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Food availability in the coastal oceanic environment off Oregon was shown to limit 

energy reserves and developmental rates of barnacle nauplii in some experiments but not 

others.  In laboratory studies, when naupliar feeding rates measured by gut contents and 

fecal pellet production rates were similar for larvae raised on natural and supplemented 

rations, larval lipid content and development were similar between these rations (2 trials).  

When feeding rates of nauplii differed between food treatments so did lipid content and 

development (2 trials).  A parallel study sampled lipid content and size of naturally 

occurring larvae and chlorophyll-a in the water column.  While chlorophyll-a was an 

accurate measure of food availability measured by fecal pellet production, it explained little 

(2-4%) of the variation in cyprid quality.  Efforts to understand variation in quality of 

natural populations of larvae will need to combine the effects of genetic variation, feeding 

history, and food quality.  
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CHAPTER I 

 
GENERAL INTRODUCTION 

 
 Many marine invertebrates reproduce via free-swimming offspring that are 

ecologically distinct from their parents.  These larvae function, in part, for dispersal 

(Pechenik 1999) and acquisition of energy (Strathmann 1987).  Planktotrophic larvae 

accumulate energy and grow by feeding upon the phytoplankton in the water-column, 

thereby releasing their parents from investing large amounts of energy into individual 

offspring.  However, larvae are at risk of mortality due to predation, transport away from 

suitable habitat, extreme environmental conditions, and for feeding larvae, starvation 

(reviewed by Thorson 1950, Morgan 1985).  Laboratory manipulations of food 

availability and temperature affect the size, lipid content, and developmental rate of 

larvae (e.g. Emlet and Sadro submitted manuscript).  Given that food availability and 

seawater temperature vary spatially and temporally in the field, the larvae of marine 

invertebrates that reproduce throughout the year will be exposed to varying 

environmental conditions.  Studies of barnacle larvae from the field (Jarrett 2003) show 

that variations exist in larval size and lipid content over time and space, although there 

are few attempts to explain the causes of these variations.  A growing body of evidence 
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suggests that larval size and lipid content affects the performance and survivorship of 

juvenile marine invertebrates (reviewed by Pechenik et al. 1998).   

 This study describes effects of food  variation on the size, lipid content, and 

development of larvae of the intertidal barnacle Balanus glandula.  Chapter II of this 

thesis compares the lipid content, stage duration, gut contents, and fecal pellet production 

between nauplii of Balanus glandula reared with natural rations of phytoplankton and 

nauplii reared with natural rations supplemented with laboratory grown phytoplankton.  

Chapter III of this thesis correlates the size and lipid content of field sampled cyprids of 

Balanus glandula with seawater chlorophyll a concentration over a one year period.  

Furthermore, seawater chlorophyll a concentration is investigated as a possible proxy for 

food availability in the field.  This thesis investigates the effect of variations in natural 

food availability on larval size, lipid content, and development.   
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CHAPTER II 

 

FOOD LIMITATION IN LARVAE OF THE BARNACLE Balanus glandula REARED 

WITH NATURAL RATIONS 

 

Introduction 

The life cycles of many marine invertebrates contain a free-swimming larval stage 

that functions, in part, for dispersal (Pechenik 1999).  During this pelagic period, larvae 

must avoid predators, find suitable settlement substrata, and, for planktotrophic larvae, 

find and consume food.  Herbivorous planktotrophic marine larvae feed upon the 

phytoplankton available in the water column, in part to turn small larvae or eggs into 

larger larvae suitable for settlement and recruitment into the adult habitat (R. Strathmann 

1987).  Phytoplankton is patchy, both temporally (e.g. Hutchinson 1944, Cowles et al. 

1993, Cowlishaw 2004) and spatially (Lorenzen, 1971).  Differences in phytoplankton 

abundance may be driven by cycles of upwelling, seasonal shifts in day length, 

temperature, and turbidity (Mackas et al. 1985), leading to variations in larval food 

availability in the water column.   
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Laboratory experiments have shown that decreases in phytoplankton rations can 

lead to decreases in larval survivorship (Olson and Olson 1989), size (Hentschel and 

Emlet, 2000), and lipid content (Gallager and Mann 1981, Hentschel and Emlet 2000) as 

well as increases in larval developmental period (Meidel et al. 1999).  Larval mortality in 

the plankton is high (Rumrill 1990, Young and Chia 1987, but see Johnson and Shanks, 

2003), and any increase in developmental rate will reduce the number of larvae available 

for settlement from a cohort (Thorson 1950, Morgan 1995).  Larvae that do survive to 

become juveniles may be affected by their feeding history.   When reared with low food 

rations as larvae, juveniles show reduced growth and survivorship, delayed settlement, or 

are smaller at metamorphosis (Pechenik et al. 1998, Miller and Emlet 1999, Pechenik et 

al. 2002, Emlet and Sadro submitted manuscript).  

Many experiments on larval food limitation have manipulated concentrations of 

laboratory-reared algae, typically fed in a monoculture, while few experiments have used 

foods at natural concentrations.  Rearing larvae with natural rations may more accurately 

reflect the nutritional conditions found in the field, allowing for investigations of how 

variations in natural food affect larval energy stores, size, and developmental rate.  In 

echinoderm plutei, significant differences in developmental rate, growth, and structure 

occur between larvae reared with natural rations and larvae reared with natural rations 

supplemented with lab-grown phytoplankton (e.g. Paulay et al. 1985).  Results suggest 

that natural concentrations of food limit the development and growth of echinoid and 

ophiuroid larvae in the field.  These studies have rarely been repeated over time 

(however, see Fenaux et al. 1994), limiting our knowledge of how the variability of food 
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in the natural environment affects larval characteristics.  No studies have investigated the 

effect of natural rations on herbivorous larvae of benthic crustaceans, although many 

studies suggest natural food limitation in adult copepods (Durbin et al. 1983, Checkley 

1980). Numerous studies (reviewed by Olson and Olson 1989) propose that starvation 

may be an important factor influencing the recruitment of crustacean species. 

The nutritional state of marine invertebrate larvae can be evaluated by measuring 

their lipid content (Holland and Walker 1975, Gallager and Mann 1981).  Many marine 

invertebrate larvae contain neutral lipid droplets that are either remainders of the yolk or 

converted from the phytoplankton the larvae consume.  In barnacle nauplii, the 1st and 2nd 

naupliar stages contain remnants of lipid from the yolk, while the 2nd through 6th stages 

feed actively in the plankton, accumulating lipid droplets in the form of multinucleate oil 

cells stored dorsal to the midgut (Holland 1987).  These cells function as energy stores 

for the non-feeding cyprid stage.  Cyprid lipid content positively correlates with the 

energy stores accumulated during the naupliar stages, time cyprids can spend searching 

for suitable settlement substrata (Gosselin and Qian 1996), and with the percent of 

cyprids metamorphosing to juveniles (Thiyagarajan et al., 2002).  Although the effects of 

feeding in the natural environment on lipid content are not known in barnacle larvae, the 

lipid content of marine copepods increases with seawater chlorophyll a concentration, 

suggesting that recent feeding condition influences lipid content (Hakanson 1987).  In the 

laboratory, Gallager and Mann (1981) used Nile Red stain to estimate lipid content and 

showed that it was a useful measure of nutritional condition in bivalve larvae. Well-fed 

larvae contained high amounts of lipid that were depleted during times of starvation.  
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When larvae are exposed to Nile Red, a hydrophobic lipid stain, their neutral lipids shine 

bright yellow and their polar lipids shine dull red under epifluorescent light.  This allows 

the quantification of lipid, measured as area, using digital imaging software (Hentschel 

and Emlet 2000). Hentschel and Emlet (2000) found that barnacle cyprids reared from 

nauplii fed 1x104 cells/mL of the chain-forming diatom Skeletonema costatum in the 

laboratory contained less lipid (measured as area) and were of a smaller size than cyprids 

from nauplii fed 1x105 cells/mL of S. costatum.      

Studies rearing larvae with natural rations have used chlorophyll a concentration 

and the abundance of phytoplankton of different sizes to assess food availability (Paulay 

et al. 1985, Fenaux 1994, Eckert 1995, Reitzel et al. 2005).  These methods do not 

actually measure food intake, but rather serve as a measure of food availability.  Some 

investigations of the feeding rates of marine larvae measure the number of particles 

cleared from the water by a larva over a period of time to determine the ingestion rate 

(reviewed by Hart and R. Strathmann 1995).  This method has the advantage of being 

widely reported in the literature, but uses a large number of larvae and may not be 

accurate at low food concentrations (Bamstedt et al. 1999, Smart 2004).  Other methods 

of comparing relative ingestion rates may be more suitable for studies using natural 

rations, which include limited numbers of animals and low food concentrations.  Gut 

fluorescence analysis and fecal pellet production rates are both alternatives that have been 

used to accurately determine the feeding condition of crustacean zooplankton (Mackas 

1976, Butler and Dam 1994).  Gut fluorescence analysis uses fluorometry to measure the 

amount of fluorescent pigments within the body of a larva.  This technique has the 
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advantage of using few larvae and that the larvae can be preserved by freezing.  

Unfortunately, gut fluorometry does not account for differences in the gut passage time of 

ingested particles.  This method will not distinguish feeding conditions between larvae 

that have full guts but may have different ingestion rates.  The analysis of fecal pellet 

production rate is an accurate proxy for ingestion rate in marine copepods (Besiktepe and 

Dam 2002).  In the present study, I measured fecal pellet production rates and gut 

fluorescence of lab-reared barnacle nauplii to determine differences in feeding rates 

between food rations. 

