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Langmuir circulation cells are wind generated surface currents, which take the form

of alternating clockwise and counter clockwise rotating helical cells. Models suggest that

organisms and particles may be retained in the convergence and divergence zones

depending on the relative settling and swimming velocity versus circulation velocity.

Surface water in convergence and divergence zones of Langmuir circulations were

sampled with plankton nets and zooplankton and fecal pellets were enumerated.

Copepods did not differ significantly between zones. Balanus glandula cyprids,

competent Polydora spp., and an unidentified late stage veliger were often significantly

concentrated in convergence zones. These results suggest that late stage larvae may be

exploiting Langmuir circulation as a transport mechanism to travel shoreward for

settlement. Fecal pellets were more concentrated in divergence zones on four out of six
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sample days. On the two days when pellets were more concentrated in convergence 

zones the swell was larger. 
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CHAPTER I
 

GENERAL INTRODUCTION
 

As wind blows on a calm ocean the surface water moves downwind and wind 

driven waves begin to form. Once the wind speed reaches approximately 1.5 m/sec an 

organized three-dimensional flow in the upper ocean is formed by the interaction of wind, 

Stokes drift (Stokes, 1847) and the surface wave field (Barstow, 1983). This flow is 

referred to as Langmuir Circulation (LC) (Leibovich, 1983). The existence of these wind 

induced helical cells was first described using a series of experiments by Irving Langmuir 

(1938). 

Langmuir circulation covers the ocean surface with alternating clockwise and 

counter clockwise rotating helical cells oriented parallel to the wind (Leibovich, 1983) 

(Figure 1). Where two Langmuir cells come together they form a convergence zone, 

which is often delineated by a slick on the sea surface, containing high concentrations of 

foam, flotsam and seaweed (Faller & Auer, 1988). Beneath the convergence is a 

downwelling jet with observed near surface current speeds from two to seven cm s·) 

(Weller & Price, 1988). Approximately mid-way between the convergence zones is a 

divergence zone characterized by diffuse upwelling. Vertical current speeds have been 

recorded at 0.8-1.5 cm s -) (Weller & Price, 1988). As the water travels from a 
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divergence zone to a convergence zone it increases in speed due to momentum transfer 

from the wind, maximum downwind speed is observed at the convergence. 

Figure 1: A schematic representation of the physical structure of Langmuir Circulations (Pollard 1979). 
Cells align parallel with the wind. The divergence zone is an area of diffuse upwelling. Water travels from 
the divergence zone to the convergence zone, where the water is then downwelled. Maximum downwind 
drift is at the convergence zone. 

u -lOan/sec. 
_#'UI'L rekJtiw to 

divergence zone 

Langmuir circulation displays itself on the sea surface within tens of minutes of 

the onset of sufficient wind strength. Over time, energy is transferred from small to large 

LC cells (Faller & Auer,1988). This energy transfer leads to a range of LC cell spacing 

in any particular wind event. Cell spacing in the horizontal plane varies from a few 
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meters to hundreds ofmeters and tends to increase with increased wind speed and 

duration of the wind event (Leibovich, 1983). In the event of a wind shift the circulation 

will quickly reorient to the wind, so that the convergences run parallel with the wind. 

Cell depth varies with wind speed and duration ofthe wind event. Langmuir circulation 

affects the water column from the surface layer, down potentially to the thermocline. 

This organized flow should play an important role in the transport of heat and 

momentum from the air-sea interface down to the top of the thermocline. LC is regarded 

as an important mechanism that mixes the epilimnion (Langmuir, 1938; Leibovich, 1983; 

Weller et aI., 1985). Leibovich and Paolucci (1979) suggest LC is one of the main 

turbulent processes that establishes and maintains the mixed layer. The mixed layer is a 

main component in many studies of climate and biological productivity. 

Langmuir circulation must be of biological significance. It was the observation of 

organized rows ofSargassum natans running parallel to the wind, which first drew 

Langmuir's attention to the phenomenon and caused him to seek out the mechanisms 

behind the circulation (Langmuir, 1938). Nees (1949) discovered that the concentration 

of zooplankton collected in plankton tows parallel with the wind were more variable than 

tows collected perpendicular to the wind. Based on this discovery, Stommel (1949) 

developed a hydrodynamic model to explain how LC could affect particle distribution. 

According to this model, particles could be retained due to the ratio of settling or 

swimming velocity to circulation velocity. Negatively buoyant particles may be retained 

in upwelling zones (divergence zones), while positively buoyant particles may be 

retained in zones of downwelling (convergence zones)(Figure 2). 
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Figure 2: Representation of particle distribution within Langmuir Circulations (modified from Ledbetter, 
1979). (1) Marks the divergence zone. (2) Marks the convergence zone. (A) Marks where neutral buoyant 
organisms would concentrate. (B) Marks where organisms swimming downward would concentrate (C) 
Marks where organisms swimming upward would concentrate. Arrows indicate the path of water 
circulation. 

.. .; 

The primary objective of this thesis is to examine the effect of Langmuir 

circulation on organisms and detritus in the surface waters. The study examines and 

describes the distribution of organisms and fecal pellets within the convergence and 

divergence zones ofLangmuir circulation cells and compares the results to Stommel's 

model. Chapter II investigates the concentration of specific zooplankton in the 

convergence and divergence zones of the circulation. The main questions addressed are: 

1) Does LC concentrate zooplankton in the convergence zones? 2) Does the circulation 

affect holoplankton and meroplankton differently? Within the context of these questions 

I hypothesized that: 1) Holoplankters will be evenly distributed between convergence and 
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divergence zones within LC cells. 2) Meroplankters will be distributed within LC cells 

based on taxonomic and ontogentic form; late stage larvae of intertidal and shallow 

subtidal benthic invertebrates will be found in a higher concentration in convergence 

zones, whereas early larval stages will not be present in the surface waters. 

Chapter III examines the concentration of fecal pellets in the convergence and 

divergence zones of the circulation. The main question addressed is: Does LC 

concentrate fecal pellets in a specific zone of the circulation? I hypothesized that fecal 

pellets will be concentrated in the divergence zone due to the ratio of settling velocity to 

circulation velocity. 

The results of Chapter II and III provide evidence to support Stommel's model 

that particles and organisms are held within zones based on the ratio of settling or 

swimming velocity to circulation velocity. Studying this circulation mechanism by 

which organisms and particles are advected within the mixed layer will help us to gain a 

better understanding of transport processes and nutrient cycling within the epilimnion. 
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CHAPTER II 

DISTRIBUTION OF ZOOPLANKTON IN 
LANGMUIR CIRCULATION CELLS 

Introduction 

The basic mechanics and physics of Langmuir circulation are described in 

Chapter I of this Thesis. Langmuir circulation affects the water column from the surface 

layer, down potentially to the thermocline. Therefore the convergence and divergence 

zones of these circulations may be affecting organisms and particles throughout the 

mixed layer. 

The surface water is inhabited by a variety of zooplankton including both 

holoplankton and meroplankton. The ecological characteristics or habitat needs of these 

two groups are quite different. Holoplankton are born in the water column and reside 

there for their entire life. Whereas, meroplankton are planktonic larvae of benthic 

invertebrates which spend only a portion of their life in the water column before settling 

into a benthic habitat. Zooplankton on the whole are weak swimmers and may be 

entrained and advected by currents. However, many zooplankters have the ability to 

vertically move to position themselves for feeding or advection. How does Langmuir 

circulation affect zooplankton in the surface water and does it affect holoplankton and 

meroplankton differently? Zooplankton have been described as "patchy": "mean ratios 

were far greater than would be expected if individual organisms were positioned 
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randomly within the sampled region"(Mackas et aI., 1985). Langmuir circulation may 

have a role in zooplankton patchiness in the surface water. 

Nees (1949) discovered that the concentration of zooplankton collected in 

plankton tows parallel with the wind were more variable than tows collected 

perpendicular to the wind. Based on this discovery, Nees suggested that organisms were 

concentrated in convergence zones and not in divergence zones. Tows collected parallel 

with the wind would be representative of either a convergence or a divergence zone, with 

high or low zooplankton concentrations, respectively. When these tows were averaged 

the variance would be high. Each tow collected perpendicular to the wind would pass 

through the convergence and divergence zones of the circulation, thus averaging the 

organismal density in all zones of the circulation, resulting in a lower variance. 

Based on Nees' observations, Stommel (1949) developed a hydrodynamic model 

to explain how LC could affect zooplankton distribution. According to this model, 

organisms could be retained due to the ratio of buoyancy or swimming velocity to 

circulation velocity. Negatively buoyant or downward swimming organisms would be 

retained in upwelling zones (divergence zones), alternatively animals that are positively 

buoyant or swim upwards will be retained in zones of downwelling (convergence zones). 

Therefore, LC could sort zooplankton based on the organism's buoyancy, swimming 

strength and behavior. Although there has been a fair amount of modeling and 

hypotheses derived from Stommel's work, little field evidence has been collected. 

It was the observation of organized rows of Sargassum natans running parallel to 

the wind, which first drew Langmuir's attention to the phenomenon and caused him to 
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seek out the mechanisms behind the circulation (Langmuir, 1938). Woodcock (1944) 

observed aggregations of Physalia spp. in Langmuir convergence zones. Woodcock 

(1950) also made detailed observations on the affect ofLC currents on Sargassum spp. 

He noted that vertical currents in convergence zones pulled Sargussum spp. below the 

surface when winds were in excess of Force 3. Hamner and Schneider (1986) observed 

linear rows of medusae in convergence zones, where jellyfish were observed to be 

swimming upward against the downwelling current. These observations show that LC 

can affect the distribution of some algae and large zooplankton in the neuston. These 

organisms are quite large and are relatively buoyant or strong swimmers. Even so these 

studies have generated speculation that LC affects small zooplankton in the neuston. 

There are only two studies, which directly address relatively small zooplankton 

distribution in LC cells. Jillet and Zeldis (1985) used aerial photography to observe that 

postlarval galetheid crabs were concentrated in convergence zones, which they attributed 

to Langmuir circulation. Kingsford et al. (1991) found within a coral reeflagoon that 

Aurelia aurita and associated juvenile postflexion crangids fish were concentrated in 

convergences of Langmuir circulation cells. Both studies yielded high variance in larval 

concentrations, which they attributed to difficulty in determining or maneuvering in and 

out of a convergence zone. Both of these studies focus on late stage larvae, which are 

strong swimmers, suggesting that LC can affect the distribution of larvae in the surface 

waters. 

