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Abstract

A fundamentals based monetary policy rule, which would be the
optimal monetary policy without commitment when private agents
have perfectly rational expectations, is unstable if in fact these agents
follow standard adaptive learning rules. This problem can be overcome
if private expectations are observed and suitably incorporated into the
policy maker’s optimal rule. These strong results extend to the case
in which there is simultaneous learning by the policy maker and the
private agents. Our findings show the importance of conditioning
policy appropriately, not just on fundamentals, but also directly on
observed household and firm expectations.
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1 Introduction

The formulation and performance of monetary policy rules has been analyzed
extensively in the recent literature, for recent surveys see e.g. (Clarida, Gali,
and Gertler 1999), (Woodford 1999) and (McCallum 1999). Much of the
recent analysis has been conducted using the “New Phillips curve” model,
also known as the optimizing IS-AS model, derived in a number of papers
and reviewed e.g. in (Clarida, Gali, and Gertler 1999) and (Woodford 1999).
This model gives a central role for private sector expectations of inflation
and future output.

The corresponding monetary policy literature includes both the study of
optimal policy, for specified objective functions, and analysis of the perfor-
mance of simple, not necessarily optimal rules, such as Taylor’s interest rate
feedback rule (Taylor 1993). Examination of optimal policy in turn can be
divided into the study of “time consistent” policy, under discretion, and pol-
icy in which the monetary authorities can commit to a rule that constrains
future policy. As is well known, under rational expectations there can be
gains, as measured by the policy maker’s objective function, when a binding
commitment to a rule is possible. However, it may not be considered cred-
ible for policy makers to commit to a rule from which there will be future
incentives to deviate. Optimal rules without commitment have the property
that the monetary authorities have no incentive to change policy even though
they have the discretion to do so.

While almost all of the literature has assessed the design of monetary
policy rules under rational expectations (RE), this may not be an innocuous
assumption. One major difficulty is that some policy rules can yield inde-
terminacy of equilibria, i.e. multiple RE solutions. This has been demon-
strated in (Bernanke and Woodford 1997), (Woodford 1999) and (Svensson
and Woodford 1999).

A second major problem is that these rules may not perform satisfactorily
if instead of having RE private agents follow plausible learning rules. Re-
cently, (Bullard and Mitra 2000) have shown that if agents follow adaptive
learning rules, then the stability of the Taylor-type rules could not be taken
for granted. An earlier paper by (Howitt 1992) showed the instability un-
der learning of interest rate pegging and related rules in both flexible price
and IS-LM type models. In his conclusions Howitt explicitly warned that
any analysis of monetary policy under RE should be supplemented with an
investigation of its stability under learning.



We take up this issue in the context of optimal policy rules without com-
mitment, and obtain some strong results.! We begin by showing that the
economy is unstable if the policy makers follow the optimal interest rate rule
formulated in terms of observed fundamental shocks and private agents fol-
low natural learning rules to form expectations of inflation and future output.
Small expectational errors by private agents become magnified by the pol-
icy, which assumes RE, and the cumulative process drives the economy away
from the rational expectations equilibrium (REE). This result can be viewed
as an extension of Howitt’s results to the New Phillips curve framework.

A central objective of the paper is to show how this problem can be
overcome. In particular, we seek a monetary policy which both is stable under
learning and implements optimal discretionary policy. The key to achieving
a stable optimal monetary policy is to formulate a rule that explicitly takes
account of private sector expectations and the economic structure. We obtain
a striking result. We show that under a suitably designed rule of this type,
the economy will invariably be stable under learning and will converge over
time to the REE corresponding to the optimal policy without commitment.
Furthermore, we show that such rules continue to be stable under learning
even if the policy maker also has to learn the true structural parameters
required to conduct optimal monetary policy under discretion.

In practice, monetary authorities appear to base their policy on a variety
of indicators that include consumer and business sentiments. For example,
Bank of England Inflation Reports, see (Bank of England 2001), directly
discuss private sector forecasts, while (Blinder 1998), pp. 60-61, poses the
question of whether Central Bankers should “follow the markets,” which
“sometimes stray far from fundamentals.”? From the strict RE viewpoint
such practices might seem puzzling since with a unique REE these expecta-
tions are functions of the observable fundamentals. Possible ways to explain
the practices of the policy maker include multiplicities of REE and infor-
mational asymmetries. This paper provides a different explanation, which
does not hinge on these factors. The possibility of small deviations from RE
leading to destabilizing fluctuations is enough to justify careful attention to
the expectations of private agents.

"Policy with a limited form of commitment possible is discussed in Section 4.3.2. We
leave for future research a general study of learning stability for optimal monetary policy
rules when full commitment is possible.

2(Hall 1984), p.146, explicitly proposed that the “Fed’s internal procedure” should
place some weight on “reliable outside forecasts.”



2 The Key Results

2.1 The Basic Model

We utilize the standard log-linear framework as developed in Section 2 of
(Clarida, Gali, and Gertler 1999). The structural model consists of two
equations:

2o = —p(is — Bymer1) + Byweer + g (1)

Tt = ATy + ﬁEtWt+1 + Uy, (2)

where z; is the “output gap” i.e. the difference between actual and poten-
tial output, m; is the inflation rate, i.e. the proportional rate of change in
the price level from ¢ — 1 to ¢ and ¢; is the nominal interest rate. All the
parameters in (1) and (2) are positive. 0 < 3 < 1 is the discount rate of the
representative firm and is therefore close to one. EtxtH and Enrtﬂ denote
private sector expectations of inflation and output gap next period. These
expectations may or may not be rational and we interpret this model as giv-
ing the temporary equilibrium of the economy, i.e. the period ¢ equilibrium
for given expectations and exogenous shocks. We will use the same notation
without the “~” to denote RE. In this section we assume RE. In Section 2.2
we discuss the interpretation of a temporary equilibrium outside an REE.

(1) is a dynamic “IS” curve which can be derived from the Euler equation
associated with the household’s savings decision. (2) is a “new Phillips”
curve which can be derived from optimal pricing decisions of monopolistically
competitive firms facing constraints on the frequency of future price changes.
The essence of the new Phillips curve is the forward-looking character of the
inflation expectations. Finally, ¢; and u; denote observable shocks following
first order autoregressive processes

gt = UGi—1 + Gt (3)

Up = pUs_1 + Uy, (4)

where 0 < |u| < 1,0 < |p| < 1 and g ~ id(0,02), 1 ~ iid(0,03). g
represents shocks to government purchases as well as shocks to potential



GDP. u,; represents any cost push shocks to marginal costs other than those
entering through ;.

