Adaptive Learning with a Unit Root:

An Application to the Current Account”

Ronald B. Davie$ Paul Shea
University of Oregon University of Oregon

July 31, 2006

Abstract

This paper develops a simple two-country, two-gomdiel of international trade
and borrowing that suppresses all previous sowtesrrent account dynamics. Under
rational expectations, international debt followsaadom walk. Under adaptive learning
however, international debt behaves like eitheéaaanary or an explosive process.
Whether debt converges or diverges depends on dlels exact specification and the
specific learning algorithm that agents employ. WHebt diverges, a financial crisis
eventually occurs to ensure that the model’s trarsality condition holds. Such a

financial crisis causes an abrupt decrease ingb&d country’s consumption and utility.
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1. Introduction

Attempts to explain movements in a country’s curgatount have been a major
focus of theoretical open-economy macroeconomissOAstfeld and Rogoff (1996)
discuss, the two dominant strains of this literatare the intertemporal approach and the
overlapping generations model. The intertemporpt@gch uses an infinite horizon
model to predict that a country experiencing aditany, positive output shock will move
towards a current account surplus while a countpegencing a transitory, negative
shock will move towards a current account defiEite current account is therefore a
mechanism for intertemporal consumption smoothgerlapping generations models
provide a different explanation. Here, the cur@tount equals net public saving plus
net private saving. If a country has a relativedyyg population, then a large fraction of
its population will save for retirement and theremt account will move towards a
surplus. A country with an older population willgv on its savings and the current
account will move towards a deficit.

This paper uses a model similar to the interte@pmpproach but suppresses all
previous sources of current account dynamics. @suraption that agents form
expectations through adaptive learning insteadidmal expectations alone drives the
model’s dynamics. The basis of our model is a Rliear framework in which exogenous
technological differences leads to complete specitabn. Output depends on a serially
correlated, observable technology shock that gevétra translation between labor (the

only input) and output. Each country chooses itsllef consumption of both goods and

! This explanation has used by Fed chairman Benj@&ginanke (2005) when explaining the U.S.’s large
current account deficit.



its level of debt. In the model’s rational expeictas equilibrium (REE), international
debt follows a random walk without drift. When veplace rational expectations with
adaptive learning, however, the dynamics of inteonal debt fundamentally change.
Depending on the model’s exact specification arehtgj specific learning algorithms,
debt will behave like either a stationary or anlegje process. If debt behaves like an
explosive process, then a financial crisis will@wally occur to ensure that debt does
not violate the model’s transversality condition.

Under rational expectations, the model does nadyme a unique steady state;
rather, a continuum of steady states exists wheydexel of international debt
corresponds to a different steady state. We limedhe model around its debt-free steady
state, and find that in equilibrium both countnal attempt to keep their level of debt
constant. As a result, the current account willereponly on a white noise error term.
Under adaptive learning, debt is either statiomarfpllows an explosive process. Using
both a baseline and a simplified version of remar$east squares learning, we identify
cases where debt follows an explosive process.

Under adaptive learning, the AR(1) coefficient @bdis a function of the
model’s learning parameters. When the learningrpaters equal their rational
expectations values, the AR(1) coefficient equals and debt follows a random walk.
Adaptive learning, however, keeps the economy dveay its REE and the AR(1)
coefficient need not equal one. When the AR(1) fa@eht on debt is a concave function,
debt follows a stationary process. On the othedhaen it is a convex, debt is
explosive. Different approaches to modeling leagnireld different functions, some

concave and some convex. Thus, under many reasotyplels of learning, a free or pre-



determined variable that follows a random walk und@onal expectations will not

follow a random walk under adaptive learning. Tiame along with providing a new
explanation for current account movements and nayrerises, our results demonstrate
that introducing learning into a model that hasa oot under rational expectations may
fundamentally change the model’s dynamics.

Relatively few papers have analyzed the effectearhing on the dynamics of an
open economy. Arifovic (1996) examines a two-copmodel with a continuum of
steady state exchange rates. When a genetic lgaalgarithm replaces the assumption
of rational expectations, the exchange rate appeddlow a random walk. This result
differs from our model where adaptive learning @hlates the model’s unit root. Kasa
(2004) introduces learning into the Obstfeld (19®8cape clause” model. Learning
causes the exchange rate to follow a Markov proiteghelps explain recurring
currency crises.

The paper proceeds as follows. Section 2 laysheubasic model. Section 3
solves the model under rational expectations. Seetireplaces the assumption of
rational expectations with the assumption that eglearn adaptively using recursive
least squares. There, we find that unlike undésmat expectations, debt follows an
explosive process. Section 5 generalizes thistrégtiher by showing that in any model
with a unit root under rational expectations, l@agrcan cause that process to be either
stationary or explosive. Section 6 discusses hguoswe debt leads to currency crises
and examines how the rate of learning affectsithe tintil a crisis. Section 7 discusses
alternative approaches to modeling learning thasealebt to be to stationary. Section 8

concludes.



2. A Simple General Equilibrium Model of International Trade

Our general equilibrium model builds off of the \Wehown Ricardian model of
trade where relative technological differences semuntries drive comparative
advantage$. We consider two countries: Home and Foréigiach country can convert
its exogenous stock of labor into two consumptioads, X and Y. We normalize the
stock of labor in each country to one.

As is standard, production always exhibits constaturns to scale, but we

assume that all unit labor requirements follow etagus, stationary processes over time.
Home’s unit labor requirements for goods X and Yémiodt ares* and a,*
respectively. Both of these unit labor requiremewsive according to AR(1) processes:
s =5%¢ and (2.1)
& =aa’s
whereln(g,) is mean-zero white noise and1(0,1).
Similarly, Foreign’s unit labor requirements forogts Y and X in periotiare s ™
and a, " respectively. These also evolve according to AR(bresses:
§ =44 and
3 =aa e

whereln(e)) is also mean-zero white noise.

2 See Bhagwati, Panagariya, and Srinivasan (1998) fwesentation of the classic Ricardian model.
% An asterisk (*) denotes Foreign variables.