A more precise and thorough comparison of relatively small zooplankton in 

convergence and divergence zones ofLangmuir cells still needs to be conducted. To test 
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Stomme1's Retention Zone hypothesis, a study investigating if zooplankton are more 

concentrated and if so are the organisms ho1op1ankton or meroplankton in the 

convergence zone should be conducted. 

Studies have found larvae to be concentrated in convergences of other flow 

regimes. Larvae have been shown to concentrate in the neuston in convergences over 

internal waves (Zeldis & Jillet,1982; Shanks, 1983,1986,1987; Kingsford & Choat, 

1986), in fronts and plumes (Lefevre, 1986; Govoni et aI., 1989) and in upwelling fronts 

relaxing toward shore (Pineda, 1994; Shanks et aI., 2003). Knowing that larvae are 

found in convergences of these flow systems strongly suggests that larvae will be found 

in high concentrations in LC convergences. 

Langmuir circulation may not only shape larval distribution patterns in the 

neuston but also influence their direction of movement. LC cells are oriented parallel to 

the wind and the maximum downwind drift is at the convergence zone. If p1ankters are 

concentrated in the convergence zone, this will explain enhanced downwind transport. 

A larva in the surface water is likely to be affected by the diurnal coastal air 

circulation, termed "sea breeze"(Sonu et aI., 1973). The sea breeze is caused by 

differential heating of the land relative to the ocean. During the day, air over land warms 

faster than that over the adjacent ocean causing low pressure over the land (Atkinson, 

1981). Air flows landward toward this low-pressure area, causing an onshore sea breeze 

(Simpson, 1994). At night, air over the land cools more rapidly than that over the ocean 

and this process is reversed causing the wind to blow toward the ocean, this is known as 
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offshore land breeze. The onshore sea breeze is typically stronger than the offshore land 

breeze (Simpson, 1994). 

These diurnal wind patterns will shape LC cells to run in the same direction, on 

and offshore. Given that Langmuir circulation cells are oriented parallel to the wind and 

the sea breeze is stronger than the land breeze, water in LC convergences should be 

rapidly moving shoreward. Therefore, organisms in convergence zones would be 

traveling downwind and shoreward. 

The life history stage of a meroplankter determines where it positions itself in the 

water column. Their pelagic period begins in the shallows where embryos and early 

stage larvae enter the water column. The larvae then disperse; the scale depending on 

water movement, larval behavior and length of pelagic stages (Day & McEdward, 1984). 

Typically, early stage larvae are advected offshore for a variable period of time 

dependent on the species. Once the organism is ready to settle, it needs to find a 

mechanism to travel shoreward for settlement. Larvae may be exploiting LC convergence 

zones as a mechanism for onshore transport required for settlement. Larvae in LC 

convergence zones would increase their downwind drift and during sea breeze, LC 

convergences would flow shoreward, allowing larvae to move shoreward. 

The purpose of this study is to examine the distribution and concentration of 

holoplankton and meroplankton in convergence and divergence zones ofLC. The main 

questions addressed are: 1) Does LC concentrate zooplankton in the convergence zones? 

2) Does the circulation affect holoplankton and meroplankton differently? Given the 

potential physical forcing ofLangmuir circulation and the basic habitat needs of 
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holoplankton (remain in the water column) and meroplankton (late stage migrate 

shoreward for settlement), I hypothesized the following: 1) Holoplankters will be evenly 

distributed between convergence and divergence zones within LC cells (unless the 

organism has persistent directional swimming behavior). 2) Meroplankters will be 

distributed within LC cells based on taxonomic and ontogentic form; late stage larvae of 

intertidal and shallow subtidal benthic invertebrates will be found in a higher 

concentrations in convergence zones, whereas early larval stages will not be present in 

the surface waters. I suspect that these late stage larvae will be in convergences so as to 

exploit the sea breeze, which would allow horizontal transport shoreward for settlement. 

To test these hypotheses, I conducted replicate neuston tows and vertical plankton tows 

(O-lOm depth) in convergence and divergence zones of Langmuir circulation cells. I 

compare and report the concentrations of specific holoplankton and meroplankton in 

these two zones. 

Methods 

Study Area 

All samples were collected in the waters adjacent to Port Orford, Oregon 

(42°44.24'N x 1240 29.48'W), which is 12 km south of Cape Blanco, a site characterized 

by frequent strong upwelling (Figure 1). Port Orford was chosen as a study site because 

it has a high headland to the north, which provides a lee from strong north winds and 

shelter from summertime swells. Working downwind from Port Orford Head, I selected 
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water upon which the wind was blowing, Langmuir cells were present, but, because of 

the short fetch, large wind waves had not developed. Working in the lee of "The Head" 

was necessary to avoid surface chop for two reasons: 1) Strong surface chop will 

obliterate zones ofdampened capillary action, making it impossible to see convergence 

zones. 2) Surface chop and larger waves make sampling from a small boat dangerous and 

a large boat cannot maneuver properly to sample Langmuir cells. Therefore, Port Orford 

with its promontory to the north, was an ideal study site to examine Langmuir circulation 

accurately and safely. 

Figure 1: Coast Guard Chart 18589, illustrating the near coastal waters ofPort Orford, Oregon. 
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LC Identification 

Sampling was only conducted when NOAA weather station (POR03) reported 

north wind within a range of 1.5-8.0 m s -1 and a northern swell < 3.5m. (When winds 

were above 8.0 m S·1 I could not see slick lines at the convergence zone). From the bluff 

in Port Orford, I would determine wind speed and direction with a handheld anemometer 

and scan the water's surface for indications that Langmuir circulation was occurring. 

Accurate identification of LC cells was critical to this study. I used the following 

two definitions to aid in the identification of the surface manifestation ofLC: 1) LC 

visual surface indication has been defined as a pattern of windrows, made up of surface 

film, flotsam and debris (Faller & Auer 1988). 2) Stommel (1951) described LC surface 

manifestation as venous or parallel streaks. LC was positively identified from the 

presence ofmultiple slicks aligned parallel to the wind. The convergence zones were 

indicated by foam, flotsam and slick lines of dampened capillary action on the surface 

running parallel with the wind. Once it was determined Langmuir circulation was 

occurring, the sampling process would commence. 

Sampling was conducted from a 7m boat, which was launched via crane at the 

Port ofPort Orford. Upon the water, we searched for slicks by motoring perpendicular to 

the wind until multiple convergence zones oriented parallel to the wind were spotted. 

Solitary convergences and convergences not running parallel to the wind were not 

sampled as they were likely due to nearshore fronts or internal waves. In addition, slick 

lines flowing off a structure; rock, jetty, boat etc. were not sampled. Convergence zones 

that met the following criteria were sampled: 1) Sufficient wind speed to generate LC. 
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2) Convergences aligned parallel to the wind. 3) Multiple convergences present. 

4) Convergences or slick lines not extending off a topographic structure. 5) Safely within 

Port Orford Head. All samples were collected downwind of Port Orford Head. Wind 

speed and direction were determined during sampling with a handheld anemometer and 

compass. 

Neuston Tows 

Neuston sampling was conducted on 5 days in July 2006 and on 2 days in August 

2007. Once a Langmuir cell was identified, paired neuston tows were conducted. I 

maneuvered the vessel to the most upwind point of the circulation and towed downwind. 

The first tow was made in the convergence zone; the net was brought aboard, elevated 

and thoroughly rinsed three times with buckets of seawater. This rinsing was meticulous 

to prevent contamination to the next sample. A second tow was then conducted in the 

same manner midway between two adjacent convergences. Studies have shown that 

convergence zones, illustrated by a slick line are rather narrow and divergence zones are 

relatively broad (Weller et aI., 1985; Weller & Price, 1988). Since there is no visual 

surface indication mark of the divergence zone, I was unable to identify the peak of the 

divergence. However, by sampling the area between the convergences' slick lines I was 

sampling in the divergence zone. 
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Plankton samples were collected using a rectangular neuston net, with a mesh of 

0.333 mm, attached to a PVC frame; with a mouth opening of 1 x 0.25 m. Floats were 

fastened to either end of the PVC frame to keep the net at the surface when towed. Tow 

depth was approximately 0.5 m and tows were 3-4 minutes in duration. After each tow, 

the net was carefully rinsed and the sample was preserved in ~10% buffered formalin. 

Two to four Langmuir circulations were sampled each day. Number of samples was 

determined by wind and sea conditions. 

On sample days in July 2006 volume filtered was calculated using the diameter of 

the net, tow time and boat speed, which was determined with a handheld GPS. On 

sample days in August 2007 a flow meter was mounted in the mouth of the net and was 

used to calculate the volume of water filtered. 

In the laboratory, the entire plankton sample was inspected and organisms were 

identified to the lowest possible taxon level. Holoplankters were identified using Smith 

& Johnson (1996). Meroplankters were identified and staged using keys in Shanks 

(2001). Organisms occurring in high concentrations were subsampled using the methods 

in Shanks & Brink (2005). The sample was transferred to a 250mL beaker, and with the 

aid of an electronic balance the water volume was increased to 200mL. The sample was 

homogenized with random stirring and a 5mL sub-sample was removed with a stempel 

pipette (Omori & Ikeda, 1984). Multiple 5mL sub samples were removed until 100 

individuals of the common target organisms had been counted. This generated a sample 

standard deviation of~10% for abundant organisms and between 10%-20% for less 

common organisms (Venrick 1978). 
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All species and associated concentrations are reported in Appendix A. Select 

organisms were chosen for statistical analysis. Of particular interest were abundant late 

stage larvae of benthic invertebrates that might be using convergence zones to move 

shoreward and abundant holoplankters that were expected to be evenly distributed across 

cells based on ecology. Organisms also needed to be common enough to accurately 

determine abundance. Statistical comparisons of larval concentration in the convergence 

and divergence zones on a given day were made using a Wicoxon's two-sample test. 

This statistical test was used because my samples were paired. The Wilcoxon's statistic 

first calculates the difference between pairs and then combines replicates to calculate a 

p-value. P-values were adjusted to fit a I-tailed test for late stage larvae of benthic 

invertebrates that were hypothesized to be present in high concentrations in convergence 

zones a priori. Abundances were considered to be statistically different when p<O.I. 

I adjusted the alpha for this study to 0.1 instead of adhering to the typical alpha of 0.05 to 

decrease the probability of Type II errors (Le. missing patterns that are present in the 

data). Given the nature of this study: few replicates due to logistical restraints and high 

variance due to the erratic distribution of zooplankton in the surface water, there was a 

high probability of Type II errors. Seeing as this is the first time this system has been 

examined in detail, I did not want to miss any potentially important differences in 

organism concentrations between zones, I accepted the higher probability of alpha errors. 

