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Gooseneck barnacles, Pollicipes polymerus, form clusters in the mid-upper rocky 

intertidal on exposed coasts of the northeast Pacific.  Clusters compete for space, losing 

only to mussels, Mytilus californianus, and larvae settle gregariously on adults.  By tagging 

juveniles with calcein, I studied recruitment and growth of juveniles in large and small 

clusters and on solitary adults.  Recruitment was patchy; many adults contained no recruits, 

and three adults in each cluster contained 47 % of recruits.  More juveniles per adult were 

found on edges than centers of clusters, and juveniles on edges grew faster than those on 

the inside of clusters. There was no effect of cluster size on recruitment or growth.  Solitary 

adults had more recruits than clusters, and juveniles on solitaries grew faster than those 

from clusters.  These results imply solitaries should quickly grow into clusters, and clusters 

accrete from their edges.  These patterns may help Pollicipes compete with mussels. 
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CHAPTER I 
 
 

GENERAL INTRODUCTION 
 
 

 
Variation in hydrodynamic and biological processes affects recruitment, growth, 

and survival of marine populations (Barry and Dayton, 1991).  These populations are 

frequently observed in intertidal habitats as patchy assemblages of organisms (Sousa, 

1985).  The interactions among established individuals and settling larvae are important 

in explaining the boundaries and maintenance of assemblages in marine systems.  In the 

mid-high rocky intertidal communities on the west coast of North America, the 

gooseneck barnacle Pollicipes polymerus is a conspicuously observed species that forms 

dense clusters.  Gregarious settlement of larvae on adult peduncles may contribute to the 

dense packing of adult gooseneck barnacles.  The aggregated lifestyle of this species 

implies profound ecological impacts for both juveniles and adults living within clusters, 

including competition for space and food, which, in turn, impact growth.  Considering the 

ecological costs and benefits of an aggregated lifestyle is important for this species, 

which is found in clusters of various sizes and, more rarely, as solitary adult barnacles.       

Recruitment is an essential process that structures communities because all 

subsequent interactions within communities depend on its success (Woodin et al., 1995).  

Chapter I of this thesis focuses on the distribution patterns of larval and juvenile 

gooseneck barnacles in relation to their recruitment location on adult peduncles and in a 
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broader context, to their recruitment location within the entire cluster (edge, middle, or 

center of the cluster).  Additionally, it compares the abundance of recruits in different 

sizes of clusters including small clusters, large clusters, and solitary adult barnacles.  The 

recruitment patterns of recently settled cyprids and juveniles (< 0.5 mm rostro-carinal 

length) have not been well documented.  Furthermore, no one has looked at where the 

cyprids and juveniles are recruiting within the dense matrix of adults of P. polymerus. 

Growth of organisms is one of the fundamental components of their life-histories.  

Important aspects of the dynamics of populations and communities may be elucidated by 

studying the growth rates of individuals and the variation in growth among and within 

habitats.  Chapter II of this thesis explores the growth rates of juvenile gooseneck 

barnacles Pollicipes polymerus in relation to both cluster size and location within the 

cluster.   

In essence, this thesis explores the recruitment and growth patterns of larval and 

juvenile gooseneck barnacles in an effort to understand the formation and preservation of 

the discrete clusters of adult P. polymerus.  Understanding the recruitment and growth 

patterns of juveniles of this species of gooseneck barnacle is especially important given 

both the tradeoffs associated with living in a group and as a solitary individual (reviewed 

in Buss, 1981) and the competitive relationship between the gooseneck barnacle 

Pollicipes polymerus and the California mussel, Mytilus californianus (Paine, 1974; 

Wooton, 1990). 
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CHAPTER II 

 
RECRUITMENT PATTERNS OF GOOSENECK BARNACLES Pollicipes polymerus 

 

1. Introduction 

 

In the marine environment, many species of benthic invertebrates are known to 

form dense aggregations.   Examples of aggregating species include barnacles, mussels, 

oysters, vermetid gastropods, serpulid and sabellid polychaetes, sand dollars, crinoids, 

brittle stars, and ascidians.  For sessile organisms, spatial arrangements can negatively 

and positively impact fitness.  A colonization pattern that results in high population 

densities may cause intraspecific competition for space (Hui and Moyse, 1987; Bertness, 

1989) or food (Wu, 1980; Bertness et al., 1998), increased exposure to predation 

(Fairweather, 1988) or to parasites (Blower and Roughgarden, 1988), or inhibition of 

settlement caused by larval predation (Woodin, 1976; Young, 1989; Peterson, 1979).  

These same high populations densities may create substratum stability (Young, 1983), 

increase feeding efficiency (Merz, 1984; Pullen and LaBarbera, 1991), reduce risk of 

predation (as cited in Buss, 1981), increase the chances of finding a mate (Wu, 1978), 

decrease chances of mortality caused by desiccation (Lively and Raimondi, 1987) or 

wave-borne debris (Shanks and Wright, 1986), or increase interspecific interference 



 
 

4

competitive ability (Buss, 1981).  In many cases, the opposite arguments can be made for 

the impacts of colonization patterns on fitness where low population densities occur.   

The ecological significance of aggregated distributions of marine invertebrates 

has received considerable attention.  Dalby (1995) tested the hypothesis that aggregated 

individuals of the ascidian Pyura stolonifera would experience stronger effects of 

intraspecific competition than individuals living outside aggregations and found those 

inside aggregations grew more slowly; they had shorter body lengths and lighter bodies, 

tunics, and gonads.  McGrorty et al. (1990) found a positive correlation between densities 

of settled spat and adult densities in beds of the mussel Mytilus edulis; he noted that 

established adults provided protection to the spat, which settled deep within the beds on 

adult byssal threads. Mauck and Harkless (2001) tested the hypothesis that increased 

competition and decreased predation should cause barnacles living in groups to spend 

more time feeding after a predation threat than solitary barnacles.  The results indicated 

that solitary barnacles took longer to resume feeding than did barnacles in a group.  The 

conclusions of Dalby (1995) highlighted a negative consequence of aggregating: 

intraspecific competition, while those of McGrorty et al. (1990) illustrated a positive 

interaction between settlers and adults.  By comparing solitary and grouped barnacles, the 

study by Mauck and Harkless (2001) demonstrates some of the tradeoffs of living in a 

group.    Clearly, there seem to be both ecological costs and benefits of an aggregated 

lifestyle. 

 In addition to exploring why organisms occur in aggregations, ecologists have 

studied how these aggregations are formed. Many marine invertebrates have pelagic 
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larvae that disperse away from the adult habitat and then must return, settle, 

metamorphose, and grow into sessile, benthic adults.  Many explanations may account 

for how larvae contribute to the aggregative pattern of adults.  Three explanations that 

include settlement processes are 1) larvae settle gregariously in response to contact with 

their own species (Crisp, 1979), 2) larvae settle associatively in response to another 

species i.e. surfaces, bio-organic films, and other habitat cues (Crisp, 1979), or 3) larvae 

accumulate near conspecific adults due to hydrodynamic processes that affect larval 

supply (Butman, 1987; Possingham and Roughgarden, 1990; Havenhand and Svane, 

1991; Walters et al., 1997).  Alternatively, aggregations may be due to variation in 

patterns of mortality after random settlement of the larvae into the adult habitat (Keough 

and Downes, 1982).  Regardless of which one or combination of these explanations 

contributes to aggregation of a species, recruitment into established conspecific adult 

habitats must occur in order for the aggregations to be formed, and recruitment must 

continually take place to sustain the population (Young, 1988).  The influence of 

conspecific interactions, including larval, juvenile, or adult interactions, on the population 

dynamics of marine systems has been an important focus of many studies (Woodin, 1976; 

Jensen and Morse, 1984; Svane and Young, 1989; Young, 1990; Hurlbut, 1991; Quinn et 

al., 1993; Hutchings, 1994; Minchinton, 1997; Gutierrez, 1998; Strasser et al., 1999; 

Funk et al., 2000). 

On the exposed rocky shores of the west coast of North America, the gooseneck 

barnacle Pollicipes polymerus Sowerby forms distinct rosette-shaped clusters that are 

densely packed (Fig. 1a,b).   Solitary individuals are rarely found (Ricketts et al., 1985). 
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This species occurs in the mid to upper intertidal, especially where there is considerable 

wave action.  The restriction of the animal to locations with strong wave action is 

believed to be related to feeding behavior of the adults (Barnes and Reese, 1960).  A 

certain level of current flow or turbulence is required before adults will begin feeding 

actively.  Feeding takes place on the backwash of waves. 

 Some studies have suggested that the aggregative pattern seen in Pollicipes 

polymerus is due to the preferential settlement of cyprids on the peduncles of adults (Fig. 

1c,d; Barnes and Reese, 1960; Lewis, 1975 a,b; Hoffman, 1988; Satchell and Farrell, 

1993). Living within a cluster of adults might offer juveniles protection from predation, 

desiccation and strong wave action (Barnes and Reese, 1960).  Hoffman (1984) suggested 

that the preferential settlement of P. polymerus cyprids on adult peduncles is a 

mechanism for allowing the recruits to eventually attach themselves to the primary 

substratum.  He found a size gradient in the distribution of juveniles (0.5 -7 mm RC 

length) on the adult peduncle where the smallest and most abundant juveniles were 

attached near the capitulum, while the largest and fewest juveniles were attached basally 

at the peduncle.  He explained this distribution by migration of the juveniles down the 

peduncle in order to become established on primary substratum.  

Because adult gooseneck barnacles occur predominately in distinct clusters, I 

became interested in how the distribution of larval and juvenile barnacles might help 

explain the aggregated pattern of adults and contribute to the formation and preservation 

of these clusters.  The gregarious settlement of cyprids, which attach to the adult  
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a b

 
 
      

 

c d

 
 

Fig. 1.  Photographs of the gooseneck barnacle Pollicipes polymerus: a) Rock wall at 
South Cove, Cape Arago, OR with clusters of gooseneck barnacles and the California 
mussel, Mytilus californianus b) Dense cluster of gooseneck barnacles at Blacklock 
Point, OR c) Adult gooseneck barnacle with juveniles attached to the peduncle d) 
Close-up of peduncle with juveniles of varying sizes attached between white spicules.  
The smaller, cryptic juveniles are barely distinguishable from the peduncular spicules.  
Arrows indicate juveniles. 
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peduncle (Fig. 1c,d), provides the opportunity to compare larval and juvenile distribution 

patterns on the adult peduncle and within the whole cluster.   The papers of Hoffman 

(1984, 1988, 1989) are the only prior investigations of the recruitment patterns of 

juvenile P. polymerus within clusters.  At South Cove, Cape Arago, Oregon P. polymerus 

forms discrete clusters of various sizes on vertical surfaces (Fig. 1a) but occurs mixed 

within beds of Mytilus on horizontal surfaces.   Gooseneck barnacles are also found as 

solitary individuals that may be isolated from surrounding organisms or isolated within 

beds of mussels.  The variation in size of clusters and the presence of solitary adult 

barnacles at South Cove allows comparisons of recruitment patterns for individuals in 

small and large clusters and on solitary adult barnacles.  This study investigates the 

following questions:   

1) What is the distribution of recently settled cyprids and juveniles (< 0.5 mm rostro-

carinal length, RC) on the adult peduncle in clusters of barnacles and on solitary adult 

barnacles? 

2) What are the effects of location within the cluster (edge, middle, center) and cluster 

size (small, large, solitary adult) on the abundance of juvenile recruits? 
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2. Materials and Methods 

 

2.1. Study site and Animal collection 

 

Pollicipes polymerus clusters were collected from a sandstone rock wall at the 

northwest tip of South Cove, Cape Arago, OR (43˚18.102 N, 124˚23.989 W).  The rock 

wall faces northwest, is 30 meters in length, is located 3 meters above mean low low 

water (MLLW), and lies at the edge of a large surge channel.   

Round clusters of barnacles and solitary adult barnacles located vertically along a 

10 meter section of the wall were selected for recruitment studies.  Recruitment was 

examined at three different times.  For a Winter 2002-2003 study, three large clusters 

were selected with diameters of 9-15 cm.  For studies in Summer 2003 and Winter 2003-

2004 studies, large and small clusters were chosen in pairs (a large and small cluster were 

found close to each other), and solitary individuals were also studied along the rock wall.    