Balanus glandula Darwin is a common intertidal barnacle in the northeast Pacific 

and ranges from Baja California to Alaska.  Locally, B. glandula is abundant on the 

Oregon Coast.  In the Coos Estuary, it is reproductive for approximately 10 months of the 

year (Berger 2004).  Its larvae may therefore be subjected to widely differing food 

availability upon release.  Larvae of B. glandula are easily grown in the lab with a diet of 

the chain-forming diatom S. costatum (Brown and Roughgarden, 1985). As in most 

barnacles, B. glandula develops through six naupliar stages with 2nd-6th feeding, and 

metamorphoses into a non-feeding cyprid, prior to settlement.   

The purpose of this study was to investigate the effects of natural food limitation 

on larvae of B. glandula.  Specifically, this study determined how natural rations affected 

naupliar lipid accumulation, stage duration, fecal pellet production, and gut fluorescence 

throughout the year and compared these measures to those of nauplii reared with 

supplemented and diluted rations.  Naupliar and cyprid lipid contents from the natural 
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food treatment were also correlated with chlorophyll a concentration of the natural 

seawater.   

 

 

Materials and Methods 

Larval culture 

Adult Balanus glandula with mature, dark brown lamellae, were collected from 

beneath the west side of the Charleston bridge (Charleston, Oregon, 43° 20.4’ N, 124° 

19.4’ W) in September 2003 through August 2004. The barnacles were transported to the 

Oregon Institute of Marine Biology (OIMB) in separate 50mL centrifuge tubes 

containing 0.45μm-filtered seawater (FSW).  Pairs of lamellae from each adult were 

dissected out, placed in an individual 1-L jar containing FSW, and exposed to a fiber 

optic light to induce hatching of the nauplii (Brown and Roughgarden 1985).  Hatched 

larvae from each parent were pipetted into a 100-mL graduated cylinder with FSW for 

counting, and six 1mL samples of nauplii from each graduated cylinder were counted on 

a Bogorov tray containing 7.5 % MgCl.  Equal numbers of nauplii from six parents were 

placed in jars containing 3 L of seawater (see below for seawater treatments) at a 

concentration of 1 nauplius / 10 mL seawater.  Jars containing nauplii were stirred with 

plexiglass paddles at 12 beats/minute (M. Strathmann 1987) and maintained in a sea-

table.  All trials were maintained at 12°C with a heat exchanger, except the trial in 

September 2003, in which the ambient temperature of the seawater in the sea table was 

estimated to be 12°C.     



 
 
 
  9 
 

Larval culture water was replaced every 2 days by pouring the contents of the jar 

onto a submerged 130μm filter and rinsing with FSW.  The larvae were retained on the 

filter and placed back into their respective jars containing seawater collected from the 

bay.  Seawater was collected from the mouth of the Coos estuary within an hour of the 

daytime high tide with a hand operated bilge pump.  Potential predators and competitors 

for food were excluded by placing 53μm mesh over the intake of the bilge pump.  The 

53μm filtered seawater was then placed in the cleaned jars at one of three food rations 

designed to emulate conditions of 1) starvation (diluted ration), 2) natural ration, and 3) 

satiation (supplemented ration).    1) For the diluted ration seawater was diluted 1:4 with 

.45μm-filtered seawater. 2) For the natural ration the 53μm-filtered seawater was placed 

directly into the jars.  3) For the supplemented ration, the 53μm-filtered seawater was 

supplemented with the laboratory reared centric diatom Skeletonema costatum to a final 

concentration of 1x105 cells/mL (Hentschel and Emlet, 2000).  Each food treatment 

included 4 replicate jars for a total of 12 jars per trial.  A total of five replicate trials were 

conducted throughout the year: September 2003, January 2004, March 2004, May 2004, 

and August 2004.       

To determine the chlorophyll a concentration of the natural rations, one sample of 

the 53μm-filtered seawater was taken before the seawater was placed in the culture jars.  

This 200-mL sample was filtered onto a Whatman glass microfiber filter, placed into a 

90% acetone solution (Parsons et al. 1984), and held at –20°C in the dark for over 24 

hours.  Fluorescence of samples were read on a Turner Model TD 700 fluorometer 

(Turner Designs, Sunnyvale, CA) before and after the addition of 5% HCl to extract 
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phaeopigments.  Chlorophyll a concentration (μg/L) was calculated according the 

equations of Parsons et al. (1984).  Mean chlorophyll a concentration of the natural ration 

in each trial was determined by averaging the chlorophyll a of all the samples where 

nauplii were present. 

 

Naupliar lipid content, stage duration, and feeding condition 

Cultures were cleaned every 2 days, and at each changing, approximately five 

larvae were taken from each jar with a turkey baster, placed in 1.7mL microcentrifuge 

tubes, frozen with liquid nitrogen, and stored at –80°C (Ohman, 1996) for later 

determination of stage and lipid content.  Thawed larvae were stained with Nile Red for 

one hour using a 1:4 dilution of Nile Red Stock (2.5mg/100mL acetone) to FSW 

(Hentschel and Emlet 2000).  Larvae were rinsed with FSW and photographed in color 

under blue epifluorescent light, using a CCD video camera with the gain set to “off”.  

Images were captured using Optimas 5.2 software (Silver Spring, Maryland, USA).   

Lipid content, measured as projected lipid area, was quantified from digital 

pictures with Optimas 5.2 software that recognized and quantified the area of yellow 

stained neutral lipid based on predefined color thresholds.  Thresholds were created by 

visually examining stained lipid area of approximately 10 larvae and manually selecting 

the shade of yellow emitted by their lipid for use in the threshold.  Separate thresholds 

were created for nauplii and cyprids because lipid color differs between stages, due in 

part to the green tint of the cyprid carapace.   
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The duration a stage was present in a ration was measured from nauplii used in 

lipid analyses.  The day a naupliar stage first appeared was averaged for all four jars of a 

food ration, as was the last day a naupliar stage was found in a jar.  Stage duration was 

determined by plotting the average first and the average last day a naupliar stage was 

present in a ration.   

Naupliar gut fluorescence and fecal pellet production were used to measure larval 

feeding in the natural ration trials.  Chlorophyll a and phaeopigment, recorded as gut 

fluorescence, from the naupliar gut were extracted by rinsing five nauplii from each jar 

with FSW, placing them in 15mL Falcon tubes with 4.5mL of 90% acetone, and storing 

them at –20°C in the dark for over 24 hours.  The tubes were centrifuged for 10 minutes 

at 3000 rpm and allowed to warm to room temperature. The fluorescence of each solution 

was read before and after acidification with 2 drops of 5% HCl on a fluorometer fitted 

with chlorophyll a filters. 

Fecal pellet production for each food treatment was determined by incubating five 

nauplii from each jar in a 50mL centrifuge tube with its respective food treatment.  Six 

tubes were placed in 1-L jars (x 2 jars for each trial) and rotated on a roller table at 12°C 

for approximately 24 hours (as described by Larson and Shanks, 1996).  The volume of 

each tube was filtered down to 5mL using a turkey baster fitted with 20μm mesh over the 

intake.  The remaining nauplii, fecal pellets, and seawater were preserved with 0.5 mL 

4% buffered formalin in 20mL scintillation vials.  Two 1-mL samples from each vial of 5 

nauplii were placed on a Bogorov tray, fecal pellets were counted, and naupliar stage was 
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noted.  The average of the two fecal pellet counts per jar were used to obtain the mean of 

4 jars per food treatment. 

 

Statistical Analysis 

To meet the assumption of homogeneity of variances, individual measurements of 

lipid area for each trial were square-root transformed except the March ‘04 data, which 

were fourth root transformed.  Raw data on gut fluorescence for the January trial were 

analyzed, but all other data were square root transformed to meet the assumption of 

homoscedasticity.  To meet the assumptions of homoscedasticity and normality, fecal 

pellet production data from the August ‘04 and May ‘04 trials were square root 

transformed and data from the March ‘04 trial were fourth root transformed.   

Least square linear regressions of 6th stage and cyprid lipid versus average 

seawater chlorophyll a concentration were performed because of a trend of increasing 

seawater chlorophyll a concentration and naupliar lipid content from the natural rations.  

Natural seawater chlorophyll a was averaged to represent the entire feeding experience of 

the larvae.  Average chlorophyll a concentration of the natural rations were corrected for 

a left skew by taking the reciprocal of the average chlorophyll content to meet the 

assumptions of normality and homoscedasticity.    

All transformed lipid data met the assumptions of homoscedasticity according to 

Cochran’s test.  All lipid data sets were normally distributed, except that of March ‘04, 

according the Komogorov-Smirov test with a Lilliefors option.  ANOVA’s are robust to 

departures from normality (Underwood 1997) so the March ‘04 data set was interpreted 
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using parametric statistics.  Data from the May ‘04 and August ‘04 fecal pellet trials were 

not homoscedastic for the treatments of food and stage, respectively.  Data from the 

average chlorophyll a concentration of the natural rations violated the assumption of 

homoscedasticity as well.  Nevertheless, these data were analyzed with parametric 

statistics because ANOVA’s are robust to violations of homoscedasticity (Underwood, 

1997).  

