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GENERALIZED TRACIAL ROKHLIN PROPERTY

Approved:

Dr. N. Christopher Phillips

This dissertation consists of two related parts. In the first portion we use the tracial
Rokhlin property for actions of a finite group G on stably finite simple unital C*-algebras containing
enough projections. The main results of this part of the dissertation are as follows. Let A be a
stably finite simple unital C*-algebra and suppose « is an action of a finite group G with the
tracial Rokhlin property. Suppose A has real rank zero, stable rank one, and suppose the order
on projections over A is determined by traces. Then the crossed product algebra C*(G, A, @) also
has these three properties.

In the second portion of the dissertation we introduce an analogue of the tracial Rokhlin
property for C*-algebras which may not have any nontrivial projections called the projection free
tracial Rokhlin property. Using this we show that under certain conditions if A is an infinite
dimensional simple unital C*-algebra with stable rank one and « is an action of a finite group G

with the projection free tracial Rokhlin property, then C*(G, A, ) also has stable rank one.
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CHAPTER 1
INTRODUCTION

This dissertation focuses on the properties of crossed product C*-algebras. Let A be a C*-
algebra and let oc: G — Aut(A) be an action of a finite group G on A. We write o, instead of a(g).
As a set, the crossed product C*(G, A, ¢) is the group ring A[G]. However, the multiplication and
involution are skewed by the action « of G on A. If G is not finite but is discrete, we must complete
A[G] in a suitable norm. This construction has not only provided new examples of C*-algebras,
but has provided new ways of looking at old and naturally occurring C*-algebras. For example,
consider the irrational rotation algebras Ay, which were originally described as being generated by
elements v and v satisfying the relations uu* = 1, u*u = 1, v0* = 1, v*v = 1 and uv = e*"¥yu.
One can also describe Ay as a crossed product by Z acting on C(S!) by rotation by an angle of
2mif.

It is natural to ask which properties of A are shared by the crossed product. In particular

we would like to know when C*(G, A, &) has one of the following three properties.

Definition I.1. Let A be a unital C*-algebra. We say that the order on projections over A is
determined by traces if whenever p,q € My (A) are projections such that 7(p) < 7(q) for all
T€T(A), thenp 2 q.

Definition 1.2. A unital C*-algebra A has stable rank one if the invertible elements are dense
in A [25].

Definition I.3. A unital C*-algebra A has real rank zero if the invertible self-adjoint elements

are dense in the self adjoint elements [2].

One reason that these properties are important is because they are satisfied for many C*-
algebras. Additionally, stable rank one, real rank zero, or both are hypotheses of many theorems

about C*-algebras. Finally, it is known that A having stable rank one is not sufficient to guarantee



that the stable rank of C*(G, A, ) is one. Example 8.2.1 of [1] provides an example for which the
stable rank of the crossed product is two. However, by a theorem of Osaka and Teruya, for any
simple unital C*-algebra with property (SP) and any finite group action, the stable rank of the
crossed product is two or less [17].

Since real rank zero implies the existence of many projections, we need a notion of com-

paring projections.

Definition I.4. For any projections p and q in A, we write p ~ ¢ if there exists an element
v € A such that v*v = p and vv* = q. In this case we say that p is (Murray-von Neumann)
equivalent to q. We write p 2 q if there exists a projection v such that p ~r and r < q. In this

case we say that p is (Murray-von Neumann) subequivalent o ¢.
We will also need a condition on the action.

Definition I.5. Let A be an infinite dimensional simple unital C*-algebra, and let a: G — Aut(A)
be an action of a finite group G on A. We say that o has the tracial Rokhlin property if for
every finite set F C A, every € > 0, and every positive element & € A with ||z|| = 1, there are

mutually orthogonal projections e, € A for g € G such that:
1. ||ag(en) —egn|| < € for all g,h € G.
2. |lega —aey|| < € for all g € G and all a € F.

3 Withe=73, geG €9 the projection 1 — e is Murray-von Neumann equivalent to a projection

in the hereditary subalgebra of A generated by x.
4. With e as in (3), we have ||exe| > 1 —«.

In Chapters 111, IV, and V we prove the following theorems which are finite group analogs

of known results about actions of Z [16]:

Theorem 1.6. Let A be an infinite dimensional stably finite simple unital C*-algebra with real rank
zero, and suppose that the order on projections over A is determined by traces. Let a: G — Aut(A)
be an action of a finite group with the tracial Rokhlin property. Then the order on projections over

C*(G, A, ) is determined by traces and C*(G, A, @) has real rank zero.

Theorem I.7. Let A be an infinite dimensional stably finite simple unital C*-algebra with real

rank zero and stable rank one, and suppose that the order on projections over A is determined by



traces. Let ac: G — Aut(A) be an action of a finite group with the tracial Rokhlin property. Then

C*(G, A, o) has stable rank one.

The tracial Rokhlin property has already proven itself useful for proving theorems about
crossed products [7] and [21]. There is a related but strictly stronger notion called the Rokhlin
property. For an example of an action with the tracial Rokhlin property, but not the Rokhlin -
property, let B be any simple C*-algebra with tracial rank zero. Let A = B® B and let a: Z/2Z —
A be the action which interchanges the two copies of B. That is, the nontrivial element of Z/2Z
maps to the automorphism ap: a ®b— b® o [15].

There are relatively few actions with the Rokhlin property and many algebras which admit
no actions at all with the Rokhlin property. However, there are many examples of actions with
the tracial Rokhlin property.

It is clear from the definition of the tracial Rokhlin property that it guarantees the existence
of at least n projections, where n is the order of the group. In fact, it implies the existence of
infinitely many projections. Thus a C*-algebra with few projections cannot have any action with
the tracial Rokhlin property.

In Chapters VI and VII we have formulated a projection\ free generalization of the tracial
Rokhlin property called the projection free tracial Rokhlin property. This generalization replaces
the projections with positive elements and Murray-von Neumann equivalence with Cuntz equiva-

lence of positive elements.

Definition 1.8. Let x and y be positive elements of a C*-algebra A. We write x 3 y if there
exist elements r; in A such that ryyry — @ with the convergence in norm. In this case we say
z is (Cuntz) subequivalent to y. Ifz 3y and y X x, we write x ~ y and say = is (Cuntz)

equivalent to y.

It turns out that if p and ¢ are projections and p is Murray-von Neumann subequivalent
to ¢, then p is Cuntz subequivalent to q.

We expect that if Z is the Jiang-Su algebra as defined in [10], then the action which
interchanges the two copies of Z in Z ® Z provides an example of an action with the projection

free tracial Rokhlin property. The analogous result which leads to this belief is found in [19].



The main result of the later chapters of this dissertation is Theorem VII.17:

Theorem 1.9. Let A be an infinite dimensional stably finite simple unital C*-algebra with stable
rank one. Assume also that A has a unique 2-quasi-trace which is also a trace, and strict comparison
of positive elements. Let a: G — Aut(A) be an action of a finite group with the generalized tracial

Rokhlin property. Then C*(G, A, &) has stable rank one.

Unlike Theorem 1.6 and Theorem 1.7, the analog for actions of Z is not known. We do not
ask the analogous question for real rank zero. This is because an algebra with real rank zero has
many projections and so we can use the original definition of the tracial Rokhlin property.

Theorem VII.17 provides evidence that the generalization of the tracial Rokhlin property
has been chosen appropriately. It is known that if an action has this generalized tracial Rokhlin
property and the algebra is simple with tracial rank zero, then the action has the original tracial
Rokhlin property (Lemma 1.8 of [22]). Tracial rank zero implies real rank zero and thus the
existence of many projections, so this also an indication the generalization has the right definition.

The interest of this dissertation lies mainly in its applicability to the classification program.
The classification program has been one of the major thrusts in C*-algebras for the last 15 years.
This program is the search for invariants which will distinguish separable, nuclear C*-algebras up
to isomorphism. Most of the known theorems deal with simple C*-algebras. Ideally the invariants
used should be relatively computable. One of the most important of these invariants is Ky(A).
The group Ko(A) encodes information about projections in M, (A) up to Murray-von Neumann
equivalence. In fact, Ky is functor which can be considered as a non-commutative homology
theory. Analogously, the Cuntz semigroup encodes information about positive elements up to
Cuntz equivalence. Recent work by Brown, Perera, and Toms indicates that the Cuntz semigroup
will also be a useful invariant for the purposes of classification [3].

The results in sections II, III, IV, and V are modeled heavily on those in [16] and [23],

and the proof techniques here mimic those there whenever possible.



CHAPTER 1I

THE TRACIAL ROKHLIN PROPERTY

Definition IL.1. Let A be an infinite dimensional simple unital C*-algebra, and let a: G —
Aut(A) be an action of o finite group G on A. We say that « has the tracial Rokhlin property if
for every finite set F' C A, every € > 0, and every positive element x € A with ||z|| = 1, there are

mutually orthogonal projections eg € A for g € G such that:
1. ||ag(en) —egnl|l < € for all g,k € G.
2. |lega —aey|| < € forallg € G and all a € F.

3. Withe=73, 9€G €g> the projection 1 — e is Murray-von Neumann equivalent to a projection

in the hereditary subalgebra of A generated by x.
4. With e as in (8), we have |lexel| > 1 —¢.

When A is finite, as was shown in Lemma 1.12 of [23], Condition (4) of Definition II.1 is

not needed:

Lemma I1.2. Let A be a finite infinite dimensional simple unital C*-algebra, and let o: G —
Aut(A) be an action of a finite group G on A. Then « has the tracial Rokhlin property if and only
if for every finite set F' C A, every € > 0, and every nonzero positive element x € A, there are

mutually orthogonal projections eqg € A for g € G such that:
1. |lag(en) —egnll < € for all g,h € G.
2. |lega —aey|| <€ forallg€ G and alla € S.

3. With e = dec eg, the projection 1 — e is Murray-von Neumann equivalent to a projection

in the hereditary subalgebra of A gemerated by x.



For the sake of comparison we also consider the Rokhlin property, which we call here the

strict Rokhlin property for emphasis.

Definition 11.3. Let A be a unital C*-algebra, and let a2 G — Aut(A) be an action of a finite
group G on A. We say that o has the strict Rokhlin property if for every finite set F C A, and

every € > 0, there are mutually orthogonal projections e; € A for g € G such that:
1. |lag(en) —egnll < € for all g,h € G.

2. |lega — aeg|| <€ for allg € G and alla € F.

8 Ygects =1

Notation IT1.4. Let A be o unital C*-algebra. We denote by T(A) the set of all tracial states
on A, equipped with the weak™ topology. For any element of T(A), we use the same letter for its
standard extension to My(A) for arbitrary n, and to My (A) = U, Mn(A) (no closure).

Definition IL1.5. Let A be a unital C*-algebra. We say that the order on projections over A
is determined by traces if whenever p,q € My (A) are projections such that 7(p) < 7(q) for all

T &€ T(A), thenp 2 q.
The following lemma is the finite group analog of Lemma 1.4 in [16].

Lemma I1.6. Let A be an infinite dimensional stably finite simple unital C*-algebra with real rank
zero and such that the order on projections over A is determined by traces. Suppose o G — A is
an action of o finite group on A. Then « has the tracial Rokhlin property if and only if for every
finite set F C A and every € > 0 there are mutually orthogonal projections eq € A for each g € G

such that:
1. ||on(eg) —egnll <€ for g € G.
2. |lega —aeg|| < € for all g € G and all a € F.
8. Withe =3 cqeq we have 7(1 —¢€) <e for all 7 € T(A).

Proof. First assume that « has the tracial Rokhlin property. Let € > 0 and F C A finite be given.
Let n be large enough that 1/2" < e.
We claim that A has no minimal nonzero projections. The claim holds because if B is a

simple C*-algebra with real rank zero and which has a minimal projection, then B is isomorphic to



the compact operators on some Hilbert space. However, the algebra A is both infinite dimensional
and unital, so it is not isomorphic to the compact operators on any Hilbert space. This is precisely
the condition “non elementary” required in Theorem 1.1 (i) of [28], so applying that theorem allows

us to write
217.
1=2 m
1==0
for mutually orthogonal projections p; satisfying pg < p1 and p; ~ - -+ ~ pan. This implies

on
dom<l
i=1

Thus we have

2'".
> ) =2"1(p) <1,
=1
which implies 7(p;) < 5 < €.
On the other hand,
2n 2m
L=7(1) =Y 7(p:) =7(po) + Y _ 7(p:) < (2" + 1)r(p1).
i=0 =1

Therefore, p1 # 0.

Now apply the definition of the tracial Rokhlin property to = p1, and to € and F as given
to get projections e, satisfying conditions (1) through (4) of Definition II.1. It remains only to
show that condition (3) of this lemma holds. By setting e = }_ . €4, condition (3) of Definition
I1.1 gives 1 — e is equivalent to a projection in zAz, so 7(1 — e) < 7(z) < € for all 7 € T(A).

Conversely, assufne the condition of the lemma and let € > 0, F C A finite, and z € A
a positive element of norm 1 be given. Choose a nonzero projection ¢ in the hereditary sub-
algebra generated by z. Such a projection exists since A has real rank zero. Choose § with
0 < ¢ < min(g,inf ey 7(q)). Now apply the condition of the lemma with ¢ replaced by 4 to
get projections e,. Note that inf 4y 7(g) > 0 since T(A) is compact and 7(g) > 0 for each
7 € T(A). Set e =} ;e5 Thensince 7(1 —e) < 7(q) for every tracial state and the order on
projections over A is determined by traces, 1 — e 3 ¢ which gives condition (3) of the definition

and completes the proof. ll



Lemma ILI.7. Let A be an infinite dimensional simple unital C*-algebra, and let a: G — Aut(A)
be an action of a finite group G on A which has the tracial Rokhlin property. Then oy is outer for

every g € G\ {1}.
Proof. This is Lemma 1.5 of [23]. I

Corollary 11.8. Let A be an infinite dimensional stably finite simple unital C*-algebra and let o :
G — Aut(A) be an action of a finite group G with the tracial Rokhlin property. Then C*(G, A, )

18 simple.
Proof. Using Lemma IL.7, this is immediate from Theorem 3.1 of [11]. |

Definition I1.9. Let A be a C*-algebra. We say that A has Property (SP) if every nonzero

hereditary subalgebra in A contains a nonzero projection.

Notation I1.10. For any compact convez set A in a topological vector space, we let Aff(A) be the

set of all real valued continuous affine functions on A.

Here we are particularly interested in Aff(T'(A)).

The proof of Proposition II1.13 requires two lemmas.

Lemma I1.11. Let A be a unital C*-algebra, and let a: T' — Aut(A) be an action of a countable
amenable group. Let fi,..., fi € Aff(T(A)) have the property that f;(7) > 0 for all I'-invariant

7 € T(A). Then there exist n and y1,...,vn € I' such that for all T € T(A) we have
1« .
H;fj(Toa%) >0
=1

for1<j <L
Proof. This is Lemma 2.2 in [16]. I

The following lemma is a more flexible version of a result of Zhang [28]. In Zhang’s version,

which is used in the proof, the integer n of the hypotheses is required to be a power of 2.

Lemma 11.12. Let A be a simple unital infinite dimensional C*-algebra with real rank zero. Let

p € A be a projection, and let n € N. Then there exist projections pg,P1,-.-,Pn € A such that

n
Y pk=p, pi~pr~c~py, and po 3P
k=0



Proof. This is Lemma 2.3 in [16]. I

Proposition 11.13. Let A be a simple unital infinite dimensional C*-algebra with real rank zero,
and assume that the order on projections over A is determined by traces. Let a: ' — Aut(A) be
an action of a countable amenable group. Let p, ¢ € Moo (A) be projections such that 7(p) < 7(q)
for every I'-invariant tracial state T on A. (We extend T to My (A) as in Notation IL.4). Then

there is s € Moo (C*(T, A, @) such that
s*s=p, ss"<gq, and 88" € My (A).