For the same reason, I did not choose to make any correction for the multiple statistical 

tests (Le. the sequential Bonferroni correction). Such tests tend to be overly conservative 

when there are many statistical tests, which could lead to disregarding patterns that are 
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really present in the data (Moran et aI., 2003). Therefore, though the multiple tests will 

increase family wise error, I accepted that in order to achieve the goals of the study. 

Vertical Tows 

Vertical tows were conducted for two main reasons: 1) To examine the vertical 

distribution of zooplankton in the top ten meters. 2) To collect zooplankton fecal pellets 

which will be discussed in Chapter III. Certain elements in the design were done to allow 

for fecal pellet collection and processing. 

Sampling of the top ten meters was conducted on six days in June, 2007. 

Langmuir circulations were identified as described above. Once a Langmuir circulation 

was identified and chosen to sample, paired vertical plankton tows were made. The first 

tow was made in the convergence zone. I maneuvered the boat alongside a fairly wide 

section of the convergence zone. The net was lowered directly into the convergence zone 

to ten meters and then pulled slowly through the water column until at the surface. When 

at the surface, the net was examined for any fouling and then was brought aboard and 

was gently transferred. The net was then thoroughly rinsed with buckets of seawater to 

remove any organisms or material and a new cod end (described below) was attached. 

This rinsing was meticulous to prevent contamination to the next sample. A second tow 

was then conducted in the same manner in the divergence zone. 

Plankton tows were made with circular plankton net with a mesh of 53 urn and a 

mouth opening of 0.26 m. The net was equipped with a modified cod end to enable 
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gentle sampling. The cod end was made of a one-gallon heavy duty plastic bag, which 

was hosed clamped onto the base of the net. The metal circular ring and the cod end 

attachment were weighted. Tows extended from ten meters to the surface. Samples were 

gently poured into sample containers and preserved in -10% formalin. Volume filtered 

was determined from the length of the tow (10m). Three paired convergence and 

divergence tows were sampled on each day. 

In the laboratory, the sample was treated with great care so as to not break fecal 

pellets, which were collected in these samples and analyzed for another portion of the 

study. The sample was washed free of formalin by gently pouring it through a 53 urn 

mesh sieve and then the concentrated sample was brought up 1000mL with fresh water. 

This sample was allowed to settle for 24 hours to determine total settled volume. The 

sample was homogenized by gently stirring and a 100mL aliquot was transferred with a 

turkey baster to a tissue culture flask. The flask was capped and transferred to an inverted 

microscope where it was allowed to settle for one hour. The entire aliquot was inspected 

for zooplankters, which were identified and enumerated using identification keys in 

Shanks (2001). Since the organisms were enclosed within the tissue culture flask they 

could not be manually manipulated, thus species and stages were pooled. 

Particular organisms were chosen for statistical analysis because previous 

knowledge suggested that these organisms might vertically migrate into the surface water 

to exploit LC as a transport mechanism shoreward for settlement. They were also chosen 

when organisms were common enough to accurately determine abundance. Statistical 

comparisons of specific larval concentrations in the convergences and in the divergence 
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zones on a given day were made using a Wilcoxon's two-sample test. Abundances were 

considered to be statistically different whenp<O.l(for reasons explained above). 

Results 

Nueston Tows: 

Wind speeds were measured with a handheld anemometer for each cell sampled 

and were averaged per day and are presented in Table 1. Swell height observed during 

sampling and measured at NOAA buoy 46015 is reported in Table 1. The discrepancy 

between the two swell sizes is due to location. The NOAA buoy is 16 nautical miles 

offshore, and the swell is not obstructed. Whereas, Port Orford experiences reduced 

swell because of the protection of Port Orford Head. I report the observed swell height 

and add the NOAA recorded buoy swell height as an indication of change across days 

(Table 1). 

Table I. Average wind speed, observed swell height and NOAA swell height by date.
 
Date Wind Speed ( m S·l) Observed Swell Height (m) NOAA swell height (m)
 
July 3, 2006 2.5 0.3 1.0
 
July 7, 2006 3.5 0.3 0.8
 
July 20,2006 5.5 OJ 1.0
 
July 30,2006 2.4 0.6-1.0 1.3
 
July 31, 2006 3.0 1 1.1
 
August 10,2007 3.3 1 1.3
 
August 21,2007 5.1 1 1.8
 



20 

Meroplankton chosen for statistical analysis and reviewed here are: an 

unidentified gastropod veliger, Veliger I, Balanus glandula cyprids, Pinnotheridae zoea, 

Spionid nectochaete larvae, Polydora sp. and unidentified fish eggs. The holoplankton 

chosen for statistical analysis and reviewed here are: the cladoceran Podon sp., the 

hydromedusae Obelia spp., and the copepod Acartia hudsonica . 

I was not able to identify Veliger I. Upon preservation with formalin the 

organism drew its velum inside the shell making identification difficult. For many 

gastropod taxa, "identification is not possible beyond the level of family or even 

order"(Goddard,2001). The veliger larvae collected in this study have a single spiral 

shell, that coils in one plane, an average size of 600 urn and has black and white 

coloration (Figure 2). Based on the size and development of shell, I believe these 

organisms to be late stage larvae. Veliger I larvae were collected on the five sample days 

in July 2006 and were not present in August 2007. Veliger I larvae were found in higher 

concentrations in the convergence zone than the divergence zone on all five sample days. 

The Veliger I larvae were 1.6-10.6 more concentrated in convergence zones (Table II). 

Veliger I were significantly more abundant in the convergence zones than in the water 

between convergence zones on July 7, July 20 and July 31 (Table II). 
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Figure 2: Unidentified Veliger, 600um. 

Balanus glandula cyprids were collected on the five sample days in July 2006 and 

were not present in tows collected in August 2007. Cyprids are the final planktonic stage 

of barnacles before benthic settlement. Cyprids were found in higher concentrations in 

the convergence zone than the divergence zone on four of the five sample days, 

concentrating 2-24 times more in the convergence. On July 7 and July 20, B.glandula 

cyprids were significantly more concentrated in convergence than divergence zones 

(Table III). 

Pinnothridae zoeae, were collected on four sample days in July 2006. Zoeae were 

stages four and five and were pooled for analysis. Although identification to species was 

difficult I believe the majority were Fabia subquadrata. Zoeae were found in higher 

concentrations in the convergence zones on three days, concentrating 2-80 times more. 
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Zoeae were significantly more abundant in the convergence zones than divergence zones 

on July 20 and July 31 (Table IV). 

Polydora spp. larvae, which are spionid polychaetes were collected on July 7 and 

July 20,2006. Organisms were examined and setigers were counted to determine stage. 

All organisms were determined to be nectochaetes, the advanced larval stage. 

Trochophore and metatrochophore stages were not present. Although I am not certain, I 

believe these larvae to be P. socialis. Nectochaetes was found in higher concentrations in 

the convergence zones on both days, concentrating 1-19 times more in the convergence. 

Polydora spp. were significantly more concentrated on July 7 (Table V). 

Unidentified fish eggs were collected on the two sample days in August 2007 and 

were not present in tows collected in 2006. Fish eggs were yellowish in color. Although 

preserved in formalin, when the sample was suspended fish eggs appeared to be 

negatively buoyant. Fish eggs were significantly more abundant in the divergence zones 

than convergence zones on both days, concentrating 2-8 times more in the divergence 

than the convergence zone (Table VI). 

The holoplankter Podon sp. a member of the order Cladocera were collected on 

three of the seven sample dates in 2006 and 2007. Podon has a large eye and an enlarged 

carapace. Podon were more concentrated in the divergence zones than convergence 

zones on all three days and were significantly more abundant in the divergence zone on 

August 21 (Table VII). 

The hydromedusa Obelia spp. was collected on four sample days in 2006. 

Specimens varied in size from 1-5mm. Obelia was more concentrated in the convergence 
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zone than the divergence zones on three dates and significantly more abundant in the 

convergence on July 20 (Table VIII). 

The copepod Acartia hudsonica was collected on six sample days. A. hudsonica 

is a pelagic herbivorous calanoid copepod and exhibited a highly variable distribution. 

A.hudsonica was found in higher concentration in the convergence on three days and in 

higher concentration in the divergence on the other three days. However, A. hudsonica 

was significantly more concentrated in the convergence only on July 31 (Table IX). 



Tables II-IX 
The abundance of an organism on a given date in convergence zones and divergence zones ofLangmuir circulations cells collected in 
neuston tows. Values are the average no. 100m 3 with the SE in parentheses. C/D is the ratio of the abundance in the convergence 
divided by the abundance in the divergence. p values are one-tail adjusted results of a Wilcoxon's 2-sample test comparing the 
convergence and divergence abundances. Statistically significant results at u=O.l are marked with an *. 

Table II. Veliger I distribution within LC 
Veliger I Samples per zone Convergence Divergence C/D p values 

N 
July3,2006 2 5.5(1.6) 2.8(0.4) 2 
July 7, 2006 4 297(237) 66(45) 4.5 0.03* 
July 20, 2006 4 103(46) 26(13) 4 0.03* 
July 30, 2006 3 19(19) 1.8(1.5) 10.6 -
July 31, 2006 3 41(24) 25(23) 1.6 0.05* 
August 10, 2007 3 
August 21, 2007 3 

Table III. Balanus glandula cyprid distribution within LC. 
B.glandula Samples per zone Convergence Divergence 
Cyprid N 
July3, 2006 
July 7, 2006 
July 20, 2006 
July 30, 2006 
July 31, 2006 
August 10, 2007 
August 21, 2007 

2 
4 
4 
3 
3 
3 
3 

3.2(0.8) 
177(136) 
125(109) 
6.8(5.8) 
6.5(3.4) 

0.8(0.8) 
7.4(2.9) 
58(32) 
1.7(0.4) 
7.3(4.9) 

C/D 

4 
24 
2.2 
4 
0.9 

P values 

-
0.04* 
0.04* 
0.5 
0.5 

tv 
.j::. 