  To test for differences in dependent variables (lipid content, gut fluorescence, or 

fecal pellet production) within each trial set, two-way factorial ANOVA’s were 

performed with stage and food treatment considered as fixed factors.  Gut fluorescence 

data of 2nd stage nauplii from the January ’04 and March ’04 trials were analyzed with 

one-way ANOVA’s with food considered a fixed factor.  One-way ANOVA’s were used 

in these trials to determine if the gut fluorescence of 2nd stage nauplii differed among the 

three food rations.  However, in other cases, nauplii were not present in the diluted ration 

and were thus not included in the analysis.  Lipid content of 6th stage nauplii was 

analyzed across trial using a one-way ANOVA with trial as a random factor.  Lipid 

content and size of cyprid larvae were analyzed with two-way factorial mixed-model 

ANOVA’s (restricted version as recommended by Quinn and Keough 2002) with trial as 

a random factor and food as a fixed factor.  A one-way ANOVA examined whether 

average chlorophyll a concentration of the natural food rations varied among trials.   
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Results 

Naupliar lipid content, cyprid lipid content, and cyprid size from natural ration trials 

In two trials (September ’03 and August ’04) nauplii contained similar amounts of 

lipid in supplemented and natural food treatments (Figure 1, Table 1).  In two other trials 

(March ’04 and May ’04) nauplii from the supplemented ration contained more lipid than 

nauplii from the natural ration (Figure 1, Table 1).  In one trial (January ‘04) lack of late 

stage nauplii from the natural ration prevented the assessment of lipid content.  In all 

trials nauplii from the diluted ration contained little or no lipid.  No significant effect of 

food concentration or trial was detected on and lipid content (Table 2), while trial had a 

significant affect on cyprid size (Table 3).     

Only lipid data from 5th and 6th stage nauplii and cyprids from the supplemented 

and natural rations were included in the statistical analysis.  The rarity of 5th and 6th stage 

nauplii in the diluted treatments and their lack of lipid in the earlier stages prevented their 

inclusion in the statistical analysis.  Furthermore, January ’04 data could not be analyzed 

due to lack of 5th and 6th stage nauplii in the natural ration.   

The null hypothesis is that the addition of phytoplankton food to the natural ration 

does not increase the lipid content of 5th and 6th stage nauplii relative to nauplii reared on 

solely a natural food ration.  Lipid content of 5th and 6th stage nauplii differed 

significantly between supplemented and natural rations in trials run in September ’03, 

March ’04, and May ’04, but not August ’04  (Figure 1, Table 1).  In the September ‘03 

and August ’04 trials, multiple comparisons showed no significant differences in lipid 

content between supplemented or natural rations for 5th stage nauplii alone or 6th stage 
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Figure 1 A-E.  Mean lipid content ±1 std. error, measured as projected lipid area, of nauplii of 
Balanus glandula reared on natural rations throughout the year (n=4 jars per treatment).  Bars 
above which different letters appear are statistically different among a given stage (Tukey HSD 
p<0.05).  Start represents naupliar lipid content at hatching. The diluted ration contained a 1:4 
dilution of 53μm-filtered seawater from the bay to 0.45mm filtered seawater from the 
laboratory, the natural ration contained only 53μm-filtered seawater, and the supplemented 
ration contained 53μm-filtered seawater plus 1x105 cells/mL of the chain forming diatom 
Skeletonema costatum.   Nauplii fed the diluted ration did not contain stained neutral lipids.  
Absence of nauplii from rations is noted in the figures.   
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Trial ss df Mean-square F-ratio P
September '03

food 6647.00 1 6647.00 7.36 0.019
stage 4361.00 1 4361.00 4.83 0.048
food * stage 666.00 1 666.00 0.74 0.407
error 10832.04 12 902.67

March '04
food 1.65 1 1.65 55.13 <0.001
stage 0.37 1 0.37 12.17 <0.01
food * stage 0.05 1 0.05 1.65 0.223
error 0.36 12 0.03

May '04
food 35000.00 1 35000.00 106.00 <0.001
stage 17900.00 1 17900.00 54.10 <0.001
food * stage 5242.00 1 5242.00 15.90 <0.01
error 3966.36 12 330.53

August '04
food 103.00 1 103.00 0.24 0.634
stage 13300.00 1 13300.00 31.04 <0.001
food * stage 353.00 1 353.00 0.82 0.383
error 5154.71 12 429.56

Table 1.  Two-way factorial ANOVAs on the effect of food treatment 
(supplemented and natural) and naupliar stage (5th and 6th) on lipid content 
in nauplii of Balanus glandula for 4 trials. 
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nauplii alone (Figure 1A&E, Tukey HSD, p>0.05).  However, in March ‘04 and May ’04 

trials, nauplii reared with the supplemented ration contained greater lipid content than 

those of the same stages reared with the natural food ration (Figure 1C&D, Tukey HSD, 

p<0.05).   

The null hypothesis is that naupliar stages do not differ in their lipid content.  In 

all four trials where 5th and 6th stage nauplii were present (excludes January ’04 trial), 

lipid content was significantly different between stages (Figure 1A, C-E; Table 1).  Sixth 

stage nauplii contained more lipid than 5th stage nauplii, except for the September ‘03 

trial where 5th stage nauplii contained more lipid than 6th stage nauplii.   

The null hypothesis is that food ration and trial do not affect naupliar lipid content 

and cyprid size and lipid content.  In comparisons across trials, lipid content of 6th stage 

nauplii reared with natural rations did not differ (Figure 2, ANOVA F3,12 = 3.31, 

p=0.057).  Cyprid lipid content and size did not differ significantly among the natural and 

supplemented food treatments (Figure 3A&B, Tables 2 & 3). Trial and the interaction of 

trial and food significantly affected cyprid size (Figure 3B, Table 3).  Cyprids from the 

August ‘04 trial were smaller than those from all other trials while cyprids from the 

September ’03 trial were larger than those from the August ’04 trial or May ’04 trial 

(Tukey HSD, p<0.05).  Cyprids ranged in size from approximately 1.1x105μm2 to 2.0 

x105 μm2.    

The null hypothesis is that the mean seawater chlorophyll a concentration does 

not differ among trials.  The mean seawater chlorophyll a concentration of the natural 

rations differed significantly among trials (Figure 4, F=4.295, p=0.006).  A Tukey HSD 
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test revealed a significant difference only between September ‘03 and January ‘04 trials 

(Figure 4, Tukey HSD, p<0.05).  The average chlorophyll a concentrations of the natural 

rations in the September ‘03 and August ‘04 trials were approximately 10μg/L, although 

daily amounts varied most highly in August ’04.  During the January ‘04, March ‘04, and 

May ‘04 trials, average chlorophyll a was under 5μg/L in the natural rations.   

The null hypothesis is that the average chlorophyll a of the natural rations does 

not correlate with the naupliar and cyprid lipid content.  The lipid content of 6th stage  

Figure 2.  Lipid content of 6th stage nauplii of Balanus glandula reared on natural  
rations throughout the year.  Bars represent means +1 std. error for 4 jars within each 
experimental trial. 
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Figure 3 A&B.  Cyprid lipid content (A) and size (B) of Balanus glandula  
reared with natural or supplemented rations.  Bars represent means +1 std. 
error for 4 jars within a ration.  
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Table 2.  Two-way factorial way ANOVA on the effect of trial 
and food (supplmented and natural ) on the lipid content of 3 day old cyprids.

Effect ss df Mean-square F-ratio P
food 3.20E+09 1 3.20E+09 9.53 0.054
trial 7.65E+08 3 2.55E+08 1.88 0.161
trial * food 1.01E+09 3 3.35E+08 2.48 0.087
error 3.11E+09 23 1.35E+08

Table 3.  Two-way factorial ANOVA on the effect of trial and 
food (supplemented and natural) on cyprid size.

Effect ss df Mean-square F-ratio P
food 3.47E+09 1 3.47E+09 1.50 0.308
trial 8.23E+09 3 2.74E+09 29.48 <0.0001
trial * food 6.94E+09 3 2.31E+09 24.86 <0.0001
error 1.86E+09 20 9.30E+07
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Figure 4.  Seawater chlorophyll a concentration of the natural rations used in the 
experimental trials. Bars represent means +1 std. error of chlorophyll a in the natural rations 
over the duration of a trial (the number of days chlorophyll a was measured varies based on 
length of trial). Bars above which the same letter appears are not statistically different  
(Tukey HSD, p<0.05).  
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nauplii and cyprids reared with natural rations increased with the average chlorophyll a 

concentration of the natural rations.  Lipid content of 6th stage nauplii did not show a 

statistically significant correlation with the chlorophyll a of the natural ration though, 

most likely due to low replication (Figure 5, Linear regression t=2.48, p=0.13).  

However, lipid content of three day-old cyprids reared with natural seawater increased 

significantly with chlorophyll a concentration of the natural rations (Figure 6, Linear 

regression t=5.44, p=0.032). 