In particular, p 3 q in Moo (C*(T, A4, a)).
Proof. This is Proposition 2.4 in [16]. ll
The following lemma is the finite group analog of Lemma 2.5 in [16].

Lemma I1.14. Let A be an infinite dimensional stably finite simple unital C*-algebra with real
rank zero such that the order on projections over A is determined by traces. Let G be a finite
group of order n and let & : G — Aut(A) be an action of G with the tracial Rokhlin property. Let
t: A— C*(G, A, @) be the inclusion map. Then for every finite set F C C*(G, A, a), every € > 0,
every N € N, and every nonzero positive element z € C*(G, A, @), there exist a projection e €
A C C*(G, A, ), a unital subalgebra D C eC*(G, A, a)e, a projection f € A, and an isomorphism
o: M, ® fAf — D, such that:

1. With (egp) for g,h € G being a system of matriz units for M, we have p(e11 ® a) = (a)
for alla € fAf and pleg g ®1) € 1(A4) for g € G.

2. With (eqg,9) as in (1), we have ||p(eg,q ® a) — t{ag(a))| < €|la|| for alla € fAf.

3. For every a € F there exist by, by € D such that |ea — bi|| < €, |lae — b2| < €, and

[[oa]], [1B2]l < flafl-

4 =3 ccPlegg®1).

5. The projection 1 — e is Murray-von Neumann equivalent in C*(G, A, @) to a projection in the

hereditary subalgebra of C*(G, A, a) generated by z.
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6. There are N mutually orthogonal projections fi, fa,..., fn € eDe, each of which is Murray-

von Neumann equivalent in C*(G, A, ) to 1 —e.

Proof. We first make a simplification: It is not necessary to check the estimates [|b1][, ||b2]| < ||a|l
in Condition (3) of the conclusion. To prove this, without loss of generality ||a)) =1 for all a € F.
(If 0 € F, then b; and by may be taken to be zero which satisfy the norm estimates. Otherwise we
can normalize all the elements of F.)

Apply the statement without the bound on b; and by with %5 in place of €, and with
all other parameters the same. Let ¢; and ¢z be the resulting elements in Condition (3) of the

weakened conclusion. Then ||c; ||, [lcz|| <1+ Ze. Set

1 1
by = | —— d by=|——]ecs.
! (1+§e)cl and % (H%e)cz

One checks that ||by — e1]] < i€, so ||by — pa|| < €. Similarly ||ba — ap|| < e. This proves the

2
simplification.

Now we do the main part of the proof. Let ¢ > 0, and let F C C*(G, A, a) be a finite set.
Let N € N, and let z € C*(G, A, &) be a nonzero positive element.

Let ug for g € G be the standard unitaries in the crossed product C*(G, A, ). We regard
A as a subalgebra of C*(G, A, a) in the usual way.

For each z € F write £ = 3_ 5 aguy. Let S C A be a finite set which contains all the
coefficients used for all elements of F. Let M =1 +sup,cs [la.

Let 0o < igep7- Let 01 be such that if p;,py are projections in a C*-algebra B and if
a € B is such that ||a*a — p;|| < 1 and |laa* — po|| < &1, then there is a partial isometry s € B
such that s*s = p1, s8* = py, and |la — p|| < 8. Let 0 < § < min{do, 61, 13,1}

Since A has real rank zero, it has Property (SP), and since (by Lemma I1.7) oy is outer for
all ¢ € G, Theorem 4.2 of [9], with N = {1}, supplies a nonzero projection ¢ € A which is Murray-
von Neumann equivalent in C*(G, A, @) to a projection in m. Moreover, Lemma 11.12
provides nonzero orthogonal Murray-von Neumann equivalent projections qq, qi, - .., ¢an € gAgq.

Apply the tracial Rokhlin property (Definition 11.1) with § in place of ¢, with S in place of

F, and with qo in place of z. Call the resulting projections e, for each g € G, and let e = > 9eG €9
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Set f = e;, and define wy ; = ugp-1e5. We claim that the elements (wg n)gnee form a

d-approximate system of n x n matrix units. To prove the claim we compute:

”w;,h - wh,g” = ”ehuzh—l - Uhg—leg“
= |lugn-1enul, -1 — eg|

= [logh-1(en) — egll < 4.
Then, using egep = &g nep at the third step we find

[Wg1 11 Waa,hz — Gga,hs Wy |

= ”uglhl”lehluggh;lehz - 592:h1ug1h,;leh2 |

= ”uglhl-lehlugzhz_leh2 — uglh;lgzh;1€h2g51h16h2||

= ”uglhl_l(ugzhz_lu;h;l)eh1u92h516h2 - uglhflgzhz_lehzgz_lhleh2||
= ||ug1h1—1g2h2—1(u;hz—lehlugzhgl - ehggglhl)ehz”

< ||“;2h;16h1“g2h;1 - ehzgglhln

-1
= ||agzh2~1(eh1) - ehzg,;lhl“ <.

For the final condition, since |legoe| > 1 — & > 0, the projection e is nonzero, so e, is nonzero for
each g € G. This uses § < 1 again. In particular ||wy,1] = [le1]] = 1 > 1 — 4. This proves the claim.

Since (wg,1)g,nec forms a d-approximate system of matrix units, each wy,; is an approxi-
mate partial isometry for each g € G. More specifically,

*

lwg, 1wy 1 —egl| = [lugererug —egll = [lag(er) — egll <6

since the e, are the tracial Rokhlin projections. Also,
w01 — €1l = llexuuger — esl = flex x| =0 < &

because u, is a unitary for each g.
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Since 6 < 81, by the choice of §; there exist partial isometries z, € C*(G, A, @) for each
g € G such that ||z, — wy1]| < do and such that z,2; = e; and 25z, = e;. Moreover, one may
check that we may take z1 = eq.

Let (eg,n)gnec be an n x n system of matrix units for M,,. Define a linear function
0: M,®e1der — C*(G, A, a) by p(egr ®a) = z4az}. One can then check in the usual way that ¢
is a homomorphism. It is also worth computing at this stage that for g,h € G and a € e; Aeq, we
have [[p(eg,n ®a) ~wg,10wf, || < 2[|lalldo. Let D be the image of ¢, so that ¢ is clearly surjective as
a map from M, ® e; Ae; to D. To check that ¢ is injective we first recall that ker(y) is an ideal in
M,, ® e1 Ae; which means that ker(y) N (eg,n ®e1Aer) = ey, ® I where I is an ideal of e; Ae; which
does not change as g and h vary. But we can compute that if 0 = ¢(eg 1 ® a) = zgaz;, for some
a € e1Ae, then multiplying on the left by z; and on the right by zn we see that ejae; = a = 0,
so I = 0, that is ker(¢) = {0}, so that ¢ is injective.

Now ¢(e1,1 @ a) = z1a2f = e1ae; = a for any a € e;Ae;. Also, p(eg,g ®1) = zge12, =
292,27, = eg € A. These two conditions make up (1) of the conclusion.

To verify (2), let a € 1 Aey and estimate

lp(eg,s ® a) —ag(a)ll < llwleg,g ® a) —wgawy || + |lwg, 10wy — ag(a)|
< 2{lal|do + ||ug61a61u; — ag(a)l
= 2[|al|do

< éellall.

For (4) we observe 3 .5 ¢(€g,g ®1) =3 cq €125 = Y g = €

Condition (5) holds essentially by construction since 1 — e is Murray-von Neumann equiv-
alent to a projection in ggAgqg, but go € ¢Aq and g is equivalent to a projection in the hereditary
subalgebra generated by z. In total this gives 1 —e is subequivalent to a projection in the hereditary
subalgebra generated by z.

Now for condition (6), since g; ~ ¢; and Murray von-Neumann equivalent projections have
the same trace, 7(g;) < 5 for 0 < j < 2N and for any 7 € T(A). In particular, since 1 — e is
subequivalent to go we have 7(1 —e) < 7(go) < 7%. This implies 1 — 7% < 7(e). This gives
2 < 7(e). Additionally 7(g;) < 55 implies T(Z;VZI ;) < 3. Combining these statements gives

T(Z;.V:l g;) < 7(e) for all T € T'(A). So since order on projections over A is determined by traces,
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Z;.Vzl g; S e. Let h € A be a projection satisfying Z;V:I g; ~ h < e and let s be a partial isometry
with s*s = Z;VZI q; and ss* = h. Let h; = sq;s* for j =1,..., N. One checks that hi,...hy are
mutually orthogonal projections summing to h. Furthermore since h; < h < e we have h; <e.
Furthermore, h; ~ g; via the partial isometry sg;. So now we have 1 —e 3 g; ~ h;. Let f;
be a projection such that 1 —e ~ f; < h;. Since f; < hj, and the h; are mutually orthogonal,
f1,..., fn are mutually orthogonal. Finally f; < h; < ein A and ede C eDe, so fi1,..., fv are
the projections we desired.

In order to show (3) we will use the following claim.

Claim: If y = 3 o agug with ag € A and [lag|| < M, and if [eg, ap] = 0 for all g,h € G,
then there are dy, da € D such that |ley — d1|, ||lye — d2| < 8n2Mé&o.

Proof of claim: We can write ey = 3 5 heq €9antn = 3 e 2 onec(ganey)(egun)
since eq and ap commute. Now we make a norm estimate involving one of the factors in the third

expression for ey using the fact that z4 is a partial isometry at the third step:

loeg,g ® e10g-1(an)er) — eganegy|
= ||zgelag_1(ah)elz; — eganey||
= Hegzgag_l(ah)z;eg — eganey|
< llzgag H(an) 25 — 250 (an)wy 4 ||
-1 -1 x

+ ||Zyag_l(ah)w;,1 —wg,105 (an)wy 1 [| + [[ugercyy " (an)eruy — eganey||

< 2Még + |lagler)anag(er) — eganeq|| < 2M 8 + 2M0.
Now we make an estimate involving the other factor:

lp(egn-14 ® €1) — egun||

< lle(egn-1g ® €1) = ugeruy o[l + [lugerup -y — egunl|.

This last line is less than or equal to 28y + ||ag(e1)ur — egun|| by an estimate we made previously.

This in turn is less than or equal to 260 + 4.
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Let do(g,h) = p(eg,g ® e1ag-1(ap)er)p(eg p-14 ® €1). Then we have
[do(g, k) — eganun||
< [ldo(g,h) — @(eg,e ® elag—l(ah)el)eg“h” + [lo(eg,e ® elag—l(ah)el)eg“h - (egaheg)(eg“h)“
< |lo(eg,g ® exag-1(an)er)|[(260 + 8) + 2M 8y + 2M &

< M(280 + 6) + 2M 6o + 2M6

Now let di =} cq 2 heg do(g,h). Then

”dl - ey” = Z Z dO(g:h) - Z Z €gAnrUn

9€C heG gE€G heG
<> lldo(g, h) = eganual
g€G heG

< n2M (460 + 3M &)

< 8TL2M50.

We now turn our attention to the construction of dy. We can write

ye = Z Z apupeg = Z Z anop(eg)up.

geEG he@ g€G heqd

We note that

Z Z apap(eg)un — Z Z anChgUh

g€G heG 9€EG he@G
<D0 llonleg) — engll

geG heG
< n2é.

But 3 cq D heq Whehglh = Y hec 2geG €hgOhlUh = D peq D ke CkaRUR by making the

change of variables, k = hg. This last is of the same form as ey, so using the argument above there
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is an element do € D such that
1Y exanun — da| < n®M (480 + 3M).
heG keG
Thus

lye — da|| < n?M (460 + 3M ) 4+ n8 = 4n® M (5 + 8p) < 8n2Mo.

We are now in a position to prove (3). Let z € F and choose b; € S such that z =
> gec baug. Define ag = (1 —e)bg(l —e) + 32, ., enbgen. Now by writing the 2 by 2 matrix

decomposition for b, and subtracting we get

by —ag = Z[(l — e)bgen + enbg(l —e)] + Z Z exbgen.

heqG he@ keG
. k#£h

Because b, € § which was the set to which we applied the tracial Rokhlin property,
“[bgyeh]” < 4. Then

by — agll < 3~ [II(L — e)bgenll + lenbs (1 — )] + > llexbgen]

heG ) ]];i(};l
< > {1 = e)lbg, enlll + 111 — e)enbgll + l[bg: enl (L ~ e)l| + [[bgen(L — )ll]
heqG
+ > llexlbg,enlll + D llexends |
keG keG
k#h k#h

<nf+04+5+0+(n—-1)04+0]
= (n?+n)d

< 2n26.

Set y =3 4eq Ggtg- Then

=yl < 3gec (b — aglugll < [|bg — agll < n(2n?8) = 2n°6.

One easily checks that [ag,ex] = 0 for all g,k € G. Thus the claim applies to y and
provides d; € D such that |ley — d;|| < 8n2M&y. Thus
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lex — di|| < |lex — ey|| + |ley — d1]| < 2n38 + 8n2Méy < €

by the choice of § and do.
Similarly, the claim provides da € D such that ||ye — da|| < 8n2M &y which then satisfies

llze — da| <.

Given objects satisfying part (1) of the conclusion of Lemma II.14, we can make a useful
homomorphism into C*(G, 4, @) which should be thought of as a kind of twisted inclusion of A.
The following lemma is stated in terms of an arbitrary unital C*-algebra B, but we note it applies

when B = C*(G, A, @) and the standard embedding is the map ¢.

Lemma I1.15. Let A be any simple unital C*-algebra, let B be a unital C*-algebra, and let
t: A — B be a unital injective homomorphism.

Let e, f € A be projections, and let n € N. Assume that there is an injective unital
homomorphism ¢: M, QfAf — 1(e)Bu(e) such that, with (e; ) being the standard system of matriz
units for My, we have ¢(e11 ® a) = v(a) for alla € fAf. Then there is a corner Ao C Mpy1 ® A

which contains

a 0
ta€(l—e)A(l—e) andbe M, Q fAf
0 b

as a unital subalgebra, and an injective unital homomorphism ¥: Ay — B such that

forae (1—e)A(l1—e€) and be M, ® fAf.
Moreover, if a : G — Aut(A) is an action of a finite group on A, B = C*(G, A, ), and ¢
is the standard inclusion, then for every a-invariant tracial state T on A there is a tracial state o

on C*(G, A, ) such that the extension T of T to Mpi1 ® A satisfies T| a4, = 0 0 9.

Proof. Set
q:dia‘g(l_ea f? f’af) EMn+1®Aa

and set

AO = Q(Mn+l ® A)q and eg = diag(O,f, f, - f) c AO.
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In M,4,, call the matrix units e;x for 0 < j, k < n. Then ¢ — ey = ep,0 ® (1 — e). Define

P: Ag — C*(G, A, a) as follows.
1. For a € (g —eg)Ao(q — ep), write a = ego ® x with z € (1 —e)A(1 — e), and set ¥(a) = (x).

2. For a € egApeg, write a = Z?’kzl ek ® x;x with z;x € fAf for all j and k. Regard this

sum as an element of M,, ® fAf in the obvious way, and set ¥(a) = ¢(a).

3. Fora € (e;,; ® f)Ao(q —eo) for some j with 1 < j < n, writea = ¢;o®x with z € fA(1 —¢),

and set $(a) = p(ej,1 ® )ila).
4. For a € (q — eg)Ao(e;,; ® f) for some j with 1 < j < n, set (a) = ¥(a*)* using (3).

Then extend by linearity.