Four pairs of clusters were chosen for Summer 2003 and five pairs of clusters were 

selected for Winter 2003-2004.  Although results are not analyzed for pairs, pairs were 

selected to minimize local microhabitat differences that might exist between clusters at 

various locations on the rock wall.  Small clusters had a diameter of 4-7 cm and large 

clusters were 8-14 cm in diameter.  Clusters were found at intertidal heights of 1.4-2.5 
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meters above MLLW.  Eleven solitary adults located 0.9-2.3 m above MLLW were 

selected for comparisons with large and small cluster pairs for Summer 2003 and 

seventeen solitary adults were selected for Winter 2003-2004. In a few cases, there were 

not enough solitary adults available.  Therefore, two adults that were found together were 

selected instead and one adult was randomly eliminated by removing it from the rock.     

Clusters and solitary adults were removed from the rock by drilling around their 

circumferences with a gas drill and then chiseling away the rock until the underlying rock 

and its cluster fell off.  In some instances, the rock substratum of the clusters and solitary 

adults had natural cracks that appeared after removing them from the wall.   In the 

laboratory, cracked clusters were repaired with Z-spar underwater marine epoxy (Kop-

Coat, Inc.) without damaging the animals.   All barnacles were kept in sea tables with 

unfiltered seawater and airstones for no more than ten days before they were marked and 

outplanted. 

 

2.2. Marking  

Calcein (Sigma # C0875) is a flourochrome that binds to calcium and becomes 

incorporated into calcified structures of growing animals that are exposed to the chemical 

(Moran, 2000).  Calcein leaves a mark, visible with blue light, on the calcium carbonate 

plates of the barnacles (Fig. 2b,c).  Calcein was used in this study to distinguish the old 

recruits (marked; Fig. 2b) from the new recruits (unmarked; Fig. 2a) that settled into the 

cluster after outplanting.  A preliminary study was conducted from May 20-28, 2002 to 

determine the appropriate concentration and time for marking juvenile barnacles.  The 
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brightness of marks on juveniles attached to adults were examined for 3 different 

concentrations of calcein (100, 120 and 160 mg l-1) at four immersion times (1, 2, 4 and 8 

days).  All juveniles were marked regardless of the treatment, but marks varied in 

brightness. The marks on juveniles in concentrations of 120 and 160 mg calcein l-1 were 

not noticeably different but were brighter than 100 mg l-1, and marks on animals 

immersed for 4 and 8 days were brighter than those immersed for 1 and 2 days.  

Therefore, to conserve calcein and save time without compromising marking results, 

animals were immersed in 12-14 L of seawater at 120 mg calcein l-1  for 4 days. Calcein 

solutions were made from a stock of 6.25 g l-1 of calcein in distilled water.  The calcein 

solutions, which had an original pH of 2.7, were buffered to ca. pH 6 with the addition of 

sodium bicarbonate to increase solubility (Wilson, 1987). Clusters (Winter 2002-2003) or 

clusters and solitaries (Summer 2003 and Winter 2003-2004) were randomly placed into 

two or four 40 L glass aquarium tanks containing the marking calcein solution.  The tanks 

were placed into a seawater table with water held at 14-16 °C.  Each tank had two stir 

paddles and two air stones to keep the water moving vigourously.  Animals were fed once 

a day with concentrated cultures of the alga Skeletonema costatum during the Winter 

2002-2003 study or a mixture of S. costatum and Rhodomonas lens during the Summer 

2003 and Winter 2003-2004 studies.  Algae were grown in f/2 media (Guillard, 1983). 

The concentration of S. costatum fed ranged from 1x107 cell ml-1 to 1.5x107 cell ml-1  and 

the concentration of R. lens ranged from 1.2x107 to 1.5x107 cells ml-1.  

  

 
 



 
 

12

 

 

marked 

unmarked 

cba 

marked 

 
 
Fig. 2  Epifluorescence photographs of juveniles of Pollicipes polymerus. a) Unmarked 
juvenile b) Juvenile marked with calcein c) Right scutal plate of juvenile marked with 
calcein.  Scale bars are 20 μm.      
 

 

2.3. Outplanting 

The gooseneck barnacle clusters and solitary adults were outplanted in the field 

by coating the bottom and sides of the underlying rock of the cluster or solitary adults and 

the hole on the rock wall from which the animals were removed with a layer of Z-Spar 

underwater marine epoxy.  The cluster or solitary adult was then pressed into the 

appropriate hole on the wall and held in place while the epoxy was filled into any 

remaining gaps around the circumference of the cluster.  Animals were outplanted to the 

same location from which they had been removed, and in the same orientation.  The 

animals were left in the field for approximately two months before they were recollected 

(17 November 2002-14 January 2003= 58 days; 5 May-5 July 2003= 61 days; and 8 

November 03-6 January 04= 59 days).  The number of clusters and solitary adult 

barnacles outplanted were different from the numbers that were recovered (Table 1).  
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Animals were brought back to the lab and stored in 70 % ethanol until they could be 

processed.   

 

Table 1.  Experimental design showing the number of clusters and solitary adults that 
were recovered after 2 months in the field out of how many that were originally collected 
and outplanted for three seasons.  #/# = Recovered/Outplanted 
________________________________________________________________________ 

Cluster Size 
Large   Small   Solitary Adults 

Season 
Winter 2002-2003 3/3   0/3   0/0 
 
Summer 2003  4/5   4/5   11/25 
 
Winter 2003-2004 5/6   5/7   17/24 
 

 

2.4. Processing clusters in the lab 

Measurements of length, width and height of each cluster were recorded.  All 

adults in clusters were then separated by location relative to the cluster center (edge, 

middle, and center).  A piece of plexiglass with an attached transparency was suspended 

over the cluster.  The transparency contained a circle plot sized to match the 

circumference of each cluster.  The circle plot was then divided into three equal radial 

sections (edge, middle, center) and twelve 30º angular sections, and the position of each 

adult as a distance from the center and a compass heading angle from the top (North) of 

the cluster was recorded.  Each adult was subsequently removed from the cluster and 

placed into a labeled container with 70 % ethanol. 
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2.5. Recruitment position on adult P. polymerus  

Peduncle length from its junction with the capitulum to its attachment on the rock 

was measured with a pair of calipers to the nearest 0.1 mm for each disaggregated adult.  

The positions of recruits found on the peduncles of adults were recorded as distances on 

the peduncle and angles around the peduncle.  The distance on the peduncle was 

measured from the junction of the capitulum and peduncule.  The relative distance of 

each recruit was determined by dividing the distance on the peduncle where a recruit was 

found by the length of the host adult peduncle.  The angle measured was 0-360° 

increasing clockwise where the rostral plate of the capitulum was 0° and the carinal plate 

was 180°.    Each recruit was placed on a microscope slide, their rostro-carinal length was 

measured to the nearest 0.01 mm with a Leica MZ12 dissecting scope, and then the 

recruit was glued to a slide.  An Olympus compound microscope equipped with 

epifluorescence was used to distinguish marked recruits (Fig. 2b) from unmarked recruits 

(Fig. 2a).  Calcein has an excitation maximum of 494 nm and an emission maximum of 

517 nm (Merck Index, 2003); a blue excitation filter and an XF-23 yellow emission filter 

(Omega Optical, Inc.) revealed the calcein mark which glowed bright green.  Animals 

without a mark appeared light yellow to off-white in color when viewed under 

epifluorescence (Fig. 2a) and were distinct from marked animals. 

The patterns of juvenile distributions as relative positions on the adult peduncle 

are presented for all clusters by season (Fig. 3, 4, 5).  The distributions of juveniles on 

solitary adults are presented separately (Fig. 6).  Juveniles in clusters and on solitary 

adults were grouped according to their relative distance down the peduncle and by size 
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classes of < 0 .5 mm, 0.5 mm to 1 mm, and then by 1 mm size classes up to the largest 

juveniles found; cyprids were grouped separately.  For Winter 02-03, size classes greater 

than 1 mm are not shown because juveniles from 1-8 mm RC represented 16 individuals, 

< 3 % of the total juveniles recruited during the season and three of the four size classes 

had fewer than 5 juveniles (Fig. 3).  In Summer 2003 (Fig. 4) and Winter 03-04 (Fig. 5), 

size classes greater than 4 mm are pooled because they represented 21 and 42 individuals, 

respectively, < 5 % of the total juveniles found in clusters.  Size classes of 3-6 mm were 

pooled for juveniles on solitary adults because there were no juveniles in the 4-5 mm size 

class, and there was only 1 juvenile in the 5-6 mm size class (Fig. 6). 

Juveniles in clusters and on solitary adults were also mapped by their location 

around the peduncle.  The angle on the peduncle was grouped into twelve 30° arcs, with 

the midpoints of the 12 arcs (0, 30, 60, 90, … 330) measured in degrees relative to the 

RC axis.  Juveniles in clusters and on solitary adults were divided into 2 size classes of  

< 0.5 mm RC and > 0.5 mm RC (Fig. 7, 8).  Adults that contained no recruits were not 

included in the linear regressions of different size classes of recruits (Fig. 9). 

 

2.6. Statistical analyses 

The distributions as a relative distance down the peduncle of juveniles (< 0.5 mm 

RC) were tested for significant departures from randomness (using a uniform 

distribution) with the Kolmogorov-Smirnov test.  The positions around the peduncle of 

juveniles in clusters were investigated with circular statistics.  For this analysis, juveniles  
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Fig. 3.  Distributions of recruits of Pollicipes polymerus from clusters shown 
as a relative distance down the peduncle for one season of recruitment 
Winter 2002-2003: a cyprids, b < 0.5 mm juvenile rostro-carinal length (RC), 
and c 0.5-1 mm juvenile RC.  176 adults were sampled.    
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Fig. 4.  Distributions of recruits of Pollicipes polymerus from clusters shown 
as a relative distance down the peduncle for one season of recruitment Summer 
2003: a cyprids, b < 0.5 mm juvenile rostro-carinal length (RC), c 0.5-1 mm 
juvenile RC, d 1-2 mm juvenile RC, e 2-3 mm juvenile RC, f 3-4 mm juvenile 
RC and g 4-7 mm juvenile RC.  353 adults were sampled.
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Fig. 5.  Distributions of recruits of Pollicipes polymerus from clusters shown 
as a relative distance down the peduncle for one season of recruitment 
Winter 2003-2004: a cyprids, b < 0.5 mm juvenile rostro-carinal length (RC), 
c 0.5-1 mm juvenile RC, d 1-2 mm juvenile RC, e 2-3 mm juvenile RC, f 3-4 
mm juvenile RC and g 4-8 mm juvenile RC.  469 adults were sampled. 
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Relative distance down peduncle Relative distance down peduncle

Fig. 6.  Distributions of recruits of Pollicipes polymerus on solitary adults 
shown as a relative distance down the peduncle for one season of recruitment 
Winter 2003-2004: a cyprids, b < 0.5 mm juvenile rostro-carinal length (RC), 
c 0.5-1 mm juvenile RC, d 1-2 mm juvenile RC, e 2-3 mm juvenile RC and 
f 3-6 mm juvenile RC.  17 solitary adults were sampled.
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Fig. 7  Distribution of juveniles of Pollicipes polymerus from clusters shown 
as a position in degrees around the adult peduncle.  Data are shown for three 
seasons of recruitment and two size classes of juveniles: a Winter 02-03, RC 
< 0. 5 mm, b Summer 03, RC < 0. 5 mm, c Winter 03-04, RC < 0. 5 mm, d 
Winter 02-03, RC > 0.5 mm, e Summer 03, RC > 0.5 mm and f Winter 03-
04, RC > 0. 5 mm.  Ticks on x-axis represent 30o degree sections around the     
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Fig. 7  Distribution of juveniles of Pollicipes polymerus from clusters shown 
as a position in degrees around the adult peduncle.  Data are shown for three 
seasons of recruitment and two size classes of juveniles: a Winter 02-03, RC 
< 0. 5 mm, b Summer 03, RC < 0. 5 mm, c Winter 03-04, RC < 0. 5 mm, d 
Winter 02-03, RC > 0.5 mm, e Summer 03, RC > 0.5 mm and f Winter 03-
04, RC > 0. 5 mm.  Ticks on x-axis represent 30o degree sections around the     
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Fig. 9.  Linear regressions of number of cyprids vs. number of new recruits of Pollicipes 
polymerus, number of cyprids vs. number of old recruits of P. polymerus, and number of 
new recruits vs. number of old recruits of P. polymerus for three seasons of recruitment: 
a, d, g Winter 2002-2003, 294 adults sampled; b, e, h Summer 2003; 353 adults sampled
and c, f, i Winter 2003-2004, 469 adults sampled.  Note different scales for x and y-axes.  
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in clusters were not divided into size classes because there was a similar distribution 

pattern for all sizes.  Data were analyzed by a single degree rather than grouped degrees 

because the distributions were multimodal.  Bimodal distributions were transformed into 

unimodal ones by doubling the angles in order to test for significance with the Rayleigh 

goodness-of-fit test for randomness; z values are reported for n>200 and r values are 

reported for n<200 (Batschelet, 1981).  Then, the distribution was tested for bimodality 

by fitting a multimodal distribution using the density function of a multimodal von Mises 

distribution with 2 modes: f(φ)= 1*[2πI0(κ)]-1 exp [κ cos 2 (φ - θ)] (Batschelet, 1981).   