 

Naupliar stage duration in natural rations trials 

Just as trials differed in how the larvae in natural and supplemented treatments 

accumulated lipid, there was also variation among trials and food treatments in the 

duration of developmental stages.  The average day a naupliar stage first appeared and 

was last found in a food ration did not differ between supplemented and natural rations in 

the September ‘03 or August ‘04 trials but did in the January ‘04, March ‘04, and May 

‘04 trials (Figure 7A-E).  In the September ‘03 trial, nauplii fed natural or supplemented 

rations developed to the 6th naupliar stage in 8 and to cyprid stage in 11 days.  In the 

September ‘03 trial, naupliar stages in the diluted ration appeared later and remained 

longer than those in the natural and supplemented rations.   In the August ’04 trial, 6th 

stage nauplii first appeared at 8 days in the natural food treatment and at 10 days in the 

supplemented food treatment, while cyprids first appeared at 15 days in both food 

treatments (Figure 7E).  No difference in stage duration between any rations was detected 

in the August ‘04 trial.  In the January ‘04 trial nauplii receiving  
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Figure 6. Mean lipid content (+1 std. Error) of 3-day old cyprids of Balanus 
glandula fed natural rations vs mean chlorophyll a concentration of 53-mm filtered 
seawater.  Lipid content is the mean of 4 jars for each trial.  Chlorophyll a is the 
same as in figure 4.  Trials conducted in September ’04, March ’04, May ’04, and 
August ’04 are shown.  In the January ’04 trial, no cyprids were present in the 
natural ration.  Line represents a least square linear regression through all data 
points.   

Figure 5.  Mean lipid content (+1 std. Error) of 6th stage nauplii of Balanus 
glandula fed natural rations vs mean chlorophyll a concentration of 53-μm filtered 
seawater.  Lipid content is the mean of 4 jars for each trial, chlorophyll a is the 
same as in figure 4.  Trials conducted in September ’04, March ’04, May ’04, and 
August ’04 are shown.  In the January ’04 trial, no 6th stage nauplii were present in 
the natural ration.  Line represents a least square linear regression through all data 
points.   
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Figure 7A-E.  Duration in stage of nauplii of Balanus glandula reared with natural rations of 
phytoplankton. The vertical height of the bars represent mean (n=4 jars/food ration) days 
naupliar stage was present in a ration, with the lower end representing mean time after 
hatching that stage occurred in a ration and the upper end representing the mean time after 
hatching the stage last occurred in a ration.  Lower error bars represent first appearance of a 
naupliar stage in a ration.  Upper error bars represent the last day a naupliar stage was 
occurred in a ration. 

May, 2004

August, 2004

stage
2 3 4 5 6

A.
D.

E.

C.

B. January, 2004

da
ys

 fr
om

 h
at

ch
in

g

0

5

10

15

20

25

September, 2003
da

ys
 fr

om
 h

at
ch

in
g

0

5

10

15

20

25

diluted
natural
supplemented

March, 2004

stage
2 3 4 5 6

da
ys

 fr
om

 h
at

ch
in

g

0

5

10

15

20

25

30



 
 
 
  25 
 
the natural or the diluted ration did not develop past stage 3 by day 13 when the trial was 

terminated (Figure 7B).  In the January ’04 trial, nauplii from the natural ration 

metamorphosed from 2nd to 3rd stage later than those in the supplemented ration but 

before those in the diluted ration.  Naupliar stages from natural rations in the March ‘04 

trial appeared later and remained longer than naupliar stages from the supplemented 

ration, but appeared sooner and developed more rapidly than those from the diluted ration 

(Figure 7C).  In the March ’04 trial, nauplii from the natural ration developed to the 6th 

naupliar stage by day 12 and to the cyprid stage by day 18.  In the May ’04 trial, 2nd 

through 5th stage nauplii from natural ration appeared at similar times but remained in 

their respective stages longer than nauplii of equivalent stages from the supplemented 

ration (Figure 7D).  In the May ’04 trial 6th stage nauplii from the natural ration appeared 

later and remained longer than 6th stage nauplii from supplemented ration (Figure 7D).  In 

the May ’04 trial nauplii in the natural ration developed to the 6th naupliar stage and to 

the cyprid stage at days 12 and 15, respectively, while nauplii in the supplemented ration 

developed to the 6th naupliar stage and to the cyprid stage at days 9 and 11, respectively 

(Figure 7D).   

 

Naupliar gut fluorescence and fecal pellet production from natural ration trials 

Gut fluorescence in the various naupliar stages varied among trials.  Every 

naupliar stage was not assessed for gut fluorescence from each trial.  Early larval stages 

in the diluted ration treatment had fluorescent pigments in their guts in September ’03, 

March ’04, May ’04, and August ’04 and may have in January ’04, but these stages were 
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not in samples collected.  Similarly, samples of late stage nauplii were not collected for 

gut fluorescence from the supplemented ration in the August ’04 trial and the March ’04 

trial.  In other cases (e.g. January ’04 trial, 4-6th stage nauplii from natural and diluted 

rations) nauplii were not present in sufficient quantities or at all for assessment of gut 

fluorescence.  

In the September ’03 trial, the amount of fluorescent pigment in the naupliar gut 

did not differ significantly between supplemented and natural rations, but did differ 

across 3rd-6th stages (Figure 8A, Table 4).  In the August ’04 trial, gut fluorescence of 5th 

and 6th stage nauplii did not differ significantly between supplemented and natural rations 

or stages (Figure 8E; Table 4).   

In contrast to the September ’03 and August ’04 trials, food treatment 

significantly affected the gut fluorescence of equivalently staged nauplii in the January 

’04, March ’04, and May ’04 trials (Figure 8, Table 4).  In the January ‘04 and March ‘04 

trials, food treatment affected gut fluorescence in stage two nauplii (Figure 8B&C, 

ANOVA:  January, F2, 9 = 23.74, p<0.001, March, F1,9 = 56.95, p<0.001) such that 

nauplii from the supplemented rations had significantly more gut fluorescence than 

nauplii from either the natural or diluted ration (Tukey HSD, p<0.05).  Fifth stage nauplii 

fed supplemented rations in the March ‘04 trial contained more gut fluorescence than 

nauplii fed a natural ration (ANOVA F1,6 = 225.30, p<0.001, Tukey HSD, p<0.05).  In 

the May ‘04 trial, gut fluorescence of 4th-6th stage nauplii differed significantly between 

supplemented and natural food treatments and stage, and also there was a statistically 

significant interaction of the factors (Figure 8D; Table 4).  Fifth or sixth stage nauplii  
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Figure 8 A-E.  Gut fluorescence (μg/nauplius) of nauplii of Balanus glandula reared with 
natural rations of phytoplankton.  Bars represent means ±1 std. error (n=4 jars/ration).  
Rations are as in figure 1.  Bars above which different letters appear are statistically 
different among a given stage (Tukey HSD p<0.05).  Absence of naupliar stages from 
assessment of gut fluorescence is noted. 
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Trial ss df Mean-square F-ratio P
September '03

stage (3-6) 0.012 3 0.004 19.350 <0.0001
food 0.001 1 0.001 2.970 0.099
food * stage 0.001 3 0.000 1.170 0.343
error 0.004 22 0.000

May '04
stage (4-6) 0.016 2 0.008 23.393 <0.0001
food 0.031 1 0.031 89.858 <0.0001
food * stage 0.012 2 0.006 17.542 <0.0001
error 0.006 18 0.000

August '04
stage (5-6) 0.006 1 0.006 2.544 0.139
food 0.005 1 0.005 1.940 0.191
food * stage 0.000 1 0.000 0.049 0.829
error 0.026 11 0.002

Table 4.  Two-way factorial ANOVA on the effect of food (supplemented and 
natural) and stage on gut fluorescence of nauplii of Balanus glandula. Naupliar 
stages analyzed are indicated.  
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reared with supplemented rations in May ’04 had higher gut fluorescence than their 

equivalent stages reared with natural rations (Tukey HSD, p<0.05). 

Naupliar fecal pellet production was determined in the March ’04, May ’04, and 

August ’04 trials only and, the naupliar stages assessed for fecal pellet production varied 

between trials.  Early larval stages from all rations in the May ’04 and August ’04 trials 

were present in culture jars but some food treatments were not sampled for fecal pellet 

production.  Fecal pellet production was not assessed in late-stage nauplii from the 

diluted rations because of insufficient numbers or absence of these stages.   

In the August ‘04 trial, food treatment, stage, and their interaction significantly 

affected fecal pellet production of 3rd-5th stage nauplii (Table 5).  In the August ’04 trial, 

4th and 5th stage nauplii from the natural ration produced significantly more fecal pellets 

than similarly staged nauplii from the supplemented ration (Figure 9C, Tukey HSD, 

p<0.05).  In the March ’04 trial, food treatment, stage, and the interaction of these factors 

significantly affected fecal pellet production of 2nd-4th and 6th stage nauplii (Table 5).  

