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Abstract

A striking implication of the replacement of adaptive expectations
by Rational Expectations was the “Lucas Critique,” which showed
that expectation parameters, and endogenous variable dynamics, de-
pend on policy parameters. We consider this issue from the van-
tage point of bounded rationality, where for transparency we model
bounded rationality by means of simple adaptive expectations. We
show that for a range of processes, monetary policy remains subject
to the Lucas critique. However, there are also regimes in which the
expectation parameter is locally invariant and the Lucas critique does
not apply.
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1 Introduction

The adaptive expectations hypothesis was introduced by Cagan (1956) and
Friedman (1957) as a plausible and empirically meaningful approach to mod-
eling expectations of future variables in a world of uncertainty. Their appar-
ent empirical success led to widespread utilization of the adaptive expecta-
tions hypothesis before it was ultimately swept away by the rational expec-
tation revolution, initiated by Muth (1961) and advanced by Lucas (1976)
and Sargent and Wallace (1975). Rational expectations has the great ad-
vantage of providing optimal expectations; under the standard of optimality,
adaptive expectations suffers by comparison and should be rejected.

One of the most salient implications of Rational Expectations is the cri-
tique of traditional policy making presented in Lucas (1976). The traditional
theory of economic policy is characterized as treating the time series process
followed by the economy as fixed and invariant with respect to exogenous
changes in policy. Under rational expectations, however, the forecast or ex-
pectation rule will be affected by policy changes and, if the economy is in
turn affected by expectations, these will alter the time series process fol-
lowed by the economy. Lucas provided examples of this phenomenon based
on prominent macroeconomic models.

Our objective here is to reconsider the Lucas critique in the context of
adaptive expectations. The starting point of our argument is Muth (1960).
In that paper Muth showed that adaptive expectations, with an appropriate
adaptation parameter, are fully rational if the variable being forecasted fol-
lows an exogenous IMA(1,1) stochastic process, i.e. if the first difference of
the variable is a first-order moving average process. Rational expectations,
however, assumes that the true process generating the data is known, an
assumption that many feel to be implausibly strong. Recently Evans and
Honkapohja (1993,2001) and Sargent (1999) have argued that adaptive ex-
pectations may be a reasonable, if not fully rational, forecast method when
the true process is unknown.

We consider a simple expectations augmented Phillips curve model in
which the monetary policy rule follows an unknown regime switching process.
In a world in which the true data generating process is complex, economic
agents can be expected to use simple underparameterized representations of
the process to make their forecasts. By appropriately tuning the free pa-
rameters of the forecast rule, they can obtain the best forecast rule within
this class. That is, an appropriate bounded rationality assumption is that



agents, in the terminology of Sargent (1999, Ch. 6) have “optimal mis-
specified beliefs.” We choose Cagan-Friedman adaptive expectations for our
underparameterized class of expectations because of their simplicity. Using
this model, we are able to demonstrate vividly the scope for the Lucas cri-
tique to operate in a setting of bounded rationality. These findings suggest
that the Lucas critique may play an important role under more generalized
classes of underparameterized expectation functions.

Our central results are as follows. Even in the special case in which expec-
tations do not affect realized inflation, so that inflation is exogenous, changes
in the economic policy process may induce changes in the forecast rule and
therefore in the stochastic process followed by other economic variables. That
is, the Lucas critique has a range of validity even when expectations are not
rational, but formed adaptively. The reason is that the optimal choice of
the adaptive expectations parameter may depend on the stochastic process
followed by policy. However, this is not always the case. For some parameter
settings the optimal choice of the adaptive expectation parameter is to set it
for maximal filtering. When this is the case, small changes in policy param-
eters have no affect on the expectation function and the Lucas critique does
not apply.

When expectations have a nonzero effect on inflation, some new features
emerge. We show how the size of the region in which the Lucas critique
applies can be expanded as a consequence of feedback between agents’ choices
of learning rules. Further, the Nash equilibrium choice of v may differ from
the socially optimal setting. This arises because the feedback induces a
forecast externality.!

Section 2 presents the model, analysis is carried out in Sections 3 and 4,
and Section 5 concludes.