Table IV. Pinnothridae zoeae distribution within LC. 
Pinnothridae Samples per zone Convergence Divergence C/D p values 
ZoeaeIV & V N 
July3,2006 2 31(22) 16(12) 2 
July 7, 2006 4 1.3(1.1) 9.2(8.6) 0.1 -
July 20, 2006 4 14(12) 2.1(1.8) 6.7 0.05* 
July 30, 2006 3 - - - -
July 31, 2006 3 16(14) 0.2(0.1) 80 0.05* 
August 10,2007 3 
August 21, 2007 3 

Table V. Polydora sp. distribution within LC. 
Polydora sp. Samples per zone Convergence Divergence C/D p values 

N 
July3, 2006 2 - - - -
July 7, 2006 4 30(19) 1.6(1.1) 19 0.03* 
July 20, 2006 4 10(4) 7.9(2.9) 1.3 0.2 
July 30, 2006 3 
July 31, 2006 3 
August 10,2007 3 
August 21, 2007 3 

tv 
VI 



Table VI. Unidentified fish eggs distribution within LC. 
Fish eggs Samples per zone 

N 
Convergence Divergence DIC p values 

July3,2006 
July 7, 2006 
July 20, 2006 
July 30, 2006 
July 31, 2006 
August 10, 2007 
August 21,2007 

2 
4 
4 
3 
3 
3 
3 

-
3.0(0.9) 
12(2.3) 

5.9(1.3) 
92(36) 

-
2 
7.7 

-
0.05* 
0.05* 

Table VII. Podon spp. distribution within LC. 
Podonspp. Samples per zone Convergence Between Convergence DIC p values 

N 
July3,2006 2 271(46) 303(264) l.l 
July 7, 2006 4 
July 20, 2006 4 
July 30, 2006 3 
July 31, 2006 3 - -
August 10, 2007 3 1.4(0.2) 2.5(1.3) 1.8 1.0 
August 21, 2007 3 2.4(0.3) 16(6) 6.7 0.1* 

tv 
0\ 



Table VIII. Obelia spp. distribution within LC. 
Obeliaspp. Samples per zone Convergence Divergence C/D p values 

N 
July3,2006 2 86(16) 13(10) 6.6 -
July 7,2006 4 5.8(3.4) 9.1(6.2) 0.6 0.6 
July 20, 2006 4 16(6) 4(2.3) 4 0.06* 
July 30, 2006 3 - - - -
July 31,2006 3 5.4(2.7) 0.6(0.3) 9 0.3 
August 10, 2007 3 
August 21, 2007 3 

Table IX. Acartia hudsonica distribution within LC. 
Acartia hudsonica Samples per zone Convergence Divergence C/D p values 

July3,2006 
July 7, 2006 
July 20, 2006 
July 30, 2006 
July 31,2006 
August 10, 2007 
August 21, 2007 

2 
4 
4 
3 
3 
3 
3 

562(397) 
1310(655) 
5390(2695) 
266(154) 
932(538) 
12(5.3) 

530(375) 
2028(1014) 
1560(780) 
434(251) 
650(375) 
9 (3.2) 

1.0 
0.65 
3.5 
0.62 
1.4 
1.3 

-
0.7 
0.5 
0.6 
0.6 
0.6 

tv 
'-J 
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Vertical Tows 

Wind speed was detennined with a handheld anemometer and mixed layer depth 

was detennined by density readings taken with a CTD, both are reported in Table X. 

Swell height was detennined and recorded as explained above and is reported in Table 

XI. The meroplankters chosen for statistical analysis were: barnacle nauplii and cyprids; 

and holoplankters chosen were copepod nauplii and adult copepods. Due to samples 

being contained within the tissue culture flask, organisms could not be manipulated, 

making accurate identifcation difficult. Therefore species and stages were often pooled. 

Table X. Average wind speed and mixed layer depth by date.
 
Date Wind speed (m S I) Mixed layer (m)
 
June 5,2007 3.4 1 
June 8, 2007 2.9 10 
June 10, 2007 3.5 1 
June 22,2007 3.6 1 
June 23,2007 3.4 2 
June 25, 2007 4.3 1 

Table XI. Observed swell height and NOAA reported swell height by date. 
Date Observed Swell Height (m) NOAA swell height (m) 
June 5, 2007 0.3-0.6 1.6 
June 8, 2007 0.3-0.6 1.5 
June 10, 2007 1.6-2 2.4 
June 22,2007 0.6-1 0.8 
June 23, 2007 1.3 1.5 
June 25, 2007 1 1.4 

Barnacle nauplii were collected on all six days ofthe study. Barnacles have a 

planktonic nauplius larval stage which undergoes a series of molts, yielding four to six 
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naupliar stages. Barnacle naupli species and stages were pooled. Although I could not 

measure or manipulate nauplii, I believe the majority of nauplii were stage 4 and 5 of 

B. glandula. Nauplii were found in higher concentration in the convergence than 

the divergence zones on all six days collected. Nauplii were significantly more 

concentrated in the convergence zones than in divergence zones on June 22 (Table XII). 

Cyprids were collected on five days and all species were pooled. Cyprids are 

the second planktonic larval stage ofbamacles. Cyprids were highly variable in their 

distribution and changed from day to day. They were more concentrated in the 

convergence on three days and more concentrated in the divergence on two days. 

Cyprids did not differ significantly in their distribution (XIII). 

Nauplius larval stages and adult form of copepods were collected on all six 

sample days. Naupliar stages and species were pooled, although almost all copepods were 

of the order Calanoida. Copepod naupli can be distinguished from barnacle naupli by the 

absence of horns. Copepod nauplii were variable in their distribution; they were more 

concentrated in convergence zones on two days and more concentrated in divergence 

zones on the other four days. Nauplii did not differ significantly in their abundance 

between zones on any sample day (Table XIV). Adult copepods were highly variable in 

their distribution; they were more concentrated in the convergence zone on three days 

and more concentrated in the divergence on three days. Adult forms were significantly 

more concentrated in the divergence zone than the convergence zone on June 10 

(Table XV). 



Tables XII-XV 
The abundance ofan organism on a given date in convergence zones and divergence zones collected in the upper ten meters of 
Langmuir circulations cells. Values are the average no. per liter with the SE in parentheses. P values are the results ofa Wilcoxan's 
2-sample test comparing the convergence and divergence abundances. Statistically significant results at 0.=0.1 are marked with a *. 

Table XII. Barnacle nauplii distribution within LC.
 
Barnacle nauplii Samples per zone Convergence Divergence C/D p values
 

N 
June 6, 2007 3 129(95) 87(29) 1.5 0.6 
June 8, 2007 3 556(260) 306(113) 1.8 0.6 
June 10, 2007 3 209(56) 161(137) 1.3 0.3 
June 22, 2007 3 161(32) 121(28) 1.3 0.1* 
June 23, 2007 3 226(202) 145(48) 0.2 -
June 25, 2007 3 209(116) 105(53) 2.0 1.0 

Table XIII. Cyprid distribution wihin LC. 
Cyprid Samples per zone Convergence Divergence C/D p values 

N -
June 6,2007 3 -

June 8, 2007 3 121(48) 218(114) 0.6 -
June 10, 2007 3 32(21) 16(16) 2 0.3 
June 22, 2007 3 8(8) - 8 
June 23, 2007 3 - 16(16) -

June 25, 2007 3 24(24) 8(8) 3 

w 
o 



Table XIV. Copepod nauplii distribution within LC. 
Copepod nauplii Samples per zone Convergence Divergence C/D p values 

N 
June 6, 2007 3 838(233) 975(56) - 0.6 
June 8, 2007 3 3692(1129) 4007(1816) - 0.6 
June 10, 2007 3 1483(293) 806(649) 0.3 
June 22, 2007 3 1822(644) 2015(854) - 0.6 
June 23, 2007 3 951(481) 846(293) 1.0 
June 25, 2007 3 1814(608) 2144(1018) 1.0 

Table XV. Adult Copepod distribution within LC. 
Adult Copepod Samples per zone Convergence Divergence C/D p values 

N 
June 6, 2007 3 258(29) 193(41) 1.3 0 
June 8, 2007 3 3539(1464) 3741(2118) - 1.0 
June 10, 2007 
June 22, 2007 

3 
3 

1217(528) 
717(175) 

540(468) 
927(187) 

-
-

0.6 
0.1 * 

June 23, 2007 3 814(482) 701(384) - 0.6 
June 25, 2007 3 1330(599) 1733(808) 0.6 

\.J.J ...... 
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Discussion 

This study examines the distribution and compares the concentration of 

holoplankton and meroplankton in Langmuir circulation convergence zones to 

concentrations in divergence zones. This study tested the hypothesis that meroplankters 

would be distributed within LC cells based on taxonomic and ontogentic form, which 

would define their habitat needs. Holoplankters would be either evenly distributed 

between zones or retained within a zone due to swimming behavior. These hypothesis 

were based on two main reasoning's: 1) Stommel's retention zone model, which reasons 

that organisms that are positively buoyant or swim upward against the downwelling 

current will be held in convergence zones, whereas animals that are negatively buoyant or 

swim downward will be retained in the divergence zone. 2) The reasoning that Langmuir 

circulation sorts organisms based on their taxonomic and ontogentic habitat needs; 

meaning that certain late stage meroplankton need to be transported shoreward for 

settlement, while early stage meroplankton are not restricted to the surface water for 

shoreward movement and holoplankters remain in the water column and do not travel 

shoreward. If late stage meroplankton utilize Langmuir convergence zones as a mode of 

transport then concentrations oflate stage larvae of benthic invertebrates should be 

significantly higher in the convergence zone than in divergence zones. Whereas, early 

stage meroplankters would not be present in the surface water or not concentrated in the 

convergence zones. In contrast holoplankters which need to remain in the water column 
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for life would be evenly distributed between zones, cycling with the circulation so they 

have no net transport shoreward. 

Results from the neuston tows provide evidence that late stage meroplankton of 

benthic invertebrates are frequently concentrated in the convergence zones ofLC. Veliger 

I, Balanus glandula cyprids, Pinnothridae zoeae stage IV & V, and Polydora sp. 

nectochaetes were often found more concentrated in the convergence than the divergence 

zones ofLC. These data support Stommel's retention zone hypothesis, that organisms 

swimming upward will be retained in convergence zones. These four organisms at this 

developmental stage have the swimming capability to swim upward against the 

downwelling current at the surface within the convergence zone. The pattern that these 

organisms are found in higher concentrations in the convergence zones supports the 

hypothesis that late stage meroplankton are concentrated in convergence zones. This 

result suggests that they may be using these convergence zones as mechanism to move 

shoreward. 

It should be noted that these late stage meroplankters were not always more 

concentrated in convergence zones. I attribute this inconsistency to the high variation 

within the data set. Low number of replicates certainly lends to high variance, however 

life history ofa Langmuir cell and cell size might also explain the high variation in this 

study. The duration of circulation and wind speed determines the life history ofa cell. On 

each day, the cells sampled may have had different life histories. Cell life history 

certainly varied across days. Any given wind event will produce varying sized LC cells. 