Similarly, in the May ’04 trial, food treatment, stage, and their interaction significantly 

affected fecal pellet production of 2nd, 4th and 5th stage nauplii (Table 4).  Unlike the 

August ’04 trial, in the March ’04 and May ’04 trials, late stage nauplii from the 

supplemented ration produced more fecal pellets than similarly staged nauplii from the 

natural ration (Figure 9A & B, Tukey HSD, p<0.05). 
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 Figure 9 A-C.  Fecal pellet production of nauplii of Balanus glandula reared with natural 
rations.  Bars represent mean number ±1 std. error of fecal pellets produced per nauplius per 
hour (n=4 jars/treatment).  Bars above which different letters appear are statistically different 
among a given stage (Tukey HSD p<0.05).  Absence of naupliar stages from assessment of 
fecal pellet production is noted. 
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Trial ss df Mean-square F-ratio P
August '04

food (S, N, D) 0.445 2 0.223 12.510 <0.0001
stage (3-5) 0.223 2 0.112 6.280 0.005
food * stage 0.281 4 0.070 3.960 0.010
error 0.605 34 0.018

May '04
food (S & N) 0.500 1 0.500 75.340 <0.0001
stage (2, 4-5) 0.132 2 0.066 9.950 0.001
food * stage 0.202 2 0.101 15.240 <0.0001
error 0.146 22 0.007

March '04
food (S & N) 0.056 3 0.019 2.910 0.047
stage (2-4, 6) 0.265 1 0.265 41.130 <0.0001
food * stage 0.089 3 0.030 4.610 0.008
error 0.232 36 0.006

Table 5.  Two-way factorial ANOVA for the effect of food (where D= diluted, 
N=natural,  S=supplemented rations) and stage on fecal pellet production of  
nauplii of Balanus glandula.  Stages tested are indicated.  
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Discussion 

This study compares lipid content, stage duration, gut fluorescence, and fecal 

pellet production of nauplii of Balanus glandula fed a natural diet with those fed a natural 

diet supplemented with lab grown phytoplankton or a natural diet diluted with filtered 

seawater in five trials over a one-year period.  In general, nauplii in the diluted ration did 

not develop to the 5th and 6th stage in the trials and thus, assessment of lipid content and 

feeding indices were not performed.  The lipid content, stage duration, gut fluorescence 

and fecal pellet production rates of nauplii given natural and supplemented food rations 

were similar in the trials conducted in September 2003 and August 2004, suggesting that 

lipid content and developmental rate of nauplii from the natural diet were not limited by 

food in these trials.  The lipid content, stage duration, gut fluorescence, and fecal pellet 

production of nauplii given natural rations suggest that these larvae were food limited in 

the trials conducted in January, March, and May 2004.  This pattern of limitation of lipid 

content and stage duration between trials is similar to that of gut fluorescence and fecal 

pellet production, suggesting that differences or similarities in naupliar feeding within the 

food treatments, and not another factor, may be responsible for the patterns of lipid 

content and development.  The quantity of food available in the natural rations may not 

have maximized larval lipid content and development.  However, food limitation may 

also have been caused by differences in food quality (Sterner and Hessen 1994) or by 

algae that are too large to be ingested.    
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Chlorophyll a concentrations through the year may explain differences in food 

limitation between trials.  Chlorophyll a concentration is a proxy for phytoplankton 

abundance, an important food source for many marine larvae.  The positive relationship 

between the lipid content of 6th stage nauplii (Figure 5, p=0.13) and cyprids (Figure 6, 

p=0.03) with the average chlorophyll a concentration in seawater suggests that food 

concentration may limit the lipid content of larvae in the natural rations.   

My data agree with other laboratory experiments that suggest natural rations limit 

the development, growth, and lipid content of planktotrophic marine larvae (Paulay et al. 

1985, Fenaux et al 1994, Reitzel et al. 2004).  Paulay et al. (1985) showed that the growth 

and development of echinoderms and mollusks were food limited when reared with 

natural rations, while Reitzel et al. (2004) suggested that larval sand dollar lipid content is 

limited by the food available in natural seawater.  In subtropical waters in Florida, sand 

dollar larvae reared with natural rations showed reduced growth and longer development 

compared to larvae from a supplemented ration (Eckert 1995).   

Lack of differences in lipid content and stage duration between natural and 

supplemented rations within September ’03 and August ’04 trials suggest, however, that 

nauplii of Balanus glandula are not food limited during some parts of the year.  Other 

experiments using natural rations in mesocosms suggest that marine invertebrate 

zooplankton are not food limited in oligotrophic environments.   Olson (1987a) showed 

maximal developmental rates of crown-of-thorns starfish larvae in Australia under 

normal phytoplankton conditions.  Similarly, the Antarctic asteroid Odontaster validus 

develops normally under natural food conditions (Olson 1987b).   
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Studies suggest that crustacean larvae may be sensitive to fluctuations in food 

availability due to their trophic position (Olson and Olson 1989), but few studies have 

attempted to rear crustacean larvae in the laboratory under a natural food environment.  

Comparing lab-reared and field-sampled copepod developmental rate and size, Ohman 

(1985) suggested that Pseudocalanus sp. from Dabob Bay, WA was not food limited. 

However, at the same location, Frost (1985) showed that the egg production of 

Pseudocalanus sp. did not vary with chlorophyll a concentration, while the egg 

production of Calanus pacificus did, suggesting that food may affect species differently.   

Hentschel and Emlet (2000), using similar techniques as in this study, found that 

cyprids of Balanus glandula reared in the laboratory with a higher food ration contained 

more lipid and obtained a larger size than cyprids reared with a lower food ration.  The 

cyprid lipid content from the natural food treatments in this study falls between the values 

reported by Hentschel and Emlet (2000) for “high” and “low” food cyprids (1x105 and 

1x104 cells/mL of Skeletonema costatum, respectively) while cyprid lipid content from 

the supplemented rations in this study are similar to the cyprid lipid content of the high 

food treatment in Hentschel and Emlet (2000).  Comparisons of the lipid content and size 

of cyprids I reared with natural rations to the results of Hentschel and Emlet (2000) 

suggest that the nutritional value of the natural ration is intermediary to “high” and “low” 

laboratory food rations.  The lipid content of cyprids I reared with supplemented rations 

matches those of the constant high food treatment in Hentschel and Emlet (2000).     

Few studies have linked differences in natural food availability over time with 

larval growth and development.  Fenaux et al. (1994) suggested that the development and 
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growth of echinopluteus larvae of Paracentrotus lividus were limited in the spring and 

fall in the Mediterranean, although less so when the chlorophyll a concentration of the 

seawater was greater.  Egg production of Acartia tonsa copepods has been linked with 

seawater chlorophyll a concentration throughout the year (Durbin et al. 1983).  In the 

present study, naupliar lipid content and stage durations were food limited in trials with 

the lowest natural chlorophyll a concentrations, but naupliar food limitation was not 

detected during trials with higher chlorophyll a concentration.  On the West Coast of 

North America, seasonal cycles of daylight, upwelling, and temperature affect the 

chlorophyll a concentration of the seawater such that phytoplankton blooms occur 

primarily in the early spring and throughout the summer (Small et al. 1972, Small and 

Menzies 1981, Pearcy and Keene 1974).   Seasonal variation in phytoplankton standing 

stock, and presumably naupliar food availability, suggests there may be a seasonal pattern 

of food limitation in barnacle larvae.  If the lipid content and size of cyprids of Balanus 

glandula are primarily influenced by food concentration, peaks in these parameters 

should occur around the months of the highest seawater chlorophyll a concentration (see 

chapter III).  Phillips and Gaines (2002) found increases in lipid content, developmental 

rate, and size of field-sampled mussel larvae with increases of field chlorophyll a 

concentration.  The size of mussel veligers settling in southern California decreases 

throughout the year, as does seawater chlorophyll a concentration, suggesting a coupling 

of larval size and food availability (Phillips and Gaines 2002).   

My results suggest that during times of low food abundance, nauplii will take 

longer to develop, and thus remain in the plankton longer.  Death rates of larvae are high 



 
 
 
  36 
 
in the field (Morgan, 1995) and any increase in stage duration will impart an increased 

risk of mortality on an individual.  Cyprid lipid stores positively affect metamorphic 

success to the juvenile stage (Thiyagarajan et al. 2002), rate of juvenile growth (Jarrett, 

1997), and juvenile survivorship (Emlet and Sadro submitted manuscript).  Barnacle 

cyprids with little energy stores have less time to search for settlement sites and may be 

less picky about settlement substrata than cyprids with greater energy stores (Pechenik et 

al. 1993), possibly leading to a less favorable adult habitat which may reduce adult 

fitness.  Larval size (Marshall and Keough 2004) affects juvenile size and growth rate, 

two important life history traits that may affect competition for space in the intertidal 

(Connell, 1961).  Larval pelagic duration may represent a tradeoff between risk of 

mortality in the plankton and ingesting enough energy to adequately metamophose to and 

perform as a juvenile.   

 

Conclusions 

This study investigated the effect of natural food availability on the feeding, lipid 

content, and developmental rate of larvae of Balanus glandula reared in the laboratory 

with seawater rations taken from the field.  During periods when larvae were fed on 

natural rations (seawater rations taken from the field), larval lipid content, stage duration, 

naupliar gut fluorescence and fecal pellet prodcution match those from the supplemented 

ration (seawater plus lab reared phytoplankton) suggesting that larvae from the natural 

rations were not food limited.  When naupliar gut fluorescence and fecal pellet 

production of larvae fed the natural ration were lower than those of the supplemented 
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ration, lipid content and stage duration were lower as well.  The lipid content of 6th stage 

nauplii and cyprids were positively correlated with the chlorophyll a concentration of 

their natural rations, suggesting that food concentration may be an important factor 

limiting the energy stores and development of barnacle larvae.  Furthermore, these results 

suggest that the natural food concentrations may limit the lipid content, size, and 

development of larvae of Balanus glandula in the field during some times of the year and 

not at other times of the year.  
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BRIDGE I 

 

The results of Chapter II suggest that the lipid content and development of nauplii 

of Balanus glandula are at times food limited by natural phytoplankton rations.  In trials 

conducted in September ’03 and August ’04, when chlorophyll a concentrations were 

highest, the lipid content and development of nauplii fed the natural phytoplankton ration 

matched that of a natural ration supplemented with laboratory grown phytoplankton.  In 

trials conducted in January, March, and May, lipid content and stage duration of the 

natural ration were food limited compared to the supplemented ration.   

