely large sample

sizes would then be needed to reliably estimate the mean and standard deviation.
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increase in γ or ρ (and the smaller value of θ) leads to a smaller value of
plim β̂. For γ = 0.05 or γ = 0.10 the simulation results in Table 4 show an
even stronger downward bias in β̂ than is predicted by our theoretical results.

We now consider the small sample results given in Table 5. The sample
size employed in Table 5a of T = 120 corresponds to thirty years of non-
overlapping quarterly data and in Table 5b T = 360 corresponds to thirty
years of non-overlapping monthly data. Although the results again show a
substantial downward bias in β̂ for an important range of parameter values,
there are significant differences in the small sample results and the pattern
is more erratic. On the one hand, there are cases of positive bias that arise
with small γ, lower ρ and higher θ. On the other hand, especially for ρ close
to or equal to one, the downward bias is even more extreme. Inspection of
the detailed results show a substantial number of extreme values for β̂ and
the t-statistic (which is why we report their median values).

One of the reasons for the complex small sample results can be seen from
the following argument. If we have both a small gain γ and a small sample
size T the value of bt will vary little within the sample. Useful insights can
thus be obtained by considering the limiting case of bt = b fixed over the
sample period at some value possibly different from b̄. If agents believe that
st = bvt−1 + cεt, we have Ft = Êtst+1 = bvt and st = (1 + θb)vt so that the
forward premium is

Ft − st = ((1− θ)b− 1)vt. (11)

and the forecast error ut+1 = st+1 − bvt is given by

ut+1 = (1 + θb)(ρvt + εt+1)− bvt.

Although we cannot calculate E(β̂) for a finite T it is revealing to compute

a(b) =
cov[(Ft − st), ut+1]

var(Ft − st)
= − (1− θρ)(b− b̄)

(1− θ) (b− (1− θ)−1)
, (12)

which is the asymptotic bias that would result as T → ∞ if b were kept fixed.
The asymptotic bias is negative for b < b̄ and less than −1 for b >

1/(1− θ). However for b̄ < b < 1/(1− θ) the asymptotic bias is positive and
there is a singularity at b = 1/(1−θ), with both arbitrarily large negative and
positive values in a neighborhood of the singularity.20 Calculating abias(b)
is artificial since it holds bt = b fixed as T → ∞, whereas under perpetual

20This phenomenon disappears in the limiting case ρ = 1 since then b̄ = 1/(1− θ).
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learning bt is a stochastic process centered at b̄. However, it clearly indicates
the complexities that can be expected in small sample simulations.

In Table 5c we show, for selected parameter values of interest, how the
differences between the asymptotic results of Table 4 and the small sample
results of Table 5a and 5b depend on the sample size. In Table 5c we also
investigate the small sample effect of including an intercept in the test re-
gression. It can be seen that in small samples the inclusion of an intercept
in the test regression further magnifies the deviation from the asymptotic
results. This effect is particularly striking for the smaller gain parameter
value γ = 0.01, in line with the argument of the preceding paragraph. For
ρ = 1 we obtain negative values of β̂ for all values of β̂ considered and when
an intercept is included in the test regression the effect can be pronounced.21

Whether or not an intercept is included, as the sample size T becomes large
there is convergence to the theoretical and large sample results given earlier.

On balance the findings of Table 5 reinforce the theoretical results of
Section 3.1 and the central thrust of this paper. For ρ near or equal to 1, and
for empirically plausible values of γ, the median value of β̂ is not only biased
downwards from 1, but negative values for β̂ would be entirely unsurprising.
Thus for fundamentals processes that are close to a random walk, perpetual
learning clearly has the potential to explain the forward premium puzzle.

4 Discussion

What is the source of the downward bias to β̂ that we have established
theoretically and numerically? In this section we provide the intuition for
the case in which the fundamentals follow a random walk, i.e. ρ → 1. Our
starting point is the result that bt ∼ N(b̄, γC). Since, for small γ > 0, the
parameter bt is near b̄ and moves very gradually over time, it is useful again
to consider the impact on β̂ of an arbitrary value for b held fixed at a value
close to but not equal to b̄. As ρ → 1 the fixed b asymptotic bias function
(12) satisfies a(b) → −1 at every point other than the singularity, which for
ρ = 1 coincides with the RE solution b̄. This is fully consistent with the
theoretical findings of Section 3.1. What is the underlying reason for this
result?

21Chakraborty (2005) shows that similar qualitative results are obtained for
ARIMA(p,1,q) estimates of the fundamental processes.

15



When ρ = 1, the fundamentals vt follow a pure random walk, the RE
solution is st = (1− θ)−1vt, or equivalently st = (1− θ)−1vt−1 + (1− θ)−1εt,
and Ft = Etst+1 = (1− θ)−1vt. Thus under RE

st = b̄vt = Ft where b̄ = (1− θ)−1, and

Ft − st ≡ 0 and ut+1 = st+1 − Ft = b̄εt+1.

Consider now the situation for b �= b̄. As discussed in the Introduction,
β̂ is biased downward from one if covt(Ft − st, ut+1) < 0.22 If agents believe
that st = bvt−1 + cεt, we have from (11) that

Ft − st = (1− θ)(b− b̄)vt

when ρ = 1. The intuition is clearest if we split ut+1 into

ut+1 = ∆st+1 − (Ft − st),

i.e. the difference between ∆st+1 and the forward premium. Then

covt(Ft − st, ut+1) = covt(∆st+1, Ft − st)− vart(Ft − st)

= − vart(Ft − st) < 0 if b �= b̄,

since in the random walk case ∆st+1 = bεt+1, whatever the value of b, and
since covt(εt+1, Ft − st) = 0.