It should be emphasized that the model (1) and (2) is derived by suit-
ably linearizing a nonlinear framework around a nonstochastic steady state.
Any analysis based on linearization must be interpreted as being local in a
neighborhood of the steady state. In particular, the random shocks must
be sufficiently small for the linearization to make sense. We also follow the
common practice of leaving hidden the government budget constraint and the
equation for the evolution of government debt. This is acceptable provided
fiscal policy appropriately accommodates the consequences of monetary pol-
icy for the government budget constraint.?

We now take up the standard formulation of optimal discretionary policy
under rational expectations, following (Clarida, Gali, and Gertler 1999). The
policy maker has a standard objective function defined in terms of the target
variables x; and m;:

min %Et {Zﬁz [(zi4s — ) + (T4 — )7 } ; (5)

where z allows for a possible deviation of socially optimal output from poten-
tial output and 7 is the target value for the inflation rate. (If desired, these
can be assumed to be zero.) « is the relative weight for output deviations,
and 3 is the discount rate. Thus the policy maker discounts the future at
the same rate as the private sector. We note that @ = 0 would correspond
to pure inflation targeting.

Optimal policy without commitment reduces to a sequence of static prob-
lems in which the nominal interest rate is chosen to deliver the values x; and
m; which minimize (1/2) [a(z; — Z)? + (7, — T)*]+F; subject to m, = Az, +F,
where F;, F; denote remainder terms that are treated as given under discre-
tionary policy. This leads to the first order condition

ANy —7) + oz, — ) =0, (6)

so that ; is set to satisfy (1), (2) and (6). An explicit form will be given
below.

3In general this is not an innocuous assumption, as discussed by (Leeper 1991) and
(Sims 1994). See (Woodford 1996) for a full treatment of the interrelation between fiscal
and monetary policy in a closely related model and (Woodford 1999) for the simplification
adopted in our paper.



To obtain an optimal interest rate rule under RE we show that there is a
solution of the form

T = a1 + diuy

T = Qo + dotiy.

Under RE we have Eim1 = ay + dipug, Erxi = ag + dopuy. Inserting into
(1), (2) and (6) yields
AAT +az) - a
ar = 2,01 = 2
a(l—0)+ A a(l = Bp) + A

(7)

. __)\ﬁal—)\fr—aa’c T A (8)
i M+a) 7 Nta(l-bp)
(1 —p)A+app .

i = 1/}0 + wuut + wggtv where "‘Po = ai, wu = ]71/19 =

pla(l — Bp) + N
(9)

Under this optimal policy rule the interest rate is adjusted to neutralize any
shock to the IS curve. Price shocks present the policy makers with a trade-
off since they affect both inflation and output in the same direction. It can
be shown that the policy makers face a trade-off between the variabilities of
output and inflation and their optimal choice depends on « as is reflected in
the coefficient 1,,. We will call (9) the fundamentals form of the RE-optimal
policy rule.

This derivation assumes both RE and that the REE takes the specified
form. It is known that this interest rate rule leads to indeterminacy, i.e. a
multiplicity of REE, see e.g. (Woodford 1999), Section 5.1 and (Svensson
and Woodford 1999), Section 2.4. To see this point, and for our subsequent
analysis of stability under learning, we require the reduced form, obtained
by combining this interest rate rule (9) with (1) and (2):

T\ 0 B+Ap A E’th 1= A,
(2) = (o ) (2 ) (i )+ (2200 )
(10)

It is convenient to discuss the issues of determinacy and stability under learn-
ing in a more general framework.



2.2 Methodology

The reduced form (10) is a special case of the following forward-looking

bivariate model
< it ) = Q+B( Eimi > + Cuy, (11)

Ly tLe41

where B is 2 x 2 and @,C are 2 x 1. It is well-known that, under RE,
this model is determinate if both eigenvalues of B lie inside the unit circle.
The unique stationary REE then gives the endogenous variables as a linear
function of the exogenous shock.

We now relax the assumption that private agents have rational expec-
tations and consider the interpretation of the temporary equilibrium in the
model. If agents optimize using subjective (but possibly nonrational) prob-
ability distributions over future variables, optimal behavior is characterized
by first-order necessary conditions that can be written as a sequence of Eu-
ler equations involving subjective expectations over the entire future. The
Euler equation for the current period is assumed to be the behavioral rule
giving the current decision as a function of the expected state next period.*
To complete the description of the agents’ behavior we must supplement
this Euler equation with a rule for forecasting the required state variables
next period. The parameters of the forecast functions are updated using a
standard adaptive learning rule such as least squares.

This interpretation means that agents behave in a boundedly rational but,
in our view, reasonable way. Our approach has the advantage that it leads
to a dynamical system that is formulated entirely in terms of the linearized
reduced form model and standard updating equations for the parameters of
the forecast functions.

Least squares and related learning dynamics have been widely studied and
shown to converge to the usually employed REE in many standard models.
This is true of the stationary solutions of, for example, the Cagan model of
inflation, the Sargent-Wallace IS-LM-PC model, the Samuelson overlapping
generations model and the real business cycle model. Recent overviews of
the literature are provided e.g. in (Evans and Honkapohja 1999) and (Evans
and Honkapohja 2001). In stochastic frameworks least squares and closely
related learning rules are the most widely employed formulation, though

4This is appropriate only when preferences are time-separable as they are here.



other learning algorithms have occasionally been considered. In this paper
we follow the literature and focus on least squares learning, though we do
briefly demonstrate the robustness of our results to some alternative learning
schemes.

Returning to (11), the private agents are assumed to have forecast func-
tions®

Etﬂ'H-l
- =A K 12
( Bty ) ¢+ Ky, ( )

where the 2 x 1 parameter vectors

_ Q1,1 - kl,t
At = ( sy ) and Kt = ( kzt ) (13)

are updated over time according to least squares. We consider the stability
under learning of some rational expectations solution (4, K), i.e. whether
the estimated parameters (A;, K;) converge to (A4, K) over time. It is known
for learning problems of this type that, under fairly general assumptions, con-
vergence to REE obtains if and only if certain stability conditions, known as
E-stability conditions, are satisfied. In this section we obtain the E-stability
results and defer the explicit treatment of least squares learning to the next
section.

The E-stability conditions are developed as follows. For given values of
the parameters of the forecast functions, called the perceived law of motion,
one computes the resulting actual law of motion implied by the structure.
E-stability is then determined by a differential equation in notional time in
which the parameters adjust in the direction of the actual law of motion
parameter values. Formally, we proceed as follows.

