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Abstract 

 

This paper develops a simple two-country, two-good model of international trade 

and borrowing that suppresses all previous sources of current account dynamics. Under 

rational expectations, international debt follows a random walk. Under adaptive learning 

however, international debt behaves like either a stationary or an explosive process. 

Whether debt converges or diverges depends on the model’s exact specification and the 

specific learning algorithm that agents employ. When debt diverges, a financial crisis 

eventually occurs to ensure that the model’s transversality condition holds. Such a 

financial crisis causes an abrupt decrease in the debtor country’s consumption and utility. 
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1. Introduction  

Attempts to explain movements in a country’s current account have been a major 

focus of theoretical open-economy macroeconomics. As Obstfeld and Rogoff (1996) 

discuss, the two dominant strains of this literature are the intertemporal approach and the 

overlapping generations model. The intertemporal approach uses an infinite horizon 

model to predict that a country experiencing a transitory, positive output shock will move 

towards a current account surplus while a country experiencing a transitory, negative 

shock will move towards a current account deficit. The current account is therefore a 

mechanism for intertemporal consumption smoothing. Overlapping generations models 

provide a different explanation. Here, the current account equals net public saving plus 

net private saving. If a country has a relatively young population, then a large fraction of 

its population will save for retirement and the current account will move towards a 

surplus. A country with an older population will draw on its savings and the current 

account will move towards a deficit.1 

 This paper uses a model similar to the intertemporal approach but suppresses all 

previous sources of current account dynamics. Our assumption that agents form 

expectations through adaptive learning instead of rational expectations alone drives the 

model’s dynamics. The basis of our model is a Ricardian framework in which exogenous 

technological differences leads to complete specialization. Output depends on a serially 

correlated, observable technology shock that governs the translation between labor (the 

only input) and output. Each country chooses its level of consumption of both goods and 

                                                 
1 This explanation has used by Fed chairman Benjamin Bernanke (2005) when explaining the U.S.’s large 
current account deficit.  
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its level of debt. In the model’s rational expectations equilibrium (REE), international 

debt follows a random walk without drift. When we replace rational expectations with 

adaptive learning, however, the dynamics of international debt fundamentally change. 

Depending on the model’s exact specification and agents’ specific learning algorithms, 

debt will behave like either a stationary or an explosive process. If debt behaves like an 

explosive process, then a financial crisis will eventually occur to ensure that debt does 

not violate the model’s transversality condition.  

Under rational expectations, the model does not produce a unique steady state; 

rather, a continuum of steady states exists where any level of international debt 

corresponds to a different steady state. We linearize the model around its debt-free steady 

state, and find that in equilibrium both countries will attempt to keep their level of debt 

constant. As a result, the current account will depend only on a white noise error term. 

Under adaptive learning, debt is either stationary or follows an explosive process. Using 

both a baseline and a simplified version of recursive least squares learning, we identify 

cases where debt follows an explosive process.  

Under adaptive learning, the AR(1) coefficient on debt is a function of the 

model’s learning parameters. When the learning parameters equal their rational 

expectations values, the AR(1) coefficient equals one and debt follows a random walk. 

Adaptive learning, however, keeps the economy away from its REE and the AR(1) 

coefficient need not equal one. When the AR(1) coefficient on debt is a concave function, 

debt follows a stationary process. On the other hand, when it is a convex, debt is 

explosive. Different approaches to modeling learning yield different functions, some 

concave and some convex. Thus, under many reasonable types of learning, a free or pre-
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determined variable that follows a random walk under rational expectations will not 

follow a random walk under adaptive learning. Therefore, along with providing a new 

explanation for current account movements and currency crises, our results demonstrate 

that introducing learning into a model that has a unit root under rational expectations may 

fundamentally change the model’s dynamics. 

Relatively few papers have analyzed the effects of learning on the dynamics of an 

open economy. Arifovic (1996) examines a two-country model with a continuum of 

steady state exchange rates. When a genetic learning algorithm replaces the assumption 

of rational expectations, the exchange rate appears to follow a random walk. This result 

differs from our model where adaptive learning eliminates the model’s unit root. Kasa 

(2004) introduces learning into the Obstfeld (1997) “escape clause” model. Learning 

causes the exchange rate to follow a Markov process that helps explain recurring 

currency crises.  

 The paper proceeds as follows. Section 2 lays out the basic model. Section 3 

solves the model under rational expectations. Section 4 replaces the assumption of 

rational expectations with the assumption that agents learn adaptively using recursive 

least squares. There, we find that unlike under rational expectations, debt follows an 

explosive process. Section 5 generalizes this result further by showing that in any model 

with a unit root under rational expectations, learning can cause that process to be either 

stationary or explosive. Section 6 discusses how explosive debt leads to currency crises 

and examines how the rate of learning affects the time until a crisis. Section 7 discusses 

alternative approaches to modeling learning that cause debt to be to stationary. Section 8 

concludes. 
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2. A Simple General Equilibrium Model of International Trade 

Our general equilibrium model builds off of the well-known Ricardian model of 

trade where relative technological differences across countries drive comparative 

advantages.2  We consider two countries: Home and Foreign.3 Each country can convert 

its exogenous stock of labor into two consumption goods, X and Y. We normalize the 

stock of labor in each country to one.  

As is standard, production always exhibits constant returns to scale, but we 

assume that all unit labor requirements follow exogenous, stationary processes over time. 

Home’s unit labor requirements for goods X and Y in period t are 
1

ts−  and 1
ta−  

respectively. Both of these unit labor requirements evolve according to AR(1) processes:  

 1t t ts sρ ε−=  and  (2.1) 

 
1tt c ta a aρ ε

−
=  

where ln( )tε  is mean-zero white noise and (0,1)ρ ∈ .  

Similarly, Foreign’s unit labor requirements for goods Y and X in period t are * 1
ts −  

and * 1
ta −  respectively. These also evolve according to AR(1) processes: 

 * * *
1t t ts s ρε−=  and  

 
1

* * * *

t tt ca a a ρε
−

=   

where *ln( )tε  is also mean-zero white noise.  

                                                 
2 See Bhagwati, Panagariya, and Srinivasan (1998) for a presentation of the classic Ricardian model. 
3 An asterisk (*) denotes Foreign variables. 
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The two error terms, tε  and *
tε , represent observable, country-specific, industry-

neutral technology shocks. We assume that ca  and *
ca  lie between zero and one, which 

ensures that the following condition holds: 

 
*

*
t t

t t

a s

s a
< .  

            This assumption implies that Home has a comparative advantage in the production 

of X. As is standard in the Ricardian model, with trade Home will completely specialize 

in the production of X, while Foreign will completely specialize in the production of Y. 

Therefore, in the trade equilibrium st denotes Home (and world) production of X, and *
ts  

denotes Foreign (and world) production of Y. We assume that the autoregressive 

parameter, (0,1)ρ ∈ , is identical for both countries.  

Consumers in both countries derive utility from the consumption of both goods. 

Per-period utility in each country is given by Cobb-Douglas utility functions, where 

(0,1)α ∈ : 

 1ln( )t t t tu X Yα αξ−=  and  

 * * *1 *ln( )t t t tu X Yα αξ−= .  