 The results of laboratory studies must be extrapolated to the field with caution, as 

larvae are exposed to a multitude of environmental factors in the field that cannot be 

reproduced in the laboratory.  Although food fluctuates seasonally in the field, so do 

other factors such as temperature, turbulence, and upwelling.  It is not known to what 

extent these parameters influence larval size and lipid content in the field.  Chapter III 

measures the size and lipid content of Balanus glandula larvae from the field, along with 

chlorophyll a concentration to understand the effect of natural variations in food 

availability on larval condition in the field.  In addition, seawater chlorophyll a was 

investigated as a possible proxy for food availability via correlations with fecal pellet 

production rates. 
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CHAPTER III 

 

LINKING LARVAL CONDITION WITH FIELD FOOD AVAILABILITY AND 

SEAWATER TEMPERATURE 

 

Introduction 

Marine invertebrate life cycles often include a free-swimming, planktotrophic 

larval stage that feeds on phytoplankton while growing and developing in the water 

column (Pechenik 1999).  Larvae may spend hours to months in their pelagic 

environment, where they may be exposed to temporal and spatial fluctuations in a host of 

physical and biological parameters.  For planktotrophic larvae, exposure to variations in 

food availability may affect larval developmental rate (Eckert 1995, Meidel et al. 1999, 

Qiu and Qian 1997, Reitzel et al. 2004), size at metamorphosis (West and Costlow 1987, 

Paulay et al. 1985, Fenaux et al. 1994), energetic stores (Gallager and Mann 1981, 

Hentschel and Emlet 2000, Phillips 2002), and survivorship (Epifanio et al. 1991, Qiu 

and Qian 1997), while variations in temperature may affect larval size and developmental 

rate (Barnes 1953, Gallager and Mann 1981, Ouellet and Allard 2002, Emlet and Sadro 

submitted manuscript).  The effects of larval feeding can persist through metamorphosis 

to the juvenile stage (reviewed by Pechenik et al. 1998).  Larval energetic reserves 
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correlate positively with metamorphic success in barnacles (Thiyagarajan et al. 2002).  

Larger larval size leads to greater juvenile size in mussels (Phillips 2002), higher growth 

rates in barnacles (Jarrett and Pechenik 1997), and increased survivorship in barnacles 

(Emlet and Sadro submitted manuscript).   

Many studies have reported that larvae sampled from the field vary in size and 

energy stores (Barnes 1953, Phillips and Gaines 2002, Ouellet and Allard 2002, Jarrett 

2003).  In one study, shell size of mussel veligers differed among spring, summer, and 

fall, as well as among sampling sites separated by approximately 50km (Phillips and 

Gaines 2002).  In another study, barnacle cyprid organic content varied over the course of 

two months (Jarrett and Pechenik 1997).  Although variations in larval size and energy 

stores between samples are commonly observed in the field, few studies have attempted 

to explain the reasons for these differences by measuring larval size and energy content 

and food availability simultaneously.   

Several studies have pointed to indirect and direct effects of physical oceanic 

parameters to explain the variation in larval size and energy stores.  Phillips and Gaines 

(2002) suggested that temporal and spatial differences in larval size were due to 

differences in food availability that was caused partially by seasonal cycles of upwelling.  

Larval food availability is closely linked with phytoplankton standing stock (Fenaux et al. 

1994), which, in turn, is influenced by available nutrients, temperature day-length, and 

water stratification (Small et al. 1972, Small and Menzies 1981, Pearcy and Keene 1974, 

reviewed by Mackas et al. 1985).   
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In upwelling systems, such as the West Coast of North America, cold, nutrient rich 

water is brought to the surface by wind-driven offshore transport of the surface water in 

the spring and summer.  Although upwelling may increase available food for invertebrate 

larvae, it may also transport them away from suitable settlement substrata, thereby 

delaying metamorphosis of those transported offshore (Roughgarden et al. 1988).  For 

barnacle larvae, upwelling may serve to increase larval energy stores through naupliar 

feeding, but may also decrease energy reserves in non-feeding cyprids by delaying 

settlement.  Jarrett (2003) and Miron et al. (1999) suggested that a delay in settlement and 

the corresponding use of energy stores caused the observed decline in the organic content 

of field caught cyprids.  However, Ouellet and Allard (2002) suggested that seasonal 

differences in water temperature determined differences in size and energy reserves in 

lobster larvae in the field.  Although evidence exists to support all of these explanations, 

these studies did not directly correlate variation in field environmental parameters with 

variation in condition of field caught larvae.   

The common intertidal acorn barnacle Balanus glandula is a good model 

organism to study how changing environmental conditions affect larval size and lipid 

content.  Found from Baja California to Alaska, B. glandula reproduces ten months of the 

year in some habitats of coastal Oregon (Berger 2004) and its offspring are, hence, 

exposed to a variety of environmental conditions.  Larvae of B. glandula pass through six 

feeding naupliar instars and a non-feeding cyprid stage before they settle to benthic adult 

habitat.  When reared under variable food environments, the sizes of the first five 

naupliar stages are fixed while the 6th naupliar stage and the cyprid vary in size (Emlet 
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unpublished).  This matches patterns published for larvae of Balanus eburneus (West and 

Costlow 1987).  During the naupliar stages the size and energy reserves of the larvae 

increase via feeding in the water column (Holland and Walker 1975).  Lipids and proteins 

accumulated by nauplii are used as energy by the cyprids to search for suitable settlement 

substrata and for metamorphosis into juveniles (Lucas et al 1979, Holland 1987).  The 

duration of the cyprid stage is limited by larval energy reserves accumulated as a nauplius 

and may last for up to four weeks in cyprids of Semibalanus balanoides (Lucas et al. 

1979).  At the time of capture, cyprid lipid stores may be a product of both the naupliar 

and cyprid pelagic experience, but cyprid size is affected the pelagic experience of the 

nauplius.  Lipid reserves are easily visualized by staining nauplii with the lipid-specific 

stain Nile Red, which causes neutral lipids to fluoresce bright yellow and polar lipids to 

fluoresce dull red under epifluorescent light (e.g. Hentschel and Emlet 2000).   

To examine the link between variation in the environment and larval condition, this 

study correlates the size and lipid content of field-caught cyprids and nauplii of the 

intertidal barnacle Balanus glandula with chlorophyll a concentration, temperature, and 

upwelling data over the course of one year in Coos Bay region (September 2003-August 

2004).  Furthermore, this study correlates the fecal pellet production of field-caught 

nauplii of B. glandula with seawater chlorophyll a concentration in order to determine if 

chlorophyll a concentration determines feeding rates.   

 

 



 
 
 
  43 
 

Methods 

Larval collection and preservation 

Larvae of Balanus glandula were obtained from the field by plankton tows for 

analysis of size, lipid content, and feeding-rate.  Plankton tows were made using a 130μm 

mesh plankton net towed for approximately 10 minutes at the mouth of the Coos Bay 

estuary within one hour of the day-time high tide (high-high or high-low tide).  The 

resulting plankton sample was placed in 3 liters of 0.45μm-filtered seawater (FSW).  

Positively phototactic zooplankton were concentrated by shining a fiber optic light source 

at the edge of the jar.  About 15mL of this concentrated plankton were collected using a 

turkey-baster, frozen in 15mL falcon tubes with liquid nitrogen, and placed in a -80°C 

freezer.   

Later, the concentrated plankton samples were thawed and sorted to select nauplii and 

cyprids of B. glandula (Brown 1985, Standing 1980).  Nauplii of B. glandula were 

identified based on their size, which is generally smaller for a given stage than that of 

other local nauplii and the unique 45-degree angle of their frontolateral horns compared 

to their naupliar shield (Arnsberg 2001).  Cyprids of Balanus glandula are easily 

identified based upon their brown pigmentation and the pitted sculpturing of their 

carapace (Standing 1980).  Larvae were placed in 1.7 mL microcentrifuge tubes with 1 

mL of FSW, frozen with liquid nitrogen (Hentschel and Emlet 2000), and stored in –

80°C freezer (Ohman, 1996) for later lipid and size determination.  The effects of 

freezing, thawing, and refreezing larvae on lipid content is not known, although there is 

no indication that it changed the appearance or sizes of neutral lipid droplets from those 
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cyprids that were frozen once.  Also freezing copepods once did not affect measures of 

lipid content (Ohman, 1996).    

 

Assessing the condition of barnacle larvae 

 To assess larval condition of B. glandula, larval size and lipid content were 

measured.  The number of larvae collected varied by sampling date, but did not exceed 

20 individuals per sampling day.  Larval lipids were stained by incubation in a 1:4 

dilution of Nile Red Stock (2.5mg/100mL acetone) to FSW for one hour (Hentschel and 

Emlet 2000).  Larvae were rinsed with FSW and photographed in color under 

epifluorescent light using a CCD video camera with the gain set to off.  Images were 

captured and measurements were made using Optimas 5.2 software (Silver Spring, 

Maryland, USA).   

Lipid content was estimated by quantifying the projected area of stained neutral 

lipid droplets from digital images of nauplii and cyprids.  This two dimensional measure 

was determined from predetermined color thresholds in Optimas 5.2 that were created by 

manually selecting the neutral lipid color emitted from 10 stained larvae.  Separate 

thresholds were created for nauplii and cyprids because the color of neutral lipid differs 

depending on whether it is shining through the cyprid carapace or naupliar shield 

(personal observation).  The size of cyprids was quantified by manually tracing the 

outline of the carapace from the digital image used in lipid determination.  Although the 

size of individual cyprids were not repeatedly measured to determine the accuracy of this 
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method, a similar method of determining cyprid size was used by Hentschel and Emlet 

(2000) and produced consistent results.    