Recruitment data were analyzed using the statistical programs Statistica 6.1 and Systat 

9.0.  The data were transformed to their natural logarithms to remove some of the  

skewness resulting from variation in the numbers of adults represented in each location 

and to satisfy the assumption of homogeneity of variance which was tested using 

Cochran’s test at p<0.05 (Underwood, 1997).  The assumption of normality was met in 

most cases, but two groups in the summer 2003 study violated this assumption.  

Recruitment data were analyzed with an analysis of variance (ANOVA) to test for 

differences in the effects of location within the cluster and of cluster size on recruitment.  

Because the Winter 2002-2003 experiment had clusters of one size, it was not included in 

the initial statistical analysis.  Recruitment, the dependent variable, was defined as the 

ratio of the mean number of recruits to the number of adults in each location.  Cluster size 

and location within cluster were the fixed factors tested; season was included as an 

additional random factor.    Since experiments were replicated across multiple seasons, 

variation in treatment effects among seasons was investigated.  The final model omitted 
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interactions that included season because these seasonal effects were absent.  For 

significant results, Tukey’s HSD or Unequal-N HSD post-hoc tests were used to 

determine which groups were different.  In a separate ANOVA, the effects of location 

and season were tested on recruitment in large clusters in order to include data from the 

Winter 2002-2003 experiment.  The final model for this analysis also omitted an 

interaction term (season by location) because there was no variation in treatment effects 

among seasons.  A separate two-way ANOVA was performed to test for differences in 

recruitment among solitary adults, large clusters, and small clusters.  Size was tested as a 

fixed factor and season as a random factor with recruitment as the dependent variable.  

Since recruitment to solitary adults was highly variable between seasons and season was 

not a factor of interest, a separate one-way ANOVA was performed for the Winter 2003-

2004 data with size as the fixed factor and recruitment as the dependent variable.    

 

3. Results 

 

3.1. Distribution of larvae and juveniles on the adult peduncle: relative distance down 

the peduncle 

 

Cyprids (0.22-0.28 mm width and 0.37-0.51 mm length), and juveniles (0.16 to 

7.46 mm rostro-carinal length) were found attached to peduncles of adult P. polymerus as 

well as to the peduncles of juveniles.  Therefore, recruits were defined as cyprids and 

juveniles (including those both unmarked and marked with calcein) that were attached to 
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adult peduncles and excluded cyprids and juveniles attached to the peduncles of other 

juveniles.  Adults were defined as individuals in the cluster that were attached to primary 

substrate.  This distinction is important because a few of the adults (< 15 %) were small 

enough to be defined as recruits, 4-7.5 mm RC, but they were attached to primary 

substrate and not to a host peduncle.  

Juvenile size varied between seasons.  In the summer experiment, 30 % of the 

juveniles found in clusters were < 0.5 mm RC while more than 85 % of the juveniles in 

clusters were this size in both winter studies.  72 % of the juveniles on solitary adults 

were < 0.5 mm RC in Winter 2003-2004.  There was only one juvenile found on solitary 

adults in the summer study, and there were no solitary adults studied in Winter 2002-

2003.    

The distributions as a relative distance down the peduncle of cyprids and juveniles 

from clusters and solitary adults were predominately unimodal, but peaks occurred at 

different relative distances on the peduncle for different size classes.  Juveniles < 0.5 mm 

RC length were not randomly distributed on the adult peduncle (Fig. 3b, K-S d= 0.504, 

p<0.001; Fig. 4b, K-S d=0.325, p<0.001; Fig. 5b, K-S d=0.407, p<0.01; Fig. 6b, K-S 

d=0.336, p< 0.01); cyprids (Fig. 3a, 4a, 5a, 6a) and juveniles > 0. 5 mm RC length (Fig. 

3c, 4c-g, 5c-g, 6c-f) were also not randomly distributed on the adult peduncle.  In both 

winter studies, the smallest, most abundant juveniles on clusters were found at relative 

peduncle distances of 0.1-0.2 (Fig. 3a, 5a, 6a) while in the summer study, the smallest 

juveniles on clusters were found at relative distances down the peduncle of 0.2-0.3 (Fig. 

4a).  On solitary adults, the smallest juveniles were found at the very top of the peduncle, 
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at relative distances down the peduncle of 0-0.1 (Fig. 6a).  As juveniles increased in size, 

their relative positions on the peduncle shifted downward (Fig. 3c, 4c-g, 5c-g, 6c-f).  

There was a clear gradient in sizes and abundance on the peduncle with more abundant, 

smaller juveniles found at the top of the peduncle and fewer, larger juveniles found at the 

bottom of the peduncle.  The smallest juveniles on clusters and solitary adults were found 

from the top to the bottom of the peduncle; however, the largest juveniles were usually 

absent from the top of the peduncle (Fig. 4e-f, 5f, 6e).  Larger juveniles (1-5.13 mm) on 

solitary adults were never found below a relative distance of 0.6 of the way down the 

peduncle (Fig. 6b-e), whereas larger juveniles in clusters were distributed to the bottom 

of the peduncle (Fig. 4b-f, 5b-f).   

  

3.2. Distribution of larvae and juveniles on the adult peduncle: position around the 

peduncle 

The juveniles on clusters from both size classes were not randomly distributed 

around the adult peduncle (Fig. 7; Winter 2002-2003, z=35.97, p<0.001; Summer 2003, 

z=34.51, p<0.001; Winter 2003-2004, z=304.81, p<0.001).  In all seasons, the 

distribution of juveniles on adult peduncles from clusters was bimodal.  Juveniles were 

found below the rostrum (0°) and below the carina (180°).  In Winter 2003-2004, the 

mean angles of recruits were 354° and 177° + 34.7°, in Summer 2003 the mean angles of 

recruits were 352° and 176° + 34.8°, and the mean angles of recruits for Winter 02-03 

were 10° and 185° + 36.4°. 

On solitary adults, juveniles < 0. 5 mm RC were not distributed randomly (Fig.    
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8a, z=5.09, p< 0.01); however, juveniles > 0. 5 mm RC were distributed randomly around 

the peduncle (Fig. 8a, r=0.11, p>0.369).  Smaller juveniles were most abundant under the 

rostrum (0°), and the mean angle of recruits < 0.5 mm RC on solitary adults was 21º + 

37.9°.  Larger juveniles were more abundant around 300-330° and 120°.  Below the 

rostrum and below the carina were not locations of intense recruitment for larger 

juveniles on solitary adults, as these same locations had been for juveniles of all size 

classes in clusters.  In fact, when size classes of juveniles on solitary adults were 

combined, the location of juveniles is random (Fig. 8c, z=0.41, p>0.10). 

 

3.3 Recruitment of cyprids and juveniles in clusters 

The abundance of cyprids was significantly positively correlated with new and 

old recruits in theWinter studies; however, the abundance of cyprids was significantly 

negatively correlated with new recruits and the abundance of cyprids was not 

significantly correlated with old recruits in the Summer study (Fig.9; Table 2).   In all 

seasons, the abundance of new recruits was significantly positively correlated with old 

recruits (Fig. 9g,h,i; Table 2).  For all seasons, cyprids and new recruits and new recruits 

and old recruits were more strongly correlated than were cyprids and old recruits. 

Recruitment results were analyzed further for old and new recruits combined, and 

excluding cyprids because: 1) there were large differences in the numbers and sizes of 

recruits between seasons (30 % of juveniles were less than 0.5 mm RC in the summer 

experiment; 85 % of the juveniles were this size in both winter studies, 25 % of the  
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Table 2.  Linear regression results of different size classes of recruits (cyprids, new 
recruits, old recruits) of Pollicipes polymerus found on adults (n) in three seasons.  
 
Relationship  Season   n  r  p 
cyprids vs.  Winter 2002-2003 75  0.64  < 0.001  
new recruits  Summer 2003  66  0.30  < 0.02 
   Winter 2003-2004 328  0.84  < 0.001 
 
cyprids vs.  Winter 2002-2003 63  0.58  < 0.001 
old recruits  Summer 2003  124  0.07  > 0.50 
   Winter 2003-2004 339  0.49  < 0.001 
 
new recruits vs. Winter 2002-2003 80  0.84  < 0.001  
old recruits  Summer 2003  129  0.26  < 0.002 

Winter 2003-2004 350  0.67  < 0.001   
 

  

recruits were cyprids in Winter 03-04, while 5 % and 6 % of recruits were cyprids in the 

Summer 2003 and Winter 2002-2003, respectively) 2) there was a significant positive 

linear relationship between all size classes (cyprids, new, old ) of recruits in the Winter 

studies, but the relationship between cyprids and old recruits was weaker (Fig. 9), and 3) 

a later study (see Chapter III of this thesis) reports on growth rates of some of the same 

juveniles counted for recruitment studies.  By combining new and old recruits and 

omitting cyprids, comparisons of three replicate seasons could be made without 

sacrificing the summer data, and connections between recruitment and growth would be 

morappropriate if most of the same individuals were considered.  Growth rates for 

cyprids were not estimated with the methods used in this study.   
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The number and size of recruits varied considerably among adults and locations in 

all clusters.  Because of the unequal samples sizes of adults in each cluster location, 

recruitment is presented in two ways.  First, recruitment was explored as the percentage 

of adults vs. the number of recruits where the number of recruits are grouped into 

categories: 0, 1-5, 6-10 recruits, etc. (Fig. 10, 11, 12).  Second, recruitment was analyzed 

statistically as the ratio of the number of recruits to the number of adults in each location 

to account for the uneven distribution of adults in each location (Fig. 13).  In one cluster 

from the Winter 2002-2003 study, not all adults were sampled and recruitment was 

defined as the ratio of the number of recruits to the number of adults sampled in each 

location.     

The frequency distribution of recruits on adults was non-random in all 

experiments. There were high percentages of adults with no recruits in all locations and 

sizes of clusters.  In Winter 2002-2003, 56, 84, and 81 % of adults on the edge, in the 

middle, and in the center, respectively, had no recruits (Fig. 10).  In large clusters during 

Summer 2003, 58, 82, and 95 % of adults on the edge, in the middle, and in the center, 

respectively, had no recruits (Fig. 11).  In the Winter 2003-2004 study, the percentage of 

adults in large clusters with no recruits for each location was 15, 35, and 54 %, while the 

percentage of adults in small clusters with no recruits for each location was 30, 54, and 

25 % on the edge, in the middle, and in the center, respectively (Fig. 12). The frequency 

of adults with zero recruits was higher on the inside of the cluster than the edge of the 

cluster.   



 
 

30

 

 

Edge
193 adults
952 juveniles

0 20 40 60 80 100 120
0

20

40

60

80

100

Middle
87 adults
109 juveniles

0 20 40 60 80 100 120

%
 o

f a
du

lts
 w

ith
 v

ar
io

us
 n

um
be

rs
 o

f j
uv

en
ile

s

0

20

40

60

80

100

Center
16 adults
5 juveniles

Number of juveniles
0 20 40 60 80 100 120

0

20

40

60

80

100

Fig. 10.  Distribution of juveniles per adults of Pollicipes polymerus from large clusters for 
one season of recruitment Winter 2002-2003 and three cluster locations: a edge, b middle 
and c center.
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Recruitment was highly patchy in every cluster.  In fact, on average 22 % of the 

recruits in a cluster were found on one adult and on average 47 % of all recruits in a 

cluster were found on three adults (Fig. 13).  In all seasons, the frequency distributions of 

recruits per adult were positively skewed.  This positively skewed distribution was 

stronger for the edge and middle locations and resulted from many adults with no recruits 

or low numbers of recruits and a few adults with high numbers of recruits. 
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Fig. 13.  Percent of juveniles of Pollicipes polymerus from clusters found 
on one adult and on three adults for three seasons of recruitment: Winter 
2002-2003, n= 3 clusters; Summer 2003, n=8 clusters; and Winter 
2003-2004, n=10 clusters.  Error bars are + 1 SE.
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3.4. The effects of location within the cluster and cluster size on recruitment 

The distribution of the mean number of recruits per adult as a function of both 

location within the cluster and cluster size was similar across seasons for large and small 

clusters but not for solitary adults (Fig. 14).   The number of juveniles per adult varied 

considerably between clusters; however, there was a significant effect of location (Table 

3, p< 0.003).    Significantly more juveniles per adult were found on the edge of clusters 

than in the center of clusters (F2,47, p=0.003).  There was no significant difference 

between the number of juveniles per adult found on the edge of clusters and the middle of 

clusters (p=0.069) or between the middle and center of clusters (p=0.427).  However, the 

mean number of juveniles per adult decreased from the edge to the center of the cluster 

(LS means for edge 1.80, middle 1.21, and center 0.89 recruits adult-1). There was no 

significant effect of cluster size (Table 3, p=0.87) for large and small clusters and no 

significant interaction between location and size (p=0.49).   An additional statistical 

analysis testing the effect of location in large clusters from three seasons confirmed these 

results (Table 4, p<0.001) and showed that significantly more juveniles were found on 

edges of clusters than in either the middle (p=0.009) or center locations of the cluster 

(p<0.001).  Again, there was no significant difference between recruitment in the middle 

and center of clusters (p=0.17).      
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Table 3.  Analysis of variance for Summer 2003 and Winter 2003-2004 recruitment of 
juveniles of Pollicipes polymerus in clusters with season, size, and location as main 
effects. 
 
