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The surf zone fauna of three dissipative sandy beaches in southern Oregon were 

sampled and the community composition was compared to environmental variables. 

Samples were collected throughout the summer of 2006 using a beach seine, 

hyperbenthic sledge, and sediment core during high, mid and low tides, spring and neap 

tides, and day and night. Sledge samples contained 49,363 individuals (92 species), most 

of which were the mysid Archaeomysis grebnitzkii. We caught 2,059 individuals (19 

species) in the beach seine, most of which were the smooth bay shrimp Lissocrangon 

stylirostris. The fauna was composed of species that are typically inhabitants of the open 

ocean, rocky intertidal and sandy beach. The biggest influence on catch was the date on 

which the fauna were sampled. Juvenile Chinook salmon and ghost shrimp larvae, species 

that had not been previously reported as inhabitants of the surf zone of sandy beach, were 

observed. 
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CHAPTER I 

GENERAL INTRODUCTION 

 

In the past, the sandy beach surf zone fauna has been characterized as structurally 

homogeneous and were thought to offer little variability in terms of habitat diversity, 

cover or productivity (Pearse et al. 1942, Hedgpeth 1957). However, several studies have 

suggested fluctuations in physical variables (wave height, turbidity, sand grain size, 

beach slope, temperature and salinity) and temporal scales (seasons, tidal level, moon 

stage, time of day) may alter the composition and species richness of surf zone 

assemblages (e.g. Watkin 1941, Colman and Segrove 1955, Boysen 1975, Hamerlynck 

and Mees 1991, Clark et al. 1996, Mees and Jones 1997, Lock et al. 1999, Beyst et al. 

2001, Dominguez Granda et al. 2004, McLachlan 2006).    

This fauna is almost entirely of marine origin and consists almost completely of 

crustaceans (McLachlan 2006). These species can be present as adults or as one or more 

of its developmental stages (Mees and Jones 1997, Beyst et al. 2001, Dominguez Granda 

et al. 2004, McLachlan 2006). McLachlan (2006) categorized these species as residents, 

non-residents and immigrants. In which, resident species may be planktonic or 

benthoplanktonic species while non-residents may be holo- (adult stages) or 

meroplanktonic species (development stages). Immigrants are those species categorized 

as temporary visitors.  
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In Oregon very little if any work has been done on this community or the 

variables that influence it, despite the fact that more than two-thirds of the coastline is 

comprised by sandy beach (ODFW 2006) and that the surf zone fauna is considered 

important ecologically and economically (Moran and Fishelson 1971, Murison et al. 

1984, Beyst et al. 1999, Mauchline 1982, Laughlin and Linden 1983, Brandt et al 1993, 

Mees and Jones 1997, Cockroft et al. 1998). Several studies have been conducted on 

individual species that inhabit the area (Barnard 1954, Bosworth 1973, Hoeman 1982, 

Hughes 1982, Llewellyn 1983). This will be the first work that attempts to document the 

entire community and analyze the factors that influence it. The primary objectives of this 

thesis were to (1) describe the community present in the surf zone of three sandy beaches 

of southern Oregon, U.S.A. and to (2) analyze the environmental variables that influence 

this community. The surf zone fauna was separated due to its size. Chapter II analyzed 

the ecology of the smaller swimming surf zone fauna (~ 1 mm in length). Chapter III 

analyzed the ecology of the surf zone fish and macrocrustaceans (≥ 5 mm in length). 

Because of the abundance of Chinook salmon (Oncorhynchus tshawytscha) and smooth 

bay shrimp (Lissocrangon stylirostris) in the samples, their ecology was analyzed in a 

separate chapter. Chapter IV estimated the time of residency and the feeding habits of 

sub-yearling Chinook salmon in a dissipative sandy beach of southern Oregon. Finally, 

Chapter V documented the ecology of L. stylirostris present in a dissipative sandy beach 

of Southern Oregon.  
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CHAPTER II 

THE ECOLOGY OF THE SURF-ZONE FAUNA OF THREE DISSIPATIVE SANDY 

BEACHES IN SOUTHERN OREGON 

 

Introduction 

 

The sandy beach surf-zone fauna has been characterized as structurally homogeneous and 

the surf-zone has been considered to provide habitat, cover or productivity (Pearse et al. 

1942, Hedgpeth 1957). However, a number of studies have found that fluctuations in 

physical variables (wave height, turbidity, sand grain size, beach slope, temperature and 

salinity) and temporal scales (seasons, tidal level, moon stage, time of day) can alter the 

composition and species richness of surf-zone assemblages (e.g. Watkin 1941, Colman & 

Segrove 1955, Boysen 1975, Hamerlynck & Mees 1991, Clark et al, 1996, Mees & Jones 

1997, Lock et al 1999, Beyst et al. 2001, Dominguez Granda et al. 2004, McLachlan 

2006).    

The sandy beach surf-zone fauna is composed primarily of crustaceans 

(McLachlan 2006). These species can be present as adults, juveniles, larvae or eggs 

(Mees & Jones 1997, Beyst et al. 2001, Dominguez Granda et al 2004, McLachlan 2006). 

McLachlan (2006) categorized the surf-zone fauna as residents and non-residents; 

resident species are present regularly in the surf-zone while non-residents are present 

sporadically or irregularly. Within the resident forms, benthoplanktonic forms, also  
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known as hyperbenthic forms (Mees & Jones 1997), are species that occur both in the 

benthos and in the plankton. Within the non-resident group, several of its species have 

been known to be inhabitants of other environments, actively or passively migrating to 

the sandy beach. Tully and Céidigh (1987) stated that the possible functions of migration 

could be classified into three categories: non-interactive (those associated with life cycle 

events such as feeding, searching for mates, mating and moulting), interactive (brought 

about through competition and disturbance, including crowding, interference, predation 

and deterioration of habitat quality) and catastrophic (non-behavioural) drift.  

Despite the fact that more than two-thirds of the Oregon coastline is sandy beach 

(ODFW 2006) and that in other regions the surf-zone fauna is considered important 

ecologically and economically (Moran & Fishelson 1971, Murison et al. 1984, Beyst et 

al. 1999, Mauchline 1982, Laughlin & Linden 1983, Brandt et al 1993, Mees & Jones 

1997, Cockroft et al. 1998), little work has been done on the surf-zone community 

present in the water column or the variables that influence it. On the west coast of North 

America, several studies have been conducted on individual species that inhabit the surf-

zone (Barnard 1954, Bosworth 1973, Hoeman 1982, Hughes 1982, Llewellyn 1983) but 

this will be the first study that attempts to document the entire community and analyze 

the variables that influence it. The specific aims of this study were to (1) describe the 

surf-zone community present at three sandy beaches in Oregon and to (2) investigate the 

environmental variables that may influence this community. 
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Materials and Methods 

 

Study Area 

 

The Oregon coast is characterized by mixed semidiurnal tides, with maximum daily 

amplitude of 3.6 m and a mean of 2 m. Wave action is severe in winter and moderate in 

summer, with average wave heights of 4-5 m and 1-2 m, respectively (Komar et al. 

1976). This study was conducted in southern Oregon at the sandy beaches of Bastendorff 

(43°35’N, 124°35’W), Whisky Run (43°18’N, 124°40’W) and Horsfall Beach (43°27’N, 

124°16’W) (Fig. 1). Bastendorff and Whisky Run are approximately 3 Km long and 

Horsfall is over 15 Km long. Bastendorff is located immediately south of the mouth of 

Coos Bay and is bordered by a rocky shore on the south and a rock jetty at the mouth of 

the Coos Estuary to the north. Whisky Run and Horsfall are located approximately 15 

Km south and north of Coos Bay, respectively, and are bordered by other sandy beaches 

or sandflats. Bastendorff is semi-exposed, and Whisky Run and Horsfall are exposed 

beaches. The three beaches are dissipative beaches, which are flat beaches in which the 

wave energy is dissipated in the surf-zone rather than reflected from the beach face, 

which is what occurs on reflective beaches (McLachlan 1980, Masselink & Short 1983). 

Oregon beach sands typically range from 200-300 µm, which corresponds to modally 

dissipative beaches that may become intermediate in midsummer (McLachlan 1990). 

Intermediate beaches are those that may exhibit physical characteristics of dissipative and  
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reflective beaches. These three beaches were chosen due to their accessibility, similar  

physical characteristics and their positioning with respect to the Coos River. 

 

 

Figure 1. Study area with location of the three dissipative sandy beaches sampled in 
southern Oregon during the summer of 2006. 
 

Sampling 

 

The three beaches were sampled in summer 2006. Bastendorff was sampled on six dates 

during high, mid and low tides, neap and spring tides, and day and night (Fig. 2). Night 
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samples were taken only during low tide for safety reasons. Horsfall and Whisky Run 

were sampled once each during the day on a low neap tide.  

 

Figure 2. Time during which the surf zone fauna of dissipative sandy beaches was 
sampled with a hyperbenthic sledge. ( ) = number of samples. 
 

The surf-zone fauna was sampled using a hyperbenthic sledge (Hamerlynck & Mees 

1991) and the macrobenthic fauna with sediment cores. Sampling took place where the 

shallow surf-zone borders the swash zone (McLachlan and Brown, 2006). The 

hyperbenthic sledge sampled the swimming surf-zone fauna present in the whole water 

column at an approximate depth of 50 cm. Two zooplankton nets were mounted, one 

above the other, on the mouth of the sledge. The net had a 25 cm tall and 70 cm wide 

mouth and was 4 m long with a 1 mm mesh. The sledge was hand towed by two people 

parallel to the shoreline for 400 m in total (200 m one way and back). Because of how 
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much time it takes to obtain a sample with the sledge, we considered it impossible to take 

replicates, a conclusion also reached in previous works (Watkin 1941). Therefore the  

 
tows were made sufficiently long for them to account for possible variance in the fauna  

due to the different areas present in the surf-zone of sandy beaches and to the patchy 

distribution that species may present (Mees & Jones 1997, Lock et al. 1999). The base of 

the lower net was 5 cm above the sea floor to avoid the collection of large quantities of 

sand (Mees & Jones 1997). 

To determine if the species present in the water column were also present in the 

sediment, the benthic fauna was sampled with a sediment core. We took three samples of 

the sediment present in the surf-zone at approximately 50 cm in water depth in 

conjunction with the sledge samples. The samples were taken using a 10 cm diameter 

plastic core, which sampled approximately the top 15 cm of sediment. Each sediment 

sample consisted of the fauna present in ten sediment cores. Samples were passed 

through a 1-mm sieve and preserved in 10% buffered formalin.  

 

Environmental Variables 

 

To be able to test correlations between the fauna and several environmental variables that 

have been known to influence the fauna (Watkin 1941, Colman & Segrove 1955, Boysen 

1975, Hamerlynck & Mees 1991, Clark et al, 1996, Mees & Jones 1997, Lock et al 1999, 

Beyst et al. 2001, Dominguez Granda et al. 2004, McLachlan 2006), sand grain size, 

beach profile, temperature, salinity, chlorophyll a, turbidity, the abundance of detached 
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macrophytes, wave height and wind speed were measured. To measure sediment grain 

size (μm), three sediment samples were taken with the core at 50 cm water depth to 

measure sediment grain size. Sand grain size (% and mode) was determined by drying, 

sieving and weighing the sediment samples. Grain size distributions were statistically 

compared between pairs of beaches and tides using a Kolmogorov-Smirnov test (K-S 

test) (Sokal and Rohlf, 1995). The beach profile was determined using standard surveying 

techniques (Kavanagh 1992). Temperature (°C), salinity, chlorophyll a (Chla, mg/m3) 

and optical back-scatter (OBS, NTU) data were obtained with a Sea Bird model 19-

Conductivity-Temperature-Depth (CTD). The CTD was equipped with a Wet Star TD-

700 fluorometer and an OBS. The CTD was carried into the surf-zone and placed in the 

water at approximately one meter in depth for two minutes. Because of mechanical 

problems, this particular CTD was only available for the first and last sample taken at 

Bastendorff and the samples taken at Horsfall and Whisky Run. On the other four dates 

on which Bastendorff was sampled, a CTD without a fluorometer and OBS was used. On 

these dates, in order to measure chlorophyll a and turbidity, three 250 to 1000 ml water 

samples were taken to measure each of these two variables. These water samples were 

analyzed following standard method (Parsons et al. 1984). The chlorophyll a and 

turbidity values obtained from the water samples were standardized to the CTD values 

using data obtained at the same time using the two methods. The detached macrophytes 

present in the hyperbenthic sledge samples were separated, dried and weighed (g/100m2). 

Wind wave height (m) and wind speed (m/s) were obtained from the NOAA Station 
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46015, which is located 16 nautical miles west of Port Orford, OR (42°45'24"N, 

124°49'45"W).  

 

Sample Processing and Data Analysis 

 

In the laboratory, the organisms were identified to the lowest taxonomic level with a 

dissecting scope and using Rudy Jr. & Rudy (1983), Kathman et al. (1986), Kozloff 

(1987), Smith & Carlton (1989), Brusca et al. (2001), Shanks (2001) and Chapman 

(2007). Crustacean species were further categorized by developmental stage (Lock et al. 

1999, Beyst et al. 2001, Dominguez Granda et al. 2004). A distinction was made between 

the surf-zone water column species that were considered regular or sporadic. Species 

were considered Regulars if they were present on three or more sampling dates. Among 

Regular species, a distinction was also made between species that were present only as 

adults or only as developmental stages (juvenile, larvae or eggs). Species present only as 

a developmental stage were grouped as meroplankton. Based on their reported habitat 

(Rudy Jr. & Rudy 1983, Kathman et al. 1986, Kozloff 1987, Smith & Carlton 1989, 

Brusca et al. 2001, Shanks 2001 and Chapman 2007), adults were also separated into 

three groups, planktonic, rocky intertidal and sandy beach. The planktonic group 

consisted of species that have been reported from the coastal ocean. The rocky intertidal 

group consisted of species that have been reported on rocky shores or on the macrophytes 

present on rocky shores. The sandy beach group consisted of species that have been 

reported as inhabitants of sandy beaches.  
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A non-Parametric Cluster Analysis was conducted to observed similarities 

between samples. Clusters are a group of samples with high similarity, and were 

determined by a visual cut off at a resemblance or similarity level. An Analysis of 

Similarity (ANOSIM) was conducted to determine significant differences between 

beaches, between the clusters and between samples taken with the top and bottom net. To 

determine what species contributed to the formation of each cluster, a Similarity 

Percentage Analysis (SIMPER) was conducted. Prior to the analysis the data were log10 

(x+1) transformed to reduce the influence of dominating species and the resemblance was 

obtained using the Bray-Curtis Index. To determine the environmental variables that best 

explained community pattern, a Biota-Environment matching analysis (BIOENV) was 

conducted. The environmental variables tested were temperature, salinity, chlorophyll a, 

OBS, wave height, wind speed and sand grain size, Julian date, stage of tide, lunar tide 

and time of day. Data were normalized and the resemblance obtained using the Eucledian 

distance. These four statistical programs are present in the PRIMER 6 package (Clarke & 

Gorley 2001).  

Densities of organisms were calculated for the surf-zone and benthic samples. 

Species richness (S), diversity (H’), evenness (J’) and dominance (d) were calculated 

only for the surf-zone fauna. Surf-zone densities (ind./100 m2) were calculated using the 

total area sampled by the sledge (280 m2), which was obtained by multiplying the length 

of the tow and the width of the sledge. Mean benthic densities (ind./100 m2) were 

calculated using the area sampled with the sediment core (314 cm2). Species richness was 

determined by the number of species per sample, and the Shannon Index was used as a 
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measurement of diversity (Ludwig & Reynolds 1988). Equitability between species or 

evenness was measured with Pielou’s evenness function (J’) (Pielou 1977). Dominance, 

or the impact of dominant species, was analyzed with the Berger-Parker index (d) (Berger 

& Parker 1970). Values are presented with standard deviation (±) wherever possible. We 

were not able to use a three-way ANOVA to analyze density variances due to tides, lunar 

tides and time of day because we did not sample during all three tides at night. Instead, 

densities were compared among samples taken with the sledge and core, top and bottom 

net, three tidal tides, two lunar tides or day and night separately using one-way ANOVAs 

(5 separate tests). Pair-wise comparisons were conducted using Tukey’s test. We tested 

for significant effects of changes in lunar tide and time of day on density using a partially 

nested mixed model two-way ANOVA, with lunar tide and time of day as fixed factors. 

We were able to use two-way ANOVAs despite the fact that we sampled only once 

during the spring/night low tide because we did obtain replicates for spring/day low tide, 

neap/night low tide and neap/day low tide. However, because of the lack of spring/night 

low tide replicates we were not able to do any further statistical comparison. All of the 

assumptions for the analysis of variance were met, except for the homogeneity of 

variances. To meet this assumption, the data were log10 (x+1) transformed and then tested 

with an F max test. Dominance of the community by specific species was also analyzed 

using one-way ANOVAs and the data were arc sin transformed to meet the homogeneity 

of variances assumption, which was tested using an F max test (Sokal & Rohlf 1995). 

Because of difficulties meeting ANOVA assumptions, differences in S, H’ and J’ were 

analyzed using a Kruskal-Wallis non-parametric test (Sokal & Rohlf 1995).  
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Linear correlations between the biological data (Density, S, H’ and J’) of the five 

groups (planktonic, rocky/macrophyte, sandy beach, meroplankton, sporadic) and wind 

speed, wave height, chlorophyll a, OBS, temperature, salinity, detached macrophytes, 

sand grain size and Julian date were made. These analyses were conducted on the whole 

community, the three adult groups and the development stage group separately. Finally 

within the sandy beach and meroplankton groups, the densities of several species were 

analyzed with one-way ANOVAs and were correlated to the measured environmental 

variables. 

 

Results 

 

Environmental Variables 

 

The wind was mostly from the Northwest at speeds of approximately 4.3±1.4 m/s, 

producing waves that varied between 1 and 2.7 m, with significantly larger waves during 

spring tides (n = 5, F = 59.93, p < 0.001) (Table 1). The dry weight of detached 

macrophytes varied between 0.5 g to almost 40 g /100 m2. The slope at Bastendorff 

varied between 1:36 (06/07/06) and 1:59 (07/22/06), and was 1:74 at Whisky Run and 

1:33 at Horsfall. The sand grain size varied at the three beaches, with finer sand present at 

Whisky Run (Table 1). 
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Table 1. Date of sampling and environmental variables measured at three sandy beaches 
in southern Oregon during the summer of 2006. Bast. = Bastendorff, Hors. = Horsfall, 
Whis. = Whisky Run. W. dir. = wind direction (degrees), W. sp. = wind speed (m/s), 
Wave = wave height (m), Chla = chlorophyll a (mg/m3), OBS = optical back scatter 
(NTU), Sal = salinity, Temp = temperature (ºC), Macro = weight of detached 
macrophytes (g), Sand = % of sand grains with sizes ≤ 381 µm. * Samples in which 
detached macrophyte values were not available. ** Values were considered outliers and 
therefore not presented.  
 
Beach Date W. dir. W. Sp. Wave Chla OBS Sal Temp Macro Sand
Bast. 6/7 15 5.7 1.7 0.3 10.0 32.2 14.0 * 71.4
Bast. 6/7 16 5.3 1.7 0.3 5.2 32.1 14.2 * 67.1
Bast. 6/7 19 4.9 1.5 0.3 4.8 32.0 14.7 * 37.0
Bast. 7/22 45 3.2 2.3 0.1 6.1 33.8 10.8 0.5 78.4
Bast. 7/22 32 3.0 2.3 0.1 1.1 34.0 10.7 5.1 66.3
Bast. 7/22 43 3.1 2.3 0.1 2.1 33.6 10.7 4.1 75.9
Bast. 7/27 40 4.9 2.7 0.1 6.3 33.1 9.9 20.2 64.0
Bast. 7/27 28 5.7 2.9 0.2 2.1 33.6 9.6 19.2 49.1
Bast. 7/27 21 5.8 2.8 0.1 2.1 33.4 9.7 38.5 43.3
Bast. 7/30 204 1.3 1.1 0.4 3.6 33.7 11.1 15.9 69.8
Bast. 8/2 21 3.4 1.1 0.2 1.5 33.6 11.9 1.7 40.4
Bast. 8/13 18 5.9 2.7 ** 13.6 29.5 15.7 3.9 41.5
Hors. 6/30 18 4.0 1.6 0.3 9.3 33.7 9.4 0.7 14.6
Whis. 7/1 24 4.2 1.6 3.2 181.0 33.6 9.4 1.0 65.4
 

At Bastendorff, the mean sand grain size was significantly finer high than at low tide (n = 

3, D = 0.19, p = 0.01) but there was no significant difference between high and mid or 

low and mid tide. 

 

Faunal Composition 

 
A total of 49,363 individuals belonging to 92 species were identified from the 14 samples 

with a mean of 3,526±6,578 ind./100 m2 (±S.D.) (Table 2). Upogebia pugettensis and 
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Nereis vexillosa were present in more than one developmental stage. The most abundant 

and common species was the mysid Archaeomysis grebnitzkii (91% or 3,201±6,904 

ind./100m2). Of the 94 species, 51 were considered Regulars and 43 were considered 

Sporadic (Table 2). Of the 51 regulars, 34 were present as adults only and 17 were 

present as meroplankton only. Finally of the 34 adults, 13 were sandy beach species, 8 

planktonkic, and 13 rocky intertidal (Fig. 3).   Of the three beaches, Bastendorff had the 

highest mean density and species richness but lowest diversity and evenness (Table 3).  

The mean densities observed in Bastendorff were 15 times greater than those observed at 

Horsfall and Whisky Run, however diversity and evenness values observed in Horsfall 

and Whisky Run were higher than those observed at Bastendorff. 
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Table 2. List of species present in three dissipative sandy beaches sampled during the 
summer of 2006. Taxa = higher taxa, Stage = life stage, Density = total densities 
(ind./100m2), Beach, 1 = Bastendorff, 2 = Horsfall, 3 = Whisky Run.  
Table 3. Total and mean densities (ind./100 m2 ± S.D), species richness, diversity, 
(Shannon Index), and evenness (Pielou’s function) values of the surf-zone fauna present 
in three dissipative sandy beaches in southern Oregon during the summer of 2006. HW, 
MW, LW = high, mid and low tide respectively. Day and Night = Time of day. Spring 
and Neap = lunar tides.  
 
 

Species Stage Taxa Density Beach
Planktonic Group      
Sagitta sp. adult Chaetognatha 28 1,2,3
Muggiaea atlantica adult Cnidaria 18 1,2,3
Obelia sp.* adult Cnidaria 537 1,2,3
Calanus marshallae adult Crustacea 248 1,2,3
Eucalanus bungii adult Crustacea 7 1,2 
Lycaeopsis themistoides adult Crustacea 12 1,2,3
Pleurobrachia sp. adult Ctenophora 4 1,2,3
Insect  adult Insect 4 1,2,3
Rocky Intertidal Group      
Caprella equilibra adult Crustacea 38 1 
Caprella verrucosa adult Crustacea 5 1 
Caprella incisa adult Crustacea 84 1,3 
Exosphaeroma amplicauda adult Crustacea 8 1 
Gnathopleusteus sp. adult Crustacea 100 1 
Gnorimosphaeroma oregonensis adult Crustacea 3 1,2 
Holmesimysis costata adult Crustacea 72 1,2 
Idotea fewkesi adult Crustacea 18 1,2,3
Jassa shawi adult Crustacea 511 1 
Laniropsis derjugini adult Crustacea 8 1 
Metacaprella anomala adult Crustacea 12 1 
Pontongenia rostrata adult Crustacea 30 1 
Stenothoides burkanki adult Crustacea 3 1,2,3
Allorchestes bellabella adult Crustacea 83 1,2,3
Sandy Beach Group      
Archaeomysis grebnitzkii* adult Crustacea 44,819 1,2,3,
Atylus tridens* adult Crustacea 890 1,2,3
Diastylis sp. adult Crustacea 18 1 
Dogielinotus loquax adult Crustacea 12 1 
Eohaustorius washingtonianus* adult Crustacea 26 1,2,3
Excirolana kincaidi adult Crustacea 89 1 
Hartmanodes hartmanae adult Crustacea 40 1,2,3
Lissocrangon stylirostris* adult Crustacea 308 1,2,3
Mandilophoxus sp.* adult Crustacea 41 1,2,3
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Table 2. Continued. 