Inserting into (11) the perceived law of motion

Etﬁt+1 a1 kl
. =A+ K here A = K= 14
(EtxH—l) + Kwu;, where (ag)’ (kg)’ (14)
gives

(7” ) = Q+ BA+ (BK + C)u,

Tt

SBecause the private sector is populated by a large number of “small” agents, it is
natural to assume that strategic behavior in expectations formation is absent and agents
simply try to learn the equilibrium processes for the endogenous variables they need to
forecast.



which leads to the actual law of motion, i.e. the implied forecast functions

( Eimin ) =Q + BA+ p(BK + C)uy.
Eirin

We have obtained a mapping
T(A,K) = (Q + BA, p(BK + C)) (15)

from parameters of the perceived law of motion to the implied actual law
of motion. An RE solution of the form (14) is a fixed point (A, K) of this
mapping. E-stability of (A4, K) is then defined as local asymptotic stability
of the differential equation

%(A,K):T(A,K)—(A,K) (16)
at (A, K), where 7 denotes notional time.

For this framework E-stability conditions are readily obtained by comput-
ing the derivative of T'(A, K) — (A, K). For the A component the condition
is that the real parts of the eigenvalues my, my of B must be less than one.
(Equivalently |B —I| > 0 and tr(B — I) < 0). For the K component the
derivative for the map is pB — I. Thus the second set of E-stability con-
ditions is that the real parts of pm;, i = 1,2, are both less than one. It
follows, for the reduced form (11), that determinacy implies E-stability, but
the converse does not hold.® In particular, for the white noise case p = 0
E-stability simply reduces to the first set of conditions that the eigenvalues
of B have real parts less than one.

While in models of the form (11) determinacy is a stricter requirement
than E-stability, we caution the reader that this is not a general result. For
example, consider the Muth-type model y, = A+ BEt_lyt + v, where v, is a
white noise vector. Provided I — B is nonsingular, this model has a unique
stationary REE y; = (I — B) '.A+wv;. The model is thus always determinate,
but the REE is E-stable only if all eigenvalues of B have real parts less than
one. In general, the relationship between determinacy and E-stability can be

6Section 2.5 gives an example of an E-stable equilibrium which is not determinate.
Taylor-type interest rate rules based on forecasts of inflation and output gap can also
lead to cases of indeterminacy in which the “fundamental solution” (A, K) is nevertheless
E-stable, see (Bullard and Mitra 2000). Moreover, the non-fundamental REE are not
E-stable, see (Honkapohja and Mitra 2001).



highly complex, depending on the presence of lagged endogenous variables
and the structure of the information set. This point is discussed at length in
(Evans and Honkapohja 2001) for a wide variety of models.

2.3 Instability of Fundamentals-Based Policy Rules

We now apply this analysis to the fundamentals form of the RE optimal
interest rate rule, which yielded the reduced form (10). We focus on the issue
of stability under learning. Throughout this section we retain the assumption
that the policy maker knows the true structure (1), (2) and the parameter
values of the economy.

Before proceeding we note that if agents do not have RE then this policy
rule need not satisfy the first-order condition for discretionary optimal policy,
given by (6). We are therefore examining what happens out of equilibrium
if policy makers follow a fundamentals based interest rate rule (9), derived
under the (mistaken) assumption that the economy is in the corresponding
REE. A reasonable requirement for a good policy rule is that if private agents
make small expectational errors, the economy will converge to the posited
REE as agents correct these errors over time through a learning rule. As we
shall see, this issue turns out to be a major concern.

Using the reduced form (10) and the general methodology of Section 2.2,
we have that the derivative matrix for the vector of intercepts A in (16) is

B_I:<ﬁ+w—1 )\).
%) 0

Since |B — I| < 0, we have E-instability. (Using the results of Section 2.2 it is
also immediate that we have indeterminacy.) In the appendix we show that
E-instability implies instability of the economy under least squares learning;:

Proposition 1 The REE of the economy m; = a1 +dius, £; = as+douy under
the fundamentals form of the RE-optimal monetary policy rule (9) and least
squares learning by private agents is unstable for all parameter values, i.e.
the economy converges to the REE with probability zero.

We have stated this result in terms of least squares learning, but the
instability also holds under alternative learning rules, as we will show below
in Section 4.1. The intuition for the result is straightforward. If Ao + 3 > 1,
a deviation of E’th above its RE value leads, through the IS curve, to

10



an increase in x; and through the Phillips curve to a higher m;. Over time
this leads to upward revisions of both E’th and E’txt+1. Nothing in the
interest rate rule offsets this tendency, so that the economy would move
cumulatively away from the REE.” We remark that the estimated coefficients
(with probability one) do not converge to any constant parameter vector, at
least within the region for which the linearization is valid.

Under the fundamental based policy rule the economy will follow unstable
trajectories with agents making systematic errors in forecasting despite their
efforts to improve their forecast functions. Moreover, policy makers will
find that their first-order condition for discretionary optimum is persistently
failing to hold. Presumably, both agents and policy makers will change their
behavior in the face of these divergent paths. We do not pursue this issue
further here. Our point is simply that the policy (9), which is consistent
with discretionary optimal policy under RE, fails to be robust to small initial
deviations from RE.

In fact, Proposition 1 is a special case of the next proposition which states
that all interest rate rules that depend linearly only on the fundamentals are
unstable:

Proposition 2 Consider a policy rule of the form i, = ng +n,u; +1,9: and
an associated REFE of the form m = aq + dyus + n1ge, ¢ = ag + dotty + Nogy.
For all values of the structural parameters, the REE is unstable under least
squares learning by private agents.

The proof of this result follows from the observation that the coefficient ma-
trix of the expectations is the same as in the reduced form (10) for optimal
policy (the coefficients of the policy rule only affect the constant and distur-
bance terms). E-stability depends only on this matrix. A predecessor of this
result is (Howitt 1992) who showed instability under learning of interest rate
pegging in several monetary models.

This strong instability result raises the question of whether there are
alternative monetary policy rules that are robust to least squares learning
and implement the optimal policy without commitment.

2.4 An Expectations Based Optimal Rule

The instability problem of the preceding section resulted from the implicit
assumption by the policy maker that private agents have perfectly rational

TUsing (10), a more refined intuition can be developed for the case Ap + 8 < 1.
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expectations at every point in time. If there is a chance that they are not
fully rational it would seem natural instead to base policy in part directly on
expectations of private agents. In this section we assume that these expec-
tations are observable and consider a policy rule that includes a dependence
on them.®

The relevant policy rule is obtained by solving for #; from the structural
equations (1), (2) and the optimality condition (6).” We obtain

i = 0o+ 6ﬂEt7Tt+1 + 5zEt$t+1 + 5ggt + Oy, (17)

where the coefficients are

S0 = —(N+a) ' (AT 4 aa),
bx = 1+ (N +a) o tAs

bz p

8 = ¢

b = (N+a) ot

By construction, the rule (17) implements optimal discretionary policy in
every period and for all values of private expectations. It thus achieves this
policy even out of equilibrium. We will refer to (17) as the expectations based
optimal rule.