The two error termsg, and €, , represent observable, country-specific, industry-

neutral technology shocks. We assume thaind a_ lie between zero and one, which
ensures that the following condition holds:
a_s.
§ 4
This assumption implies that Home hasraparative advantage in the production
of X. As is standard in the Ricardian model, wittde Home will completely specialize

in the production of X, while Foreign will complégespecialize in the production of Y.
Therefore, in the trade equilibriusndenotes Home (and world) production of X, ad

denotes Foreign (and world) production of Y. Weuass that the autoregressive
parameter,0[1(0,1), is identical for both countries.

Consumers in both countries derive utility from domsumption of both goods.
Per-period utility in each country is given by Cebbuglas utility functions, where

a 1(0,1):
u =In(X7Y*?&) and
U =In(X Y g
The variable¥, and Y, denote Home’s consumption of goods X antiThe

variablesIn(¢,) andIn(&’) are exogenous, white noise preference shocks fieat aach

country’s marginal utility. Incorporating these faence shocks into the model has two

small but useful effects. First, under rational@stptions, it causes international debt to

* In equilibrium, Home’s consumption of good X,, Mill be less than its production of good X, s



follow a random walk rather than being constantdBe, under adaptive learning, it
ensures that the learning process is persistent.

Home and Foreign trade whergré&presents the relative price of Y in terms of X.
The Cobb-Douglas form of the utility functions rées that both countries consume
positive amounts of both goods each period, otrerwitility will approach negative
infinity. Therefore in equilibrium, both countri@sll always choose to trade with each

other. In addition, one country may borrow from dteer at the interest rate,,. The

variable N represents Foreign’s debt to Home, expressednmstef good X. Because
the model does not include capital, the only way tine country can save is to make
loans to the other country. Debt evolves accortintpe following equation:
N, =@+r)N_+s,-X,_,—P_Y._,. (2.2)
World consumption of good X must equal Home’s piotun of good X, and
world consumption of good Y must equal Foreign'sdurction of good Y:
X, +X, =5 and (2.3)
Y +Y =5, (2.4)
Both countries discount utility at the rgteHome’s intertemporal utility

maximization problem entails choosingatd Y; to maximize:
max,, v E 3 B IN(XE Y60 -
i=0

Home’s maximization problem is subject to Equadi¢2.1) and (2.2), and a No-

Ponzi Games condition:

E [lim 'N,,] <O.



The Cobb-Douglas form of each utility function eresuthat both countries will
spend constant shares of their total expendituresach good. It is therefore possible to
eliminate both Xand Y, from Home’s maximization problem, and instead ahythe

value of Home’s consumptiolt, = X, + RY,. Home’s maximization problem yields an
Euler Equation and a transversality condition:
M = B+, )EIM & ] and (2.5)
E[lim B'N,,] =0 . (2.6)
We assume that the rate of return on debt betwegodst andt+1 is specified at the
time of debt’s purchase. We therefore treat this ehreturn,r,,,, as known. Foreign’s
intertemporal utility maximization problem mimidsat of Home and yields an additional

Euler Equation. Defining the value of Foreign’s somption asM; = X; +PY; :
M7ET = B+ 1n,)E MU (2.7)
Equations (2.2), (2.3), and (2.4) may also be aesitin terms oM, and M, :
N, =(@+r)N_+s,-M,, and (2.8)
aM,+M,) =5. (2.9)
Equations (2.1), (2.5), (2.7), (2.8), and (2.9)yfuharacterize the system. By
relying on the value of Home’s and Foreign’s conption, we eliminates and Rfrom
the system. We can now consider the model’s “teamydequilibrium for any pair of
expectationsg [M,,,] and E [M_,,]. Agents use their Euler Equations, (2.5) and (2.7)
to determine their current level of consumptione Tifiterest rater,,,, endogenously

adjusts to ensure that the global resource constiaquation (2.9), is satisfied. The debt



accumulation equation (2.8) then determines the¢ pexod’s level of debt. Section 3
discusses the model where agents form expectaigng rational expectations. Sections

4 through 7 discuss the model where agents forre@apons using adaptive learning.

3. Solving the Model Under Rational Expectations

We define the system’s steady stat&as{M, M*, N, 5, 7] . Using Equation (2.1)
and the assumption thai(s,) is mean-zero white noise, Home’s steady stateymtozh
of good X,S, equals one. Both Euler Equations, (2.5) and (8ii)plify to the same
expression when evaluated at their steady state:

r=p4"-1. (3.2)

Two equations, (2.8) and (2.9), remain to iderttifiee steady state value¥:,
M", and N. The model therefore does not produce a uniquelgtsate. Instead, a
continuum of steady states exists where any valiaorresponds to the following
steady state values 1, andM " :

M=(8'-1)N+1and
M =—(B*-DN+(1-a)la.
At any steady staté&, =& =1, and both countries perfectly smooth their

consumption. The model’s two Euler Equations shiwat, twithout preference shocks,
perfect consumption smoothing occurs if and onthéf interest rate equals its steady
state value. Because the steady value of the siteate does not depend on the steady
state values of either debt or consumption, howeargy level of debt is consistent with

perfect consumption smoothing and a continuumesdy states exists. At any steady
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state level of debt, both countries are contepetpetually make (or receive) interest

payments on their debt (or outstanding loans).tk@remainder of the paper, we will
rely on the steady state where debt equals z&refl,(1-a)/a,0,1,8™ - 1.°
To analyze the model’s dynamics under rational etgtimns, we approximate the

system using a first order Taylor Series expanaronnd the debt-free steady staze,

Defining z =z —Z,, the linearized system beconfes:

S=P.t4, (3.2)

M, = E[M,] - B~ &, (3.3)

M, =E[M,]-0-a) 7,/ a-¢&., (3.4)
N, =-M_, +87*N_+§_, and (3.5)
a(M,+M)=§. (3.6)

The use of linearizations to approximate non-limaadels is common in
dynamic macroeconomics. In this case, it introduagssources of error into the
analysis. The first source of error is the appration error associated with linearizing a
non-linear model around any steady state. This ¢ygeror is present in any
macroeconomic analysis that uses a linear appraximand increases as the model
moves further away from the steady stalée presence of a continuum of steady states

in this model, however, introduces a second soofe@proximation error. The decision-

®> Appendix 2 re-linearizes the model each periodiatcthe steady state corresponding to the cureest |
of debt. The major conclusions of this paper doamainge.

® It is not possible to log-linearize the systeméese debt’s steady state value is zero. The sstaths of
productivity and Home’s consumption equal one,af@e their linearized and log-linearized values ar
identical.