2 Model

2.1 Economic Structure

We consider a simple macroeconomic model, inspired by Lucas (1973) and
Fischer (1977), in which aggregate output is affected by unanticipated price

!Througout this paper we follow Lucas (1976) and treat policy as a stochastic process
set once and for all by the government. The recent book by Sargent (1999), which discusses
some of the issues treated here, emphasizes an adaptive approach to economic policy.



level changes. Let aggregate supply be specified as follows:

@ = alp: — py), (1)

where ¢; and p; denote aggregate output and the aggregate price level in
period ¢, and pf indicates private agents’ expectation of p; formed in period t—
1. Equation (1) is, of course, the simplest form of the standard expectations
augmented Phillips curve. Aggregate demand is given by

QG = My — Pt + Ny, (2)

where m; denotes the nominal money stock in period ¢, and 7, represents an
exogenous white noise process with variance Var(n).

Finally, the monetary authority determines the money stock according to
the following policy rule:

My = Pi—1 + My, (3)

where p, is a regime switching process defined as follows:

Y

| py_y with probability 1 — ¢
e = vy with probability &

where 0 < ¢ < 1 and v; is an independently and identically distributed
process with an arbitrary distribution having mean v and variance Var(v).
Thus, apart from the random shocks, the money supply fully accommodates
any changes to the previous period’s price level. This form of the policy rule
is chosen in order to present most simply the central ideas of the paper.
The model may be reexpressed in terms of inflation rates. Let the inflation
rate be denoted by m, = p; — p;—1, and let 7§ denote inflation expectations
formed in period ¢t — 1, i.e., 7§ = pf — p;—;. Combining (1), (2) and (3), we

have .
oy + fy + 1

1+« (4)

We remark that the structure (4) arises in other economic models. An
important example is the Muth (1961) “cobweb model” of an isolated market.
Demand for output ¢; depends negatively on price p;, with inverse demand
curve given by p; = x; — bg; for some exogenous process x;. Supply depends
positively on expected price, ¢ = cpf, where p} denotes the price at ¢ expected
by agents in ¢t — 1. If the exogenous component of demand follows the above
regime switching process z; = pu, + 71, then we obtain the reduced form

T =
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pr = —beps + p, +m,. This has the same form as (4) except that now there is
a negative feedback from expected prices. The analysis of this paper applies
equally well to this set-up. A special case of interest is if b = 0 so that
demand follows an exogenous stochastic process, as would be appropriate in
an open economy or for a monopolist with infinitely elastic demand. This
leads to the zero feedback case analyzed in Section 3.

2.2 Expectation Formation

We turn now to the problem of how agents form inflation forecasts. Assume
for convenience that at time t — 1 the whole history of data {m}/_' _ is
available. Let (3,_; = 7§ denote the forecast of 7, made at time ¢t—1. If agents
attempt to minimize the Mean Square Error of one-step ahead forecasts, then

the problem is to choose 3, ; to minimize
MSE = E(m; — B,_,)

The standard rational expectations forecasting procedure assumes full knowl-
edge of the true process generating 7, and the form of the optimal forecasting
rule would be closely linked to that of the true process. We instead consider
the problem of forecasting m; when the forecaster does not know the true
data-generating process.

In contrast to the rational expectations procedure, we assume that the
forecaster might misspecify the true process by using a forecast rule that is
too simple to make fully-rational forecasts possible. To make our analysis
transparent, the class of forecast rules we consider is a mild extension of the
venerable adaptive expectations class introduced by Friedman and Cagan.
In particular, we restrict attention to forecasts derived from the following
one-parameter class:

By =7> (1 =7)'m_i, where 0 <y < 1. (5)
i=0

In the case in which v = 0, we interpret this sum as

T
By = lim T7'> m . (6)
=0

T—o0

Existence of the limit is shown below. For 0 < « < 1 this class of forecasts is
called exponential smoothing, and for v = 0 it reduces to the sample mean.



The forecasts (5) and (6) can be represented recursively by

By = Bi1 + 7T — Bia),

where {v,},2, is a nonstochastic gain sequence. For v, = 7, where 0 < v <1,
we have

By =B 1 +v(m— B 1) (7)

This is a fized gain rule, corresponding to (5), and gives the classic Cagan-
Friedman adaptive expectations formula. For v, = 1/t we obtain

By =01+ t_l(ﬁt =B 1), (8)

which corresponds to (6), i.e., the sample average, where for convenience we
now treat the system as starting at t = 0. This is known as a decreasing gain
rule. Note also that this can be thought of as least squares learning when
is modeled as following an i.i.d. process with a fixed but unknown mean.