Nephtys californiensis* adult Polychaeta 2 1,2 
Spionidae sp.* adult Polychaeta 8 1,2 
Achelia spinoseta adult Pycnogonida 22 1,2 
Meroplankton Group      
Mytilus sp. juvenile Bivalvia 143 1 
Cancer gracilis or antennarius megalopa Crustacea 5 1,2 
Cancer magister* megalopa Crustacea 22 1 
Crangonidae sp. 1 megalopa Crustacea 53 1,2,3
Crangonidae sp. 1 zoea Crustacea 7 1,2,3
Crangonidae sp. 2 megalopa Crustacea 18 1 
Fabia subquatra zoea Crustacea 14 1 
Hemigrapsus orogenensis megalopa Crustacea 44 1 
Lophopanopeus bellus megalopa Crustacea 60 1,2,3
Neotrypaea californiensis zoea Crustacea 62 1,2,3
Pachycheles sp. zoea Crustacea 99 1,2,3
Upogebia pugettensis megalopa Crustacea 6 1 
Littorina plena* egg Gastropoda 580 1,2,3
Lacuna sp. juvenile Gastropoda 28 1 
Leptocottus armatus postlarva Osteichthies 4 1 
Pleuronectes vetulus egg Osteichthies 20 1 
Nereis vexillosa postlarva Polychaeta 17 1 
Sporadic Group      
Siliqua patula juvenile Bivalvia 1 1 
Cephalopoda sp. egg Cephalopoda 1 1 
Polyorchis penicillatus adult Cnidaria 1 1 
Aequorea aequorea adult Cnidaria 1 1,2,3
Sarsia sp. adullt Cnidaria 1 1 
Scrippsia pacifica adult Cnidaria 0.4 1 
Atylus sp. adult Crustacea 11 1 
Balanus glandula nauplii Crustacea 0.4 1 
Cancer oregenesis/productus megalopa Crustacea 10 1 
Cancer sp. zoea Crustacea 1 1 
Corophium sp. adult Crustacea 1 1 
Crangonidae sp. 2 zoea Crustacea 2 1 
Crangonidae sp. 1 postlarva Crustacea 1 1,3 
Cumella sp. adult Crustacea 1 1 
Dynamennella sheareri adult Crustacea 0.4 1 
Emerita analoga* adult Crustacea 1 1,2 
Euphausia mutica adult Crustacea 1 2 
Euphausia pacifica adult Crustacea 1 1,2,3
Exacanthomysis davisi adult Crustacea 1 1 
Exosphaeroma inornata adult Crustacea 2 1 
Eyakia sp.* adult Crustacea 7 1 
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Table 2. Continued. 

Idotea montereyensis adult Crustacea 2 1 
Idotea sp. adult Crustacea 0.4 1 
Majidae sp. zoea Crustacea 1 1 
Munna stephenseni adult Crustacea 4 1 
Paguristes turgidus zoea Crustacea 0.4 1 
Porcenallidae sp. megalopa Crustacea 2 1,3 
Protohyale frequens adult Crustacea 1 1 
Synidotea pettiboneae adult Crustacea 0.4 1 
Upogebia pugettensis zoea Crustacea 2 1,2 
Nudibranch sp 1 adult Gastropoda 0.4 1 
Unknown adult Hemichordate 1 1 
Nematoda sp.* adult Nematoda 3 1 
Amphistichus rhodoterus juvenile Osteichthies 1 1 
Engraulis mordax larva Osteichthies 0.4 1 
Gasterosteus aculeatus juvenile Osteichthies 1 1 
N.I. Egg egg Osteichthies 0.4 1 
Abarenicola sp. juvenile Polychaeta 1 1 
Hesionura sp. adult Polychaeta 1 1 
Nereis vexillosa juvenile Polychaeta 3 1 
Orbiniidae sp adult Polychaeta 3 1 
Anoplodactylus oculospinus adult Pycnogonida 6 1,3 
Phoxichilidium femoratum adult Pycnogonida 0.4 1 
* Species present in water column and sediment   

 

 
 

Figure 3. Flow chart explaining how the surf zone fauna was separated based on the 
number of sampling dates each species was present, the life stage, and the environment 
they have been cited as inhabiting. Samples taken at three dissipative sandy beaches in 
southern Oregon during summer 2006. ( ) = number of species. 
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Community Statistical Analysis 

 

The faunal communities of the three beaches were not significantly different (ANOSIM, 

n = 28, Global R = 0.06, p = 0.30), and were therefore analyzed collectively in further 

analysis. At a resemblance level of 45, the samples from the whole community grouped 

into five significantly different clusters (ANOSIM, n = 28, Global R = 0.978, p = 0.01) 

based on the date on which they were taken (Fig. 4). Each cluster was formed by a group 

of dates that were most similar. Within each cluster the samples taken with the top and 

bottom samples were not significantly different (ANOSIM, n = 28, Global R = 0.02, p = 

0.35), and therefore their data were averaged in further analysis. The environmental 

variable that best explained the community pattern was the Julian date (n = 28, r = 0.84, p 

= 0.01). Each cluster had one to four species that contributed more than 10% to the 

similarity of each cluster (Table 4a). Archaeomysis grebnitzkii contributed more that 10% 

to the similarity of four clusters, and Obelia sp. and Littorina plena (egg case) each 

contributed to two clusters. The surf-zone water column community was significantly 

influenced by the Julian date, and A. grebnitzkii was the most contributing species. 

Within the whole community, significantly higher densities (n = 3, F = 99.03, p < 0.001) 

were observed at night than in the day and significant higher diversity and evenness (n = 

3, H = 6.23, p = 0.01) were observed during the day (Table 3). Significantly higher 

diversity values were also observed during spring tides (n = 7, H = 4.81, p = 0.02) when 

compared to neap tides.  
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Table 3. Total and mean densities (ind./100 m2 ± S.D), species richness, diversity 
(Shannon Index), and evenness (Pielou’s function) values of the surf-zone fauna present 
in three dissipative sandy beaches in southern Oregon during the summer of 2006. HW, 
MW, LW = high, mid and low tide respectively. Day and Night = Time of day. Spring 
and Neap = lunar tides.  
 

    Species 

    
Density 

Richness
Diversity Evenness 

Bastendorff 4,077 (6,987) 35 (11) 1.4 (0.8) 0.4 (0.2) 
Horsfall 172 33 2.5 0.7 

B
ea

ch
 

Whisky Run 278 32 2 0.6 

HW 225 (131) 30 (15) 1.8 (0.6) 0.5 (0.1) 
MW 339 (209) 31 (11) 1.5 (0.4) 0.5 (0.1) 
LW 5959 (8035) 38 (8) 1.3 (0.9) 0.4 (0.3) 
Day 328 (212) 32 (10) 1.8 (0.5) 0.5 (0.1) 
Night 15255 (4297) 43 (4) 0.3 (0.2) 0.1 (0.1) 

Spring 2141 (4482) 39 (8) 1.7 (0.7) 0.5 (0.2) A
ll 

B
ea

ch
es

 

Neap 4911 (8318) 30 (10) 1.3 (0.8) 0.4 (0.3) 

HW 112 (48) 6 (3) 0.7 (0.5) 0.4 (0.2) 
MW 215 (194) 7 (2) 0.7 (0.3) 0.3 (0.1) 
LW 5672 (7940) 9 (2) 0.6 (0.5) 0.3 (0.2) 
Day 182 (156) 7 (2) 0.8 (0.3) 0.4 (0.1) 
Night 14787 (4602) 11 (0) 0.1 (0.1) 0.1 (0.03) 

Spring 1878 (4229) 9 (1) 0.7 (0.4) 0.4 (0.2) S
an

dy
 B

ea
ch

 

Neap 4745 (8260) 8 (3) 0.5 (0.5) 0.3 (0.2) 

HW 16 (9) 4 (3) 0.8 (0.8) 0.7 (0.2) 
MW 44 (66) 4 (2) 0.9 (0.8) 0.6 (0.5) 
LW 85 (89) 4 (2) 0.7 (0.6) 0.6 (0.2) 
Day 50 (49) 5 (2) 0.9 (0.6) 0.6 (0.3) 
Night 105 (149) 2 (2) 0.3 (0.4) 0.5 (0) 

Spring 51 (100) 5 (1) 1.2 (0.4) 0.7 (0.2) 

P
la

nk
to

ni
c 

Neap 71 (50) 3 (3) 0.4 (0.6) 0.4 (0.3) 

HW 25 (36) 6 (4) 1.2 (0.2) 0.7 (0.2) 
MW 33 (25) 7 (2) 1.3 (0.2) 0.7 (0.2) 
LW 97 (118) 8 (3) 1.3 (0.4) 0.7 (0.4) 
Day 36 (51) 7 (3) 1.2 (0.3) 0.7 (0.3) 
Night 185 (139) 10 (2) 1.4 (0.4) 0.6 (0.4) 

Spring 79 (72) 9 (3) 1.3 (0.3) 0.7 (0.3) R
oc

ky
 In

te
rti

da
l 

Neap 57 (119) 6 (3) 1.2 (0.4) 0.7 (0.4) 
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Table 3. Continued. 

HW 71 (53) 10 (5) 1.1 (0.2) 0.5 (0.1) 
MW 47 (49) 9 (3) 1.3 (0.3) 0.6 (0.3) 
LW 104 (121) 10 (3) 1.3 (0.3) 0.6 (0.3) 
Day 61 (55) 9 (3) 1.2 (0.3) 0.6 (0.3) 
Night 170 (177) 12 (2) 1.5 (0.03) 0.6 (0.04) 

Spring 135 (116) 11 (3) 1.3 (0.2) 0.5 (0.2) M
er

op
la

nk
to

n 

Neap 34 (25) 8 (2) 1.3 (0.3) 0.6 (0.3) 

 
 

 

Figure 4. Cluster Analysis of surf-zone fauna. Five significantly different clusters (45%) 
(n = 14, Global R = 0.98, p = 0.01) were formed. Samples taken at three dissipative sandy 
beaches in southern Oregon during summer 2006. Data were log10 (x+1) transformed and 
resemblance values obtained using Bray Curtis Index. HW, MW, LW = high, mid and 
low tide, respectively. Top and Bot = Top and Bottom net of hyperbenthic sledge. Bast = 
Bastendorff, Hors = Horsfall, WRun = Whisky Run.  
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Because A. grebnitzkii contributed to the similarity of four clusters and was 

present in all of the samples in higher number than any other species, its densities were 

employed to determine dominance. Dominance of A. grebnitzkii on the surf-zone water 

column community was high for all of the samples (0.5±0.3) and was significantly higher 

during the night that during the day, 0.9±0.04 and 0.3±0.2 respectively (n = 3, F = 37.75, 

p < 0.001).  

 

Sandy Beach Group 

 

The data grouped into four significantly different clusters (63%) (n = 14, R = 0.832, p = 

0.01) (Fig. 5). In each cluster, two to four species contributed to similarity with at least 

10%. Archaeomysis grebnitzkii and Atylus tridens contributed with at least 10% to the 

similarity of four clusters (Table 4b).  The environmental variables that best explained the 

community pattern were Julian date and time of day (n = 14, r = 0.81, p = 0.01). The 

density, species richness, diversity and evenness differed significantly between day and 

night (n = 3, F = 69.85, H ≥ 6.4, p ≤ 0.01), with higher density and species richness 

values during the night and higher diversity and evenness during the day (Table 3).  

A positive linear correlation was observed between species richness and Julian 

date (n = 14, r = 0.72, p = 0.01) and a negative linear correlation was observed between 

diversity and temperature (n = 14, r = 0.58, p = 0.05). Significantly higher total densities 

were observed during spring tides for A. tridens and at night for A. grebnitzki, 

Lissocrangon stylirostris, A. tridens, Hartmanodes hartmanae and Eohaustorius 
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washingtonianus (n = 3, F ≥ 6.56, p ≤ 0.01). Significant differences were found between 

the densities of Excirolana chiltoni during spring/night low tides (1.5±0 ind./100m2), 

neap/night low tides (0.8±1 ind./100m2), spring/day low tides (0.7±0.3 ind./100m2) and 

neap/day low tides (0.4±0.2 ind./100m2) (2-way ANOVA, Table 5).  

 

Table 4. Similarity Percentage analysis (SIMPER) showing the species contributing to 
similarity of each cluster formed by the analysis presented in Fig. 2 (a), Fig. 5 (b) and Fig 
6 (c). 
 

a) Cluster 1 Cluster 2 Cluster 3 Cluster 4 
Obelia sp. 43.3 16.6 - - 
Archaeomysis grebnitzkii 20.7 11.7 19.4 27.6 
Littorina plena (egg capsule) 12.7 12.9 16.4 - 
Calanus marshallae - 14.0 - - 
Atylus tridens - - 14.3 11.7 
b) Cluster 1 Cluster 2 Cluster 3 Cluster 5 
Archaeomysis grebnitzkii 68.1 41.1 44.8 31.5 
Atylus tridens 20.4 19.5 31.3 15.6 
Eohaustorius washingtonianus - 13.2 - - 
Mandilophoxus sp. - 11.4 - - 
Lissocrangon stylirosris - - - 11.1 
c) Cluster 1 Cluster 2 Cluster 3 Cluster 4 
Littorina plena (egg capsule) 38.2 58.9 36.0 26.5 
Upogebia pugettensis (megalopa) 23.5 - - - 
Lophopanopeus bellus (megalopa) 15.9 - - 24.8 
Fabia subquatra (zoea) 14.3 - - - 
Pachycheles sp. (zoea) - 11.1 - - 
Crangonidae sp. 1 (megalopa) - 11.1 - - 
Mytilus sp. (juvenile) - - 16.5 - 
Cancer magister (megalopa) - - - 20.3 
Hemigrapsus orogenensis (zoea) - - - 10.1 
Clusters not present because there were fewer than two samples in the group. 
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Table 5. Results of two-way ANOVA test for differences in Excirolana chiltoni densities 
at low tide. Fixed effects were time of day and lunar tides.  Samples taken at Bastendorff, 
a dissipative sandy beach in southern Oregon. 
 

  df Effect MS Effect df Error MS Error F p-level 
Lunar tide 1 0.23 4 0.006206 36.52 0.004
Time of day 1 2.16 4 0.006206 347.65 0.00005
Interaction 1 0.20 4 0.006206 32.22 0.005

 
 

In the day samples, significantly higher densities were observed in samples taken 

with the bottom net for A. grebnitzkii and L. stylirostris (n = 11, F ≥ 8.42, p ≤ 0.008), and 

during spring tides for A. grebnitkii (n = 5, F = 5.1, p = 0.05). Finally, significantly higher 

densities were observed in night samples taken with the bottom net for A. tridens (n = 3, 

F = 8.21, p = 0.05). No significant linear correlations were observed between densities of 

sandy beach species and environmental variables. 

 
 



 25

 

Figure 5. Cluster Analysis of adult sandy beach species inhabitanting surf-zones of three 
dissipative sandy beaches of southern Oregon, summer 2006. Resemblance cut off at 
65% formed four significantly different clusters (n =14, Global R = 0.83, p = 0.02). Data 
were previously log10 (x+1) transformed and resemblance values obtained using Bray 
Curtis Index. HW, MW, LW = high, mid and low tide, respectively. Bast = Bastendorff, 
Hors = Horsfall, WRun = Whisky Run.  

 

 
Planktonic Group 

 

The Cluster and SIMPER analysis grouped the data into four significantly different 

clusters (45%) (n = 14, R = 0.545, p = 0.03). In each cluster, one to five species 

contributed to its similarity with at least 10%. Calanus marshallae contributed in more 

than 10% to the similarity of three clusters, and Obelia sp., Sagitta sp, and Lycaeopsis 
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themistoides each contributed to two clusters. The environmental variable that best 

explained the community pattern was Julian date (n = 14, r = 0.63, p = 0.01). In this 

group, significantly higher diversity and evenness values were observed during spring 

tides than neap tides (n = 7, H ≥ 5.66, p ≤ 0.02) (Table 3). Diversity and evenness values 

were positively correlated with wave height (n = 14, r ≥ 0.60, p = 0.05) (Fig. 6), and 

negatively correlated with temperature (n = 14, r = 0.62, p = 0.05).  

 

Rocky Intertidal Group 

 

The samples of this group formed four significantly different clusters with low similarity 

(40%) (n = 14, R = 0.979, p = 0.01). One to five species contributed to the similarity of 

the clusters with at least 10%. Jassa shawi contributed with at least 10% to all clusters, 

and was the only species that contributed over 10 % to more than one cluster. The 

environmental variable that best explained the community pattern was Julian date (n = 

14, r = 0.70, p = 0.01). Within this group, significantly higher density values were 

observed during the night than in the day (n = 3, F = 6.46, p = 0.03) (Table 3). Positive 

linear correlations were observed between (1) species richness and both, the amount of 

detached macrophytes (n = 11, r = 0.60, p = 0.05) (Fig. 7) and Julian date (n = 14, r = 

0.74, p = 0.01), (2) densities and Julian date (n = 14, r = 0.60, p = 0.05), and (3) evenness 

and temperature (n = 14, r = 0.56, p = 0.05). 
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Figure 6. Positive linear correlations between both diversity (H’) and evenness values 
(J’) with wave height (Wave, m). Samples taken at three dissipative beaches of southern 
Oregon in the summer of 2006. 
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Figure 7. Positive linear correlation between the dry weights of detached macrophytes 
(g./100 m2) and the number of species (# of Species) present at three dissipative sandy 
beaches of southern Oregon during the summer of 2006. 

 

Meroplankton Group 

 

This group was composed of five significantly different clusters (50%) (n =14, R = 0.818, 

p = 0.01) (Fig. 8). Two to four species contributed to the similarity of each cluster with at 

least 10%. Littorina plena (egg case) contributed with at least 10% to the similarity of 

four and Lophopanopeus bellus (megalopa) to two clusters (Table 4c). The environmental 

variables that best explained the community pattern were Julian date and temperature (n 

= 14, r = 0.75, p = 0.01). Density and diversity values were significantly higher during 

spring tides (n = 7, F = 9.76, H = 3.97, p ≤ 0.05) than neap tides (Table 3).  
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Figure 8. Cluster Analysis of species present as meroplankton in the surf-zone fauna 
samples. Samples taken at three dissipative sandy beaches of southern Oregon, summer 
2006. Resemblance cut off at 50% formed five significantly different clusters (n = 14, 
Global R = 0.82, p = 0.01). Data were log10 (x+1) transformed and resemblance values 
obtained using Bray Curtis Index. HW, MW, LW = high, mid and low tide, respectively. 
Bast = Bastendorff, Hors = Horsfall, WRun = Whisky Run.  

 

A positive linear correlation was observed between both species richness and 

densities and Julian date (n = 14, r ≥ 0.64, p = 0.05). Within each species, densities were 

significantly higher during (1) spring tides for Littorina plena (egg case) and 

Crangonidae sp. (zoea) (n = 7, F ≥ 5.15, p ≤ 0.04), and (2) at night for Lophopanopeus 

bellus (megalopa) and Crangonidae sp. (zoea) (n = 3, F ≥ 5.93, p ≤ 0.02). In day samples, 

significantly higher densities were observed in samples taken during spring tides for 

Neotrypaea californiensis (zoea) (n = 5, F = 9.40, p = 0.01) and in bottom net samples for 

Crangonidae sp. (zoea) (n = 11, F = 5.35, 0.03). Significant linear correlation was 

observed between Neotrypaea californiensis (zoea) and salinity (n = 10, r = 0.63, p = 
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0.05) (Fig. 9) correlation, which was maintained even when the point with lowest salinity 

and highest density was eliminated (n = 10, r = 0.64, p = 0.05).  

 

 

Figure 9. Negative linear correlation between densities of all zoea stages of Neotrypaea 
californiensis (ind./100m2) and salinity. Samples taken at three dissipative beaches in 
southern Oregon in the summer of 2006. 

 

A stronger linear correlation was observed between the densities of zoeal stages 1 

and 2 and salinity (n = 11, r = 0.73, p = 0.05) (Fig. 10). Neotrypaea californiensis was 

present in the samples in all five zoeal stages. A total of 62 zoea were caught, most of 

which most were stage 2 (40%). Upogebia pugettensis (megalopa) densities were 

positively correlated with temperature (n = 14, r = 0.75, p = 0.01) and negatively 

correlated with salinity (n = 14, r = 0.73, p = 0.01). Mytilus sp. (juvenile) was positively 

correlated with the amount of detached macrophytes (n = 11, r = 0.82, p = 0.01).  
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Figure 10. Negative linear correlation between densities of Neotrypaea californiensis 
zoea stages I and II (ind./100m2) and salinity. Samples taken at three dissipative beaches 
in southern Oregon in the summer of 2006. 

 

Benthic Fauna 

 

In the sediment cores we found 15 species inhabiting the top 15 cm of sediment at 50 cm 

in water depth, 13 of which were also present in the water column (Table 2). Nephtys 

californiensis and Eohaustorius brevicuspis were present in significantly higher densities 

in the sediment than in the water column (n = 28, F ≥ 79.4, p < 0.01). Densities of 

Archaeomysis grebnitzkii and Lissocrangon stylirostris were not significantly different 

between sediment and water column fauna.  
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Discussion 

 

General Composition 

 

The results obtained suggest that despite the harsh hydrodynamic conditions, the surf-

zones of Oregonian sandy beaches are used extensively throughout the summer by a 

number of small invertebrate and vertebrate species. The total number of individuals and 

species caught during the present study were similar than those reported by previous 

studies of surf-zones in temperate regions (Watkin 1941, Colman & Segrove 1955, Lock 

et al. 1999, Beyst et al. 2001). However the density and species richness values observed 

in the present study were lower than those conducted in tropical areas (Dominguez 

Granda et al. 2004). The higher values could have been because most of the previous 

studies were conducted during a whole year while this study was conducted only during 

the summer when environmental conditions for the fauna are optimum. Therefore, we 

hypothesize that the average densities and species richness we would find in the winter at 

the three Oregon beaches would be lower than those we found in the summer. 

 

Community Statistical Analysis 

 

The environmental variable that best explained the patterns of the whole community and 

of the four groups, in which the community was separated, was the date on which the 

samples were taken. This was probably due to seasonal changes in species composition 
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and densities, and in environmental variables. This has been observed in previous studies 

(Boysen 1975, Hamerlynck & Mees 1991, Beyst et al. 2001, Richoux et al. 2004). These 

changes in species composition and densities could have occurred due to an increase in 

food availability and optimum environmental conditions, which might allow higher 

reproductive success during the summer.  

SIMPER analysis, dominance values and the percentage of occurrence (50 ± 

32%) suggest that the most influential, if not dominating, species was a mysid, 

Archaeomysis grebnitzkii, as seen in previous studies (Lock et al. 1999, Beyst et al. 2001, 

Dominguez Granda et al. 2004, Richoux et al. 2004, McLachlan & Brown 2006). 