" Dotsey and Mao (1992) attempt to quantify thistftype of approximation error in models with aqus
steady state. They conclude that approximatiorreare generally small for sufficiently small ddioas
from the model’s steady state.
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making rules of Equations (3.2) through (3.6) appily to the debt-free steady state and
are valid approximations only if the economy isfisidntly close to this steady state.
International Real Business Cycle models (IRBC) &élsquently produce a continuum of
steady states. Letendre (2002) attempts to quah&fgecond source of approximation
error caused by using a linear approximation ofRBC model. He concludes that the
approximation errors are small as long as the migdwlfficiently close to the steady
state that it is linearized aroufd.

Equation (3.6) shows that the value of Foreignisstonption is a linear
combination of§ and I\7It . Itis therefore easy to eIiminalsEzf from the system. By
combining Equations (3.3) and (3.4), we also elatgrthe interest rate from the system.
Defining the white noise error term = aft* -(1- cr)ft , the system now consists of
Equations (3.2), (3.5), and:

M, =(1-a)E M ]+aE[M ] +1- 9§ +q. (3.7)

Equations (3.2) and (3.5) define the evolutiothef pre-determined variabl&s
andN, . Equation (3.7) combines Home and Foreign’s Elbprations, relating current

consumption to expected future consumption. EqungB80o7) allows Home and Foreign to
have different expectations of future consumptldnder rational expectations, however,
both countries necessarily form identical expectatiand it is possible to re-state

Equation (3.7) as:

M, =E[M,]+(1-0)§ +«. (3.8)

8 There are two potential approaches to eliminatitegsecond source of approximation error. The ifirs
directly simulate the non-linear model. This appfoaould eliminate both sources of approximatiaoer
The second approach is to re-calculate agentssidecmaking rules each period around the steady sta
corresponding to that period’s level of debt. Wespe the latter approach in Appendix 2 and dematestr
that this paper’'s major conclusions do not change.
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By re-dating Equation (3.8), it is possible to wribhe model in first-order form:

M, 1 0 (e-)\(M,) (1 1 O(4
N, [=[-1 B* 1 |IN,[+/0 0 0|«
§ 0 0 p )I5: 0 0 I\&

or using vector notation:
2 =G7Z_+{,. (3.9)

The termf = E_[M,] - M, represents an extraneous expectational error that
may affect the system. The three eigenvalues ofnidigix G are 1,87, and p . Because
[ >1, Equation (3.9) represents an explosive system.riibdel’s transversality
condition, Equation (2.6), may therefore be viallad®d it is necessary to suppress the
explosive root,3™, in order to derive a non-explosive solution. Tigiguires factoring
the G matrix so that:

G=SAS™.

The matrix S consists of J's eigenvectors, Antbnsists only of the
corresponding eigenvalues along the diagonal. Binidg IZ[ =Sz, it is possible to re-
write Equation (3.9) as:

k =Ak_, +S7C,.

To suppress the explosive root, we set the ro& @hat corresponds 8™ equal
to zero. This entails setting a linear combinabbthe variables in the system equal to
zero. This side constraint details how agents ahdus free variableM, , and eliminates
the extraneous expectational err@y, from the system. The model therefore possesses a

unique solution. The relevant side constraint is:
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M, =(8"-DN, +§ + S (3.10)
Substituting Equation (3.10) into Equation (3&)eals that the necessary
condition for the REE to be non-explosiveNs = N,_, — Sa_, . Defining the current
account asN, - N,_,, the current account simply equals white noisetaade are no
current account dynamics in the REEnposing Equation (3.10) yields the REE’s

VAR(1) reduced form:

M) (-7 BB~ p-1+F7\(Mu (1 B) .
N, |=| -1 Vi 1 N, [+|0 O ( tj (3.11)
5 0 0 s ) 2 o™

Equation (3.11) possesses a unit root and is thereiot a stationary process.

Suppose that Home experiences a positive prodticstiock whereg, > 0. For
simplicity, assume thaiy = 0. The intertemporal approach to the current account

predicts that Home will attempt to smooth the efeaf this shock over time by lending

to Foreign® The current account\, - N, _,, will therefore rise above zero. In our model

with rational expectations, however, the currempaat will equal zero because of our

choice of utility functions. We have normalized firece of good X to one. Home’s
income is therefors . Foreign’s income is the price of good Y multipliey s . The

price of good Y depends on the ratio of both goautst labor requirements and the

relative weighting of each good in the utility fulons:

R=(-a)s/(@s).

° The current account equals white noise becaudiearize the model around the debt free steadg.sta
In Appendix 2, we re-linearize the model each pkdoound the steady state corresponding to themurr
level of debt. While debt continues to follow adam walk, in this case it depends on both whits@oi
preference shocks and autocorrelated productitibgiss

19 See Obstfeld and Rogoff (1996).
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A positive productivity shock has two effects.sEjfor anyR, it raises Home’s

wealth and therefore its utility. Second, by makgogd Y scarcer relative to good X, it

increases?, which benefits Foreign but harms Home. With owcsfication, this latter

terms of trade effect is large enough so that gotsiincome experiences the same
proportional increase as Homé’sOne country’s saving, however, necessarily ecth@s
other’s borrowing. The equilibrium interest rateshtherefore adjust to the productivity
shock to ensure that global saving equals zeroalscboth countries have identical

incentives to save, however, this can only occuemi, equals zero. If the model

includes preference shocks, then the current atauilirequal white noise. In the next
section, we replace the assumption of rational egtens with adaptive learning. The
lack of current account dynamics in the REE allowgo isolate the effects of adaptive

learning on the current account.

4. E-Stability

So far, we have assumed that both countries fotional expectations. Rational
expectations assume that agents know the coeftgcierthe model’'s side constraint that
sets consumption equal to a linear combinationett,doroductivity, and preference

shocks:
M, = (B -DN, +§ + . (4.1)
An infinite number of models could generate thisdeits reduced form. Rational

expectations is a realistic assumption if both ¢toes agree that this model best explains

™ This is weaker version of the immiserizing growffect where the impact of Home’s productivity skoc
on the terms of trade is so large that Home'stytilecreases. In our model, however, both countries
benefit from Home’s productivity shock. For details immiserizing growth, see Johnson (1954) and
Bhagwati (1969).
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the economy, know the calibrated parameter vakms are able to solve for Equation
(4.1). However, if both countries do not know whialdel generates this reduced form,
then rational expectations is not a realistic aggion.