Intuitively, the optimal choice of the gain parameter v depends on the
relative importance of tracking versus filtering the observed data. Tracking
indicates the responsiveness of the forecast rule to a time-varying conditional
mean, while filtering refers to the ability of the forecast rule to eliminate
data-induced noise in the forecasts. A high value of 7 increases tracking, but
sacrifices filtering. The choice v = 0 represents maximal filtering with no
tracking.

2.3 Equilibrium

We consider Nash equilibria of the model, in which all agents select a common
value of v that minimizes MSE. In particular, v is a Nash equilibrium if it
minimizes M SFE for each agent, given the inflation process that arises when
all other agents in the economy choose 7.

The equilibrium path of inflation expectations is determined as follows.
If v > 0, then inflation expectations satisfy 7 = (3, _;, where 3, is formed
using the exponential smoothing class (5). For the choice v = 0, combine
(4), (8) and 7§ = B, ; to obtain

By =01+ t_lg(ﬂt + 1 = Bi_1); (9)

where 6 = (1 + «)~!. This set-up fits the standard Robbins-Monroe formu-
lation for stochastic recursive algorithms. Applying these stochastic approx-
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imation results,? it can be shown that, for all initial 3,, with probability one
B, converges under (9) to the unique equilibrium of the associated ordinary
differential equation % = 0(E(u, + n,) — 3). Since E(u, + n,) = 7, we have
B, — v under (9) with probability one. In view of (6), it follows that 5, = v
with probability one.

3 Zero Feedback Case: Theoretical Results

We begin by considering the case of a = 0, in which realized inflation is un-
affected by inflation expectations. This eliminates feedback between agents’
expectation formation decisions, allowing closed-form solutions for the Nash
equilibrium to be obtained. The case of @ > 0 is analyzed in the following
section.

Given a = 0, the inflation process is

T = [y + 1. (10)
Since Cov(n,, B,—,) = 0 and Em; = Ef3,_,, we see that M SE is given by
MSE = Var(n:) — 2Cov(u,, B,_,) + Var(B,). (11)
In order to compute MSFE for the case 0 < v < 1, we need the asymp-
(

totic moments of the stationary process implied by (7) and (10). These are

computed in the following lemma.?

Lemma 1. For the process defined by (7) and (10), we have

Covlu B, 1) = Tt —Var(v), (12)

L+(1=9)(1—
T—(1-)(-

-7

£)
. Var(y)> . (13)

Var(8,) = QL <Var(n) + )

2See Ljung (1977) or Ch. 6 of Evans and Honkapohja (2001). Note that under least
squares learning, v, = 1/t satisfies the assumptions (i) v, > 0 is a nonincreasing sequence,

with (ii) Yo;2, v, = oo and (iil) Y ;o) 77 < o0
3Proofs are found in the appendix.



Using (11), (12) and (13), the MSE when 0 < v < 1 is given by

v Var(n) v 2—35—7(1—5)}‘

2—yVar(v) 2—7v e+v(1—¢)

(14)
This leads to the following necessary first-order condition for the optimal
choice v*:

MSE = Var(pu, +n,) + Var(v) {

2 Var(n)
(2—7v*)2Var(v)

—2e¥(y*) =0, (15)

where 23 24(1— )
—3e—2v(1—¢
U(y) = . 16
LR PR T CR= 1o
Necessary and sufficient conditions for nonzero v* are given in the following
lemma.

Lemma 2. v* € (0,1) if and only if the following condition holds:
2

€< =—. (17)
Var(n)
Var(v) +3
In this case, v* is given implicitly by:
€2—-3—-2v*(1—-¢)) Var(n) (18)

(e+v*(1—¢)2  Var(v)

Now consider the MSE if v = 0. Since # = 1, we have, with probability
one, that
By = Em = E(u, +n) = v.
Hence when v = 0, the M SFE is given by MSE = Var(u, +n,), i.e. by the
limiting M SE under (5) as v — 0. We have arrived at the following result:*

Theorem 1. The MSE is minimized by v* = 0 when (17) fails to hold, and
by the value v* € (0,1) given by (18) if (17) is satisfied.