Archaeomysis grebnitzkii dominates the surf-zone fauna probably due to several 

ecological factors, which not all other species exhibit. These factors could be (1) they are 

direct developers, as all peracarids, and therefore their juveniles recruit directly to the 

general population, (2) they can burry into the sediment to escape predation, and (3) they 

are able to maintain their position in the surf-zone by vertically and horizontally 

migrating. Finally, the dominance by A. grebnitzkii in the surf-zone water column fauna 

increased during the night, which was probably because this is the time when it feeds, 

most likely on planktonic and benthic harpacticoid copepods, as has been seen in 

previous studies (Takahashi & Kawaguchi 1998). 
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Sandy Beach Group 

 

The data suggests that the species of this group are horizontally or vertically migrating 

during the night from deeper waters or from the sediment into the shallow surf-zone.  

They may be migrating to feed, mate, find a mate or moult, and they might be doing it at 

night to avoid visual predators as has been suggested by several previous works (Watkin 

1939, 1941, Tully and Céidigh 1987, Mees & Jones 1997, MacLachlan & Brown 2006). 

Time of day influence was independently observed on Archaeomysis grebnitzki, 

Lissocrangon stylirostris, Atylus tridens, Hartmanodes hartmanae and Eohaustorius 

washingtonianus. The increase in densities of these five species was probably the cause 

of the reduced diversity and evenness during the night. 

Archaeomysis grebnitzkii dominated the fauna at night in both the benthic and 

surf-zone water column fauna (Mees & Jones 1997, McLachlan & Brown 2006). During 

the day, A. grebnitzkii was found in the water column at higher densities in the bottom net 

than in the top net and during spring tides than neap tides. During the day, this species 

could have been maintaining its position in the sediment or right above it while at night it 

was migrating up into the shallow surf-zone water column. Similar temporal changes in 

distribution have been observed in two intertidal mysids, A. kokuboi and A. japonica 

(Takahashi & Kawaguchi 1997, 1998). These migrations allow these two species to 

escape predation during the day by burrowing into the sediment and to feed at night on 

planktonic and benthic copepods when visual predators are not as effective. Therefore, A. 

grebnitzkii could be migrating for similar reasons. 
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The significantly higher densities of Lissocrangon stylirostris at night and during 

the day in the bottom net in the water column suggests that this species is maintaining its 

position on the bottom or very close to it during the day and vertically migrating into the 

shallow water column during the night, as has been shown in other crangonid shrimp 

(Lock et al 1999, Dominguez Granda 2001, Mees & Jones 1997, Beyst et al. 2002, 

McLachlan & Brown 2006).  These migrations would allow L. stylirostris to escape 

predation during the day by burrowing into the sediment and to feed at night on A. 

grebnitzkii when visual predators are not as effective. Archaeomysis grenitzkii is known 

to be L. stylirostris’ preferred food item (Chapter 4).  

 The significantly higher densities of Eohaustorius  washingtonianus in the 

sediment compared to the water column, and during the night compared to the day in the 

water column, suggests this species is primarily benthic and is only briefly migrating into 

the water column during the night as has been observed in other species of this genera 

(Watkin 1939, 1941, Colman & Segrove 1955). These migrations could be taken for non-

interactive functions such as feeding, mating, finding a mate or moulting (Tully and 

Céidigh 1987).  

The densities of Excirolana chiltoni were significantly influenced by the time of 

day and the lunar tide at low tide. This was probably because during the night they are 

migrating into the surf zone water column to mate, find a mate or moult avoiding visual 

predators (Tully and Céidigh 1987). The higher densites found during spring night time 

could have been because spring tides are when extreme low tides occur, which could 

have concentrated individuals in the area. A similar mechanism of concentration has been 
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suggested for other sandy beach isopods (Hough & Naylor 1992, Mees & Jones 1997, 

Lock et al. 1999, Dominguez Granda 2001, Dominguez Granda et al. 2004).  

Atylus tridens was caught at significantly higher densities during the night, and at 

night it was caught in significantly higher densities with the bottom net. This may have 

occurred because this species may migrate horizontally from deeper waters into the 

shallow surf-zone during the night maintaining a position close to the seabed possibly to 

feed, mate, find a mate or moult as has been suggested for species of this and other 

amphipod genera (Watkin 1941, Colman & Seagrove 1955, Tully and Céidigh 1987, 

Mees et al 1997, Lock et al. 1999, McLachlan & Brown 2006). The significantly higher 

densities caught during day spring tides could have been because individuals were pushed 

into the surf-zone by the significantly higher waves that occurred during these tides.  

 

Planktonic Group 

 

The diversity and evenness values of the planktonic group were influenced by both the 

lunar tide and the height of the waves. Wave height was also influenced by the lunar 

tides, with significantly larger waves present during spring tides. This suggests that more 

species were being transported to the surf-zone during spring tides when the waves were 

larger but they were unable to exit, as has been reported in the past (Colman & Segrove 

1955, Beyst et al. 2001, McLachlan & Brown 2006). The fact that these species were 

unable to avoid their entrance and then to exit the surf-zone is probably because these 

species are not well adapted to living in surf-zones and therefore were unable to use rip 
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currents to leave the zone. Tully and Céidigh (1987) categorized this migration due to 

wave energy as catastrophic drift. 

 

Rocky/Macrophyte Group 

 

Densities of this group were significantly higher during the night and the species richness 

was positively correlated with the abundance of detached macrophytes. The higher 

densities observed at night could have been caused by the migration of several species 

from the rocky intertidal into the surf-zone for non-interactive or interactive functions 

(Tully and Céidigh 1987), while being protected from visual predators (Colman & 

Segrove 1955, Tully and Céidigh 1987, McLachlan & Brown 2006). Possible non-

interactive functions are feeding, searching for mates, mating or moulting, while possible 

interactive functions are crowding, interference, predation and deterioration of habitat 

quality (Tully and Céidigh 1987). The most abundant species was Jassa shawi. The 

species of this genus are considered tube dwellers of hard substrates (Chapman 2007), 

however this species was found in every date sampled. This suggests that this species 

moves into the surf-zone of sandy beaches during the summer to search for non-

interactive or interactive functions (Tully and Céidigh 1987), as has been shown for this 

and other amphipod genera (Watkin 1941, Colman & Segrove 1955, Lock et al. 1999). 

The positive correlation between detached macrophytes and species richness suggests 

that certain species were transported on drift algae (Rudy Jr & Rudy 1983, Tully and 

Céidigh 1987, Chapman 2007). Either because they “clinged to” drift algae after being 
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dragged into the water column or were on macrophytes that became detached. Further 

support for this suggestion is given by the fact that several of these species (e.g. Idotea 

fewkesi, Exosphaeroma amplicauda, Caprella incisa, Caprella verrucosa, Caprella 

equilibra, Metacaprella anomala, Ampithoe lacertosa, Stenothoides burkanki) can be 

found on or feed on macrophytes (Carlton 2007).  

 

Development Stage Group 

 

During spring tides the diversity and evenness of this group increased. These values 

could have increased because during spring tides we observed significantly larger waves 

and larger tides. This could have allowed seawater to reach adult, larvae or egg 

individuals of species present in the rocky intertidal that are usually above the high tide 

line pulling them off the rocks and/or pushing individuals into the surf-zone.  

 An example of this is Littorina plena, whose reproduction is enhanced during the 

summer months  (Rickets et al. 1985, Rudy Jr. & Rudy 1983, Strathmann 1987). 

Crangonidae sp. zoea occurred in significantly higher densities during spring 

tides, at night, and in bottom net samples during the day. This species could have been 

maintaining its position on or close to the bottom during the day and horizontally and/or 

vertically migrating into the shallow water column at night. These migrations by 

crangonid shrimp have been suggested to increase survival, feeding or reproductive 

success (Lock et al 1999, Dominguez Granda 2001, Mees & Jones 1997, Beyst et al. 

2002, McLachlan & Brown 2006).  



 39

Crangonidae sp. zoea was influenced by similar factors as Lissocrangon 

stylirostris. On coastal Oregon only L. stylirostris is common in surf-zone of sandy 

beaches (Carlton 2007) and was the only adult crangon species present in our samples, 

this lead us to hypothesize Crangonidae sp. and L. stylirostris are the same species. 

However, because the larval forms of this species have not been described, no further 

conclusion could be reached.   

Larval densities of the ghost shrimp, Neotrypaea californiensis, were significantly 

higher in the spring day samples and were significantly correlated with salinity. The 

densities could have been significantly higher only during the day because the day 

samples were only taken during June and July, the primary reproductive months for this 

species (McCrow 1971, Johnson & Gonor 1982, Ricketts et al. 1985, Puls 2002). 

Neotrypaea californiensis zoea appeared for the first time in our study on 06/30, which 

agrees with previous findings that noted highest larval densities during the middle of the 

summer (McCrow 1971, Johnson & Gonor 1982, Puls 2002). The spring day tides could 

have increased its densities because higher waves can push larvae closer to shore or 

because of an increase in flushing rates out of the estuary due to lower low tides. The 

presence of N. californiensis zoea 1 and 2 only at Bastendorff and the negative 

correlation between their densities and salinity was probably because Bastendorff is 

located immediately south of the Coos river mouth and during the summer the estuarine 

plume is usually directed towards the south. Neotrypaea californiensis zoea 1 and 2 were 

therefore probably being exported in the estuarine plume mostly at ebb tide when the 

plume presents its lowest salinity values (McCrow 1971, Johnson & Gonor 1982, Puls 
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2002). The distribution of the N. californiensis larvae is presently unclear. The fact that 

the other zoeal stages were present when the salinity was higher along with the absence 

of these stages in estuaries or offshore (Johnson & Gonor 1982, Puls 2002, Shanks and 

Dumbauld, personal communication) suggests that these stages maintain themselves 

close to shore, closer to shore than previously assumed by Johnson & Gonor (1982) and 

suggested by McCrow (1971). It is likely that N. californiensis larvae use the surf-zone as 

a nursery area before recruiting back to the estuary, as do other thalasinideans (Forbes 

1978).  

Finally, the positive correlation between Mytilus sp. and detached macrophytes 

may be due to the fact that the juvenile mussels were attached to the macrophytes when 

the macrophytes were torn off the substrate. The fact that the majority of the juvenile 

mussels were attached to macrophytes during sample analysis further supports this. 

Sandy beaches would appear to be a sink for juvenile mussels.  

The sandy beach surf-zone fauna present at dissipative beaches of southern 

Oregon is composed of species with a wide variety of ecologies and whose densities vary 

temporally and spatially. Most species found have not previously been reported as 

inhabitants of the sandy beach, some of which could have been transported in drift 

macrophytes. However, the presence of several of these species throughout the summer 

suggests that they inhabit the sandy beach during certain periods of time. The sandy 

beach was the only group that was not influenced by wave height, detached macrophytes 

or lunar tides, suggesting the species of this group are the only ones not affected by the 

size of the waves or the flushing rates that may affect the surf-zone. The fauna was 
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dominated by the mysid Archaeomysis grebnitzkii, particularly at night. Of the 13 sandy 

beach species only four, Archaeomysis grebnitzkii, Lissocrangon stylirostris (as adult and 

as zoea), Eohaustorius washingtonianus and Atylus tridens can be considered 

hyperbenthic species. Finally, several species (i.e. Neotrypaea californiensis, 

Lophopanoepus bellus, Crangonidae sp. zoea) were present during one or more of its 

developmental stages throughout the summer suggesting that some species use the surf-

zone as a nursery or as a transient area 
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Bridge I 

 

Chapter II revealed that the sandy beach small surf zone fauna present at dissipative 

beaches of southern Oregon is composed of species with a wide variety of ecologies and 

whose densities vary temporally and spatially. Most species found have not previously 

been reported as inhabitants of the sandy beach, some of which could have been 

transported in drift macrophytes. However, the presence of several of these species 

throughout the summer suggests that they inhabit the sandy beach during certain periods 

of time. The sandy beach was the only group that was not influenced by wave height, 

detached macrophytes or lunar tides, suggesting the species of this group are the only 

ones not affected by the size of the waves or the flushing rates that may affect the surf 

zone. The fauna was dominated by the mysid Archaeomysis grebnitzkii, particularly at 

night. Of the 13 sandy beach species only four, Archaeomysis grebnitzkii, Lissocrangon 

stylirostris (as adult and as zoea), Eohaustorius washingtonianus and Atylus tridens can 

be considered hyperbenthic species. Finally, several species (i.e. Neotrypaea 

californiensis, Lophopanoepus bellus, Crangonidae sp. zoea) were present during one or 

more of its developmental stages throughout the summer suggesting that some species 

use the surf zone as a nursery or as a transient area. Chapter III attempts to describe the 

community present in three dissipative exposed flat sandy beaches, analyze the temporal 

and environmental factors that influence the community, and describe the feeding 

preferences of the fish species present. 
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CHAPTER III 

THE ECOLOGY OF SURF-ZONE FISH AND MACROCRUSTACEANS OF 

DISSIPATIVE SANDY BEACHES IN SOUTHERN OREGON, U.S.A. 

 

Introduction 

 

The swimming macrofauna community present in the surf zone of exposed sandy beaches 

is well studied in several parts of the world, including Belgium, Brazil, The Netherlands, 

and South Africa (McLachlan & Brown 2006). These studies have found the surf zone to 

be inhabited by a diverse community comprised mostly of shrimp-like species of 

macrocrustaceans (e.g. prawns and other shrimp) and fish > 5 mm in length (Beyst et al. 

2001a, 2002a, 2002b, McLachlan & Brown 2006). Surf-zone fish are mostly larvae and 

juveniles, which are using the surf zone as a nursery or as migratory path to other 

nurseries (Beyst et al. 1999, 2002a, Barreiros et al. 2004, Silva et al. 2004, Crawley et al. 

2006, McLachlan & Brown 2006).  Adult fish, mostly flatfish, also inhabit the surf zone 

(McLachlan & Brown 2006). Most of these fish feed on benthic organisms and 

zooplankton, and are characterized by having highly variable abundance in space and 

time apparently due to opportunistic feeding (McLachlan & Brown 2006). Some studies 

have also suggested that surf-zone fishes depend on mysid crustaceans as food (Inoue et 

al. 2005).  
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The physical characteristics of the beach (beach slope, exposure), temporal factors 

(seasons, tides, lunar tides, time of day) and environmental variables (temperature, 

salinity, turbidity, wave height, wind speed and direction, abundance of detached 

macrophytes, and density of potential prey) have all been shown to influence the surf-

zone environment and the swimming macrofauna community (Clark et al. 1996, Hindell 

et al. 2000, Beyst et al. 2001a, 2002a, 2002b, Crawley et al. 2006, McLachlan & Brown 

2006). Beaches are categorized by the level of exposure (protected to exposed beaches), 

the way the energy of waves is released or dissipated (reflective to dissipative beaches), 

and the beach slope (steep to flat beaches) (McLachlan 1980, Short & Wright 1983, 

McLachlan & Dorvlo 2005).  

Despite the fact that more than two-thirds of the Oregon coastline is sandy beach 

(ODFW 2006), very little work has been done on the surf-zone swimming macrofauna 

community. Several studies have been conducted on important individual species that 

inhabit the area, such as English sole, Pacific sardine, Northern anchovy, Surf smelt, and 

Dungeness crab (Emmett et al. 1991), but no studies have addressed the entire 

community. This is the first attempt to describe the entire community and analyze factors 

that may influence it. This study (1) describes the community present in three dissipative 

exposed flat sandy beaches, (2) analyzes the temporal and environmental factors that 

influence the community, and (3) describes the feeding preferences of the fish species 

present. 

 

Materials and Methods 
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Study Area 

 

The study was conducted on three sandy beaches, Bastendorff Beach (43°35’N, 

124°35’W), Whisky Run Beach (43°18’N, 124°40’W) and Horsfall Beach (43°27’N, 

124°16’W), all of which are located in Southern Oregon, U.S.A (Fig. 1). Bastendorff is a 

semi-exposed dissipative beach located immediately south of the mouth of Coos Bay. 

Whisky Run and Horsfall Beach are exposed dissipative beaches located approximately 

15 km south and north of Coos Bay, respectively. Dissipative beaches are flat beaches in 

which the wave energy is dissipated in the surf zone rather than reflected from the beach 

face (McLachlan 1980b, Masselink & Short 1993). Additional details of the study sites 

are given in Chapter 1.  
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Figure 1. Study area with location of the three dissipative sandy beaches sampled in 
southern Oregon during the summer of 2006. 
 
Environmental Variables 

 

Temperature, salinity, chlorophyll a (Chl-a) and optical back scatter (OBS) data were 

obtained with a Sea Bird 911-Conductivity-Temperature-Depth recorder (CTD). The 

CTD was carried into the surf zone and held at approximately one meter depth for two 

minutes. The dry weight of detached macrophytes was obtained by separating the 

detached macrophytes in the hyperbenthic sledge tows done for Chapter 1. Wind wave 

height and wind speed were obtained from NOAA Station 46015, which is located 26 

nautical Km West of Port Orford, OR (42°45'24"N, 124°49'45"W). Temperature, salinity, 
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Chl-a, OBS and weight of detached macrophytes were only available for eight of the 17 

sampling dates (Table 1). 

 

Biological Sampling  

 

Samples were taken on 17 dates throughout the summer of 2006, 14 at Bastendorff 

Beach, one at Horsfall Beach and two at Whisky Run Beach. Samples at Bastendorff 

were taken during the three tides (high, mid and low), the two lunar tides (spring and 

neap) and during both day and night (Table 1). Samples were collected using a beach 

seine (1.5 m high and 15 m wide with a 5.0 mm mesh). Three people carried the net at 

shoulder height into the surf zone to an approximate depth of 1 m where the shallow surf 

zone borders with the swash zone (McLachlan and Brown, 2006). The net was then 

opened parallel to shore and towed to the shoreline. This procedure was followed one to 

three times, with fewer tows being made when the surf was rough. The distance from the 

shoreline to the point at which the beach seine was first opened and the maximum depth 

of the water column were measured. The fish caught were anaesthetized with MS-222 

(150 mg/liter of seawater) and the entire sample was preserved in 10% buffered formalin.  
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Table 1. Location and time of sampling during which the swimming macrofauna 
community of Southern Oregon was sampled during the summer of 2006. Density 
(individuals/1000 m2), species richness (S), diversity, (H’ – Shannon Index), evenness (J’ 
– Pielou’s function), dominance (d - Berger-Parker Index) are also presented. * = dates in 
which hyperbenthic sledge was used. 
 

Timing of Sampling Biological Values 
Beach Date Tide Time Lunar Density S H' J' d 
Bastendorff 6/7 HW day neap 53 5 1.06 0.66 0.50
Bastendorff 6/7 MW day neap 302 6 0.59 0.33 0.09
Bastendorff 6/7 LW day neap 118 5 1.43 0.89 0.35
Bastendorff 7/22 HW day spring 15 4 1.05 0.76 0.00
Bastendorff 7/22 MW day spring 5 2 0.41 0.59 0.86
Bastendorff 7/22 LW day spring 4 2 0.69 1.00 0.53
Bastendorff 7/27 HW day spring 40 6 1.06 0.59 0.59
Bastendorff 7/27 MW day spring 123 5 0.30 0.19 0.93
Bastendorff 7/27 LW day spring 131 7 0.64 0.33 0.86
Bastendorff 7/30 LW night neap 306 8 0.20 0.10 0.97
Bastendorff 8/2 LW night neap 198 6 0.17 0.10 0.97
Bastendorff 8/5 LW day spring 10 3 0.49 0.44 0.90
Bastendorff 8/9 LW day spring 5 3 1.08 0.98 0.29
Bastendorff 8/13 LW night spring 939 7 0.09 0.04 0.99
Bastendorff 8/18 LW day neap 314 6 0.16 0.09 0.01
Bastendorff 8/25 LW day spring 68 5 0.28 0.17 0.94
Bastendorff 9/1 LW day neap 42 6 1.07 0.60 0.51
Bastendorff 9/8 LW day spring 183 5 0.28 0.17 0.94
Bastendorff 9/15 LW day neap 24 4 1.01 0.73 0.56
Bastendorff 9/29 LW day neap 30 2 0.67 0.97 0.59
Horsefal 6/30 LW day neap 7 1 0.00     **** 1.02
Whisky Run 7/1 LW day neap 6 2 0.56 0.81 0.71
Whisky Run 8/5 LW day neap 12 4 1.22 0.88 0.28
** Value was not possible to obtain.      
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Table 2. Mean biological values of the swimming macrofauna observed during different 
times of day, tides and lunar tides. Samples taken at Bastendorff Beach, a dissipative 
southern Oregon sandy beach in the summer of 2006. Mean densities of all individuals 
(individuals/1000 m2), species richness, diversity, (Shannon Index), evenness (Pielou’s 
function) and dominance (Berger-Parker Index) values of a surf-zone swimming 
macrofauna community (± S.D.). 
 

  Species 
  

Density 
Richness

Diversity Evenness Dominance 

High tide 36±19 5±1 1.1±0.0 0.7±0.1 0.4±0.3 
Mid tide 143±150 4.3±2.1 0.4±0.1 0.4±0.2 0.60.5 
Low tide 169±246 4.9±1.9 0.6±0.4 0.5±0.4 0.7±0.3 
Day 86±99 4.5±1.6 0.7±0.4 0.6±0.3 0.6±0.3 
Night 481±400 7±1 0.2±0.1 0.1±0.0 1±0.0 
Spring tide 151±284 4.6±1.8 0.6±0.4 0.5±0.4 0.7±0.3 
Neap tide 140±128 5.1±1.7 0.7±0.4 0.5±0.3 0.5±0.3 
Spring Day Low 78±79 4.4±1.9 0.6±0.3 0.5±0.4 0.7±0.3 
Spring Night Low 939±0 7±0 0.1±0 0.0±0 1±0 
Neap Day Low 90±116 4.3±1.6 0.8±0.3 0.6±0.3 0.5±0.3 
Neap Night Low 252±76 7±1.4 0.2±0.0 0.1±0.0 1±0.0 

 

 
Sample Analysis and Data Treatment 

 

Organisms < five mm in length were considered too small to be swimming macrofaunal 

species and were eliminated from further analyses. In the laboratory, organisms were 

identified to species level whenever possible using Rudy Jr. & Rudy (1983), Kathman et 

al. (1986), Kozloff (1987), Smith & Carlton (1989), Brusca et al. (2001), and Shanks 

(2001). Densities, percentages, species richness (S), diversity (H’), evenness (J’) and 

species dominance (d) were calculated. Densities (individuals/1000 m2) were calculated 

using the total bottom area, which was calculated by multiplying the length of the tow 

and the length of the beach seine. We calculated the volume of water sampled by 

determining the slope, or the hypotenuse of a triangle, by using the depth and the length 
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of the tow, then multiplying by the length of the seine. Species richness was measured 

from the number of species, and the Shannon index was used as a measurement of 

diversity (Ludwig & Reynolds 1988). Evenness among species was measured with 

Pielou’s evenness function (J’) (Pielou 1977). Finally, dominance, or the impact of 

dominant species, was analyzed with the Berger-Parker index (d) (Berger & Parker 

1970). These values are presented with standard deviation (±) wherever ever possible.  

