
1

GLOWS: A High Fidelity Worm Simulator
Shad Stafford, Jun Li, Toby Ehrenkranz, and Paul Knickerbocker

Department of Computer Science
University of Oregon

{staffors, lijun, tehrenkr, pknicker}@cs.uoregon.edu

Abstract—This work presents our GLOWS (Gate-
way Level Oregon Worm Simulator) simulator, de-
signed to produce realistic worm traffic over a broad
range of scenarios. GLOWS simulates the spread of
a worm across the Internet and its propagation into
a single domain with the goal of capturing the worm
traffic that crosses the gateway point separating the
monitored domain from the Internet.

I. I NTRODUCTION

A key element in evaluating the effectiveness
of network level worm detectors is running them
against worm traffic and measuring their ability to
detect it. To do so is tricky however. You must
have a way to release real worms in a controlled
environment, a recording of real worm traffic, or
realistically simulated worm traffic. The DETER
Testbed [1] is a real step towards the first solution,
but it lacks realistic background traffic and requires
a heavy investment of resources to use. Recordings
of worm traffic are problematic because they are
difficult to come by for a broad range of worm
propagation techniques. This leaves the final op-
tion, simulated worm traffic, as the only reasonable
solution. This work presents our GLOWS (Gateway
Level Oregon Worm Simulator) simulator, designed
to produce realistic worm traffic over a broad range
of scenarios. GLOWS simulates the spread of a
worm across the Internet and its propagation into a
single domain with the goal of capturing the worm
traffic that crosses the gateway point separating the
monitored domain from the Internet.

II. H OW GLOWS WORKS

GLOWS is designed to simulate the outbreak
of a worm in an individual administrative domain

This research is partially supported by a research grant from
Intel Corporation.

such as that of a university or corporation. It uses
a finite-state model to simulate the behavior of
each vulnerable host in both the Internet and the
internal network. This provides a greater degree of
accuracy than probabilistic simulators, particularly
for worms such as the topological scanning worm
which must know of other hosts running the service.
Modeling each vulnerable host is feasible for a
number of reasons including: the number of such
hosts is only a small fraction of the total hosts in
the Internet, we don’t model packet level interac-
tions we only generate flow-level connections, and
we don’t model congestion effects or background
traffic within the simulator. GLOWS loses a small
level of accuracy due to ignoring the effects of
congestion, but if experiments are focused at the
beginning of the infection cycle where relatively
few hosts are infected, this impact is minimal.

To support studying a broad variety of worm sce-
narios, GLOWS supports the following parameters:

• Connection type. Connections can be either
TCP-based or UDP-based.

• Scan speed. The speed at which the worm
scans can be varied.

• Scan type. Using previously presented worm
studies by Stanifordet al. [2], we were able to
model the following scanning types: random-
scanning, sequential-scanning, permutation-
scanning, partition-scanning, local-preference-
scanning, and topological-scanning

The various scanning techniques work as fol-
lows: random-scanning worms are the simplest
as they simply choose each new target address
completely randomly.Sequential-scanning worms
choose a random address to start from and scan se-
quentially from there.Permutation-scanning worms
permute the entire address space and sequentially



scan that.Partition-scanning worms partition the
address space and scan only their partition.Local-
preference worms choose target addresses ran-
domly, but with a preference towards choosing
from the local subnet: they choose an address from
their host’s class B address space with a 50%
probability, from its class A address space with a
25% probability, and from the Internet as a whole
with a 25% probability. And finally thetopological-
scanning worm starts with a list of roughly 500
addresses known to be running the target service,
though not necessarily vulnerable. Once these have
been contacted, it reverts to a pure random-scanning
worm.

GLOWS can model the network topology of
the monitored domain based on host information
taken from a network trace, allowing it to create
realistic worm traffic for a given monitored domain.
Addresses where a host is active in the internal
network are derived from detected host activity in
the real trace, and external hosts are probabilisti-
cally allocated. Not all hosts run the service that
the worm is attacking; we assign service runners
probabilistically in both the internal and external
network.

GLOWS accurately models the connection-level
interaction between two hosts during an infection
attempt, right down to setting appropriate TCP
flags. Scanning attempts to non existent hosts result
in SYN/RST exchanges as one would expect to
see in the real world, and the worm client can
disconnect at any point leaving the connection in an
arbitrary state. The payload and target port number
are also configurable.

III. I MPLEMENTATION DETAILS

GLOWS is implemented as a Java program com-
prised of 20 classes and approximately 4000 lines
of code. The internal network and the external net-
work (i.e., the rest of the Internet) are implemented
in separate classes allowing the internal network
to be modeled more accurately and the external
network to use a less accurate but higher speed
implementation. There are four possible states for
every IP address: no host, host, host running ser-
vice, and host running vulnerable service.

For the addresses in the internal network, we load
the list of hosts from a configuration file produced

by analysis of the real network trace that the inter-
nal network is modeled after. Service runners and
vulnerable hosts are chosen randomly from within
this set. Every host in the internal network is an
instance of our ActiveHost class, allowing each host
to respond independently to connection requests.