4We have excluded from consideration the choice v < 0. However, we note that a value
v < 0 cannot be optimal, since from (7) and (10) it follows that 3, would then follow an
explosive process in which Var(f,) — oo as t — oco.



Observe from (17) that when ¢ takes on a high value, associated with
frequent switches in policy, agents select v* = 0 in equilibrium. In this case,
no attempt is made to learn about policy. Because policy changes frequently,
policy shifts are tantamount to noise, and agents opt to filter noise out of their
expectations by placing zero weight on past inflation observations. When
the value of € is low, in contrast, switches are less frequent, and agents find
it beneficial to track the time-varying conditional mean of policy by setting
~v* > 0. Thus, characteristics of the policy rule feed back on the agents’ choice
of learning rule, based on the relative benefits of filtering versus tracking.

Note further that the upper bound of allowable ¢ in (17) becomes smaller
as Var(n) grows relative to Var(v). Higher Var(n) reflects an increase in
background noise, which increases the attractiveness of filtering.

The theorem demonstrates that for a range of €, a decline in € leads agents
to select higher values of v*. This relationship does not hold for all € values,
however. From (18) the following corollary is immediate.

Corollary 1. v* — 0 as ¢ — 0.

Intuitively, as policy switches become very infrequent, the return to track-
ing them becomes small, and agents prefer to choose small values of v* in
order to filter out noise. Full filtering emerges in the limit. It follows that
the relationship between the persistence of policy and optimal tracking is
nonmonotonic: as € rises from zero, tracking first rises, then falls.

We close this section by considering the implications for the Lucas Cri-

tique in the context of adaptive expectations. We have seen that when agents
underparameterize the forecast rule by using adaptive expectations with an
optimally chosen adaption parameter v*, there are two regimes depending
on the underlying exogenous stochastic process. Following Lucas (1976) we
can consider the effect of exogenous changes in economic policy leading to
changes in the m; process.
Corollary 2. Suppose € < 2/(% +3). Then changes in Var(n), Var(v)
or € lead to changes in the Nash equilibrium forecast rule and the Lucas
critique applies. However, if € > 2/(% + 3) then for sufficiently small
changes in Var(n), Var(v) or e, the equilibrium rule remains v* = 0 so that
the forecast rule is not subject to the Lucas critique.

Corollary 2 shows that, depending on the other parameters, changes in
parameters of the policy rule may or may not induce changes in the forecast
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rule. This result demonstrates that the Lucas critique may have a range
of applicability within a setting of bounded rationality. More broadly, our
findings reveal that the Lucas critique is not fundamentally tied to ratio-
nal expectations. Once agents are allowed to vary the parameters of their
learning rules in a purposeful way, the Lucas critique becomes salient even if
rational expectations is impossible to acquire. The importance of the critique
is then related to the degree of sensitivity of agents’ parameter choices to the
economic environment.

4 General Case

4.1 Feedbacks, Tracking and Inflation Persistence

We turn now to the general case, where @ > 0 is considered. When « is pos-
itive, agents’ choice of learning rule affects the inflation process, generating
a feedback to the choice of learning rule. The complications introduced by
this feedback make it difficult to obtain full analytical results, and thus we
limit our discussion to a local existence proof and to numerical examples for
a range of parameters.

To define the Nash equilibrium we must now distinguish between the gain
parameter 4 chosen by the representative agent and the value v chosen by
all other agents. For v,% € (0, 1] the system is thus defined by

m = (1—-6)8,_1+0(u, +v:), where 0 =1/(1 + a)

By = ym+ 1 —7)B8

By = gm+ (1 —9)B,
where ﬁt is the forecast at ¢ of the representative agent and 3, is the forecast
of all other agents. For the case v = 0 or 4 = 0, 3, or (3, is instead given

by the mean of m; as in (6). The representative agent attempts to minimize
MSE(v,%) = E(n; — 3,_;)? and a Nash equilibrium ~* is defined by

* in MSE(~*.4).
7' = arg min SE(v*,%)

As shown in the appendix, the theoretical results of the previous section
carry over to the case of a > 0 sufficiently small. We have:

10
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Figure 1: v*(¢) for o = 0,1/4,2/3

Theorem 2. If ¢ < 2/(%%2 + 3) then for all a > 0 sufficiently small

there exists a Nash equilibrium with v* € (0,1). If ¢ < 2/(%%2 + 3) then

for all a > 0 sufficiently small there exists a Nash equilibrium wzth ~v* = 0.