We therefore now examine the model when agentadegtive learning instead
of rational expectation.A primary goal of this section is to provide unitar readers
with an introduction to adaptive learning using toatext of our model. There are many
sensible methods for modeling adaptive learningvéleer, because of the unit root in
debt, the method chosen leads to very differerdiptiens regarding the behavior of the
current account. This section presents our basappeoach where debt behaves like an
explosive process. Section 6 discusses the model noordinated learning, another,
simpler approach under which debt behaves likexpiosive process. Section 7
discusses alternate methods of modeling learnirgrevtiebt behaves like a stationary
process>

In presenting our baseline case, we focus on theaational or E-Stability of the
model. Evans and Honkapohja (2001) demonstrateutiger general conditions, a model
is stable under adaptive learning if and only i§iE-Stable. This approach to modeling
adaptive learning assumes that agents know thauogption is a linear combination of
the other variables in the system, but do not ktiemwalues of the coefficients in

Equation (4.1). This yields agentsrceived law of motion (PLM) for Home**

M, =aN, +b5 . (4.2)

2 For a thorough discussion of adaptive learningritlgms, see Evans and Honkapohja (2001).

13 Several additional types of learning are examinetippendix 1.

4 We assume that because agents’ data is measutletiasons from the zero debt steady state, ageats
able to deduce that the side constraint’s interegptls zero. They therefore employ a properlyifipdc
PLM. Including intercept terms in the model’s PLMed not affect whether the model is E-Stable or
whether debt behaves explosively for any of thenieg approaches discussed in the body of thispape
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Because agents do not know which structural moeleégates Equation (4.2), they are

unaware that one of their regressors follows aoandalk under rational expectations.
Under rational expectations, we are able to eliteidd, from the model. Our

baseline learning method, however, focusesramoordinated learning where Foreign
uses data on its own consumption to forecast its foure consumption. Equation (3.7)
includes Foreign’s expectation of Home’s consumptiy substituting the global
resource constraint, Equation (3.6), into this ¢ignave re-write the model’s forward-
looking structural equation to include Foreign’spestation of its own consumption:
M, = (1-a)E M, ] -aE[M;.] +§ +q. (4.3)
Using the global resource constraint, Equation)(3tfs also possible to re-state

the model’s side constraint in terms of Foreigréasumption:
M; =(@-BIN,+(@” -15 - . (4.4)
We assume that Foreign’s agents base their PLMooiation (4.4):
M, =cN, +d§. (4.5)
We assume that agents know the coefficients irafgps (3.2) and (3.5), which

detail the evolution of the pre-determined variabldome agents use their PLM,

Equation (4.2), to form their expectations of feteonsumptiort®
E[M..] =aE[N_] +bE[ §.] ,
E[§.] =05 and

Et[Nt+1] =_E[[|\7It] +ﬁ_1Nt +§t'

15 The expectations operator on contemporaneous ogpign reflects the possibility that agents may not
know M, when choosing their level of consumption.
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It is reasonable to assume either that Home ageots the current value dfl, when

forming expectations at tinteor that they only know the value ¥, ;. Using the
former assumption, Home agents’ expectation ofreuoonsumption equafé:
E[M,.] =a(-M, + 57N, +§) +bp5. (4.6)
Foreign agent’s expectation of their future constiompequals:
E[M; ] =o(-M, + BN, +§) +dp5. (4.7)
Equations (4.6) and (4.7) are not rational expewtat Instead they represent

agents’ best estimate of future consumption giveir informational deficiencies.

Inserting these expectations into Equation (4.3yraard-looking structural equation,

yields the economy’actual law of motion (ALM) for M, :

[1+(@1-a)a-ac]M, =[L-a)aB™ —acB N,

H{1-a)a+bp)-a(c+dp)+1l§ + (@5)
Substituting the economy’s global resource constr&quation (3.6), into
Equation (4.8) yields the ALM for Foreign’s consutiop:
1+ (-a)a-ac)M, =[acB™ - (1-a)aB* N, 4.9)

H1+@1-a)a-ac)a™ -1- (1-a)a+bp)tac+dp)k ~«
To evaluate E-Stability, we analyze the E-Stabiflifyerential equation based on
the mapping from the models’ PLM to its ALM:
d/dr(a,b,c,d)=T(a,b,cd)-@bcd). (4.10)
The notationT (a,b,c,d) refers to the vector of coefficients from the ALEjuations

(4.8) and (4.9), corresponding (a,b,c,d) from the PLM, Equations (4.2) and (4.5). The

16 Appendix 1 discusses the model using the latsuraption that agents do not know the current vafue
M, . Under both assumptions, debt behaves like arosiygl process.
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eigenvalues of the Jacobian matrix from EquatiohQ@equal -1, -15-1, and o -1
when evaluated at the model’'s REE. Because aliexf@ eigenvalues have real parts less
than one, the PLM converges to the ALM and the rhisdecally E-Stable.

E-Stability implies that, for this type of PLM, timeodel is stable under learning
for most sensible learning algorithrfse now consider one such learning algorithm:

recursive least squares. Under recursive leastsgudome agents run an OLS

regression oM on N and § to obtain their initial learning parameter estiessd, and
by . Foreign agents regreds”on N and $ to obtain their initial learning parameter

estimates;, and d,. They then update their estimates each perio@aslata becomes

available using the following algorithm:

(o o ma s,

2

R = R_l + Vt[[ Nt—l Nt:;ét—lj _ R—l] ’

Nt—ls—l S—l

G)_(Ca), i Nt_lj - -
= +) _|(My,;-6,N,_,—-d,._5_,) and
G N GRS

R*=R*_1+VZ[[ Nis Nt:f*'lj—R_l].