To prove the first part of the lemma, it suffices to prove that 1 defined this way is in fact
a homomorphism. It is clear that i is linear and that ¢(a*) = ¥(a)* for all a € Ay, so we prove
multiplicativity. We must show that ¥(ab) = ¥(a)(b). It suffices to consider 16 cases, namely
when a falls into each of the four categories above and when b falls into each of the four categories
above. We number the cases using ordered pairs, with the first coordinate saying which category
a is in and the second coordinate for b. We will treat the four most involved cases first.

For (3,1), write a = e;0 ® « as in (3) and write b = eg o ® y analogously to (1). Then

ab = e; o ® zy analogously to (3), so
P(a)p(b) = ole;1 ® fuz)e(y) = plej1 @ flu(zy) = Y(ab).

For (3,4), the analogous expressions are: a = ¢, 0®x and b = ey 1 ®y, then, using zy € fAf

we compute (zy) = p(e1,1 ® zy),

P(a)p(b) = p(ej1 ® u(@)u(y)plerr ® f) = p(ej1 ® fulzy)plerr ® f)

= p(ej1 ® fleler1 ® zy)p(err ® f) = ¥(ab),

since ab has the form described in (2).
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Similarly, in (4,2) write a = ep; ® ¢ with z € (1 —e)Af and b = Z?,k:l ejk ® yj,k With
all y;x € fAf; then
n
ab= Z €0k ® TY; i

k=1
with zy;x € (1 —e)Af, and
Pa)Bb) = 3 se)plers ® Nlesn @ up) = 3 ue)plen: @ ya)olens ® F)
k=1 k=1

|
NE

(@) uly;k)elerk ® ) = (ab).

e
Il
—

Finally, in (4,3) if j # k one easily gets ¥(a)¥(b) = 0 = 1(ab), and otherwise one writes

a=ey; ®,b=1¢e;0Qy, and

Y(a)p(b) = t(z)p(er,; ® Nplej1 ® Fli(y) = vz)plerr ® fu(y)
= u(z)e(f)e(y) = v(zy) = (ab).

In case (1,1) and (2,2) multiplicativity comes from the multiplicativity of + and ¢ respec-
tively. In the cases (1,2), (1,3), (2,4), and (3,3), one easily checks that both 1 (ab) and ¥ (a)y(b)
are zero. The remaining cases may be obtained by taking adjoints of those cases already done.

It remains to prove the statement about the tracial states. Let 7 be an a-invariant tracial
state on A. Let E: C*(G, A,a) — A be the map given by E(3_ s agug) = a1. One can check

that F is a conditional expectation. Let ¢ = 7 o F and we check that this is a tracial state on
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C*(G, A,a). That o is a state is clear, so we just verify that it is tracial. We compute

o(ab) = 7 (E(ab))

(5[5 (52)))

=7 | FE Z agugbhu;uguh))

g,heG

=7|E Z agag(bh)ugh>)

g,heG

=T Z g0y (bg—l))

geG

—Z agag )

g€G

a(ba) =7 | E (hezcbhuh> (g;;agug)))

=7|F Z bhuhagug)>

g,heG

Meanwhile

=7|FE Z bhah (ag)uhg> )

g,heG

=T Z bg_lag—l(ag)>

geG

=2 7 (og (b-+) ag)

geG

= E: agag

geG

If f =0 then A4g = A and ¥ = ¢, so the statement is immediate. Otherwise, for a € fAf,
we have

goy(er1®a)=0oyp(er ®a)=o0oa) =T(a)

Therefore o 0 and 7 agree on the full corner (e1,1 ® f)(Mn4+1 @ A)(e1 ;1 ® f) of Ag. So goyp =7. 11
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CHAPTER III

TRACES AND ORDER ON PROJECTIONS IN CROSSED PRODUCTS

In this section, we prove that if A is a simple unital C*-algebra with real rank zero such
that the order on projections over A is determined by traces, and if & : G — Aut(A) is an action of
a finite group G with the tracial Rokhlin property, then the order on projections over C*(G, A, «)
is determined by traces. The methods are adapted from Section 3 of [16] which are adapted from
Section 3 of [20], and originally came from [24].

We begin with a comparison lemma for projections in crossed products by actions with

the tracial Rokhlin property.

Lemma IIL1. Assume the hypotheses of Lemma I.15 with B = C*(G, A,«), and assume in
addition that A has real rank zero and that the order on projections over A is determined by traces.
Let op: Ag — C*(G, A, @) be as in the conclusion of Lemma I1.15. Suppose that p, ¢ € ¥(Ap)
are projections such that 7(p) < 7(q) for all tracial states 7 on C*(G, A, a). Then there exists a

projection v € PY(Ao) such that r < q and r is Murray-von Neumann equivalent to p in C*(G, A, a).

Proof. If the projection f as in Lemma I1.15 is zero, then Ag = A and 1 = . So the statement
follows from Proposition II.13.

Otherwise, as in the proof of Lemma IL15, let ¢;, for 0 < 7, k¥ < n, be the matrix units
in M, ;. Also let ¢: A — C*(G, A, &) be the inclusion, and let D = ((A) and Dy = ¢(Ap). Since
a € fAf implies ¢(a) = p(e1,1®a) = P(e1,1®a), the algebra F = +(f Af) is a hereditary subalgebra
of both D and Dy.

Now let p, ¢ € Dy be projections such that 7(p) < 7(q) for all tracial states 7 on

C*(G, A, ). Note that Ap is the corner of the simple algebra M,1; ® A. Thus Ay and hence
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¥(Ag) = Dg are both simple. Thus there is m such that
100---®03uf)D- @ uf)

in M,,(Dy). We identify D and Dy with corners in M,,(D) and M,,(Dy) in the standard way.

Then, since p,q < 1, there exist projections

P, @0 < U(f) D Du(f)

in M,,(Dg) such that p ~ po and g ~ go in My,(Dy). Clearly po, go € My (E) C My (D), and
similarly, po, g0 € M (E) C My (Do), They also satisfy 7(po) < 7(go) for 7 € T(C*(G, A, a)). We
now wish to apply Proposition I1.13. Let 7 be an a~invariant tracial state on A and let T also denote
its extension to My 41(A). Then, by the statement about traces in Lemma II.15, 7|4, = ¢ o % for

some tracial state ¢ on C*(G, A, a). Now since pg and qg are elements of both f{(M,,(4(A)))f and
f(Mn(«(D)))f, we have 9(po) = 1(po) and ¥(go) = ¢(q0)- So

7(po) = o(po) < o(q0) = T(q0)

since o € T(C*(G, A, )). Thus by applying Proposition I11.13 to pg and gq, there is a projection

ro € My (D) such that pg ~ ro in M, (C*(G, A, a)) and rg < go. Then rg € M,,,(F) C M,,,(Dy).
Choose s € My, (Dy) such that s*s = go and ss* = q. Set r = srgs*. Then r € M,,(Dop)

and satisfies p ~ pg ~ 1o ~ r in M, (C*(G, A,@)) and r < q. Also, r = srgs* < sqos* = ss*ss* = ¢,

that is r < ¢ And since p, q are actually in C*(G, 4, @) we get p ~r in C*(G, A,a).
The next three lemmas are Lemma 3.2, Lemma 3.3, and Lemma 3.4 of [16].

Lemma ITL.2. Let A be a C*-algebra, let p, ¢ € A be projections, let T be a tracial state on A,

and let g: [0,1] — R be a continuous function. Then 1(g(pgp)) = 7(9(gpq)).

Lemma ITI.3. Let g: [0,1] — [0,1] be a continuous function such that g(1) = 1. Then for every
€ > 0 there exists § > 0 such that whenever A is a unital C*-algebra, T is a tracial state on A, and

D, ¢ € A are projections such that T(p) > 1 -4, then 7(g9(qpq)) > 7(q) — ¢ and 7{g(pgp)) > 7(q) —¢&.
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Lemma T11.4. Let § > 0. Then there exists a continuous function g: [0,1] — [0,1] such that
g(0) =0, g(1) = 1, and whenever A is a C*-algebra with real rank zero and a € A is a positive

element with ||a|| < 1, then there is a projection e € aAa such that g(a)e = e and ||ea — a|| < 6.

The proof of the following theorem is adapted from the proof of Theorem 3.5 in [16], which
is based on the proofs of Theorem 3.5 and Lemma 3.3 of [20], which in turn are based on Section 3

of [24].

Theorem II1.5. Let A be an infinite dimensional simple unital C*-algebra with real rank zero,
and suppose that the order on projections over A is determined by traces. Let oo : G — Aut(A) be
an action of a finite group with the tracial Rokhlin property. Then the order on projections over

C*(G, A, ) is determined by traces.

Proof. We first observe that the hypotheses on A imply that A is finite, but M, (A) satisfies all
the same hypotheses, so A is in fact stably finite.

The next step is to reduce from considering projections in My, (C*(G, A, @)) to considering
those in C*(G, A, o). That is, we claim it suffices to prove that if ¢,r € C*(G, 4, @) are projections
such that 7(q) < 7(r) for all 7 € T(C*(G, A, @)}, then g 3 r. To do this we will show that since o
has the tracial Rokhlin property then idy, ® o as an action on M,, ® A has the tracial Rokhlin
property for any n € N. Thus M,, ® A satisfies all the same hypotheses as A and so we get the
same conclusion for projections in M, ® C*(G, A, &) which implies the statement of the theorem.

In order to show idps, ® o has the tracial Rokhlin property, let € > 0, let F C M,(A) =
M, ® A be finite, and let z € M, (A) be a positive element with ||z|| = 1. Let S be a finite subset
containing all elements of A which appear as entries in elements of F. We use the convention that
all traces are normalized on A.

Let g be a nonzero projection in the hereditary subalgebra generated by . Let 0 <
b0 = min;epay{7(¢)}. Let 0 < & < min{do/n,e/n}. Apply the tracial Rokhlin property as
given in Lemma II.6 with § in place of € and S in place of F to get projections e, for each

group element satisfying the conditions of Lemma I1.6. Set e = 4eG €9 Then we compute
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T(l—€)<é/n<7(g)/n. Set pg =1, ®egandp =3, Py =1, ®e. Now

(1o —p) =7(15) - Z 7(pg)

geG
=n7(la) — Z nr{eg)
geG
=n7(ls—€)
_nrla)
n

Since the order on projections over A is determined by traces, 1, ® p = ¢, that is 1 —p is
subequivalent to a projection in the hereditary subalgebra generated by z. That the projections p,
satisfy the two norm estimates for the tracial Rokhlin property is routine to check, so this proves
the reduction.

Having proved the reduction, let ¢, 7 € C*(G, A, &) be projections such that 7(q) < 7(r)
for all tracial states 7 on C*(Z, A, a). Since the tracial state space is weak-* compact, there is
€ > 0 such that 7(r) — 7(q) > ¢ for all tracial states 7. We may assume with out loss of generality
that e < 1.

Choose 1 > 0 sufficiently small so whenever B is a C*-algebra and e, f € B are projections
such that |lef — f|| <m, then f JSe.

Choose continuous functions g1, go: [0,1] — [0, 1] such that

91(0) = 92(0) =0, ; g1(1) = g2(1) =1, 9192 = go,

and |g1(t) —t| < 7 for all t € [0,1]. Let g: [0, 1] — [0, 1] be a continuous functionfrom Lemma III.4
with %7)2 in place of 4.
Using continuity choose § > 0 small enough that whenever B is a C*-algebra and a, b € B

are positive elements satisfying ||al|, |[b|| £1 and |[la —b|] <4, then

lg1(a) = 1) < 37, llg2(a) — g2(0)[| < e, and |lg(a) — g(B)] < ge-

Also require § < %7).
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Apply Lemma II1.3 with g5 in place of g and with Elfa in place of ¢, to get a number
do > 0. Choose an integer N satisfying N > max(éo—l, 6e~1).

Apply Lemma I1.14 with {q, r} replacing F, with %6 replacing €, with N as given, and
with 1 replacing z. This gives us a projection e € A C C*(@G, A, ), a unital subalgebra D C
eC*(G, A,a)e, a projection f € A, and an isomorphism ¢: M, ® fAf — D, satisfying the six
conditions in the conclusion of Lemma II.14.

Next we seek to construct a projection ro € D such that ro 3 r and 7(rg) > 7(r) — 1 for
every tracial state 7 on C*(G, A, a).

By condition (3) of Lemma II.14, there exists z € D such that |[re—z| < 16 and ||z|| < 1,
so that ||rer — xz*|| < 4. Note that ¢ € D = M,, ® fAf, which has real rank zero. Thus we may
apply Lemma 3.2 of [20] with a there taken to be g1 (zz*) and b there taken to be g2(zz*) to get

a projection rg € D such that
g1(zz*)rg =79 and |[rogz(za*) — ga(za™)|| < e

Next we show ||rrg-7o| < n which implies 7o =X r. By the choice of d, since |[rer—zz*|| < 6
we have ||g1(rer) — g1(zz*)|| < in. Then gi(zz*)ro = ro gives ||g1(rer)ro — ro|| < 1n. Combining

this with |g1(t) — t| < 17 yields ||rerro — rol| < 4n. Now we can compute

llrro — rol| < ||rro — rerro|| + ||rerro — rol|

< |Irllliro — rerroll + 31 < n

as desired. So we indeed have rq = r as claimed.
Now let 7 € T(C*(G, A, ). We work to obtain a lower bound on 7(rg). The choice
of § and the fact that ||rer — zz*|| < § together imply that |[gz2(rer) — g2(zz*)|| < sre. Thus

[rog2(zz*) — g2(x2™)|| < 5r& implies ||[rogz(rer) — go(rer)|| < Z¢, and so

rogz(rer)ro — gz2(rer)|| < ||rogz(rer)ro — rogz(rer)|| + |[rogz(rer) — ga(rer)||
< |lrollliga(rer)ro — ga(rer)|| + $¢

< 37€&.

Mo
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Therefore

T(rg) > T(roga(rer)rg) > 7(ga(rer)) — 26—16.

Now Lemma I1.14 part (6) guarantees that 7(1 —e) < N~17(e) < N~! < §p, so 7(e) > 1 — &y, and

the choice using Lemma IIL.3 gives 7(ga(rer)) > 7(r) — 2. Therefore

7(ro) > T(ga(rer)) — e > 7(r) — %6 =7(r)— %6.
We have now shown that rg is the desired projection.

Next we construct a projection gy € (1 — e) + eDe such that ¢ 3 go and 7(go) < 7(q) + 3¢
for every tracial state 7 on C*(G, A, ). We will proceed by a method which is similar to that for
79, but which is more complicated. |

By Lemma I1.14 part (3), there exists z € D such that |leq — z| < 36 and |z|| < 1. Note
that ex also satisfies |leq — ez|| < |le|||eq — 2| < 16 and |lez|| < 1 so that by replacing z by ex we
may assume ex = z so that zz* € eDe and ||ege — z2*|| < §. As D &2 M,, ® fAf, has real rank

zero, we can apply the choice of g to find a projection ¢; € xzz*Dxx* C eDe such that
g(zz*)q1 =q1 and |qrzz* — zz*|| < En°

Set go =1 —e+q € (1 —e)+ eDe. Then we wish to estimate ||gog — ¢||. We begin by

computing,

llarz — $||2 = [(q1z — z)(q12 — 2)"||
< Nlgza™ —zz™| - llai|| + |qzz™ — zz™||

< 2|lquzz™ — zz”|

2

< ip?

W

Thus |1z — || < $7.
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Then, using ¢;e = q; at the second step,

llgog — qll = [I(1 — e)g + g1 — 4l
= |lq1eq — eq||

<2lleq —z| + gz — =l

Thus by the choice of 1, we have ¢ % qo.

Now we estimate the values of tracial states on go. Let 7 € T(C*(G, 4, @)).