The variables tX and tY  denote Home’s consumption of goods X and Y.4 The 

variables ln( )tξ  and *ln( )tξ  are exogenous, white noise preference shocks that affect each 

country’s marginal utility. Incorporating these preference shocks into the model has two 

small but useful effects. First, under rational expectations, it causes international debt to 

                                                 
4 In equilibrium, Home’s consumption of good X, Xt, will be less than its production of good X, st. 
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follow a random walk rather than being constant. Second, under adaptive learning, it 

ensures that the learning process is persistent.  

 Home and Foreign trade where Pt represents the relative price of Y in terms of X. 

The Cobb-Douglas form of the utility functions requires that both countries consume 

positive amounts of both goods each period, otherwise utility will approach negative 

infinity. Therefore in equilibrium, both countries will always choose to trade with each 

other. In addition, one country may borrow from the other at the interest rate, 1tr + . The 

variable Nt represents Foreign’s debt to Home, expressed in terms of good X. Because 

the model does not include capital, the only way that one country can save is to make 

loans to the other country. Debt evolves according to the following equation: 

 1 1 1 1 1(1 )t t t t t t tN r N s X P Y− − − − −= + + − − . (2.2) 

World consumption of good X must equal Home’s production of good X, and 

world consumption of good Y must equal Foreign’s production of good Y: 

 *
t t tX X s+ =  and (2.3) 

 * *
t t tY Y s+ = . (2.4) 

 Both countries discount utility at the rate β. Home’s intertemporal utility 

maximization problem entails choosing Xt and Yt to maximize: 

 1
,

0

max { [ln( )]}
t t

t i
X Y t t i t i t i

i

E X Yα αβ ξ
∞

+ −
+ + +

=
∑ .  

 Home’s maximization problem is subject to Equations (2.1) and (2.2), and a No-

Ponzi Games condition: 

 [lim ] 0t i
t t i

i
E Nβ +

+→∞
≤ .  
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The Cobb-Douglas form of each utility function ensures that both countries will 

spend constant shares of their total expenditures on each good. It is therefore possible to 

eliminate both Xt and Yt from Home’s maximization problem, and instead rely on the 

value of Home’s consumption: t t t tM X PY= + . Home’s maximization problem yields an 

Euler Equation and a transversality condition: 

 1 1 1 1
1 1 1(1 ) [( ]t t t t t tM r E Mξ β ξ− − − −

+ + += +  and (2.5) 

 [lim ] 0t i
t t i

i
E Nβ +

+→∞
= . (2.6) 

We assume that the rate of return on debt between periods t and t+1 is specified at the 

time of debt’s purchase. We therefore treat this rate of return, 1tr + , as known. Foreign’s 

intertemporal utility maximization problem mimics that of Home and yields an additional 

Euler Equation. Defining the value of Foreign’s consumption as * * *
t t t tM X PY= + : 

 * 1 * 1 * * 1 * 1
1 1 1(1 ) [ ]t t t t t tM r E Mξ β ξ− − − −

+ + += + . (2.7) 

Equations (2.2), (2.3), and (2.4) may also be re-stated in terms of tM  and *
tM : 

 1 1 1(1 )t t t t tN r N s M− − −= + + −  and (2.8) 

 *( )t t tM M sα + = . (2.9) 

Equations (2.1), (2.5), (2.7), (2.8), and (2.9) fully characterize the system. By 

relying on the value of Home’s and Foreign’s consumption, we eliminate *ts  and Pt from 

the system. We can now consider the model’s “temporary” equilibrium for any pair of 

expectations, 1[ ]t tE M +  and * *
1[ ]t tE M + . Agents use their Euler Equations, (2.5) and (2.7), 

to determine their current level of consumption. The interest rate, 1tr + , endogenously 

adjusts to ensure that the global resource constraint, Equation (2.9), is satisfied. The debt 
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accumulation equation (2.8) then determines the next period’s level of debt. Section 3 

discusses the model where agents form expectations using rational expectations. Sections 

4 through 7 discuss the model where agents form expectations using adaptive learning. 

 

3. Solving the Model Under Rational Expectations 

 We define the system’s steady state as [ , *, , , ]z M M N s r= . Using Equation (2.1)

and the assumption that ln( )tε  is mean-zero white noise, Home’s steady state production 

of good X, ,s  equals one. Both Euler Equations, (2.5) and (2.7), simplify to the same 

expression when evaluated at their steady state: 

 1 1r β −= − . (3.1) 

 Two equations, (2.8) and (2.9), remain to identify three steady state values: ,M  

* ,M  and .N  The model therefore does not produce a unique steady state. Instead, a 

continuum of steady states exists where any value of N corresponds to the following 

steady state values of ,M  and * :M     

 1( 1) 1M Nβ −= − +  and  

 * 1( 1) (1 ) /M Nβ α α−= − − + − .   

At any steady state, * 1ξ ξ= = , and both countries perfectly smooth their 

consumption. The model’s two Euler Equations show that, without preference shocks, 

perfect consumption smoothing occurs if and only if the interest rate equals its steady 

state value. Because the steady value of the interest rate does not depend on the steady 

state values of either debt or consumption, however, any level of debt is consistent with 

perfect consumption smoothing and a continuum of steady states exists. At any steady 
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state level of debt, both countries are content to perpetually make (or receive) interest 

payments on their debt (or outstanding loans). For the remainder of the paper, we will 

rely on the steady state where debt equals zero: 
1[1, (1 ) / ,0,1, 1]oz α α β −= − − .5   

To analyze the model’s dynamics under rational expectations, we approximate the 

system using a first order Taylor Series expansion around the debt-free steady state, 0z . 

Defining 0t tz z z= −ɶ , the linearized system becomes:6 

 1t t ts sρ ε−= + ɶɶ ɶ , (3.2) 

 1 1[ ]t t t t tM E M rβ ξ+ += − − ɶɶ ɶ ɶ , (3.3) 

 * * * *
1 1[ ] (1 ) /t t t t tM E M rα β α ξ+ += − − − ɶɶ ɶ ɶ , (3.4) 

 1
1 1 1t t t tN M N sβ −

− − −= − + +ɶ ɶ  and (3.5) 

 *( )t t tM M sα + =ɶ ɶ ɶ . (3.6) 

 The use of linearizations to approximate non-linear models is common in 

dynamic macroeconomics. In this case, it introduces two sources of error into the 

analysis. The first source of error is the approximation error associated with linearizing a 

non-linear model around any steady state. This type of error is present in any 

macroeconomic analysis that uses a linear approximation and increases as the model 

moves further away from the steady state.7 The presence of a continuum of steady states 

in this model, however, introduces a second source of approximation error. The decision-

                                                 
5 Appendix 2 re-linearizes the model each period around the steady state corresponding to the current level 
of debt. The major conclusions of this paper do not change. 
6 It is not possible to log-linearize the system because debt’s steady state value is zero. The steady states of 
productivity and Home’s consumption equal one, therefore their linearized and log-linearized values are 
identical. 
7 Dotsey and Mao (1992) attempt to quantify this first type of approximation error in models with a unique 
steady state. They conclude that approximation errors are generally small for sufficiently small deviations 
from the model’s steady state. 
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making rules of Equations (3.2) through (3.6) apply only to the debt-free steady state and 

are valid approximations only if the economy is sufficiently close to this steady state. 