Nt—ls—l S—l
The gainsy, and y; , represents the weights placed on the most recent

observation. We consider two variations of thenesg process. Under decreasing-gain
learning, agents typically weigh all observatiogsally in their estimations, and the gain

therefore equals the inverse of the sample siz¢ afgproaches infinity, the gain

" For exact conditions for when E-Stability impli&sbility under adaptive learning, see Evans and
Honkapohja (2001).
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approaches zero and the learning process conviéthesmnodel is stable under adaptive

learning. Asymptotically the model will behave idieally under rational expectations

and adaptive learning, implying that asymptotic#iilg current account is a random walk.
For the remainder of the paper, however, we giuane that agents use a

constant-gain learning algorithm whereés a constant. Constant-gain learning places

greater emphasis on more recent observations Hréaereobservations. If the model
includes preference shocks, as we have so far askuhen the learning process will be
persistent under constant-gain learning. This b@selpproach is locally stable under

learning. When simulated, the model’s learning petrs,(a,,h ,c, ,d, ), remain close to

their rational expectations valuEsSwitching from rational expectations to adaptive
learning, however, fundamentally changes the dyosuwii international debt. Numerical
simulations demonstrate that debt now behaveslikexplosive process rather than a

random walk:®

5. Adaptive Learning with a Unit Root in a GeneralModel

In our model, a unit root causes debt to folloradom walk under rational
expectations. This section uses a more general Itmdkiistrate how adaptive learning
profoundly changes the dynamics of a system scetlait root under rational
expectations can behave like either a stationagxplosive process under adaptive

learning.

'8 This approach is not, however, globally stablearidarning. Sufficiently large shocks can move the
model into a region where it is not stable undexpdide learning.
19 Simulations of this case are available upon regues
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Consider a model with a persistent learning preedsere a free or pre-

determined variabley, , possesses a unit root under rational expectatfons
Vi =Yiat8
wheree ~ N(0,0%).
Under adaptive learning, the autoregressive psogew depends on a vector of
learning coefficients, denotgd. Defining x. as the vector of rational expectations

counterparts to these learning parameters, theegrgssive process may be re-written

as:
Y =9(x)Yia+8
where g(xg:) =1.
Adaptive learning keeps the economy out of iteoratl expectations equilibrium.

The functiong(x,) will therefore typically not equal one. Two pot@htases are of

interest. First, the cumulative productgfy,) may asymptotically approach zero:

ﬂgu@)ao

In this case, adaptive learning causes the frgeesdetermined variable to behave like a
stationary process around zero.

The second case occurs if the cumulative produgi( gf) asymptotically

approaches infinity:

ﬂgmﬁaw

2 The results of this section do not apply to a tmitt on a purely exogenous variable.
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In this case, adaptive learning causes the frgeesdetermined variable to behave like
an explosive process. As a result, it is possi the model’s transversality condition
will be violated. Whether the free variable ackela stationary or an explosive process
depends not only on the specific problem beingistijdut also on the exact type of
learning algorithm that agents use and agentstimdtion set$?

Very little research has focused on adaptive legrm the presence of a unit root
on either a free or pre-determined variable. Otbsearch does show, however, that
adaptive learning can fundamentally change the mijegof a system in a different
context. Evans, Honkapohja, and Marimon (2001upedn overlapping generations
model where the government finances its deficiisbying money. If the deficit is
constrained as a share of GDP, then the model ptiesesses four steady states. Under
perfect foresight, it is possible to converge to o¥ these steady states, including an
autarky solution where money is worthless and ahgflation occurs. Under adaptive
learning, however, the economy always converges timterior solution and a
hyperinflation can never occur.

Sections 6 and 7 apply the results of this sed¢bbarur model of international debt
by examining two different types of learning whdebt behaves like an explosive and

stationary process, respectively.

% This section assumes that the learning procqssrisstent. If a model includes sufficient uncert
then constant-gain learning will typically be agistent process. Decreasing-gain learning, howéver,
typically not a persistent process. If the learrpngcess is not persistent, then model will appncac
random walk as the learning process converges.
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6. Explosive Debt

In our baseline learning approach of Section 4ntbeel is stable under adaptive
learning but debt behaves like an explosive prodesssufficiently small preference
shocks, the model’s learning parameters remaihameighborhood of their rational
expectations values, but the absolute value of idebtases over time. Because
analytical results are unclear in our baseline apgt, we make one additional
modification in this section by modelirogordinated learning instead of uncoordinated
learning®? Under coordinated learning, both countries use élsrmonsumption data to

form their expectations. Foreign’s PLM thereforedmaes:

M, =cN, +d§. (6.1)

Foreign agents use Equation (6.1) to form thegieetation of Home'’s future
consumption. They then use the global resourceti@nt Equation (3.6), to convert this

expectation into an expectation of Foreign’s futtmasumption:

E[M,] =cE[N,] +dE[§.] and
E[M,,]=-E[M,] +E[&.]/ a. 6.2)
By inserting the expectation from Equation (6rigpiEquation (4.3), we are able
to obtain the economy’s ALM:

(1+(@-a)a+acM, = [(A-a)a+ac)B™ N,

. (6.3)
HL-a)@+bp) +a(c+dp) +1- I8 +a

The Jacobian ofi/dr(a,b,c,d)=T(a,b,c,d)- (@b c d) has eigenvalues equal to

%2 Coordinated learning has two additional technéchlantages over uncoordinated learning. First,evhil
both methods are locally stable under learningdoamshocks are less likely to move the coordinated
learning algorithm into a region where it is un&alnder learning. Second, it is computationallsieato
repeatedly simulate coordinated learning than urtinated learning.
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-1, -1, 4-1, and So -1 when evaluated at the model's REE. Because #fiese

eigenvalues have real parts less than zero, thésdf/coordinated learning is locally E-
Stable.
By substituting Equation (6.3) into Equation (35§ re-write the debt

accumulation equatioft:

N, =B -1+ (1-a)a +ag ) (-a ) +ag )N,  (6.4)
Hl-(+@-a)a +ac) (1-a)@ +hp)ta G +dp)+ 1-p)R -4
If the learning parameters equal their rationglestations values,

[a,b] =[c d] =[ B*-1,1], then Equation (6.4) reduces to Equation (3.10)dabt

follows a random walk. To understand the intuitionwhy debt behaves explosively,

suppose that the learning parameters are distdsyimmetrically around their rational

expectations valued.In the case of homogeneous learning wherdy] =[c, d],
Equation (6.4) may be re-stated:
N, =8 11-(1+a) aIN, +[1-(1+a) (& +ho+1-p)5 - &.
Because@’ (B8 '(1-a (1+a ) ")) /da’=28"'(1+a )’(-a (a )')> Cforall
a, (1-a (1+a ) ™")is a convex function. By Jensen’s Inequality:
E[f7(1-a(+a))]>[F (1-Elald+EHa]) )] =1.