Because of the large differences in the community composition and the number of 

samples among the three beaches, the community analysis was only conducted for 

Bastendorff. However, data obtained from the three beaches were used to correlate the 

biological values and environmental variables, and for different English sole analysis. We 

were not able to use a three-way ANOVA to analyze variances due to tides, lunar tides 

and time of day because we did not sample during all three tides at night. Instead, 

densities were compared among samples taken at different tides, day and night, and 

spring and neap tides using one-way ANOVAs. Pair-wise comparisons were conducted 

using Tukey’s test. We tested for effects of lunar tide and time of day on densities using a 

partially nested mixed model two-way ANOVA, with lunar tides and time of day as the 

fixed factors. We were able to use two-way ANOVAs despite the fact that we sampled 

only once during the spring/night low tide because this was compensated by the fact that 

we did obtain replicates for spring/day low tide, neap/night low tide and neap/day low 

tide. However, because of the lack of spring/night low tide replicates we were not able to 

do any further statistical comparison. All of the assumptions for the analysis of variance 

were met, except for the homogeneity of variances. To meet this assumption, the data 
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were log10 (x+1) transformed and then tested with an F max test. Because of difficulties 

meeting the assumptions for an analysis of variance, the four biological variables, S, H’, 

J’ and d, were compared among samples taken at different tides, day and night, and 

spring and neap tides using a non-parametric Kruskal-Wallis test. Five biological 

variables (Densities, S, H’, J’, d) were also correlated to temperature, salinity, chlorophyll 

a, optical back scatter, dry weight of detached macrophytes, wind wave height wind 

speed, Julian date on which each sample was taken and to the densities of potentially 

available food. Data on the potentially available food were obtained from Chapter 1, a 

study that sampled the smaller swimming fauna present in the surf zone of the three 

beaches at 50 cm of depth. These data were available for eight of the 16 sampling dates 

(Table 1). The five variables were correlated to the Julian date on which they were taken 

to analyze the effect of the advancement of the summer season. To analyze possible 

spatial or temporal patterns in the community data, a non-Parametric Multi-Dimensional 

Scaling (nMDS) and a Similarity Percentage Analysis (SIMPER) were performed. Prior 

to the analysis the data were log10 (x+1) transformed and the resemblance was obtained 

using the Bray Curtis Similarity Index. We used the PRIMER 6 statistical package 

(Clarke & Gorley 2001). Standard lengths (SL) of all the fish present were measured, and 

stomach contents identified to the finest taxonomical level possible. For English sole, 

daily growth rates were calculated, subtracting the mean S.L. of the last date in which the 

juveniles were caught from the mean S.L. of the first date in which the juveniles were 

caught and dividing this value by the number of days that separated the first and last date. 

The wet weight of each English sole food item was also recorded. 
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English Sole Stomach Content Analysis 

 

The stomach content index (SCI) was calculated as an indicator of stomach fullness using 

the following equation: 

 

100,SWSCI x
BW

=  

 

where SW is the wet weight (g) of the stomach contents and BW is the wet weight (g) of 

the fish (Takahashi et al. 1999). The percentage of empty stomachs was recorded but not 

used in the analysis. The stomach contents were identified to the finest taxonomic level 

possible using Kathman et al. (1986), Kozloff (1987), Smith & Carlton (1989), Brusca et 

al. (2001), Shanks (2001). The number of individuals, wet weight of each food item (g.), 

frequency of occurrence (%F), and numerical percentage (%N) were recorded. The 

frequency of occurrence (%F) of a diet component was the percentage of fish in a sample, 

which contained the component (Hynes 1950). These values were arcsin transformed to 

meet the homogeneity of variance assumption, which was tested using an F max test, and 

compared using a t-test. Finally, the selectivity in feeding was calculated using the 

Shorigin index (Berg 1979): 

 

%. ,
%

i

i

N in the ingested foodSel
N in the potentially available food

=  
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where Sel. is the feeding selectivity and %Ni is the numerical percentage of an item. This 

index was chosen because it is considered an accurate way to compare values obtained 

from different samples, it compares the ingested food items with the potentially available 

food at the sampling site and has been used extensively in previous studies (ISI Web of 

Science, 2007). The data for %Ni in the potentially available food were obtained from 

Chapter 1. This related study sampled the smaller swimming fauna present in the whole 

water column and was available for the first six sampling dates. These samples were 

taken using a hyperbenthic sledge. We used a hyperbenthic sledge because we consider it 

to be the best method available to sample the surf zone community due to the amount of 

seawater it filters per tow (Mees and Jones 1997). The sledge has a 50 x 70 cm mouth 

opening connected to a 4 m long net with 1 mm mesh. The sledge was hand towed 

parallel to the shoreline at approximately 50 cm of water depth for 400 m during high, 

mid and low tides, spring and neap tides and during the day and night. Because of how 

much time it takes to obtain a sample with the sledge, we considered it was impossible to 

take replicates, a conclusion also reached in previous works (Watkin 1941). Therefore the 

tows were made sufficiently long for them to account for possible variances in the fauna 

due to the different areas present in the surf zone of sandy beaches and to the patchy 

distribution that species may present (Mees & Jones 1997; Lock et al. 1999). The feeding 

selectivity values of the fish for the main food items were correlated with the Julian date 

on which the fish were caught.  At the same time, the densities of the same main food 
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item in the water column were correlated to the Julian date on which these prey were 

caught to observe possible variations in densities with time.  

  

Results 

 

The volume of water sampled with one beach seine tow varied from 451 to 461m3. The 

area sampled with one beach seine tow varied from 694 to 708 m2, of which a mean of 

701 m2 was used to determine density. A total of 2,059 individuals belonging to 19 

species were caught (Table 1). These species belonged to Crustacea (5 spp.), 

Osteichthyes (10 spp.), Cnidaria (3 spp.), Ctenophora (1 sp.) and Cephalopoda (1 sp.). 

The brachyuran crab Cancer magister was present in the megalopal and adult stages, and 

were considered separate species from each other in the community analysis. The six 

species with highest frequency of occurrence were the crustaceans Lissocrangon 

stylirostris (71%) and Emerita analoga (1.32%), the cnidarian Obelia sp. (20.8%), the 

ctenophore Pleurobrachia sp. (1.9%) and the osteichthiens Pleuronectes vetulus (English 

sole) (2%) and Oncorhynchus tshawytscha (Chinook salmon) (1.3%). Lissocrangon 

stylirostris was the most abundant species throughout the sampling season with 1,463 

individuals caught, or 84±191 ind. per 1000 m2, and was present on all of the dates and 

beaches sampled. Because of this, L. stylirostris densities were employed to analyze 

dominance (d). Most of the L. stylirostris individuals caught were females (63%), and 

most individuals were parasitized by the bopariid isopod, Argeia pugettensis (62%). A 

more detailed analysis of L. stylirostris ecology can be found in Chapter 4. 
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Community Analysis  

 

At Bastendorff during the three different tides no significant difference was observed in 

mean density, species richness, diversity, evenness or dominance values. However, 

higher density species richness and dominance values were found during low tides. 

Highest mean diversity and evenness were found during high tide. (Table 2). Density, 

evenness and dominance values were significantly higher at night than in the day (n ≥ 3, 

F ≥ 5.54, p ≤ 0.03) (Table 2). At low tide, highest mean species richness and mean 

densities were observed during spring low tides at night. Highest mean diversity and 

evenness occurred during neap low tides in the day, and highest mean dominance 

occurred during neap low tides at night. There was a significant difference among 

densities in samples taken during spring daytime low tides, spring nighttime low tides, 

neap daytime low tides and neap nighttime low tides (two-way ANOVA, Table 2 and 3).  

 

Table 3. Results of two-way ANOVA test for differences in surf-zone macrofauna 
densities at low tide. Fixed effects were time of day and lunar tides.  Samples taken at 
Bastendorff, a dissipative sandy beach in southern Oregon. 
 

  df Effect MS Effect df Error MS Error F p-level 
Lunar tide 1 122385.1 10 4901.26 24.97 0.001
Time of day 1 272620.7 10 4901.26 55.62 0.00002
Interaction 1 131281.1 10 4901.26 26.79 0.0004

 

At Horsfall and Whisky Run, because of the number of samples and because the 

samples were taken during the same tide, lunar tide and time of day, no statistical 
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analysis was possible. However density, species richness and dominance values observed 

at both beaches were usually lower than the mean values observed at Bastendorff, while 

evenness and diversity were usually higher at Horsfall and Whisky Run.  The higher 

densities but lower diversity and evenness could have been due to the higher densities 

presented by Archaeomysis grebnitzkii at Bastendorff, especially during the nighttime. 

 

Biological and Environmental Variables  

 

In correlation analyses among the five biological variables (Density, S, H’, J’, d) (Table 

1) at the three beaches and the seven environmental variables, there were two positive 

correlations. Detached macrophytes had a positive correlation with densities of non-L. 

stylirostris species (n = 11, r = 0.63, p = 0.05) (Fig. 2) and the densities of the mysid, 

Archaeomysis grebnitzkii was positively correlated with L. stylirostris densities (n = 14, r 

= 0.59, p = 0.05) (Fig. 3).  
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Figure 2. Positive correlation between the diversity (Shannon index, H’) and total 
swimming macrofauna densities (individuals/1000 m2) minus Lissocrangon stylirostris 
(N – L. stylirostris) with the weight of detached macrophytes (Macrophytes) present in 
three dissipative beaches of southern Oregon in the summer of 2006.  
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Figure 3.  Positive linear correlation between Lissocrangon stylirostris densities 
(individuals/1000 m3) and the densities of the mysid Archaeomysis grebnitzkii (ind. per 
100 m2) present at three dissipative southern Oregon beaches in the summer of 2006.\ 

 

Statistical Community Analysis 

 

The nMDS showed no spatial or temporal pattern within the surf zone community at 

Bastendorff. The samples grouped instead into five clusters at a 45% similarity level, 

based on the density of L. stylirostris present (Fig. 4). The SIMPER analysis suggested 

each cluster had two to four species that influenced their similarity (Table 4), with L. 

stylirostris influencing four clusters, and Pleurobrachia sp. and English sole each 

influencing two clusters. 
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Figure 4. Non-parametric Multi-Dimensional Scaling of the surf-zone swimming 
macrofauna community present at a dissipative sandy beach in southern Oregon in the 
summer of 2006. Samples separated into five clusters based on the abundance of the 
smooth bay shrimp, Lissocrangon stylirostris. Bubble sizes are dependent on L. 
stylirostris densities. Resemblance levels for clusters are 45% and stress level is 0.14. 
Data were log10 (x+1) transformed and the resemblance values obtained with the Bray 
Curtis similarity index. Name of each sample represents date and tide at which they were 
taken. HW = high, MW = mid and LW = low tide. 
 
 
Table 4. Similarity Percentage analysis (SIMPER) showing species contributing to 
similarity of each cluster formed by nMDS in Fig. 4. Five clusters were formed based on 
the abundance of the smooth bay shrimp, Lissocrangon stylirostris. Resemblance levels 
for clusters are 45% and stress level is 0.14. Data were previously log10

 (x+1) 
transformed and the resemblance values obtained from the Bray Curtis similarity index. 
 

Species/Cluster Cluster 1 Cluster 2 Cluster 3 Cluster 4 
Lissocrangon stylirostris 45.85 75.39 84.42 43.07 
Obelia sp. 29.14 0 10.66 0 
Pleurobrachia sp. 11.94 0 0 0 
Pleuronectes vetulus 10.79 7.8 0 0 
Emerita analoga 0 0 0 56.93 
Oncorhynchus tshawytscha 0 7.44 0 0 
Cluster 5 is not present because there were fewer than two samples in the group. 
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English Sole 

 

Forty-eight English sole were caught at Bastendorff on 13 dates and 13 were caught at 

Whisky Run on two dates. The fish were caught during high (5 ind.), mid (5 ind.) and 

low (51 ind.) tides, spring (19 ind.) and neap (42 ind.) tides, and day (57 ind.) and night 

(4 ind.). The individuals had standard lengths (SL) that ranged between 2.6 and 12.5 cm  

(Fig. 5).  

 

 

Figure 5. Size-frequency distribution of 61 juvenile English sole caught at two 
dissipative sandy beaches in southern Oregon in the summer of 2006. 
 

A positive correlation was observed between the mean standard length of the 

youngest age fish and the Julian date at which they were sampled (Fig. 6) (n = 7, r = 0.93, 

p = 0.05), with a mean SL of 3±0.2 cm at the beginning of the summer season and 

5.4±0.5 cm at the end of the summer, 92 days later (± S.D.). The difference in SL 
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between the first and last Julian date was 2.4 cm, suggesting a growth rate of 0.25 mm 

per day. Five individuals were excluded from this analysis due to their much larger size 

(9 – 12.5 cm), which suggested they belonged to an older age group (Fig. 5).  

 

 

Figure 6. Mean standard lengths of English sole (± S.D) correlated to the Julian date on 
which they were caught. Samples taken in the surf-zone of two dissipative sandy beaches 
in southern Oregon during the summer of 2006.  
 

Twenty of the 61 juvenile English sole had empty stomachs and only 28 of the 

remaining 41 had recognizable food items. These juvenile English sole had preyed on 11 

different species of crustaceans. During the three night samples, four juveniles were 

caught, none of which had empty stomachs. During the 14 day samples, 57 juveniles 

were caught of which 20 had empty stomachs. The most frequent food item during all 

sampling dates was the mysid Archaeomysis grebnitzkii. The %F (76.95 ± 33.19) and %N 

(51.92±30.80) of A. grebnitzkii was significantly higher than any other food item in all 
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samples (t-test, p < 0.001). However, the largest English sole individuals (n = 2, SL=12.3 

– 12.5 cm) preyed mostly on L. stylirostris (%F=100±0, %N=75±53.03). The other 

species present in % N higher than one were the amphipods Atylus tridens, Jassa sp and 

Dogielinotus loquax. 

Due to a lack of data on the potentially available food, the Selectivity Index was 

only possible to calculate for six of the 12 sample dates on which English sole were 

caught. The Index values varied from 27.9 to 312.4. Feeding selectivity of English sole 

decreased as the season progressed.  

 
Figure 7. Linear correlations between Julian date towards both the feeding selectivity of 
English sole (Shorigin index, Berg 1979, closed circles), and the densities of 
Archaeomysis grebnitzkii (ind./100 m2, open circles). Samples taken in the surf-zone of 
three dissipative southern Oregon sandy beaches in the summer of 2006.  

 

The densities of the mysid A. grebnitzkii increased with season progression (Fig. 

7), suggesting the decrease in selectivity is due to an increase in A. grebnitzkii. However, 

the correlations between Julian date with both feeding selectivity values and A. 
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grebnitzkii densities did not meet the critical values for correlations (n = 6, r = 0.51 & 

0.67, respectively, p > 0.05). 

 

Other Fish Present 

 

Besides English Sole, juvenile Chinook salmon (see Chapter 3), Sardinops sagax (Pacific 

Sardine), Hyperprosopon ellipticum (Silver surfperch) Amphistichus rhodoterus (Red tail 

surfperch), Leptocottus armatus (Pacific staghorn sculpin), Thaleichthys pacificus 

(Eulachon smelt), Hypomesus pretiosus (Surf smelt), and Engraulis mordax (Northern 

anchovy) were caught at the three beaches (Table 5). These fishes mostly fed on 

crustaceans, particularly the mysid A. grebnitzkii and several species of amphipods and 

isopods. 

 
Table 5. Fish species present in the swimming macrofauna community, number of dates 
on which each species was caught, total fish caught (#), mean standard length (SL), main 
prey items and frequency of occurrence (in parentheses) are shown. Samples were taken 
at Bastendorff and Whisky Run, sandy beaches in Southern Oregon during the summer of 
2006. 
 
Species Dates # SL Main Prey (%) 
Sardinops sagax 2 2 12.5 Chaetognaths (25), Copepods (25), Sand (50) 

Hyperprosopon ellipticum 2 3 8 
Gammarid Amphipods (57), 

Excirolana kincaidii (14), 
Amphistichus rhodoterus    Cumaceans (7), Insects (7), N.I. Org. (14)
 2 2 12.6 A. grebnitzkii (100)

Leptocottus armatus 3 6 12.1
L. stylirostris (54), E. analoga (31), A. grebnitzkii 

(8), 
     Gammarid Amphipod (7)
Thaleichthys pacificus 1 1 8.8 A. grebnitzkii (100)
Hypomesus pretiosus 2 2 10.65 Empty
Engraulis mordax 1 1 4 *
* Individuals in which stomach content analysis was not possible. 
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Discussion 

 

Community Analysis 

 

Despite the seemingly harsh hydrodynamic conditions, the shallow surf-zones of these 

Oregon sandy beaches were used intensively throughout the summer by a number of 

macrocrustaceans and juvenile fishes. The density and species richness values found at 

these beaches are lower than those found in other parts of the world (Beyst et al. 2001a, 

Beyst et al. 2002a, Beyst et al. 2002b, Barreiros et al. 2004, McLachlan & Brown 2006). 

However, these previous studies were of sandy beaches that were less exposed, located in 

different latitudes, or the studies were done in deeper waters, used a different sampling 

methodology or effort; factors, which may significantly alter comparisons between sites 

(Beyst et al. 2001a). McLachlan & Brown (2006) have suggested species richness of the 

surf zone macrofauna in temperate regions should be approximately 27 species. This 

study found a total species richness of 19 in the three dissipative exposed to semi-

exposed sandy beaches. The exposure of the three studied beaches, the fact that only the 

shallow surf-zone was sampled, the size of the beach seine and the number of tows done 

in this study could account for the lower densities and species richness found. The 

possibility that the characteristics of the beach and methodology can account for the 

lower density and species richness values is supported by the fact that only one species of 

flatfish, English sole, was caught in our samples. Flat fish are common on sandy beaches 
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around the world, and at least seven species are present in shallow soft bottom 

environments in the Pacific Northwest (Lamb & Edgell 1986, Gibson 2005).  

Though not significant, there was a tendency for densities to be higher at low tide 

then at mid and high tide. Higher densities were most obvious during spring tides when 

extreme low tides occur. Higher values at low tide could have been due to an aggregation 

of individuals during low tide because of the reduced size of the surf-zone. Several 

authors have previously observed low tide aggregation (McLachlan 1980b, Hindell et al. 

2000, Beyst et al 2002a, Dominguez Granda 2001, Dominguez Granda et al. 2004). 

Lissocrangon stylirostris dominated the swimming macrofauna throughout the 

summer of 2006, especially during low tides. The dominance by L. stylirostris was 

indicated by the high density and dominance values observed throughout the season, and 

by the nMDS and SIMPER analysis. L. stylirostris was the only recognizable resident 

species during the summer and has been reported to inhabit the sediment and water 

column of high-energy sandy beaches, particularly semiprotected beaches (Schmitt 1921, 

Kuris et al. 1977). The term residency is usually applied to species that inhabit an area 

during a complete period (Mees & Jones 1997). Dominance of the surf-zone swimming 

macrofauna by a crangonid shrimp has been reported at other temperate beaches (Beyst et 

al. 2001, Beyst et al. 2002a, Beyst et al. 2002b). Because of this dominance and the fact 

that only the shrimp were present in every sample taken, the aggregation and position 

maintenance of the swimming macrofauna at low tide can only be accounted for L. 

stylirostris.  
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Using only low tide samples, statistically higher densities of organisms were 

caught at night than in the day, most of which were L. stylirostris. This higher abundance 

could be due to a vertical migration of the shrimp from the sediment into the shallow 

water column at night. This migration could be done to feed on the mysid, Archaoemysis 

grebnitzkii their preferred food (Chapter 4) whose densities are highest during low tide at 

night (Chapter 1).  Feeding at night by L. stylirostris could also be due to the lower 

effectiveness of visual predators on shrimp (i.e. sea birds and fish) at night. Vertical 

migration at night and aggregation at low tide could also explain the significantly higher 

densities observed during spring low tide night samples, since this is when extreme low 

tides occur. The influence of lunar tides and light intensity on swimming macrofauna 

communities has been reported in previous studies (Hindell et al. 2000, Beyst et al. 

2001a, Beyst et al. 2002a). The shrimp could therefore be vertically migrating at night to 

feed on A. grebnitzkii.  

 

Biological and Environmental Variables 

 

The positive correlation between the densities of non-shrimp and the weight of detached 

macrophytes suggests several species, especially fish species, could be attracted to the 

detached macrophytes in the surf-zone. This attraction could be because these species 

feed on organisms (i.e. amphipods and isopods) on the detached macrophytes or use the 

macrophytes as a refuge. This has been observed in previous studies (Hindell et al. 2000, 

Crawley et al. 2006). L. stylirostris densities were independent of macrophyte density 
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perhaps because in the water column the shrimp seek refuge in the sand during the day 

and feed at night.  Non-shrimp species are attracted to the macrophytes in the surf-zone 

of sandy beaches possibly to feed or to use it as refuge. 

 

English Sole 

 

The presence of English Sole in the surf-zone of sandy beaches did not follow any 

temporal pattern. At Bastendorff, individuals were caught at high, mid and low tides, 

spring and neap tides, and during the day and night. Their small size (< 26 cm) suggests 

that all were one-year juveniles (Harry 1959 in Emmett et al. 1991). English sole were 

also present in the two samples taken at Whisky Run, a sandy beach 15 km from the 

nearest estuary; juvenile English sole can be in the surf-zone of sandy beaches that are 

not immediately next to an estuary. This agrees with previous studies (Gunderson et al. 

1990, Emmett et al. 1991). The English sole caught in this study had standard lengths 

between 26 to 56 mm and 90 to 125 mm. At an approximate length of 55 mm, most 

juvenile English sole migrate into estuaries and then migrate back to the coast when they 

are 75-80 mm (Gunderson et al. 1990). The mean standard length of the smaller English 

sole size classes (26 to 56 mm) increased in size by an average of 0.25 mm per day while 

residing in the surf-zone. However, this is based on the assumption that the species were 

present in the surf zone during the whole season. While residing in the surf-zone, the fish 

were feeding selectively on A. grebnitzkii. Juveniles have been previously reported to 

feed on mysids (Simenstad et al. 1979, Allen 1982, Hogue & Carey 1982, Becker 1984, 
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Bottom et al. 1984). Small juveniles in estuaries (<50 – 65 mm in length) feed primarily 

on harpacticoid copepods (Toole 1980). Finally, we also observed that the fish had been 

feeding during the night, which contrasts with previous studies (Allen 1982, Hulberg & 

Oliver 1979). However the small night sample sizes weakens this suggestion (n = 4).   

  Most of the fish caught (98%) in this study were juveniles (Emmett et al. 1991, 

Love 1996, Pruden 2000). Despite the low densities in which we caught several species 

of juvenile fish, the surf-zone could be acting as a nursery due to the percentage of the 

Oregon coastline that are sandy beaches (ODFW 2006). This could result in sandy beach 

surf-zones contributing in higher proportion to the production if individuals that recruit to 

adult populations than any other environment, a characteristic that is considered primary 

when defining nursery areas (Beck et al. 2001). The use of the surf-zone of sandy 

beaches as a nursery has been observed in previous studies (Beyst et al. 2001a, Beyst et 

al. 2002a, Barreiros et al. 2004, Silva et al. 2004, McLachlan & Brown 2006). Five of the 

eight fish species, in which stomach content analysis was possible, had fed on the mysid 

A. grebnitzkii. Three fish species had A. grebnitzkii as a main prey item, suggesting surf-

zone fishes do in fact depend greatly on the presence and abundance of mysid crustaceans 

as food (Inoue et al. 2005). The surf-zone of sandy beaches is used by several species of 

fish as a nursery, and most of them feed on the mysid Archaeomysis grebnitzkii. 