We remark that Theorem 2 also applies to the Muth “cobweb” model, de-
scribed at the end of Section 2.1, with the condition “a > 0 sufficiently small”
replaced by “b > 0 sufficiently small.” Figure 1 depicts the relationship be-
tween ~v* and ¢ for three values of a, where Var(n) = 0.1 and Var(v) = 0.2
are specified. The upper curve shows the values of v* for « = 2/3, the middle
curve corresponds to a = 1/4 and the lower curve gives the values of v* for
the zero feedback case & = 0. The nonmonotonicity derived in the preceding
section may be noted, as well as the existence of both v* > 0 and v* = 0
regimes in each case. Furthermore, higher values of « lead to greater track-
ing for each . Feedbacks between learning rules thus serve to increase the
attractiveness of tracking policy switches. Observe that as « rises, the range
of values for which the Lucas critique fails to apply, in the sense of Corollary
2, becomes smaller.

11



Table 1: Autocorrelations of Simulated Inflation data.

a=0 a=1/4 a=2/3

e=0.1 10.60 0.70 0.84
e=03 047 0.57 0.75
e=05 035 0.42 0.59

Increased tracking has the added effect of introducing greater persistence
into the inflation process. This is shown in Table 1, which reports first or-
der autocorrelation coefficients for simulated inflation data using the Nash
equilibrium learning parameter.” The a = 0 column indicates the autocorre-
lation introduced by the policy switching process itself, in the absence of any
learning effects. These coefficients would be the same for the other a values
if agents selected v = 0. However, positive choices of v* imply added infla-
tion persistence. For € = 0.1, increasing « to 0.25 leads the autocorrelation
coefficient to rise by 10 percentage points, based on the rise in tracking by
agents. This effect leads to a further rise of 14 percentage points when « is
increased to 0.67. Results are similar for the other € levels.

4.2 Learning Externalities

We close our examination by comparing the Nash equilibrium choices v* to
the values that would be selected by a social planner who sought to minimize
MSE. Tt can be verified that in the case with feedback MSE/6? is given by
the right-hand-side of (14) with  replaced by 0~. Let v° denote the MSE
minimizing level. It follows that v° is determined by the results of Section 3
with v* replaced by 67°.% In general the socially optimal choice of v will not
coincide with the Nash equilibrium value.

Figure 2 illustrates the Nash equilibrium and socially optimal values of ~
as functions of «, where ¢ = 0.3, Var(n) = 0.1 and Var(rv) = 0.2. Clearly,
Nash and optimal values are identical (at approximately v* = v° = 0.39)

SFor the simulations, we specify that 7 and v are normally distributed, with 7 = 1. We
conduct a 10,200 period simulation and throw out the first 200 periods when computing
the autocorrelation coefficients.

6Provided that « > 0 is not too large. For sufficently large values of « there is the
possibility of an additional regime with v° = 1.
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Figure 2: v*(«), upper, and 7v°(«), lower, for ¢ = 0.3

for = 0, since there are no feedbacks across agents’ choices. As « rises,
the private incentive to raise tracking increases faster than does the social
incentive, and as a result the Nash equilibrium choices exceed the optimal
levels. Here agents suboptimally overtrack the policy switches.

5 Conclusion

We have considered a simple monetary model in which agents are faced with
a stochastic policy process which occasionally undergoes shifts in the mean.
While the agents may have a rough idea that the system is time-varying,
they are still unable to model explicitly the regime-switching process; as a
consequence, they rely on simple forecast rules that underparameterize the
true process. In particular we have considered the implications of agents
using exponential smoothing forecasts with an optimally chosen smoothing
parameter 1 — . For 0 < v <1 this is the traditional adaptive expectations
formula and for v = 0 it reduces to the sample mean. Even if the time
variations of the mean are small, provided regime switches occur infrequently
it will benefit agents to use an adaptive expectations forecast with 0 < v < 1
rather than setting v = 0 as would be optimal in the absence of regime
switches. However if regime switches occur sufficiently quickly, then the
choice v = 0 is optimal because the importance of filtering then dominates.