To summarize, under the true regression model H0 : α = 0, β = 1, but
with (arbitrarily) small deviations from RE, the error term ut+1 in the for-
ward premium regression is negatively correlated with the forward premium
because ut+1 is simply the difference between the (unforecastable) exchange
rate change and the forward premium itself. This negative correlation is
present unless b = b̄ i.e. RE holds exactly, in which case vart(Ft − st) = 0.
Furthermore, for b �= b̄ we have covt(Ft − st, ut+1)/ vart(Ft − st) = −1, for
all t. Since this holds for all b �= b̄, since under learning bt will be close to
but (with probability one) not equal to b̄, and since with a small gain γ > 0
the agents’ estimates bt will be almost constant over time, it is not surprising
that Proposition 2 was able to establish a downward bias of plim(β̂−1) = −1
for the limiting case ρ → 1.

22Here we use conditional covariances and variances because for b �= b̄ the unconditional
moments are not well-defined when ρ = 1. However, as seen below, the conditional

moments are independent of t. Furthermore, the unconditional moments are well-defined

for all 0 < ρ < 1 and limρ→1(covt(ut+1, Ft − st)/vart(Ft − st)) = −1.
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Figure 2: Model generated time paths of log exchange rate, for θ = 0.6,
ρ = 0.99, under rational expectations and under learning (γ = 0.05).

What is, perhaps, unexpected and surprising is that arbitrarily small

deviations from RE yield a downward bias near −1 for ρ near 1. The
reason for this is that the asymptotic bias depends on the ratio cov(Ft −
st, ut+1)/ var(Ft − st). Under RE cov(Ft − st, ut+1) = 0 for all 0 ≤ ρ ≤ 1 but
var(Ft− st) → 0 as ρ → 1. Thus under RE the ratio is always zero except at
ρ = 1, when the ratio is undefined since Ft − st ≡ 0. Under learning we also
have plim (ĉov((Ft − st), ut+1)) → 0 and plim (v̂ar(Ft − st)) → 0 as γ → 0
but the ratio is close to −1 for ρ < 1 near 1.

Although under our approach there are persistent deviations from RE, the
parameter bt is centered at and stays close to its RE value. Consequently,
although expectations are not fully rational, the mistakes are both small and
not consistently wrong in a way that is easily detectable. Indeed the time
path of the exchange rate will typically be close to the RE path, even when
the forward premium regression gives a value for β̂ with the wrong sign.

Figures 2—4 give the results of a typical simulation of our model over T =
200 periods, with parameters set at θ = 0.6 and ρ = 0.99.23 Figure 2 gives

23
The standard deviation of the innovation to the fundamentals has been chosen so that
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Figure 3: Model generated data with rational expectations, θ = 0.6 and
ρ = 0.99. Test statistic β̂ = 1.10.
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Figure 4: Model generated data with learning, θ = 0.6, ρ = 0.99, and γ =
0.05. Test statistic β̂ = −0.49.
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Figure 5: Time path of USD/CAD (Canadian Dollar) log exchange rate
(monthly data December 1988 - September 2005). Test statistic β̂ = −0.60.

the time paths for the log of the exchange rate under rational expectations
and under least-squares learning with constant gain γ = 0.05. The two time
paths are generated by the same sequence of exogenous random shocks. Some
mild “overshooting” under learning is evident, which is another immediate
implication of learning for ρ near 1.24 Figure 3 gives the corresponding
simulation results under RE for depreciation and the forward premium, while
Figure 4 gives the same variables under learning.25 Although the qualitative
features of the simulated data are the same under RE and under learning,
the estimate β̂ from the RE data is 1.10, and is insignificantly different from
0 (with t

ˆβ = 0.14). In contrast, the corresponding value under learning is

β̂ = −0.49 (with (t
ˆβ = −2.42), a typical illustration of the forward premium

the scale for depreciation is similar to that seen in the Canadian-US data.
24The somewhat greater variation of st under learning is consistent with the excess

volatility results of Kim and Mark (2005). The extent of overshooting and excess volatility
seen in our simulations depends on the parameter settings.

25Note that the explanatory power of the forward premium regressions is low, matching
another standard finding in the data. This phenomenon was stressed by McCallum (1994),
and is apparent, for example, in the Canadian-US data shown in Figure 5.
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puzzle.26 For comparison Figure 5 presents the quarterly depreciation and
forward premium data for the Canadian dollar price of the US dollar over
1988.Q4 - 2005.Q3. Qualitatively this data resembles the simulated results
in Figures 3 and 4, but the forward premium regression results of β̂ = −0.60
clearly are more in accordance with our model under learning.27

5 Extensions and Further Discussion

In this section we briefly take up several alternative formulations and exten-
sions in order to illustrate the robustness of our results.