Since |lege — zz*|| < &, the choice of § gives ||g(ege) — g(zz*)| < ge.

Then using the choice of ¢; at the first step, inequality in the C*-algebra at the third step,
the previous estimate at the fourth step, Lemma III1.2 at the fifth step, and g(geq) < g at the sixth

step, we estimate

7(q1) = T(qg(z2™)q1)
T(g(xm*)1/2q1g(x:ﬂ*)l/2)
T(g(zz*))

< 7(g(ege)) + 3¢

Il

IA

= 7(g(qeq)) + e

< 7(q) + 3e.
For the same reason we had 7(1 —e) < do when estimating 7(ro) we now have 7(1 ~e) < . Thus
7(go) = 7(1—e) + 7(q1) < 7(q) + 3¢.

Therefore, ¢o is the desired projection.
Apply Lemma II.15 with ¢: M, ® fAf — D and the projection e as given to obtain Ag

and a unital homomorphism : Ay — C*(G, 4, ).



Note that 1(Ag) contains D, and thus 79; also 1, e € ¥(A4p) and so
q € (1 —e) + eDe C 9(Ao).
Also, for every T € T(C*(G, A, )
7(ro) — 7(q0) > (T(r) — %6) — (T(q) + %6) > %6.
So by Lemma IIL.1, gy = rp in C*(G, A, «). Therefore,

g3 Iro3lm

which completes the proof. Il
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CHAPTER IV

REAL RANK OF CROSSED PRODUCTS

In this section, we prove that if A is a simple unital C*-algebra with real rank zero such that
the order on projections over A is determined by traces, if G is a finite group and if & : G — Aut(A4)
has the tracial Rokhlin property, then‘C’*(G, A, ) has real rank zero, and every tracial state on
C*(G, A,a) is induced from an a-invariant tracial state on A. The methods are adapted from

Section 4 of [16] which are in turn adapted from those of Section 4 of [20].

Theorem IV.1. Let A be an infinite dimensional stably finite simple unital C*-algebra with real
rank zero. Suppose that the order on projections over A is determined by traces and . : G — Aut(A)
is an action of a finite group with the tracial Rokhlin property. Then C*(G,A,«a) has real rank

ZETO.

Proof. Set B=C*(Z,A, ).

As in the proof of Thebrem IT1.5, the other hypotheses imply that A is stably finite.

Let a € B be selfadjoint with |l¢|| < 1. Let £ > 0. We will approximate a to within ¢ by
an invertible selfadjoint element. If ¢ is already invertible, there is nothing to prove. Therefore we

assume 0 € sp(a). Set €9 = gé, and choose a continuous function g: [—1, 1] — [0,1] such that
g(0)=1 and supp(g) C (—eg, €o).
Recalling the notation T(B) from Notation I1.4, define
= inf .
anbs T(9(a))

The algebra B is simple by Corollary 11.8, which implies that every tracial state is faithful. Also,

the facts that g(a) is a nonzero positive element, and T(B) is weak* compact together give n > 0.
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Choose dg > 0 such that whenever C is a unital C*-algebra and z,y € Cj, satisfy
I, lyll <2 and ||z =yl < do, then ||g(z) — g(w)]| < 7.
Set § = min (dg, 1,&0) . Choose N € N such that

T <
N

3

Since « has the tracial Rokhlin property, we can apply Lemma I1.14 to find projections
e, f € A, a unital C*-subalgebra D C eBe, and an isomorphism ¢: D — M,, ® fAf, such that

p(e) = Zeg,g@lfAf €M, ® fAf,

geG
such that
dist(ea, D) < 16 and dist(ae, D) < 4,
and such that there are N mutually orthogonal projections f1, f2,..., fnv € eDe, each of which is

Murray-von Neumann equivalent in B to 1 — e.
From the last condition, we see that for every 7 € T'(B) we have

T(l—6)§%§%<

w3

Set

z=a—(l—-¢e)a(l—e)=ea+ (1—¢)ae.

Notice that * = z since a* = a.

Choose z1,z2 € D such that
lea —z1]| < 36 and |lae — 22| < 1.

Since e € D and D is a unital subalgebra of eBe, we have (1 —e)za = 0 and ex; € D. Set
do =ex1 =ex1+ (1 —e)zge € D and set d = %(do +dg).

Notice that

ldo — z|| = |lex1 — ea + (1 — e)ae|| < |lez1 —ea| + [|(1 — e)ae — (1 — e)za| < 26+ 26 =4.
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Now set ag = a — x + d. The element a, satisfies

ag=uag, 60— (1—ea(l—e)=de D, and |a—ao] <é.

Next we compute

= ||ex1 - 61L‘1|| =0

1 ].
—exr1 — —
2 1 ) €xrie

lleas — age|| = ‘

since 1 € D C eBe. That is, e and ap commute.

Set y = eape and notice that this is a selfadjoint element of D since ag+{1—e)ag(l—e) € D
which implies e(ag + (1 — e)ao(l — e))e € D. We also have ||y|| < |lao] < |la|| + & < 2. Let g(y)
be the result of evaluating functional calculus in eDe = D. Since D has real rank zero, there is a

projection r € g(y)Dg(y) such that |rg(y) — g(y)|l < §n.
Let 7 € T(B); we claim that 7(r) > 7(1 — e). By the previous estimate,

n

Irg(y)r — gl < llrg(y)r — rg@)I| + llrg(y) — gl < 3

Since g < 1 we get g{y) <1 and so rg{y)r <, so that

7(r) 2 7(rg(y)r) > r(g(y)) — 37

Next we compute,

llao = (1 — €)ao(1l — ) + y)|| = llao — (1 — e)ao(1 — €) — eage|| = [leao(l —e) + (1 —- €)age|| =0

since [e, ag] = 0.
Let g ({1 — e)ap(1 - €)) be the result of evaluating functional calculus in (1 —¢e)B{1 —¢).

Then orthogonality of (1 — €)ap{1 — €) and y, together with the above computation gives

lg(ao) — g (1 — e)ao(1 —€)) + g(y)Ill = llg(ao) — g (1 — e)ao(l =€) +y)[| = 0.
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Since g((1 — e)ao(1 —€)) < 1 — e, the estimate 7(1 — e) < %77 implies

T(9(y)) =7 (9(a0)) ~ 7 (9 (1 — €)ao(1 — €))) > 7 (g(ao)) — 7(1 ~ &) > 7 (9(a0)) — 37-

Moreover, |la — aoll < & < & so [lg(a) — g(ao)|| < g, thus 7(g(a0)) > 7(g(a)) — §n. By

the choice of 7 we have 7(g(a)) > 1. So putting all of this together, we get
7(r) > 7(g(y)) — 31 > 7(g(a0)) — 51 > 7(g(a)) — §n > 11 > (1 —e).
This proves the claim. Since r € g(y)Bg(y), and supp(g) C Be,, by Lemma 4.5 of [20] we have
|lry — yrl] <260 and |ryr| < eo.
Since r < e and y = eage, we have ragr = reager = ryr, whence ||raor| < €g. Also,

l[r, ao]ll = ||raoe — eaor 4 rag(l — e} — (1 — e)aor||
= ||reage — eager 4 reag(l — €) — (1 — e)ager||
= ||lry 4+ reao(1 —e) —yr — (1L — €)ager||

= [Ifr, 5] + 0l < 2e0.

Define

a1 = (e —r)agle — ) + (1 — e)ag(l — e).

We would like to estimate ||a; — a||. First we compute

ag — a1 = (e —raog(l —e) + (e —r)agr + (L — e)ag(e ~ r) + (1 — e)agr

+rag(e — 1) +rag(l — e) + raor.
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Recalling that ||[(1 —e), ao]|| =0 and r < e, we get

llao — a1l = ||(e — r)aor + rao(e — ) + raor||
< |l(e = m)aor — (e — 7)racll + |lrag(e — r) — aor(e — 7)|| + [Iraor||
< 2[le—r]| - lao, ]| + €0

S 560.

Now since [|ag — a| < § < €9, we have

lar — a|| < 6eo.

Let Ap and 9: 49 — C*(G, A, @) be as in Lemma II.15, using ¢! in place of ¢ and with
e as above. Then 1 —e € ¥(Ap), as indicated in Lemma II.15, and by construction r € D C 9(Aq).
We proved above that 7(r) > 7(1 —e) for all 7 € T(B). So Lemma III.1 implies 1 — e 3 r in
B. Since 7 < e this gives 1 — e 2 e. Therefore Lemma 8 of [8] provides an invertible selfadjoint
element b; € (1 —e+r)B(1 —e+7) such that ||b; — (1 — €)ao(l — €)|| < 9. Also, by construction,
we have e, r, and y = eage € D so (e —r)ag(e —r) € D. Since D has real rank zero, there is an

invertible selfadjoint element by € (e — r)D{e — r) such that

b2 — (e — T)ao(e — 7)|| < €.

Since b, and by are orthogonal, by + bs is an invertible selfadjoint element of B, and satisfies

(b1 + b2) — all < [la — a1 + [lar — (b1 + b2)||
< 6eo + [|(1 — €)ao(1l —€) — b1]| + [[(e — r)ao(e — ) — bal
< 8o

=&

This completes the proof.

Corollary IV.2. Let A be an infinite dimensional stably finite simple unital C*-algebra with

real rank zero, and suppose that the order on projections over A is determined by traces. Let
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a: G — Aut(A) be an action of a finite group with the tracial Rokhlin property. Then the
restriction map is a bijection from the tracial states of C*(G, A, &) to the a-tnvariant tracial states

of A.

Proof. Since C*(G, A, &) has real rank zero by Theorem IV.1, this follows from Proposition 2.2
of [12]. 1

It is worth mentioning here the following theorem found as Theorem 2.6 of [23].

Theorem 1V.3. Let A be an infinite dimensional simple unital C*-algebra with tracial rank zero.
Let o : G — Aut(A) be an action of a finite group with the tracial Rokhlin property. Then

C*(G, A, &) has tracial rank zero.
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CHAPTER V

STABLE RANK OF CROSSED PRODUCTS

In this section, we prove that if A is an infinite dimensional simple unital C*-algebra with
real rank zero and stable rank one, such that the order on‘projections over A is determined by
traces, and if @ : G — Aut(A) is an action of a finite group with the tracial Rokhlin property,
then C*(G, A, @) has stable rank one. The methods are adapted from Section 5 of [16] which are

adapted from Section 5 of [20].

Lemma V.1. Let § > 0. Then there ezists a continuous function g: [0,1] — [0,1] such that
9(0) = 0, g(1) = 1, and whenever A is a C*-algebra with real rank zero and a € A is a positive
element with ||a|| < 1, then there is a projection e € aAa such that ||eg(a) — g(a)|| < & and

|lae —e|| < 4.
Proof. This was Lemma 5.1 in [16]. I

Lemma V.2. Let A be an infinite dimensional simple unital C*-algebra with real rank zero and
such that the order on projections over A is detérmined by traces. Let o : G — Aut(A4) be
an action of a finite group with the tracial Rokhlin property. Let qi,...,qn € C*(G, A, ) be
nonzero projections, let ay,...,am € C*(G, A,a) be arbitrary, and let € > 0. Then there exists a
unital subalgebra Ao C C*(G, A, a) which is stably isomorphic to A, a projection p € Ag, nonzero

projections 11, ..., € pAop, and elements by, ..., by, € C*(G, A, @), such that:
L |lgkre — k| <€ for 1 <k < n.
2. For 1 <k < n there is a projection gy € ryAory such that 1 —p ~ gi in C*(G, A, ).
3. |la; — bj|| <e forl <j<m.

4. pbjp € pAop for 1 < j <m.
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Proof. Set B = C*(G, A, ).
Let

2
o [ i (1€
n = 1?1%171 (Telng)T(ko >0 and &g =min (5, 5 ) .

Apply Lemma V.1 with €y in place of 4, to get a continuous function g: [0,1] — [0,1]. Apply
Lemma II1.3 with this function g and with &y in place of €, to get a number § > 0 such that
whenever 7 € T(B) and p, ¢ € B are projections such that 7(¢) > 1—46, then 7(g(qpq)) > 7(p) —€o.

Next choose €; > 0 with &1 < min (gg,¢) and small enough that whenever z,y € B are
positive elements with ||z(|, [|y|| < 1 and ||z —yl|| < €1, then ||g(z) —g(y)|| < €o. Then choose 2 > 0
with €2 < 1 and small enough that if z,y € B are selfadjoint elements with ||z||, ||yl < 1 and
|z — y|| < €2, then the positive parts z and y; satisfy |24 — y4+| < e1.

Apply Lemma I1.14 with F' = {q1,...,Gn, 61, ..., am }, With &5 in place of €, with an integer
N so large that 1/N < min($, o), and with z = 1. We obtain projections e, f € A C B, a unital

subalgebra D C eBe, and an isomorphism ¢: M,, ® fAf — D, with
TlyeersTpyClyeeesCm €D

satisfying

llea; —c;|| < ea,
[zl <1,

and

llegr — zill < €2

for 1 <j <m and for 1 <k < n. Moreover, 7(1 —e) < & < min(4, &) for every r € T(B).
Apply Lemma II1.15 with ¢: M, ® fAf — D and the projection e as given to obtain a
C*-algebra Ay which is stably isomorphic to A and a unital homomorphism ¢: 49 — C*(G, 4, o).
The subalgebra 1(Ao) will be the algebra A called for in the statement of the current lemma.
The projection e will be the projection p called for in the statement. Note that ¢(Ao) contains D,

and hence e.
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For 1 < j < m, set b; = a; + e(c; — a;)e, which satisfies

6 — a;ll = llecie — eaze|]| <e2 < e1 <€

and ebje =ecje € D C 1P(Ap).

These are parts (3) and (4) of the conclusion.
Now, for 1 < k < n, observe that %(ezke + ex}e) is a selfadjoint element of eDe = D of

norm at most one such that
”eqke — H(ezke + ew,’;e)“ < 1 |legre — exxel| + 5 |leqre — exfe|| < ea.
So, since egge is a positive element,
Yk = 1(ezie +exte)+

is a positive element of eDe of norm at most one such that ||egze — yi|| < €1.

By the choice of g using Lemma V.1, there exists projections ry € eDe C 1(Ag) such that

Ireye —rell <o and [lreg(yx) — g(wi)|l < 0.

Using 1 < e at the second step, we now have

(Teak — %) (QTk — Th) = Tk — TkQkTk = Tk — TEEQKDTk-
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Thus

Ireae = 7ill* = | (rea — 74) (rege — 72) ™|

= |lrg — rreqrerc

< lre — reyeriell + reyere — Treqeers||

< lre = reyell - lrell + llyx — eqeell

<ér+éo

<e?,
80 ||rkqr — k|| < €, and this is Part (1) of the conclusion.

We now estimate the traces on ry. For every 7 € T'(B), we have 7(rg) > 7(rig(yr)ri)-

By construction ||rpg(ye) — g(ve) |l < €0, thus ||reg(ye)re — g(ye) || < 2e0. Since ||yx — eqre|| < &1,
by the choice of €,, we obtain |[g(yk) — g(eqre)| < &o. Since 7(e) > 1 — 4, the choice of § using

Lemma II1.3 implies that 7(g(eqre)) > 7(qx) — £5- Combining all these, we get

7(rk) > T(reg(ye)ri) > 7(g(yx)) — 2€0 > 7(eqre) — 30 > 7(qx) — 4€o.

On the other hand, 7(1 —e) < &g < #n < $7(qk) Thus 7(r%) > 7(1 — €). Since 7 € T(B)

is arbitrary, and since 1 — e and 7, are in 9(A4p), Lemma III.1 gives Part (2) of the conclusion.