We obtain simple analytical results for a version of the model in which

13



inflation follows an exogenous stochastic process. Even in this setting we can
illustrate the basic implications for the Lucas critique of the use of underpa-
rameterized forecasting models with optimally chosen parameters. Provided
the exogenous and policy parameter settings satisfy an appropriate condi-
tion, adaptive expectations with a choice of 0 < v < 1 will be optimal and
in this region the Lucas critique operates with (optimally chosen) adaptive
expectations for the same reason that it applies with rational expectations.
However, if this condition fails, then full filtering with v = 0 is optimal
within our class of forecast rules and the Lucas critique does not apply for
small changes in parameter setting.

Additional features arise when inflation is affected endogenously by the
learning process. The feedback from expectations in this setting expands the
parameter region within which the Lucas critique applies. The self-referential
aspect also induces a forecast externality which, in the case 0 < v < 1, moves
the Nash equilibrium value of v away from the socially optimal value.

In the language of control theory, adaptive expectations is a simple ex-
ample of a constant gain algorithm employed to track an unknown time-
varying system.” Our results explore the implications of adopting this kind
of algorithm in underparameterized environments. A key insight of rational
expectations and the Lucas critique, that the expectations parameters de-
pend on the parameters of the underlying stochastic process, carries over to
underparameterized models. However underparameterization can also result
in regions of the parameter space within which the Lucas critique does not
locally apply. Exploring the generality of these results, in more elaborate
frameworks, would be of considerable interest and is left to future research.

"See for example the discussion in Ljung and Soderstrom (1983).
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APPENDIX

Proof of Lemma 1. Let the regime switching process be rewritten as

e = (L= 0¢)py_q + Oy (19)

where 6; is an .7.d. exogenous Bernoulli random variable taking value 1 with
probability € and 0 with probability 1 — . Since Fu, = Ev, = v, it follows
that pu, — Ep, = (1 — 64)(y—1 — Epy) + 6¢(vy — 1), so that without loss of
generality we can temporarily set Eu, = Ev, = 0 in order to compute the
variance of j,. Using E§; = E6; = e and E(1—§&,) = E(1—6,)>=1—¢, we
have

Var(p,) = By
= EE[(1 = 6)ui_y + 85707 +28,(1 = 60)vepe_1) | 1)
= E[(1—¢)ui_, +eVar(v)
= (1—¢e)Var(y) +eVar(v).

Hence
Var(u,) = Var(v).

We compute Cov(p,, 3,_1) and Var(5,) using an extension of the Yule-
Walker equations to allow for the regime switching exogenous process. For
use in the proof of Theorem 2, below, we also allow for the case with feedback
in which 6 # 1. Combining (4), (7) and 7§ = 3,_; gives

By = (1 —=70)B_1 + 0 + 1), (20)

where § = 1/(1 + «). In the zero feedback case # = 1. Again, note that
Ef, =vand (8, —v) = (1=7)(B_y —7) +v((, — ¥) +m,), so that without
loss of generality we can temporarily set 7 = 0 to compute variances and
covariances. Multiplying the above equation successively by 3,, 5, ;, y;, and
n,, taking unconditional expectations and imposing stationarity we obtain

Eﬁf = (L =10)EB,B,_1 + Y0EwL, + 0 En,B,,
EBB_y = (1- VH)E@% +Y0E 10,1,
EwpB, = (1—-10)EwmB, 1+ VQEM??
Enf, = 79E77t2-
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Furthermore, multiplying the regime switching equation (19) by 3, ; and
taking expectations we also have

By = (1 —e)Ew,p,.

Setting § = 1 and solving these five equations simultaneously, we obtain (12)
and (13), where E3? and Epu, 3, , are replaced by Var(8,) and Cov(p,, 5,_,),
respectively, to allow for nonzero means, and Var(u,) = Var(v) is invoked.
Q.E.D.

Proof of Lemma 2 and Theorem 1. Let us establish that the second-order
condition for a MSE minimum is satisfied globally. Clearly, the first term in
(15) is strictly increasing in . As for the second term, note that

0 2
e K CET =)
x[26(1 =€) + (2 —3¢)* — 3y(1 — €)(2 — 3¢) + 672(1 — ¢)?].