The reduced form is

Tt ﬁa()\Q + Oé)_l 0 EAt’ﬂ'H_l
= 2 -1 ~ (18)
Tt —ﬁ)\()\ + O!) 0 Etxt—i—l
—pdoA 1 — @by, A
() (R )
—pbo — b
Since the eigenvalues of the B matrix are 0 and 0 < Ba(\* +a)~! < 1, we
have determinacy and, therefore, also E-stability under this interest rate rule.

In the appendix we show that this implies convergence under least squares
learning:

8 Alternatively, if the policy maker knows the learning rules of private agents, it can
infer the expectations from other observed data.

9We assume that the policy maker does not make active use of the learning behavior
on the part of agents. Strategic manipulation by the policy maker of agents’ learning rules
merits investigation in future research.
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Proposition 3 For all parameter values the REE of the economy under
the expectations based optimal rule is determinate and is stable under least
squares learning by private agents, i.e. the economy converges almost surely
to the REE that corresponds to the optimal monetary policy without commit-
ment.'"

A partial intuition for this result is that, for example, an increase in
Etﬂt+1 leads to an increase in 7; which more than offsets the direct effect
of EAt’ﬂ—t_A'_l on z; since 6 > 1. In economic terms the real interest rate is
increased which reduces the output gap. Thus our policy rule satisfies the
“Taylor principle.” Likewise, the expectations based rule tightens policy in
the face of higher E’txt+1. The rule (17) with the specified parameter values
succeeds in guiding the expectations of private agents and the economy to
the optimal REE.

We have stressed that (17) implements the first-order condition (6) for
all possible values of private expectations. One might ask if there are other
interest rate rules with this property. Consider interest rate rules of the form

it = wq + szt + Cﬂ.ﬂ't + met$t+1 + wwEtWt+1 + Waelt + Wy Uy (19)

Clearly, a continuum of rules of this form exist which satisfy the first-order
condition (6). For example, set w; = 6;, i = =, 7, g,u, wo = 8o + (o with (;,
i = x,m,0 chosen to ensure that (6) is met. In particular, one can choose
any (; so that ¢y + (@ + (,m is a multiple of a(x; — ) + A(m, — 7). (Ob-
viously, such rules would have to examined for determinacy and E-stability.)
In comparison to (17), these rules have the disadvantage that they require
additional information, namely current output and inflation data.'!

One might also ask whether one could set w, = w; = 0 and still implement
(6). The following argument shows that this is not possible. Note first that
(2) and (6) determine z; and m; uniquely as linear functions of Emt+1 and
ug. Substituting these and (19) with w, = w, = 0 into (1) it is seen that the
resulting equation cannot hold for all possible expectations and exogenous
shocks. Thus any rule that implements (6) for all values of expectations must

0Tn fact, formally the convergence of learning is even global, i.e. it obtains for all initial
parameter estimates. Since the economic model is based on a local linearization we do not
emphasize global stability in the proposition.

1 (McCallum 1999), p.1517, argues that policies depending on current x; and 7, are not
operational, because it is unrealistic to assume that policy makers have this information.
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depend directly on those expectations. Our rule (17) is the simplest rule of
this class, since it does not depend on x; or 7.

We remark that the determinacy result under the rule (17) appears to
contrast sharply with the findings of (Bernanke and Woodford 1997) who
also considered policies that depend on private expectations. The key to
our determinacy and stability results is that the policy rule (17) uses the
economic structure and all available information. (Svensson and Woodford
1999), section 4.2, also show that certain “hybrid” interest rate rules that
depend on private expectations can achieve determinacy.

Of course, formulating the optimal expectations based rule requires knowl-
edge of the structural parameters. There are two points to be made. First,
if the policy makers follow the rule (17) with parameters deviating from the
specified values by small amounts, the economy will converge over time to an
REE that deviates from the optimum by small amounts. Second, the policy
maker could try to learn the true values of the structural parameters. This
raises the issue of whether simultaneous learning by private agents and the
policy maker can still lead the economy to converge to the optimal REE. We
take this up in Section 3. Before doing so, we briefly consider an alternative
interest rate rule that aims to implement optimal discretionary policy.

2.5 An Alternative Expectations Based Rule

Under RE the optimal monetary policy without commitment can be char-
acterized in various ways as emphasized by (Woodford 1999). In particular,
(Clarida, Gali, and Gertler 1999) point out that the optimal interest rate can
be written as
. 1—p)A 1—pA
Zt:—ﬂdl—l—(l—i—ﬂ

VEi T + 9071975- (20)
pap pagp

This form suggests an alternative expectations based policy rule in which
rational expectations FE;m;.1 is replaced by observed private expectations
E’mt+1. We note that such a rule makes use of some rational expectations
assumptions to eliminate expectations of the output gap. It is of interest to
know the properties of this rule.

14



The reduced form is now
( T ) _ (ﬁ—(l_P)AQ/POZ A ) ( E;ﬂtﬂ )
Tt —(1=p)A/pa 1 Bz
—a; (1 — p)X*/pax 1
+( “au(1— p)N/pa > + < 0 )Ut.
It can be verified that the REE is E-stable, so that optimal discretionary
policy would also be obtained asymptotically under this expectations based
rule. This stability result shows the importance of strong positive feedback
from private inflation expectations to interest rates.

Despite the stability result this alternative rule is less appealing than
our proposed rule (17). First, the optimal REE under the alternative rule
is not necessarily determinate. Indeterminacy invariably arises for values of
p close to zero. This reflects the very large reaction of the interest rate to
inflation expectations, see (20). Second, the large coefficient for small |p| is
troubling for another reason: if p is not known exactly and replaced by an
estimate, then small estimation errors cause large deviations from optimal

REE. Finally, in contrast to (17) the policy rule (20) does not implement the
optimal discretionary policy out of equilibrium.

3 Learning by the Policy Maker

We now consider an extension of the analysis in which the key structural
parameter values are unknown. The policy maker is assumed to know the
structure of the economy but must estimate the parameter values using ob-
served data.'? In order to make the estimation problem more realistic we
introduce unobserved shocks to the model (1), (2).

The IS and Phillips curves thus take the form

v, = —(is — Eimi1) + Bt + ge + €ay (21)

Ty = )\.’Et + ﬁEtWt+1 + us + €ty (22)

where now x¢, m, e, and e, are not observable at time ¢. g, u; are observ-
able at ¢t and z;, m; are observed with a lag. e;;, er; are independent white

12Thus in contrast to (Sargent 1999) our policy maker estimates a correctly specified
structural model.
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noise and gy, U, €44, €xs are exogenous and mutually independent. The pri-
vate expectations are assumed to be observable. We also assume that the
discount factor (3, a parameter shared by private agents and the policy maker,
is known. «, 7, Z in the objective function are, of course, taken to be known.
However, the key structural parameters ¢ and A must be estimated.