Effect   df      MS         F   p 
Season   1  20.086         33.957  0.001  
Size   1    0.016           0.028  0.869 
Location  2  3.798           6.420  0.003   
Size x Location 2    0.434           0.734  0.485 
Residual  47  0.592 
 
 
 

Table 4.  Analysis of variance for Winter 2002-2003, Summer 2003, and Winter 2003-
2004 recruitment of juveniles of Pollicipes polymerus in large clusters with season and 
location as main effects. 
________________________________________________________________________ 
Effect   d  MS   F   p 
Season   2  7.712   20.397   0.001  
Location  2  4.930   13.040   0.001 
Residual  31  0.378 
 
 

The effect of cluster size was looked at in more detail by comparing recruitment 

on solitary adults, small clusters and large clusters.  There was no significant effect of 

cluster size or season (Table 5; size, p=0.89; season, p=0.093), but there was a significant 

interaction of cluster size and season (Fig. 15, p<0.001).  Because recruitment was 

negligible on solitary adults in Summer 03 (mean of 0.09 recruits adult-1), the effect of 

cluster size on recruitment in Winter 2003-2004 was tested separately.  The results of this 

ANOVA indicated a significant cluster size effect (Table 6; F2,44, p<0.001).  Recruitment 
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on solitary adults in this season was significantly higher than recruitment on large 

(p=0.008) and small (p=0.002) clusters. 

 

 
Table 5.  Analysis of variance for Summer 2003 and Winter 2003-2004 recruitment of 
juveniles of Pollicipes polymerus in clusters and on solitary adults with season and size 
as main effects. 
 
Effect   df  MS     F     p 
Season   1  66.490     9.269   0.093  
Size   2      0.851     0.121   0.892  
Season x Size  2    7.011            11.577              0.001 
Residual  76    0.592 
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Fig. 15.  Interaction plot of a two-factorial ANOVA of mean number of 
juveniles per adult of P. polymerus with cluster size (large, small, solitary) 
and season (winter, summer) as main effects. Vertical bars denote 0.95 
confidence intervals.
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Table 6. Analysis of variance for Winter 2003-2004 recruitment of juveniles of Pollicipes 
polymerus in clusters and on solitary adults with size as a main effect. 
 
Effect   df      MS       F      p 
Size   2    7.510    8.779    0.001  
Residual  44    0.8554 
 

 

 

Discussion 

 

4.1. Distribution of recruits on the adult peduncle 

 

On both adults from clusters and on solitary adults, the most abundant, smallest 

juveniles were located near the tops of the adult peduncles and the least abundant, largest 

juveniles were attached closer to the bottoms of the peduncles.  Cyprids and recently 

settled juveniles were also located at the tops of the peduncles, just above the next 

respective size class.   Hoffman (1984) reported a similar pattern but did not include 

cyprids or recently settled juveniles less than 0.5 mm rostro-carinal length.  The 

distribution of recruits could be explained by 1) adult peduncle growth, 2) differential 

juvenile growth, 3) differential mortality  4) temporal settlement patterns, 5) juvenile 

migration, or 6) a combination of settlement and juvenile migration.   New peduncle 

tissue is primarily added at the junction of the capitulum and the peduncle (Darwin, 1851; 

Chaffee and Lewis, 1988).    After 9 days, Chaffee and Lewis (1988) documented visible 
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bands produced in 24 % of P. polymerus 7-17 mm RC at the junction of the capitulum 

and peduncle, though they did not report any dimensions of the band.  Therefore, recruits 

settling at the top of the peduncle, probably shift relatively lower on the peduncle as new 

peduncle tissue is added above them, and growth automatically creates a gradient in sizes 

over time as new recruits continually attached to the top of the adult peduncle.  However, 

in this scenario, recruits should not get closer to the bottom of the peduncle as the 

peduncle grows above them. The recruits should always remain at a fixed distance above 

the substrate unless the base of the peduncle deteriorates, and there is no evidence for 

deterioration of the peduncle. Consequently, the growth of the adult peduncle cannot 

fully explain the gradient in sizes of juveniles on the peduncle. 

The distribution of recruits on the peduncle may be due to differential growth of 

juveniles that settled at the top and bottom of the peduncle.  Hoffman (1984) discussed a 

shading effect (Cimberg, unpublished in Hoffman, 1984), where juveniles at the proximal 

end of the peduncle may grow slower because they are competing for food with the 

canopy of adults above them.  The shading effect hypothesis may, however, be unlikely 

because juvenile and adult gooseneck barnacles have different modes of feeding.  Adult 

barnacles feed by cirral extension (Barnes and Reese, 1959), while juveniles feed by 

cirral pumping, beating, and extension (Lewis, 1981).  Juveniles shifted their feeding 

activity to extension with increasing size (Lewis, 1981).  The variety of juvenile feeding 

behaviors in contrast to a single adult feeding behavior might allow the juveniles to 

compete with adults for food.  Even if juveniles and adult barnacles were competing 

heavily for food, causing juveniles at the top of the peduncle to suffer from food 
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limitation compared to those at the bottom, the growth rate of juveniles at the bottom 

would have to be extremely fast in order to account for the observed distribution pattern 

of recruits.  The few studies that have measured growth rates of juveniles in the field 

have reported rates such as 0.0067-0.033 mm RC day-1 for juveniles 3-4 mm RC (Lewis 

and Chia, 1981), 0.039 mm RC day-1 for juveniles 3.6-19 mm RC (Page, 1986), and 0-

0.029 mm RC day-1 for juveniles 0.296-7.48 mm RC (Chapter III of this thesis).  These 

rates are too slow to explain the large differences (e.g. 7 mm RC) in juvenile sizes in the 

size gradient of juveniles on the adult peduncle if recruits settled in the same season. 

A third hypothesis that may account for the distribution of recruits is differential 

mortality of recruits at the top and bottom of the peduncle. Adults are attached to the 

substrate and laterally at the bases of other adult peduncles but are not found along adult 

peduncles, wheras settlers are found along adult peduncles.  Therefore, the cyprids and 

new recruits at the top of the peduncle may have died while the settlers found at the 

bottom survived and grew into new adults.  However, this hypothesis seems unlikely 

given the high rates of mortality of spat and the few numbers of cyprids that settled at the 

bottom. 

 A fourth possibility for the distribution of recruits on the peduncle is random 

settlement followed by differential growth and survival of recruits at the top and bottom 

of the peduncle.  Recruits would have to settle randomly along the peduncle, grow faster 

at the bottom of the peduncle than the top, and survive better at the top of the peduncle 

than at the bottom.  However, in this study the majority (57-72 %) of the cyprids and 

unmarked juveniles (new recruits) that settled into clusters or on solitary adults were 
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found at the very top of the peduncle, a relative distance of 0.0-0.3 (Fig. 3a,b Fig. 4a,b 

Fig. 5a,b, Fig. 6a,b).  Furthermore, the highest frequency of cyprids were always found 

above the next larger size class, juveniles < 0.5 mm RC.   

A fifth hypothesis for the gradient in sizes of juvenile barnacles on the adult 

peduncle is migration of juveniles down the adult peduncle.  Hoffman (1984) proposed 

that juveniles eventually attach to the primary substratum with limited mobility, as “foot-

loose” barnacles.  He described how juveniles may move by producing peduncular 

extensions at the distal end of the peduncle (Hoffman, 1984, 1989).  Chaffee and Lewis 

(1988) reported that thickenings and small extensions of the peduncle were produced at 

the base of the animal.   Hoffman (1984, 1989) and I both observed red bulges lacking 

peduncular spicules at the distal portion of the peduncle on both adults and juveniles 

attached to adults.    Although neither Hoffman nor I tested the mobility of juveniles, 

there have been three studies that reported mobility in lepadomorph barnacles (Kugele 

and Yule, 1993, 2000; Woll, 1997).   

Kugele and Yule (1993) observed tracks of cement from juveniles on peduncles 

of adult P. pollicipes.  Tracks increased in width along the distance from the start of the 

track and matched the diameters of juvenile peduncles, thus indicating directed 

locomotion of juveniles.  Also, when adults were suspended upside down in tanks, the 

direction of tracks from attached juveniles changed toward the capitulum but was still 

downward.  A few studies (Kugele and Yule, 2000; Woll, 1997) followed specific 

juveniles (2-12 mm RC) for periods of 58 to 251 days and reported movement ranging 

from 20–190 um day-1 and, in three cases, larger juveniles (8-12 mm RC) moved off the 
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host peduncle onto the substrate.  However, there is no evidence in the literature of small 

recruits moving up the peduncle; thus, migration alone cannot account for the distribution 

of many, small recruits at the top of the peduncle and few, large recruits at the bottom. 

 From the data presented in this study, the most logical explanation for the 

gradients in size and abundance of recruits distributed on the adult peduncle is that 

cyprids settled at the top of the peduncle (Fig. 3a, 4a, 5a, 6a) and then migrated down the 

peduncle as they grew (Fig. 3b-c, 4b-g, Fig. 5b-g, Fig. 6b-g).  The abundance of cyprids 

and new recruits was probably high because of gregarious settlement (Barnes and Reese, 

1960; Lewis 1975a, b; Hoffman 1988; Satchell and Farrell, 1993), and the abundance of 

large juveniles was probably low because of the high rates of mortality of spat during the 

first 2-3 weeks after settlement (Hoffman, 1989).  The few, large juveniles at the bottom 

of the peduncle may represent recruits that settled at the top, grew, and survived the 

migration to the bottom of the peduncle.   

 

4.2. Distribution of recruits around the adult peduncle 

The distributions of juveniles from clusters around the adult peduncle, aggregated 

at particular locations on the adult, are not surprising given the gregarious settlement of 

barnacles (Knight-Jones, 1954; Crisp, 1961); however, why they are aggregated most 

frequently below the rostrum and carina of the adult and not at other locations around the 

peduncle may be related to the orientation of the barnacles in flow and the effects of the 

cluster on flow past individual barnacles.   
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Barnes and Reese (1960) observed that over a restricted area, most of the adults in 

groups of P. polymerus orient their capitula in the same direction.  They noticed that the 

adults were feeding on the backwash of waves with the anterior face of the cirral net 

against the incoming waves.  The feeding efficiency of a group of tightly packed adults is 

linked to the orientation of the capitula.   I speculate that settling cyprids are probably 

concentrated at the particular locations below the rostrum and carina of the adult because 

of the interaction of flows through the cluster and around the capitula and peduncles of 

individual barnacles.  The individuals in a cluster may act as a filter, creating dead spaces 

around their peduncles below the rostrum and carina.   The rough cylindrical peduncle, 

unlike the capitulum, is covered with tightly packed, symmetrically arranged calcareous 

spicules that make grooved depressions perfect for settling cyprids (Barnes and Reese, 

1960).  The flow around the capitulum is probably decelerated around the rostrum and 

carina but accelerated along the sides (scutal and tergal plates) due to flow around a 

cylinder, where the water reaches the highest velocity laterally because the cylinder 

blocks the path of flow, but the water becomes fixed at upstream and downstream 

boundaries of the cylinder (Vogel, 1994). 

Young and Cameron (1989) looked at the effects of larval predation by Balanus 

eburneus on recruitment of bryozoans.  At the smallest scale, they studied recruitment 

differences of bryozoans between the regions of the barnacle shell influenced by the 

cirral feeding stroke and other regions of the shell.  They found fewer larval bryozoans on 

the rostral and carinal plates than on the lateral or carinolateral plates of individual 

barnacles.  This pattern is the opposite trend from the spatial distribution of juveniles of 
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P. polymerus, which did not settle on the capitular plates like the bryozoan larvae did.  