5.1 Present value formulation

Applying the law of iterated expectations to the reduced form model (6)
implies that Êtst+j = θÊtst+j+1 + Êtvt+j. By recursive substitution and

assuming that limj→∞

∣∣∣θjÊtst+j

∣∣∣ = 0 we obtain

st =
∞∑
j=0

θjÊtvt+j, (13)

providing the sum converges. Equation (13) is sometimes called the “for-
ward” or “present value” solution to (6), and it is the unique nonexplo-
sive rational expectations solution for |θ| < 1. When vt follows an AR(1)
process vt = δ + ρvt−1 + εt, it is easily shown that under RE (13) yields
st = δθ(1 − θ)−1(1− θρ)−1 + (1 − θρ)−1vt, for −1 < ρ ≤ 1, which of course
agrees with the solution given in Section 2.1.

In the model (6) with learning there are two natural approaches, depend-
ing on whether we treat st as determined directly from (6) by vt and Êtst+1,
or whether we think of st as determined by the “discounted” sum of ex-
pected fundamentals (13). Both approaches have been used in the literature
on learning and asset prices, e.g. both are used in Timmermann (1996). In
this paper we have used the “self-referential approach,” based directly on
(6), both because it squarely rests on the open-parity condition stressed in

26
The results shown are typical, but we remark that there is a wide variation across

simulations. For example, for this parameter setting, the 25% and 75% quartiles for β̂ are
approximately −1.3 and 0.17.

27For a comprehensive empirical analysis see Chakraborty (2006).
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the exchange rate literature and because it emphasizes that exchange rates
are determined by short-run expected exchange rate movements as well as
by fundamentals.

However, it is of interest to know if our results are also obtained if the
present value formulation (13) is used, where the role of learning is confined
to estimation of the fundamentals process. This is the approach emphasized
in Kim and Mark (2005) in their analysis of the potential for learning to
explain exchange rate volatility and the observed links between exchange
rates and fundamentals. We again examine the results under constant gain
learning. Thus we assume that agents estimate vt = δ+ρvt−1+εt by constant
gain RLS,28 using data through time t−1. This yields estimates (δt−1, ρt−1),

which agents use to compute Êtvt+j = δt−1

∑j−1

i=0 ρ
i
t−1 + ρj

t−1vt at time t.
Computing (13) the exchange rate st is given by29

st = δt−1θ(1− θ)−1(1− θρt−1)
−1 + (1− θρt−1)

−1vt,

with the forward rate given Ft = Êtst+1 = θ−1(st − vt).
Table 6 gives the finite sample results. It can be seen that the results

are consistent with the key results of main part of the paper. For ρ < 1
close to one and ρ = 1, and for gain parameters consistent with the learning
literature, we find β̂ strongly biased downward and often negative. Thus
perpetual learning also leads to results in line with the forward premium
puzzles in this alternative formulation.

5.2 Random structural change and endogenous gain

The motivation for constant gain least squares is that it allows agents to bet-
ter track any structural change that occurs. Throughout the paper we have
analyzed the impact of the use of constant gain learning in a model in which,
in fact, there is no structural change. In effect, we have studied the impli-
cations solely of the use by agents of a learning rule with greater robustness
to structural change than ordinary (decreasing gain) least-squares learning.
This is in keeping with most of the now substantial literature on constant-
gain or perpetual learning, reviewed earlier. However, a natural extension

28The estimates are given by φ
t
= γR−1

t−1
Xt−1(vt − φ

t−1
Xt−1)), Rt = γ(XtX

′

t
−Rt−1),

where φ′
t
= (δt, ρt

) and X′

t
= (1, vt).

29To ensure that the sum converges we impose a “projection facility” that maintains
estimates φ

t
at their previous value if ρ

t
would otherwise exceed 1.05. For discussions of

projection facilities see Marcet and Sargent (1989) and Evans and Honkapohja (2001).
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would examine the results for a model incorporating unknown structural
change and agents using constant gain least squares learning.30

We now briefly consider such an extension, adapting the structural change
model used in Evans and Ramey (2006). The fundamentals process is now
assumed to be

vt = δ + μ
t
+ ρvt−1 + εt,

where μ
t
is a regime switching process taking the form

μ
t
=

{
μ

t−1 with probability 1− q
ζ
t
with probability q,

where 0 ≤ q ≤ 1 and ζ
t
is an iid process. In our numerical results we assume

that ζ
t
is has the uniform distribution over the closed interval [−L,L], where

L > 0. The form of the process μ
t
is assumed to be unknown to the agents,

who continue to forecast using Êtst+1 = at−1 + bt−1vt, with the parameters
(at−1, bt−1) estimated using constant gain least-squares.

Following Evans and Honkapohja (1993), Marcet and Nicolini (2003) and
Evans and Ramey (2006), we now also impose that the gain parameter γ is
set at a (Nash equilibrium) value that minimizes the one-step ahead mean-
square forecast error for individual agents, given that other agents use this
value. Thus agents are choosing the gain parameter γ optimally in the MSE
sense, trading off the benefits of lower γ, which increases filtering and thus
reduces random fluctuations in estimated parameters, against the benefits of
larger γ, which improves tracking of structural change.

Table 7 presents results for an illustrative numerical exercise with δ = 1,
L = 0.4 and θ = 0.6. The probability of structural shift q is set at 2%,
5% or 10% per period. Equilibrium γ are approximate values computed
numerically. The results confirm that with perpetual learning the results
of the standard test regressions are entirely in accordance with the forward
premium puzzle when the fundamentals follow an AR(1) process with ρ close
to one. Estimated β̂ are negative or close to zero, again reinforcing the
central finding of this paper. The magnitudes of the t-statistics for the test
of H0 : β = 1 are now larger than in Tables 5a,b, as a result of the random
structural shifts. These magnitudes, of course, would depend on the average
size of the shifts, which is governed by L.