To complete the description of the extended model we must specify the
behavior of the policy maker. The objective function (5) remains as before,
but with our current informational assumptions the first order condition be-
comes

MNEm —7) + a(Exy — ) = 0. (23)

It can be verified that with the unobserved shocks the RE solution takes
the form

T = a1+ dius + Negy + eqy

Ty = Qg+ douy + egy,

where the parameter values are given in (7) and (8). The fundamentals form
of the RE-optimal rule remains unchanged, i.e. it takes the form (9) and the
expectations based rule continues to be of the form (17).

We now turn to the formulation of learning and provide explicit equations
for the updating rules. The private agents’ forecast functions have the same
form as before (12), where the parameters are estimated by least squares.
At any given time, the agents run regressions using the available data and
therefore they update their parameter estimates each period as new data
become available. In line with the literature on least squares learning we
give the equations in recursive form.!?

1
()

Let
_ [ 1t _ [ 92t _
El,t - ( kl,t ) 752,t - ( kQ,t ) 7Ut =

so that the forecasts can be written as Fym 1 = ¢1,U; and Expq = &y, Us.
Recall that a;;, ki, @ = 1,2, are the parameters of the forecast functions

13The general approach used here was introduced by (Marcet and Sargent 1989). See
(Evans and Honkapohja 1999) for a recent survey and (Evans and Honkapohja 2001) for
a detailed treatment.
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defined in (13). Under recursive least squares (RLS) learning the parameter
vectors are updated according to the formulae

§10 = &1t t_le},}thtﬂ(WH - §I1,t_1Utf2)
o0 = oy +t 'Ry U o(m1 — &y \Up o)
Ry: = Rup 1+t ' (UpaU,_y — Ryyg ).

This recursion requires starting values for the parameters at time t = 0 and
it is well-known that for appropriate starting values RLS is equivalent to
the standard least squares formula. In the formulation above the parameter
estimates at time ¢ use data through period ¢t — 1.} The time ¢ forecasts
do, however, use the current observation of the exogenous variable u;. Note
that the procedure used by private agents estimates the parameters of the
reduced form, which is all that is required for forecasting purposes.

The policy maker uses RLS to estimate the structural parameters o, A
and p, which are required for setting optimal monetary policy. Let

Yig = Tt — Eixiq — gy
Yot = Tt — BE T 1 — uy
Ty = th — Et7rt+1-

Because r; depends directly only on the variables ¢g; and u;, and x; depends
only on g;, u; and e, , consistent estimates of ¢ and A can be obtained by
regressions of y; + on 7, and ya; on x4, respectively.! Thus the policy maker
uses least squares to estimate

th = —QO(Zt — Etﬂt+1) + 81;775 and
Yot AT; + €er .

If required, a consistent estimate of p can of course be obtained by a regression
of u; on w;_1.16

4This is common practice in the literature. Including current data would create a
simultaneity complication that is convenient to avoid and would not alter the central
results.

151f ez, and er; were correlated then an instrumental variable estimator would be
needed to obtain a consistent estimator of A.

16 An estimate of p is needed for the RE-optimal policy but not for the expectations
based optimal policy.
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In recursive form this becomes!'”

oy = Qo+t R (Y + @ a7Ti1)
Ry = Rypq+ til(Til —Ryi 1)

A o= Mo+ t ' Ry i1 (Yoo — Aeo12-1)
R,y = Rpi1+ t_l(ﬁf,l — Ry11)

pr = Pt tilR;jqutfl(ut — Pr1Ui1)
Ryt = Ruy1+t"(uf — Ruya).

It remains to specify the monetary policy rules. The fundamentals form
of the RE-optimal rule based on estimated parameters takes the form

i = Qi+ 'J)t’lLt + gbt_lgt, (24)
M\ +az (L= )t apg
where 4y, — ~ATFAD) g, = LN+ apd,
a(l = B)+ A Ola(l = pB) + A

The expectations based optimal policy rule with estimated structural param-
eters is

i = go,t + 5w,tEtWt+1 + Sz,tEtxt—i—l + 8g,tgt + 8u,tut7 (25)

where the coefficients are

boe = —(& +a) G (i + az),
by = 1+ (X 4 a) o008

ot = @7

Sg,t = Sbt_l

o ~9 s
6u,t = ()\t + Oé)ilwt 1)\15.

Given parameter estimates and forecasts, the temporary equilibrium is de-
termined by (21), (22) and the policy rule (24) or (25), respectively.
In the appendix we demonstrate the following result:

'"The formulations for ¢, and e vary slightly from least squares since we have intro-
duced an additional lag in the equations for R, ; and R, ;. This is convenient for expressing
the system in standard form as a stochastic recursive algorithm. Note that the regression
of y1,; on ¢ gives an estimate of —¢. This explains the plus in front of ¢, ; in the first
recursion below.
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Proposition 4 Suppose that both the policy maker and the private agents are
learning with parameter estimates updated according to the RLS algorithms
specified above. Then

(1) If policy makers follow the fundamentals form of the RE-optimal rule
(24), the REE is unstable for all parameter values.

(i) If policy makers follow the expectations based optimal rule (25) then,
for all parameter values, the estimates (¢, j\t) converge locally to (¢, \), the
expectations of private agents converge locally to RE values, and the economy
converges locally to the REE that corresponds to the optimal monetary policy
without commitment.

The notion of local convergence has several precise interpretations, as
discussed in the appendix. In particular convergence is not guaranteed un-
less the policy maker has some a priori information concerning the possible
values of the structural parameters. However, Proposition 4 shows that the
fundamental contrast between the instability result in part (i) and the sta-
bility result in part (ii) continues to hold when the policy maker is learning
the structure of the economy.

Our results illustrate the potential feasibility of optimal monetary policy
when private expectations are observable and the rule is formulated to react
to these expectations. Even when the structural parameters are unknown to
policy makers and agents are not endowed with rational expectations, the
economy is (locally) stable when both parties follow natural procedures to
estimate the key parameters.

4 Extensions

In this section we take up several extensions. First we show that our central
results extend to variations in the learning rules used by private agents. Next
we examine the robustness of our results to observation errors. Finally, we
consider a number of variations to the model or the formulation of monetary
policy. For simplicity, in this section we assume the policy maker knows the
true parameter values.

4.1 Alternative Learning Rules

Although the literature on adaptive learning in stochastic models has focused
on least squares learning, a number of alternatives have also been considered.
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We here show that our key results are not limited to the least squares frame-
work.'®

We first consider learning based on SG (stochastic gradient) algorithms.
These have been proposed by, among others, (Sargent 1993) and (Kuan and
White 1994). This algorithm attempts to minimize the expected sum of
squared forecast errors. In the current context, private agents would update
parameters according to

fl,t = 51,1571 + t_lUt—2(7Tt—1 - fll,t—lUt—Q)
§or = Eou+t Uia(we1 — &y 1Uia).