Instead, juveniles of P. polymerus were found most frequently below the rostral and 

carinal plates on the adult peduncle (Fig. 7).  The study by Young and Cameron (1989) is 

important because it documented very small scale spatial effects on recruitment.  Similar 

to Young and Cameron (1989), this study found differences in recruitment of P. 

polymerus at a very small spatial scale.  Young and Cameron (1989) suggested that 

larvae in flows above the carinal plate have high chances of being caught by the cirri 

during feeding, and those that aren’t caught may be swept in the posterior-anterior 

direction (i.e. from the carinal to the rostral plate) by the currents made from the cirral 

stroke.  Perhaps, the action of the cirri in adult gooseneck barnacles sets up a current that 

directs the larvae toward the rostrum and carina, where they settle below on the peduncle.  

P. polymerus larvae may manage to escape the adult cirri because their cirri do not have a 

regular beat as in balanomorphs, but are extended for long periods of time.  Alternatively, 

gooseneck barnacle larvae may be caught and then rejected, similar to larvae of Bugula 

neritina, by adults and end up encountering the locations below the rostrum and carina 

because of different forces (Young and Cameron, 1989) that expel them. 

Another idea that may explain the distribution of juveniles below the rostrum and 

carina is related to the activity of the peduncle.  Barnes and Reese (1960) noted that the 

peduncle undergoes changes of shape by retracting, expanding, and bending movements.  

Time lapse photographs of adult individuals indicated that bending movements were 

from side to side rather than from anterior to posterior (Barnes and Reese, 1960).  Since 

adults are tightly packed into clusters, they may rub the sides of their peduncles against 
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each other while bending, decreasing the numbers of larvae that settle or survive below 

the lateral plates because they may be abraded away.  The dense arrangement of clusters 

and lateral bending movements of the peduncle may also increase the numbers of larvae 

found below the rostrum and carina since these locations on the peduncle may be less 

likely to rub or abrade juveniles away if bending movements are occurring from  side to 

side. 

The lack of other adults surrounding solitary adult barnacles may explain why 

solitary adult barnacles had a different distribution of juveniles around the peduncle (Fig. 

8).  Solitary gooseneck barnacles may experience flows that are different than clustered 

gooseneck barnacles and settling cyprids may be able to contact more surface area of the 

solitary peduncle without the presence of other adults.  The flows around the solitary 

adult barnacles are probably more haphazard and less directed than flows that are filtered 

by a cluster of individuals, thus allowing cyprids to settle more randomly around the 

peduncle (Fig. 8c).        

 

4.3. Distribution of juveniles in clusters: frequency per adult  

The juvenile barnacles from clusters and on solitary adults were distributed 

nonrandomly on adults in all locations.  There are several possible reasons that might 

explain the highly patchy distribution of juveniles on adults. 

 The abundance of cyprids was a good predictor of both the abundance of new and 

old recruits in the Winter studies and the abundance of new recruits was a good predictor 

of the abundance of old recruits in all seasons (Fig. 9, Table 2).  Gregarious behavior has 
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been demonstrated in many marine invertebrate groups (Knight-Jones and Stevenson, 

1950; Moyse and Knight-Jones,1965; reviewed in Burke, 1986).  However, 

gregariousness in barnacles has only been less well documented for lepadomorph than 

balanomorph barnacles (Knight-Jones, 1954).  Barnes and Reese (1960), Lewis 

(1975a,b), Hoffman (1988), and Satchell and Farrell (1993) attributed the aggregative 

pattern of P. polymerus to the preferential settlement of cyprids on peduncles of adults.  

Hoffman (1988) experimentally confirmed that the presence of conspecifics induced the 

settlement of larvae when he placed scored and pitted terra cotta tiles 2 m from the 

seaward end of the seawater intake pipe at Scripps Institution of Oceanography.  P. 

polymerus aggregations were regularly scraped from this end of the pipe because they 

block water flow through the pipe.  Twenty days after the plates had been in the pipe, 

initial settlement of cyprids of P. polymerus occurred, and twenty eight days after their 

placement, he noticed distinct aggregations of cyprids with a maximum number of 15 

larvae per aggregation.  The positive linear relationships I found between abundance of 

cyprids and new and old recruits (Fig. 9a,c,d,f) provides further support for the 

gregarious settlement of larvae of P. polymerus. 

In a different study, natural variation in recruitment rate of four intertidal 

barnacles, including Pollicipes polyermus, was used to examine how the density of 

settling barnacles influenced the spatial pattern of recruits (Satchell and Farrell, 1993).  

They found that 75 % of the settling plates with P. polymerus had aggregated settlement, 

while three balanomorph species recruited in random spatial patterns on 64-93 % of the 

settling plates.  Furthermore, 3-8 cyprids of P. polymerus settled in contact with each 
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other, and their degree of aggregation increased significantly with the density of settlers.  

Although Satchell and Farrell (1993) did not look at P. polymerus recruitment on adult 

peduncles, the settlement and recruitment densities of this species on settling plates 

indicated that cyprids were strongly attracted to conspecific cyprids.  Both studies, 

Hoffman (1988) and Satchell and Farrell (1993), found non-random distributions of 

recruits that I also found on adult peduncles.  Explaining why peduncles of one or three 

particular adults were selected over the hundreds to choose from by an average of 22 or 

47 % of all recruited juveniles (Fig. 14) may be more related to physical forces than 

larval choices. 

One possibility to explain these patterns is that those adults were particularly 

attractive.  Larval settlement cues may be produced directly by conspecific organisms.  

For example, in barnacles and polychaetes, exposure to extracts of adults or tubes of 

conspecific adults has been shown to enhance settlement (Larman and Gabbott, 1975; 

Jensen and Morse, 1984; reviewed in Walters et al., 1997).  By chance alone, one cyprid 

that settled on a particular adult may have attracted another etc. until there was a dense 

patch on that adult.   However, if we assume that chance alone did not account for the 

distribution of juveniles and most adults would be capable of producing similar cues, the 

answer to why only a few were selected out of hundreds of adults may be found by 

considering hydrodynamic reasons rather than active larval choices to cues produced by 

adults.  

A second possibility to explain the patchy distribution patterns of juveniles per 

adult is that cyprids were passively accumulated in flows around clusters and deposited in 



 
 

48

pockets around a particular adult or a few adults.  The arrangement of the three adults 

with the most recruits in clusters may help explain the passive deposition of larvae.  

Sometimes the adults with the most recruits occurred in different cluster locations (edge, 

middle, center) but were in the same quadrat of the cluster, creating a radial pattern out 

from the center of the cluster.   Another indication that hydrodynamics may be important 

in explaining the distribution of juveniles was the patchy distribution of juveniles on one 

side of the cluster.  By sampling adults around the entire cluster, this study found that 

adults with the highest numbers of recruits typically were found on the landward side of 

the cluster (Fig. 16).  Perhaps, the combination of hydrodynamics entraining cyprids in 

pockets near particular adults in the cluster and on a certain side of the cluster and 

gregarious larval settlement that resulted in their attachment to particular adult peduncles 

explains the unique distribution patterns of juveniles of P. polymerus in clusters.        

Finally, the patchy distribution may be explained by random settlement on most 

adults with differential survival on a few adults; however, this seems unlikely given the 

three replicate seasons of recruitment.  This alternative hypothesis is also discussed 

further in the next section. 

 

4.4. Distribution of juveniles in clusters: the effects of location within the cluster and 

cluster size 

The number of juveniles on an adult varied with location in the cluster.  There 

was a significantly higher abundance of juveniles on adults at the edges of clusters than 

the center of clusters (Fig. 13).  In large clusters, the number of juveniles per adult 
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Fig. 16.  Mean number of juveniles found on the left side (landward) and the 
right side (seaward) of the cluster for one season of recruitment Winter
2003-2004.  The mean number of juveniles in all locations on the right side vs. 
the left side of the cluster were compared by treating adults located at a 
compass angle of 0-180o as the right side with 0o marking the top of the cluster
and adults located at a compass angle of 181-360o as the left side of the cluster.    

 

increased from the center to the edge of the cluster.  A variety of factors might account 

for the strong relationship between recruitment and the edges of clusters.  Given the 

gregarious behavior of cyprids of P. polymerus to conspecific adults (Barnes and Reese, 

1960; Lewis, 1975a, b; Hoffman, 1988; Satchell and Farrell, 1993), it is possible that 

cyprids receive a cue from adults in a cluster and then contact edge adults first and attach 

to their peduncles.  There may be reduced flows of water, i.e. skimming flows, inside the 

cluster due to collective action of adult peduncles trapping or depositing larvae at the 

edges of clusters (Eckman, 1983; Wethey, 1986; Butman, 1987; Gregoire et al., 1996; 
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Walters et al., 1997), which may lead to more water and more larvae coming into contact 

with barnacles at edges compared to the center of clusters.   

An example of the interaction of conspecific cues and hydrodynamics that support 

the hypotheses stated above comes from a field experiment that examined the effects of 

small-scale flows and chemical cues associated with conspecifics on the settlement of 

barnacle larvae of Elminius modeusts and E. covertus (Wright and Boxshall, 1999).  They 

looked at the effects of conspecifics and flow disruption on the settlement of cyprids by 

using different settlement plates (live, casts, and flat surfaces) with different densities of 

barnacles (clustered, uncrowded, and no barnacles).  They found higher settlement on 

clustered and uncrowded plates containing live barnacles than those same plates with 

casts of adult barnacles.  In addition, there was low settlement on plates with no barnacles 

and on flat control plates.  Considering the outcome of their experiments, they suggested 

that a combination of flows around the physical structure of adult barnacles (live or casts) 

and conspecific presence explained the settlement patterns of cyprids.    

Settlers at the edges of clusters could have higher survival if cluster edges have: 

higher food availability, reduced crowding by adults, reduced predation, or less severe 

sedimentation.  Studies on feeding of adults in clusters found correlations between 

location in the cluster and food capture (Pullen and LaBarbera, 1991, Ekman and 

Okamura, 1998).  Ekman and Okamura (1998) used models of bryozoan colonies to 

explain that zooids located at the upstream colony edge would capture more particles 

than zooids located at the downstream edge and in the colony interior.  Likewise, Pullen 

and LaBarbera (1991) found that acorn barnacles located at the upstream edge and top of 
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clusters captured more food particles than barnacles located at the downstream edge of 

clusters. The studies by Pullen and Labarbera, 1991 and Ekman and Okamura, 1998 are 

more applicable to adult gooseneck barnacles though because the juveniles are on 

peduncles below the adult feeding canopy and may be competing with adults for food 

(Page, 1986).  Edges of clusters may be exposed to higher fluxes of phytoplankton than 

centers of clusters (Svane and Ompi, 1993) because flow rates are most likely slow inside 

the cluster and faster around the edge (Vogel, 1994). 

Juveniles that recruit to the center of a cluster may be surrounded by more adults 

than juveniles that recruit to the edges.  The negative effects of crowding on survival in 

barnacles has been addressed (Grant, 1977; Wethey, 1983, Bertness et al., 1998).  Grant 

(1977) found a correlation between early mortality and settlement density of recruits of 

Balanus balanoides.  He reported that 90 % mortality occurred within 5 months in areas 

of dense settlement (60 spat per cm2) due to crowding associated with growth.  Wethey 

(1983) observed differences in size and mortality of individuals of B. balanoides at high 

and low population densities; barnacles at high population densities were smaller and had 

higher rates of mortality than individuals at low population densities.   

Hoffman (1989) observed nemertean predators feeding on small juveniles (1 mm 

RC length) of P. polymerus, though he did not note the locations of these juveniles.  

Barnacle clusters provide habitats for many species of invertebrates including flatworms, 

crabs, amphipods, and snails, which may reside within the protected clusters.  Perhaps, 

these predators rarely venture to the edges of clusters, which would be potentially 

dangerous locations for predators of their own. 
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When disaggregating clusters, I noticed algae, surf grass, sand, fishing line, and 

other debris surrounding the bases of adult peduncles in the centers of clusters.  Hoffman 

(1989) made a similar observation.  The coarse debris may cause higher mortality in 

young juveniles in centers of clusters, but may not affect juveniles that settled on the 

edge, where the debris is less abundant. 

Cluster size was not as important in determining the abundance of recruits as 

location within the cluster.  If recruitment is higher at the edges than in the center (Fig. 

13), then the circumference (edge) of a cluster is more important in determining the 

abundance of recruits than the area of the cluster (large or small).  The significant 

difference in numbers of recruits per adult on edges of large and small clusters compared 

to middle and center locations of large and small clusters and the lack of a difference in 

numbers of juveniles per adult between edges of large and small clusters supports this 

argument (Fig. 13).     