Due to the amount of water being circulated, a larger cell would concentrate more 
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organisms than a smaller cell. On each day several cells were sampled and although size 

was taken into consideration when choosing cells, size was not measured. I suspect that 

varying cell life histories and cell sizes contributed to the high variation displayed in the 

data. Although high variation may have clouded the statistical significance of this study 

it did not obscure the striking pattern that these four late stage meroplankters were often 

more concentrated in the convergence zone than the divergence zone. 

The ontogentic stages of these four organisms have the appropriate behavior that 

allows them to be transported shoreward to find suitable habitat for settlement. The adult 

forms of these organisms are found in the high intertidal to the shallow subtidal. I 

suspect VeligerI is an intertidal gastropod. Adult forms of B. glandula are commonly 

found in the high to middle intertidal on the outer coast. Pinnotheridae adults are 

commonly known as "Pea crabs" and are symbiaonts with annelids and mollusks. Fabia 

subquadrata is known to live within Mytilus californianus, a common intertidal mussel 

(Carlton, 2007). Polydora sp. is a spionid, that as adults are known for boring into 

calcareous substrates in the intertidal (Carlton, 2007). P.sodalis adult forms are known 

to live in the intertidal to shallow subtidal in fine sands and coarse silts (Carleton, 2007). 

The intertidal and shallow subtidal of Port Orford, Oregon is composed of rocky 

outcroppings surrounded by fine sands (personal observation), an ideal settlement site for 

this spionid. 

If these organisms at this late developmental stage do not position themselves so 

as to move into shallow water for settlement they may perish. The result that these late 

stage larvae are found concentrating in convergence zones at the surface suggest these 
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organisms are optimizing downwind drift and exploiting the combination ofLangmuir 

circulation and sea breeze to advect shoreward. 

The downwelling current in the convergence and upwelling current in the 

divergence ofLC increases in strength with an increase in depth. Vertical tows made in 

the top ten meters of the water column passed through varying speeds of flow within the 

circulation. Nonetheless, late stage barnacle nauplii were more concentrated in the 

convergence than the divergence zones,on all six sample days. Barnacle nauplii have a 

photo-tactic response, which may stimulate upward swimming against a downwelling 

current. Nauplii concentrated in the convergence zone provide further support for 

Stommel's hypothesis, that animals swimming upward are retained in the convergence 

zone. In contrast, cyprid distribution was highly variable in the vertical tows. This may 

be due to increased current speed with depth and would explain the discrepancy in the 

positive concentration in the neuston and sporadic distribution in the top ten meters. 

Many larvae can adjust their vertical position in the water column either for 

feeding or transport purposes. An assortment of larval invertebrates make diurnal 

vertical migrations into the neuston. In certain decapod species, vertical migration 

pattern is dictated by ontogentic phase (Temple & Fischer, 1965; Shanks, 1986). Early 

larval stages typically spend the day at depth and then migrate into the surface waters at 

night to feed. In contrast, late stage or competent larvae migrate into the surface waters 

during the day and return to depth in the evening. Being at the surface during the day 

allows these organisms to make use of the onshore sea breeze. Late stage larvae of other 

taxonomic groups may migrate into the neuston to employ onshore sea breeze as an 
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advection tool as well. Larvae that migrate into the neuston during the day, either for 

behavioral or ontogenic reasons could pair the combination of Langmuir circulation and 

sea breeze to advect shoreward for settlement. 

In contrast to the late stage meroplankton results early stage larvae of benthic 

invertebrates were not present (or not abundant enough to accurately determine 

abundance) in the neuston or vertical plankton tows. This result is consistent with the 

hypothesis that Langmuir circulation is used by meroplankton based on ontogenic habitat 

needs. Early stage larvae need to disperse and grow through several stages before 

returning to shore. If an early stage larva was in a convergence zone ofLC it may be 

advected shoreward before it was competent to settle. 

Holoplankton as a group collected in neuston and vertical plankton tows either 

supported Stommel' s retention zone hypothesis or the hypothesis that holoplankton 

would be evenly distributed between zones. When examining individual taxa behavior 

and swimming speeds, patterns emerged that were consistent with the hypothesis. 

Podon was found in higher concentrations in the divergence zones of the neuston 

on all days it was collected. Podon is a member of the Order Cladocera, of which the 

freshwater Daphnia are also a member. George & Edwards (1973) found near surface 

accumulations of Daphnia in between Langmuir circulation convergences. Podon 

possess a large eye that might trigger a negative photo-tactic response resulting in 

downward swimming, causing Podon to be retained in this divergence zone. These data 

are further evidence for Stommel's model; downward swimming animals will be retained 

within zones of upwelling. 
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Obelia spp. was found concentrated in the convergence zone of the neuston, 

where the LC convergence downwelling current is at its slowest. Although, there are no 

reported swimming speeds for Obelia medusa, I suspect it may be able to control its 

movement within moderate flow conditions. This medusa is carnivorous and might 

benefit from being in convergence zones to exploit a potential food source. 

Acartia hudsonica is a calanoid copepod collected in neuston tows and was 

commonly distributed between zones. Adult copepods and copepod nauplii were 

collected in the vertical plankton tows and both were evenly distributed between zones. 

These results support the hypothesis that holoplankton would be distributed between 

zones and provide further evidence that LC zones are utilized by organisms based on 

habitat need. Copepods are holoplankton which are commonly found in the surface 

waters and remain in the water column for their whole life. Consequently there does not 

appear to be a distinct advantage of occurrence within any particular zone ofLC. 

Unidentified fish eggs are typically considered meroplankton, however when 

pairing physics with biology they should be regarded as non-regulators or somewhat of a 

passive particle. Fish eggs cannot change their buoyancy based on a stimulus. Fish eggs 

were significantly more abundant in divergence zones than in convergence zones, 

suggesting that they are negatively buoyant Fish eggs may have accumulated in this area 

by physical forcing, meaning that the diffuse upwelling of the divergence zone would 

keep eggs from sinking out of the neuston, whereas if eggs were moved into the 

convergence zone, they would have been pushed below the surface by the downwelling 

jet. 
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Due to plankton patchiness, taxonomic life histories and the temporal scale of this 

study, the organisms collected changed day to day. Organismal data was not pooled but 

examined by concentration of an organism, zone and collection method used nested 

within a day. This level of examination enables one to tease out patterns of distribution 

based on taxonomic and ontogentic form. 

In conclusion, these data are consistent with Stommel's retention zone hypothesis 

that organisms will be retained within zones based on buoyancy or swimming behavior. 

Late stage meroplankters and medusas, presumed to be relatively strong swimmers, were 

often concentrated in the convergence zones. Podon, which swims down and fish eggs 

that sank were retained in divergence zones. Copepods that don't exhibit persistent 

directional swimming were evenly distributed between zones. 

The result that late stage meroplankton were concentrated in convergence zones 

and copepods were evenly distributed support the hypothesis that organisms utilize LC 

depending on habit need. Given that late stage larvae were concentrated in convergence 

zones ofLangmuir circulation either by behavior or entrained through physical processes, 

suggests competent larvae are utilizing the pairing of maximum downwind drift in a 

convergence zone and sea breeze to move shoreward. 

The findings in Chapter II support the hypothesis that Langmuir circulation 

affects zooplankton in the surface waters. Zooplankton have the ability to move and 

exhibit behaviors which may effect their distribution within LC. Chapter III examines a 

passively negative particle, zooplankton fecal pellets distribution within zones of 

Langmuir Circulation. 
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CHAPTER III 

THE EFFECT OF LANGMUIR CIRCULATION ON THE 

DISTRIBUTION OF FECAL PELLETS IN THE SURFACE WATER 

Introduction 

The basic mechanics and physics of Langmuir circulation and Stommel's model 

are described in Chapter I of this Thesis. According to Stommel's model, particles could 

be retained due to the ratio of settling velocity to circulation velocity. Negatively 

buoyant particles may be retained in upwelling zones (divergence zones), while 

positively buoyant particles may be retained in zones of downwelling (convergence 

zones). Due to turbulent exchange, there may be movement between these two retention 

zones. Zooplankton fecal pellets are one of many particles in the mixed layer that may be 

affected by LC. 

Zooplankton fecal pellets are negatively buoyant and sink rapidly (Turner, 

2002). Fecal pellets are considered a major pathway for surface biogenic material to 

reach the seafloor (Angel, 1984). Sediment trap studies suggest that the settling of 

zooplankton fecal pellets, particularly copepod pellets, may contribute and control the 
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vertical distribution of important elements, such as organic carbon, 02, C02, N and P 

(Komar et aI., 1981). 

The vertical flux of fecal pellets in the water column is determined by a number 

of factors, including production rate, composition, sinking rate, decay, loss to grazing and 

localized turbulence. Sinking rate is likely the most important factor in determining 

successful export to depth (Butler & Dam, 1994). A slowly sinking pellet may decay or 

be consumed before it exits the euphotic zone. Size, density and shape all contribute to 

the sinking rate of the pellet (Fowler & Small, 1972; Turner, 1977). 

Measured sinking rates of zooplankton fecal pellets in the ocean range from 

10 -100 meters a day (Turner & Ferrante, 1979). Fecal pellets produced by 

macrocrustecans can sink from 18 to 170 meter a day (Alldredge et aI., 1987). These high 

settling velocities strongly suggest that fecal pellets should have a short residence time in 

the surface water, however, several sediment trap studies have demonstrated that 

zooplankton fecal pellets, given their production rates in overlaying waters, make up only 

a fraction of their predicted portion of sedimentary flux (McCave, 1975; Bishop et aI., 

1977; Poulsen & Kiorboe, 2005). Coprophagy by zooplankton may be an explanation for 

low export fluxes to depth, however Registad et ai. (2005), using Othiona spp. as an 

indicator species, found no evidence for this explanation and suggested that there must be 

an alternative process retaining pellets in the upper ocean. 
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The following studies are further evidence that fecal pellets are being retained in 

the surface waters. Alldredge et ai. (1987) found large fecal pellets produced by macro 

crustaceans in the top 20 m of the water column that were four to ten days old. This is 

surprising given the sinking rates of these pellets is 18-170 m a day, which is rapid 

enough to remove them from the surface water in just hours. The accumulation of pellets 

in the surface waters was partly attributed to turbulent mixing processes. Studies on 

smaller zooplankton fecal pellets also suggest pellets may be in the surface waters for a 

long period of time. Krause (1981) over a ten-week study found consistently high 

concentrations of copepod fecal pellets in the upper 30 m of the North Sea and suggested 

that pellets were not sinking out of the mixed layer. During a study of the vertical 

distribution of fecal pellets in the Norwegian Sea, the daily loss of fecal pellets in the 

upper waters was only 1% of fecal pellet standing stock (Bathmann et aI., 1987). These 

findings demonstrate that pellets are not sinking out of the surface water as fast as 

expected. This information, combined with the discrepancy of fecal pellets in sediment 

traps versus standing stock in overlaying waters, suggests that fecal pellets are 

accumulating and retained in the surface waters due to physical processes. 