It is therefore the case that:

EI[]@-ara,) ) -

23 Equation (6.4) definegy = (1+ (1-a)a, +ac )«

24 Evans and Honkapohja (2001) formally prove thiitein the case of standard, constant-gain legrnin
Their proof does not extend, however, to includgesawhere the model includes a unit root. Our nioaler
simulations confirm, however, that the distribusaf the learning parameters are sufficiently symnime
around their rational expectations values.
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and debt will behave like an explosive process. Bliral simulations confirm the
explosiveness of debt in this case and thexténds to cases with heterogeneous and/or

uncoordinated learning (as in Sectiorf%).

We now simulate the homogeneous case. WeéNset00, y =) =0.01,
[a,,b,] =[c, d =[ 8*-1],and R, =R, = 1,.2° We assume tha is uniformly
distributed between -.005 and .005 and taats uniformly distributed between -.0005
and .0005. Debt now behaves like an explosive process, tanirag to violate the
model’s transversality conditions. We assume thatdhe absolute value of debt
reaches a pre-determined level, a financial cdseurs®® For this simulation, we assume
that a crisis occurs whem, P .50.2° When a crisis occurs, the debtor country is reglir
to pay the creditor country interest plus 5% ofigbt every period. Once the debt is
below half of the crisis level, the debtor coungyagain free to borrow and the model

once again operates normally. Figure 1 chartsithelated paths of Foreign’s debt to

Home and Foreign’s consumption over a period wkereign’s debt happens to trigger

% We also directly simulate the non-linear modeSettion 2 where agents continue to use linear PLMs.
Once again, depending on the exact type of leayhioth explosive and stationary cases exist. Sitiaula
results for both the linear and non-linear modedsavailable on request.

%, is the 2x2 identity matrix.

" For these simulations, we treat the rational etgiiems value of1+ (1-a)a +ac )™ as known;
thereforedg = fq .

% Evans and Honkapohja (2005) employ a similarstyatn an unrelated model. Their paper examines a
New Keynesian model where the central bank is passiresponding to inflationary pressures and wher
the government does not actively attempt to balétsdatertemporal budget constraint. In that model
government debt behaves explosively for all equililm paths. The authors assume that if governmeiit d
exceeds a pre-determined level, then the governmesues an alternate fiscal policy that ensurasith
debt behaves like a stationary process. Marcetdemlini (2003) assume that the government switdtes
policy from using the money supply to finance seigwe to an exchange rate rule if and only if tidla
exceeds a certain threshold.

% This cutoff is similar to the sudden stop/ “Wile Eoyote” literature in open-economy macroeconomics
See Krugman (2006) for a discussion.
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two crises>’ For anecdotal comparison, compare this to Figurenih plots the actual
values of debt and consumption for Argentina durisgecent financial crisis. As can be
seen, the two look remarkably similar.

The vast majority of research into adaptive leagraasumes that all agents use
the same learning algorithm. Under constant-gamieg, however, it is not obvious
which gain agents should u¥dt is reasonable to assume that different ageaisuse
different gains. In this section, we will theref@aeamine cases where both Home and
Foreign use the same gain and where they useadtitfgains. Only a few papers have
studied adaptive learning where agents use diffg@ns in their constant-gain learning
algorithms. Negroni (2003) divides the populatiotoitwo groups, each of which uses a
different gain. Heterogeneous gains make his miedsllikely to be stable under
adaptive learning. Honkapohja and Mitra (2005) wbsamilar results when agents use
different learning algorithms.

We further evaluate the model's dynamics by repgatie previous simulation

for several different pairs of gains. We simuldte kearning proced€s000 times for nine
gain combinations wherg andy” equal .01, .02, or .03. If a country’s gain equ@ls

then that country is a slow learner. If a countigesn equals .03, then that country is a
fast learner. In all 45,000 simulations, debt belsdike an explosivprocess, threatening

to violate the model’s transversality conditidh§.able 1 summarizes the average time

% The time between crises is highly variable andsdust always follow the pattern of Figure 1. Fasth
simulation, the level of debt where the debtor ¢ouis able to borrow again, .25, is high enougkeitsure
that the debtor country rarely becomes the lendentry. Lower values for this threshold increase th
frequency of these switches.

31 Evans and Ramey (2005) endogenize the gain implsi model with constant-gain learning.

32 The model is only locally stable under adaptiaméng. In some simulations, unobservable shocike dr
the economy into a region where it is unstable uadaptive learning. These simulations are dischrde
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until a crisis for all nine combinations of gainsdayields the following three sets of

hypotheses.

Null Hypothesis 1: d(y+z, y* )- d(y, y*) =0if y >»*, for ¢ > 0.

Null Hypothesis 1a: d(y, y*+7 )- d(y, y*) =0if y* >y, forr >0.

These hypotheses state that if the faster learner uses a larger gain (learns even faster),
then the time until a crisisis unaffected. We fail to reject these null hypotheses for all
applicable gain combinations.

Null Hypothesis 2: d(y+z, y* )- d(y, y*) =0if y* >y, for z >0.

Null Hypothesis 2a: d(y, y*+t)- d(y, y*) =0if y > y*, for ¢ > 0.

These hypotheses state that if the slower learner uses a larger gain (learns faster), then
the time until a crisisis unaffected. We rgject these null hypotheses for all applicable
gain combinations in favor of the alternative that increasing the gain of the slower
learner decreases the time until a crisis.

Null Hypothesis 3: d(y, y*) - d(y+z, y*+7) - d(y, y*) =0for, ¢ > 0.

This hypothesis states that if both countries become faster learners, then the time until a
crisisis unaffected. Graphically, thisimplies moving down and to theright in Table 1.
We rgject this null hypothesis for all applicable gain combinations in favor of the
alternative that the time until a crisis decreases.

Null Hypothesis 4: d(y, y*) - d(y*, y) = 0.

This hypothesis states that Table 1 must be a symmetric matrix. When a equals one-half,
both E[M,,,] and E'[M,,,] enter Equation (3.7) in exactly the same manner. It therefore

cannot matter whether Home or Foreign isthe faster learner. We fail to reject this null
hypothesis for all nine combinations of gains.