30The evidence for structural change is considered in Chakraborty (2006).
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5.3 Infrequent structural breaks

In the previous subsection we considered a model in which there are continu-
ing occasional structural shifts, often small, where the dates of any structural
changes are unknown to the agents. This is one plausible view of how struc-
tural change affects the economy. An alternative, e.g. Timmermann (1993),
is that structural shifts are infrequent events and that the time of the shifts,
though not the size of their impact, may be known to agents as soon as the
shift occurs. In this set-up, agents can be expected to use a decreasing gain
least-squares estimator as long as the structure is unchanged. However, when
a known structural break occurs, the gain is increased to a larger value, with
decreasing gain then employed until the next structural break.

The updating recursive algorithm for φ′
t
= (at, bt) is

φ
t

= m−1

t
R−1

t−1
Xt−1(st − φ

t−1
Xt−1)),

Rt = m−1

t
(XtX

′

t
−Rt−1), where X ′

t
= (1, vt),

mt =

{
γ̄−1 if structural change in t− 1

mt−1 + 1 otherwise
.

For a structural break at t = 1 the gain sequence of mt = 1/t starting
at t = 2 corresponds to ordinary least squares (with starting value t = 2
because there are two parameters to estimate). This is implemented with
γ̄ = 0.5. Choosing a smaller value of γ̄ would smooth initial estimates by
placing additional weight on the prior estimate.

Again, we perform a small numerical experiment to study the robustness
of our results. To do so we suppose that vt = δ + ρvt−1 + εt and start the
system in the RE equilibrium. We then consider a 25% increase in δ with
γ̄ = 0.5 or γ̄ = 0.2. The structural change occurs at t = 1, and that it has
occurred becomes known to agents at the end of the period. Table 8 gives
the results.31 The results are broadly in line with our main results. For the
values of ρ tabled, there is a strong downward bias in β̂ in every case except
with θ = 0.9 and the smaller gain increase to γ̄ = 0.2. In fact the downward
bias emerges also in this case for ρ even closer to one. For example, with
θ = 0.9, γ̄ = 0.2 and T = 360 we get median β̂ = 0.71 for ρ = 0.998 and
β̂ = −2.53 for ρ = 0.999.

31
We here use values ρ very close to 1 in place of ρ = 1 so that the mean of vt is

well-defined. Qualitatively similar results showing a downward bias to β̂ are obtained for

a 25% decrease in the mean of the fundamentals.
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Of course, as T → ∞ we will find β̂ → 1 since decreasing gain least-
squares learning converges asymptotically to the RE. However, recurrent
infrequent structural breaks can be expected to lead to a substantial down-
ward bias in β̂ for fundamentals processes that are close to a random walk.32

Our main conclusions thus appear robust also to this alternative formulation
with infrequent structural breaks. Provided ρ is near to or equal to one, least-
squares learning by market agents is consistent with the forward-premium
puzzles results found in the literature.

6 Conclusions

The forward premium anomaly is a long outstanding puzzle that has proved
difficult to explain based on risk premia and other orthodox approaches.
While it has long been recognized that the anomalous empirical results might
be due to irrationality in the exchange markets, the present paper shows that
an adaptive learning approach increasingly employed in the macroeconomics
literature appears able to reproduce the key empirical results. Modeling
expectations by constant gain least-squares learning ensures that deviations
from rational expectations are both small and persistent in realistic ways.
Agents continue to update their parameter estimates because of concern for
structural change, in a way similar to the use of rolling data windows. The
result is perpetual learning by agents that keeps expectations close to RE,
but with small random deviations due to revisions to the forecast rule driven
by recent forecast errors.

We have shown theoretically that as the fundamentals process approaches
a random walk, an empirically realistic case, even arbitrarily small deviations
from RE, in accordance with perpetual learning, induce a large downward as-
ymptotic bias in the estimated forward premium regression coefficient. Sim-
ulations for small sample results reinforce this result and indicate that nega-
tive values for this coefficient are fully consistent with our theory. Alternative
formulations of learning and explicit incorporation of different types of struc-
tural shifts lead to qualitatively similar findings. The results of this paper
thus suggest that the learning theory approach to expectation formation in
the foreign exchange markets should be considered a serious contender in
future empirical work on the forward premium puzzle.

32In work in progress we examine the exchange-rate results under learning in greater

detail for both frequent and infrequent structural change.
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Appendix: Technical Details and Proofs
Proof of Proposition 1: We are considering the system (7). Combining

these equations with (9) we obtain

bt = γR−1
t−1

vt−1 ((θbt−1 + 1)vt − bt−1vt−1)

Rt = γ(v2
t
−Rt−1).

This takes the form
Λt = Λt−1 + γH(Λt−1, Xt), (A.1)

where Λ′
t
= (bt, Rt) and X ′

t
= (vt, vt−1) and where the components of H are

Hb(Λt−1,Xt) = R−1

t−1vt−1 ((θbt−1 + 1)vt − bt−1vt−1)

HR(Λt−1,Xt) = v2t −Rt−1.

Systems of the form (A.1) are known as stochastic recursive algorithms
(SRAs), and have been widely studied in the learning literature.