 

Determination of food availability by fecal pellet production rates 

Food availability in natural seawater was estimated by fecal pellet production rates.  

Nauplii of Balanus glandula were sorted from live plankton samples and 1-5 nauplii were 

placed in 50mL centrifuge tubes containing 53μm-filtered seawater.  Tubes were placed 

on a roller table for approximately 24 hours at 12°C.  This roller table was created to 

study marine snow, but also keeps larvae and phytoplankton in suspension (Larson and 

Shanks 1996, Smart 2003).  Tube contents were filtered down to 5mL with a turkey 

baster fitted with 20μm mesh and preserved with 0.5mL 4% buffered formalin.  Fecal 

pellet production per nauplius was estimated by counting two 1-mL sub-samples from 

each tube on a Bogorov tray, averaging these counts, and dividing by the number of 

nauplii in the tube.  The number of replicate tubes of each naupliar stage varied from 2-4 

on any day, depending upon the number of nauplii obtained from the plankton sample.      

 

Physical parameter data collection  

 Samples of seawater for the determination of chlorophyll a concentration were 

taken at the mouth of Coos Bay estuary when plankton samples were collected.  In the 

lab, a portion of this seawater was filtered through a 53μm nylon filter for use in feeding 

experiments.  Raw and 53μm-filtered seawater samples were filtered onto 3μm glass 

microfiber filters, placed directly into 10mL of 90% acetone, and stored in the dark at –
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20C for at least 24 hours for chlorophyll a extraction.  Fluorescence of these samples was 

read before and after acidification with 5% HCl on a Turner Model TD 700 fluorometer 

fitted with chlorophyll a specific excitation and emission filters.  Chlorophyll a 

concentration in μg/L was calculated with the equations of Parsons et al. (1984).   Data 

on seawater temperature was taken from buoy 46050 located off the Oregon Coast 

(http://www.ndbc.noaa.gov/Maps/Northwest.shtml).  Buoy 46050 is located at 

44°37'16"N 124°31'42" W, 32km northwest of Newport, Oregon.  The mouth of Coos 

Bay, where plankton and water samples were collected, is located 160 km south of buoy 

46050.  Because buoys to the north (buoy # 46050) and the south (buoy # 46015) show 

similar trends in seawater temperature (personal observation), data from buoy 46050 are 

assumed to accurately represent the conditions offshore of Coos Bay, Oregon.  Upwelling 

index is based on a model that uses differences in atmospheric pressure to estimate 

Ekman transport.  Estimates of upwelling index at 42N 125W (the site closest to the buoy 

46015) were taken from the Pacific Fisheries Environmental Laboratory website 

(http://www.pfeg.noaa.gov). 

 

Statistical analysis 

 The effect of capture day on cyprid lipid content and size, as well as the effect of 

stage on fecal pellet production, were analyzed by Kruskal-Wallis tests, due to violations 

of normality.  Data on fecal pellet production/nauplius/hour for separate stages were 

square root transformed to meet the assumptions of homoscedasticity and normality for 

parametric statistical analysis.  Linear and curvilinear regressions were fitted to all data 
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points with SigmaPlot 6.0 for Windows.  The curvilinear model used was y=a(1-e-bx), 

where a is the asymptotic maximum value of Y (fecal pellet production/nauplius/day) and 

b is the rate of change of Y with respect to X (chlorophyll a concentration) (Besiktepe 

and Dam 2002).  Least square linear regressions were fit to all data points using Statistica 

6.0 for Windows. 

 

Results 

Seawater chlorophyll a concentration 

Raw seawater chlorophyll a concentration varied during the year (Figure 1).  

From November through February chlorophyll a concentrations were approximately 0.3-

2μg/L.  From March through the beginning of April, chlorophyll a concentration  

increased to 6 μg/L, and on one day was 20 μg/L.  Then it decreased to under 2 μg/L near 

the end of April.  Seawater chlorophyll a concentration continued to fluctuate through the 

summer, but remained above about 5μg/L from mid June to mid August.  There were 

three days in August where chlorophyll a concentrations were 19, 21, and 40 μg/L..   

 

Cyprid size and lipid content  

Cyprid size, measured as carapace area, and lipid content, measured as the 

projected area of stained neutral lipids, varied among sampling dates (Figure 2A, 

Kruskal-Wallis, size: H=119.38, d.f.=34, p<0.001, lipid: H=95.36, d.f.=34, p<0.001).  

Cyprids were largest in September through October of 2003 and April through early May 

of 2004, with mean sizes ranging from 1.8 to 2.2 x 105μm2.  Cyprid lipid content was 
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highest during these months and ranged from 4.5 to 9.4 x 104 μm2.  The smallest cyprids 

with the least lipid were collected in November and December of 2003 and May of 2004, 

with size and lipid distributions of 1.4-1.6 x 105 μm2 and 1.5-3.3 x 104 μm2, respectively.  

Cyprid size and lipid content do not follow a seasonal trend, although the smallest 

cyprids with the least lipid content occurred in late fall ’03 and late spring ’04.   
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Figure 1. Chlorophyll a concentration of raw seawater 
samples taken in front of the OIMB boathouse in 
Charleston, OR.  Points represent individual samples.   
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Figure 2.  A)  Cyprid size, measured as carapace area, and lipid content, 
measured as projected lipid area, of Balanus glandula sampled from the mouth 
of the Coos Bay estuary over a one year period.  Points represent means +1 
standard error.  B)  The ratio of lipid to size for cyprids.  Points represent mean 
cyprid lipid content divided by mean cyprid size.   
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  Cyprid size and lipid content increased with increasing seawater chlorophyll a 

concentration, although only the correlation between cyprid size and chlorophyll a 

concentration was significant (Figure 3A, Linear regression: size, t=2.077, p=0.04, lipid, 

t=0.99, p=0.32).  Raw seawater chlrophyll a concentration explained 2% and 0.4% of the  

variation in cyprid size and lipid content, respectively.  The ratio of cyprid lipid to size  

did not correlate significantly with seawater chlorophyll a (Figure 3B, Linear regression:  

t= 0.65, p=0.52). 

Cyprid size and lipid content significantly decreased with increasing water 

temperature with approximately 2% of the variation in both parameters explained by 

water temperature (Figure 4A, Linear regression: lipid, t=-2.05, p=0.04, size, t=-2.38, 

p=0.039).  Upwelling index did not correlate significantly with cyprid size and lipid 

content (Figure 4B, Linear regression: Lipid, t=-0.138, p=0.89; Size, t=0.0025, p=0.997).  

Cyprid lipid content increases with cyprid size (Figure 5, linear regression:  t=3.77, 

p<0.001), with approximately 6% of the variation in cyprid lipid content explained by 

cyprid size.   

 

Naupliar lipid content 

Naupliar lipid content did not correlate significantly with raw seawater 

chlorophyll a concentration in any stage (Figure 6A-C, Linear regression 4th stage, t=-

.343, p=0.73, 5th stage, t=0.454, p=0.66, 6th stage, t=-2.03, p=0.051).   
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Figure 3.  A) Relationship between cyprid size and lipid content of Balanus glandula 
and seawater chlorophyll a concentration. Points represent means ±1 standard error.  B)  
Relationship the ratio of lipid to size for cyprids and seawater chlorophyll a 
concentration.  Points represent mean cyprid lipid content divided by mean cyprid size.  
Lines in A and B represent least square linear regressions through all data points.  
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Figure 4.  Relationship between cyprid size and lipid content of Balanus glandula 
and A) mean daily oceanic water temperature, and B) mean daily upwelling index.   
All points represent mean s ±1 standard error.  Lines represent least square linear  
regressions through all data points.  
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Figure 5.  The relationship between cyprid lipid content and cyprid 
size of Balanus glandula.  Points represent mean cyprid size and 
mean cyprid lipid content.  Line represents a least square linear 
regression through all data points. 
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Figure 6.  The relationship between raw seawater chlorophyll a concentration and the 
lipid content of A) 4th stage B) 5th stage C) 6th stage field caught nauplii of Balanus 
glandula.  Points represent the lipid content of a single nauplius. Line represents a 
least square linear regression through all data points.  
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Naupliar feeding rate 

Feeding rate, measured by fecal pellet production, of nauplii of Balanus glandula differed 

between stages (Kruskal-Wallis test, H=26.3, n=4, p<0.001).  In all stages fecal pellet 

production increased significantly with increasing seawater chlorophyll a concentration, 

with 28-65% of the variation in fecal pellet production explained by chlorophyll a 

concentration (Figure 7A-D, Table 1).  The relationship between fecal pellet production 

and chlorophyll a concentration of naupliar stages 2 and 4 were best described by a 

curvilinear regression (r2=0.28 and 0.44, respectively), while relationship of stages 5 and 

6 were best fit by a linear model (r2=.065 and .060, respectively).   

 

Discussion 

 This study investigated how larval condition, measured by size and lipid content 

of Balanus glandula varies through the year and with fluctuations in food availability and 

temperature.  Larval condition varied over time and was weakly correlated with seawater 

chlorophyll a and temperature.  Furthermore, chlorophyll a concentration was found to be 

an accurate proxy for food availability.  I suggest that food availability and seawater 

temperature along with other factors control the condition of larvae of B. glandula in the 

field. 