International Real Business Cycle models (IRBC) also frequently produce a continuum of 

steady states. Letendre (2002) attempts to quantify the second source of approximation 

error caused by using a linear approximation of an IRBC model. He concludes that the  

approximation errors are small as long as the model is sufficiently close to the steady 

state that it is linearized around.8 

Equation (3.6) shows that the value of Foreign’s consumption is a linear 

combination of tsɶ  and tMɶ . It is therefore easy to eliminate 
*
tMɶ  from the system. By 

combining Equations (3.3) and (3.4), we also eliminate the interest rate from the system. 

Defining the white noise error term: * (1 )t t tω αξ α ξ= − −ɶ ɶ , the system now consists of 

Equations (3.2), (3.5), and:  

 *
1 1(1 ) [ ] [ ] (1 )t t t t t t tM E M E M sα α ρ ω+ += − + + − +ɶ ɶ ɶ ɶ . (3.7) 

 Equations (3.2) and (3.5) define the evolution of the pre-determined variables tsɶ  

and tN . Equation (3.7) combines Home and Foreign’s Euler Equations, relating current 

consumption to expected future consumption. Equation (3.7) allows Home and Foreign to 

have different expectations of future consumption. Under rational expectations, however, 

both countries necessarily form identical expectations and it is possible to re-state 

Equation (3.7) as: 

 1[ ] (1 )t t t t tM E M sρ ω+= + − +ɶ ɶ ɶ . (3.8) 

                                                 
8 There are two potential approaches to eliminating the second source of approximation error. The first is to 
directly simulate the non-linear model. This approach would eliminate both sources of approximation error. 
The second approach is to re-calculate agents’ decision making rules each period around the steady state 
corresponding to that period’s level of debt. We pursue the latter approach in Appendix 2 and demonstrate 
that this paper’s major conclusions do not change.  
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By re-dating Equation (3.8), it is possible to write the model in first-order form:  

 
1

1
1

1

1 0 ( 1) 1 1 0

1 1 0 0 0

0 0 0 0 1

t t t

t t t

t t t

M M

N N

s s

µρ
β ω

ρ ε

−
−

−

−

   −     
        = − +        

       
       

ɶ ɶ ɶ

ɶɶ ɶ

  

or using vector notation: 

 1t t tz Gz ζ−= +ɶ ɶ . (3.9) 

 The term 1[ ]t t t tE M Mµ −= −ɶ ɶɶ  represents an extraneous expectational error that 

may affect the system. The three eigenvalues of the matrix G are 1, 1β − , and ρ . Because 

1 1β − > , Equation (3.9) represents an explosive system. The model’s transversality 

condition, Equation (2.6), may therefore be violated and it is necessary to suppress the 

explosive root, 
1β − , in order to derive a non-explosive solution. This requires factoring 

the G matrix so that: 

 1G S S −= Λ .  

The matrix S consists of J’s eigenvectors, and Λ consists only of the 

corresponding eigenvalues along the diagonal. By defining 1
t tk S z−=ɶ ɶ , it is possible to re-

write Equation (3.9) as: 

 1
1t t tk k S ζ−

−= Λ +ɶ ɶ .  

To suppress the explosive root, we set the row of tkɶ  that corresponds to 1β −  equal 

to zero. This entails setting a linear combination of the variables in the system equal to 

zero. This side constraint details how agents choose the free variable, tMɶ , and eliminates 

the extraneous expectational error, tµɶ , from the system. The model therefore possesses a 

unique solution. The relevant side constraint is: 
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 1( 1)t t t tM N sβ βω−= − + +ɶ ɶ  (3.10) 

 Substituting Equation (3.10) into Equation (3.5) reveals that the necessary 

condition for the REE to be non-explosive is 1 1t t tN N βω− −= − . Defining the current 

account as 1t tN N −− , the current account simply equals white noise and there are no 

current account dynamics in the REE.9 Imposing Equation (3.10) yields the REE’s 

VAR(1) reduced form: 

 

1 1 1 1
1

1
1

1

1 ( 1) 1 1

1 1 0 0

0 0 1 0

t t
t

t t
t

t t

M M

N N

s s

β β β ρ β β
ε

β
ω

ρ

− − − −
−

−
−

−

    − − − +  
       = − +        
            

ɶ ɶ

ɶ

ɶ ɶ

 (3.11) 

Equation (3.11) possesses a unit root and is therefore not a stationary process. 

Suppose that Home experiences a positive productivity shock where tεɶ > 0. For 

simplicity, assume that 0tω = . The intertemporal approach to the current account 

predicts that Home will attempt to smooth the effects of this shock over time by lending 

to Foreign.10 The current account, 1t tN N −− , will therefore rise above zero. In our model 

with rational expectations, however, the current account will equal zero because of our 

choice of utility functions. We have normalized the price of good X to one. Home’s 

income is therefore ts . Foreign’s income is the price of good Y multiplied by *
ts . The 

price of good Y depends on the ratio of both goods’ unit labor requirements and the 

relative weighting of each good in the utility functions: 

 *(1 ) /( )t t tP s sα α= − .  

                                                 
9 The current account equals white noise because we linearize the model around the debt free steady state. 
In Appendix 2, we re-linearize the model each period around the steady state corresponding to the current 
level of debt. While debt continues to follow a random walk, in this case it depends on both white noise 
preference shocks and autocorrelated productivity shocks 
10 See Obstfeld and Rogoff (1996). 
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 A positive productivity shock has two effects. First, for any tP , it raises Home’s 

wealth and therefore its utility. Second, by making good Y scarcer relative to good X, it 

increases tP  which benefits Foreign but harms Home. With our specification, this latter 

terms of trade effect is large enough so that Foreign’s income experiences the same 

proportional increase as Home’s.11 One country’s saving, however, necessarily equals the 

other’s borrowing. The equilibrium interest rate must therefore adjust to the productivity 

shock to ensure that global saving equals zero. Because both countries have identical 

incentives to save, however, this can only occur when tN  equals zero. If the model 

includes preference shocks, then the current account will equal white noise. In the next 

section, we replace the assumption of rational expectations with adaptive learning. The 

lack of current account dynamics in the REE allows us to isolate the effects of adaptive 

learning on the current account. 

 

4. E-Stability  

So far, we have assumed that both countries form rational expectations. Rational 

expectations assume that agents know the coefficients in the model’s side constraint that 

sets consumption equal to a linear combination of debt, productivity, and preference 

shocks:   

 1( 1)t t t tM N sβ βω−= − + +ɶ ɶ . (4.1) 

An infinite number of models could generate this model’s reduced form. Rational 

expectations is a realistic assumption if both countries agree that this model best explains 

                                                 
11 This is weaker version of the immiserizing growth effect where the impact of Home’s productivity shock 
on the terms of trade is so large that Home’s utility decreases. In our model, however, both countries 
benefit from Home’s productivity shock. For details on immiserizing growth, see Johnson (1954) and 
Bhagwati (1969). 



 15 

the economy, know the calibrated parameter values, and are able to solve for Equation 

(4.1). However, if both countries do not know which model generates this reduced form, 

then rational expectations is not a realistic assumption. 