The high recruitment (28 recruits adult-1) found on solitary adults in the Winter 

2003-2004 study (Fig. 13c) and the very low recruitment (0.09 recruits adult-1) found on 

solitary adult barnacles in the Summer 2003 (Fig. 13b) study may be due to seasonal 

differences in recruitment because the abundance of juveniles from clusters was also 

lower in the Summer 2003 than Winter 2003-2004 (Fig. 13b,c).  Raimondi (1990) found 

that settlement and recruitment of Chthamalus varied at almost all temporal and spatial 

scales that he measured and that the majority of the variability was due to differences 

between sampling period.   
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Another explanation for the differences in recruitment on solitary adults between 

Summer 2003 and Winter 03-04 is differential survival of recruits (from spat to juveniles) 

on solitary adults.  Hoffman (1989) found that 51 solitary adult barnacles of P. polymerus 

sampled over 4-6 weeks in March 1985 had an average of 8.2 spat per adult and an 

average of 0.99 juveniles per adult.   However, he noted that survival from spat to 

juvenile was highest on solitary adults (12.1 %).  This study found the highest 

recruitment on solitary adult barnacles compared to clusters during the Winter 03-04 

(Fig. 13c), which may suggest that more recruits were settling on solitary adults but not 

surviving to sizes where they reach the substrate and form new colonies (Fig. 6).  If 

juveniles do survive then solitary adult barnacles may represent the sites of future 

clusters.  Whether solitary adult barnacles are remnants of destroyed clusters (Lewis pers. 

comm. of Hoffman, cited in Hoffman, 1989) or founders of new clusters cannot be 

determined from the snapshots of recruitment that Hoffman and this study presented.         

By looking at recruitment separately in each cluster, it was evident that the 

location of the cluster on the rock wall may have been more important than cluster size. 

In most cases, if a small cluster had high recruitment, its paired large cluster also had 

high recruitment. The same was true for paired clusters showing low recruitment.  This 

pattern was true for all paired clusters in the Winter 03-04 study and was true for 3 out of 

4 pairs of clusters in the Summer 03 study (Fig. 17).  Although this study did not address 

site-specific spatial variation in recruitment, sites separated by meters to tens of meters 

(small-spatial scales) have attributed variation in settlement to a variety of causes: larval 
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preferences for chemical, physical and biotic aspects of the substratum, differences in 

larval distribution due to small scale current patterns, aggregative larval behavior in the  

water column, or spatial differences in larval predators in the water column (reviewed in 

Gaines et al., 1985). 

 

4.5. Conclusions 

Conspecific adults were very important in structuring the patterns of distribution 

and abundance patterns of recruits found on adult peduncles and within the cluster, and 

the abundance of juveniles related to location within the cluster and cluster size.  The 

patterns of recruits (cyprids, new, old) settling near other cyprids and juveniles (Fig. 9) 

may contribute to the distinct aggregations of adults of this species.   

The results of this study have important implications for spatial competition 

between gooseneck barnacles Pollicipes polymerus and California mussels, Mytilus 

californianus, which are closely associated on rocky cliffs exposed to the Pacific Ocean. 

Wootton (1993) described several ways in which the California mussels could 

outcompete gooseneck barnacles: 1) M. californianus could squeeze out P. polymerus 

because mussels have rigid external shells while gooseneck barnacles have flexible 

peduncles and rely on high-pressure hydrostatic skeletons to resist crowding, 2) P. 

polymerus grows too slowly to take over all of the available space before the California  
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mussel settles, and 3) M. californianus can recruit to gaps as adults from surrounding 

mussel beds.  If solitary individuals of P. polymerus grow quickly into clusters, and 

clusters continue to grow from their edges, forming large clusters, then P. polymerus may 

more effectively compete with the M. californianus.  More specifically, Paine (1974) and 

Wootton (1990) documented that on vertical walls, the intertidal community was 

dominated by P. polymerus rather than M. californianus due to the lack of gull predation 

on these vertical walls.  It has also been suggested that M. californianus may be a poor 

competitor for space on vertical surfaces because their attachment by byssal threads is 

weaker than the cement attachment of a thick basal peduncle of gooseneck barnacles.  

However, on vertical and horizontal surfaces at South Cove, Cape Arago, mussels and 

gooseneck barnacles occur together.  The results of this study showed that clusters added 

new individuals to their edges, thus creating dense aggregations which may help 

Pollicipes compete successfully against co-occuring individuals of M. californianus. 

The highly patchy recruitment (Fig. 14) of juvenile gooseneck barnacles 

predominately on edges of clusters (Fig. 10a, 11a,d 12a,d, 13) may suggest differences in 

growth rate and survival of recruits located at different locations within the cluster.  Some 

studies have shown that sites of abundant larval settlement of invertebrates were 

negatively related to high mortality (Grosberg, 1981; Davis 1987) and low growth 

(Burshek, 1988; Dirnberger, 1994).  If edges of clusters are intense locations of 

recruitment of cyprids and juvenile gooseneck barnacles, perhaps they are also sites of 

high growth rates and survival.   
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BRIDGE 

 
" From the most refined of saints  

As naturally grow miscreants,  
As barnacles turn Solan-geese  
In the islands of the Orcades."  

 
“Having traveled from the grasses growing in the bottom of the fenny waters, the woods, 

and mountains, even unto Libanus itself; and also the sea, and bowels of the same, we are 

arrived at the end of our History: thinking it not impertinent to the conclusion of the 

same, to end with one of the marvels of this land (we may say of the world) . . . There are 

found in the North parts of Scotland and the Island adjacent, called Orcades, certain trees 

whereon do grow certain shells of a white color tending to russet, wherein are contained 

little living creatures, which shells in time of maturity do open, and out of them do grow 

those little living things, which falling in the water do 

become fowls, which we call Barnacles; in the North of 

England trant geese, and in Lancashire tree geese; but 

the other that do fall upon the land perish and come to 

nothing (Fig. 18).” 

                                   John Gerarde, (

     

               

 

Fig. 18.  The legendary Barnacle tree on the 
s 

 

 

Isle of Man depicting the mussel-shaped shell
of the tree that would grow until they split 
open, revealing geese that would hang by their 
bills until mature and then drop into the sea 
(Gerarde, 1597).  
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CHAPTER III 
 

THE EFFECTS OF LOCATION WITHIN THE CLUSTER AND CLUSTER SIZE ON 

GROWTH RATES OF Pollicipes polymerus 

 

1. Introduction 

 

In a broad context, life-histories of organisms are viewed as their lifetime patterns 

of growth, development, storage, and reproduction (Begon et al., 1990). One of the most 

conspicuous components of a life-history is individual size, and all organisms increase 

their size by growth.  In fact, many ecologists have devoted their research to patterns of 

life-history traits associated with growth.  By studying the growth rates of individuals and 

the variation in growth among and within habitats, one can begin to understand some of 

the dynamics of populations and communities. 

The effects of high population density on growth rates of organisms has been well 

studied; however, there have been comparatively few studies that have focused on these 

issues for sessile, aggregating organisms (Bertness and Grosholz, 1985; Holbrook et al., 

1991; Dalby, 1995; Bertness et al., 1998).  Because high population densities are inherent 

in aggregations, any negative consequences of high population densities on life-history 

components including growth, survivorship, feeding success, or fecundity must represent 

a trade-off for the individuals that have formed aggregations.  Interestingly, three of the 
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four studies mentioned above found negative relationships between high population 

density and growth.  Bertness and Grosholz (1985) reported that individual growth rates 

of the mussel Geukensia demissa were reduced at high densities.  Isolated individuals of 

the sea-palm, Postelsia palmaeformis, had blade growth rates that were five times greater 

than canopy or understory plants in aggregations (Holbrook et al., 1991).  Ascidians, 

Pyura stolonifera, inside aggregations grew more slowly than those outside aggregations 

(Dalby, 1995).  In contrast, Bertness et al. (1998) studied the dynamics of acorn barnacle 

hummocks (tall, densely packed individuals) and found that shells of hummocked 

individuals were larger and tissue growth was higher compared to solitary individuals.  

Clearly, the majority of these studied indicated negative consequences of high population 

densities on growth; regardless, these organisms were found more frequently in 

aggregations with isolated individuals observed occasionally.              

Few studies have looked at growth rates in aggregations of lepadomorph 

barnacles.  In general, growth has been studied more extensively in balanomorph 

barnacles than in lepadomorphs (Anderson, 1994).  This is surprising given that the 

growth pattern of pollicipedines (a subgroup within lepadomorphs), where the carinal 

primordium is shifted anteriorly (future basal position in balanomorphs), was of major 

significance in creating a system from which the balanomorph form could evolve 

(Anderson, 1994).  Nevertheless, cirrepedes are a unique group of arthropods, in which to 

study growth because they grow by accretion of exoskeletal structures and development 

of permanent calcareous plates (Anderson, 1994).   
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A lepadomorph cirripede, Pollicipes polymerus, occurs commonly in the mid-

upper intertidal on the northeastern Pacific coast and forms dense clusters.  Studies have 

suggested that the dense cluster formation may be due to the gregarious settlement of the 

larvae on adult peduncles (Barnes and Reese, 1960; Lewis, 1975 a,b; Hoffman, 1989; 

Satchell and Farrell, 1993).  Because of the naturally occurring clusters of aggregating 

adults and the gregarious settlement of cyprids, I became interested in the consequences 

of these adult aggregations on the growth rates of juveniles in different locations within 

the cluster.  Growth of adult gooseneck barnacles Pollicipes polymerus has been more 

thoroughly studied than juvenile growth (Barnes and Reese, 1960; Paine, 1974, Newman 

and Abbott, 1980; Lewis and Chia, 1981; Page, 1986; Hoffman, 1988, 1989).  

At South Cove, Cape Arago, OR on vertical rock surfaces, gooseneck barnacles 

are found in clusters of varying size and as solitary individuals.  Since high population 

density is known to affect growth in barnacles, studying clusters of different sizes might 

elucidate the effects of aggregation on growth rates in juveniles of Pollicipes polymerus.  

However, the growth of juveniles, especially in the early stages, is hard to measure 

because of their small size and cryptic nature (Southwood, 1978).  In order to study 

growth rates in the field, a method for marking juveniles was necessary.  A recent study 

showed that calcein, a fluoresecent label that binds to calcium and becomes incorporated 

into growing calcium carbonate structures, is a suitable marker for newly hatched 

juvenile snails, Nucella ostrina (Moran, 2000).  Moran found that calcein provides a 

long-lasting, easily visible mark on the shell that could be used to measure shell growth.  

Because the shell of gooseneck barnacles is made up of external calcareous plates and 
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contains calcium carbonate like the shell of a gastropod, calcein can also be used as a 

method to study growth rates of juveniles of Pollicipes polymerus.  Using calcein as a 

marker, this study addresses the following question: 

What are the effects of location within the cluster (edge, inside) and cluster size (large, 

small, and solitary adult barnacles) on the growth rates of juveniles of Pollicipes 

polymerus? 

I studied the mean growth rates of juveniles over a two month period.  It uses a mark and 

recover method that is, to my knowledge, unique for studying growth in juvenile 

barnacles.  The method of calcein tagging allowed growth of specific individuals to be 

followed through time in the field.  Using this method, clusters were not destroyed 

initially, and therefore estimates of individual growth were made from juveniles growing 

within intact clusters. 

 

2. Materials and Methods 

 

2.1. Study site and Animal collection 

 

For growth studies, I used the same clusters and solitary adults of Pollicipes 

polymerus that were collected for recruitment studies (see Chapter II). 
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2.2. Marking, Outplanting and Processing in the lab 

 The methods for marking, outplanting, and processing the animals were identical 

to those used for recruitment studies (see Chapter II). 

 

2.3 Growth 

 In addition to marking animals for recruitment studies, calcein was used to 

estimate growth.  When calcein is incorporated into the growing calcium carbonate of the 

capitular plates of the barnacles, the plates are marked (Fig. 2c).  When animals are 

returned to the field, the new plate material that is added during growth is unmarked (Fig. 

2c).  Marked recruits were distinguished from unmarked recruits with epifluorescence, 

and the rostro-carinal length was measured in the same way as for the recruitment studies 

(see Chapter II).  All marked recruits were sampled in Winter 2002-2003, Summer 2003, 

and in two clusters from Winter 2003-2004.  Due to the high abundance of recruits and 

the lack of time, the remaining eight clusters collected in Winter 2003-2004 were 

sampled randomly with a minimum of nine recruits from a given location (edge, inside) 

in each cluster.  Recruits with a calcein mark were placed in 6 % sodium hypochlorite to 

dissolve away the tissue between the capitular plates.  The capitular plates were then 

glued to a microscope slide.  A digital camera attached to the compound microscope was 

used to photograph the capitular plates under epifluorescent light.  Optimas software was 

used to determine the area of the marked and unmarked (growth) portions of the plates.  