Langmuir circulation is a physical process that affects surface waters the world 

over. LC helical vortices create an organized flow in the surface waters and may playa 

role in the transport potential of fecal pellets. Fecal pellets could be held in Stommel 

retention zones formed within the divergence zones, where the upwelling current would 

retard sinking. This would prolong residence time of pellets in the surface water and 
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combined with turbulent mixing would redistribute them in the mixed layer. No studies to 

date have investigated the role of Langmuir circulation on fecal pellet suspension. 

The purpose of this study is to examine the distribution and concentration of fecal 

pellets in the divergence and convergence zones of Langmuir circulation cells. Based on 

Stommel's model, I hypothesized that LC can retain fecal pellets in the surface waters 

and, as a consequence of retention by LC, fecal pellets would occur in higher 

concentrations in divergence zones, where the upwelling current would advect pellets 

upward and retard sinking rates. To test these hypotheses, I made replicate vertical paired 

plankton tows in divergence and convergence zones of Langmuir circulation cells. 

Methods 

The study area and methods used to identify Langmuir Circulation are described 

in Chapter II of this Thesis. Once a Langmuir circulation was identified and chosen for 

sampling, paired vertical plankton tows were made. The first tow was made in the 

convergence zone. I maneuvered the boat alongside a fairly wide section of the 

convergence zone. The net was lowered directly into the convergence zone to a depth of 

ten meters and then was pulled slowly through the water column until at the surface. 

When at the surface, the net was examined for any fouling and then was brought aboard 

and the contents of the cod end were gently transferred. The net was then thorougWy 

rinsed with buckets of seawater to remove any phytoplankton or pellets and a new cod 

end (described below) was attached. This rinsing was meticulous to prevent 

contamination to the next sample. A second tow was then conducted in the same manner 
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midway between two adjacent convergences. Studies have shown that convergence 

zones, illustrated by a slick line are rather narrow and divergence zones are relatively 

broad (Weller et ai., 1985; Weller & Price, 1988). Since there is no visual surface 

indication mark of the divergence zone, I was unable to identify the peak of the 

divergence. However, by sampling the area between the convergences' slick lines I was 

sampling in the divergence zone. 

Plankton tows were made with circular plankton net with a mesh of 53 urn and a 

mouth opening of 0.26m. The net was equipped with a modified cod end to enable gentle 

sampling. The cod end was made of a one-gallon heavy-duty plastic bag, which was 

hosed clamped onto the base of the net. The metal circular ring and the cod end 

attachment were weighted. Tows extended from ten meters to the surface. Samples were 

gently poured into sample containers and preserved in -10% formalin. Volume filtered 

was determined from the length of the tow (lOrn). Three paired convergence and 

divergence tows were sampled on each day. Vertical CTD casts were made each day 

with a Seabird model 19 CTD to examine the vertical density gradient to determine the 

depth of the pycnocline and mixed layer. 

In the laboratory, the sample was washed free of formalin by gently washing it on 

a 53 urn mesh sieve and then the concentrated sample was brought up 1000 mL with 

fresh water. This sample was allowed to settle for 24 hours to determine total settled 

volume. The sample was homogenized by gently stirring and a 100mL aliquot was 

transferred with a turkey baster to a scored tissue culture flask. The flask was capped and 

transferred to an inverted microscope where it was allowed to settle for one hour. The 
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external viewable part of the flask was marked to create a grid of six tracks 8 x 1 cm in 

surface area. Fecal pellets were enumerated in a randomly chosen track. This 

methodology for counting fecal pellets was modified from Utermohl (1931). 

All pellets counted were intact within a peritrophic membrane and came in two 

shapes; cylindrical or globular. Only whole pellets were enumerated and pieces and or 

particles of what might be fecal pellets were not counted. The tissue culture flask 

enclosed the sample, therefore pellets could not be manipulated, measured or aged. 

Counts were made for each shape to tease out distributional patterns based on shape. I 

choose to do separate counts based on the reasoning that shape would likely affect 

sinking rate, therefore different shaped pellets may have different distributions. 

Cylindrical and globular fecal pellet concentrations were log transformed to meet 

the assumptions of normality and homogeneity ofvariances. Statistical comparisons of 

cylindrical and globular fecal pellets in the divergence and convergence zones across 

days were made using a two-way mixed model ANOVA, with zone as a fixed factor and 

date as a random factor. A paired t-test examined whether pellet concentrations were 

different between zones on each date. p values were adjusted to fit a one-tailed test as 

fecal pellets were hypothesized a priori to be more abundant in divergence zones. 

Abundances were considered to be statistically different whenp <0.05. 
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Results 

Three paired vertical tows were made in the divergence and convergence zones of 

Langmuir circulations on six sample dates in June 2007. Cylindrical fecal pellets were 

the shape of a cigar with tapering at both ends. These pellets appear to be similar to those 

produced by copepods and were present in both zones on all six sampling days. There 

was no significant difference in cylindrical pellet concentration between zones or days or 

the interaction of zone and day (Table I; zone, p=0.82; day= 0.17; interaction, p=0.16). 

Upon examining the data, three samples had abnormally low cylindrical pellet 

concentrations: FP9 divergence, FP15 convergence and FP16 divergence, marked with an 

* in Appendix B. I decided to remove these points from the data set and conducted a 

separate two-way mixed model ANOVA. The results of this ANOVA were no 

significant difference in concentration between zone but indicated a difference by day 

(Table II; zone, p= 0.75, day, p=0.03). 

Table 1. Two-way analysis of variance for cylindrical fecal pellet concentrations with zone and day as main 
effects (all data points included in analysis). 
Effect df MS F P 
Zone 1 0.02 0.06 0.82 
Day 5 0.36 1.70 0.17 
Zone x Day 5 0.38 0.21 0.16 
Residual 24 0.21 

Table II. Two-way analysis of variance for cylindrical fecal pellet concentrations with zone and day as 
main effects (excluding three data points). 
Effect df MS F p 
Zone 1 0.01 0.11 0.75 
Day 5 0.33 3.25 0.03* 
Zone x Day 5 0.11 1.09 0.39 
Residual 21 0.10 
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This result prompted me to conduct paired t-test on the cylindrical pellet 

concentrations in each zone on each date. Cylindrical pellets were significantly more 

abundant in the convergence zones on June 10, 2007 (Table III). Cylindrical pellets did 

not differ significantly in their abundance between zones on June 5, 8,22,23 or 25 

(Table III). Although not significant, on June 25, pellets were more concentrated in the 

convergence zones and on the other four dates pellets were more concentrated in the 

divergence zones (Figure 1). 

Table III. Paired t-test of cylindrical pellet concentrations in convergence and divergence zones, significant 
difference marked with an *. 
Date df T p I-tail P 

June 5, 2007 2 -1.8 0.21 0.11 
June 8, 2007 2 -0.11 0.92 0.46 
June 10, 2007 2 8.88 0.01 0.005* 
June 22, 2007 2 -1.16 0.36 0.18 
June 23, 2007 2 -1.13 0.38 0.19 
June 25, 2007 2 0.45 0.69 0.35 
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Figure 1: Concentration of cylindrical pellets (average/SE; n=3) in convergence and divergence zones of 
Langmuir circulation cells. Significant difference marked with an *. 
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Globular pellets were oval and slightly bulbous in shape. These pellets were 

larger in size and had a slightly less smooth peritrophic membrane than the cylindrical 

pellets. I am not certain what organism produced these pellets. Globular pellets were 

observed in both zones on all six sampling days. There was no significant difference in 

globular pellet concentration between zones but there was a significant difference by day 

(Table IV; zone, p= 0.52, day, p=0.004). 

Table IV. Two-way analysis of variance for globular fecal pellet concentrations with zone and day as main 
effects. 

Effect df MS F p 
Zone 1 0.07 0.47 0.52 
Day 5 0.40 4.53 0.004* 
Zone x Day 5 0.16 1.82 0.15 
Residual 24 0.09 
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The significant results of day on globular pellet concentration lead me to conduct 

paired t-test on concentrations in each zone on each day. Globular pellets were 

significantly more abundant in the convergence zones than in the divergence zones on 

June 10 (Table V), but were not significantly different in their abundance between zones 

on June 5, 8,22,23, or 25 (Table V). Albeit not significant, on June 25, pellets were 

more concentrated in the convergence zones and on the other four dates pellets were 

more concentrated in the divergence zones (Figure 2). On a given day, regardless of 

pellet shape, pellets were concentrating in one zone. On June 10 and 25 both forms of 

pellets were more concentrated in the convergence zones. Whereas on June 5, 8, 22 and 

23 both types of pellets were more concentrated in the divergence zones. 

Table V. Paired t-test ofglobular pellet concentrations in convergence and divergence zones. Significant 
difference marked with an *. 
Date df T p I-tail P 
June 5, 2007 2 -0.31 0.78 0.39 
June 8, 2007 2 -0.001 0.99 0.49 
June 10, 2007 2 3.21 0.09 0.04* 
June 22, 2007 2 -2.21 0.16 0.08 
June 23, 2007 2 -0.37 0.74 0.37 
June 25, 2007 2 0.12 0.91 0.46 
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Figure 2: Concentration of globular pellets (average/SE; n=3) in convergence and divergence zones of 
Langmuir circulation cells. Significant difference marked with an *. 
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Wind speed and mixed layer depth on each day is reported in Table VI. Wind 

speed and mixed layer depth do not appear to be affecting fecal pellet distribution. The 

winds were strong enough on all days to create Langmuir circulation cells. The mixed 

layer depth was generally very shallow, one meter or less on all days except June 8, 2007. 

Swell height observed during sampling and measured at NOAA buoy 46015 is reported 

in Table VII. The discrepancy between the two swell sizes is due to location. The 

NOAA buoy is 16 nautical miles offshore, and the swell is not obstructed. Whereas, I was 

sampling in an area of reduced fetch, in the lee ofPort Orford head. Swell height may 
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have had an impact on circulation. On June 10, when both forms of fecal pellet were 

found in significantly higher concentrations in the convergence zones swell height was 

observed to be 1.6 m and the NOAA buoy reported 2.4 m. This was the maximum swell 

height sampled in the study. On June 25, when both forms were in higher concentration 

in the convergence zone the swell height observed was 1m, and the buoy reported 1.4 m. 