The algorithm is initialized with some starting point Λ0 = a = (b0, R0)
′.

We apply Proposition 7.8 and Theorem 7.9 of Evans and Honkapohja (2001),
which are based on the stochastic approximation results of Benveniste, Metivier
and Priouret (1990). That the required assumptions hold for the system at
hand can be established using arguments analogous to those given on pp.
334-335 of Evans and Honkapohja (2001) for the cobweb model.

The stochastic approximation results for constant gain algorithms of this
form are stated in terms of a continuous time process Λγ(τ). Let τ γt = γt
and define

Λγ(τ) = Λt if τ
γ
t ≤ τ < τ γt+1.

Thus Λγ(τ ) is the continuous time interpolation of the discrete time process
Λt under study. Here we make explicit the dependence on γ in Λγ(τ ), which
is implicit in Λt. Next, consider the differential equation

dΛ/dτ = h(Λ(τ )), where h(Λ) ≡ EH(Λ, Xt).

For Λ(τ )′ = (b(τ ), R(τ)) we compute h(b, R)′ = (hb(b, R), hR(b, R)) where

hb(b, R) = R−1σ2v ((θρ− 1)b+ ρ)

hR(b, R) = (σ2v −R).

This is the differential equation system (10) introduced in Section 3.1.

25



The differential equation dΛ/dτ = h(Λ(τ)) is well defined everywhere
except at R = 0 and the RE solution b̄ = ρ/(1 − θρ), R̄ = σ2v is globally
stable. Let Λ̃(τ , a) denote the solution to this differential equation with
initial condition Λ(0) = a. Finally, define

Uγ(τ ) = γ−1/2(Λγ(τ)− Λ(τ , a)).

Uγ(τ) is the continuous time stochastic process which is used to approximate
Λt for small γ. Proposition 7.8 of Evans and Honkapohja (2001) yields the
following. For any fixed time T > 0, as γ → 0, the stochastic process Uγ(τ ),
0 ≤ t ≤ T converges weakly to the solution of the stochastic differential
equation

dU(τ) = DΛh(Λ̃(τ , a))U(t)dt+R1/2(Λ̃(τ , a))dW (τ),

with initial condition U(0) = 0, where W (τ) is a standard vector Wiener
process. Here R is the 2× 2 matrix with (i, j) element

Rij(Λ) =
∞∑

k=−∞

cov [Hi(Λ, Xk),Hj(Λ, X0)] , for i, j = 1, 2.

Since Λ̃(τ , a) remains close to Λ̄ = (b̄, R̄)′ for all τ ≥ 0 (and converges
asymptotically to Λ̄ as τ → ∞), for starting points near Λ̄ (or for τ sufficiently
large) Uγ(τ ) can be approximated, for small γ by

dU(τ) = DΛh(Λ̄)U(t)dt+ R̄1/2dW (τ),

where R̄ ≡ R(Λ̄). The stationary solution to this equation (e.g. see pp. 114-
5 of Evans and Honkapohja (2001)) is a Gaussian process with mean zero
and autocovariance function

EU(τ)U(τ − τ̂ )′ = ρ(τ̂ ) = esBC for τ̂ ≥ 0, where

B = DΛh(Λ̄) and C =

∫
∞

0

euBR̄euB
′

du.

From Theorem 7.9 of Evans and Honkapohja (2001) we also have the
asymptotic result that for any sequences γk → 0 and τ k → ∞ the sequence
Uγ

k(τk) converges in distribution to a normal random variable with mean 0
and variance C. Computing the relevant quantities we have

B = DΛh(Λ̄) =

(
θρ− 1 0

0 −1

)
, so that euB =

(
eu(θρ−1) 0

0 e−u

)
.
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Our focus is on the behavior of bt, the first component of Λt. We have

R̄11 = R̄−2
∞∑

k=−∞

Γ(k), where

Γ(k) = cov(Yt, Yt−k) and Yt = (1 + θb̄)vtvt−1 − b̄v2t−1.

The (1, 1) element of euBR̄euB
′

is R̄11e2(θρ−1)u so that

C ≡ C11 = R̄11

∫
∞

0

e2(θρ−1)udu =
R̄11

2(1− θρ)
.

Next, note that

Yt = (1 + θb̄)(ρvt−1 + εt)vt−1 − b̄v2t−1
=

(
ρ + b̄(θρ− 1)

)
v2t−1 + (1 + θb̄)vt−1εt

= (1− ρθ)−1vt−1εt.

Thus

Γ(0) =
σ2vσ

2
ε

(1− ρθ)2
and Γ(k) = 0 for k �= 0,

so that

R̄11 = R−2Γ(0) =
σ2
ε

σ2v(1− ρθ)2
=

1− ρ2

(1− ρθ)2
,

and

C =
1− ρ2

2(1− ρθ)3
.

The above implies that for small γ > 0 and large τ the stochastic process
Uγ
b (τ) = γ−1/2(bγ(τ )− b̄) is approximately Gaussian with mean zero, variance

C and autocovariance ρ(τ̂ ) = e(θρ−1)τ̂ . Since for γ > 0 small τ ≈ γt it
follows that for small γ and large t the distribution of bt is approximately
normal with mean b̄ and variance γC and that the autocorrelation function
E((bt − b̄)(bt−k − b̄))/E(bt − b̄)2 is approximately equal to e(θρ−1)γk. This
establishes Proposition 1.