This algorithm is simpler than RLS in that these updating equations are
not dependent on the matrix of second moments of the regressor U;. For
regression set-ups with fixed parameters and standard assumptions, the SG
algorithm will provide consistent estimates of the parameters, though it does
not possess the optimality properties of least squares. It does, however, have
the advantage of being simpler and faster to compute than least squares.

The analysis in (Evans and Honkapohja 1998) can be applied here. It is
shown there that the convergence conditions for SG learning for a class of
models is given by the E-stability conditions that also govern convergence of
least squares learning. (The framework of (Evans and Honkapohja 1998) has
expectations of current rather than future variables. However, because here
we consider RE solutions of an analogous form, the same argument can be
applied.) It follows that both our instability and stability results carry over
to SG learning.

As a second example, we consider a simple misspecified learning rule.
Suppose that private agents ignore the dependence of 7; and x; on u; and
forecast each variable using simple averages. Formulating this recursively we
have E’th =ay; and Etxt+1 = ag; where

a1t = Q14—+ t_l(ﬂt—1 —a14-1),
gt = Qo941+ fl(iﬁtq —ag4-1).

As in Section 3 this can be set up as a stochastic recursive algorithm. It is
straightforward to show that the system remains unstable under the funda-
mentals based monetary policy rule and that the economy is stable under

181t can be shown that the stability results in Propositions 3 and 4 also hold for other
stability criteria under learning that have been proposed in the literature. For example,
the REE under the expectations based policy rule is both strongly and iteratively E-stable,
see e.g. (Evans and Honkapohja 2001), Chapters 9 and 15 for these concepts.
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the expectations based policy rule. In the latter case private expectations
(@14, az¢) will converge to (aq, az) and the economy converges to a “restricted
perceptions equilibrium.”!” In this equilibrium private sector expectations
are equal to the unconditional mathematical expectations of 7m; and x;. How-
ever, they are not fully rational (when p # 0) since they ignore the depen-
dence on u; and are therefore not equal to the conditional mathematical
expectations. Nevertheless, the expectations based policy rule continues to
provide the optimal monetary policy without commitment, given the way
agents form their expectations.

4.2 Observation Errors

We next consider the issue of observation errors, starting with the case in
which the exogenous variables g;, u; are subject to measurement error. We
use the set-up (21)-(22), but assume that policy makers know the values of
the structural parameter. For simplicity we restrict attention to the case
where ¢g; and u; are serially uncorrelated. Suppose that the policy maker
observes g; and u;, where

Gi = g+ e, where g ~ 4id(0,0?)

)

Uy = up+ vy, where vy ~ iid(O,Uf)).

Provided the variances are known, the policy maker faces a signal extraction
problem with a straightforward solution. The linear projection of g; on g; is
given by

2

o
~71 __ ~ _ g
P[gt | gt] - ngt7 Where Cg - O_g + O_g
Analogously, the linear projection of wu; is
o2
Plu; | 4] = ¢, ut, where (, = —"—.
[ t| t] Cu ty W (u Ui‘i‘ag

The first order condition for optimal discretionary policy is again given
by (23). Under optimal policy the REE takes the form

T = a1+ blgt + c1& + dlut + flvt + )\em,t + Ent
Ty = Qg+ bag + cogy + douy + fovy + eqy,

9This is the terminology we use in (Evans and Honkapohja 2001).
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where

ap = Q1,02 = Qs
b= A1=C)b=1-¢,
1 = _)\Cgch = _Cg

di = 1—(a+N)"IN(,,dy = —(a+ X)),
fl = dl _— 1, f2 = dQ.

We note that, under optimal discretionary policy, x; and 7; now respond to
g: as well as u; shocks because of the measurement error. The analysis of
learning is, however, virtually unchanged and the key results carry through
as before: the economy is unstable under the RE optimal policy rule and
stable under the expectations based optimal rule.?’

Another potentially important complication arises in connection with the
expectations based rule if private sector expectations are measured with er-
ror. Clearly the optimality properties of our rule would be undermined if
these errors are sizeable, but we can show that our policy rule is robust to
small measurement errors in private expectations. Thus suppose that the
expectations based policy rule (17) is modified to be

it = 0o+ (57r(Et7Tt+1 + wry) + 61(Et37t+1 + Wy ) + 040: + Oy,

where wr; and w,; denote white noise measurement errors with finite vari-
ances. The parameter values of the policy rule are unchanged. For private
agents we continue to assume perceived laws of motion of the form (14).
For the basic model (1)-(2), this policy rule leads to the reduced form (18)
augmented by additive linear terms in wg; and wy;. The mapping from
the perceived to the actual law of motion is thus the same as for Section
2.4. Therefore this expectations based policy rule remains stable, with pri-
vate agents converging to rational expectations. This result holds even if the
observation errors w,; and w,, are large, though with large observation er-
rors the resulting equilibrium would be far from the discretionary optimum.
However, it is easily seen that if w,; and w,; have small variances then
the economy under the expectations based rule is close to the discretionary
optimum.

The preceding paragraph assumed that the policy makers know the true
structural parameters. If instead they estimate structural parameters using

20Tn this set-up private sector forecasts depend on g, as well as uy.
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RLS as in Section 3 there is the additional complication that, while ), re-
mains consistent, the estimator ¢, becomes inconsistent due to measurement
error in the regressor r,. However, if w,; has a small variance then the in-
consistency will be small and the equilibrium will be approximately optimal
asymptotically. Alternatively, policy makers could obtain a consistent esti-
mate of ¢ using recursive instrumental variables with lagged measured r; as
instrument.

In summary, although observation errors of the fundamental shocks or
private expectations introduce complications for our proposed policy rule,
we have seen that these difficulties can be largely overcome. The case of sub-
stantial measurement errors in private expectations is sufficiently important
to warrant a separate treatment.

4.3 Other Directions
4.3.1 Output Inertia

A number of variations of the new Phillips curve model have been taken up in
the policy literature, including endogenous inflation and output inertia. We
consider briefly the more straightforward case of output persistence due to
costs of adjustment. As shown in (Clarida, Gali, and Gertler 1999), Section
6, with output persistence the IS curve becomes

= —p(it — Et”tﬂ) +0xq + (1 — Q)Etxt+1 + g1, (26)
where 0 < 6 < 1. The corresponding expectations based policy rule is then
’it = 60 + (57|-Et71't+1 + (51(1 — Q)Etl‘t+1 + 90_193)15_1 + 6ggt + 5uut, (27)

where the parameters 6; for i = 0,7, z,g,u are the same as in (17). We
restrict attention to the case p = 0, as do (Clarida, Gali, and Gertler 1999).
In this case the private sector forecasts under rational expectations are ap-
propriate constants.