Because the capitular plates of barnacles grow in thickness and in area through laminar 
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accretion or basal marginal accretion (Anderson, 1994), the entire original plate was 

stained.  

     In order to estimate the growth rate of juveniles over two months, the 

relationship between the rostro-carinal length (RC) and the area of the scutal (S) and 

tergal (T) plates was determined using nonlinear regression (Ebert and Russell, 1994).  

Because meaurements of rostro-carinal length and capitular plate area are both subject to 

errors, a Model II regression was chosen to estimate the relationship because it 

incorporates variation in both variables, and non-linear regression was chosen because it 

may be more appropriate for describing relationships that do not pass through the origin 

(Ebert and Russell, 1994).  From the results of this analysis, (initial) rostro-carinal length 

at the time of marking (RCt) was estimated.  Rostro-carinal length at time of marking, 

RCt, was estimated using the rostro-carinal length at time of collection, RCt+2, together 

with the square root of final and intial (marked) scutal plate area, St+2 and St: RCt = RCt+2 

+ α (Sβ
 t+2– Sβ

t), where α and β are the allometric parameters estimated by nonlinear 

regression of RC vs. S (Ebert, 1998).  RCt length was estimated from both the scutal and 

tergal plate areas in Winter 2002-2003 and Summer 2003, but only the scutal plate area 

was used in Winter 2003-2004.  Data are presented for the scutal plate only because all 

seasons have a measurement of growth rate estimated from this plate and because there 

was slightly less variation associated with the allometric parameters estimated by non 

linear regression of (final) RC at time of collection (RCt+2) vs. (scutal plate area)1/2.   

Separate estimates were made for juveniles > 1mm RC and < 1 mm RC.  When the 

nonlinear regression of final RC vs. (final scutal plate area)1/2 was made without splitting 
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the data into 2 size groups, I found a linear relationship between final RC and final scutal 

plate area at RC< 1 mm and a curvilinear relationship at RC> 1 mm; splitting data into 

size groups has been rationalized by others (Hentschel, 1998). 

 With Model II nonlinear regression giving an estimate of initial RC length at time 

of marking, the growth rates of juveniles were calculated.  Because there was a positive 

linear relationship between change in RC (RCt+2 -RCt) and final RC (RCt+2), (Fig. 19; 

Winter 2002-2003, p<0.001, r=0.69; Summer 2003, p<0.001, r=0.61; Winter 2003-2004, 

p<0.001, r=0.81), growth rate was represented as (RCt+2-RCt )/ RCt+2  to reduce the 

effects of size-specific growth. 

 A mean growth rate for all juveniles on an adult was calculated for each adult 

because the particular location of the adult in the cluster is likely to affect juveniles 

growing on it.  

 

2.4 Statistical analyses 

 Growth data were analyzed using the statistical programs Statistica 6.1 and Systat 

9.0.  The data were transformed to their natural logarithms to remove some of the 

skewness resulting from variation in growth rates.  The assumption of homogeneity of 

variance was tested using Cochran’s test at p< 0.05. (Underwood, 1997).  The assumption 

of normality was tested with Kolmogorov-Smirnov and Lilliefors’s test at p< 0.05; this 

assumption was violated for one group in Winter 2003-2004. 
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Growth data were analyzed with an analysis of variance (ANOVA) to test for 

differences in the effects of location within the cluster (edge, inside) and cluster size 

(large, small, solitary adult).  The locations middle and center have been combined into  

the “inside” location for growth analyses because recruits in the center location were not 

abundant enough to treat center as a separate location (see Chapter II).  Because the 

Winter 2002-2003 experiment had clusters of only one size (large), this experiment was 

not included in the initial statistical analysis.  Location within the cluster and cluster size 

were the fixed factors tested; season was included as an additional random factor.  

Growth, the dependent variable, was defined as the mean growth rate of recruits per  

adult.  The final model was run without interactions that included season because 

variation in treatment effects among seasons was absent.   

Growth in large clusters was compared in a separate ANOVA with the effects of 

location within the cluster and of season in order to include data from the Winter 2002-

2003 study.  The final model for large clusters omitted an interaction term (season by 

location) because this term was non-significant in a preliminary test.   

In order to test for differences in growth due to cluster size, a separate two way 

ANOVA was performed.  Cluster size (large clusters, small clusters, and solitary adult 

barnacles) was tested as a fixed factor and season as a random factor with growth as the 

dependent variable.  Since growth for solitary adults was highly variable between 

seasons, due to one recruit representing growth for solitary adults in Summer 2003, 

artificial data were generated for Summer 2003 juveniles on solitary adults so that the 

sample size matched the smallest sample size (n=38) and the largest variance of the six 
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treatments, but the mean (0.133) for the one original individual stayed the same. These 

data were combined with the original data for Winter 2003-2004 and the large and small 

cluster data for Summer 2003, and the two-way ANOVA was rerun.  Because of the 

significant interaction between growth on solitary adults in Winter 2003-2004 and the 

other treatments (Fig. 20), an additional separate one-way ANOVA was performed for 

the Winter 2003-2004 experiment with cluster size as the fixed factor and growth as the 

dependent variable.    When results were significant, an Unequal HSD post-hoc test was 

used to determine which groups were different from each other.   
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Fig. 20.  Interaction plot of a two-factorial ANOVA of mean growth 
rate of all juveniles on an adult juveniles of Pollicipes polymerus with 
cluster size (large, small, solitary adult) and season (summer, winter) 
as main effects.  Vertical bars denote 0.95 confidence intervals.  
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3. Results 

 

3.1 The effect of location within the cluster on growth 

 

Growth rates of juveniles in both locations (edge, inside) were highly variable; 

however, there was a significant effect of location within the cluster for two seasons 

(Table 7, F1, 832, p< 0.001,).  In 6 out of 8 clusters during Summer 2003, juveniles on the 

edge of clusters had higher growth rates than juveniles on the inside (Fig. 21b).  One 

small cluster did not have any marked juveniles on the inside location, and juveniles from 

one small cluster had higher growth rates on the inside of the cluster (Fig. 21b).  In 

Winter 2003-2004, juveniles in 9 out of 10 clusters showed that grew faster on edges than 

on the inside of clusters (Fig. 21c).  One cluster had mean growth rates of juveniles on 

edges (0.176 mm) that were almost equal to juveniles on the inside (0.175 mm); however, 

there was more variance associated with the inside location than the edge location (inside, 

+ 0.092 SE; edge, + 0.022 SE; Fig. 21c).  Mean growth rates of juveniles on the inside 

were greater than juveniles on the edge for one small cluster.  When clusters of the same 

size were combined for a season, it was clear that juveniles had higher growth rates on 

the edges of clusters than on the inside (Fig. 22) for both Summer 2003 and Winter 2003-

2004. 
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Table 7.  Analysis of variance for Summer 2003 and Winter 2003-2004 growth of 
juveniles of Pollicipes polymerus from clusters with season, size, and location as main 
effects. 
 
Effect   df      MS       F      p 
Season   1  0.047     4.370   0.037  
Size   1    0.018     1.683   0.195 
Location  1  0.220            20.553   0.001  
Size x Location 1    0.00034    0.031   0.859 
Residual  832  0.011 
 

 
3.2. The effect of cluster size on growth 

There was no significant effect of cluster size (Table 7, p=0.20) on growth for 

large and small clusters and no significant interaction between location and size (p=0.86). 

 An additional statistical analysis testing the effect of location in large clusters 

from three seasons solidified these results (Table 8, F1, 797, p< 0.001).  In large clusters, 

juveniles located at the edge of the cluster had significantly higher growth rates than 

those juveniles located on the inside of the cluster.   

 
 
Table 8.  Analysis of variance for Winter 2002-2003, Summer 2003, and Winter 2003-
2004 growth of juveniles of Pollicipes polymerus from large clusters with season and 
location as main effects. 
 
Effect   df      MS   F     p 
Season   2  0.275   20.459   0.001  
Location  1  0.324   24.137   0.001  
Residual  797  0.013 
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Fig. 21.  Mean growth rates of juveniles of Pollicipes polymerus in 
two locations of clusters (edge, inside) and three sizes of clusters (large, 
small, solitary) for three seasons of growth: a Winter 02-03; 3 large clusters 
b Summer 03; 4 large clusters, 4 small clusters, 11 solitary adults, and 
c Winter 03-04; 5 large clusters, 5 small clusters, 17 solitary adults.  
Growth rate is defined as change in rostro-carinal length (RC)/final RC.  

a

b

c

Mean growth rates were calculated for all juveniles on each adult.  
Data are shown for each cluster.
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Fig. 22.  Mean growth rates of juveniles of Pollicipes polymerus in 
two locations of clusters (edge, inside) and three sizes of clusters (large, 
small, solitary) for three seasons of growth:a Winter 02-03; 3 large 
clusters b Summer 03; 4 large clusters, 4 small clusters, 11 solitary adults, 
and c Winter 03-04; 5 large clusters, 5 small clusters, 17 solitary adults.  
Growth rate is defined as change in rostro-carinal (RC) length/final RC length.  

a

b

c

Mean growth rates were calculated for all juveniles on each adult.
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The effect of cluster size was examined in more depth by comparing growth in 

large clusters, small clusters, and on solitary adult barnacles.  There was no significant 

effect of cluster size or season (Table 9; size, p=0.70; season, p=0.29) and there was no 

significant interaction of season and cluster size (p=0.14).  However, by looking at the 

interaction plot of this analysis (Fig. 20), it becomes clear that the 0.95 confidence 

intervals of the summer 2003, solitary adult treatment overlaps all of the other treatments 

because only one individual represents this treatment.  If, instead, I treat the variation 

around the summer 2003 solitary adult treatment the same as the variation associated 

with the winter 2003-2004 solitary adult treatment (because this treatment has the highest 

variation and the lowest sample size (n=38) of the six treatments), and rerun the 

ANOVA, then the results show significant effects of cluster size and season (Fig. 23, 

Table 10; size, p<0.001; season, p<0.001), and there is a significant interaction of season 

and cluster size (p=0.002). 

 

Table 9.  Analysis of variance for Summer 2003 and Winter 2003-2004 growth of 
juveniles of Pollicipes polymerus from clusters and on solitary adults with season and 
size as main effects.  This analysis has original sample sizes for juveniles from clusters 
and juveniles on solitary adults. 
 
Effect   df    MS        F      p 
Season   1    0.014     1.151   0.285  
Size   2      0.009     0.421   0.704  
Season x Size  2    0.022     2.008              0.135 
Residual  870    0.011 
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Fig. 23.  Interaction plot of a two-factorial ANOVA of mean growth rate 
per adult of juveniles of Pollicipes polymerus with cluster size (large, 
small,=solitary adult) and season (summer, winter) as main effects.  
Vertical bars denote 0.95 confidence intervals.  Data for the Summer 2003
solitary adult treatment represents the original mean from a sample size of
one, but has the same variation and sample size (n=38) associated with the 
Winter 2003-2004 solitary adult treatment.
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Table 10.  Analysis of variance for Summer 2003 and Winter 2003-2004 growth of 
juveniles of Pollicipes polymerus from clusters and on solitary adults with season and 
size as main effects.  This analysis has original samples sizes for juveniles from clusters 
for both seasons and juveniles on solitary adults during Winter 2003-2004; however, 
artificial data were generated for juveniles on solitary adults during Summer 2003. 
 
Effect   df    MS   F      p 
Season   1    0.202     18.289   0.001  
Size   2      0.316   28.708   0.001  
Season x Size  2    0.072       6.511              0.002 
Residual  907    0.011 
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Because growth on solitary adults was represented by one individual in Summer 

2003 but is represented by 38 individuals on solitary adults in Winter 2003-2004, the  

effect of cluster size on growth in Winter 2003-2004 was tested separately (Table 11).  

These results indicated a significant cluster size effect (F2, 461, p< 0.001).  Growth of 

juveniles on solitary adult barnacles in this season was significantly higher than juvenile 

growth in large clusters (p< 0.001) and small clusters (p< 0.001).  This separate test also 

confirmed that there was no significant difference between juvenile growth rates in large 

clusters and small clusters (p=0.99) by season.  

 

Table 11.  Analysis of variance for Winter 2003-2004 growth of juveniles of Pollicipes 
polymerus from clusters and on solitary adults with size as a main effect. 
 