 We therefore now examine the model when agents use adaptive learning instead 

of rational expectations.12 A primary goal of this section is to provide unfamiliar readers 

with an introduction to adaptive learning using the context of our model. There are many 

sensible methods for modeling adaptive learning. However, because of the unit root in 

debt, the method chosen leads to very different predictions regarding the behavior of the 

current account. This section presents our baseline approach where debt behaves like an 

explosive process. Section 6 discusses the model under coordinated learning, another, 

simpler approach under which debt behaves like an explosive process. Section 7 

discusses alternate methods of modeling learning where debt behaves like a stationary 

process.13  

In presenting our baseline case, we focus on the expectational or E-Stability of the 

model. Evans and Honkapohja (2001) demonstrate that under general conditions, a model 

is stable under adaptive learning if and only if it is E-Stable. This approach to modeling 

adaptive learning assumes that agents know that consumption is a linear combination of 

the other variables in the system, but do not know the values of the coefficients in 

Equation (4.1). This yields agents’ perceived law of motion (PLM) for Home:14 

 t t tM aN bs= +ɶ ɶ . (4.2) 

                                                 
12 For a thorough discussion of adaptive learning algorithms, see Evans and Honkapohja (2001). 
13 Several additional types of learning are examined in Appendix 1. 
14 We assume that because agents’ data is measured as deviations from the zero debt steady state, agents are 
able to deduce that the side constraint’s intercept equals zero. They therefore employ a properly specified 
PLM. Including intercept terms in the model’s PLM does not affect whether the model is E-Stable or 
whether debt behaves explosively for any of the learning approaches discussed in the body of this paper. 
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Because agents do not know which structural model generates Equation (4.2), they are 

unaware that one of their regressors follows a random walk under rational expectations. 

Under rational expectations, we are able to eliminate *
tM  from the model. Our 

baseline learning method, however, focuses on uncoordinated learning where Foreign 

uses data on its own consumption to forecast its own future consumption. Equation (3.7) 

includes Foreign’s expectation of Home’s consumption. By substituting the global 

resource constraint, Equation (3.6), into this equation we re-write the model’s forward-

looking structural equation to include Foreign’s expectation of its own consumption: 

 * *
1 1(1 ) [ ] [ ]t t t t t t tM E M E M sα α ω+ += − − + +ɶ ɶ ɶ ɶ . (4.3) 

Using the global resource constraint, Equation (3.6), it is also possible to re-state 

the model’s side constraint in terms of Foreign’s consumption:  

 * 1 1(1 ) ( 1)t t t tM N sβ α βω− −= − + − −ɶ ɶ . (4.4) 

We assume that Foreign’s agents base their PLM on Equation (4.4): 

 *
t t tM cN ds= +ɶ ɶ ɶ . (4.5) 

 We assume that agents know the coefficients in Equations (3.2) and (3.5), which 

detail the evolution of the pre-determined variables. Home agents use their PLM, 

Equation (4.2), to form their expectations of future consumption:15 

 1 1 1[ ] [ ] [ ]t t t t t tE M aE N bE s+ + += +ɶ ɶ ,  

 1[ ]t t tE s sρ+ =ɶ ɶ  and  

 1
1[ ] [ ]t t t t t tE N E M N sβ −

+ = − + +ɶ ɶ ɶ ɶ . 

                                                 
15 The expectations operator on contemporaneous consumption reflects the possibility that agents may not 
know Mt when choosing their level of consumption. 
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It is reasonable to assume either that Home agents know the current value of tMɶ  when 

forming expectations at time t, or that they only know the value of 1tM −
ɶ . Using the 

former assumption, Home agents’ expectation of future consumption equals:16 

 1
1[ ] ( )t t t t t tE M a M N s b sβ ρ−

+ = − + + +ɶ ɶ ɶ . (4.6) 

Foreign agent’s expectation of their future consumption equals: 

 * * 1
1[ ] ( )t t t t t tE M c M N s d sβ ρ−

+ = − + + +ɶ ɶ ɶ . (4.7) 

Equations (4.6) and (4.7) are not rational expectations. Instead they represent 

agents’ best estimate of future consumption given their informational deficiencies. 

Inserting these expectations into Equation (4.3), a forward-looking structural equation, 

yields the economy’s actual law of motion (ALM) for  tMɶ : 

 
1 1[1 (1 ) ] [(1 ) ]

[(1 )( ) ( ) 1]
t t

t t

a c M a c N

a b c d s

α α α β α β
α ρ α ρ ω

− −+ − − = − −
+ − + − + + +

ɶ

ɶ
. (4.8) 

Substituting the economy’s global resource constraint, Equation (3.6), into 

Equation (4.8) yields the ALM for Foreign’s consumption:  

 
* 1 1

1

(1 (1 ) ) [ (1 ) ]

[(1 (1 ) ) 1 (1 )( ) ( )]
t t

t t

a c M c a N

a c a b c d s

α α α β α β
α α α α ρ α ρ ω

− −

−

+ − − = − −

+ + − − − − − + + + −

ɶ

ɶ

.(4.9) 

To evaluate E-Stability, we analyze the E-Stability differential equation based on 

the mapping from the models’ PLM to its ALM: 

 / ( , , , ) ( , , , ) ( , , , )d d a b c d T a b c d a b c dτ = − . (4.10) 

The notation ( , , , )T a b c d refers to the vector of coefficients from the ALM, Equations 

(4.8) and (4.9), corresponding to ( , , , )a b c d  from the PLM, Equations (4.2) and (4.5). The 

                                                 
16 Appendix 1 discusses the model using the latter assumption that agents do not know the current value of 

tMɶ . Under both assumptions, debt behaves like an explosive process. 
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eigenvalues of the Jacobian matrix from Equation (4.10) equal –1, -1, 1β − , and 1βρ −  

when evaluated at the model’s REE. Because all of these eigenvalues have real parts less 

than one, the PLM converges to the ALM and the model is locally E-Stable.  

E-Stability implies that, for this type of PLM, the model is stable under learning 

for most sensible learning algorithms.17 We now consider one such learning algorithm: 

recursive least squares. Under recursive least squares, Home agents run an OLS 

regression of Mɶ on N  and sɶ  to obtain their initial learning parameter estimates, 0a  and 

0b . Foreign agents regress *Mɶ on N  and sɶ  to obtain their initial learning parameter 

estimates,0c  and 0d . They then update their estimates each period as new data becomes 

available using the following algorithm:  

 1 11
1 1 1 1 1

1 1

( )t t t
t t t t t t t

t t t

a a N
R M a N b s

b b s
γ− −−

− − − − −
− −

     
= + − −     

     

ɶ ɶ
ɶ

,  

 
2

1 1 1
1 12

1 1 1

[ ]t t t
t t t t

t t t

N N s
R R R

N s s
γ − − −

− −
− − −

 
= + − 

 

ɶ

ɶ ɶ
,  

 1 1* * *
1 1 1 1 1

1 1

( )t t t
t t t t t t t

t t t

c c N
R M c N d s

d d s
γ− −

+ − − − −
− −

     
= + − −     

     

ɶ ɶ
ɶ

 and  

 
2

* * * *1 1 1
1 12

1 1 1

[ ]t t t
t t t t

t t t

N N s
R R R

N s s
γ − − −

− −
− − −

 
= + − 

 

ɶ

ɶ ɶ
.  

 The gains, tγ  and *
tγ , represents the weights placed on the most recent 

observation. We consider two variations of the learning process. Under decreasing-gain 

learning, agents typically weigh all observations equally in their estimations, and the gain 

therefore equals the inverse of the sample size. As t approaches infinity, the gain 

                                                 
17 For exact conditions for when E-Stability implies stability under adaptive learning, see Evans and 
Honkapohja (2001). 
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approaches zero and the learning process converges if the model is stable under adaptive 

learning. Asymptotically the model will behave identically under rational expectations 

and adaptive learning, implying that asymptotically the current account is a random walk. 