The surf-zone swimming macrofauna present at the sampled dissipative beaches 

of Southern Oregon was composed of 19 species belonging to six groups. The density of 

organisms was influenced by the time of day and lunar tides. The shrimp Lissocrangon 

stylirostris numerically dominated the community and was the only species for which 
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residency could be accounted for during the summer season.  The density of the non-L. 

stylirostris fauna increased with the increase of detached macrophytes. English sole 

appear to utilize the surf-zone during several periods of their first year of life where they 

primarily feed on the mysid Archaeomysis grebnitzkii. Most of the other fish in the surf-

zone were juveniles, which use the area as a nursery and also feed on the mysid 

Archaeomysis grebnitzkii.  
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Bridge II 

 

Chapter III revealed that the surf zone swimming macrofauna present at the sampled 

dissipative beaches of Southern Oregon was composed of 19 species belonging to six 

groups. The density of organisms was influenced by the time of day and lunar tides. The 

shrimp, Lissocrangon stylirostris, numerically dominated the community and was the 

only species for which residency could be accounted for during the summer season.  The 

density of the non-L. stylirostris fauna increased with the increase of detached 

macrophytes. English sole appear to utilize the surf zone during several periods of their 

first year of life where they primarily feed on the mysid Archaeomysis grebnitzkii. Most 

of the other fish in the surf zone were juveniles, which use the area as a nursery and also 

feed on the mysid Archaeomysis grebnitzkii. Chapter IV documented the surf zone 

macrofauna, during the summer of 2006 in a sandy beach and estimated the time of 

residency and the feeding habits of sub-yearling Chinook salmon. 
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CHAPTER III 

NEW HABITAT OF SUB-YEARLING CHINOOK SALMON DISCOVERED: THE 

SURF-ZONE OF A SANDY BEACH 

 

Introduction 

 

There is very little information on the habitat of juvenile Chinook that have recently 

entered the ocean (Fisher and Pearcy 1995). “Ocean-type Chinook” are those that migrate 

to sea in their first year of life, and during that first year they are referred to as “sub-

yearlings”. Healey (1983) noted ocean-type Chinook salmon had a predominantly coastal 

distribution throughout their ocean-life. Because of this, he hypothesized that many, if 

not most, ocean-type Chinook spend their first ocean year in sheltered inside waters, or 

very close to shore. Later, Dawley et al. (1981), Fisher and Pearcy (1995) and Brodeur et 

al. (2004) suggested a similar hypothesis. This hypothesis has been partially tested in 

several studies (Dawley et al. 1981; Miller et al. 1983; Fisher et al. 1983, 1984; Fisher 

and Pearcy 1995), however these studies were done with scientific vessels with standard 

techniques (e.g. purse seines and otter trawls) at depths over 4 m (Healey 1991) leaving a 

large portion of the waters close to shore, including the surf-zone of sandy beaches, 

unsampled.  

Many sub-yearling Chinook leave the estuary during the early summer with 

standard lengths (S.L.) between 7-8.5 cm (Reimers 1973; Healey 1983; Gray et al. 2002; 
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Bottom et al. 2005). In the ocean (>1 nautical Km), significant numbers of sub-yearling 

Chinook are not caught until the fish reach sizes of 12 cm S.L. (Peterson et al. 1982; 

Fisher and Pearcy 1995, Schabesberger et al. 2003; Brodeur et al. 2004). This leaves a 

period of time (from approximately 8 to 12 cm) during which the habitat of sub-yearlings 

is unknown. Dawley et al. (1981) caught large numbers of small fish in shallow marine 

waters near the surf-zone (4 m depth), 95% of which were sub-yearling Chinook (< 13 

cm Fork Length, F.L.). Based on this, Miller et al. (1983) concluded that offshore 

movement of Chinook salmon is size dependent, beginning when the fish are about 13 

cm F.L.  

The large general decline of salmon (Oncorhynchus spp.) populations, including 

Chinook salmon, throughout the Pacific Northwest (Nehlsen et al. 199; Ruggerone and 

Goetz 2004), has led to several Chinook runs being placed on the threatened species list 

under the U.S. Endangered Species Act (National Marine Fisheries Service 1999). This 

has caused closures of fisheries in several locations. Despite several tests of the 

distribution hypothesis for sub-yearling Chinook, very few studies have been conducted 

close to shore and none in the surf-zone of sandy beaches. This study could provide 

insight on the habitat of sub-yearling Chinook that have just entered the ocean, which is a 

missing link in their life cycle. This in turn could allow a better management of the 

fishery by protecting this species in the surf-zone of sandy beaches from indiscriminate 

line and seine fishing. Therefore, this study documented the surf-zone macrofauna during 

the summer of 2006 in a sandy beach. The study also estimated the time of residency and 

the feeding habits of sub-yearling Chinook salmon. 
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Materials and Methods 

 

Study Site 

 

The study was conducted at Bastendorff  Beach (43°35’N, 124°35’W), immediately 

south of the mouth of Coos Bay in southern Oregon, U.S.A (Fig. 1). Bastendorff is a 3- 

Km-long semi-exposed dissipative sandy beach bordered by a rocky shore on the south 

and a rock jetty at the mouth of the Coos estuary to the north. Dissipative beaches are flat 

beaches in which the wave energy is dissipated in the surf-zone rather than reflected from 

the beach face  (McLachlan 1980; Masselink and Short 1993; McLachlan and Brown 

2006). Additional details of the study site are given in Chapter 1.  

 

 
 
Figure 1.  Study area with location of Bastendorff, the dissipative sandy beach sampled 
in Southern Oregon during the summer of 2006. 
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Sampling 

 

Samples were taken on 14 dates throughout the summer of 2006 with a 1.5 m high x 15 

m wide beach seine with a 5.0 mm mesh. Three people carried the net at shoulder height 

out into the surf-zone to approximately 1 m depth where the shallow surf-zone borders 

with the swash zone (McLachlan and Brown, 2006). The net was opened parallel to the 

shoreline and pulled onto the beach. This procedure was followed one to three times, with 

fewer tows made when the surf was rough.  The distance from the shoreline to where the 

beach seine was first opened and the maximum depth of the water column were 

measured. The fish caught were anaesthetized with MS-222 (150 mg/liter of seawater) 

and the sample was preserved in 10% buffered formalin with the exception of the 

juvenile Chinook salmon caught on the last 11 sampling dates, which were frozen.  

 

Sample and Data Analysis 

 

In the laboratory, organisms were identified to species whenever possible using Kathman 

et al. (1986), Kozloff (1987), Smith and Carlton (1989), Brusca et al. (2001), and Shanks 

(2001). Densities and concentrations are presented as individuals per 1000 m2 and m3, 

respectively. Density (ind./1000 m2) and concentration (ind./1000 m3) were calculated 

using the total area and volume sampled. Area was calculated by multiplying the length 

of the tow and the length of the beach seine. We calculated the volume of water sampled 

by determining the slope, or the hypotenuse of a triangle, by using the depth and the 
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length of the tow, then multiplying by the length of the seine. Standard length (SL) of 

each juvenile Chinook salmon was measured. Differences in monthly mean SL were 

analyzed with a student’s t – test. Data were log10 (x+1) transformed to meet the 

assumptions of homogeneity of variance, which was the only assumption violated, and 

which was tested using an F max test. Mean daily growth rates were estimated 

subtracting the mean S.L. of the last date in which the juveniles were caught with the 

mean S.L. of the first date in which the juveniles were caught and dividing this value by 

the number of days that separated the first and last date.  

 

Stomach Content Analysis 

 

The stomach contents of juveniles were identified and weighed for each individual. The 

stomach content index (SCI) was calculated as an indicator of stomach fullness using the 

following equation: 

 

100,SWSCI x
BW

=  

 

where SW is the wet weight (g) of the stomach contents and BW is the wet weight (g) of 

the body of the fish (Takahashi et al. 1999). Since none of the juveniles had an empty 

stomach, they were all included in the following analysis. The stomach contents were 

identified to species whenever possible and were analyzed using a Non Parametric Multi-

Dimensional Scaling (nMDS) and a Similarity Percentage Analysis (SIMPER) to observe 
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possible changes in the diet composition over time. Prior to the analysis the data were 

log10 (x+1) transformed and the similarity values necessary to use an nMDS were 

obtained using the Bray-Curtis Index. We used the PRIMER 6 statistical package (Clarke 

and Gorley 2001). The stomach content data were also analyzed by comparing the variety 

and type of prey items with the size of the juvenile fish. The frequency of occurrence, 

number of individuals, and wet weight of each food item was measured. Finally, the 

selectivity in natural feeding behavior was calculated using the Shorigin index (Berg 

1979), which is as follows: 

 

%. ,
%

i

i

N in the ingested foodSel
N in the potentially available food

=  

 

where Sel. is the feeding selectivity and %Ni is the numerical percentage of an item. This 

index was chosen because it is considered an accurate way to compare values obtained 

from different samples, it compares the ingested food items with the potentially available 

food at the sampling site and has been used extensively in previous studies (ISI Web of 

Science, 2007). The data for %Ni in the potentially available food were obtained from 

Chapter 1. This related study sampled the smaller swimming fauna present in the whole 

water column and was available for the first six sampling dates. These samples were 

taken using a hyperbenthic sledge. We used a hyperbenthic sledge because we consider it 

to be the best method available to sample the surf-zone community due to the amount of 

seawater it filters per tow (Mees and Jones 1997). The sledge has a 50 x 70 cm mouth 
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opening connected to a 4 m long net with 1 mm mesh. The sledge was hand towed 

parallel to the shoreline at approximately 50 cm of water depth for 400 m during high, 

mid and low tides, spring and neap tides and during the day and night. Because of how 

much time it takes to obtain a sample with the sledge, we considered it was impossible to 

take replicates, a conclusion also reached in previous works (Watkin 1941). Therefore the 

tows were made sufficiently long for them to account for possible variances in the fauna 

due to the different areas present in the surf-zone of sandy beaches and to the patchy 

distribution that species may present (Mees & Jones 1997; Lock et al. 1999).  

 

Results 

 

A total of 2,017 individuals belonging to 17 species present in 5 different groups were 

identified from the samples collected with the beach seine (Cnidaria, Ctenophora, 

Crustacea, Cephalopoda, Osteichthyes). Some species were present in more than one 

developmental stage. More detail of the accompanying macrofauna can be found in 

Chapter 2. The area and volume of water sampled with one beach seine tow varied from 

694 to 708 m2 and from 451 to 461 m3, of which a mean of 701 m2 and 456 m3 was used 

to determine density and concentration.  

Forty-eight juvenile Chinook salmon (Oncorhynchus tshawytscha) were caught in six of 

the 14 sampling dates, 07/22, 07/27, 08/02, 08/13, 08/25 and 09/01 (Table 1). Based on 

the analysis of length and age data from previous studies, the 48 juveniles were 

categorized as sub-yearling Chinook (Fisher J., Oregon State University, personal 
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communication, based on unpublished data). Individuals were caught in samples taken 

during the high, mid and low tide, spring and neap tides, and day and night (Table 1). 

However, we found larger probabilities of capturing juveniles at high (2 of 3 samples or 

66.6% of the samples) or mid tide (2 of 3 or 66.6%) than at low tide (5 of 14 or 35.7%); 

during spring tide (7 of 10 or 70%) than during neap tide (2 of 10 or 20%); and during the 

night (2 of 3 or 66.6%) than during the day (7 of 17 or 41.2%).  

 

Table 1. Dates on which we sampled for sub-yearling Chinook in the surf-zone of a 
sandy beach. Table details the sampling date, tide, lunar tide (Lunar), Salmon caught 
(Salmon) are presented as density (Dens. ind./1000 m2) and concentration (Conc. 
ind./1000 m3, mean standard length of the salmon (S.L.), wet stomach content index 
(SCI), and mean number of individuals in stomach content (# of prey). All tides = Low 
(LW), Mid and High tide were sampled. Values presented as means ± S. D. 
 

Time of Sampling Salmon 
Date Tides Time Lunar Dens. Conc.

SL SCI # prey 

6/7 All day neap 0 0 - - - 
7/22 All day spring 3.1 4.8 9.05±0.61 2.1±1.55 18±7.52 
7/27 All day spring 2.0 3.1 10.69±0.44 2.04±0.84 23.57±10.21
7/30 LW night neap 0.0 0.0 - - - 
8/2 LW night neap 0.7 1.1 11.7±0 3.33±0 9±0 
8/5 LW day spring 0.0 0.0 - - - 
8/9 LW day spring 0.0 0.0 - - - 
8/13 LW night spring 2.9 4.4 12.25±1.06 4.55±0.75 11.5±7.78 
8/18 LW day neap 0.0 0.0 - - - 
8/25 LW day spring 1.4 2.2 10.2±0.99 4.17±0.95 33±29.7 
9/1 LW day neap 15.0 23.0 11.55±0.73 5.20±1.89 46.04±34.06
9/8 LW day spring 0.0 0.0 - - - 
9/15 LW day neap 0.0 0.0 - - - 
9/29 LW day neap 0.0 0.0 - - - 
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The standard length of the juveniles varied from 8.5 to 12.5 cm. The monthly 

mean S.L. (± S.D.) increased from 9.6±0.9 cm in July, to 11.3±1.3 in August, and to 

11.5±0.7 in September. The mean daily growth rate was of 0.6 mm. A t – test 

demonstrated significant difference between July and August (n = 25, t = 4.28, p = 0.01) 

or September (n = 43, t = 1.28, p = 0.001) but not between August and September (n = 

28, t = 0.68, p = 0.53).  

A total of 29 different prey items and a mean of 4.4±1.9 prey items per fish were 

identified in the stomach contents of the juveniles (Table 1). The majority of these prey 

items were amphipods (69%) (Table 2). According to Chapter 1 all the prey items were 

present in the surf-zone water when the juveniles were sampled. The mean SCI varied 

from 2.1 on 07/22 to 5.2 on 09/01 (Table 1). The mean SCI for the day (3.4±1.6) and 

night samples (3.9±0.9) were not significantly different.  

Table 2. Frequency of occurrence (%F) and selectivity index (Sel) of the 11 most 
common prey species present in the stomachs of 48 sub-yearling Chinook salmon 
sampled in the surf-zone of a sandy beach in Southern Oregon. Selectivity index was not 
possible to obtain on the last two dates of sampling. 
 
 Date 
 7/22 7/27 8/2 8/13 8/25 9/1 
Species %F Sel %F Sel %F Sel %F Sel %F %F 
Jassa shawi 76.9 15.4 100.0 8.6 0.0 0.0 0.0 0.0 100 52.2
Atylus trindens 23.1 0.7 71.4 0.4 0.0 0.0 50 6.0 100 73.9
Archaeomysis grebnitzkii 46.2 0.1 0.0 0.0 0.0 0.0 50 0.3 0.0 60.9
Dogielinotus loquax 84.6 12.3 57.1 1.5 0.0 0.0 0.0 0.0 0.0 17.4
Insects 84.6 80.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.7
Engraulis mordax 0.0 0.0 0.0 0.0 0.0 0.0 50 0.0 0.0 39.1
Excirolana kincaidi 46.2 4.3 0.0 0.0 0.0 0.0 50 31.2 50 8.7
Lophopanopeus bellus 15.4 1.3 14.3 1.8 100 999.0 0.0 0.0 0.0 21.7
Cancer oregenesis/productus 23.1 0.0 14.3 0.0 100 697.7 0.0 0.0 0.0 4.3
Lycaeopsis themistoides 15.4 3.9 14.3 2.7 0.0 0.0 50 0.0 50 4.3
Euphausia pacifica 7.7 0.0 0.0 0.0 0.0 0.0 100 0.0 0.0 0.0
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Statistical analysis (nMDS) separated the 48 stomach contents into seven different 

clusters at a similarity level of 37% and a stress level of 0.15 (Fig. 2). The first five 

clusters were each a representative of the stomach contents obtained during a particular 

date. The other two clusters were representative of the contents from 09/01.  

 

 

Figure 2. Non Parametric Multi-Dimensional Scaling of 48 Chinook salmon stomach 
contents sampled in the surf-zone of a sandy beach in Southern Oregon on the summer of 
2006. Samples separated into seven clusters by date. Similarity levels for clusters are 
37%. Dates: 7/22 (filled triangles), 7/27 (open triangles), 8/2 (open squares), 8/13 (filled 
diamonds), 8/25 (closed circles), 09/1 (plus signs). Data were previously log10 (x+1) 
transformed and resemblance values obtained using the Bray Curtis similarity index. 
 

SIMPER analysis indicated that different prey items contributed to the similarity 

of each cluster, which implies that the main prey items were different for each date 
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(Table 3). SIMPER analysis also indicated that stomach contents obtained on 09/01 

separated into 2 clusters because  certain juveniles fed mainly on a gammaridean 

amphipod (Atylus tridens) while others fed mainly on northern anchovy juveniles 

(Engraulis mordax). The standard lengths of the individuals feeding on juvenile anchovy 

(Cluster 7) were usually larger than those feeding on amphipods (Cluster 6). 

A negative correlation was observed between the species richness of the 48 

juveniles’ stomach contents and their standard length (n = 48, r =0.44, p=0.05), indicating 

that the variety of prey items decreased as the standard length of the juveniles increased 

(Fig. 3).  

 

Table 3. Similarity Percentage Analysis (SIMPER) showing the prey items contributing 
to similarity of each cluster formed by nMDS presented in Fig. 2. 
 

Species Cluster 1 Cluster 2 Cluster 5 Cluster 6 Cluster 7
Dogielinotus loquax 33.6 7.2 0.0 0.0 0.0 
Insect 29.8 0.0 0.0 0.0 0.0 
Jassa shawi 12.2 63.9 100.0 10.0 0.0 
Gammaridea sp 8.6 0.0 0.0 0.0 0.0 
Archeomysis grebnitzkii 5.0 0.0 0.0 14.6 0.0 
Megalorchestia pugettensis 4.1 0.0 0.0 0.0 0.0 
Atylus tridens 0.0 14.9 0.0 68.9 0.0 
Caprella incisa 0.0 10.3 0.0 0.0 0.0 
Northern Anchovy Juv. 0.0 0.0 0.0 0.0 98.7 
Clusters 3 and 4 not presented because there was less than two samples in group. 
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Figure 3. Species Richness of the stomach contents of 48 sub-yearling Chinook salmon 
correlated to standard length. Juveniles were sampled in the surf-zone of a sandy beach in 
Southern Oregon. 
 

A comparison of the percentage of invertebrate and fish prey items chosen by juvenile 

Chinook salmon from different size classes also indicated that the fish shifted their diet 

from invertebrates towards fish as their standard length increased (Fig. 4). This shift was 

gradual from 100% invertebrate prey items when the fish had a mean S.L. around 8 cm to 

50% invertebrate (mostly amphipods) and 50% juvenile and larval fish prey items when 

the fish had an approximate mean S.L. of 12 cm. The dietary shift began when the fish 

measured between 11 and 11.5 cm in mean S.L.  
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Figure 4. Mean Percentage (± S. E.) of invertebrate (filled bars) and fish prey (open bars) 
items found in the stomach contents of 48 sub-yearling Chinook salmon caught in the 
surf-zone of a sandy beach compared to their size class (cm). Samples taken at a 
dissipative sandy beach of southern Oregon during the summer of 2006. 
 

  The frequency of occurrence (%F) and numerical percentage (%N) of the 48 

stomach contents indicated that there were seven main food items: three gammarid 

amphipods (A. tridens, Jassa shawi and Dogielinotus loquax), a mysid (Archaeomysis 

grebnitzkii), an isopod (Excirolana kincaidi), the megalopae of a brachyuran crab 

(Lophopanopeus bellus), and an osteicthyen juvenile (E. mordax) (Table 2). However, 

%N and %F of each date indicated that the importance of these 6 prey items varied with 

the date and that on 08/02, 08/13 and 08/25 there were other prey items that were as or 

more important.  Due to a lack of data on potentially available food, feeding selectivity 

analysis was only possible for the first 4 dates in which Chinook was caught. The 
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analysis indicated that selectivity for the main three prey items (Jassa shawi, Insects and 

D. loquax) in 07/22 was high.  The selectivity value decreased on 07/27 with three 

different main prey items (Jassa shawi, A. tridens, D. loquax). The values obtained in 

08/02 showed a large increase in the selectivity of the two new main prey items 

(megalopae of Cancer orogenensis/productus and L. bellus). Finally, 08/13 showed the 

lowest feeding selectivity of all with three different main prey items (A. grebnitzkii, 

Euphausia pacifica and E. mordax) (Table 2).  

 

Discussion 

  

The presence of sub-yearling Chinook salmon in the surf-zone of a sandy beach supports 

the distribution hypothesis, which stated that the juveniles spend their first ocean year in 

sheltered nearshore waters, or very close to shore. . Sub-yearling Chinook leave the 

estuary in large concentrations measuring 7-8.5 cm S.L. (Reimers 1973; Healey 1983; 

Gray et al. 2002; Bottom et al. 2005). Such large concentrations are only caught again 

offshore (>1 nautical Km) when the juveniles reach sizes > 12 cm S.L. (Peterson et al. 

1982; Schabesberger et al. 2003; Brodeur et al. 2004). The mean increase of 2.5 cm in the 

mean standard lengths of Chinook salmon from July to September, the fact that the fish 

were caught at high, mid and low tide, day and night and during spring and neap tides, 

and the presence of all the prey items in the surf-zone water column when the juveniles 

were sampled strongly suggests that juveniles with standard lengths between 8 to 12.5 cm 

resided in the surf-zone of Bastendorff through out the summer of 2006. This agrees with 
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Dawley et al. (1981) that found large numbers of fish < 130 cm F.L. in shallow marine 

waters near the surf-zone (< 4 m). 

Based on Healey’s (1983) distribution hypothesis and considering the substantial 

percentage of the total natural mortality during the first months of marine life in juvenile 

salmon due to environmental conditions, competition and predation (Parker 1968; 

Mathews and Buckley 1976; Bax 1983; Allen and Hassler 1986; Furnell and Brett 1986; 

Fisher and Pearcy 1983; Brodeur et al. 1992; Pearcy 1992), their presence in the surf-

zones of sandy beaches is reasonable and surprising at the same time, considering the 

harsh hydrodynamic conditions and the shallowness of the zone. This zone could offer 

the juveniles shelter from fish or bird predation, an abundant food supply of invertebrates 

(insects and crustaceans) and other young fish, and low rates of competition, all of which 

could increase their survival rate. On beaches close to large estuaries the surf zone could 

also provide low-salinity water masses that have been shown to attract juvenile fish that 

have just entered the ocean (Fisher and Pearcy 1995). If the juveniles were present, the 

surf-zone, a zone impossible to sample by standard techniques off scientific vessels, 

could be a nursery for sub-yearlings that have just entered the ocean. Despite the low 

densities in which we caught several species of juvenile fish, the surf-zone could be 

acting as a nursery due to the percentage of the Oregon coastline that are sandy beaches 

(ODFW 2006). This could result in sandy beach surf-zones contributing in higher 

proportion to the production if individuals that recruit to adult populations than any other 

environment, a characteristic that is considered primary when defining nursery areas 

(Beck et al. 2001). The use of the surf-zone of sandy beaches as a nursery has been 
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observed in previous studies (Beyst et al. 2001a, Beyst et al. 2002a, Barreiros et al. 2004, 

Silva et al. 2004, McLachlan & Brown 2006). Bastendorff’s surf-zone may have been 

used as a nursery habitat because of the following characteristics. Potential fish predators 

in the surf-zone of sandy beaches are ospreys, grebes, cormorants and harbor seals  

(Hodder J., personnal communication). However, during the summer of 2006, only 

osprey, Pandion haliaetus, was observed feeding on fish at Bastendorff. According to 

Chapter 1 there was a mean of 4,078 possible prey individuals per 100m2 (1 to 5 mm in 

length). The potential prey included mysids, amphipods, isopods, larval and juvenile fish, 

various crab megalopae and euphausids. These are large and/or highly pigmented 

animals, prey characteristics that are known to be preferred by juvenile salmon (Peterson 

et al., 1982, Brodeur, 1989, 1991, Schabetsberger et al., 2003). There were only six 

species of fish and two species of macrocrustaceans that could have competed with the 

salmonids for food. Five of these fish were present in lower concentrations than Chinook 

and in four species, fewer five individuals were caught in total. Finally, fewer than five 

individuals of macrocrustacean species were caught throughout the summer of 2006 at 

Bastendorff (Chapter 2). During the summer of 2006, the surf-zone presented salinity 

values between 29.5 and 33.8, some of which are considered low for oceanic waters (≥ 

33), and which could attract juveniles to the surf-zone and aid them in acclimating to full 

saline oceanic waters, a process that has been known to produce stress and death in 

juvenile salmonids (Fagerlund et al. 1995). 