Effect   df        MS     F      p 
Size   2      0.333   28.608              0.001  
Residual  461     0.012 
 
 
  

 

4. Discussion  

 

4.1. The effect of location within the cluster on growth 

 

The location of juvenile barnacles within the cluster significantly influenced how 

fast they grew over a two month period (Fig. 22).  Average growth rates of juveniles over 
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2 months on edges (0.22 mm + 0.01 SE) of clusters were 1.4 times higher than average 

growth rates of juveniles located on the inside (0.16 mm + 0.014 SE) of clusters (Fig. 

22).  Growth rate differences may be due 1) intraspecific competition for space between 

juveniles and adults and 2) intraspecific competition for food between juveniles and 

adults. 

Competition for space between juveniles and adults in clusters may be more 

severe for inside juveniles than edge juveniles because inside juveniles may experience 

crowding by adults that are located on all sides of them whereas some edge juveniles are 

only surrounded on one side by the adjacent ring of adults, just interior to the edge of the 

cluster.  The negative effects of high population densities on growth have been shown by  

some studies (Thorp and Barthalmus, 1975; Bertness and Grosholz, 1985; Holbrook et 

al., 1991).  By manipulating and maintaining population densities of the green hydra, 

Hydra viridis, at 20, 70, 120, and 170 hydras per 40 ml culture solution, Thorp and 

Barthalmus (1975) found a significant inverse relationship between population density 

and population growth rate, measured as the mean number of new individuals per adult 

hydra.  Bertness and Grosholz (1985) found that individual growth rates of ribbed 

mussels, Geukensia demissa, were significantly reduced at high densities; and 

furthermore, the decrease in growth rates was most prominent in the smallest size class of 

juveniles (30-40 mm length).  Holbrook et al. (1991) compared blade growth rates 

between clumped and isolated sea-palms, Postelsia palmaeformis, where clumped plants 

were defined as plants located within a dense stand and isolated plants were at least 30 
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cm from their nearest neighbor.  They found that blades of isolated individuals grew five 

times faster than blades of clumped plants.   

A few studies have even looked at the effects of spatial position on growth rates 

of mussels in aggregations or patches (Okamura, 1986; Newell, 1990; Svane and Ompi, 

1993).  Okamura (1986) found that blue mussels, Mytilus edulis, located on the edges of 

large groups (21-28 mussels group-1) grew an average of two times faster than those in 

the centers of large groups.  A different experiment by Okamura (1986) compared growth 

of individuals in large groups of living mussels and model mussels and found that the 

individuals in the treatment with model mussels did not experience the negative effects 

on growth that were observed for individuals associated with live mussels.  In order to 

explain their results, they discuss crowding as a mechanism of intraspecific competition: 

as live mussels grow, they exert a physical force on their neighbors (Harger, 1972).  

Since organisms on edges have neighbors on one side or on both sides, they may 

experience reduced effects of crowding while organisms in the center of groups, always 

surrounded by neighbors on all sides, should experience more extreme effects of 

crowding (compression, overgrowth).  Thus, juvenile barnacles on the inside of clusters 

may have slower growth rates compared to juveniles on edges because they are being 

“squeezed” by their adult neighbors.   

Newell (1990) also looked at the effects of spatial position on growth rates of M. 

edulis by spreading mussel seed at commercial bottom culture operations, allowing 

mussels to grow and form patches over 12-18 months, and then sampling cores of 

mussels from the edges of patches and middle of patches.  He found that mussels located 
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at the edge of large patches (10 m diameter) had significantly larger shell lengths and 

greater dry tissue weight than mussels in the middle of patches.  A study by Svane and 

Ompi (1993) tested the effects of spatial position of individuals on the size distribution 

within and between patches in beds of M. edulis and concluded that the mean size (dry 

flesh weight and shell weight) of mussels along an edge of a patch was greater than that 

of mussels on the insides of patches.  One hypothesis that they address for this size 

difference is that crowding creates physical disturbances, where neighboring mussels 

may impair the shell openings of other mussels by exerting pressure on their shells.  

Because the size of the shell opening controls pumping rate and therefore, consumption 

and growth, interference by crowding is linked to food competition.  Frechette et al. 

(1992) found that food and space limitation interacted and resulted in size-specific 

differences where only small mussels were affected by crowding.   In the present study, 

morphological differences in the capitula or peduncle length between juvenile barnacles 

on edges and inside the cluster were not compared; however, all of the studies on mussels 

show a similar pattern to this study, where the location of the organism in the patch or 

cluster impacted its growth and final size. 

A second factor that may be important in explaining growth differences between 

barnacles located at the edge and inside of clusters is reduced intraspecific competition 

for food between adults and juveniles on edges compared to adults and juveniles on the 

inside.  This explanation assumes that 1) juveniles on the inside suffer more severe 

effects of crowding than juveniles on the edge and 2) differential food capture will 

translate into differences in growth.  The influence of high densities of animals on food 
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depletion has been documented (Merz, 1984, Peterson and Black, 1987; Petersen and 

Riisgard, 1992).  Furthermore, studies have shown differential food capture based on the 

position of suspension feeding animals within dense aggregations of polychaetes, 

octocorals, barnacles, phoronids, and bryozoans (Merz, 1984; Patterson, 1984; Pullen and 

LaBarbera, 1991; Johnson, 1990; Ekman and Okamura, 1998).   Patterson (1984) looked 

at octocoral colonies feeding on cysts of brine shrimp at different flow speeds (2.5, 9.0, 

19.0 cm s-1) in both low and high turbulence environments.  Because gooseneck 

barnacles live and feed in high wave energy environments, his results for high turbulence 

environments make interesting parallels.  He found unequal prey capture distributions 

around the circumference of the colonies in low turbulent environments but not in high 

turbulence.  He also found that in the vertical direction, prey capture showed a bimodal 

distribution, where polyps located at the highest and lowest height of the colony captured 

the most prey, and polyps at intermediate heights captured the least.  For gooseneck 

barnacles, his results may indicate that food capture is equal around the edges of clusters 

and in the vertical direction, barnacles located on the edges and center (top of the cluster) 

capture more food than barnacles in the middle section of the cluster.  Interestingly, there 

were very few juveniles located on center adults, with the majority of growth rates 

estimated from juveniles on middle adults.  Perhaps, juveniles on edges capture more 

food than juveniles in the middle of clusters based on the idea of their different vertical 

positions in the cluster influencing the amount of prey they can capture.  However, these 

results are probably most relevant to adult barnacles because juveniles are on adult 

peduncles below the feeding canopy of adults.  Edge juveniles may be less restricted by 
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adults because they have more direct access to flows whereas inside juveniles are well 

buried by adults.   

 

4.2. The effect of cluster size on growth        

 Cluster size was less important in explaining differences in growth of juvenile 

barnacles than location within the cluster because growth rates of juveniles in small and 

large clusters were similar (Fig. 22b,c); however growth rates of juveniles on solitary 

adults were almost twice as fast (1.9x) as juveniles in clusters (Winter 2003-2004).     

Group size has been shown to negatively affect growth in marine invertebrates.  

Studies addressing this relationship for mussels found that isolated individuals and 

individuals in small groups (6-9 mussels) grew more than individuals in large groups (21-

28 mussels) (Okamura, 1986).  However, her study and most other studies that have 

looked at the effects of group size on growth have focused on adults.  In gooseneck 

barnacles, the influence of adults or other juveniles on the growth of juveniles is complex 

given that juveniles are growing on the peduncles of adults and are typically concentrated 

on a few adults.  This study did not address these interactions on the growth of juveniles; 

however, there was an interesting trend between cluster size and location within the 

cluster on the growth of juveniles. 

For the seasons that compared the effects of small and large cluster size on growth 

(Fig. 21b,c), the mean growth rates of juveniles on the inside of clusters were faster than 

edges for two small clusters.  This trend may be explained by the fact that the difference  

between the edge and the inside of a small cluster is less defined than the edge and inside 
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of a large cluster.  For example, differences in growth due to food flux are more likely to 

affect juveniles in large clusters than small clusters because food flux on the inside of a 

10 cm diameter large clusters is probably much lower compared compared to flux on the 

inside of a 5 cm diameter small cluster. 

The differences in how resources (food, space) affect a solitary individual and 

clusters are even greater and may be an important factor in explaining the large 

differences in growth rate between juveniles on solitary adults and juveniles in clusters 

during the Winter 03-04 study.  Juveniles on solitary adults may grow faster than 

juveniles in clusters because they have access to more water and potentially higher 

abundances of phytoplankton and they are not experiencing any interference (crowding) 

from surrounding adults.  On the other hand, juveniles in clusters may be exposed to 

water from which food particles have mst likely been filtered by the cluster, and they are 

surrounded at least on one side if not on all sides by adults. 

 

4.3. Conclusions 

The trade-offs associated with living in aggregations or as solitary units may 

explain why solitary gooseneck barnacles are pioneers for new clusters, especially given 

the fast growth rates of juveniles on solitary adults (Fig. 22c).  Since solitary adults are 

rarely found (Ricketts et al., 1985), they may quickly grow into clusters, reaping the 

benefits of an aggregated lifestyle.   Merz (1984) and Bertness et al. (1998) compared 

feeding currents of polychaetes and particle capture rates of barnacles, respectively 

between clusters and solitary animals.  They both found significant differences between 
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clustered and solitary animals, where animals within clusters experienced higher feeding 

currents and higher particle capture rates than solitary animals.  Clearly, the formation of 

clusters implies advantages in feeding and thus, overall growth of the cluster that must 

outweigh the disadvantages from competitive interactions between cluster members 

living in such close proximity.  The cluster may offer other advantages, in addition to 

greater feeding efficiency, that must compensate the advantage of potentially faster 

growth of solitary adults and juveniles on solitary adults (most likely due to lack of 

crowding rather than food limitation).   

Buss (1981) described a benefit of group living in bryozoan colonies, which he 

called increased interspecific interference competitive ability.  He showed that high 

densities of the bryozoan, B. turrita negatively impacted the weight gain per colony, yet 

larvae form groups which grow into dense adult colonies.  In a different experiment, he 

showed that S. errata colonies overgrew low density colonies of B. turrita; however, at 

high densities, B. turrita were not overgrown and the other colony was growing slower or 

not at all.  He concluded that the interspecific competitive ability of B. turrita was density 

dependent.  The competitive relationship between gooseneck barnacles, Pollicipes 

polymerus and California mussels, Mytilus californianus has been well described (Paine, 

1974; Wooton, 1990).  Perhaps, clusters of Pollicipes polymerus are able to compete 

more effectively with mussels, Mytilus californianus than solitary gooseneck barnacles 

which may be easily overgrown by mussels.  On vertical surfaces, larger clusters of 

gooseneck barnacles would clearly increase their attachment strength and secure their 
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position on a substrate whereas mussels, attached by thin byssal threads, may be more 

easily pushed off or down the substrate.       
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CHAPTER IV 

 
 

CONCLUDING SUMMARY 
 

 
 The objective of this thesis was to provide a better understanding of the 

distribution and growth of juveniles of benthic marine invertebrates living within dense 

aggregations.  Since living within an aggregation may have both ecological costs and 

benefits for the individual members, the many examples of aggregating species in benthic 

marine environments are both interesting and puzzling.  The example chosen to study in 

this thesis, the gooseneck barnacle Pollicipes polymerus, is even more interesting because 

of the gregarious settlement of larvae on adults.  

 Chapter II of this thesis has offered a detailed look at the distribution and 

abundance patterns of larvae and juveniles of P. polymerus in four different ways: 1) as 

the distribution and abundance of larvae and juveniles on adult peduncles, which were 

studied as a relative distance down the peduncle and as a position around the peduncle for 

juveniles in both clusters and on solitary adults, 2) as the distribution and abundance of 

juveniles within the cluster, 3) as the abundance of juveniles in different cluster locations, 

and 4) as the abundance of juveniles in clusters of varying size.  Chapter III of this thesis 

gives a comparison of growth rates of juveniles in two different location within the 

cluster (edge, inside) and three sizes of clusters (large, small, and solitary adults). 

Results described in both chapters indicate that there may be important 

differences in recruitment and growth between clusters and solitary adults that may help 
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explain how clusters are formed and maintained and how P. polymerus may compete 

with the California mussel, M. californianus.  The discussion of the recruitment and 

growth patterns also leads to a very important future direction of this research, which 

involves hydrodynamics.  Determining if and how larvae are influenced by flows around 

the cluster may elucidate the peculiar patchy distribution of larvae on particular adults.  

Also, experiments that test the effects of location in the cluster and cluster size on food 

capture of adults and larger juveniles might resolve questions about competition among 

adults or between juveniles and adults.  The potential results of experiments examining 

hydrodynamics around clusters may contribute to understanding the unique clusters of 

adults of Pollicipes polymerus and may be applicable to other aggregating benthic 

invertebrates.   
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