Proof of Proposition 2: The asymptotic bias is given by

plim
T→∞

β̂T − 1 =
plimT→∞ T−1

∑T
t=1(Ft − st)ut+1

plimT→∞ T−1
∑T

t=1(Ft − st)2
.
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From st = (θbt−1 + 1)vt and Ft = Êtst+1 = bt−1vt we have Ft − st =
vt(bt−1(1− θ)− 1) and

T−1
∑T

t=1
(Ft − st)

2 = T−1
∑T

t=1
(bt−1(1− θ)− 1)2 v2t

= (NP )−1
∑P

k=1

∑N

j=1

(
bN(k−1)+j−1(1− θ)− 1

)2
v2N(k−1)+j,

where for convenience we look at T such that T = PN . Provided N and P
are large and γ > 0 is sufficiently small relative to N we have b2N(k−1)+j−1 ≈
b2N(k−1) for j = 1, . . . , N and

T−1
∑T

t=1
(Ft − st)

2 ≈ P−1
∑P

k=1

(
bN(k−1)(1− θ)− 1

)2
N−1

∑N

j=1
v2N(k−1)+j

≈ σ2vP
−1

∑P

k=1

(
bN(k−1)(1− θ)− 1

)2
≈ σ2v(1− θ)2E

(
bt − (1− θ)−1

)2
= σ2v(1− θ)2

(
γC +

(
ρ

1− θρ
− 1

1− θ

)2
)
.

where we have used the weak law of law numbers first forN−1
∑N

j=1 v
2
N(k−1)+j

p→
Ev2t = σ2v and then for P−1

∑P
k=1

(
bN(k−1)(1− θ)− 1

)2 p→ E (bt − (1− θ)−1)
2
.

From ut+1 = st+1 − Ft = ((θbt + 1)ρ− bt−1) vt + (θbt + 1)εt+1 we have

(Ft − st)ut+1 = −(1− θ)(1− θρ)
(
bt−1 − (1− θ)−1)

)
× (

bt−1 − b̄− θρ(1− θρ)−1(bt − bt−1)
)
v2t

+(bt−1(1− θ)− 1)(θbt + 1)vtεt+1.

But plimT−1
∑T

t=1(bt−1(1− θ)− 1)(θbt + 1)vtεt+1 = 0 from the law of large
numbers since Et(bt−1(1− θ)−1)(θbt+1)vtεt+1 = 0. Thus for N and P large
and γ > 0 sufficiently small relative to N we have

T−1
∑T

t=1
(Ft − st)ut+1

≈ −(1− θ)(1− θρ)×
(NP )−1

∑P

k=1

∑N

j=1

(
bN(k−1)+j−1 − (1− θ)−1)

)×(
bN(k−1)+j−1 − b̄− θρ(1− θρ)−1(bN(k−1)+j − bN(k−1)+j−1)

)
v2N(k−1)+j
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≈ −(1− θ)(1− θρ)P−1 ×∑P

k=1

(
bN(k−1) − (1− θ)−1)

) (
bN(k−1) − b̄

)
N−1

∑N

j=1
v2N(k−1)+j

≈ −σ2v(1− θ)(1− θρ)−1E(bt − (1− θ)−1)(bt − b̄)

= −σ2v(1− θ)(1− θρ)γC.

Taking the ratio T−1
∑T

t=1(Ft − st)ut+1/(T
−1

∑T
t=1(Ft − st)

2) we obtain

plim β̂ − 1 = − (1− θρ)γC

(1− θ)γC + [(1− ρ)2/ ((1− θ)(1− θρ)2)]
.

Substituting for C the expression obtained in Proposition 1, and simplifying,
we get the result claimed.

Proof of Corollary 3: B(γ, θ, ρ) < 0 follows immediately from 1, as do
the limiting values at ρ = 0 and as ρ → 1. The remaining properties follow
by differentiation of B(γ, θ, ρ) with respect to each argument and using the
inequalities 0 < γ ≤ 1, 0 < θ < 1 and 0 ≤ ρ < 1.

Proof of Corollary 4: The t-statistic is tβ̂ = (β̂ − 1)/SE(β̂) where

SE(β̂) = T−1/2σ̂/(T−1
∑T

t=1(Ft − st)
2) and σ̂2 = T−1

∑T
t=1 û

2
t . Here ût =

st+1−st− β̂(Ft−st) = (θbt+1)vt+1− (θbt−1+1)vt− β̂(bt−1(1−θ)−1). Since
ût converges in distribution, as t → ∞, to a stationary random variable with
finite second moments, it follows that σ̂2 converges in probability to a finite
number. Similarly, at least for small γ, (Ft−st)

2 is asymptotically stationary
with finite moments, and so T−1

∑T
t=1(Ft− st)

2 converges in probability to a

finite positive number. Thus SE(β̂) → 0 as T → ∞. Since for all 0 ≤ ρ < 1
we have that plim β̂ − 1 < 0 and the result follows.