Swell height on the four dates when pellets were in higher concentration in the 

divergence zones was observed to be between 0.3-1.3 m and the outer buoy reported 

swell heights of 0.82-1.6 m. Thus, pellets of both forms were in higher concentrations in 

divergence zones on four days when the swell height was relatively small, whereas, 

pellets of both forms were in higher concentrations in the convergence zones on two days 

when the swell was large. 

Table VI. Average wind speed and mixed layer depth by date.
 
Date Wind speed (m S 1) Mixed layer (m)
 

June 5 3.4 I
 
June 8 2.9 10
 
June 10 3.5 1
 
June 22 3.6 1
 
June 23 3.4 2
 
June 25 4.3 1
 

Table VII. Observed swell height and reported swell height by date.
 
Date Observed Swell Height (m) NOAA swell height (m)
 
June 5 0.3-0.6 
June 8 0.3-0.6 
June 10 1.6-2 
June 22 0.6-1 
June 23 1.3 
June 25 I 

1.6 
1.5 
2.4 
0.8 
1.5 
1.4 
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Discussion 

This study compares the concentration of cylindrical and globular fecal pellets in 

divergence and convergence zones of Langmuir circulation cells and tested the 

hypothesis that divergence zones would have a higher fecal pellet concentration than 

convergence zones. This hypothesis was based on Stommel's retention zone model, 

which reasoned that upwelling currents in divergence zones advects pellets upward 

counteracting their sinking and thus, retaining pellets in the mixed layer. In contrast, I 

hypothesized that there would be low fecal pellet concentrations in the convergence 

zones, as the downwelling jet should advect and accelerate the pellets downward, pushing 

pellets below the ten meter sample depth. 

It is important to note two factors in the design when examining this data. 1) All 

samples were collected in the morning. 2) All samples were collected in the lee ofPort 

Orford Head. Due to this timing and site of sampling, wind would have had limited time 

and a potentially weaker effect on the surface water sampled than in the open ocean. 

Wind was in significant force to achieve Langmuir Circulation, but these factors should 

be taken into consideration when examining the level of affect. 

Both forms of fecal pellets were in higher concentrations in the divergence zone 

on four of the six sample dates, albeit not significantly so. This pattern suggests that 

pellets were being retained in the divergence zone and the data supports Stommel's 

retention zone hypothesis that particles can be retained. Although current velocities and 

settling rates of pellets were not measured, results from other studies can be used to 
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evaluate pellet placement within a Langmuir cell. Upwelling current speeds in the 

divergence zones ofLangmuir cells are 0.8-1.5 cm S-lCWeller & Price, 1988) and are 

known to increase in strength with depth. Reported sinking rates ofcopepod fecal 

pellets are 0.006-0.25cm s -lCSmayda, 1971; Turner, 1977; Honjo & Roman, 1978). 

Therefore a pellet produced at the surface would be able to sink until it enters a depth 

where the upward current is strong enough to counteract the sinking rate, and then be 

held in this Stommel retention zone. The plankton tows made in this study were ten 

meters to the surface, which would pass through the predicted retention zone. These 

projected numbers of settling velocity and circulation velocity support the theory that a 

pellet could be retained. 

Both forms of pellets were found in higher concentrations in the convergence 

zone on June 10 Csignificantly) and June 25. Given the settling rates of fecal pellets and 

the downwelling speed in the convergence zone, the Stommel retention zone hypothesis 

suggests that pellets should not be concentrating in the convergence. When examining 

the environmental variables of wind speed, mixed layer depth and swell height, swell 

height appears, perhaps, to have affected the distribution of fecal pellets. On June 10, 

swell height was considerably larger and was running perpendicular to the circulation. 

Perhaps swell height has a cascade effect on Langmuir circulation. 

As swell moves through the surface water as a circular current, it may create 

turbulence. The larger the swell, the bigger the current and the more turbulence. On June 

10, when fecal pellets were concentrated in the convergence zone, the swell's circular 

current was flowing perpendicular to the helical current of the Langmuir circulation. The 
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swell's current crossing thorough the LC may have created more turbulence in the helical 

vortices ofLC. This added turbulence may then affect Stommel retention zones, either 

by shifting them in the vertical or horizontal plane or altogether disintegrating them. I 

suggest this hypothetical physical cascade would greatly affect particle entrainment and 

retention. 

Based on the results of this study and Stommel's retention zone hypothesis I think 

the hypothesis that fecal pellets should be in a higher concentration in the divergence 

zone is still accurate. The result that pellets were more often concentrated in divergence 

zones supports this hypothesis. However, the result of divergence concentration was not 

significant. The ability of this study to detect a difference of pellet concentration in zone 

may have been weakened by high variance or processing problems. Given the logistical 

restraints of this study, only three tows in each zone were collected on each day, which 

yielded a very high variance. In regard to processing problems; when examining the 

cylindrical pellet concentrations three data points were very low, which was unexpected. 

I recounted these samples and found again a low concentration and ruled out counting 

error. When looking at the globular pellets and larvae collected in these samples, the 

numbers seem to be a bit low, which may suggest that the net was not filtering properly. 

However, the variation in globular pellets and larvae from the normal level was far less 

than for the cylindrical pellets which makes me think damage occurred to cylindrical 

pellets in the transfer or processing of samples. These outliers create a high variation in 

the data set, which lowers the power of the study. On two sample days pellets were in 

higher concentrations in the convergence zone, which does not support the hypothesis. I 
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believe this concentration in the convergence to be due to large swell disrupting the 

stability of Langmuir circulation. 

In conclusion, this study was unable to detect a significant difference in fecal 

pellet concentrations in divergence and convergence zones ofLangmuir circulations; 

nonetheless, interesting patterns emerged that tend to support the hypothesis. Both pellet 

forms were most often found in higher concentrations in the divergence zones than the 

convergence zones. This pattern supports Stommel's retention zone hypothesis. The two 

dates on which pellets were concentrated in convergence zones rather than in the 

expected divergences I hypothesize to be from turbulence from swell displacing Stommel 

retention zones. 
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CHAPTER IV
 

CONCLUDING SUMMARY
 

In conclusion, the results of this investigation illustrate and provide evidence that 

Langmuir circulation has an effect on particles and organisms in the epilimnion. The data 

are consistent with and support Stommel's retention zone hypothesis that particles and or 

organisms will be retained within zones of the circulation based on the ratio of settling 

velocity or swimming velocity versus circulation velocity. Chapter I describes how 

zooplankton are distributed due to taxonomic, ontogentic and habitat need. The result 

that late stage meroplankton were concentrated in convergence zones and copepods were 

evenly distributed support the hypothesis that organisms utilize Langmuir circulation 

depending on these needs. Given that late stage larvae were concentrated in convergence 

zones ofLangmuir circulation either by behavior or entrained through physical processes 

or combination, suggests competent larvae are utilizing the pairing of maximum 

downwind drift in convergence zones and sea breeze to move shoreward. The results in 

Chapter II that fecal pellets are often concentrated in divergence zones further supports 

Stommel's model. The result that fecal pellets were significantly more concentrated in the 

convergence zone on sampling days that experienced a large swell lends to another set of 

curiosities to be explored. 
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APPENDIX A 

RAW DATA FROM NEUSTON TOWS 

Presented below are raw data from 2006 and 2007 Neuston Tows, Table I and Table II
 
respectively (Chapter II).
 

Table I & Table II:
 
Cell # include: LC= Langmuir circulation, #, C= Convergence, D=Divergence
 
Organism: genus and species per 100 m 3. Space in the grid indicates a change in date.
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Table I: Raw data from 2006 neuston tows. 

Cell # Unidentified VeliQer Polydora socialis Porcelain zoeae Porcelain MeQalopae 
LaC 7.1 0.0 0.0 0.8 
LaD 2.4 0.8 0.0 0.0 
LOC1 4.0 0.0 4.8 0.0 
LOD1 3.2 0.0 0.0 0.0 

L1C 40.6 85.2 25.7 0.0 
L1D 7.9 5.0 7.9 4.0 
L2C 107.7 13.5 38.0 4.0 
L2D 33.0 1.5 34.9 2.9 

L3C 32.2 3.3 5.9 0.0 
L3D 17.2 0.0 5.2 2.6 
L4C 1006.6 16.2 113.6 32.5 
L4D 200.8 0.0 77.2 15.4 

L5C 105.6 21.1 137.2 31.7 
L5D 23.0 6.7 21.1 1.0 

L6C 28.0 2.1 0.0 21.1 

L6D 0.8 3.0 12.8 0.0 

L7C 45.8 5.9 16.1 5.9 

L7D 15.5 2.7 29.2 8.2 

L8C 234.4 11.1 121.1 0.0 

L8D 63.6 14.4 16.1 2.5 

L9C 56.5 0.0 0.0 0.0 
L9D 4.9 0.0 0.0 0.0 
L10C 0.0 0.0 1.1 0.5 

L10D 0.6 0.0 0.6 0.0 
L12C 0.0 0.0 0.0 0.0 

L12D 0.0 0.0 0.0 1.0 

L13C 17.5 0.0 0.9 8.3 
L13D 1.0 0.2 0.0 5.1 
L14C 89.5 0.0 0.0 0.8 
L14D 71.2 0.0 0.0 6.3 
L15C 17.3 0.0 1.0 0.0 
L15D 4.3 0.0 0.3 0.6 
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Cell # Obelia spp. Amphipods a.glandula cyprid barnacle molts 
Pinnotheridae 
zoeae 