Lemma V.3. Let A be a simple, unital C*-algebra with property (SP). Suppose p and q are

nonzero projections in A. Then there exists a nonzero projection v in A such thatr 3 p andr <q.

Proof. Let z € pAq be nonzero. Then z*z € ¢Aq and zz* € pAp are both nonzero. Let
0 <e<|z*z|. Set f(t) =t—e fort > ¢ and f(t) = 0 otherwise. Let g(¢) be a continuous function
with g(t) = t~1/2 for t > ¢. Also set v = g(z*z)z*, with the functional calculus being evaluated in
gAq.
One can easily compute that g(t)*t = 1 for t > ¢ and w* f(z*z) = f(z*z) = f(z*T)vv*.
Set C' = Her(f(z*z)) and z = f(z*z). We claim if ¢ € C, then vv*a = a. We first
observe that z!/" is an approximate identity for C since for any a € C, a = limyecp zarz and so

Z1/"q = limyea 217/ "ay z which goes to limyeca zaxz = a as n goes to infinity. A similar argument
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on the other side shows that z is an approximate identity. To complete the proof of the claim we
now compute vv*a = lim,_,oo v0*2/"a = limy,_, o0 22/"a = a.

For any n € N, (zz*)"z = z(z*x)", thus for any polynomial k we have h(zz*)z = zh(z*z).
Then by the continuity of continuous functional calculus, for any continuous function h we have
h(zz*)x = zh(z*x).

Since € < ||z*z|, f(z*z) is nonzero, so using property (SP), let 7 € Her(f(z*z)) be a
nonzero projection.

We claim v*rv is a projection in Her(f(zz*)). It is easy to check that it is a projection.

For the other part of the claim, writing » = limyeca 7\ We compute

vire = (g(z"z)x") rg(z* z)z*

= zg(z*z)rg(z*z)x*
= g(zz™)zrz*g(xzz™)
= }\1&1\ glzz®)zf(z*z)ry f(z*z)z* g(zz™)

= /l\lenjlx g(zz®) f(zx*)zraz® f(z2™)g(zx™)

= lim f(z2")[g(z2")zraz"g(zz"))f (zz") € Her(f(zz"))

2

Finally compute (rv)*rv =v*rv and rv(rv)* = rov*r = r* = r. Thus, r ~ v*rv. Now we

note, r € Her(f(z*z)) C gAg, so r < q and v*rv € Her(f(zx*)) C pAp, sor 3 p.

Theorem V.4. Let A be an infinite dimensional simple unital C*-algebra with real rank zero
and stable rank one, and such that the order on projections over A is determined by traces. Let
a: G — Aut(A) be an action of a finite group with the tracial Rokhlin property. Then C*(G, A, o)

has stable rank one.

Proof. Let B = C*(G, A, ).
We proceed by showing that every two sided zero divisor in B is a limit of invertible

elements. Because B has a faithful tracial state, every one sided invertible element is invertible.

We combine this with Theorem 3.3(a) of [26] which says that B \ GL(B) is the one sided, but not

two sided invertible elements, to get B\ GL(B) = {}. That is, every element is a limit of invertible

elements, so B has stable rank one.
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Suppose a € B is such that there are nonzero z,y € B such that za = ay = 0. Let € > 0,
we show there is an invertible element ¢ € B such that ||a —¢|| < e.
Without loss of generality [la|| < § and & < 1. Since B has real rank zero by Theorem IV.1,

there are are nonzero projections
e € x*Bx and f ¢ yBy*,

and they satisfy ea = af = 0.
Apply Lemma V.2 to the nonzero projections e and f and the element a, with 1—136 in place
of €. Call the resulting subalgebra Ay, the resulting projection pg, the resulting nonzero projections

ep and fy, and the resulting element zo. Thus

eo, fo, PoTopo € poAopo, 1—po 3 eo, fo,

and

lleeo — eoll, £ fo = foll, lla — ol < gye.

Define ap = (1 — eg)xo(l — fo). We clearly have egag = apfo = 0, and we claim that

la — aol| < 5. First, using
lall <1 and |leoe — eo|l = [leeo — eol| < 136,
we have
lleozoll < lleoll - lzo — all + lleo — eoel - llall + [leceall < f5e + 756 +0 = Fe.
Similarly, ||zofoll < Ze&. Therefore

lla —aoll < lla —zo| + llzo — (1 — e0)zo(1 — fo)l
< |la — zo|| + lleozol| + 111 — eol - [|zo foll

1 2 2._35
< 3€+ 136 T 13€ = 136

This proves the claim. Since [|a|| < 1 and € < 1 we now get [lag|| < 1.
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Since A has real rank zero and Ag is stably isomorphic to A4, the algebra Ay also has real
rank zero. Now Lemma V.3 shows that there is a nonzero projection 7 < e such that r X fo. Since
A has stable rank one and Ag is stably isomorphic to A, by Theorem 3.6 of [25], Ag has stable
rank one. Thus, there is a unitary v € Ag such that v*rv < fy. Then r(agv*) = (agv*)r =0.

Apply Lemma V.2 to the nonzero projection r and the element agv*, with 1—135 in place of
€. Call the resulting subalgebra A;, the resulting projection p;, the resulting nonzero projection

e1, and the resulting element z;. Thus
er, pizip1 € prAip,  |Irer —eill, laov* — 1| < 756, and 1—pi Jer.
Define a1 = (1 — e1)z1(1 — e1). We clearly have eja; = aje; = 0. Also,
praipr = p1(1 —e1)z1(l —er)pr = (1 — e1)p1z1p1 (1 — e1) € prAipy,

since e; € p1A1p1, 80 p1 acts as the identity on e;. Furthermore, since ||aov*| < 1, the argument
used above to prove ||a — ag|| < 3¢ now shows that |agv* — a1]| < Se. So ||av* —ay|| < He. The

conclusion of Lemma V.2 provides s € B such that
s*s=1—p;, ss*<e, and ss* € A;.

Set eg = s8™ and w = s + s* + p1 — eg. Since e3 < €3 < py, it follows by computation that w is a

unitary satisfying
wegw* =1—p1, w(l—pw* =ey, and w(p —ex) =p1 ~ e

We now have egaijw = 0 and a1w(l — p1) = a1eqw = 0. So we can decompose the identity
as

l=ex® (p1—e2) ®(1—p1).

With respect to this decomposition, set ¢ = (p1 — e2)a,w(p1 — e2) and for suitable z,y, z € B, the
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element a;w has the block matrix form

0 0 0
arw = z ¢ 0
y z 0

Now use the fact that w(p; — e2) = p1 — ey and ey < p; to rewrite

c=(p1 —e2)a1(p1 — e2)

= (p1 — e2)pra1p1(p1 — e2) € (p1 — e2)A1(p1 — e2).

Since (p; — e2)A1(p1 — e2) has stable rank one, there exists an invertible element

d € (p1 — e2) A1(p1 — e3) such that |jc — d|| < #e. Then
%62 0 0

az = T d 0

is invertible in B, and satisfies [laz — ayw|| < &. So also apw*v is an invertible element in B, and

satisfies

lacw™ v — a|| = ||agw* — av*||

< llaz — awl + oy — av”|

This is the required approximation by an invertible element. ll
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CHAPTER VI
THE PROJECTION FREE TRACIAL ROKHLIN PROPERTY

Recall the following definition from the introduction.

Definition VI.1. Let z and y be positive elements of a C*-algebra A. We write x < y if there
exist elements r; in A such that rjyr; — x with convergence in norm. In this case we say x
is (Cuntz) subequivalent to y. If z < y and y < z, we write  ~ y and say z is (Cuntz)

equivalent to y.

Definition VI.2. Fore > 0, let f. be given by f.(t) =0 for 0 <t <e¢, by f(t) = (t —¢€) for

eXt<2 and f:(t) =1 fort > 2e.

It is useful to have alternate formulations of this concept. The following proposition is

Proposition 2.4 in [27] .

Proposition VI1.3. Let f: be as in Definition VI.2. Let x,y be positive elements of the unital

C*-algebra A. The following are equivalent:

lLz=xy.

2. For alle > 0, there exists r € A with f.(z) < ryr*.

8. There exist elements T; and s; of A with rjys; — .

4. For all € > 0, there exists 6 > 0 and r € A such that f.(z) =rfs(y)r*.
Additionally, if A has stable rank 1, then (1)-(4) above are equivalent to:

5. For all € > 0 there exists a unitary u € A such that uf.(z)u* € yAy.

The following proposition is useful for determining subequivalence of elements constructed

using functional calculus.
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Proposition VI.4. Let f and g be positive functions in C(X) or Co(X) for some space X.
1. If{ze X : flz) #0} C {z € X : g(z) # 0}, then f < g.

2. Suppose that f < g, that X C [0,00), and that a € A is a positive selfadjoint element of a
C*-algebra A with sp(a) C X. Then f(a) < g(a).

Proof. The first part is a comment just before Proposition 2.1 of [27].
For the second part let h; € C(X) be functions such that h; ghj — f. Then, since func-
tional calculus is a continuous homomorphism, (h;gh)(a) = hj(a)g(a)h}(a) — f(a). Therefore,

f(a) < g(a) by definition. I
The following definition is a projection free analog of Definition 1.2 of [23] .

Definition VI.5. Let A be an infinite dimensional unital simple C*-algebra. Let o : G — Aut(A)
be an action of a finite group G on A. We say a has the projection free tracial Rokhlin property
if for every finite set F' C A, every € > 0, and every positive element ¢ € A with ||z| = 1, there

exist mutually orthogonal elements ag € A for each g € G with 0 < agy < 1 such that:
1. ||lag(ap) —agnl| <€ forallg,h € G.
2. |lagh —bag|| <€ for allge G and b € F.

3. Witha = dec ag, the element 1 — a is Cuntz subequivalent to an element of the hereditary

subalgebra generated by x.
4. laza| > 1 —e¢.
5. 7(1—a) <e for all T € T(A).

Note that since any element of zAz is subequivalent to x, the third condition implies

l—a<xz.
Lemma VI.6. Ifa and a4 are as in Definition VI.5, then |la|| = maxgeq [|ag]-

Proof. 1t is sufficient to prove that, for any n € N, if ay,...,a, are positive mutually orthogonal
elements of A, then |37 a;] = max{[|ai],...,|lan|}. Furthermore, since positive mutually
orthogonal elements commute, it is sufficient to prove that for any n € N, if fy,... f,, are positive

mutually orthogonal elements of C(X) or Co(X) for some compact Hausdorff space X or some
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locally compact Hausdorff space X, then || Y7 | fi| = max{||f1],...,[|fr]|}. However, this last

statement is obvious since for each z € X we can have f;(z) # 0 for at most one index 7. Il

Lemma VL.7. Let A be an infinite dimensional unital simple C*-algebra. For any € > Q, finite

set ' C A, and positive element x of norm one, if a and ay are as in Definition VI.5, then
L |al| >1—¢
2. |lagll| > 1 —2¢ forallg € G.

Proof. Using Definition V1.5 to get the the last inequality, we have
lall* = llalllzlla]l 2 llaza] > 1 —e¢.

However since 0 < ay <1 for all g € G and these elements are mutually orthogonal, 0 < a <1, so
llall > ||la||?. This proves part 1.

By Lemma VI.6, maxseq |lag| = |la]l > 1 —e. Thus there exists some h € G so that
lan|| > 1—€. However, for any g € G, we have ||agp-1{an)—ay|| < e. Thus, ||agn-1(an)||—|lag| <e.
Since agp-1 is an isomorphism, this gives ||ax|| — |lag|| < &. Therefore, |ag) > jlan)] —e > 1 — 2.

This proves part 2. 11
The following lemma and its corollary are analogs of Lemma 1.5 and Corollary 1.6 of [23].

Lemma VI.8. Let A be a simple, infinite dimensional unital C*-algebra. Let o : G — Aut(A) be
an action of a finite group with the projection free tracial Rokhlin property. Then ag is outer for

every g € G\ {1}.

Proof. Suppose v is a unitary and g # 1. Let 0 < € < 5\7—%@ Notice that € < 1/2. We will
show that there is some b such that |[u*bu — a4(b)|| > €. Apply the projection free tracial Rokhlin
property with this e, with F' = {u} and with z = 1 to get mutually orthogonal a, € A for each
g € G with 0 < ay <1 satisfying the properties there. Set a = ) geG 0g- In particular, the fourth

property, [|azal > 1 — ¢, implies [|¢®|| > 1 — . Thus

Y llagh = flall > vI=¢ > v1-1/2 = /1/2.

geG
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Thus there exists h € G such that ||ay|| > 1/(v/2|G|). Next we compute

|ag(an) —uapu™|| > (lagh — an| — lluaru® — an|| — llag(an) = agnll
> ;f}cg}é{llagklh lax[} —e—¢

> 1/(V2|G|) — 2¢
> 3¢ — 2 by the choice of

=E&.

This completes the proof. il

Corollary VI.9. Let A be an infinite dimensional simple unital C*-algebra and let oo : G —
Aut(A) be an action of a finite group with the projection free tracial Rokhlin property. Then
C*(G, A, a) is simple.

Proof. In view of Lemma V1.8, this follows from 3.1 of [11] I

Lemma VL10. If f : R — R is continuous with f(0) = 0 and a1,...,an € Ay are mutually

orthogonal, then f(3 i qai) = Yoy f(as).

Proof. 1t suffices to prove that the lemma holds for two orthogonal elements ¢ and 5. We claim
that the lemma holds for f(z) = ™. Since a and b are orthogonal, they commute, and using these

two facts we have

(a+b)" — Z (Z)ak:bn—k =" 4 b

k=0
which proves the claim. Therefore, the lemma also holds for any polynomial with zero constant
term. Now let f be an arbitrary continuous function with f(0) = 0, and let (p,) be a sequence of
polynomials with zero constant term which converges uniformly to f on sp(a) U sp(b) Usp(a + b).
Since pn(a + b) = pn(a) + pn(b) for all n, it follows that f(a +b) = f(a) + f(b).

Lemma VI.11. Suppose f : [0,1] — R is continuous. Then for all e > 0, there exists a § > 0 such

that for any C*-algebra A and any self-adjoint elements  and y of A with sp(z),sp(y) C [0, 1] and
lz —yll <6, then || f(z) — fy)| <e.



46

Proof. We first show that the lemma is true whenever f(t) = t* for a natural number k. The

lemma clearly holds for k¥ = 1. Now suppose the lemma holds for £ — 1. Then

% — y* | < llz* — 2Tyl + 2* 1y — ¥
< [lz" e =yl + l=F ~ o=yl

<z =yl + 25~ ==

Thus the lemma also holds for k.
Therefore, by the triangle inequality the lemma is true for all polynomials.
Now suppose f is arbitrary and let € > 0 be given. Let P be a polynomial with || f — P| <

€/3. Choose § > 0 corresponding to P with €/3 in place of €. Then for ||z — y|| < § we have

£ (@) — fF@)I < If (@) = P@)| + | P(z) — P)Il + | P(y) — fFW)l
<e/3+¢e/3+¢/3

=E.

This completes the proof. ll

Lemma VI.12. Suppose f : [0,1] — R is continuous. Then for all € > 0, there exists a § > 0
such that if x is self adjoint in some C*-algebra D with sp(z) C [0,1] and if z € D with ||z|| <1
and ||[z, 2]|| < &, then ||[f(2),2]] <e.

Proof. We first show that the lemma is true for any monomial f(t) = t*.
The lemma is trivial for £ = 1. Now suppose the lemma holds for all n < k with the
choice of § for a given pair of ¢ and f called &(¢, f). Let 0 < § < min{e/2,6(¢/2,2*71)} and let

[z, z]|| < 8. Then we have

[z, z2]l| = llwzz — za?|| < |l[z, 20| =]l <& < (/2,277

and ||zz|| < 1. Thus,
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bz — 22| < [lab= (@2) — (22)2" || + oz~ — 22t < /2 + |loz — zal 1] <.