Proof of Corollary 5: By Proposition 1, for γ > 0 sufficiently small,
E(bt−b̄)2 ≈ γC(ρ) where C(ρ) = (1−ρ2)/2(1−ρθ)3. For any given 0 < θ < 1,
C is continuous in ρ for all 0 ≤ ρ ≤ 1. Therefore C(ρ) is bounded uniformly
over 0 ≤ ρ ≤ 1 and thus over 0 ≤ ρ < 1. Thus, for any ε > 0 we can choose
γ > 0 sufficiently small such that E(bt − b̄)2 < ε. Given this γ, Proposition
2 and Corollary 3 imply that by choosing ρ < 1 sufficiently large we can
simultaneously ensure that plim β̂ < ε.
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Table 2: Mean ratios for different parameter combinations.

ρ
0.8 0.9 0.95 0.97 0.99
Mean Mean Mean Mean Mean

θ γ ratio ratio ratio ratio ratio
0.6 0.005 0.997 0.998 0.997 0.998 0.998

0.01 0.996 0.994 0.994 0.994 0.995
0.02 0.989 0.989 0.989 0.991 0.991
0.05 0.972 0.974 0.977 0.979 0.982
0.1 0.951 0.958 0.962 0.964 0.971

0.9 0.005 0.997 1.001 0.998 1.001 0.999
0.01 0.999 0.998 0.995 0.996 0.997
0.02 0.993 0.994 0.994 0.998 0.995
0.05 0.981 0.983 0.987 0.993 0.991
0.1 0.967 0.977 0.981 0.981 0.983

Note: Results from 100 simulations with sample size of 20,000 after discarding
first 4000 data points. The ratios given are Mean(b̂simulation)/E(b̂theory).

Table 3: Standard deviation ratios for different parameter combinations.

ρ
0.8 0.9 0.95 0.97 0.99
S.D. S.D. S.D. S.D. S.D.

θ γ ratio ratio ratio ratio ratio
0.6 0.005 0.957 0.981 1.010 1.009 1.125

0.01 0.996 1.004 1.029 1.099 1.235
0.02 0.993 1.026 1.095 1.142 1.406
0.05 1.014 1.082 1.197 1.298 1.694
0.1 1.036 1.134 1.289 1.457 1.962

0.9 0.005 0.933 0.940 0.960 0.929 1.023
0.01 0.992 0.987 0.975 1.065 1.164
0.02 0.990 1.009 1.068 1.099 1.311
0.05 1.008 1.058 1.152 1.237 1.546
0.1 1.025 1.099 1.215 1.333 1.710

Note: Results from 100 simulations with sample size of 20,000 after discarding
first 4000 data points. The ratios given are ŜD(b̂simulation)/SD(b̂theory).
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Table 4: Theoretical and simulated β̂ for large samples.

ρ
0.98 0.99 0.995 1.0

θ γ β̂theory β̂sim β̂theory β̂sim β̂theory β̂sim β̂theory β̂sim

0.6 0.01 0.83 0.94 0.71 0.78 0.55 0.39 0 -0.01
0.02 0.71 0.75 0.55 0.35 0.38 -0.09 0 -0.02
0.03 0.62 0.48 0.45 0.01 0.29 -0.22 0 -0.02
0.05 0.50 0.09 0.33 -0.22 0.20 -0.24 0 -0.04
0.1 0.32 -0.31 0.19 -0.31 0.11 -0.23 0 -0.06

0.9 0.01 0.95 1.00 0.91 1.00 0.83 0.94 0 -0.01
0.02 0.91 0.96 0.83 0.87 0.71 0.53 0 -0.01
0.03 0.87 0.90 0.77 0.67 0.62 0.09 0 -0.03
0.05 0.80 0.69 0.66 0.21 0.49 -0.31 0 -0.08
0.1 0.65 0.03 0.48 -0.50 0.31 -0.55 0 -0.11

Note: Results from 100 simulations with sample size of T = 20, 000 after
discarding first 20,000 data points. β̂sim is the mean value across simulations.
No intercept in test regression.

Table 5a: Simulated β̂ and t
ˆβ for sample size T = 120.

ρ
0.98 0.99 0.995 1.0

θ γ β̂sim t
ˆβ β̂sim t

ˆβ β̂sim t
ˆβ β̂sim t

ˆβ

0.6 0.01 1.10 0.10 0.96 −0.02 0.74 −0.15 −0.82 −0.77
0.02 0.87 −0.11 0.29 −0.51 −0.30 −0.76 −0.50 −0.96
0.03 0.54 −0.47 −0.18 −0.90 −0.44 −1.11 −0.55 −1.15
0.05 −0.04 −1.03 −0.46 −1.39 −0.45 −1.47 −0.36 −1.35
0.1 −0.44 −2.10 −0.44 −2.14 −0.40 −2.12 −0.28 −1.85

0.9 0.01 1.22 0.20 1.39 0.25 1.70 0.26 −1.33 −0.52
0.02 1.22 0.21 1.26 0.15 0.76 −0.10 −1.21 −0.66
0.03 1.15 0.12 0.83 −0.10 0.08 −0.37 −1.01 −0.78
0.05 0.86 −0.11 0.24 −0.47 −0.73 −0.95 −1.03 −0.96
0.1 −0.07 −0.98 −0.82 −1.36 −1.23 −1.55 −0.76 −1.23

Note: Results from 1000 simulations with sample size of T = 120 after
discarding the first 20000 data points. Table gives medians of β̂sim and of t

ˆβ

for testing H0 : β = 1, without intercept in the test regression.
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Table 5b: Simulated β̂ and tβ̂ for sample size T = 360.