 For the remainder of the paper, however, we will assume that agents use a 

constant-gain learning algorithm whereγ  is a constant. Constant-gain learning places 

greater emphasis on more recent observations than earlier observations. If the model 

includes preference shocks, as we have so far assumed, then the learning process will be 

persistent under constant-gain learning. This baseline approach is locally stable under 

learning. When simulated, the model’s learning parameters, ( , , , )t t t ta b c d , remain close to 

their rational expectations values.18 Switching from rational expectations to adaptive 

learning, however, fundamentally changes the dynamics of international debt. Numerical 

simulations demonstrate that debt now behaves like an explosive process rather than a 

random walk.19 

 

5. Adaptive Learning with a Unit Root in a General Model 

 In our model, a unit root causes debt to follow a random walk under rational 

expectations. This section uses a more general model to illustrate how adaptive learning 

profoundly changes the dynamics of a system so that a unit root under rational 

expectations can behave like either a stationary or explosive process under adaptive 

learning.  

                                                 
18 This approach is not, however, globally stable under learning. Sufficiently large shocks can move the 
model into a region where it is not stable under adaptive learning.  
19 Simulations of this case are available upon request. 
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 Consider a model with a persistent learning process where a free or pre-

determined variable, ty , possesses a unit root under rational expectations:20 

 1t t ty y e−= +   

where 2(0, )te N σ∼ . 

 Under adaptive learning, the autoregressive process now depends on a vector of 

learning coefficients, denotedtχ . Defining REχ  as the vector of rational expectations 

counterparts to these learning parameters, the autoregressive process may be re-written 

as: 

 1( )t t t ty g y eχ −= +  

where ( ) 1REg χ = . 

 Adaptive learning keeps the economy out of its rational expectations equilibrium. 

The function ( )tg χ  will therefore typically not equal one. Two potential cases are of 

interest. First, the cumulative product of ( )tg χ  may asymptotically approach zero: 

 
0

( ) 0t i
i

g χ
∞

+
=

→∏   

In this case, adaptive learning causes the free or pre-determined variable to behave like a 

stationary process around zero.  

The second case occurs if the cumulative product of ( )tg χ  asymptotically 

approaches infinity: 

 
0

( )t i
i

g χ
∞

+
=

→ ∞∏   

                                                 
20 The results of this section do not apply to a unit root on a purely exogenous variable. 
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In this case, adaptive learning causes the free or pre-determined variable to behave like 

an explosive process. As a result, it is possible that the model’s transversality condition 

will be violated. Whether the free variable acts like a stationary or an explosive process 

depends not only on the specific problem being studied, but also on the exact type of 

learning algorithm that agents use and agents’ information sets.21  

Very little research has focused on adaptive learning in the presence of a unit root 

on either a free or pre-determined variable. Other research does show, however, that 

adaptive learning can fundamentally change the dynamics of a system in a different 

context. Evans, Honkapohja, and Marimon (2001) set up an overlapping generations 

model where the government finances its deficit by issuing money. If the deficit is 

constrained as a share of GDP, then the model often possesses four steady states. Under 

perfect foresight, it is possible to converge to two of these steady states, including an 

autarky solution where money is worthless and a hyperinflation occurs. Under adaptive 

learning, however, the economy always converges to an interior solution and a 

hyperinflation can never occur.  

Sections 6 and 7 apply the results of this section to our model of international debt 

by examining two different types of learning where debt behaves like an explosive and 

stationary process, respectively.  

 

 

 

                                                 
21 This section assumes that the learning process is persistent. If a model includes sufficient uncertainty, 
then constant-gain learning will typically be a persistent process. Decreasing-gain learning, however, is 
typically not a persistent process. If the learning process is not persistent, then model will approach a 
random walk as the learning process converges. 



 22 

6. Explosive Debt  

 In our baseline learning approach of Section 4, the model is stable under adaptive 

learning but debt behaves like an explosive process. For sufficiently small preference 

shocks, the model’s learning parameters remain in the neighborhood of their rational 

expectations values, but the absolute value of debt increases over time. Because 

analytical results are unclear in our baseline approach, we make one additional 

modification in this section by modeling coordinated learning instead of uncoordinated 

learning.22 Under coordinated learning, both countries use Home’s consumption data to 

form their expectations. Foreign’s PLM therefore becomes: 

 t t tM cN ds= +ɶ ɶ . (6.1) 

 Foreign agents use Equation (6.1) to form their expectation of Home’s future 

consumption. They then use the global resource constraint, Equation (3.6), to convert this 

expectation into an expectation of Foreign’s future consumption: 

 * * *
1 1 1[ ] [ ] [ ]t t t t t tE M cE N dE s+ + += +ɶ ɶ  and 

 * * * *
1 1 1[ ] [ ] [ ] /t t t t t tE M E M E s α+ + += − +ɶ ɶ ɶ . (6.2) 

 By inserting the expectation from Equation (6.2) into Equation (4.3), we are able 

to obtain the economy’s ALM: 

 
1(1 (1 ) ) [((1 ) ) ]

[(1 )( ) ( ) 1 ]
t t

t t

a c M a c N

a b c d s

α α α α β
α ρ α ρ ρ ω

−+ − + = − +
+ − + + + + − +

ɶ

ɶ
. (6.3) 

The Jacobian of / ( , , , ) ( , , , ) ( , , , )d d a b c d T a b c d a b c dτ = −  has eigenvalues equal to 

                                                 
22 Coordinated learning has two additional technical advantages over uncoordinated learning. First, while 
both methods are locally stable under learning, random shocks are less likely to move the coordinated 
learning algorithm into a region where it is unstable under learning. Second, it is computationally easier to 
repeatedly simulate coordinated learning than uncoordinated learning. 
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 –1, -1, 1β − , and 1βρ −  when evaluated at the model’s REE. Because all of these 

eigenvalues have real parts less than zero, this type of coordinated learning is locally E-

Stable.  

By substituting Equation (6.3) into Equation (3.5), we re-write the debt 

accumulation equation:23  

 
1 1

1

1

[1 (1 (1 ) ) ((1 ) )]

[1 (1 (1 ) ) ((1 )( ) ( ) 1 )]
t t t t t t

t t t t t t t t

N a c a c N

a c a b c d s

β α α α α
α α α ρ α ρ ρ ω

− −
+

−

= − + − + − +

+ − + − + − + + + + − − ɶɶ

. (6.4) 

 If the learning parameters equal their rational expectations values, 

1[ , ] [ , ] [ 1,1]a b c d β −= = − , then Equation (6.4) reduces to Equation (3.10) and debt 

follows a random walk. To understand the intuition for why debt behaves explosively, 

suppose that the learning parameters are distributed symmetrically around their rational 

expectations values.24 In the case of homogeneous learning where [ , ] [ , ]t t t ta b c d= , 

Equation (6.4) may be re-stated: 

 1 1 1
1 [1 (1 ) ] [1 (1 ) ( 1 )]t t t t t t t t tN a a N a a b sβ ρ ρ ω− − −

+ = − + + − + + + − − ɶɶ .  