This shows that the lemma holds for all monomials.

By the triangle inequality, the lemma holds for all polynomials. Then let f be arbitrary
and P be a polynomial with | f — P|| < /3 converging uniformly to f. Let € > 0 be given. Let
§ =8(e/3, P). Then

| f(x)z — zf(2)|| < || f(x)z — P(z)z| + || P(z)z — zP(z) <e

| +1zP(x) — zf(2)|

which completes the proof. Il

Lemma VI1.13. Let A be an infinite dimensional simple unital C*-algebra. Let G be a finite group
and let o : G — Aut(A) be an action with projection free tracial Rokhlin property. Let e > 0 be
given, let F C A be a finite set, and let x € A be a positive element of norm 1. Then there exist
by € A and cg € A for each g € G such that cgbg = ¢,, 0 < bg <1, and 0 < ¢g < 1, and such that

the elements by are mutually orthogonal elements satisfying:
1. ||ag(br) — bgn|| < € and ||ay(cr) — cgull for all g,h € G.
2. ||bgz — zbg|| < € and |[cgz — zcy|| <€ for allg € G and z € F.

3. With b= EQGG by, the element 1 — b is Cuntz subequivalent to an element of the hereditary

subalgebra generated by x.
4. ||bxd]| > 1 —e.

Proof. Let n = |G|. Let € > 0 be given. Without loss of generality jjy|l <1 for all y € F.
Choose §; so that 2 /2+4-2nd; < e. Define continuous functions r and f on the nonnegative

real numbers by:

e 7 ig linear for t € [0,1 — &;],
o r(t)y=1forte[l—4d,1],

o f(t)y=0fortel0,1-4],
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o fislinear for ¢t € [1 — 4,1 —61/2], and
o ft)=1forte[1—46:/2,1].

Apply Lemma VI.11 to the function r with §; in place of . Let d2 be equal to the § given
by the lemma. Now apply Lemma VI.11 to the function f with §; in place of . Let §3 be equal
to the & given by the lemma. Apply Lemma VI.12 to the function r with é; in place of £ and then
to the function f with 4; in place of £, and call the minimum of the two deltas that you get 4.

Choose 5 < min{§2/2, 82, d3, (54}. Apply Definition VI.5 with 85 in place of &, with F' as
given, and with z as given to get positive mutually orthogonal elements a, for each g € G. Set
by = r(ag) and ¢y = f(ay). Note that since ||r(t) —t|| < 61, we have ||by — a4|| < ;. Therefore,
witha =} cgagand b=3" by, we have |la —b|| < nds.

First we investigate the effect of the action on by. Using the choice of 45,
llotg (bn) — bgnll = llag(r(an)) — r(agn)|l < lleg(ran)) — r(ag(an))ll + lIr(ag(an)) — r(agn)| < é1.

Similarly, ||ag(cr) — cgn|| < 61. We have now verified (1).

Next we prove that by and ¢y approximately commute with the elements of F. For any
y € F and g € G we have ||yag — agy|| < d5, so by the choice of d4 using Lemma VI.12 for r we
have ||yby — byy|| = |lyr(ag) —r(ag)y| < 61. Similarly, |lycy — cgy|| < 61. We have now verified (2).

To verify (3), recall 1 —a < . Thus it suffices to show that 1 —b < 1 —a. Let ¢ denote the
function h(t) = t. For each g € G define a homomorphism ¢, : Co((0,1]) — A such that ¢4(t) = a,.
Note that if g # h then ¢4(t)pn(t) = agap = 0. Thus, since ¢4 and ¢ are homomorphisms, for
any polynomials p; and p, with zero constant term, we have ¢4(p1)¢n(p2) = 0 if g # h. Therefore,
for any f1, f2 € Co((0, 1]) we have ¢, (f1)én(fa) i g # h.

This means we can define a homomorphism

¢: P Ca((0,1]) — A

g€eG

¢ ((fg)geG)) = Z ¢g(fg)-

geq@
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Since A is unital we can unitize to obtain a unital homomorphism

+

— A.

geG

g : [@ Co ((0,1])

The C*-algebra [@ ;¢ Co((0,1])]* is isomorphic to C(Y) with ¥ = ([0,1] X G)/ ~ where
(0,9) ~ (0,h) for all g, h € G. This is because Y is the one point compactification of UgeCp ((0, 1]).
Define functions dg : Y — C by dy(t,h) =t if g = h and d4(t,h) = 0 if g # h. Note that dg is
continuous, so dy, € C(Y). Also observe that ¢t (d,) = a.

Now, by the definition of r we see that {t € [0,1]: 1 —r(t) =0} D {t € [0,1]: 1 —¢ =0}.
Therefore, {y eY:1—r (dec dg(y)) = 0} D {y €Y:1-3 cqdg= O}. Thus by Lemma,
VI.4, we have 1 —r (deG dg) < 1 -3 ,eqdg which gives

(ol 29

Since ¢1 is unital, we have

1—¢t (r (ng)) <1=) " ¢7(dy).

9€G geEG

Now using the fact that functional calculus commutes with homomorphisms and then that ¢+ is a

homomorphism we see 1 — ¢+ (r (deg dg)) =1-r (¢+ (deg dg)) =1-r (dea ¢t (dg))-

Therefore,

geqG geaG

L—r (Z ¢+(dg)) <1-= Z¢+(dg)-

However, we observed above that ¢*(dy) = a, so this shows

1—r (Zag> <1=a,.

9€G geG

Now the mutual orthogonality of the elements a, means r (dec ag) = 2 secT(ag) = b by

Lemma VI.10. Therefore, 1 —b < 1 — a < x which is (3).
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Finally, we verify condition (4). We have

|bxb|| > |laza| — laza — azb|| — ||azb — bxb||
>1 -6 — [lazllla - bl — [la — bjf|jbl]
>1—62/2 - 2nd;

>1-—e.

This completes the proof.

Lemma VI.14. Let 7 be a tracial state on A. For all € > 0, there is a § > 0 such that if
g :10,1] — [0,1] is a continuous function satisfying g(0) = 0 and g(t) =1 fort € [1 —¢,1], and
ifa € A with 0 < a <1 and with 7(a) > 1 =4, then 7(1 — g{a)) < e. Moreover, we may choose

§=¢e2

Proof. Let p be the measure on sp(a) C [0, 1] obtained from 7. If 7(a) > 1 — 4, then

1-6<7(a)
ST —eu(0,1—¢]) +1-u((1—e,1])
=1 —e)u(0,1 —¢]) +1 — u([0,1 —¢])
= (0,1 —¢]) —ep([0,1 —¢]) +1 — (0,1~ €])

=1- 5,“'([0’ 1- E]))

which implies that
—-§ < —¢([0,1 —¢])

or equivalently

§ > ep([0,1 —¢)).

This gives

2> (01— ]).
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Now we compute

M|

So if § < €2 then

Lemma VI.15. Suppose A is an infinite dimensional simple unital C*-algebra. Suppose G is
a finite group. Let o : G — Aut(A) be an action of G with the projection free tracial Rokhlin
property. Suppose T € T(C*(G, A, ), then there exists o € T(A) such that T = o o E where

E:C*(G, A &) > A is the conditional expectation.

Proof. It suffices to show that if z € A and g € G\ {0}, then |7(2uy)| < € for any € > 0. Let € >0
be given. Let n = card(G). Without loss of generality, ||z| < 1.

Choose 41 using Lemma VI.12 with £ in place of ¢ and with t/2 in place of f. Choose
82 using Lemma VI.11 with £ in place of ¢ and with t!/2 in place of f. Choose J3 < min{%, 5}
Choose 64 using Lemma VI.14 with d3 in place of €. Choose a continuous function g : [0,1] — [0,1]
such that g(0) = 0 and g(¢) =1 for t € [1 — 83,1]. We also require that ||g — (2t — 2)|| < d5. This
is possible since sup,e(_s, 1 1 — (2t — %) = &3.

Apply the projection free tracial Rokhlin property with &4 in place of e, with F = {z}
and with 1 in place of the positive element z to get mutually orthogonal positive elements ay, for
each h € G. Set a = ), .~ an. One of the properties satisfied by a is that 7(a) > 1 — é,. By the
choice of g and 44, this implies 7(1 — g(a)) < 3. By the second requirement on g we now have
7((1 — a)?) = 7(1 - (2a — a?)) < 7(1 — g(a)) + d3 < 263.

Next we need to bound |7(zug(1 — a))|?. By the Cauchy-Schwartz inequality, we have

|T(zug(l — a))|2 < T(ugm:*u;)'r((l — a)2) < [|a;]|2'r((1 - a)2) < 203 < %

Therefore, we can conclude

IT(zug(1 — a))| < €/3. (VIL.1)
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We are now in a position to compute |7(zu,)|. We have

1/2 1/2
T(zug) — Z T(:z:ah/ agé Ug)

heG
Z T (zugan) — Z T (a,llmzcugat/z)

IT(zug)| =

< |7(zug) = 7(zuga)| +

heG heG
1/2 1 2 1/2
+ Z T (ah/ :cugah/2u;ug) - Z T (a,ll/ :z:ag,/I ug)
heG heG
/2, 1/2 1/2 1/2
+ ZT (ah Tagy, ug) — Z T (:cah ayp, Ug
heG heG
1/2 1/2 1/2_ 1/2
< 1 (zug(l —a))| +0+ Z ’T (ah/ :z:ugah/ uyug — ah/ :z:ag,/I ug)’
heG
1/2_ 1/2 1/2 1/2
+ Z IT(ay “zayy ug — zay “a ) ug)|
heG

<e/3+ 2 Hugahu; — a;{fH + Z ”a,ll/zx - :ca}/zH by Equation VI.1
heG heG

£ + ni by the choice of d; and &

<e/3
e/ +n3n 3n

=E£.

This completes the proof. I
The following definition appears near the end of section 2 of [3].

Definition VI.16. Given a normalized 2—quasi’—tmce T on A, one may define a map

dr : Moo(A) 4 = (Upl1 Mn(4))4 — RF

dr(a) = lim 7(a'/™).

n—00
We say that A has strict comparison (of positive elements) if limy, o0 7(a'/™) < lim,—,0 7(bY/™)

for every normalized 2-quasi-trace 7 on A, implies a < b for all elements a,b € A} \ {0}.

Notice that since the definition is already treating M, (4), if A has strict comparison, so

does M,,(A) for any positive integer n.



53
Lemma VI.17. If A has strict comparison and ¢ € Ay, then cAc has strict comparison.

Proof. Suppose a,b € Ay and limp—eo 7(a/™) < limy,_,eo 7(bY/™) for every normalized 2-quasi-
trace on cAc. Note that any 2-quasi-trace ¢ on A restricts to a 2-quasi-trace on cAc, so for such

o, we have lim,,_, o, 0(a'/™) < litly, 00 0(b1/™). Therefore, a < b by the strict comparison on A. ll

Remark VI.18. The hypothesis that all 2-quasi-traces are traces appears frequently in what fol-
lows. Thus it is worth noting as is done near the end of Section 2 of [3] that every exact C*-algebra

satisfies this hypothesis.

Lemma VI.19. Let A be a C*-algebra with strict comparison. Fiz z € A with 0 < z <1 and
2 #0. If0 < e < 7(z) for every 2-quasi-trace 7, if g : [0,1] — [0,1] is continuous and satisfies
g(0) =0and g(t)=1fort €1 —¢,1], andifa € A with0 < a <1 and 7(a) > 1 —£? for every

2-quasi-trace T, then 1 — g(a) < 2.

Proof. We first claim that (1—g(t))}/™ = 1— g, (t) for some continuous g, satisfying g, (0) = 0 and
gn(t) =1 for t € [L—¢,1]. To see this, observe that this is equivalent to saying (1—g(¢))/™ = f.(t)
for some continuous function f, satisfying f,(0) =1 and f,(¢) =0 for ¢t € [l —¢, 1]. But the left-
hand side is the composition of continuous functions, hence continuous, and the left-hand side
maps 0 to 1 and [1 —¢€,1] to 0, so the equivalent statement is clear.

By the claim and the previous lemma, since each g, is a function of the same type as g,

we have 7((1 — g(a))/") = 7(1 — gn(t)) < €. So now
(1 - gla)V/™) < e <7(2) < 7(M?) < 7(z}/3) < -+,

which implies that

lim 7((1 —g(a))"") < e < 7(2) < lim 7(z*/™),

n—oo n—oo

which gives

lim 7((1 —g(@)¥™) < lim 7(z/").

n—oo

Since A has strict comparison, it follows that 1 — g(a) < z. I
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CHAPTER VII

STABLE RANK AND THE PROJECTION FREE TRACIAL ROKHLIN PROPERTY

Lemma VIL1. Let f be a continuous function on [0,1] with f(0) = 0. Let {egr} be a set of

matriz units for My,. Then in C([0,1]) ® M,, we have f(t ® eg,4) = f(t) R egg.

Proof. We first claim that t¢ @ ey, = (t® ey 4)* for all d € N,d > 0. This is true since e | = ey .
Next, we claim that if p is a polynomial that vanishes at zero, then p(t ® eg 4) = p(t) ® €g,4. This
holds by combining the first claim with the equality a ® ¢q,g + b ® ¢4, 4 = (a +b) ® eg,4. Finally,
we claim that this holds for any continuous function f on [0,1] with f(0) = 0. For any € > 0, let

p be a polynomial such that p(0) = 0 and [|p — f|| < &. Then we have

[f(t®egg) — f(t) Deggll < IfE@egq) —p(t® eg.a)ll + Pt @ eg,g) —p(t) ® eg 4l
+1p(t) @ 9,9 ~ f(t) ® g4l

< 2e

Since this holds for any € > 0, the result follows. ll
The following proposition and proof are very similar to Proposition 3.3.1 of [13]

Proposition VII.2. The universal C*-algebra A generated by {y;r : 1 < 3,k < n} subject to the

relations
1L Yja, k1 Uiz ks = 5k1»j2yj1,j1yj1,kw
*
2. yj,k = VYk,js

3. Y11 7é 0, and
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4. 0<y;; <1
18 isomorphic to CM,.

Proof. We identify CM,, as Co((0,1]) ® M,. Let {e;x} be an n by n set of matrix units for M.
Define the map ¢ : A — CM,, by y;x — t®e; . Since the elements {t ® e; 1} satisfy the relations
which {y;x} satisfy this a well defined homomorphism.

By the Stone-Weierstrass Theorem the elements {t ® e; 1} generate CM,,.

Consider an irreducible representation m : A — H of these relations. Let z;, = 7(y; ).

Consider the element ¢ =22 | +--- 422 . For any j and k between 1 and n,
2j,kC = Zj,kZk,kZk,k = Zj,jZ§,j%5,k = CZj k-

Thus ¢ is central in C*({z;x}1<jk<n). Because 7 is irreducible, this implies that ¢ is a scalar
multiple of the identity. That is, for some <y € [0, 1], we have ¢ = v1.

If ¥ = 0, then ¢ = 0. In this case, given [ and k& with 1 <[, k < n, we have

-1 n
— p = 2 2 *
O=c=3) 2+ > A A
j=1 J=l+1

Note that this sum consists entirely of positive elements and yet adds to zero, therefore each item
in the sum is zero. In particular 2,2/, = 0 which implies z;; = 0. Therefore, if v = 0, then z;

is the image of ¢t ® e; x under the zero representation of CM,,.