Variations in cyprid size and lipid content may be explained in part by naupliar 

food availability because: 1.  Cyprids were largest and contained the most lipid content  
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Figure 7A-D.  Relationship between 53μm filtered seawater chlorophyll a 
concentration and A) 2nd stage B) 4th stage C) 5th stage D) 6th stage fecal pellet 
production of field collected Balanus glandula nauplii. Each point represents fecal 
pellet production for one larva.  Lines represent the linear regressions (dashed lines) 
and curvilinear fits (solid lines) through all data points.  Summary of regression 
statistics is given in Table 1.  
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regression Linear Curvilinear Linear Curvilinear Linear Curvilinear LinearCurvilinear
a 0.11 0.49 0.33 1.16 0.10 ns 0.07 ns 
b 0.05 0.39 0.12 0.43 0.55 ns 0.68 ns 
r ² 0.15 0.28 0.31 0.44 0.65 ns 0.60 ns
n 30 30 22 22 27 ns 16 ns
p 0.04 <0.01 <0.01 <0.01 <0.01 ns <0.01 ns

2nd stage 4th stage 5th stage 6th stage

Table 1.  Summary of linear and curvilinear models fitted to the data on the 
relationship between seawater chlorophyll a concentration (μg/L) and fecal 
pellet production (fecal pellets/nauplius/hour) of Balanus glandula nauplii.  
For the linear models, a=intercept and b=slope.  ns=not significant (p>0.05).  
The curvilinear model used was Y=a(1-e-bX), where a is asymptotic maximum 
value of Y (fecal pellet production) and b is the rate of increase of Y with 
respect to X (chlorophyll concentration). 
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during periods of high seawater chlorophyll a concentration and 2.  Cyprid size is 

significantly, but weakly, correlated with seawater chlorophyll a concentration.   

Seawater chlorophyll a concentration varied throughout the study, with the 

highest concentrations occurring in spring and late summer.  Chlorophyll a 

concentrations were highest in September ’03, March ’04, and June-August ’04, and fell 

within the range of values reported for the Oregon Coast (Menge et al. 1997, Roegner 

and Shanks 2001).  The size and lipid content of field-caught cyprids also varied between 

sampling dates.  The largest cyprids occurred in early September 2003 and during March 

and April 2004 (Figure 2). Cyprid lipid content content peaked in early September 2003 

and late-April 2004, concurrent with peaks in seawater chlorophyll a concentration.  

Chlorophyll a concentration is a measure of phytoplankton standing stock, which is an 

important food source for many invertebrate larvae (M. Strathmann 1987).  Peaks in 

chlorophyll a concentration and simultaneous peaks in cyprid size as well as lipid content 

may facilitate a coupling between temporal variations in naupliar feeding history and 

cyprid condition.   

Other studies have found substantial variation in larval size and energy stores 

from the field over various temporal scales (Barnes 1953, Jarrett 2003, Emlet and Sadro 

unpublished manuscript).  Jarrett (2003) found a general decrease in cyprid organic 

content over the course of only two months.  Emlet and Sadro (submitted manuscript) 

observed substantial variation in cyprid size of B. glandula from monthly samples taken 

from the Coos Bay estuary both between and within sampling dates, with a size range of 

approximately 1.5 to 2.4 x105μm2.  The sizes of cyprids of Balanus glandula in my study 
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fell within the size distribution reported by Emlet and Sadro (submitted manuscript), 

although sizes are generally lower in my study.  

Cyprid size varied positively with seawater chlorophyll a concentration however, the 

regression analysis explained less than 2% of the variation seen in cyprid size.  Cyprid 

lipid content was not significantly correlated with seawater chlorophyll a concentration.  

Positive correlation between seawater chlorophyll a, which is a measure of phytoplankton 

standing stock, suggests food concentrations may be responsible for the observed patterns 

in cyprid size.  In agreement with this study, Checkley (1985) found a positive correlation 

between seawater chlorophyll a concentration and cephalothoracic length and egg 

production of adult copepods.   

The size and lipid content of cyprids of B. glandula from the field are equivalent to 

those reared in the laboratory with diet that maximized larval growth (J. Schultz, Chapter 

II, Figure 3) suggesting that larvae in the field are well fed.  Semibalanus balanoides 

releases nauplii in response to phytoplankton blooms, probably to ensure adequate 

concentrations of food are available for larval growth and development (Barnes 1957, 

Starr et al. 1991).  If larvae of B. glandula are released when larval food concentrations 

are high the chances of larval food limitation in the plankton may be reduced, and this 

may explain why field caught cyprids of B. glandula appear to be well fed.   

Positive correlations between seawater chlorophyll a concentration and naupliar fecal 

pellet production, supports the hypothesis that food concentration affects larval condition.  

In agreement with the findings of this study Besiktepe and Dam (2002) and Butler and 

Dam (1994) found that an increase in ingestion rate or phytoplankton concentration 
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increases the fecal pellet production rate of adult copepods.  However, no studies that I 

am aware of correlate natural seawater chlorophyll a concentration and fecal pellet 

production.  Subsequent studies can use the less time consuming measure of natural 

chlorophyll a to measure food availability for barnacle nauplii.   

Different regression models best explain the patterns of fecal pellet production across 

stage.  A least square linear regression best explains the variation in the relationship 

between fecal pellet production of 5th and 6th stage nauplii and chlorophyll a 

concentration, but a curvilinear model explained more of the variation than a linear model 

in 2nd and 4th stage relationships.  Correlations of fecal production rates for adult 

copepods and food availability are generally modeled as curvilinear (Butler and Dam 

1994) because feeding rate plateaus at high food concentrations.  However, Bamstedt et 

al. (1999) and Besiktepe and Dam (2002) suggest different regression models are needed 

to explain the variation in fecal pellet production for different food types for adult 

copepods.  My results suggest a single regression model is not appropriate for every 

naupliar stage of B. glandula at chlorophyll a concentrations seen in this study.   

Given that larval food availability explains small amounts of the variation in larval 

size and lipid content, other physical factors may influence larval condition as well.  This 

study found a significant negative correlation between seawater temperature and the size 

and the lipid content of cyprids of B. glandula.  Emlet and Sadro (submitted manuscript) 

also found decreased temperatures cause an increase in cyprid size.  In many coastal 

areas, seawater temperature may be warmer in the summer and colder in the spring and 

winter.  Checkley (1985) and Ouellet and Allard (2002) found negative correlations 
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between zooplankton size and seasonal increases in seawater temperature.  However, 

cyprid condition in the present study does not follow a clear seasonal pattern that would 

be predicted from seasonal differences in seawater temperature, such that the largest 

cyprids occur in the coldest seasons.  A possible explanation is that seasonal differences 

in seawater temperature are affected by intermittent periods of cold seawater brought to 

the surface by upwelling, which usually occurs in the warm summer months.    

The results of this study are important to researchers using laboratory studies to 

understand why larval condition varies in the field.  These results suggest that food 

availability and water temperature in the field affect the size and lipid content of cyprids 

of Balanus glandula in the direction that is expected based on laboratory experiments.  

While food availability significantly affects cyprid size and seawater temperature 

significantly affects cyprid size and lipid content in the field, the influence of food and 

temperature on the overall variation is small and thus, other factors may account for 

much of the variation in larval size and lipid content in the field.   

Genetic variation among larvae may contribute to differences in larval size and lipid 

content.  Nauplii of barnacles taken from parents living within feet of each other show 

differences in cyprid size when reared under the same food environment (Emlet and 

Sadro submitted manuscript) suggesting that genetic differences between larval sources 

in very close spatial proximity lead to differences in larval condition.   

A correlation between aspects of the larval environment, such as food availability or 

seawater temperature, and cyprid size or lipid content may be obscured if larvae have 

previous experience in a different environment.  Cyprids are non-feeding larvae and 
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measurements of food availability taken the day the cyprids are captured may not reflect 

the feeding environment of the nauplii.  Short-term variations in food availability on the 

order of hours to days may not be detected in cyprid condition. In this case the difference 

between the naupliar nutritional environment and the measured nutritional environment 

of the cyprid may obscure a correlation between cyprid condition and measured field 

food availability.  

Although consumption rates are implicated in many laboratory food limitation 

studies, food quality may influence the condition of zooplankton in the field as well.  

Lower quality food may reduce feeding rates (Butler and Dam 1994) or change the 

amount needed for organism growth (Sterner and Hessen 1994), both of which may affect 

the size and lipid content of zooplankton.  Thiyagarajan et al. (2002) found a positive 

relationship between food quality during the nauplius stage and the lipid content of 

cyprids.  

 

Conclusions 

This study suggests that differences in the size and lipid content of cyprids may be 

affected by chlorophyll a concentration and seawater temperature.  Seawater chlorophyll 

a concentration varied throughout the year, and was highest in spring and throughout 

summer.  During times of high chlorophyll a concentration the largest cyprids containing 

the most lipid were collected.  Chlorophyll a concentration and seawater temperature 

correlate significantly, but weakly, with cyprid size.  Increased seawater chlorophyll a 

concentration was correlated positively with cyprid size whereas increased temperature 
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was negatively correlated with cyprid size and lipid content.  However, little of the 

variation (2-4%) in cyprid size and lipid content was explained by seawater chlorophyll a 

concentration and temperature.  Seawater chlorophyll a concentration may be used a 

proxy for food availability in barnacle nauplii because seawater chlorophyll a 

concentration correlated with naupliar feeding rate as measured by fecal pellet 

production.  
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