The first two sets of hypotheses yield two intengsconclusions. First, the gain
of the slower learner has a larger effect on time tiintil a crisis occurs than the gain of
the faster learner. Second, if both countries bectaster learners, then the speed of

divergence increases. If both gains equal zero, dld@ptive learning and rational
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expectations are identical in these simulationstmell display no tendency to diverge
and the time until a crisis will be very long. lmese simulations, the rational expectations
values of the learning parameters are constangelrayains move the model further from
its rational expectations equilibrium, strengthegniihe tendency to diverge, and

shortening the time until a crisis.

7. Stationary Debt

Sections 4 and 6 demonstrate that a particulasfssstsumptions may cause debt
to behave like an explosive process instead ohdaia walk. This section discusses
alternate assumptions that cause debt to behava kkationary process. So far, we have
assumed that agents attempt to learn the moddEscsinstraint, Equation (4.1), that sets
consumption equal to a linear combination of dpldductivity, and preference shocks.
It is also reasonable to assume that agents attentgdrn the model’'s VAR(1) reduced
form, Equation (3.11), that sets consumption etmal linear combination of the model’'s
lagged variables and current shocks. If we alstaceprecursive least squares with

stochastic gradient learning, then debt behavesdigtationary process regardless of
whether or not agents know the current valueMpand whether agents use coordinated

or uncoordinated learninj.Appendix 1 provides additional details on thisetyg

learning.

8. Conclusion
This paper develops a simple general equilibriundehthat suppresses all

previous explanations of current account dynaniibg. effects of adaptive learning on

¥ For a discussion of stochastic gradient learrseg, Evans, Honkapohja, and Williams (2005).
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the current account are therefore isolated. Uratgsnal expectations, debt follows a
random walk. Adaptive learning, however, fundamidntdters the models dynamics so
that debt behaves like either an explosive oratatly process. Whether debt tends to
diverge or converge depends on agents’ specifraileg algorithm.

This paper’s conclusions regarding learning magpgaicable to other models.
International Real Business Cycle models also terekhibit an endogenous unit root
under rational expectations. Given the similaribesveen our model and an IRBC
model, we would expect these results to carry tvénat class of models. Furthermore,
this paper’s general result may also extend to sdtiat do not include a unit root.
Consider a model that contains an explosive progedsr rational expectations due to an
eigenvalue with an absolute value greater than lbtiee absolute value of this
eigenvalue is sufficiently close to one, then ad@dearning could cause the model to
behave like a stationary process. Likewise, if alei@s stationary under rational
expectations, then adaptive learning could causenbdel to behave like an explosive
process if it contained an eigenvalue with an alisotalue sufficiently close to one.

This paper’s purpose is not to argue that preveoysanations of the current
account are invalid. Rather, its goal is to exantimeeeffect of a new factor, adaptive
learning, in a simplified environment. It is podsithat the effect of learning on the
current account will differ if previous explanat®are also included in the model.

Learning’s role in a more complex model remaingh area for further research.
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Appendix 1: Different Types of Learning in the Model of International Debt

In our model, debt follows a random walk underoradl expectations but behaves
as either an explosive or stationary process uadaptive learning. This section
discusses three assumptions that can affect diyotamics and reports debt’s behavior

for each permutation.

Assumption 1: Not Knowing M, vs. Knowing M,
The learning algorithm of Section 4 assumes thaeet, agents knowl, and

M, . If agents know, , and M, , but notM, and M, at timet, the results potentially

may change. Under this assumption, Home and Fdsegypectations of their future

consumption equal:
E[M. ] =a A -3 N, +al-b) +bd§ and
E[M;] = f* +ON, +[dl-a* +d) +dA5.
Inserting these expectations into Equation (4.8)dg the economy’s ALM:

M, =[1-a)a(B " -a)-ac(B+C)IN,

and
+{(1-a)(a-ab+bp)-a(c-ca™ +cd +dp) +1]5 +

M, =[-L-@)a(B™ —a) +ac(B™ + )N,
H{-(1-a)(a-ab+bp)+a(c-ca*+cd +dp)-1+a7']§ +
The results for this model, however, do not depemavhether or not agents know
the current values oﬂt and I\7I: for any of the types of learning that we consider.

Assumption 2: Learning the Sde Constraint vs. Learning the VAR(1) with Sochastic
Gradient Learning
The discussion of adaptive learning in Sectionsuages that agents attempt to

learn the model’s side constraint by estimatingentrconsumption as a function of
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current debt and productivity. Alternatively, agenbuld attempt to learn the model’'s
VAR(1) reduced form, represented by Equation (3.t§)egressing current
consumption on lagged consumption, lagged debt|aggked productivity. Consider the

simpler case of coordinated learning where the PtuMHome and Foreign equals
M, =aM,, +bN,_ +c§ ,+& and
M, =dM_, +eN,_, + f§_ +(a " -1)E .
Assuming that agents know the current valuefofand M., both countries use
this PLM to form their expectations of future conmation:
E[M,] =aM, +bN, +c§ and

E[M,]=dM, +eN, + f§.

Inserting these expectations into Equation (3.€)dg the economy’s ALM:

[1-(@1-a)a-ad]M, =[(1-a)b+ae€]N,
Hl-a)c+af +1-p]§ + @

and

M, =-M, +§/a.
To ensure that the model is stable under learmiegassume that agents use

stochastic gradient learning instead of recurshast square¥.Under stochastic gradient

learning, agents do not update their variance-¢anee matrices:

. (10
R-R—X& J

where y is an arbitrary constant.

3 For a discussion of stochastic gradient learrseg, Evans, Honkapohja, and Williams (2005).
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Assuming that the learning parameters are symaoadliridistributed around their
rational expectations valudbe debt accumulation equation may be re-statéueicase

of heterogeneous learning wh¢eg by, c]=[d,. e, f]:
N, =[87-(1-a) RIN, +[1-1-a) (¢ +1-p)I§ -(1-a) '@.
Becaused’*(8™"-h (1-a)™") is negative semidefinite when evaluated close to
the learning parameters’ rational expectationseygl@ " —h (1-a,)™) is a concave

function. Becausey and § are exogenous processes af§s ™ -h (1-a)') has one

eigenvalue less than zero when evaluated clogeettearning parameters’ rational

expectations values:
E[(87-b(@-a) ) <[(S'-HhIL-Ha)) J] L.