Because 2 1 1 2 1 2 1( (1 (1 ) )) / 2 (1 ) (1 (1 ) ) 0t t t t t td a a da a a aβ β− − − − −− + = + − + >  for all 

ta , 1(1 (1 ) )t ta a −− + is a convex function. By Jensen’s Inequality: 

 1 1 1 1[ (1 (1 ) )] [ (1 [ ](1 [ ]) )] 1t t t tE a a E a E aβ β− − − −− + > − + = .  

It is therefore the case that: 

 1

1

[ (1 (1 ) )]t t i t i
i

E a a
∞

−
+ +

=

− + → ∞∏   

                                                 
23 Equation (6.4) defines 1(1 (1 ) )t t t ta cω α α ω−= + − +ɶ . 
24 Evans and Honkapohja (2001) formally prove this result in the case of standard, constant-gain learning. 
Their proof does not extend, however, to include cases where the model includes a unit root. Our numerical 
simulations confirm, however, that the distributions of the learning parameters are sufficiently symmetric 
around their rational expectations values. 
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and debt will behave like an explosive process. Numerical simulations confirm the 

explosiveness of debt in this case and that it extends to cases with heterogeneous and/or 

uncoordinated learning (as in Section 4).25    

We now simulate the homogeneous case. We set 0N =.00, * 0.01γ γ= = ,  

1
0 0 0 0[ , ] [ , ] [ 1,1]a b c d β −= = − , and *

0 0 2R R I= = .26 We assume that tεɶ  is uniformly 

distributed between -.005 and .005 and that tωɶ  is uniformly distributed between -.0005 

and .0005.27 Debt now behaves like an explosive process, threatening to violate the 

model’s transversality conditions. We assume that once the absolute value of debt  

reaches a pre-determined level, a financial crisis occurs.28 For this simulation, we assume 

that a crisis occurs when | | .50tN > .29 When a crisis occurs, the debtor country is required 

to pay the creditor country interest plus 5% of its debt every period. Once the debt is 

below half of the crisis level, the debtor country is again free to borrow and the model 

once again operates normally. Figure 1 charts the simulated paths of Foreign’s debt to 

Home and Foreign’s consumption over a period where Foreign’s debt happens to trigger 

                                                 
25 We also directly simulate the non-linear model of Section 2 where agents continue to use linear PLMs. 
Once again, depending on the exact type of learning, both explosive and stationary cases exist. Simulation 
results for both the linear and non-linear models are available on request. 
26 I2 is the 2x2 identity matrix. 
27 For these simulations, we treat the rational expectations value of 1(1 (1 ) )t ta cα α −+ − +  as known; 

therefore, t tω βω=ɶ . 
28 Evans and Honkapohja (2005) employ a similar strategy in an unrelated model. Their paper examines a 
New Keynesian model where the central bank is passive in responding to inflationary pressures and where 
the government does not actively attempt to balance its intertemporal budget constraint. In that model, 
government debt behaves explosively for all equilibrium paths. The authors assume that if government debt 
exceeds a pre-determined level, then the government pursues an alternate fiscal policy that ensures that its 
debt behaves like a stationary process. Marcet and Nicolini (2003) assume that the government switches its 
policy from using the money supply to finance seignorage to an exchange rate rule if and only if inflation 
exceeds a certain threshold. 
29 This cutoff is similar to the sudden stop/ “Wile E. Coyote” literature in open-economy macroeconomics. 
See Krugman (2006) for a discussion.  
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two crises.30 For anecdotal comparison, compare this to Figure 2, which plots the actual 

values of debt and consumption for Argentina during its recent financial crisis. As can be 

seen, the two look remarkably similar. 

The vast majority of research into adaptive learning assumes that all agents use 

the same learning algorithm. Under constant-gain learning, however, it is not obvious 

which gain agents should use.31 It is reasonable to assume that different agents may use 

different gains. In this section, we will therefore examine cases where both Home and 

Foreign use the same gain and where they use different gains. Only a few papers have 

studied adaptive learning where agents use different gains in their constant-gain learning 

algorithms. Negroni (2003) divides the population into two groups, each of which uses a 

different gain. Heterogeneous gains make his model less likely to be stable under 

adaptive learning. Honkapohja and Mitra (2005) obtain similar results when agents use 

different learning algorithms.  

We further evaluate the model’s dynamics by repeating the previous simulation 

for several different pairs of gains. We simulate the learning process 5,000 times for nine 

gain combinations where γ  and 
*γ  equal .01, .02, or .03. If a country’s gain equals .01, 

then that country is a slow learner. If a country’s gain equals .03, then that country is a 

fast learner. In all 45,000 simulations, debt behaves like an explosive process, threatening 

to violate the model’s transversality conditions.32 Table 1 summarizes the average time 

                                                 
30 The time between crises is highly variable and does not always follow the pattern of Figure 1. For this 
simulation, the level of debt where the debtor country is able to borrow again, .25, is high enough to ensure 
that the debtor country rarely becomes the lender country. Lower values for this threshold increase the 
frequency of these switches. 
31 Evans and Ramey (2005) endogenize the gain in a simpler model with constant-gain learning. 
32 The model is only locally stable under adaptive learning. In some simulations, unobservable shocks drive 
the economy into a region where it is unstable under adaptive learning. These simulations are discarded. 
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until a crisis for all nine combinations of gains and yields the following three sets of 

hypotheses. 

 

Null Hypothesis 1: d(γ+τ, γ* )- d(γ, γ*) = 0 if γ  ≥ γ*, for τ  > 0.  
 
Null Hypothesis 1a: d(γ, γ*+τ )- d(γ, γ*) = 0 if γ*  ≥ γ, for τ  > 0. 
 
These hypotheses state that if the faster learner uses a larger gain (learns even faster), 
then the time until a crisis is unaffected. We fail to reject these null hypotheses for all 
applicable gain combinations.  
 
 
Null Hypothesis 2: d(γ+τ, γ* )- d(γ, γ*) = 0 if γ*  > γ, for τ  > 0.  
 
Null Hypothesis 2a: d(γ, γ*+τ )- d(γ, γ*) = 0 if γ  > γ*, for τ  > 0. 
 
These hypotheses state that if the slower learner uses a larger gain (learns faster), then 
the time until a crisis is unaffected. We reject these null hypotheses for all applicable 
gain combinations in favor of the alternative that increasing the gain of the slower 
learner decreases the time until a crisis. 
 

Null Hypothesis 3: d(γ, γ*) - d(γ+τ, γ*+τ) - d(γ, γ*) = 0 for, τ  > 0.  

This hypothesis states that if both countries become faster learners, then the time until a 
crisis is unaffected. Graphically, this implies moving down and to the right in Table 1. 
We reject this null hypothesis for all applicable gain combinations in favor of the 
alternative that the time until a crisis decreases. 

Null Hypothesis 4: d(γ, γ*) - d(γ*, γ) = 0.  
 
This hypothesis states that Table 1 must be a symmetric matrix. When α equals one-half, 
both 1[ ]t tE M +

ɶ and *
1[ ]t tE M +

ɶ enter Equation (3.7) in exactly the same manner. It therefore 

cannot matter whether Home or Foreign is the faster learner. We fail to reject this null 
hypothesis for all nine combinations of gains. 