The term in brackets is strictly positive, as can be established by mini-
mizing the term with respect to 7. Thus —eW(7) is increasing in vy as well
and (15) determines the global minimum. Since the left-hand-side of (15) is
positive at v = 1 and since (18) is derived from (15), we have v* € (0,1) if
and only if (17) holds, while otherwise the constraint v > 0 becomes binding.
Q.E.D.

Proof of Theorem 2. Recall that § = (1 + «)~'. We have
MSE = E((1-0)8,_,+6(u +n,)— Btfl)Q
= Var((1—-0)8;-1 +0(u +m,)) +
Var(8,_1) —2(1 = 0)Cov(B;_1, B;_1) — 20Cov(py, B;_1)-
We first show that M SFE is a smooth function of v and 4 for all v,% € JO, 1]
and for all § in some neighborhood of § = 1. From (20),(19) and 3, =

Ame + (1 — ) Bt,l it is straightforward to obtain the following equations for
second moments (without loss of generality we set means equal to 0):

~2 ) A A R R R R . R
EB, = (1 - V)Eﬁtﬁtfl + 7(1 - Q)Eﬁtflﬁt +A0E 3, + Y0 En, 3,
A A R ~2 R o R o
EBB, . = (1 - V)Eﬁt + 7(1 - H)Eﬁtﬁt +A0Ep, B, 4
EuB, = (1 - ’?)Eﬂtﬁtﬂ + ﬁ(l - Q)Eﬂtﬁt—l + ’?QEN?
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EnB, = 30En;

EﬂtBt—l = (1- g)ENtBt

Ef 1fy = (1=A)EBS +3(1 = 0) BB} +40Ep,5,
Eﬁt@t = (1- VH)Eﬁt—lﬁt + VQEMtBt + ”YHE??tBt'

In addition we have the five equations in EB?, EB,8, 1, Ewp,, En,5,
and Eu,(3, ; derived in the Proof of Theorem 1. This gives us 12 linear

equations in 12 second moments. Thus Eﬂtﬁt_l, Eﬁtﬁt, and EB? can be
written as the first three elements of a 12x1 moment vector M which are
jointly determined by the equation R(6,v,5)M = s(v,%), where R is 12x12
and s is 12x1. Furthermore, R and s are smooth functions and it can be
verified that R is invertible in a neighborhood of § =1 for all 7,4 € [0, 1] so
that M = M (6,+,%) is well defined and smooth in a neighborhood of 6 = 1
for all 7,4 € [0, 1]. The M SE is given by MSE = u(0,v)+w(8) M(0,v,75) =
P(0,v,%), where w(f) = (—26,—2(1 — 60),1,0,...,0). It can be seen that
P(1,7,%) is independent of v and is given by the expression for M SE given
in Section 3.

Clearly P is smooth for all 7,4 € [0,1] and for all § in some neighbor-
hood of # = 1 and from Section 3 Ps3(1,v,%) > 0 for all 4,4 € [0,1]. Let
H(0,v) = P3(0,v,7). Then ~* is a Nash equilibrium if H(6,7*) = 0 and
Ps3(6,v*,4) > 0 for all 4 € [0,1]. Let 4 denote the optimal value of  when
0 = 1. Since H(1,7) = 0 it follows from the implicit function theorem that
there exists v*(#) near 7 satisfying H(6,~*(¢)) = 0 provided H,(1,%) # 0.
This condition is satisfied since H,(0,v) = Ps2(0,7,7v) + Ps3(0,7,7), since
P(1,7,7%) independent of 7 implies Ps3(1,7,7v) = 0 for all v, and since
Ps3(1,7,7%) > 0. It remains to show that Ps3(6,~+*,%) > 0 for all ¥ € [0, 1].
Let L = min Ps3(1,7,%) > 0. Since Ps3 is continuous for v,5 € [0,1] and
for 6 sufficiently close to 1, it follows that, for some neighborhood of 6 = 1,
Ps3(6,v*,4) > L/2 > 0 for all 4 € [0, 1].

The proof is completed by noting that continuity of P(6,, ) implies that
if (17) holds, then for # sufficiently close to 1, M.SE must be lower for the
individual agent in the Nash equilibrium than for the choice 4 = 0. Q.E.D.
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