Like previous studies, our SCI results led us to hypothesize that the fish fed 

during day (Schabetsberger et al., 2003) and night (Bradford and Higgins, 2001). 
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However, unlike previous studies, our results also lead us to hypothesize that the 

juveniles were feeding at similar intensities during the day and night; however, few 

salmon were caught at night. The results also suggest that fish consumed more as the 

season progressed and they increased in size. 

The statistical analysis suggests that the fish fed opportunistically (2 dates) and 

selectively (2 dates). The opportunistic behavior was observed on 07/27 and 08/13, when 

the choice of prey items was proportional to the availability of the prey. This feeding 

behavior was not observed on 07/22 and 08/02, in which the selectivity values were high. 

On 07/22 the fish preyed mainly on insects and on the amphipods Jassa shawi and 

Dogielinotus loquax. During their residence time in the estuary, juvenile salmonids 

commonly feed on insects and amphipods (Shreffler et al. 1992; Miller and Simenstad 

1997; Gray et al., 2002), suggesting the surf-zone juveniles were feeding on known prey. 

On 08/02 the fish mainly preyed on Lophopanopeus bellus and Cancer 

orogenensis/productus. The high selectivity values observed during this date could have 

been due to the number of fish caught and to the dominance of the mysid Archaeomysis 

grebnitzkii on the sample (Chapter 1), which greatly reduced the frequency distribution of 

all the other species present.  

Finally, correlation of the size classes of juvenile salmon and number of prey 

items consumed suggests that as they grew larger they were preying on a smaller variety 

of prey items. This could have been because the larger fish were selecting larger prey, 

which was less common in the surf-zone of Bastendorff (Chapter 1). The comparison of 

the percentage of invertebrate or fish prey items by size classes suggests there was an 
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ontogenetic shift in their diet from invertebrates to larval and juvenile fish. Both changes, 

a lower variety of prey items and an ontogenetic shift to fish, have been observed in 

previous offshore studies (Peterson et al., 1982; Brodeur, 1991; Keeley and Grant, 2001; 

Schabetsberger et al., 2003). Juveniles may leave the surf-zone at the end of the summer 

when their diet shifts to juvenile fish.  

This study presents the first evidence that ocean-type sub-yearling Chinook 

salmon inhabit the surf-zone of sandy beaches. During the summer, juvenile Chinook 

increased in size by two centimeters and appeared to feed opportunistically during both 

the day and night on a large variety of prey items present in the surf-zone. Larger juvenile 

Chinook in the surf-zone preyed more intensively on a smaller variety of prey items, and 

shifted their diet towards larval juvenile fish. 
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Bridge III 

 

Chapter IV presented the first evidence that ocean-type sub-yearling Chinook salmon 

inhabite the surf zone of sandy beaches. During the summer, juvenile Chinook increased 

in size by two centimeters and appeared to feed opportunistically during both the day and 

night on a large variety of prey items present in the surf zone. Larger juvenile Chinook in 

the surf zone preyed more intensively on a smaller variety of prey items, and shifted their 

diet towards larval juvenile fish. Chapter V attempted to describe the L. stylirostris 

population present at a dissipative sandy beach in southern Oregon and the environmental 

variables that influence it, identify the preferred prey items, analyze variation of the 

sexual composition of the population to gain insight into the sexual system employed by 

the species, and observe differences between parasitized and non-parasitized individuals. 
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CHAPTER IV 

THE POPULATION ECOLOGY OF THE SMOOTH BAY SHRIMP, LISSOCRANGON 

STYLIROSTRIS (DECAPODA, CRANGONIDAE), AT A DISSIPATIVE SANDY 

BEACH IN SOUTHERN OREGON, WITH NOTES ON THE OCCURRENCE AND 

BIOLOGY OF ITS PARASITE, ARGEIA PUGETTENSIS (ISOPODA, BOPYRIDAE) 

 

 Introduction 

 

The smooth bay shrimp, Lissocrangon stylirostris, ranges from Chirikof Island, Alaska, 

to San Luis Obispo, California (Jensen, 1995). It is common in the surf-zone of high-

energy sandy beaches and subtidally on sand or rock down to 80 m. (Jensen, 1995). 

While the adult shrimp are thought to be limited to cool, high salinity water (Hieb, 1999), 

studies suggest this and other crangonid species use the estuary as a nursery (Krygier 

1974, Hoeman, 1982).  The reproductive population is concentrated in the nearshore 

coastal habitats (Hieb, 1999), and is mostly composed of females that are often larger in 

size than males (Hoeman, 1982). Population size has been observed to vary with seasons, 

tides and time of day (Hoeman, 1982; Chapter 2) 

Crangonid shrimp exhibit several sexual systems. Many crangonid species are 

considered gonochoristic, but there are also many species that exhibit protandric 

hermaphroditism. Several different types of protandry are known to occur among the 

crangonids. Notocrangon antarcticus is considered a simple protandrous hermaphrodite 
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in which all adult individuals reproduce first as males and later as females (Pfeffer, 1887 

in Correa and Thiel, 2003). Crangon franciscorum (Gavio et al., 2006) and Crangon 

crangon (Linnaeus, 1758 from Gavio et al., 2006) exhibit “protandry with primary 

females” also referred to as “partial protandric hermaphroditism with primary females” in 

which individuals are either primary females (they reproduce as females throughout their 

life) or protandric hermaphrodites (they reproduce first as males and later as secondary 

females) (Gavio et al., 2006; Linnaeus, 1758 from Gavio et al., 2006). At the age of first 

reproduction some members of an age group are females and the rest males (Bauer, 2000; 

Correa and Thiel, 2003; Gavio et al., 2006). Crangon crangon is also considered a 

facultative protandric hermaprodite; they have the capability but not the obligation of 

changing sex (Schatte and Saborowski, 2006). The sexual system L. stylirostris exhibit is 

unknown. Therefore, one of the purposes of this work was to investigate possible systems 

employed by the shrimp. 

Bopyrid isopods have evolved as branchial parasites mostly of crustaceans and 

are known to affect aspects of their host’s reproduction, growth, metabolism, 

environmental tolerances and the partitioning of the host’s energy budget (Anderson, 

1977; Beck, 1980; Nelson, 1986; Jay, 1989; Smith et al., In press). At least 20 species 

including L. stylirostris are hosts to Argeia pugettensis (Markham, 1977). This isopod 

ranges circumboreally in the Pacific, from Korea to San Francisco Bay, California 

(Markham, 1977). Numerous works have documented the effects of A. pugettensis on the 

growth and reproduction of crangonid shrimp (Gifford, 1934; Nelson, 1986; Jay, 1989). 

Several studies have reported parasitism by A. pugettensis on L. stylirostris (Fee, 1926; 
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Markham, 1977, Hoeman, 1982) but no study has analyzed the effect of the parasite on 

the shrimp.  The bopyrid isopod Argeia pugettensis, is a common parasite of L. 

stylirostris but the effect the isopod has on the shrimp is unknown. 

The present study attempted to (a) describe the L. stylirostris population present at 

a dissipative sandy beach in southern Oregon and the environmental variables that 

influence it, (b) identify the preferred prey items, (c) analyze variation of the sexual 

composition of the population to gain insight into the sexual system employed by the 

species, and (d) observe differences between parasitized and non-parasitized individuals.  

 

Materials and Methods 

 

Study Area 

 

This study was conducted at Bastendorff Beach (43°35’N, 124°35’W), which is located 

immediately south of the mouth of Coos Bay in southern Oregon, U.S.A (Fig. 1). 

Bastendorff is a 3 Km long semi-exposed dissipative sandy beach bordered by a rocky 

shore on the south and a rock jetty at the mouth of the Coos estuary to the north. 

Dissipative beaches are flat beaches in which the wave energy is dissipated in the surf-

zone rather than reflected from the beach face (McLachlan, 1980; Masselink and Short, 

1993). Additional details of the study site are given in Chapter 1.  
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Figure 1. Study area with location of Bastendorff, a dissipative sandy beach sampled in 
southern Oregon during the summer of 2006. 
 

Sampling  

 

Samples were taken on 14 dates throughout the summer of 2006 (Table 1). Collections 

were made during high, mid and low tides, during spring and neap tides, and during the 

day and night. Samples were collected using a beach seine and a hyperbenthic sledge. 

The beach seine was 1.5 m high and 15 m wide with a 5.0 mm mesh. Three people 

carried the net at shoulder height into the surf-zone to an approximate depth of 1 m. 

where the shallow surf-zone borders with the swash zone (McLachlan and Brown, 2006). 

The net was then opened parallel to shore and towed towards the shoreline. This 

procedure was followed one to three times, with fewer tows made when the surf was 

rough. The distance from the shoreline to where the beach seine was first opened and the 
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maximum depth of the water column were measured.  The hyperbenthic sledge sampled 

the swimming fauna present in the whole water column at ~ 50 cm of depth and was only 

used on the first six sampling dates. We used a hyperbenthic sledge because we consider 

it to be the best method available to sample the surf-zone community due to the amount 

of seawater it filters per tow (Mees and Jones 1997). The sledge has a 50 x 70 cm mouth 

opening connected to a 4 m long net with 1 mm mesh. The sledge was hand towed 

parallel to the shoreline at approximately ~ 50 cm water depth for 400 m during high, 

mid and low tides, spring and neap tides and during the day and night. Because of how 

much time it takes to obtain a sample with the sledge, we considered it was impossible to 

take replicates, a conclusion also reached in previous works (Watkin 1941).  
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Table 1. Time of sampling and biological values obtained from an L. stylirostris population present at Bastendorff, a dissipative sandy 
beach in southern Oregon during the summer of 2006. Date, tide, lunar tide (Lunar), time of day (Time) during which the samples 
were taken. Densities (ind/100 m2) are presented for the groups: Parasitized males (Par. mal.), Parasitized females (Par. fem.), Non-
parasitized males (Non. mal.), Non-parasitized females (Non. fem.), Brooding non-parasitized (Brood. non.) and Brooding parasitized 
(Brood. par.). Feeding Selectivity values (Select.) of the shrimp towards the mysid Archaeomysis grebnitzkii are also presented and 
were obtained employing the Shorigin index (Berg, 1979). * = dates on which the hyperbenthic sledge was used. 

Date Tide Lunar Time Par. mal. Par. fem. Non. mal. Non. fem. Brood. non. Brood. par. Total Select.
6/7/06* HW Neap 1019 1.4 1.7 0.1 0.9 1.1 0.0 5 
6/7/06* MW Neap 1250 0.0 1.7 0.0 0.3 0.7 0.0 3 
6/7/06* LW Neap 1528 0.7 1.0 0.0 1.3 1.1 0.0 4 

- 

7/22/06* HW Spring 1207 0.0 0.0 0.0 0.0 0.0 0.0 0 
7/22/06* MW Spring 1403 0.0 0.4 0.0 0.1 0.3 0.0 1 
7/22/06* LW Spring 1644 0.0 0.4 0.0 0.0 0.0 0.0 0 

1.63 

7/27/06* HW Spring 1504 1.0 2.9 0.3 0.1 0.3 0.1 5 
7/27/06* MW Spring 1145 3.3 13.7 0.6 0.4 5.0 0.0 23 
7/27/06* LW Spring 824 0.6 6.1 1.1 0.3 3.1 0.0 11 

2.08 

7/30/06* LW Neap 2239 13.6 25.0 3.9 0.1 16.7 0.0 59 1.05 
8/2/06* LW Neap 0031 12.6 17.1 2.0 0.4 6.1 0.3 39 1.02 
8/5/06 LW Neap 1145 0.3 2.0 0.0 0.0 0.4 0.0 3 - 
8/9/06 LW Spring 1400 0.3 0.0 0.0 0.0 0.0 0.0 0 - 
8/13/06* LW Spring 2230 23.7 31.1 22.8 0.4 14.4 0.3 93 1.12 
8/18/06 LW Neap 1000 0.3 0.3 0.0 0.0 0.1 0.0 1 - 
8/25/06 LW Spring 1500 1.6 6.7 1.6 0.7 2.3 0.0 13 - 
9/1/06 LW Neap 0800 0.1 2.3 0.1 0.0 1.7 0.0 4 - 
9/8/06 LW Spring 1400 7.1 5.3 11.7 8.6 1.9 0.0 35 - 
9/15/06 LW Neap 0800 0.7 0.9 0.3 0.3 0.6 0.0 3 - 
9/29/06 LW Neap 1800 0.6 1.3 0.7 0.7 0.3 0.0 4 - 
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Therefore the tows were made sufficiently long for them to account for possible 

variances in the fauna due to the different areas present in the surf-zone of sandy beaches 

and to the patchy distribution that species may present (Mees & Jones 1997; Lock et al. 

1999). All samples were preserved in 10% buffered formalin. 

In the laboratory, organisms were identified to species when possible. 

Lissocrangon stylirostris individuals were separated from the rest of the fauna (see 

Chapter 1 and 2). All L. stylirostris individuals caught in the beach seine were measured, 

sexed and checked for the bopariid isopod Argeia pugettensis. The sex of each shrimp 

was determined by examining the endopod of the first and second pleopods as described 

by Butler (1980). A bulge in the shrimp’s carapace over either the right or the left 

branchial chamber indicated parasitized shrimp.  

The length measurements were taken from the tip of the rostrum to the tip of the 

telson. Individuals were grouped into categories of Parasitized male (Par. mal.), 

Parasitized female (Par. fem.), Non-Parasitized male (Non. mal.), Non-parasitized female 

(Non. fem.), Brooding non-parasitized (Brood. non.), and Brooding parasitized (Brood. 

par.). Densities are presented as individuals per 100 m2. Densities (ind./100 m2) were 

calculated using the total area sampled, which was calculated by multiplying the length of 

the tow and the length of the beach seine. We calculated the volume of water sampled by 

multiplying the area and the maximum depth of the water column and then dividing this 

value by two to account for the beach slope.  
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We were not able to use a three-way ANOVA to analyze variances due to tides, 

lunar tides and time of day because we did not sample during all three tides at night. 

Instead, densities were compared among samples taken during the four months (June, 

July, August, September), three tides (high, mid and low tide), two lunar tides (spring and 

neap tide) and two times of day (day and night) using one-way ANOVAs. Pair-wise 

comparisons were conducted using Tukey’s test. We tested for effects of lunar tide and 

time of day on densities using a partially nested mixed model two-way ANOVA. We 

were able to use two-way ANOVAs despite the fact that we sampled only once during 

the spring/night low tide because we did obtain replicates for spring/day low tide, 

neap/night low tide and neap/day low tide. However, because of the lack of spring/night 

low tide replicates we were not able to do any further statistical comparison. All of the 

assumptions for the analysis of variance were met, except for the homogeneity of 

variances. To meet this assumption, the data were log10 (x+1) transformed and then tested 

with an F max test. The data were plotted as size frequency histograms to observe 

possible effects of sex and parasitism on size. These size class data were statistically 

compared using a Kolmogorov-Smirnov goodness-of-fit test (K-S test) (Sokal and Rohlf, 

1995). 

It is unclear where the shrimp are feeding, in the water column or the sediment. It 

is also unclear where the shrimp were present when caught with the beach seine, in the 

sediment or the water column. For this reason, the shrimp caught in the hyperbenthic 

sledge were counted and observed for possible parasitism. Seventy-one randomly 

selected shrimp caught in the hyperbenthic sledge from the six dates, 21 non-parasitized 
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and 60 parasitized, were wet weighed, stomach contents analyzed, the Stomach content 

index (SCI) calculated, and observed for parasitism. The stomach content index (SCI) 

was calculated as an indicator of stomach fullness in all of the samples using the 

following equation: 

 

100,SWSCI x
BW

=  

 

where SW is the wet weight (g) of the stomach contents and BW is the wet weight (g) of 

the body of the shrimp (Takahashi et al., 1999). The percentage of empty stomachs was 

recorded, but these were not used in further analysis. The SCI of parasitized and non-

parasitized individuals, and individuals caught during the night and day were compared 

using two one-way ANOVAs (day vs night and parasitized vs non-parasitized). Because 

of the different time at which the night samples were taken (Table 1) the data from the 

three night time dates were compared between each other using a one-way ANOVA and 

a post-hoc comparison of means test (Tukey’s test). 

The number of individuals, frequency of occurrence (%F), numerical percentage 

(%N) and wet weight of each food item in grams was recorded. The frequency of 

occurrence (%F) of a diet component is the percentage of the shrimp in a sample, which 

contain the component in their digestive tracts (Hynes, 1950). Finally, the selectivity in 

natural feeding behavior was calculated using the Shorigin index (Berg, 1979), which is 

as follows: 
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%. ,
%

i

i

N in the ingested foodSel
N in the potentially available food

=  

 

where Sel is the feeding selectivity and %Ni is the numerical percentage of an item. The 

data for %Ni in the potentially available food were obtained from the samples taken with 

the hyperbenthic sledge. The data from these samples are detailed in Chapter 1. This 

index was chosen because it is considered an accurate way to compare values obtained 

from different samples, it compares the ingested food items with the potentially available 

food at the sampling site and has been used extensively in previous studies (ISI Web of 

Science, 2007). 

To observe possible effects of the parasite on the host, 20 parasitized and 20 non-

parasitized individuals were taken randomly from four low tide beach seine samples, one 

sample from each month sampled (6/7/06, 7/30/06, 8/13/06, 9/8/06) to include possible 

seasonal, lunar or time of day effects. Individuals were grouped by size and divided into 

parasitized and non-parasitized shrimp. All individuals were dried in a hood for 24 hours. 

The side in which the parasite was attached on parasitized individuals, and the dry weight 

and length of the individuals were recorded. The weight of the parasite was subtracted 

from the weight of the shrimp to obtain the shrimp’s real weight.  

From the four sampling dates mentioned above, 10 parasitized and 10 non-

parasitized new individuals (80 individuals in total) were selected randomly and their 

stomach contents analyzed. These individuals were wet weighed, measured and their 
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stomach contents analyzed and weighed. Additionally, the parasites were all counted and 

sexed based on Gifford (1934) and Kozloff (1987). 

 Finally the fish caught in the beach seine, which according to a stomach content 

analysis had preyed on L. stylirostris, were recorded along with the presence or absence 

of A. pugettensis on these shrimp prey. 

 

Results 

 

The volume of water sampled with one beach seine tow varied from 451 to 461m3. The 

area sampled with one beach seine tow varied from 694 to 708 m2, of which a mean of 

701 m2 was used to determine density. In the beach seine, a total of 2,084 individuals 

were caught at Bastendorff during the 14 dates sampled, with a mean of 15±24 

individuals per 100 m2 (± S.D.) (Table 1). The majority of these individuals were females 

(63.1%) and most of the individuals (61.7%) were parasitized by the boparid isopod, 

Argeia pugettensis. Of the females, 39.3% were parasitized, 4.82% were non-parasitized, 

18.7% were brooding non-parasitized, and 0.2% were brooding parasitized. Of the males, 

22.2% were parasitized and 14.7% were non-parasitized individuals. On the 6 dates 

sampled with the hyperbenthic sledge a total of 453 individuals were caught, with an 

average density of 25±68 individuals per 100 m2.  

 

Temporal Variation 
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Higher mean densities of both methods were observed during September (Fig. 2), on low 

tides, spring tides and only significantly at night time (p ≤ 0.008). A two-way ANOVA 

found that during low tide significantly higher densities were usually observed during 

night spring tides followed by night neap tides, day spring tides and day neap tides, 

however these comparisons were not significant in all of the groups (Table 2, Fig. 3 and 

4).   

 
Figure 2.  Mean monthly day time densities (ind/100m2 ± S.E.) of parasitized and non-
parasitized L. stylirostris observed during the four months sampled in the summer of 
2006. There was no significant difference between the monthly densities of parasitized 
and non-parasitized shrimp. 
 

 

Size frequency distributions of L. stylirostris varied over time. In June, L. 

stylirostris ranged between 3 and 5.4 cm in length (Fig. 5a). In July, a cohort of small 
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individuals with lengths between 1.5 and 3 cm (Fig. 5b) appeared. The abundance of this 

cohort increased through August and September (Fig. 5c and d). While the percentage of 

larger individuals (3 to 5.4 cm) began to decrease in July and continued to decrease 

through August and September. 

 
 

 
 
Figure 3. Mean densities (ind./100 m2± S.D.) of parasitized and non-parasitized male and 
female L. stylirostris observed during day and night and spring and neap tides. Samples 
were taken at low tide in the surf-zone of a dissipative sandy beach in southern Oregon 
during summer 2006. The p values are based two-way ANOVAs. Within each group, the 
density values that did not differ significantly are represented with the same letter. n = 
number of shrimp in lunar tide/time of day combination. 
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Table 2. Results of two-way ANOVA test for differences in Lissocrangon stylirostris 
densities at low tide. Fixed effects were time of day and lunar tides.  Samples taken at 
Bastendorff, a dissipative sandy beach in southern Oregon. 
 
a) Parasitized Male Shrimp 
  df Effect MS Effect df Error MS Error F p-level 
Lunar tide 1 78.27 10 3.63 21.58 0.0009
Time of day 1 632.84 10 3.63 174.46 0.0000001
Interaction 1 45.03 10 3.63 12.41 0.006
b) Parastized Female Shrimp 
  df Effect MS Effect df Error MS Error F p-level 
Lunar tide 1 83.47 10 7.54 11.07 0.008
Time of day 1 1190.80 10 7.54 157.96 0.0000002
Interaction 1 31.20 10 7.54 4.14 0.07
c) Non Parasitized Male Shrimp 
  df Effect MS Effect df Error MS Error F p-level 
Lunar tide 1 273.42 10 10.12 27.02 0.0004
Time of day 1 275.49 10 10.12 27.22 0.0004
Interaction 1 158.65 10 10.12 15.68 0.003
d) Non Parasitized Female Shrimp 
  df Effect MS Effect df Error MS Error F p-level 
Lunar tide 1 1.50 10 5.70 0.26 0.62
Time of day 1 1.34 10 5.70 0.23 0.64
Interaction 1 1.03 10 5.70 0.18 0.68
e) Brooding Non Parasitized Female Shrimp 
  df Effect MS Effect df Error MS Error F p-level 
Lunar tide 1 7.48 10 6.54 1.14 0.31
Time of day 1 299.69 10 6.54 45.81 0.00005
Interaction 1 2.72 10 6.54 0.42 0.53
f) Brooding Parasitized Female Shrimp 
  df Effect MS Effect df Error MS Error F p-level 
Lunar tide 1 0.01 10 0.00 2.68 0.13
Time of day 1 0.10 10 0.00 24.11 0.0006
Interaction 1 0.01 10 0.00 2.68 0.13
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Figure 4. Mean densities (ind./100 m2± S.D.) of brooding non-parasitized L. stylirostris 
observed during four different times (time of day/lunar tide). Samples were taken at low 
tide during summer 2006 in the surf-zone of a dissipative sandy beach in southern 
Oregon. The p values presented are based on two-way ANOVAs. Within each group, the 
density values that did not differ significantly are represented with the same letter. n = 
number of shrimp in lunar tide/time of day combination. 
 

In the stomach content analysis, only three prey items were observed. The most 

frequent food item overall was the mysid Archaeomysis grebnitzkii. The frequency of 

occurrence (90±22) and the numerical percentage (87±30) of A. grebnitzkii were 

significantly higher than any other food item (n = 7, F ≥ 21.33, p ≤ 0.0001). The other 

prey items identified were the amphipods Dogielinotus loquax and Lycaeopsis 

themistoides. Finally the feeding selectivity of the shrimp towards the mysid A. 

grebnitzkii was low in the five dates analyzed (Table 1).   
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Figure 5. Size percent frequency distribution of L. stylirostris collected in the summer 
2006 from the surf-zone of a dissipative sandy beach in southern Oregon.   
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A one-way ANOVA (F=21.27, p=0.02) showed that significantly lower feeding 

selectivity values were observed in the shrimp caught at night (1.1±0.1) than in the day 

(1.9±0.3).     