Under our rule (27) the reduced form is

A3 -
. = (N 4a) (M7 +ax) — - f)\z Emi

T = ()\2 + 03)71)\()\7_1' + Ozf) + EAt7Tt+1 + uy.

a+ N2
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Assuming now that agents form their forecast E’th as the average of past
inflation rates, it is easily verified that forecasts converge to the REE cor-
responding to the optimal policy without commitment. Thus output per-
sistence presents no difficulties. The case of inflation persistence is more
complicated and is therefore omitted.

4.3.2 Policy Under Limited Commitment

Our discussion of optimal policies has been under the assumption that the
policy maker does not have commitment power. The ability to commit to a
given rule raises several additional issues, as discussed Section 4 of (Clarida,
Gali, and Gertler 1999). For brevity we assume here that £ = 0 = 7, so that
the classic inflationary bias issue does not arise. Nevertheless, commitment
can still result in gains over the discretionary equilibrium.

(Clarida, Gali, and Gertler 1999), Section 4.2.1 argue that a simple family
of rules yielding an REE of the form

Ty = WUt

can dominate the optimum without commitment. (Note that withz =0=7
the optimal REE without commitment also has this form.) Suppose that
policy makers have limited commitment power in that they are able only to
commit to policies that take this form. The optimal policy with commitment
in this class is formally identical to the model without commitment when the
relative weight on output « is replaced by a smaller value o = a(1 — fp). It
is thus apparent that our instability and stability results can be applied for
this family of rules with limited commitment.

Optimal policy under full commitment power does not generally have
this form, as emphasized by (Woodford 1999). The general analysis of issues
raised in this paper for monetary policy with full commitment will require a
separate study.

4.3.3 Rules Based on Inflation and Output Data

A natural question to ask is whether it is possible to devise monetary policy
rules that are based on inflation and output data, rather than on observed
private expectations, and that are stable under learning and lead to the op-
timal policy without commitment. That is, can one side-step the apparent
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need to observe private expectations in order to implement the optimal dis-
cretionary policy rule? There are two separate issues, which we take up in
turn.

First, is it possible using observed current data to infer the values of
private expectations and insert them into (17) to obtain an optimal discre-
tionary policy for all values of private expectations? The answer to this is
clearly negative since in Section 2.4 we showed that implementing optimal
discretionary policy requires the interest rate to depend on private expecta-
tions and w, g; even if it also depends on x;, ;. The source of the difficulty
arises from the simultaneity implied by using observations on these variables
to deduce private expectations while setting 7; as a function of these private
expectations. Further practical difficulties with inferring expectations from
other data are that the values of structural parameters may be unknown and
that there may be unobserved shocks as in (21)-(22).

We do not wish to overstate this particular argument. With additional
auxiliary assumptions it may be possible to deduce the values of private
expectations from the history of data. For example, if it were known that all
agents form expectations by following the least squares learning rules that
we have analyzed, then it would be straightforward to use this information
to infer E’th and E’tsctﬂ and implement (17). Such a policy would be
entirely in the spirit of this paper. But whether such an inference is possible
is a delicate matter that depends on details of the model, the information
structure and auxiliary assumptions. It would appear preferable to obtain
direct observations on expectations.

Another question is whether judicious use of the rational expectations
assumption can be used to substitute observations of actual inflation and
output gap for expected inflation and expected output gap in the optimal
interest rate rule. Such a rule would not implement the optimal discretionary
policy outside equilibrium, but the economy under the rule might possibly
converge to the REE with optimal discretionary policy.

We consider two possibilities within the context of the basic model of
Section 2.1. Under rational expectations and optimal policy we have m; =
a, + diu; and x; = as + dowy. From Eymy = a; + dipuy and Eyxyyq =
Gy +dapuy. it follows that By = a1 +p(m—ay) and Eyxyyy = ag+p(a;—az).
Using these expressions to replace EAt’ﬂ—t+1 and E’txtH in the expectations
based rule (17) suggests the policy

?:t = (56 + (57rP7Tt + 6zp$t + 6ggt + 6uut7 (28)
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where the values of §;,7 = 7, x,g,u are as in equation (17) and & is an
appropriate constant. Alternatively one could start with the fundamentals
based rule (9) and use the relationship u; = d; ' (7, —a@;) to obtain the policy
rule

=Y+ (o ANL = p) +p) T+ g, (29)

where 1), is an appropriate constant.

Will these rules be stable under least-squares learning by private agents?
It is easily established that stability is not guaranteed. For the case p = 0
the rule (28) reduces to i; = 8+ 6,9: + 6uus. But we have already established
in Section 2.3 that any policy that depends linearly only on the fundamental
shocks cannot be E-stable and hence is unstable under least squares learning.
Using continuity of eigenvalues, it follows that the instability result holds for
all nonzero |p| sufficiently small. A similar argument applies to the rule (29)
for /o and |p| sufficiently small.

The rules (28) and (29) are particular cases of rules based on actual
inflation and output gap data. There are a number of simple interest rate
rules along such lines that do not explicitly aim for optimal policy. (Bullard
and Mitra 2000) consider various general classes of such rules and derive
conditions on policy rule parameter values that yield stability under learning.
Another class of rules is based on controlling the money stock, and one
could consider the stability under learning of the REE for monetary feedback
rules. See Part III of (Evans and Honkapohja 2001) for examples of the
latter. These examples do not exhaust the list of policy rules that have
been proposed in the recent literature. We emphasize that it is important to
analyze, for any proposed policy rule, whether the RE equilibrium of interest
is robust to expectational errors, i.e. is stable under learning.

5 Conclusions

The central message of the paper is both simple and fundamental. First,
optimal monetary policy should not assume perfectly rational expectations
on the part of private agents: Even if the initial deviations from perfect
rationality are small, the economy will diverge when the fundamentals form
of the RE-optimal policy rule is followed.

Second, the instability problem can be overcome if the set of conditioning
variables is augmented to include observed private expectations. We have
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shown how to use the economic structure to devise an expectations based
optimal policy rule. Under this interest rate rule policy makers implement
optimal discretionary policy in each period and the economy converges over
time to the corresponding REE.

Our stability results hold even when the policy maker is learning the
required values of the structural parameters at the same time that private
agents are following adaptive learning rules. The propositions have been
demonstrated both under the standard assumption that private expectations
are revised in accordance with least squares learning and under some other
natural learning algorithms.

The analysis has been conducted under the assumption that accurate data
on private expectations are available. This allows us to present sharp and
powerful results. Appropriately conditioning policy on private expectations
gives due weight to the role of these expectations in determining the dynamics
of the economy, which the assumption of perfect RE suppresses. Obtaining
accurate data on private expectations should therefore be a high priority for
monetary policy makers. Utilizing the appropriate form of dependence of
policy on private expectations is also crucial, since not all rules that depend
on private forecasts lead to stability under learning.