If ¥ > 0, then y* is defined. Note that yz2; = cz? “l22) s

4 e
5; = #;;- This implies that -y

a projection for every j. From this we can also conclude that v~1/2z, ; is a projection. Next we

check that the elements y~1/22; ; satisfy the relations for a set of matrix units for M,,. We have

—-1/2

—1/2 _ —1 .
g 25,k /Zl,m—“Y Ok,i24,j%j,m

= Oy 225,972

n
= Ok, (Z'Y_lmyg,g) 7_1/2%,7’1
g=1
n
= 5k,l’y—1/2 (Z yg,g> 7_1/2
g=1

= kv Y2y m.

zj,m
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The other two relations are clear.
Up to unitary equivalence, H = C™ and z; » = 7'/?e; ;. These are the images of {t ®€;x}

under evaluation at v/2. Thus by Lemma 3.2.2 of [13] we are done. il

The following lemma guarantees the existence of elements of C*(G, A, @) which satisfy the
cone relations above, approximately respect the action of GG, and are near elements produced using

the projection free tracial Rokhlin property.

Lemma VII1.3. Suppose A is an infinite dimensional unital simple C*-algebra. Let € > 0, let
F ¢ A be a finite set, and let x € A be a positive element of norm one. Suppose G is a finite group
and o : G — Aut(4) is an action of G on A with the projection free tracial Rokhlin property. Then
there exist § > 0, positive elements ag € A for each g € G, and elements Yy, € C*(G, A, ) for

each g, h € G such that for g,h,j,k € G we have
1. Yik¥gh = 0k,gY5;Yjh.
2. Y}y, = Yi;.
3. Y1,1 # 0, where 1 is the identity of G.
4 0<Y; ;<1
5. |lurYjr — Yl <e.
6. |[Yiguf — Yigll <e.
7 Y55 —asll <e
8 Y11 €A
9. 11¥5,55 — bY; 5| < 2¢lb]l + & for any b e F.
10. ||laj(ag) —ajkl <6 .
11. ||lajb — ba;|| < § for allb € F.

12. With a = 3 ccag we have 1 — a is Cuntz subequivalent to an element of the hereditary

subalgebra generated by x.
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18. |lazal|| > 1 -4.
14. 7(1 —a) < § for all 7 € T(A).

Proof. First observe that if n = card(G), then (1) through (4) are the relations needed for'CMn by
Proposition VIL.2. Also observe that (5) and (6) are equivalent by taking adjoints, so we will only
prove (5). In order to show (5), it suffices to show ||u; Y1 x—Yj k|l < €/2 and |Ju;-1Yj e —Y1x| < €/2.

We will proceed by induction on the matrix size of the cone, showing at each stage that
all the relations are satisfied.

First we work on CMas. Let 1 be the identity of G and let g € G be a fixed non identity
element. Let € > 0 be given. Choose §p with 0 < &y < ¢ such that if  and y are positive elements
of norm less than or equal to one in any C*-algebra, and if ||z —y|| < do, then ||z/2 —y/?| < £/4.
Without loss of generality, d; < €. Apply the projection free tracial Rokhlin property with &y in
place of € and with F’ and z as given to get a; for each group element j € G. Properties (10),

(11), (12), (13), and (14) are true by the definition of the projection free tracial Rokhlin property.

Define
L 1/2 1/241/2
y1,1 =(ay “uzaguga;’”) /
(172 % 1/241/2
Yg,g =(ay “ugaruzay’*)
_1/2 % 172
Y1,g =0, “uza,
_1/2 1/2
yg,l —ag/ Ugaul .

Using the fact that a; and a4 are mutually orthogonal, it is easy to check that properties
(1), (2), and (3) of the statement are satisfied. For (4) we recall from the definition of the projection
free tracial Rokhlin property that 0 < a; <1 for each j € G. This implies
0< a}/zu;agugai/z < a; £ 1. Therefore, 0 < y;; < 1. Similarly, 0 < a;/zugalu;a;/z <as <L
Therefore, 0 < yg, < 1.

To show (5), we use

lag — ugaruf| < b

to compute,

1/2 « *
lugy1,g = Yg,oll < ||Uga1/ U’ga’;/z —agll + [lag — (a’gl;/ngalu’gagl;/z)l/zll <efd+efd=¢/2.
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Similarly, ||ugy1,1 — ¥g,1]| < €. But now
lug=1Yg,10 — 1,1l = llugug-1y51 — ugtnall <e

and

Hug_lyg,g — Y16l = lugug-1yg,5 — ughr4ll <e.

Next we show that (7) holds. By the choice of dg, we have

2
lay/?utagugar’® — a?|| < ||utagug — aul| < do,
which implies

1/2 2
lyn — all = l(ay *utagugal/*) V2 - a1 < e/2.

Similarly, |lyg,q — agll < /2.
For property (8), we note that ujasu, = ay-1(ay) € 4, s0 y11 € A.

Next we show (9). For any b€ F and j =1 or j = g, we have
Yi,g0 = by sl < l[vs,50 — azbll + llab — baj|l + ||bay — by; ;|| < ellbli + do + el|b]] < 2elb] + &

For the purposes of induction it is helpful to have one more property, namely, that y; .
for j,k € {1,9} are each orthogonal to an, for all m € G\ {1,g}. This is clear since ajan, = 0 if
j # m. This completes the base case.

From now on call the elements of G, 1,...,7,...,n instead of g1, ... g, to avoid an excess
of double subscripts. In order to avoid confusion, 1 will be the identity of G.

Now suppose that for any €1 > O there exists a positive number §(e,m) such that if
{a;};jec are the elements which come from applying the projection free tracial Rokhlin property
with d(e,m) in place of € and with F' and z as given, then there exist elements z; ; € C*(G, A, ¢)

for 1 <j,k <m and a; € A for j € G such that
L. 2§, k20 = 5k,lzj,jzj,h for 1 < j, kala h < m,
2. 2 =2k, for 1 < j, bk <m,

3. 21,1 7é 0,
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4. 0< 2,1 €1,

5. |lukzjy — zijall <erif 4,k 0, kj <m,

6. ||z50uy — 250l <e1if 4, k1 kL <m,

7. lzj5 —ajll <e1if 1 <5 <m,

8. 211 €A,

9. ||z5,5b = bzj ;]| < 2e1]|b]| + €1,
10. [lej(ar) — ajull <6,
11. ||lajb — ba;|| < 6 for all b € F,

12. With a = Y geG Gg We have 1 —a is Cuntz subequivalent to an element of the hereditary

subalgebra generated by x,
13. |jaza| > 1 -4,
14. 7(1 —a) < 6 for all 7 € T(A), and
15, zjray =aqz;p, =0if 1 <jk<mand m+1 << n

Given any € > 0 we wish to show we can produce elements y; ; and a4 which satisfy the
above properties for 1 < j,k <m+ 1, for all ¢ € G and with € in place of £; above. Without loss
of generality, € < 1.

Let 0 < dg < €/192. Choose 6; so that if z and y are positive elements with ||z| < 1,
lyll < 1 and ||z — y|| < &1, then ||z1/2 — y1/2|| < §3. Without loss of generality, §; < &. Then
choose d5 > 0 such that if z and y are positive elements with ||z|| < 1, ||y|| <1 and ||z — y|| < J2,
then ||21/2 — y1/2|| < 6,/8. Choose d3 = min{s%;, %}. Now choose 0 < d5 < min{dy, §1/4}.

Define a continuous function f to be zero on [0,d4], one at ¢ = 1, and linear on [dg4, 1].
Define a continuous function ¢ to be zero at t = 0, one on [J4, 1], and linear on [0, §4]. Notice that
I 7(t) —t|| < d4 and that fg = f.

Choose a polynomial p in C([0,1]) with ||p — t¥/2|| < 63/3 and p(0) = 0. Whrite p(t) =
S bmt™. Let Ap = an=1 |bm|. Suppose ¥ : CM,, — B is a homomorphism to a C*-algebra

m=1
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B and u € B is a unitary satisfying

s

”w/)(t ® el,k) — ’l/)(t ® ej,k:)” < 3)\17'

Then

(' @ exn) ~ p(t° ® )|

< Jugp(t? @ e1k) — up(p © er )| + urh(p ® erk) = Y (P ® ej0) | + 190 ® ejk) — h(tV* @ ej)|

d
<2 =pll+ > luap(bmt™ ® e1,k) = Y(bmt™ ® eji) | + [lp — /2]
m=1
d
<203/34 Y |bmlllunp(t ® e k)™ @ ek k) — Y(E® €56)P(E™ ! @ e i)
m=1

d
03
3253/3+§ |bm| ———
3 bl

= 05, (VIL1)

This implies

lup(F12 @ err) — Y(f1/% ® ej )|l < 204 + b3 (VIL2)

P

Choose 0 < 05 < min{%, 35 &, 22}, Let 0 < 0 < min{e/48,61/2}. Apply the induction
hypothesis with 5 in place of &; to get elements z; and a, which satisfy the fifteen properties
above. We also require that 6(85,m) < &. That is, we may assume the projection free tracial
Rokhlin property was applied with a number smaller than Jg in place of . Once again, properties

(10), (11), (12), (13), and (14) are satisfied by the definition of the projection free tracial Rokhlin

property.
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These elements z;j allow us to define a homomorphism ¢ : CM,, — C*(G, A,a) by

(t®ejr) > zjx Let s; = ¢(f1/2®ej1) for j=1,...,m. For 1 <j <m, set

_ s 1/2 2. % 1/2 y1/2
Ym+1,m+1 = (am+1um+131um+1a7H+l) /

)
_ * 1/2
Yjim+1 = SjlUp,18p 11,

_1/2 "
Ym+1,j = Oy 1Um+155,

* *\1/2
g = (87U 41 Gma1Umr18]) Y

)

Yik = Yj,9(9 ® ejk)-

Before we start to prove that these elements satisfy the cone relations, we make some

observations. Notice that s;0(g ® ex1) = d(f}/2g @ ej1ex,1) = (/2 ® 61 xej ;). Also,
¢(9 @ ex1)s; = $(f* @ by gex,1)

which equals s if j = [.

Notice that
(8Umn41@m+1Um+155)%B(g ® ejk) = ¢(g ® €j,k) (SkUnmy 1Gmt1Umt155)"
for any positive integer d. Therefore, for any polynomial P with P(0) = 0 we have
P(sjup, 1 10m1Um 1187 )0(9 @ ejk) = ¢(g ® €;,%) P(SkUpn110m+1Um+15%)-
This implies that for any continuous function f with f(0) = 0 we have
F(85Um110m+1Um+157)8(9 ® €jk) = (g ® €5,k) f (SkUsp110m+1Um415%)-
In particular we have

(Sj“:n+1am+1um+13;)l/2¢(g ® ej,k) =d(g® ej,k)(Skuzl+1am+1um+18};)l/2-
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Therefore,

Y, B9 ® €5%) = dlg ® € k) Yk k- (VIL3)

Similarly, since s;¢(g®e; ;) = d(f/2®e1,;)p(g®e),;) = d(f/2®e1 ;) = s;, we conclude,
Y5.50(9 ® €5,5) = yj,5- (VIL4)

Now we check property (1). For this portion of the proof assume that 1 < 4,7, k,1, < m.

It is easy to see that y; mi1Ymi1,; = y]z,j and that Ym41,¥jmt+1 = Y2y 1mr1- Next we see

Yim+1Ymt+1,k = Sj”;+1“¥i1a¥i1um+132
= $Up 1 1m41Um16(f/? ® e1 k)
= 8jUp 4 10mt1Um16(f/? ® €1,;)B(g ® e5.k)
= ¥5,7Y5,58(9 ® ej,x)

= Y5,3Y5.k

Since j < m, using the fifteenth property of the induction hypothesis at the second step,

we have

1/27.1/2 1/2 \1/2
Yj i Yma1,mal = (iU 1 Oma1Umy18])" (an)? \um+1)d(f ®el,1u:n+1a’n{+1) /

=0.
Now suppose that j # k. Then

Y5 kYl = Y5,50(9 @ €5,k )Y1,1
= 0k,195,;9(9 ® €5,1)y1,1
= 0k,19;,i¥5,;P(g ® ;1) by Equation VIL3

= Ok,1Y5,5Y41-

If j # k we also have y; jyg r = 0 since sisk = 0.
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Now if k # ¢, and j # k and i # I, we have y; x¥i1 = ¥;5,;0(9 ® e k) (g ® i)y = 0. On
the other hand, if k =4, but j # k and k # | we get y; x¥i,1 = ¥5,;6(9° ® €;,1)y1,;- This shows (1).

For (2), note equation VII.3 implies Yik = Yk, for 1 < j,k < m. The rest of the adjoint
conditions required for (2) are clear from the definitions of the elements.

Next we show (5) by checking the various cases as we did for (1). However we begin by
computing some useful estimates. Using || f(t) — t|| < 84 < &2 and ||¢(t ® e1,1) — a1| < J5 < 2 for

the penultimate step, we compute

lv?2 —adll < 206/ ® e11) = 1”2l + [ s10mt 1t — 4]

<2)6(fY? @ er1) — d(t2 @ e11)| + 2[6(¢2 @ e1,1) — ay”?| + 6

&1 &1 &1
< - el bl
_2(8)+2(8)+2

= d1.
By the choice of 47, this implies that
l[y1,1 = aal < do. (VIL5)

Using the facts that ||a1 — z1,1]| < 85 < 82 and ||t — f|| < 81 < J2 we see that

lat? = ¢(fY? @ er )|l < llay? — 22 )| + |27 — d(fY2 @ ex 1)l < 61/4. (VILS)

. Additionally, since |lujaru} — ajk|| < 06 < 61 for 1 < j,k < m, we have

lujay/*u; — alf?) < bo. (VIL7)
Note that ||u;¢(t ® e1,k) — Pt ® €5 k)|l = [ujz1,6 — 25l < 5 < %;.
Thus by Equation VIL.1 we have |ju;¢(tY/2 ® e1x) — #(t/2 ® e )| < 3. Therefore, by
Equation VII.2,
lus(F12 ® ere) — $(F* @ 1) < 264 + B. (VIL8)

In particular, ||lu;¢(fY/2 @ e1x) — o(f2 ®e;n)|l < e/16.
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Additionally,

lujb(g @ erk) — B9 ® €51l = llujd(f/° @ 1) (g ® exe) — S(F2 ® €,) (g ® exi) |
< Jlud(F2 @ erk) — d(f? @ 50|

< e/16. (VIL9)
Now

luiyi1u; — 351 < (£ @ e1,1)un 4 10ma1Uma1$(f/2 @ €1,1)u)
— ¢(f? ® €,1) Uy 1 Omrr U1 0(F /2 @ e1,5)|
< |luip(f? @ 61,1)U:,Hqam+1um+1fi5(fl/2 ® e1,1)u;
—u;p(f? ® el,l)u:n+1am+1um+1¢(f1/2 ®e15)ll
+ lud(f2 @ €1,1) U1 10mt1Um a1 O(f2 ® e1,5)
— d(F? ® €j 1)Uy 10mr1Umi16(f/2 @ 1))
<g(F 2 @ era)us — $(F/2 @ 1)
+uid(f? ®@ern) — (/2 @ e51)
= 2[lu;p(f7? @ er,1) — p(f2 @ €;1))
< 264 + 63

< 4.
Therefore, |lu;yf 1uf — 3 ;[ = [l(wjyr,1u})? — 2,1 < é1. Thus

llesy1,1u5 — w55l < o (VIL10)



65

Hj=m+1,butl#m+1,and | # 1, then

lwiy,e — yiall = lum+1y1,0 — Ym1,1]|
= [|um+191,16(9 ® e11) — aplyytm15]|
= ||(81U?n+1am+1um+181)1/2¢(9 ®e1) — u:n+1a:r{42—1um+13?”
< ({51054 1Gmr1Um+151) 2 d(g ® e1,1) — a1d(g ® e1,)||
+ ard(g ® e1y) — ar/ 25}
+ a2t — w1003 e 87|
< (519 418m i 1Um1181) % — as |
+ a2 ¢l ® ery) — $(F2 @ e11)d(g ® ery) |

1/2 * 1/2
1 um+la’m+1um+1”

+lla
< llyi1 —aa|

+llay? = $(F* @ en)

+ 8o by Equation VIL7
< dg+061/4+ 8o by Equations VIL5 and VIIL.6

< 34g

L3
192

< /2.