  

Sex and/or Parasitic Variation 

 

Female shrimp varied in size from 2 to 7 cm with the majority between 4-4.9 cm (80%) 

(Fig. 6a). Males varied from 1.5-4.9 cm with the majority being between 2.5-2.9 (35%) 

and 4-4.5 cm (20%) (Fig. 6a). There was a significant difference in the size frequency 

distributions of female and male shrimp (K-S test, n = 797, D = 0.38, p = 0.05). The 

majority of brooding non-parasitized female shrimp ranged from 4.5-5.4 cm (81%), of 

which brooding parasitized females ranged from 3.5 and 4.9 cm (80%). The size 

frequency distributions of these two groups of brooding females differed significantly. 

However due to the small sample size of the brooding parasitized (n = 5) this result 

should be considered tentative. The non-brooding parasitized females ranged from 4 to 

4.9 cm (88%), where as the non-parasitized non-brooding females ranged between 2.5-

4.9 (83%) (Fig. 6b). The size frequency distribution of these two female groups differed 

significantly (K-S test, n = 104, D = 0.35, p = 0.05). The majority of parasitized males 

ranged from 2-4.4 cm (69%) whereas non-parasitized males were smaller; 81% were 

between 2.5-3.4 cm  (Fig. 6c). The size frequency distributions of parasitized and non-

parasitized male shrimp were significantly different (K-S test, n = 318, D = 0.33, p = 

0.05).  
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Figure 6. Size frequency distribution of L. stylirostris for (a) males and females, (b) 
Parasitized females, Non-parasitized females, and (c) Parasitized males and Non-
parasitized males. Samples were collected in the surf-zone of a dissipative sandy beach in 
southern Oregon. Distributions compared using Kolmogorov-Smirnov tests, all of which 
differed significantly (p < 0.05). 
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Adult female isopods were larger than males. A male isopod was always present with a 

female isopod, whether the female was gravid or not. Males attached to the back of 

gravid females and in the brood pouch of non-gravid females. Parasites occupied the right 

side of the host (58%) slightly more than the left side (42%). Few shrimp were 

parasitized by more than one female isopod (<1%). Non-gravid female isopods were 

usually present in shrimp smaller than 3.2 cm. Juvenile isopods were present only during 

the last two dates (8/13/06 and 9/8/06) when gravid and non-gravid female isopods were 

present.  

 

Differences between Parasitized and Non-parasitized Individuals 

 

Non-parasitized shrimp had significantly higher dry weight than parasitized shrimp, 

0.66±0.44 g compared to 0.38±0.16 g, respectively (n = 160, F=28.8, p=0.001). 

Separating non-parasitized and parasitized shrimp by size class, we observed several 

differences. In small shrimp (2.1 to 3 cm) the non-parasitized individuals weighed 27% 

more than the parasitized individuals. This changed for shrimp between 3.1 and 4 cm, 

where the parasitized individuals weighed significantly more (58%) than the non-

parasitized individuals (n = 37, F= 17.02, p=0.002). Interestingly, this pattern again 

reverses in individuals between 4.1-5 cm, with non-parasitized individuals weighing 

significantly more (36%) than the parasitized individuals (n = 68, F = 8.18, p = 0.005) 

(Fig. 7). Based on length measurements of host and parasite, we observed a positive 
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correlation between the length of the isopod parasite and the length of the host shrimp (n 

= 75, r = 0.84, p = 0.05) (Fig. 8), regardless of the host gender. 

 

Figure 7. Dry weight comparison by size class between parasitized and non-parasitized 
L. stylirostris. Samples taken throughout the summer of 2006 at a dissipative sandy beach 
of southern Oregon. Error bars represent standard deviation. *Significant difference (p ≤ 
0.005). 
 

In the beach seine samples, the stomach analysis revealed 18 of the 40 non-

parasitized individuals (45%) and 12 of the 40 parasitized individuals (30%) had empty 

stomachs. No significant differences in SCI values were observed in non-parasitized 

(0.74±1.32) and parasitized individuals (0.69±0.76). When comparing values for the four 

combinations of lunar tides and time of day at low tide, highest SCI values where 

observed during spring night time (0.93±1.41), followed by spring day time (0.88±1.25), 
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neap night time (0.74±0.83) and neap day time (0.31±0.5). However, there were no 

significant differences due to these factors. Stomachs of these individuals contained 

primarily detritus and sand with low percentages of gammarid amphipods, and the mysid, 

Archaeomysis grebnitzkii. 

 

Figure 8. Linear correlation between lengths of L. stylirostris and its parasite, A. 
pugettensis. Samples taken in summer 2006 at a dissipative sandy beach of southern 
Oregon. 

 

In the sledge samples, sixteen of 71 individuals had empty stomachs (23%), 

including the individual caught on 6/7/06. Parasitized individuals had a higher percentage 

of empty stomachs (12 of 42, 29%) compared to non-parasitized individuals (4 of 29, 
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14%). Individuals caught in the day also had a higher percentage of empty stomachs (8 of 

23, 35%) than individuals caught during the night (8 of 48, 17%). No significant 

difference in SCI values was observed when comparing parasitized and non-parasitized 

individuals, and individuals caught during the day and night. However, significantly 

higher SCI values were observed in individuals caught at night on 08/02/06 (2.8±1.3) 

than during the day (n = 27, F= 14.25, p = 0.0007). The SCI of the individuals caught 

during the three night samples differed significantly from each other (n = 48, F = 7.76, p 

= 0.001). A post-hoc mean comparison showed that the SCI of 08/02/06 was significantly 

different than the other two night samples (p ≤ 0.01) but these other two did not differ 

significantly from each other. When comparing the individuals caught during 08/02/06, 

significantly higher values were observed in non-parasitized individuals than in 

parasitized individuals, with values of 3.6±1.3 and 2.1± 0.7, respectively (n = 15, F = 

8.21, p = 0.01).  

Only two species of fish in the seine samples had preyed on L. stylirostris, 

English sole/Pleuronectes vetulus (2 individuals) and Pacific staghorn sculpin/ 

Leptocottus armatus (4 individuals). In total, the six fish preyed on nine L. stylirostris 

individuals; of which five were parasitized by A. pugettensis and three were not. Whether 

or not the ninth L. stylirostris was parasitized was impossible to determine due to an 

advanced deterioration of the shrimps body. The shrimp composed 63±53% of English 

sole prey items and 75±32% of Pacific staghorn sculplin. 
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Discussion 

 

The presence of L. stylirostris in high abundances at Bastendorff Beach during the 

summer of 2006 was not surprising considering this species has been reported as an 

inhabitant of high-energy semi-exposed sandy beaches (Schmitt, 1921; Kuris et al., 1977; 

Rudy Jr. and Rudy, 1983). The similar densities observed during the four summer months 

seem to be due to a recruitment event that was observed throughout the months of July, 

August and September, and to the disappearance of the larger shrimp during the same 

months, probably due to mortality. Hieb (1999) and Jay (1989) reported that in California 

abundances peaked in July to September, with highest abundances during August and 

lowest densities from April through June. We found highest densities during September 

and lowest during June. Hieb (1999) also observed recruitment events during the 

summer, however, in California these events began in June instead of July. These 

observations suggest that the life cycle of the shrimp in Oregon follows a similar pattern 

to that observed in California, where the life span of crangonid shrimp is believed to be 1 

to 2 years, depending on the sex (Hieb 1999). The density of the L. stylirostris population 

present at Bastendorff beach is maintained stable throughout the summer probably due to 

recruitment event and to the disappearance of large shrimp.  

The significantly higher density values found at night could be due to a vertical 

migration of the shrimp from the sediment into the shallow water column during the 

night. Higher densities at night have been reported in previous studies (Hoeman 1982) 

(0.2 – 1.0 ind/100m 2 during the day and 6 – 11 ind/100 m2 during the night). The 
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shrimp’s vertical migration may occur in order to feed, primarily on A. grebnitzkii, the 

preferred food item, which has higher densities during low tide at night (Chapter 1). This 

feeding behavior is also suggested by the higher SCI values and lower % of empty 

stomachs observed at night in both beach seine and hyperbenthic sledge samples. The 

significantly higher SCI values found in the 08/02/06 sample were probably due to the 

time at which this sample was taken (0020). This would suggest the shrimp are in fact 

feeding at night and that by midnight; the shrimp have eaten significantly more than by 

2200, which is when the other two night samples were taken. Feeding during the night 

would also reduce the risk of predation by visual predators such as sea birds and fish. 

Finally, the significant density difference found at low, night, spring and/or neap tides 

suggest the three factors are influencing the population but that the time of day is the 

strongest influence, a finding supported by previous studies (Hindell et al., 2000; Beyst et 

al., 2001; Beyst et al., 2002). 

 

Sex variation 

 

The higher percentage of female L.stylirostris and the female’s significantly larger size 

than males has been reported previously (Hoeman, 1982; Hieb, 1999). Female shrimp 

may grow faster and become larger than male shrimp (Meixner, 1969; Oh et al., 1999). 

However, we also observed a small percentage of males > 4.5 cm (5%) and females < 3.5 

cm (4%). There are three possible hypotheses for these observations: (1) The males are 

not present in the same environment with females during the whole or part of the year 



 114

due to different patterns of migrations or zonation (Hoeman 1982). (2) Individuals of this 

species are protandric hermaphrodites like Notocrangon antarcticus (Pfeffer, 1887 in 

Correa and Thiel, 2003), a closely related species, and (3) This species has a system 

known as “protandry with primary females” or “partial protandric hermaphroditism with 

primary females” such as Crangon franciscorum (Gavio et al., 2006), Argis dentate 

(Rathburn, 1902) or Crangon crangon (Linnaeus, 1758 from Gavio et al., 2006) and/or 

the facultative protandric hermaphroditism exhibited by Crangon crangon (Schatte and 

Saborwski, 2006).  While the two first hypotheses would explain the higher percentage of 

females, they do not explain the presence of large males and/or small females observed in 

this study. The higher percentages of females and the presence of large males and small 

females could be explained if the shrimp exhibited facultative and/or partial protandric 

hermaphrodites, as mentioned in the third hypothesis. 

 

Parasite Prevalence 

 

Previous studies have described parasitazation of Lissocrangon stylirostris by the bopyrid 

isopod A. pugettensis (Fee, 1926; Markham, 1977; Hoeman, 1982), however, the 

percentage of individuals parasitized in this study (63%) was higher than reported in 

previous works. Hoeman (1982) reported that 8% of the 1,611 L. stylirostris, caught over 

a year carried the parasite. The prevalence increased to 44% of 66 individuals during the 

summer season. Nelson et al. (1986) and Jay (1989) also reported lower percentages of 

infestation of A. pugettensis in Crangon franciscorum, a closely related species. These 
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studies were conducted in Grays Harbor and San Francisco Bay in Washington and 

California, respectively; which may account for their observed lower infestation rate. The 

fact that the host inhabited an estuary could have made it more difficult for the parasite to 

infest the host or for the parasite to survive the host’s migrations between estuary and 

open-ocean due to the change in the physical characteristics of the water body between 

both habitats. Migration of crangonid shrimp between an estuary and the open coast has 

been suggested to occur during the reproductive and recruitment periods (Krygier 1974, 

Hoeman, 1982; Jay, 1989). The difficulty of infesting hosts due to change in water 

characteristics has been suggested in previous studies (Reisser and Forward 1991, Walker 

and Lester 2002, Boone et al. 2004). Another explanation for the higher percentages of 

infestation we found could be the higher densities of the host observed (0.2-16 ind/100m2 

during the day and 18 – 86 ind/100m2 during the night) compared to those reported by 

Hoeman (1982) (0.2 – 1.0 ind/100m 2 during the day and 6 – 11 ind/100 m2 during the 

night). A host’s density can be a limiting factor in the spread of parasites (Sheader, 1977; 

Nelson et al., 1986; Høeg et al., 2005). In the present study, difficulty for isopods to 

reach shrimp or the high density of shrimp could explain the higher percentage of 

infestation, since our study showed higher shrimp density but was conducted on the open 

coast while previous studies showed lower shrimp abundances but were conducted in 

estuaries.  

Based on the presence of juvenile isopods only in the August and September 

samples and the cohort of small shrimp observed from July to September, we hypothesize 

that the isopod and the shrimp’s recruitment to the sandy beach are coordinated. However 
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no conclusions could be made since this study only looked at four months of the year, 

therefore a study of the shrimp and isopod’s life cycle inside an estuary and on a sandy 

beach should be carried out simultaneously.  

 

Differences between Parasitized and Non-parasitized Individuals 

 

Three differences were observed between parasitized and non-parasitized shrimp. (1) 

Non-parasitized individuals had higher weights but smaller sizes than parasitized 

individuals, (2) Small percentage of brooding parasitized females, and (3) Higher 

percentages of empty stomachs and lower SCI values in night samples. 

Parasitized individuals presented a lower mass per length ratio than their non-

parasitized counterparts. However, the larger size of parasitized shrimp observed in this 

study could have been due to the appearance of the cohort of small non-parasitized 

shrimp observed from July to September and the disappearance of larger individuals most 

of which were probably parasitized. When divided into size classes different results were 

observed. Non-parasitized shrimp had greater mass when between 2.1 - 3 cm and 4.1 - 5 

cm in length. The greater mass of non-parasitized individuals between 2.1 and 3 cm in 

length could have been due to the initial effect of the parasite on the shrimp since 

previous studies have suggested that the parasite attaches at an early stage of both host 

and parasite (Beck, 1980; Nelson et al., 1986; Jay, 1989). The higher weights in non-

parasitized shrimp between 4.1-5 cm in length may be due to the fact that 4.1-5 cm is the 

host size at which female parasites are either reproductive or brooding, and potentially 
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draining more energy from the host (Nelson et al., 1986). In individuals between 3.1-4 

cm, parasitized shrimp had higher weights than non-parasitized individuals. This greater 

weight in parasitized shrimp may occur if the parasite forces the shrimp to increase its 

weight by increasing the shrimp’s feeding (Lester, 2005).  

If we compare length and sex of the host shrimp, excluding brooding female 

hosts, parasitized males and females were significantly larger and more abundant than 

their non-parasitized counterparts. Studies have reported that bopyrids might cause a 

slight decrease in host growth rate (Jay, 1989; Somers and Kirkwood, 1991; Lester, 

2005), a slight increase in overall male shrimp length (Somers and Kirkwood, 1991; 

Lester, 2005), and an increase in overall female shrimp length (Nelson et al., 1986). The 

parasite could therefore be forcing the shrimp to increase its size, which would allow the 

parasite to increase its size since parasite and host length was positively correlated. This 

has also been reported in previous studies (Jay, 1989).  

Only a small percentage of female shrimp were both brooding and parasitized, 

0.2% of female shrimp and 1.2% of brooding females. This could have been because the 

bopyrid parasite sterilizes the host female or reduces its metabolic activity such that it 

cannot brood (Beck, 1970; Sheader, 1977; Nelson et al., 1986; Jay, 1989; Lester, 2005). 

The inability to produce broods in females has been previously observed by several 

studies (Beck, 1970; Sheader, 1977; Nelson et al., 1986; Jay, 1989; Lester, 2005). The 

inability of females to brood could reduce the size of the population present at 

Bastendorff and it could eventually become ecologically extinct, unless there is 

recruitment of shrimp from another population with lower rates of prevalence.   
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The higher percentages of empty stomachs and lower SCI values (significantly 

lower only on 08/02/06) in parasitized individuals were observed in both the beach seine 

and the hyperbenthic sledge samples. This effect may be due to the parasite reducing the 

shrimp’s feeding capabilities. Several authors have previously suggested that bopyrid 

isopods might reduce ability to capture food in their hosts by reducing their metabolic 

activity (Anderson 1975a, b; Bass and Weis, 1999; Bergey et al., 2002; Høeg et al., 2005; 

Smith et al., 2007). This reduction in host metabolic activity and/or feeding capabilities 

could explain the higher percentage of empty stomachs and lower SCI values, especially 

since the host’s preferred food are mysids which are considered good swimmers that have 

a strong predatory attack response (Ritz et al. 1997) 

Lissocrangon stylirostris was present throughout the summer in the surf-zone of a 

dissipative sandy beach in southern Oregon. The population remained stable throughout 

the summer of 2006, possibly due to a recruitment of small and the disappearance of 

large individuals. The population presented a higher percentage of females (63%) that 

were usually larger than males. Their densities varied significantly with the lunar tides 

(spring and neap) and time of day (day and night), and less intensely by tide level. 

Individuals fed mostly at night and mostly in the water column on the mysid 

Archaeomysis grebnitzkii. The population had a high prevalence of the bopyrid isopod, 

Argeia pugettensis (62%). Parasitized shrimp were larger than non-parasitized shrimp. 

We observed the following differences in parasitized individuals: (1) smaller mass per 

length ratio in parasitized shrimp, (2) very few parasitized female shrimp were brooding, 

and (3) a higher percentage of empty stomachs and a lower amount of food in their 
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stomachs. These differences lead us to hypothesize that this parasite affects the shrimp by 

increasing the host’s size and varying the host’s weight at different size classes, 

sterilizing female hosts, and reducing their capability to feed. 
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CHAPTER VI 

CONCLUDING SUMMARY 

 

Despite the seemingly harsh hydrodynamic conditions, the shallow surf zones of these 

Oregon sandy beaches were used intensively throughout the summer by a number of 

invertebrate and vertebrate species. The density and species richness values found at 

these beaches were similar to those found in other temperate parts of the world (Beyst et 

al. 2001a, Beyst et al. 2002a, Beyst et al. 2002b, Barreiros et al. 2004, McLachlan and 

Brown 2006). Because of differences in size; we sampled the fauna using two different 

methodologies, a hyperbenthic sledge for the smaller fauna, and a beach seine for the 

macrofauna. 

With the hyperbenthic sledge, we caught 49,363 individuals belonging to 92 

species, most of which were small crustaceans. Species were separated into five groups; 

1) planktonic, 2) rocky intertidal, 3) sandy beach species present as adults, 4) 

meroplankton, and 5) sporadic/rare species. Community composition was most strongly 

related to Julian date. Lunar tide, time of day, salinity, wave height and the abundance of 

detached macrophytes also influenced the community. The species present in the sandy 

beach group did not seem to be affected by flushing rates or the size of the waves. 

Archaeomysis grebnitzkii, Lissocrangon stylirostris (as adult and possibly zoea), 

Eohaustorius washingtonianus and Atylus tridens were able to maintain their position in 

the bottom of the water column, thus possibly avoiding being flushed out of the surf 
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zone. Some meroplankton may use the surf zone as a nursery or as a transient area 

towards another environment. The ghost shrimp, Neotrypaea californiensis, were present 

in late summer as five zoeal stages in all sample conditions, suggesting that its larval 

development occur in the surf zone. 

With the beach seine, we caught 2,059 individuals, which were distributed among 

19 different species belonging to Crustacea, Osteichthyes, Cnidaria, Ctenophora and 

Cephalopoda. The smooth bay shrimp, Lissocrangon stylirostris dominated the catch 

(71%) and the community, and was the only species resident in the surf zone through the 

summer sampling. The community varied over the spring/neap cycle and by time of day, 

and with the stage of the tide. Detached macrophytes and densities of potential prey items 

were the only environmental variables that influenced community structure. Eight species 

of fish were caught in the surf zone, most of which were juveniles that may be using the 

surf zone as a nursery area. They fed mostly on the mysid Archaeomysis grebnitzkii.  

Juvenile English sole (Standard Length = 2.6 – 12.3 cm) were caught at two of the 

beaches throughout the summer (61 individuals), with mean standard lengths increasing 

as the season progressed. They fed primarily on the mysid, A. grebnitzkii, which may 

influence the densities of the fish.   

Forty-eight sub-yearling Chinook salmon were caught over six dates (07/22 to 

09/01). Their mean standard length increased from 9.1±0.6 (07/22/06) to 11.6±0.7 cm 

(09/01/06), with a mean increase of 0.6 mm. per day.  Early in the summer, smaller fish 

fed mostly on amphipods.  Later, when the fish were larger, the Chinook fed primarily on 

larval and juvenile fish. These prey were common in the surf zone. Our results suggest 
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that the juveniles reside in the surf zone of sandy beaches for two months in summer until 

they reach approximately 12 cm in S.L. when they migrate offshore. During these two 

summer months they feed on the surf zone plankton. 