For the external network, the sets of vulnerable
addresses and service runner addresses are gener-
ated by a random number generator and are stored
as simple lists of 32-bit integers to conserve mem-
ory. A given address in the Internets is determined
to have a host or not by the following procedure.
First check the list of vulnerable addresses, then
the list of service runner addresses; if it is present
in neither one of these lists, it may still have an
active host. Whether or not this address has a host
is randomly determined, but must be consistent
throughout a given simulation: a random number
is generated after seeding the random number gen-
erator with the address in question plus a simulation
specific salt value. If the random number is below
the configured value for the percent of hosts in
the external network, then this address has an
active host. This process ensures that throughout
a simulation the set of addresses with hosts is
consistent, but for multiple simulations we will get
different sets of addresses with hosts. It can be
performed efficiently through the use of a Mersenne
Twister [4] implementation as our random number
generator, which has excellent performance and
very low overhead for setting the seed.

Interactions with hosts in the external network
are resolved by the state of the address except that
when a vulnerable address is infected an ActiveHost
instance is created for that address to respond to
future interactions.

At each time tick, the ActiveHost instances in
both the internal and external networks are polled
for activity. Those that are infected and actively
sending worm scans will generate their next scan
based on the worm implementation currently active.
Because each ActiveHost has its own instance of
the worm, individual hosts can have unique neigh-
bor lists, network partitions, or other host specific
info. The worm implementation is pluggable, allow-
ing us to simulate a number of different scanning
and propagation schemes.

At the end of the time tick all of the worm scans

2



(a) Measured (from [3]) (b) Simulated

Fig. 1. A comparison of the spread of the measured and simulated Code Red worms showing the cumulative count of infected
IP addresses.

are processed. There is a complex set of possible
results for each connection attempt, as the worm
implementation can specify all of the connection
attributes and TCP flags for each kind of connec-
tion: to a dark address, to a non-service running
host, to a service running host, to a vulnerable
service running host, and to an already infected
host. Connections from internal to internal hosts
or external to external hosts are first processed,
and then those connections that cross the gateway
are processed. The complete set of attributes for
connections that cross the gateway are logged to a
file.

IV. SIMULATOR PERFORMANCE

The speed with which a complete simulation
can be processed is of course directly correlated
with the number of vulnerable hosts and the rate
at which hosts make connections. The following
performance numbers are measured when running
simulations on a 1.73 GHz Pentium M Laptop with
512 MB of RAM.

A basic scenario for our experiments is the high-
speed (100 connections per second) random scan-
ning worm with a vulnerable population of300, 000

hosts, of which3, 000 start out as infected. We
run this simulation until100, 000 worm connections
have crossed the gateway (roughly160 seconds
of simulated time), and it takes approximately 24
minutes to complete.

This contrasts with the same scenario but run
for a low-speed (1 connection per second) worm
where our simulation terminates after3, 600 sec-
onds of simulated time, and only4, 500 connections

TABLE I
CODE RED SIMULATION PARAMETERS

Parameter Values
Vulnerable Hosts 360,000
Initial Infected Hosts 3
Connection Rate 2 conns/sec
Scanning Strategy Random Scan

crossing the gateway, but which runs in just over 1
minute.

Larger simulations take correspondingly longer
to run. Our simulation of the Code Red v2 worm
on the same hardware took 56 hours when run until
99% of the vulnerable population of360, 000 hosts
were infected. This simulation generated more than
12, 901, 600 connections which crossed the gateway
(and of course substantially more that didn’t) over
more than 24 hours of simulated time.

V. SIMULATOR VALIDATION

Of course a simulator like GLOWS is not par-
ticularly useful if it does not accurately simulate
what would happen in a worm outbreak. To validate
GLOWS we attempt to simulate a known worm
and compare the propagation of the worm in the
simulator with the measured propagation of the
worm in the real world.

In figures 1(a) and 1(b) we compare the spread of
a simulated version of the Code Red worm with its
spread during the real world outbreak as measured
by Mooreet al. in [3]. The simulation was run with
propagation and vulnerable population parameters
similar to the real Code Red v2 Worm (see Table I).
In both curves we see a similar basic shape with the

3



inflection point occurring around 16 hours after the
start of the outbreak. The curves begin to diverge
after hour 18 most likely due to the impacts of
both patching infected systems and network wide
congestion. Our experiments are focused around the
very early outbreak of the worm, however, where
our simulation appears to be quite accurate.

VI. CONCLUSION

In this paper we have introduced our GLOWS
worm simulator, providing a platform capable of
capturing simulated worm traffic as it would appear
to a gateway router for an administrative domain.
GLOWS has been shown to simulate the Code
Red v2 worm with high accuracy during the initial
phase of the infection and can be configured to
simulate a variety of worm types. By properly
configuring the network properties and host-list of
the domain to be simulated, the resulting worm
traffic can be integrated with an actual traffic trace
from the same domain yielding a combined trace
that contains real background traffic with a realistic
worm outbreak. This combined trace is a critical
tool in the analysis of the effectiveness of network
level worm detectors.

REFERENCES

[1] “Deter: A laboratory for security research,” http://www.isi.
edu/deter/.

[2] S. Staniford, V. Paxson, and N. Weaver, “How to 0wn the
Internet in your spare time,” inProc. USENIX Security
Symposium, August 2002.

[3] D. Moore, C. Shannon, and kc claffy, “Code-Red: A case
study on the spread and victims of an Internet worm,” in
Proc. ACM Internet Measurement Workshop, 2002.

[4] M. Matsumoto and T. Nishimura, “Mersenne twister: A
623-dimensionally equidistributed uniform pseudo-random
number generator,” inACM Transactions on Modeling and
Computer Simulation, vol. 8, no. 1, 1998, pp. 3–30.

4

http://www.isi.edu/deter/
http://www.isi.edu/deter/

	Introduction
	How GLOWS Works
	Implementation Details
	Simulator Performance
	Simulator Validation
	Conclusion
	References