 The first two sets of hypotheses yield two interesting conclusions. First, the gain 

of the slower learner has a larger effect on the time until a crisis occurs than the gain of 

the faster learner. Second, if both countries become faster learners, then the speed of 

divergence increases. If both gains equal zero, then adaptive learning and rational 
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expectations are identical in these simulations. Debt will display no tendency to diverge 

and the time until a crisis will be very long. In these simulations, the rational expectations 

values of the learning parameters are constant. Larger gains move the model further from 

its rational expectations equilibrium, strengthening the tendency to diverge, and 

shortening the time until a crisis.  

7. Stationary Debt 

 Sections 4 and 6 demonstrate that a particular set of assumptions may cause debt 

to behave like an explosive process instead of a random walk. This section discusses 

alternate assumptions that cause debt to behave like a stationary process. So far, we have 

assumed that agents attempt to learn the model’s side constraint, Equation (4.1), that sets 

consumption equal to a linear combination of debt, productivity, and preference shocks. 

It is also reasonable to assume that agents attempt to learn the model’s VAR(1) reduced 

form, Equation (3.11), that sets consumption equal to a linear combination of the model’s 

lagged variables and current shocks. If we also replace recursive least squares with 

stochastic gradient learning, then debt behaves like a stationary process regardless of 

whether or not agents know the current values of tMɶ and whether agents use coordinated 

or uncoordinated learning.33 Appendix 1 provides additional details on this type of 

learning. 

 

8. Conclusion 

 This paper develops a simple general equilibrium model that suppresses all 

previous explanations of current account dynamics. The effects of adaptive learning on 

                                                 
33 For a discussion of stochastic gradient learning, see Evans, Honkapohja, and Williams (2005). 
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the current account are therefore isolated. Under rational expectations, debt follows a 

random walk. Adaptive learning, however, fundamentally alters the models dynamics so 

that debt behaves like either an explosive or stationary process. Whether debt tends to 

diverge or converge depends on agents’ specific learning algorithm.  

 This paper’s conclusions regarding learning may be applicable to other models. 

International Real Business Cycle models also tend to exhibit an endogenous unit root 

under rational expectations. Given the similarities between our model and an IRBC 

model, we would expect these results to carry over to that class of models. Furthermore, 

this paper’s general result may also extend to models that do not include a unit root. 

Consider a model that contains an explosive process under rational expectations due to an 

eigenvalue with an absolute value greater than one. If the absolute value of this 

eigenvalue is sufficiently close to one, then adaptive learning could cause the model to 

behave like a stationary process. Likewise, if a model is stationary under rational 

expectations, then adaptive learning could cause the model to behave like an explosive 

process if it contained an eigenvalue with an absolute value sufficiently close to one. 

 This paper’s purpose is not to argue that previous explanations of the current 

account are invalid. Rather, its goal is to examine the effect of a new factor, adaptive 

learning, in a simplified environment. It is possible that the effect of learning on the 

current account will differ if previous explanations are also included in the model. 

Learning’s role in a more complex model remains a rich area for further research. 
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Appendix 1: Different Types of Learning in the Model of International Debt 

 In our model, debt follows a random walk under rational expectations but behaves 

as either an explosive or stationary process under adaptive learning. This section 

discusses three assumptions that can affect debt’s dynamics and reports debt’s behavior 

for each permutation.  

Assumption 1: Not Knowing tMɶ vs. Knowing tMɶ  

 The learning algorithm of Section 4 assumes that at time t, agents know tMɶ  and 

*
tMɶ . If agents know 1tM −

ɶ  and *
1tM −

ɶ , but not tMɶ  and *
tMɶ  at time t, the results potentially 

may change. Under this assumption, Home and Foreign’s expectations of their future 

consumption equal: 

 1
1[ ] ( ) [ (1 ) ]t t t tE M a a N a b b sβ ρ−

+ = − + − + ɶ  and 

 * * 1 1
1[ ] ( ) [ (1 ) ]t t t tE M c c N c d d sβ α ρ− −

+ = + + − + +ɶ ɶ .  

Inserting these expectations into Equation (4.3) yields the economy’s ALM: 

 
1 1

1

[(1 ) ( ) ( )]

[(1 )( ) ( ) 1]
t t

t t

M a a c c N

a ab b c c cd d s

α β α β
α ρ α α ρ ω

− −

−

= − − − +

+ − − + − − + + + +

ɶ

ɶ

 and  

 
* 1 1

1 1

[ (1 ) ( ) ( )]

[ (1 )( ) ( ) 1 ]
t t

t t

M a a c c N

a ab b c c cd d s

α β α β
α ρ α α ρ α ω

− −

− −

= − − − + +

+ − − − + + − + + − + +

ɶ

ɶ

.  

The results for this model, however, do not depend on whether or not agents know 

the current values of tMɶ  and *
tMɶ  for any of the types of learning that we consider. 

Assumption 2: Learning the Side Constraint vs. Learning the VAR(1) with Stochastic 

Gradient Learning 

 The discussion of adaptive learning in Section 4 assumes that agents attempt to 

learn the model’s side constraint by estimating current consumption as a function of 



 30 

current debt and productivity. Alternatively, agents could attempt to learn the model’s 

VAR(1) reduced form, represented by Equation (3.11), by regressing current 

consumption on lagged consumption, lagged debt, and lagged productivity. Consider the 

simpler case of coordinated learning where the PLM for Home and Foreign equals 

 1 1 1t t t t tM aM bN cs ε− − −= + + +ɶ ɶ ɶɶ  and  

 1
1 1 1 ( 1)t t t t tM dM eN fs α ε−

− − −= + + + −ɶ ɶ ɶɶ .  

Assuming that agents know the current values of tMɶ  and *
tMɶ , both countries use 

this PLM to form their expectations of future consumption: 

 1[ ]t t t t tE M aM bN cs+ = + +ɶ ɶ ɶ  and  

 *
1[ ]t t t t tE M dM eN fs+ = + +ɶ ɶ ɶ .  

Inserting these expectations into Equation (3.7) yields the economy’s ALM: 

 
[1 (1 ) ] [(1 ) ]

[(1 ) 1 ]
t t

t t

a d M b e N

c f s

α α α α
α α ρ ω

− − − = − +
+ − + + − +

ɶ

ɶ
 and  

 * /t t tM M s α= − +ɶ ɶ ɶ .  

To ensure that the model is stable under learning, we assume that agents use 

stochastic gradient learning instead of recursive least squares.34 Under stochastic gradient 

learning, agents do not update their variance-covariance matrices: 

 * 1 0

0 1t tR R χ  
= =  

 
  

where χ  is an arbitrary constant.  

                                                 
34 For a discussion of stochastic gradient learning, see Evans, Honkapohja, and Williams (2005). 
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 Assuming that the learning parameters are symmetrically distributed around their 

rational expectations values, the debt accumulation equation may be re-stated in the case 

of heterogeneous learning where [ , , ] [ , , ]t t t t t ta b c d e f= : 

 1 1 1 1
1 [ (1 ) ] [1 (1 ) ( 1 )] (1 )t t t t t t t t tN a b N a c s aβ ρ ω− − − −

+ = − − + − − + − − −ɶ .  

Because 2 1 1( (1 ) )t td b aβ − −− −  is negative semidefinite when evaluated close to 

the learning parameters’ rational expectations value, 1 1( (1 ) )t tb aβ − −− −  is a concave 

function. Because tω  and tsɶ  are exogenous processes and 2 1 1( (1 ) )t td b aβ − −− −  has one 

eigenvalue less than zero when evaluated close to the learning parameters’ rational 

expectations values: 

 1 1 1 1[( (1 ) )] [( [ ](1 [ ]) )] 1t t t tE b a E b E aβ β− − − −− − < − − = .  