The smooth bay shrimp, Lissocrangon stylirostris had a population that was 63% 

female, which were generally larger than males. The density of L. stylirostris varied with 

the tides, lunar tides and time of day. A cohort of small shrimp was observed during July 

to September while large adult shrimp disappeared during the same months. The net 

effect was that shrimp densities were stable over the summer. The shrimp fed mostly at 

night on the mysid Archaeomysis grebnitzkii. The species seems to exhibit a type of 

protandric hermaphroditism, however we were unable to determine which. Both male and 

female shrimp supported an equal, high prevalence of A. pugettensis (62%). The 

parasitized shrimp were (1) larger in size but had lower weight per size, (2) very few 

brooding shrimp were parasitized (0.2%), and (3) a higher percentage of parasitized 

shrimp had empty stomachs and significantly lower stomach contents. We hypothesize 

that the parasite is affecting the shrimp by producing variation in its normal size and 

weight, sterilizing females and reducing its ability to capture food. 
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APPENDIX A 

 

RAW DATA OBTAINED FROM SAMPLINGS OF THE SURF ZONE OF THREE 

DISSIPATIVE SANDY BEACHES AND STOMACH CONTENT ANALYSIS OF 

TWO SPECES OF FISH 

 

Presented below are the raw data from samplings of the surf zone of Bastendorff, 

Horsfall and Whisky Run Beach along with the data from the stomach content analysis of 

juvenile Chinook salmon and English sole. Data obtained from sledge samples are 

presented in Table 1, from the seine samples in Table 2, data from the stomach content 

analysis of juvenile Chinook salmon in Table 3 and data from the English sole stomach 

content analysis in Table 4.  
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Table 1. Surf zone fauna densities (ind./100 m2) observed at three dissipative sandy beaches. 
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Bastendorff 6/7 Top HW 0.0 0.0 0.0 1.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.1 0.0 0.0
Bastendorff 6/7 Bot HW 0.4 1.8 0.0 66.4 0.0 0.0 0.0 0.0 0.7 0.0 5.0 0.0 0.0 0.4 0.0 0.0 0.0 10.0 0.0 0.0
Bastendorff 6/7 Top MW 0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 1.4 0.0 0.0 0.0 0.0 0.0 0.0 23.9 0.0 0.0
Bastendorff 6/7 Bot MW 0.0 1.4 0.0 31.4 0.4 0.0 0.0 0.4 1.1 0.0 3.2 0.0 0.4 0.0 0.0 0.0 0.0 96.1 0.0 0.0
Bastendorff 6/7 Top LW 0.4 0.0 0.0 12.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.1 0.0 0.0 1.8 0.0 0.4 51.4 0.0 0.0
Bastendorff 6/7 Bot LW 0.0 0.0 0.0 21.1 0.0 0.0 0.0 1.4 0.0 0.0 1.1 0.0 0.0 0.0 0.0 0.0 0.0 56.1 0.0 0.0
Horsfall 6/30 Top LW 0.4 0.0 0.0 2.9 0.0 1.4 15.7 0.0 0.0 0.0 1.4 0.0 1.1 0.0 0.0 0.0 0.0 14.6 0.4 0.0
Horsfall 6/30 Bot LW 0.4 0.4 0.0 20.7 0.7 1.4 34.6 0.4 0.0 0.4 2.1 0.0 1.1 0.0 0.0 0.0 0.0 10.0 0.0 0.0
Whisky Run 7/1 Top LW 0.0 0.0 0.0 8.6 0.0 0.0 5.4 0.0 0.0 0.0 2.5 0.0 7.1 0.0 0.0 0.0 0.0 37.9 0.0 0.0
Whisky Run 7/1 Bot LW 0.4 0.0 0.0 86.8 1.1 0.0 16.8 1.8 0.0 0.4 13.6 0.0 6.8 0.0 0.0 0.0 0.0 36.1 0.0 0.0
Bastendorff 7/22 Top HW 0.0 0.0 0.0 15.7 0.0 0.4 1.4 0.0 0.0 0.0 1.1 0.0 0.4 0.0 0.0 0.0 1.4 1.1 0.0 0.0
Bastendorff 7/22 Bot HW 0.0 0.0 0.0 69.3 0.7 0.0 0.4 0.0 0.0 0.0 3.9 0.0 0.0 0.0 0.0 0.0 2.5 0.7 0.0 0.0
Bastendorff 7/22 Top MW 0.0 0.0 0.0 45.0 0.0 0.4 0.4 0.4 0.0 0.0 11.4 0.0 0.0 0.0 0.4 0.0 6.4 0.0 0.0 0.0
Bastendorff 7/22 Bot MW 1.1 0.0 0.0 316.4 0.4 0.4 1.1 0.4 0.0 0.0 31.4 0.0 0.0 0.0 0.4 0.0 2.5 0.0 0.0 0.0
Bastendorff 7/22 Top LW 0.0 0.0 0.0 42.1 0.0 0.0 1.8 0.0 0.0 0.4 12.9 0.4 0.0 0.0 0.4 0.0 0.4 0.0 0.4 0.0
Bastendorff 7/22 Bot LW 0.7 0.0 0.0 287.1 1.8 0.0 1.4 0.4 1.4 0.0 53.2 0.4 0.0 0.0 0.4 0.0 0.0 0.4 0.4 0.0
Bastendorff 7/27 Top HW 0.7 0.0 0.0 5.4 0.0 0.0 10.0 2.1 0.0 0.0 23.6 0.0 0.0 0.0 0.0 0.0 18.6 1.8 0.0 0.0
Bastendorff 7/27 Bot HW 1.1 0.0 0.0 32.9 1.1 0.0 6.8 0.4 2.1 0.0 62.1 0.4 0.0 0.0 0.0 0.0 12.1 0.0 0.0 0.0
Bastendorff 7/27 Top MW 0.0 0.0 0.0 6.8 0.0 0.0 1.4 0.4 0.7 0.0 23.2 1.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Bastendorff 7/27 Bot MW 0.0 0.0 0.0 94.3 0.4 0.0 2.1 1.8 0.4 0.0 46.4 3.6 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0
Bastendorff 7/27 Top LW 1.8 0.4 0.0 48.6 0.7 0.4 17.9 0.7 7.1 1.1 42.9 7.5 0.0 0.0 1.1 0.0 0.0 7.1 0.0 0.7
Bastendorff 7/27 Bot LW 5.7 0.0 0.0 42.9 8.2 0.0 0.0 5.7 28.9 8.6 217.1 20.0 0.0 0.0 0.0 0.4 0.0 2.9 0.0 0.0
Bastendorff 7/30 Top LW 0.0 12.9 0.0 5377.1 5.0 0.0 34.3 0.7 2.9 0.7 24.3 0.0 0.0 0.0 0.0 0.0 2.9 0.0 0.0 0.0
Bastendorff 7/30 Bot LW 3.6 30.0 0.7 7314.3 19.3 0.0 0.7 4.3 0.0 2.1 75.7 10.7 0.0 0.7 0.0 0.0 3.6 0.0 0.0 0.0
Bastendorff 8/2 Top LW 0.7 2.1 0.0 9742.9 3.6 0.0 2.1 0.0 3.6 2.1 37.1 0.7 0.0 0.0 0.0 0.0 5.0 0.0 0.0 0.0
Bastendorff 8/2 Bot LW 0.0 5.7 0.7 10102.9 26.4 0.0 0.7 0.0 10.7 19.3 72.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Bastendorff 8/13 Top LW 0.0 5.0 0.0 4205.7 57.9 1.4 55.0 2.9 16.4 0.0 54.3 2.9 0.7 0.0 0.0 0.0 27.1 165.0 0.0 0.0
Bastendorff 8/13 Bot LW 0.7 12.1 0.0 6817.1 180.0 1.4 37.9 2.1 23.6 5.0 66.4 7.9 0.0 0.0 0.0 0.0 5.7 10.7 0.0 0.0
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Table 1. Continued. 
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0.0 0.0 0.0 0.0 0.0 0.0 2.1 2.1 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.4 0.0 0.0 0.0 6.4 0.7 0.7 1.4 0.4 0.4 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.1 0.4 0.7 0.7 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.7 4.6 0.4 0.0 0.7 0.4 0.0 1.1 0.4 0.4 0.7 0.4 0.7 1.1 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.7 0.0 0.0 0.4 1.1 11.1 0.4 1.8 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.4 0.4 0.4 0.4 0.4 0.4
0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.1 2.5 2.1 0.7 0.4 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.4 0.0 0.4 0.0 0.0 0.0 0.0
0.0 3.2 0.0 0.7 0.0 0.0 0.0 9.6 0.4 0.0 0.0 0.4 0.0 2.1 0.0 2.5 0.7 0.7 1.8 0.0 0.4 0.0 0.0 0.0 0.0 0.0
0.0 0.7 0.4 2.1 0.0 1.4 0.0 6.8 0.4 0.0 0.0 1.1 0.0 1.1 0.0 2.5 0.0 1.1 1.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.7 0.0 0.0 0.0 0.7 0.0 7.1 0.4 0.0 0.0 0.0 0.0 2.5 0.0 0.4 0.4 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0
0.0 1.8 0.0 1.8 0.0 8.6 0.0 10.7 0.0 0.0 0.0 0.4 0.4 6.1 0.4 0.4 0.0 0.0 0.7 0.0 0.4 0.0 0.0 0.0 0.0 0.0

13.2 0.0 0.0 0.0 0.0 0.0 0.0 41.1 1.1 0.0 0.0 0.0 0.0 0.4 0.0 0.4 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2.5 0.4 0.0 0.4 0.0 0.0 0.0 22.1 3.2 0.7 0.0 0.0 0.0 1.1 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0
1.1 0.0 0.4 0.0 0.0 0.0 0.0 31.8 1.4 0.7 0.4 0.0 0.0 8.9 0.0 0.4 0.0 0.4 0.4 0.0 0.0 0.4 0.0 0.7 0.0 0.4
0.4 0.4 0.0 0.0 0.0 0.4 0.0 48.6 2.1 1.8 0.0 0.4 0.0 18.6 0.0 1.4 0.0 0.0 0.4 0.0 0.0 0.4 0.0 2.1 0.0 0.0
0.0 0.4 0.0 0.0 0.0 0.0 0.0 12.1 0.4 0.0 0.0 0.0 0.0 5.0 0.0 1.1 0.0 0.4 0.4 0.0 0.0 0.4 0.0 0.4 0.0 0.0
0.0 0.4 0.0 0.7 0.0 0.0 0.0 24.3 0.7 1.8 0.0 0.0 0.0 14.3 0.0 2.5 0.0 1.8 0.0 0.0 0.0 0.0 0.0 2.1 0.0 0.0
0.0 0.0 0.0 0.4 0.4 0.0 0.0 22.1 0.4 0.0 0.0 0.0 0.0 22.1 0.0 0.4 0.0 0.4 3.2 0.0 0.0 1.1 0.0 0.4 0.0 0.0
0.4 1.1 0.0 1.1 0.0 0.0 0.4 53.9 1.8 0.4 0.0 0.4 0.0 23.9 0.0 1.1 0.0 1.1 3.6 0.0 0.0 0.7 0.7 1.1 0.4 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.1 0.0 0.0 0.0 0.0 0.0 17.1 0.0 0.0 0.0 0.7 2.5 0.0 0.0 0.4 1.1 0.7 0.0 0.0
0.0 0.7 0.4 0.0 0.0 0.0 0.0 2.5 0.4 0.0 0.0 0.0 0.0 18.2 0.0 0.0 0.0 3.9 1.1 0.0 0.0 0.0 0.0 1.4 0.0 0.0
0.0 2.5 0.0 0.0 0.0 0.4 0.0 21.1 2.9 0.7 0.0 0.4 0.4 36.8 0.0 1.8 0.0 2.9 1.1 0.0 0.0 0.4 0.0 0.7 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.7 0.0 0.0 0.0 2.9 0.0 5.7 0.0 0.0
0.0 0.0 0.0 2.1 0.0 0.0 0.7 34.3 1.4 0.0 0.0 0.7 0.7 222.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.1 0.0 0.0 0.0 0.0
0.0 0.0 0.0 2.1 5.7 7.1 0.0 2.9 6.4 0.7 0.0 0.7 0.7 20.7 2.9 0.0 0.7 0.0 5.7 0.0 0.0 7.1 0.0 0.7 0.0 0.0
0.7 0.0 0.0 1.4 0.7 12.1 3.6 9.3 15.7 0.7 0.0 0.7 0.0 12.9 0.0 0.7 0.0 0.0 0.7 0.0 0.0 5.0 0.0 0.0 0.7 0.0
0.0 0.0 0.7 6.4 0.0 0.0 3.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2.1 0.0 0.0 1.4 0.0 2.9 9.3 85.0 2.9 0.0 0.0 0.0 0.0 25.7 0.7 27.9 0.0 0.7 9.3 0.7 0.0 0.7 0.0 0.0 5.7 0.0
0.0 0.0 0.0 4.3 0.0 7.9 9.3 111.4 2.9 0.0 0.0 0.7 0.0 49.3 0.0 55.0 0.7 1.4 19.3 0.0 0.0 0.0 0.0 0.0 10.7 0.0

Table 1. Continued. 



                         
    12

6 
S

pi
on

id
ae

 s
p.

 

A
m

ph
is

tic
hu

s 
rh

od
ot

er
us

 

Le
pt

oc
ot

tu
s 

ar
m

at
us

 

C
ap

re
lla

 in
ci

sa
 

C
um

el
la

 s
p.

 

C
ep

ha
lo

po
da

 e
gg

 
ca

se
 

Th
al

ei
ch

th
ys

 p
ac

ifi
cu

s 
(la

rv
a)

 

S
ili

qu
a 

pa
tu

la
 

S
cr

ip
ps

ia
 p

ac
ifi

ca
 

P
la

ci
da

 d
en

dr
iti

ca
 

S
ag

itt
a 

sp
. 

A
no

pl
od

ac
ty

lu
s 

oc
ul

os
pi

nu
s 

P
or

ce
na

lli
da

e 
m

eg
al

op
a 

C
an

ce
r z

oe
a 

C
ap

re
lla

 e
qu

ili
br

a 

P
ho

xi
ch

ili
di

um
 

fe
m

or
at

um
 

P
ag

ur
is

te
s 

tu
rg

id
us

 

C
ap

re
lla

 v
er

ru
co

sa
 

E
xo

sp
ha

er
om

a 
am

pl
ic

au
da

 

La
ni

ro
ps

is
 d

er
ju

gi
ni

 

D
ia

st
yl

is
 s

p.
 

Li
ss

oc
ra

ng
on

 
st

yl
iro

sr
is

 

H
es

io
nu

ra
 s

p.
 

A
ba

re
ni

co
la

 s
p.

 

H
em

ig
ra

ps
us

 
or

og
en

en
si

s 

E
up

ha
us

ia
 p

ac
ifi

ca
 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7
1.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.1 0.4 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 2.9 0.7 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.4
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.4 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 3.6 0.0 0.0 0.0 0.0 0.4 0.0 0.0 5.0 0.0 0.0 3.9 0.4 0.4 1.1 0.4 1.1 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.4 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.4 0.0 0.0 0.4 0.7 0.4 0.0 0.0 0.0 0.0 0.0 0.0
0.4 0.0 0.0 2.9 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.4 0.4 1.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0
2.5 0.0 0.0 4.3 0.0 0.0 0.0 0.0 0.0 0.0 2.1 0.0 0.0 0.0 1.4 0.0 0.0 0.4 0.0 0.7 0.4 0.0 0.0 0.0 0.4 0.0
0.0 0.0 0.0 2.5 0.0 0.4 0.0 0.0 0.0 0.0 1.1 0.0 0.0 0.0 1.1 0.0 0.0 0.4 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 3.9 0.0 0.0 0.0 0.0 0.0 0.0 1.1 0.0 0.0 0.0 1.8 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 6.8 0.0 0.0 0.0 1.4 0.0 0.0 6.8 0.0 0.0 0.0 2.1 0.0 0.0 0.7 0.0 1.4 0.4 0.0 0.0 0.0 0.0 0.4
0.0 0.0 0.0 40.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.6 0.0 0.0 0.0 0.0 2.9 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 4.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.4 0.0 0.0 0.0 1.4 0.7 1.4 0.0 0.0 0.0 0.0 0.0
1.4 0.0 0.0 7.9 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.7 2.1 0.0 0.7 0.7 1.4 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.7 0.0 0.0 5.7 0.0 0.0 0.0 31.4 0.0
0.0 0.0 0.0 0.7 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.1 0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0 1.4 0.0 0.0 0.0 5.7 0.0
1.4 0.7 0.0 5.0 0.0 0.0 0.0 0.0 0.0 0.0 1.4 0.0 0.0 0.0 11.4 0.0 0.0 0.0 4.3 0.0 6.4 0.0 0.0 0.0 5.0 0.0

Table 1. Continued. 
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0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3.2 1.4 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4.3 1.1 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.4 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.4 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.1 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.4 0.4 0.0 1.1 0.7 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 1.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.7 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.4 0.0 2.9 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.8 0.0 0.0
0.0 0.0 0.0 3.9 1.4 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.5 0.0 0.0
7.1 0.0 0.4 1.1 1.4 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.2 0.0 0.0
7.5 0.0 0.0 0.7 2.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.5 0.0 0.0
0.0 0.4 0.0 0.0 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.4 0.0 0.0
0.0 0.0 0.0 1.8 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.5 0.0 0.0

11.8 0.0 0.0 1.1 3.6 0.0 0.4 0.0 0.0 0.0 0.0 0.4 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 15.7 0.0 0.0
2.9 0.0 0.0 11.4 0.0 2.9 0.0 0.0 2.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.4 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.7 0.0 0.7 1.4 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.0 1.4 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 1.4 0.0 10.7 2.9 0.0 0.0 0.0 0.0 6.4 6.4
5.7 0.0 0.0 2.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.7 0.0 0.0 1.4 0.0 0.0 0.0 0.0 0.7 0.7 1.4 0.0 1.4 1.4

18.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.1 2.1
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Table 2. Swimming surf zone macrofauna densities (ind./1000m2) observed at three dissipative sandy beaches of southern 
Oregon during the summer of 2006. 

Beach/Tide/Date Id
ot

ea
 fe

w
ke

si
 

Li
ss

oc
ra

ng
on

 
st

yl
iro

sr
is

 
P

ol
yo

rc
hi

s 
pe

ni
ci

lla
tu

s 

P
le

ur
ob

ra
ch

ia
 s

p.
 

P
le

ur
on

ec
te

s 
ve

tu
lu

s 

O
be

lia
 s

p.
 

E
m

er
ita

 a
na

lo
ga

 
C

an
ce

r g
ra

ci
lis

 o
r 

an
te

nn
ar

iu
s 

C
an

ce
r m

ag
is

te
r 

(m
eg

al
op

a)
 

O
nc

or
hy

nc
hu

s 
ts

ha
w

yt
sc

ha
 

S
ar

di
no

ps
 s

ag
ax

 
H

yp
er

pr
os

op
on

 
el

lip
tic

um
 

A
m

ph
is

tic
hu

s 
rh

od
ot

er
us

 
Le

pt
oc

ot
tu

s 
ar

m
at

us
 

Tr
al

ei
ch

th
ys

 
pa

ci
fic

us
 

C
ep

ha
lo

po
da

 e
gg

 
ca

se
 

H
yp

om
es

us
 

pr
et

io
su

s 

E
ng

ra
ul

is
 m

or
da

x 

S
cr

ip
ps

ia
 p

ac
ifi

ca
 

C
an

ce
r m

ag
is

te
r 

(a
du

lt)
 

Bastendorff HW 6/7 0 26 1 3 2 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Bastendorff MW 6/7 0 27 1 9 7 257 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
Bastendorff LW 6/7 0 41 0 21 24 29 3 0 0 0 0 0 0 0 0 0 0 0 0 0 
Bastendorff HW 7/22 0 0 0 0 0 0 4 0 0 9 1 1 0 0 0 0 0 0 0 0 
Bastendorff MW 7/22 0 4 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
Bastendorff LW 7/22 0 2 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 
Bastendorff HW 07/27 0 24 0 0 1 0 12 0 1 1 0 0 0 0 0 1 0 0 0 0 
Bastendorff MW 07/27 0 115 0 0 0 0 5 0 0 1 0 0 0 0 0 1 1 0 0 0 
Bastendorff LW 07/27 1 113 0 0 3 0 0 0 0 6 1 0 0 0 0 3 0 0 0 4 
Bastendorff LW 07/30 0 296 0 0 1 0 4 0 0 0 0 1 1 1 1 0 0 0 0 2 
Bastendorff LW 8/2 0 193 0 0 1 0 2 0 1 1 0 0 1 0 0 0 0 0 0 0 
Bastendorff LW 08/05 0 9 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
Bastendorff LW 08/09 0 1 0 0 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 
Bastendorff LW 8/13 1 927 0 1 3 0 0 0 1 3 0 0 0 0 0 0 0 0 0 1 
Bastendorff LW 08/18 0 4 0 1 1 305 0 1 0 0 0 0 0 3 0 0 0 0 0 0 
Bastendorff LW 08/25 0 64 0 1 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 
Bastendorff LW 09/01 0 21 2 0 1 0 0 0 0 16 0 0 0 0 0 0 0 1 0 1 
Bastendorff LW 09/08 1 173 2 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
Bastendorff LW 09/15 0 14 2 8 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
Bastendorff LW 09/29 0 18 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Horsfall LW 06/30 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Whisky Run LW 07/01 0 4 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Whisky Run LW 08/05 0 3 0 0 6 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 

 
Table 3. Stomach contents of 48 juvenile Chinook salmon.  
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1 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
2 3 4 0 0 0 3 0 0 0 0 3 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
3 4 1 0 0 0 1 0 0 1 2 3 0 3 0 0 0 8 0 0 0 1 0 0 0 0 0 0 0 0 
4 0 2 0 0 0 0 0 0 2 3 3 22 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 
5 2 3 0 0 0 0 0 0 3 1 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
6 4 0 0 0 0 0 1 0 0 4 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
7 1 2 0 0 0 0 0 0 1 1 5 2 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 
8 0 0 0 0 0 0 0 0 0 0 1 17 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 
9 0 1 0 0 0 0 0 0 0 8 4 3 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 

10 2 2 0 0 0 0 0 0 0 0 3 4 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
11 2 0 0 0 0 1 0 0 2 0 7 4 3 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
12 1 0 1 0 0 0 0 1 1 0 3 12 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
13 3 0 1 0 0 0 0 1 0 0 3 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
14 24 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 4 2 2 0 0 0 0 0 0 0 0 0 
15 35 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
16 17 0 1 1 0 2 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 
17 11 0 0 0 0 2 0 0 0 0 0 3 0 0 0 0 1 3 0 0 0 0 0 0 0 2 0 0 0 
18 10 0 0 2 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 2 0 0 0 0 0 0 0 0 
19 7 1 0 1 0 7 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
20 5 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 
21 0 0 0 0 0 2 0 2 8 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 
22 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 
23 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 
24 10 2 0 0 0 39 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
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Table 3. Continued. 

25 3 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
26 2 0 0 0 0 64 0 0 9 0 2 0 0 0 0 0 10 0 0 0 0 4 0 1 0 0 0 0 0 
27 2 0 0 0 0 73 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
28 0 0 0 0 1 38 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
29 4 0 0 0 0 32 0 0 18 0 0 0 0 0 0 0 23 0 0 0 0 0 0 0 0 0 0 0 0 
30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 
31 3 0 0 0 0 24 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 3 0 
32 2 0 0 0 0 61 0 0 3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
33 7 0 0 0 0 58 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 
34 2 0 0 0 0 91 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 5 0 
36 1 0 0 0 0 43 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 
37 2 0 0 0 0 16 0 0 16 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
38 0 0 0 0 0 26 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 2 0 1 0 0 0 0 0 
39 1 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 6 0 
40 2 0 0 0 0 37 0 1 3 0 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 
41 2 0 0 0 0 3 0 0 83 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
42 0 0 0 0 0 11 0 0 5 0 0 1 0 0 0 0 33 0 0 0 0 0 0 0 0 0 0 0 0 
43 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 
44 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 
45 0 0 0 0 0 11 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 
46 0 0 0 0 0 100 0 0 1 2 0 0 0 0 0 0 2 0 0 0 0 4 0 0 0 0 0 0 1 
47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 
48 0 0 0 0 0 22 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 2 0 0 0 0 0 
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Table 4. Stomach Content Analysis of 61 juvenile English sole caught at three dissipative 
sandy beaches. 
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1 5 0 0 0 0 0 0 0 0 0 0 
2 0 0 0 1 0 0 0 0 0 0 0 
4 1 0 0 0 1 0 0 0 0 0 0 
5 12 0 0 0 0 1 0 0 0 0 0 
6 7 0 0 0 0 1 0 0 0 0 0 
7 12 0 0 0 0 0 1 0 0 0 0 
8 2 0 1 0 0 1 0 0 0 0 0 
9 0 0 1 0 0 0 0 0 0 0 0 
10 1 2 0 0 0 0 0 0 0 0 0 
11 6 0 0 0 0 0 0 1 0 0 0 
12 1 0 0 1 0 0 0 0 0 0 0 
13 0 1 0 0 0 0 0 0 0 0 0 
14 1 1 0 0 0 0 0 0 0 0 0 
15 0 0 0 0 0 0 0 0 0 0 0 
16 1 0 0 0 0 0 0 0 0 0 0 
17 0 3 0 0 0 0 0 0 0 0 0 
20 1 0 0 1 0 0 0 0 0 0 0 
21 3 0 0 0 0 0 0 0 0 0 0 
22 0 0 0 0 0 0 0 0 0 0 0 
23 0 1 0 0 0 0 0 0 0 0 0 
24 1 0 0 0 0 0 0 0 1 1 0 
26 1 0 0 1 0 0 0 0 0 0 0 
27 1 0 0 0 0 0 0 0 0 0 0 
28 1 1 0 0 0 0 0 0 0 0 0 
31 0 0 0 0 0 0 0 0 0 0 0 
33 2 0 0 0 0 0 0 0 0 0 0 
35 0 0 0 0 0 0 0 0 0 0 0 
36 2 0 0 0 0 0 0 0 0 0 0 
38 0 0 0 0 0 0 0 0 0 0 0 
39 0 0 0 0 0 0 0 0 0 0 0 
44 0 0 0 0 0 0 0 0 0 0 0 
45 3 0 0 0 0 0 0 0 0 0 0 
46 1 0 0 0 0 0 0 0 0 0 0 
47 0 0 0 0 0 0 0 0 0 0 0 
49 0 0 0 0 0 0 0 0 0 0 0 
52 0 0 0 0 0 0 0 0 0 0 0 
53 0 0 0 0 0 0 0 0 0 0 0 
57 0 0 0 0 0 0 0 0 0 0 0 
58 0 0 0 0 0 0 0 0 0 0 0 
60 0 1 0 0 0 0 0 0 0 0 1 
61 1 0 0 0 0 0 0 0 0 0 0 
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