Appendix

In this appendix we give the proof of Proposition 4 and comment on the
modifications for the proofs for Propositions 1 and 3. Consider the case of
the expectations based policy rule (25). Combining this equation with the
IS curve (21) and the private agent forecast rules (12) we obtain the law of
motion for x; under learning:

Ty = —9095;1(G2,t + koguy) — 9095;1915
A — /\2 — N < — —
—@7 (N, Fa)T! (Atﬁ(alyt + ki) — M(ug + ) — ozx)
+ags + ko gur + g + €g4,

which is of the form

Ty = CC(@t? )‘t7 El,t7 62,15; Uty Gty Cx,ty eﬂ',t)'

Similarly, using also the PC curve (22) and the definitions of r;,y;, and yo,
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we can obtain

T = T Pry Ay 10 €a.3 s Gy Cat )
re = 1(Py, 5‘t7£1,t7£2,t; Ut, Gty €ayts Ert)
vie = Yi(y, j‘tv 51,157 52,1&; Ui, i, €ty Ext)
Y20 = Y2(¢1, j\ta&,tafz,t; Uty G, Ex,ts €rr,t)-

Define the parameter vector

9; = (@t: S‘tv gll,tv 5,2,t7 Rz,t; Rﬂ',t7 VeC(RU,t))

and the state vector

X = (Un Ut—1, Ut—2, Jt—1, €x,t—1, €7r,t71)-

The recursive equations for the parameter estimates can then be written in
the form

975 = et_1 + t_lH(et—lv Xt):

so that theorems on the convergence of stochastic recursive algorithms can
be applied, see e.g. part II of (Evans and Honkapohja 2001). These results
state that, under appropriate regularity conditions, convergence of these al-
gorithms is governed by the stability of the associated ordinary differential
equation (ODE)

% = h(#) where h(6) = ltlim EH(0, X}).

For the case of the expectations based optimal policy one can compute
for the policy maker’s parameter estimates

d¢ R
d—f = R,'Er, 1(0)*(¢ — @),
dR,

ar = ETt,1(€)2 — Rr

d\ .
i R 'Ex_1(0)*(\ = ))
dR,

ar = El'tfl(g)Q - Rq;,
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where

:(0) = (P, 5\»§1>§2: P; Uty Gt, €zt eﬂ,t)
and

z:(0) = x(o, 5\7517527@ Uty G, €ty err,t)-

For the private agents’ parameter estimates we get

d¢ - /
d_Tl = Ry (EU_U/_,)\
o ( as ) e A Bay -7 - oz + ( 2 )
kap N ta (Bky+1)p w2f
_ / a ?
ot i, ) (2]

dg _ /
d_7'2 = R;'(EU._2U/_,)

! ( as ) _ P A Bar—7— N oz n < 0 )
kap N ta (Bk1+1)p ka(p—1)

dR ,
d—TU = EU, ,U!_,— Ry.

It can be verified that this system has a unique equilibrium point 6* at which
()AD = 5‘ = )‘761 = gl = (C_Ll? ];;1),762 = 52 = (627 ];:2)/7
R, = Er, (0" R, = Ex;_ 1(0")*, Ry = EU, _»U]_,.

It can be shown that local stability is governed by the following “small”
ODE

e

dr AR
d\ .
i A— A



g, — )\ _(p(ﬁl( az >_ o A ﬁal—ﬁ—xilaa’c +( az >
dr kap 3’ +a (Bk1+1)p kap

Bay a1

G, ) - (0)]
d€y o1 a _9095_1;\ Bar—7— A oz ( 0 )
i () 12+a< i+ ) T\ k-1 )

Clearly the subsystem in ((,\) is stable with » — ¢, A — A. Hence local
stability of the REE is determined by the ODE

&__ 22 (ﬁal—ﬁ—AlaE>+( Bay )_(m)
dr — XN +a (Bk1 +1)p (Bky + 1)p ko

ag, A Bay — 7 — X 'az [ a2

dr )\2 + « (ﬁ]ﬁ + 1)p kQ ’
These equations can be restacked as a system that is identical to the general
E-stability equation (16) when

A (s o o a
—— (AT + aZ) + ==PFa1  p=—=(1+ Bk)
= A ta M+ta A ta
T(4 K) ( L (A + 02— ABa)  —psie (14 Bky) )

A +a

which is the 7" -map (15) corresponding to the reduced form (18) in Section
2.4, and which was shown to be asymptotically stable.

The standard results from the learning literature can be now applied.
The regularity conditions on the function H(¢, X;), and bounded moment
conditions for the exogenous innovations, required for the local convergence
results in Chapter 6 of (Evans and Honkapohja 2001), are easily seen to be
satisfied. Above we saw that the equilibrium of the large ODE #* is locally
asymptotically stable. Hence the basic local convergence theorems apply.
There are various senses of local probabilistic convergence. For example,
almost sure convergence obtains if the algorithm is augmented to have a
projection facility constraining estimates to a neighborhood of the REE.
For details see Chapter 6 of (Evans and Honkapohja 2001) or (Evans and
Honkapohja 1999). This proves part (ii) of Proposition 4.
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The proof of part (i) of Proposition 4 follows a similar sequence of steps,
but with the alternative policy rule to obtain law of motion for x¢, 7, 74, Y14
and yo . For this rule the parameter vector §; must be augmented to include
p, and R, ;. The stability properties of the associated ODE can again be
shown to depend on the stability properties of the E-stability differential
equation. The latter is locally unstable, as shown in Section 2.3, and the
nonconvergence results found in Chapter 6 of (Evans and Honkapohja 2001)
or (Evans and Honkapohja 1999) can be applied. These results state that 6,
converges to 0§ (or to any other point) with probability zero.

Turning to Propositions 1 and 3 the parameter vector ; is now

6:5 = (£I1,t7£/2,tvveC(RU,t))-
For the expectation based rule the associated ODE is

d¢,

el R;! EUt 2U/ )

{ s (a0, )+ (e, ) - (8)]

dE - ! A ﬁa - T — Aila‘i‘ a
d_: = R, (EU,_»U/_,) [—m ( l(ﬁkl +1)p ) - ( kz >]

dRy

e = EU,_xU,_, — Ry.

It can be seen that for this system the equilibrium point

(07) = (&), &5, vec(EU,2U;_,))

is globally asymptotically stable. It can be verified that the assumptions are
satisfied for the global stability result in Chapter 6 of (Evans and Honkapohja
2001), which should be consulted for technical details. It follows that 8, — 6*
with probability one, proving Proposition 3. For the fundamentals form of
the RE-optimal rule we obtain a differential equation system in (Uff; , Ufff , dfTU ),
which is locally unstable at 8*. Thus 6, — 6" with probability zero, estab-
lishing Proposition 1.
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