It is therefore the case that: 

1 1

1

[ ( (1 ) )] 0t t t
i

E b aβ
∞

− −

=

− − →∏  

and debt will behave like a stationary process if the learning parameters are 

symmetrically distributed around their rational expectations values. 

 Numerical simulations confirm that this type of VAR(1) learning as while as 

heterogeneous and/or uncoordinated VAR(1) learning cause debt to behave like a 

stationary process.35 

                                                 
35 These simulations also show, however, that under stochastic gradient learning the learning parameters 
typically are not symmetrically distributed around their rational expectations values. Instead, the learning 
parameters usually become “stuck” in an area that corresponds to an AR(1) coefficient on debt less than 
one. Asymmetric distributions, as well as concavity, may therefore induce stationary debt. 
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Assumption 3: Coordinated Learning vs. Uncoordinated Learning 

 Section 4 discusses uncoordinated learning where both countries’ PLMs depend 

on their own levels of consumption. Section 6 relies on coordinated learning where both 

countries’ PLMs depend on Home’s consumption data. This distinction does not affect 

whether debt behaves like an explosive or stationary process. 

 Table 2 summarizes the results for the model under all combinations of these four 

assumptions: 

 

 

SC/VAR CONT/PRI COR/UNCOR RESULT
SC CONT COR Explosive
SC CONT UNCOR Explosive
SC PRI COR Explosive
SC PRI UNCOR Explosive

VAR CONT COR Stationary
VAR CONT UNCOR Stationary
VAR PRI COR Stationary
VAR PRI UNCOR Stationary

Table 2
Behavior of Debt Under Different Types of Adaptive Learning 

Notes: SC and VAR refer to learning the side constraint and learning the VAR(1) respectively. 
CONT and PRI refer to knowing and not knowing the current value of consumption. COR and 
UNCOR refer to coordinated and uncoordinated learning respectively. 
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Appendix 2: Non-Linearities 

 So far, we have approximated our model by using a first order Taylor Series 

expansion around the debt-free steady state. Because debt follows a random walk and the 

model possesses a continuum of steady states, it is not obvious that our linear 

approximation is valid. Under rational expectations, the model displays no tendency to 

converge towards the debt-free steady state. It is therefore equally valid to linearize our 

model around any other steady state. In this appendix, we iteratively re-linearize the 

model around the steady state corresponding to the level of debt in each period. The 

central conclusions of this paper are unaffected. Under rational expectations, debt 

continues to follow a random walk. Under adaptive learning, however, debt behaves like 

either an explosive or a stationary process. 

For any steady state level of debt, the model’s steady state equals:  

 1 1 1[ , *, , , ] [( 1) 1, ( 1) (1 ) / , ,1, 1]M M N s r N N Nβ β α α β− − −= − + − − + − − . 

We now take a first order Taylor Series expansion around the steady state for any 

level of debt. We continue to define tXɶ  as the deviation of X from its debt-free steady 

state rather than the steady state corresponding to N . This choice ensures that the units 

of measurement for tM and *
tM  do not change along with the steady state value of debt.36 

To simplify the model, we limit preference shocks to Home’s Euler Equation. The 

model’s linearized Euler Equations become: 

 1 1[ ]t t t t tM E M Mrβ ξ+ += − − ɶɶ ɶ ɶ  and (8.1) 

 

                                                 
36 For productivity and the interest rate, this distinction is trivial because their steady state values do not 

depend on N . 
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 * * * *
1 1[ ]t t t tM E M M rβ+ += −ɶ ɶ ɶ . (8.2) 

 The model’s debt accumulation equation now includes a term allowing for the 

deviation of the interest rate from its steady state: 

 1 1
1 1( 1) ( )t t t t tN N M N N N s Nrβ β− −

+ +− = − + − + − + +ɶ ɶ ɶ . (8.3) 

 The model’s global resource constraint and the AR(1) productivity shock are 

unchanged from the original linearization: 

 *( )t t tM M sα + =ɶ ɶ ɶ  and (8.4) 

 1t t ts sρ ε−= + ɶɶ ɶ .  

 By substituting Equation (8.4) into Equation (8.2) and combining the resulting 

equation with Equation (8.1), we are able to derive a forward-looking structural equation 

that determines the current value of tMɶ : 

 * * *
1 1[ ] [ ]t t t t t t tM ME M M E M Msα α ω+ += − + +ɶ ɶ ɶ ɶ  and (8.5) 

 *
t tMω α ξ= − ɶ . (8.6) 

           To approximate the model, we iteratively re-linearize the model each period by 

substituting tN N=  into Equations (8.3) and (8.5). By using Equation (8.1), we are able 

to eliminate the interest rate from the system and re-write the debt accumulation 

equation: 

 1 1 * 1
1 1( [ ] / )t t t t t t t tN M N s N E M M M Mβ β ω α− − −

+ += − + + − − +ɶ ɶ ɶɶ .  

 This approach allows us to evaluate two significant effects of the model’s non-

linearities. First, the debt accumulation equation now considers fluctuations in the interest 

rate. Second, the weights given to each expectation in Equation (8.5) differ from those in 

Equation (4.3). We use the techniques of Section 3 to evaluate the model under rational 
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expectations. We obtain a side constraint that ensures that the model’s transversality 

condition is not violated and a resulting equation for the evolution of debt: 

 1 1 2 1( 1) (1 )( 1)( 1) ( , )t t t t t t t tM N s N s f Nβ β ρ β βρ βω α β ω− − −= − + + − − − + +ɶ  and (8.7) 

 1 2 1
1 (1 ) [1 (1 )( 1)( 1) ] ( , )t t t t t t tN N N s h Nρ β ρ β βρ βω α β ω− −

+ = + − − − − − − +ɶ .  

 Although this model is non-linear, its non-linearities are limited to pre-determined 

or exogenous variables and it is therefore easy to simulate.  Under rational expectations, 

debt continues to follow a random walk without drift. The current account ( 1t tN N+ − ), 

however, is no longer white noise but instead depends both on the products of debt and 

productivity and of debt and preference shocks. The current account is therefore both 

serially correlated and heteroskedastic.  

 We now analyze the iteratively re-linearized model under adaptive learning. We 

assume that Home agents use the following perceived law of motion (PLM): 

 t t t tM aN bN s= +ɶ ɶ .  

 The coefficient on lagged debt in Equation (8.7) is unchanged from Section 3. It is 

therefore unsurprising that simulations confirm that our iterative re-linearization does not 

affect the model’s behavior under adaptive learning. Although debt follows a random 

walk under rational expectations, the types of learning from Sections 4 and 6 continue to 

cause debt to behave explosively. Under the type of learning from Section 7 with a 

stochastic discount factor, debt continues to act like a stationary process. 
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Figures and Tables 

Figure 1
Debt and Foreign's Consumption During Simulated Crises
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Table 1
Average Time Until Crisis, d(γ ,γ*), for Different Gains 

(St. Error)

γ*

0.01 0.02 0.03

0.01
6467

(112.8)
6257

(106.0)
6585

(114.4)

γ 0.02
6358

(110.3)
4789
(94.7)

4705
(91.9)

0.03
6538

(113.3)
4653
(90.6)

3961
(84.4)

 
 
 