53.0 
28.5 

8.7 
4.0 

0.0 
2.0 
4.0 

34.9 

5.9 
0.0 
0.0 
0.0 

52.8 
7.7 
1.1 
0.8 
3.4 
0.0 
0.0 
0.0 

0.0 
0.0 
0.5 
0.0 
1.0 
0.0 

0.9 
0.2 

44.3 
0.0 
2.3 
0.3 

LOC 102.1 3.2 4.0 15.8 
LOD 22.2 0.8 1.6 9.5 
LOC1 69.7 14.3 2.4 100.5 
LOD1 3.2 5.5 0.0 40.4 

L1C 9.9 20.8 56.4 56.4 
L1D 26.7 17.8 5.9 36.6 
L2C 13.5 2.4 55.4 4.0 
L2D 8.7 9.2 1.5 4.4 

L3C 0.0 3.3 12.5 11.2 
L3D 0.9 7.7 6.9 17.2 

L4C 0.0 97.4 584.5 64.9 
L4D 0.0 30.9 15.4 108.1 

L5C 10.6 84.5 453.9 21.1 

L5D 1.9 6.7 139.2 1.9 

L6C 17.9 6.3 14.3 4.2 

L6D 1.5 6.0 9.0 3.0 
L7C 31.4 0.0 25.4 1.7 
L7D 11.0 0.9 5.5 1.8 
L8C 3.2 0.0 4.8 3.2 

L8D 1.7 3.4 76.3 0.0 

L9C 0.0 49.1 0.0 23.8 

L9D 0.0 17.2 1.6 3.3 

L10C 1.6 3.7 2.1 4.2 
L10D 0.6 4.3 2.5 0.0 
L12C 0.0 21.2 18.3 0.0 
L12D 0.0 18.3 1.0 0.0 

L13C 9.2 16.5 11.0 80.9 
L13D 1.0 24.1 2.4 12.2 
L14C 0.0 2.4 0.0 38.0 

L14D 0.8 17.2 17.2 15.7 
L15C 7.0 3.0 8.6 2.7 

L15D 0.0 1.8 2.1 0.9 
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Cell # Siphonophore Polyorchis spp. Chaetognath Podon Sabel/aria Acartia hudsonica 
LOC 25.3 2.4 0.8 317.5 0.8 52.3 
LOD 86.3 2.4 15.0 567.7 5.5 81.5 
LOC1 0.0 0.8 0.0 224.8 0.0 30.9 
LOD1 0.0 0.0 0.8 38.8 0.0 26.9 

L1C 14.9 5.0 11.9 1.0 20.8 82.2 

L1D 36.6 36.6 108.9 1.0 33.7 229.7 
L2C 4.0 2.4 0.0 4.8 0.0 199.5 
L2D 8.7 2.4 0.0 4.8 0.0 45.1 

L3C 5.3 2.6 4.6 2.6 0.7 54.6 

L3D 6.0 2.6 7.7 0.0 0.0 43.8 
L4C 64.9 0.0 64.9 0.0 16.2 552.0 

L4D 15.4 15.4 46.3 0.0 0.0 1297.7 

L5C 0.0 21.1 939.5 0.0 31.7 1942.4 
L5D 0.0 2.9 239.0 0.0 1.9 215.0 

L6C 0.0 1.6 15.8 0.0 0.5 74.9 

L6D 0.0 0.8 48.3 0.0 3.8 44.5 

L7C 0.0 1.7 33.9 0.0 2.5 119.6 
L7D 0.0 9.1 53.9 0.0 1.8 33.8 
L8C 4.0 97.4 0.0 0.0 0.0 44.3 

L8D 0.0 2.5 125.5 0.0 5.1 165.4 

L9C 0.0 0.8 0.0 0.8 0.0 55.7 
L9D 3.3 2.5 0.8 0.0 0.0 50.0 
L10C 0.5 3.2 7.4 0.0 0.0 11.1 
L10D 0.0 1.2 1.2 0.0 0.0 18.5 
L12C 0.0 0.0 1.0 0.0 0.0 37.7 
L12D 0.0 0.0 0.0 0.0 0.0 71.2 

L13C 0.9 1.8 40.4 0.0 0.0 122.3 
L13D 0.0 1.0 2.2 0.2 0.0 41.2 
L14C 0.8 0.0 0.0 0.0 0.0 78.4 
L14D 0.0 0.0 14.1 0.0 0.0 47.0 
L15C 0.0 1.0 5.7 0.0 0.0 80.2 
L15D 0.0 0.0 1.2 0.0 0.0 25.8 
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Cell # 
LaC 
LaD 
LOC1 
LOD1 

L1C 
L1D 
L2C 
L2D 

L3C 
L3D 
L4C 
L4D 

L5C 

L5D 
L6C 
L6D 
L7C 

L7D 
L8C 

L8D 

L9C 
L9D 

L10C 
L10D 

L12C 
L12D 

L13C 
L13D 
L14C 
L14D 
L15C 
L15D 

Centropages 
abdominalis 

15.0 

32.5 
3.2 
6:3 

14.9 
232.7 
148.8 
115.9 

34.8 

9.5 
1152.7 
463.4 

2280.2 
269.7 

1.1 

62.6 
100.9 
60.3 

220.9 
433.5 

100.7 
87.6 
11.1 

15.4 
56.0 
11.6 

250.9 
44.3 
61.0 

118.2 
47.9 
30.4 

Psuedocalnus mimus Pollicipes pagurus larvae 

0.0 0.0 9.5 
0.0 0.0 26.9 
0.0 0.0 0.0 
0.0 0.0 1.6 

0.0 0.0 3.0 
16.8 0.0 3.0 

20.6 0.0 0.0 
12.6 0.0 1.9 

9.9 0.0 1.3 

0.0 0.0 0.0 

97.4 0.0 0.0 
77.2 0.0 30.9 

52.8 0.0 0.0 
6.7 0.0 4.8 
0.0 11.1 0.0 

14.3 0.0 3.8 
0.0 29.7 0.0 

11.0 0.0 0.9 
0.0 0.0 0.0 

19.5 0.0 0.0 

0.0 0.0 0.0 
0.0 0.0 0.0 

0.0 0.0 0.0 
0.0 0.0 0.0 
0.0 0.0 0.0 
0.0 0.0 0.0 

2.8 0.0 0.0 

0.0 0.0 0.0 
0.0 0.0 0.8 

0.0 0.0 1.6 
1.7 0.0 0.7 

0.6 0.0 0.6 
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Table 2: Raw data from 2007 neuston tows 

cell # Insects Unidentified Veliaer Polydora socialis 
LC1C 0.1 0.1 0.0 
LC1D 0.3 0.0 0.1 
LC2C 2.2 0.0 0.0 
LC2D 0.4 0.0 0.1 
LC3C 0.9 0.0 0.0 
LC3D 0.4 0.0 0.0 

LC4C 0.0 0.0 0.0 
LC4D 0.2 0.0 0.0 
LC5C 0.0 0.0 0.0 
LC5D 2.8 0.0 0.0 
LC6C 0.1 0.0 0.0 
LC6D 0.5 0.0 0.0 

Porcelain 
zoeae 

0.1 
0.1 
0.2 
0.0 
0.1 
0.0 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

Porcelain 
Meagalopae 

0.4 
0.1 
0.3 
0.0 
0.0 
0.0 

0.5 
0.7 
0.3 

13.9 
0.0 
0.0 

cell # 
a.glandula 
cyprid barnacle molts 

Pinnotheridae 
zoeae Siphonophore Polyorchis Chaetognath 

LC1C 3.4 1.2 0.2 0.1 0.5 1.2 
LC1D 0.4 0.0 0.2 0.0 0.3 4.5 
LC2C 0.3 0.4 0.1 0.0 0.1 1.5 
LC2D 0.1 0.1 0.0 0.0 0.0 0.5 
LC3C 0.6 0.0 0.1 0.0 0.1 2.0 
LC3D 0.4 0.0 0.0 0.0 0.0 0.7 

LC4C 0.0 0.0 0.0 0.0 0.0 2.2 
LC4D 0.5 0.0 0.1 0.0 0.0 4.6 
LC5C 3.0 0.0 0.1 0.1 0.0 1.9 
LC5D 64.1 0.0 0.0 2.8 0.0 25.1 
LC6C 1.1 0.0 0.0 0.0 0.0 2.9 
LC6D 10.1 0.0 0.0 0.0 0.0 19.2 
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cell # Podon S{J. Sabel/aria 
Obelia 
S{J{J. Amphipods Acartia hudsonica 

Centropages 
abdominalis 

LC1C 0.0 0.1 1.3 4.6 20.5 4.0 
LC1D 0.0 0.3 0.1 2.5 3.9 3.8 
LC2C 0.0 0.1 0.4 0.9 4.0 1.2 
LC2D 0.0 0.1 0.0 5.3 14.4 2.3 
LC3C 0.0 0.1 0.2 0.3 5.4 1.0 
LC3D 0.0 0.0 1.3 0.7 6.1 1.1 

LC4C 0.0 0.0 0.3 0.0 0.0 0.0 
LC4D 0.1 0.0 0.6 0.0 0.0 0.0 
LC5C 0.2 0.0 0.1 0.5 0.0 0.0 
LC5D 0.0 0.0 30.6 19.5 0.0 0.0 
LC6C 0.0 0.0 0.0 0.0 0.0 0.0 
LC6D 0.0 0.0 0.0 0.5 0.0 0.0 

cell # Psuedocalnus mimus Unidentified fish eggs 

LC1C 0.0 2.6 
LC1D 0.0 3.6 
LC2C 0.0 8.2 
LC2D 0.0 3.5 
LC3C 0.0 5.8 
LC3D 0.0 6.2 

LC4C 0.0 10.3 
LC4D 0.0 22.1 
LC5C 0.0 10.6 
LC5D 0.0 111.4 
LC6C 0.0 17.3 
LC6D 0.0 142.6 
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APPENDIXB
 

FECAL PELLET RAW DATA FROM VERTICAL TOWS
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Table 1: Fecal pellet raw data from vertical tows: Cell # includes FP= fecal pellet cast #, 
C=Convergence, D=Divergence. Pellets per liter. 

Cell # Cylindrical Pellet Globular Pellet 
FP1C 4716.98 35849.06 
FP1D 4716.98 29716.98 
FP2C 4716.98 14308.18 
FP2D 6603.77 35691.82 
FP3C 5345.91 24528.30 
FP3D 6446.54 17924.53 
FP4C 4716.98 44811.32 
FP4D 471.70 23742.14 
FP5C 7547.17 110220.13 
FP5D 3459.12 47798.74 
FP6C 2515.72 24528.30 
FP6D 12421.96 108176.10 
FP7C 5503.14 66823.90 
FP7D 3459.12 34591.19 
FP8C 3301.89 133176.10 
FP8D 943.40 16823.90 
FP9C 3144.65 113522.01 
FP9D *157.23 11006.29 
FP10C 2358.49 13207.55 
FP10D 1572.33 15094.34 
FP11C 628.93 21698.11 
FP11D 2672.96 26415.09 
FP12C 314.47 6289.31 
FP12D 2358.49 7232.70 
FP13C 943.40 7389.94 
FP13D 1729.56 8805.03 
FP14C 2515.72 24056.60 
FP14D 2201.26 13993.71 
FP15C *157.23 4874.21 
FP15D 5031.45 22641.51 
FP16C 8490.57 58490.57 
FP16D *157.23 5188.68 
FP17C 3301.89 21069.18 
FP17D 3616.35 27987.42 
FP18C 4716.98 13522.01 
FP18D 8018.87 50314.47 
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