ρ
0.98 0.99 0.995 1.0

θ γ β̂sim tβ̂ β̂sim tβ̂ β̂sim tβ̂ β̂sim tβ̂
0.6 0.01 0.96 −0.06 0.77 −0.26 0.39 −0.51 −0.47 −1.14

0.02 0.74 −0.47 0.19 −0.89 −0.31 −1.31 −0.29 −1.47
0.03 0.48 −0.88 −0.14 −1.46 −0.43 −1.79 −0.20 −1.70
0.05 0.02 −1.77 −0.33 −2.31 −0.37 −2.48 −0.15 −2.15
0.1 −0.36 −3.51 −0.38 −3.63 −0.35 −3.65 −0.12 −2.99

0.9 0.01 1.09 0.15 1.24 0.25 1.19 0.14 −1.11 −0.85
0.02 1.04 0.07 1.07 0.06 0.57 −0.34 −0.72 −1.01
0.03 0.97 −0.06 0.69 −0.32 −0.14 −0.87 −0.53 −1.13
0.05 0.74 −0.42 0.12 −1.02 −0.78 −1.55 −0.50 −1.35
0.1 0.06 −1.61 −0.68 −2.29 −0.77 −2.50 −0.40 −1.80

Note: Results from 1000 simulations with sample size of T = 120 after
discarding the first 20000 data points. Table gives medians of β̂sim and of tβ̂
for testing H0 : β = 1, without intercept in test regression.

Table 5c: Effect of sample size on estimated β̂.

θ = 0.6 and γ = 0.01 θ = 0.6 and γ = 0.02
ρ = 0.99 ρ = 1.0 ρ = 0.99 ρ = 1.0

Sample Intercept: Intercept: Intercept: Intercept:
size without with without with without with without with
100 1.24 2.96 -0.85 -11.3 0.57 1.08 -1.04 -4.02
200 0.85 1.86 -0.37 -4.62 0.39 0.66 -0.35 -2.37
500 0.82 0.92 -0.31 -2.04 0.28 0.35 -0.26 -0.95
1000 0.79 0.89 -0.26 -0.75 0.32 0.33 -0.11 -0.46
2000 0.79 0.85 -0.13 -0.37 0.35 0.36 -0.09 -0.20
5000 0.79 0.81 -0.10 -0.17 0.30 0.30 -0.06 -0.11
10000 0.79 0.79 -0.05 -0.08 0.33 0.34 -0.05 -0.07
20000 0.79 0.79 -0.04 -0.07 0.31 0.31 -0.02 -0.03

Note: Results from 100 simulations after discarding the first 20000 data
points. Table gives medians of β̂sim for test regression without and with
intercept.
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Table 6: Constant-gain learning of fundamentals process for T = 120.

θ = 0.6 θ = 0.9
γ γ

0.01 0.05 0.1 0.01 0.05 0.1
ρ

0.98 β̂ 0.74 −0.78 −0.61 −0.11 −3.78 −3.09
tβ̂ −0.23 −2.76 −3.60 −1.00 −6.21 −5.99

0.99 β̂ −0.10 −0.79 −0.63 −1.00 −3.66 −3.15
tβ̂ −0.71 −2.82 −3.66 −1.32 −6.17 −6.02

1.0 β̂ −1.07 −0.75 −0.62 −2.11 −3.39 −3.15
tβ̂ −1.22 −2.92 −3.63 −1.95 −5.95 −6.07

Note: Results from 1000 simulations with sample size of T = 120 after
discarding the first 20000 data points. Table gives medians of β̂sim and of
the t-statistics tβ̂ for testing H0 : β = 1. Test regression includes intercept.

Table 7: Constant-gain learning with random structural shifts.

Equilibrium T = 120 T = 360

gain γ β̂ tβ̂ β̂ tβ̂
ρ = 0.985 q = 0.02 0.060 −0.58 −2.49 −0.06 −4.06
ρ = 0.99 q = 0.05 0.087 −0.23 −3.17 −0.11 −5.32

q = 0.10 0.041 −0.81 −2.39 −0.24 −3.60
ρ = 0.995 q = 0.05 0.095 −0.36 −3.69 0.01 −5.43

q = 0.10 0.061 −0.63 −2.71 −0.12 −4.47

Note: q = probability of structural shift. θ = 0.6 and δ = 1. Regime
switching process with L = 0.4. γ is approximate Nash equilibrium gain.
Results from 100 simulations after discarding first 20000 data points. Test
regression include intercept. Table gives medians of β̂ and tβ̂.
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Table 8: β̂ for decreasing-gain learning with single structural break.

θ = 0.6 θ = 0.9
γ̄ = 0.5 γ̄ = 0.2 γ̄ = 0.5 γ̄ = 0.2

T = 120 ρ = 0.98 -0.16 0.43 0.49 1.65
ρ = 0.99 -0.30 0.00 0.38 1.65
ρ = 0.995 -0.66 -0.97 -0.67 0.97
ρ = 0.997 -1.17 -2.02 -1.73 -0.03

T = 360 ρ = 0.98 0.07 0.61 0.37 1.14
ρ = 0.99 0.01 0.43 0.26 1.19
ρ = 0.995 -0.01 0.27 0.22 1.08
ρ = 0.997 -0.17 -0.11 0.11 0.84

Note: Results from 2000 simulations. Table gives medians of β̂. Test
regressions include intercept. 25% increase in mean of fundamentals.
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