It is therefore the case that:

E[ﬁ(ﬁ‘l—h(l—a)‘l)] -0

and debt will behave like a stationary procesheflearning parameters are
symmetrically distributed around their rational egfations values.

Numerical simulations confirm that this type of RAL) learning as while as
heterogeneous and/or uncoordinated VAR(1) learosge debt to behave like a

stationary process.

% These simulations also show, however, that unidehastic gradient learning the learning parameters
typically are not symmetrically distributed arouheir rational expectations values. Instead, theniag
parameters usually become “stuck” in an area thiaesponds to an AR(1) coefficient on debt less tha
one. Asymmetric distributions, as well as concawitay therefore induce stationary debt.
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Assumption 3: Coordinated Learning vs. Uncoordinated Learning

Section 4 discussemcoordinated learning where both countries’ PLMs depend
on their own levels of consumption. Section 6 rebacoordinated learning where both
countries’ PLMs depend on Home’s consumption deités distinction does not affect
whether debt behaves like an explosive or statiopeocess.

Table 2 summarizes the results for the model ualieombinations of these four

assumptions:

Table 2
Behavior of Debt Under Different Types of AdaptiveLearning

SC/VAR CONT/PRI COR/UNCOR RESULT
SC CONT COR Explosive
SC CONT UNCOR Explosive
SC PRI COR Explosive
SC PRI UNCOR Explosive

VAR CONT COR Stationary
VAR CONT UNCOR Stationary
VAR PRI COR Stationary
VAR PRI UNCOR Stationary

Notes: SC and VAR refer to learning the side camstrand learning the VAR(1) respectively.
CONT and PRI refer to knowing and not knowing therent value of consumption. COR and
UNCOR refer to coordinated and uncoordinated legynéspectively.
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Appendix 2: Non-Linearities

So far, we have approximated our model by usingsadrder Taylor Series
expansion around the debt-free steady state. Bechald follows a random walk and the
model possesses a continuum of steady states)at @bvious that our linear
approximation is valid. Under rational expectatiaihe model displays no tendency to
converge towards the debt-free steady statetheiefore equally valid to linearize our
model around any other steady state. In this appewe iteratively re-linearize the
model around the steady state corresponding ttetied of debt in each period. The
central conclusions of this paper are unaffectedidd rational expectations, debt
continues to follow a random walk. Under adapte@hing, however, debt behaves like
either an explosive or a stationary process.

For any steady state level of debt, the model'adstestate equals:
[M,M* N,5,7] =[( B )N+, ~(8"-)N+(1-a)/a ,N,157 - 1]
We now take a first order Taylor Series expansioniad the steady state for any

level of debt. We continue to definé, as the deviation of X from its debt-free steady
state rather than the steady state correspondiig.t®his choice ensures that the units
of measurement foM, and M; do not change along with the steady state valuk=bf>®

To simplify the model, we limit preference shoc&dHome’s Euler Equation. The

model’s linearized Euler Equations become:

M, = E[M,.] - BMF,, - & and (8.1)

% For productivity and the interest rate, this distion is trivial because their steady state vatl@sot
depend onN .
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M/ =E[M;]- M T,,. (8.2)
The model’s debt accumulation equation now inckualéerm allowing for the
deviation of the interest rate from its steadyestat
No,~N=-M, +(B8"-DN+L(N,-N)+§ +NF,. (8.3)
The model’s global resource constraint and thelAR¢oductivity shock are
unchanged from the original linearization:

a(M,+M/)=§ and (8.4)

By substituting Equation (8.4) into Equation (8a2)Jd combining the resulting
eqguation with Equation (8.1), we are able to deaverward-looking structural equation
that determines the current valuedf :

M, =aME[M,,,]-aM E[M,,] +M§ +« and (8.5)
@ =-aM’¢é,. (8.6)

To approximate the model, we iterativehylinearize the model each period by
substitutingN = N, into Equations (8.3) and (8.5). By using Equa(®n), we are able
to eliminate the interest rate from the systemr@adrite the debt accumulation
equation:

N, =-M,+87N, +§ -B'N(E[M,]-M, +@q/aM )M ™.

This approach allows us to evaluate two signifiegfects of the model’s non-

linearities. First, the debt accumulation equatiow considers fluctuations in the interest

rate. Second, the weights given to each expectati&gquation (8.5) differ from those in

Equation (4.3). We use the techniques of Sectitme®aluate the model under rational
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expectations. We obtain a side constraint thatresshat the model’s transversality

condition is not violated and a resulting equafmmthe evolution of debt:
M =(B87-DN, +5 + [ (1- p)B*-)(Bo- 1 'N,s + fw + f @ BN, and (8.7)

Nut =N+ (1= p)5 7L~ (1~ p)B* - DB~ 1" NS - Bu +h@ LN, .
Although this model is non-linear, its non-liné&s are limited to pre-determined
or exogenous variables and it is therefore easyntalate. Under rational expectations,

debt continues to follow a random walk without drithe current account\,, — N,),

however, is no longer white noise but instead ddpdaoth on the products of debt and
productivity and of debt and preference shocks. dureent account is therefore both
serially correlated and heteroskedastic.

We now analyze the iteratively re-linearized madtedler adaptive learning. We

assume that Home agents use the following percéawvedf motion (PLM):

M, =aN, +bN.§ .

The coefficient on lagged debt in Equation (8s/ymchanged from Section 3. It is
therefore unsurprising that simulations confirmt twar iterative re-linearization does not
affect the model’s behavior under adaptive learniithough debt follows a random
walk under rational expectations, the types ofrley from Sections 4 and 6 continue to
cause debt to behave explosively. Under the typeanhing from Section 7 with a

stochastic discount factor, debt continues toiketd stationary process.
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Figures and Tables

Figure 1
Debt and Foreign's Consumption During Simulated Crses
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Table 1
Average Time Until Crisis, d(y ,y*), for Different Gains
(St. Error)
,Y*

0.01 0.02 0.03
6467 6257 6585
(112.8) (106.0) (114.4)
6358 4789 4705
(110.3) (94.7) (91.9)
6538 4653 3961
(113.3) (90.6) (84.4)