Next suppose that j = m + 1 and [ = 1. Then, using Equation VIL5 in the third to last

step and Equations VIIL.6 énd VIL.7 in the second to last step we see that
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lusyr,e — ys,ll = lwmt191,1 — Ymt1,1 |

1/2
= [ly1,1 — u:n+1an{+1u’m+131”
1/2 1/2
< lyi,n = aul + llar — ai%s1 )| + llay 281 =y pyan 2 ump1 1]

1/2 1/2 * 1/2
—$(f? @er )| + lar’® — why 1022 st |

<50+||a
< o + 280 + do

<e/2.

Now let j =1 = m+ 1. We use |[umy1a1u),11 — ama1|| < 05 < 01/2, the estimate

lp(t ®e11) — a1l < 85, and ||t — f(t)|| < 84 for the third to last step to get

sy,

- yj,l” = ||Um+1y1,m+1 - ym+1,m+1||

. . 1/2
Um+1¢(f1/2 ® 61,1)Um+1‘1717{42-1 - (arlr{i1um+1¢(f ® 61,1)Um+1arlr{42-1)

1/2 1/2 1/2
< ||Um+1<25(f1/2 ® elyl)u:n+1arr{+1 - um+1a1/ um+1an{+1||

1/2 1/2 1/2 1/2
+ ||Um+1a1/ u’m—i—lan{-l—l (a rr{+1um+1¢(f®el,1) m+1an{+1)1/2”

172 1/2
< 4o + ||Um+lal/ u:n+1an{+1 — am1

+ ||am+1 ( n{_’.lum-l—lalum-{—lam—{—l)l/z”

1/2 )1/2 (a 1/2

+ (a2 um 1015 41002 L2OM2

+1um+1¢(f ®er 1) m+1a
by Equation VIIL.6

2 1/2
>~ ”( m+1um+1a1um+1an{+ )1/2 ( m/,+1um+1¢(t®el,1) m+1a1¥—{2—1 1/2”

1/2 )1/2 — 1/2 1/2”

+ (a3} yums16(t ® e11)um 1013 0!} U 10(f ® €1,1)uk 4 100001)
+ 8o + 26

< 01/8 + §1/8 + 3do

< 5dg

<e/2.



Now suppose 1 < j < m and 7 =1{. In this situation,

sy, = ysll = llwiy1,5 — ¥5]

= [lu;y1,10(9 ® €1,5) — ;5|

= [lujy,1u5u;(9 ® e1,5) — Y,

< lusyriuiu;d(g ® en,;) — yj,5u6(g ® exj)||
+ [ly5,5u; (9 ® e1,5) — y;,;8(9 ® €5,5)l
+ ly558(9 ® €5,5) — ys4

< lwjyrawg — g5l + llujdlg ® e1) — d(g ® e5,5)
+ 0 by Equation VII.4

< 6o +¢/16 by Equations VII.10 and VII.9

<g/2.

Now suppose 1 < j <m and 1 <[ <m with [ # j. Then,

sy, — yiall = luyn,16(9 ® e1) — v5,6(9 © €51
= |lusyrufuid(g ® exr) — y;,;6(9 ® e5,1) ||
< llusyriujusd(e ® err) — uzy1,1u;6(g ® ej)
+ luyy1,1u; (9 ® e5,1) — y;,;9(9 ® e5)l
< €/16 + &y by Equations VIL.9 and VIIL.10
<e/16+¢/192

<e/2.

67
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Finally, suppose 1 < j <m and [ =m + 1. Then

lt91,m+1 = Ygmetll = s d(F172 @ €10y 10mmy — S(F/2 ® €41 )by 110001
< lwd(f2 @ ern) — ¢(f2 @ esn)l
< &/16 by Equation VII.8

<e/2.

Since we do not need to consider j = 1 because u; = 1, this shows (5) and hence (6) hold.

For (3), we use Equation VIL5, namely that |ly;; — a;]| < do < £/192. Combining this
with Lemma VI.7 we see that ||y; ;|| > 1 —ds —do > 1 — /48 —€/192 > 1/2 by our assumption
that e < 1.

To check (7), we compute ||y;,; — a;|| using Equation VII.10

lyis — asll < lyss — wsyraugll + llugynu; — wiaruf|| + llujaruf — a;|

< 8:1/8+4 65+ d6
<e/192+¢/8 +¢/48

<e.

Next we check (8). Since s1 € A and 4}, 11 amy1Ums1 = a,"n{l_l(amﬂ) € A, it is clear that
Y11 € A.

Now we verify (9). For any b € F' we have
1955 = by5.5 1l < 195,50 = azbll + [lajb — bas| + [[bag — by;;|| < el|bll + b5 + €lib]| < 2¢[b]| + &

For (4), we first recall that 0 < ag <1 for all g € G by the definition of the projection free
tracial Rokhlin property. Thus, 0 < s;u;, F10m1Umy18; < sjs;- = zj ;. The induction hypothesis
that 0 < z;; < 1 now gives us 0 < yfj < 1 which implies 0 < y;; < 1for 1 < j < m. A similar
argument shows that 0 < Y1 m41 < 1.

Finally, we check the extra hypothesis for inducting, namely (15). Let 1 < 4,k < m and

m+1 <1 < n. By the induction hypothesis, 0 = z;ra; = ¢(t ® e;)a;, and the same on the other
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side. Thus we also have ¢(f/2®e; x)a; = 0 and ¢p(g ® e; x)a; = 0. This implies Y, 41,541 = 0, and
that a;y; m+1 = 0. We also have a;y; ; = a;y;,; = 0 and thus y; xa; = ay; x = 0.
Since a; is orthogonal to ay for every other group element %, we also have ym4+1,m+1a1 =
G Ym+1,m+1 = 0. Similarly y; my1a; = 0 and a;ypm41,; = 0. This completes the induction step.
For the statement of the theorem, let Y} be given by the Y,k constructed when m+1 = n,
where n = |G| and let a; by the elements of A given by the projection free tracial Rokhlin property

in that same step. Il

The following lemma is the projection free analog of Lemma II.14 which is a finite group
analog of Lemma 2.5 of [16]. It finds an isomorphic copy of matrices over a hereditary subalgebra
of A as a large subalgebra of the crossed product. This is useful because we wish to show the entire

crossed product has stable rank one and such a subalgebra has stable rank one.

Lemma VII.4. Let A be an infinite dimensional stably finite simple unital C*-algebra. Let G be
a finite group; let n = card(G). Let oo : G — Aut(A) be an action with the projection free tracial
Rokhlin property. Let ¢ : A — C*(G, A, o) be the standard inclusion, write B = C*(G, A, o), and
let ug € B be the standard unitary implementing ag. Then for every finite set ' C B, every e > 0,
and every natural number N, there ezists a positive element ¢V € B, a subalgebra D C m,
a positive element c(ﬂ € A, an isomorphism ® : M, ® cﬂAC{ll) — D and elements cg,)l for each
g and h in G such that: With {egn} being matriz units for My, and S C A a finite set such that

each element of F' can be expressed as 3, byug with coefficients by in S, we have

1. For any d € cﬁAcﬂ we have ®(e11 ® d) = d, and for any s € S there are elements

dg, € cﬁAcﬁ such that ®(eg,q @ dg) = giscgg and dist(cg%scgg, A) <e.
2. || ®(eg,q ®d) — ugdu;\l <e|\d|| for alld € c(llecgli
3. For allz € F, there is a y € D such that ||cWVzcV —y|| < & and |y|| < |z|.
4 deG B(eg,y ® Cﬁ) =,
5. |cMz —zcM|| < € for every z € F.
6. 7(1 — V) < 1/N for all 7 € T(B).

Proof. Let F, €, and N be given. Without loss of generality, ||z|| < 1 for all z € F and ||y|| <1

for all y € S. We can always rescale to achieve this.
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First we observe that we do not need to prove the norm condition in (3) above. Suppose
we have proven the above lemma without the norm condition in (3) and that y is an element
resulting from applying the lemma with £/2 in place of € so that ||czc —y|| < £/2. Notice that this
means [ly|| < 1+&/2. Sety1 = (7573)y- Then [ly— w1l = ly — (7im)vll < Tiom(1+6/2) =¢/2.
Therefore, ||cze — y1| < e.

Let 0 < g9 < min{e/(40n?),&/(12)}. Define continuous functions fo and f; on [0,1] as
follows:

fo(0) =0,

fo(t) =1for tin [1 — &o,1], and

fo is linear on (0,1 — &p).

fi(t) =0 for ¢ in [0, 1 — &,

fity=1fortin [1 —¢&o/2,1], and

f1 is linear on (1 — &g, 1 — €0/2).

Let 0 < &1 < min{e/(8n%),e/(12)}.

Apply Lemma VI.11 to f; with €; in place of ¢ to get §;. Apply Lemma VI.12 to f; with
€1 in place of ¢ to get da.

Let |

e € & 6 1 } ‘

0<ex< mm{_28n2’ﬁ’ 1502’ N

Let 03 be the value of § given by applying Lemma VI.14 with min{%¢, nes + —]%-} in place of . We
also require d3 < —]1\7

Let {eg,n} for g,h € G be a system of matrix units for M,. Let ¢ represent the function
f(t) =t. Notice that {t ® eg,n}gneca generate CM,.

Apply Lemma VII.3 with S in place of F, with 1 in place of x and with &5 in place of €.
This provides us with § > 0, a; € Afor g € G and Y, 1, € B for g, h € G satisfying the conclusions
of that lemma. Thus we can define a homomorphism, ¢ : CM,, — B given by @o(t @ egn) =Yy 1.
We also require 6 < ﬁ
Let cs(;’),)1 = o(fo ® eg,n). Similarly define cgl,z = @o(f1 ®eg,n). Also set ® = deG cs(,(,)s);

and similarly ¢(V) = 2 ogcc cg(;}s);. Notice that since Y71 € A, we also have cg?% € A and cﬁ €A
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Notice

0
‘z(]1)h1 c_gz),hz - SOO(fOf]- ® eglyhl 692>h2)
= SOO(fl ® 6’11,92 egl,hz)

_ (1)
- 6}“ 192Cg, by

. . 0 1
Similarly, é)hz él)hl = 5hz,glc§2)h1‘

Define a function @ : M, (c(l) (1)) — B by ®((z4,) = Zghc(goialcg,hcl,)1 for ¢4 €
DAY, Set D = Im(®).

Next we check that ® is a homomorphism. It is easy to check that @ is additive and is
star preserving. We will check that it is multiplicative.

Let « = (zg,n) and y = (yg,») and note that (2Y)g,n = D e Tgk¥k,h- Then, using the

facts that Tq,n and Yk are in cj iAc(l) and that c§1}c§°{ = cgli, we get:

0 0 0 0
o(2)0(y) = | 3 agnc) Zciiw&?

9,h€CG k,leG
0 0 0
= > g n(e) unict)
g,h,leG
Z c zg,hyh lcgl)
g,h,l€eG
0 0
- 3 (3 )
g,l€G heG
= O(xy).

Furthermore, @ is injective. To see this, since A is simple implies ¢; iA § } is simple by
Theorem 3.2.8 of [14] it is enough to show that @ is nonzero. Now notice,
o(cf)) = o7} e!}el’] =) # 0.

Next we make some norm estimates to be used later on.

Note we have o(f1 ®eg,9) = @o(f1(t®€q,4)) = f1(po(t ®eg,q)), with the first equality by
Lemma VII.1 and the second because functional calculus commutes with homomorphisms. Also

note that ||c£bo;c —Yaill < 1 fo —¢|| <eo.
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Next we estimate the affect of conjugating cﬁl by ug4. Since
||“9Yh,h“; = Yongn| < 2e2 <41,

using the choice of §; using Lemma VI.11 for the last step, we have

1
lugeihus — ) ol = llegeo(f ® enp)ul — 9ol fi @ egngn)

= [lug (f1(po(t ® en,n)))uy — f1{po(t ® egh,gn))ll
= || f1(ug{po(t ® enn) uy) — f1{po(t ® egn,gn))ll

<e1. (VIL11)

Now we compute,

luges) - cgh Vel < Nlugesh — ugYikll + lugYik = Yonell + [Yonk — consll

< 20 + . (VIL12)

Next we compute the similar quantity using cl(ll);c:

a
||“ych ;c - cgh k” = ““gch chz .?c - cgh)ghcgh l

(1) (0) (1) (0) (1
< ||“gch hlg UgChk — Cgh, gh“gch k” + ||cgh,gh“ych kT gh) ghcgh k”

< e+ 29 + &9, (VH.13)

using Equations VII.11 and VII.12 for the last inequality.

Let s € S and recall that we have normalized so that ||s|| <1 for all s € S. We have

[[¥g,95 8]l < 1 Yg,98 — agsll + llags — sag|l + ||sag — sYg 4]
< 2e9 + 83

< 4s.
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Using the preceding estimate and the choice of d3 using Lemma VII.1 we now get

H[ §1,s)za3] H = [[[po(f1(t) ® eg,9), 8]

< N[ F1(polt ® eg,))s sl

< &1. (VIIL.14)
Let y € B and g, h,k,l € G. Then we observe

|e2ue) = Yang¥d| < 21wl 1t fo

< 2|yl €o. (VIL15)

Let y € B. Then

T T T oL o

0 0 0 0 0 0 0 0
[0 — chungri ey < [ 2 — g oy

0 0
< Iyl e} = eihun] + gl e -1n = wn-scor

0
+ |1yl Huh—lcﬁl,;_lh - Uh—lC;L}LU;—l

< 3|y (260 + €2) (VIL16)

by Equation VII.12.
Now let {yg,n} C B for g,h € G. Then,

c e 0 wieOy

hlyh,g—lh 1g—1h b h YR Yh,g-1hUnCh hUg
g,h

< ©) ©)

Ch 1yh,g lhcl g—lh = Cpy,  WhYh,g=LhURCh b Ug

S 37’7,2 H;%X ||yh,g“1h|| (280 + 82) (VII.l?)

Now given z € F, we can write = }_ o Toug With 75 € S.
Set zp,g = U;(C;}},’l’hg—lcg’-;”)’llh and yp g = cggahq (mhg_l)cg}i. Note that yp,g € cgliAcgli

Then, using Equation VIL.11 and the fact that ||z,|| < 1 we compute:
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1 1 1
|2h,g-1h — Yn,g-1nll = [luncinzgcshun — ctan-1(zg)cs ]|

1 1
= Junesunuhzgunuicspun — can-1 (zg)ct |

< 2. (VIL.18)

Next we estimate the effect of ¢/¥) on z. In the third step we used Equation VII.11. For

the second to last step we used Equation VII.14 and the fact that cle%cgl_,), = 0 unless g = h. For

the last step we used the fact that ||z4]| < 1, since x4 € S to compute:

1 1 (0) (1) (1) (0) _ (1) (1) (1) (1)
W) — z Ch,hCh,nTgCh hCh RYg || = Z Ch,nTalyCh,k — Z Ch,hTgCh,nlly
g,heG h,g,k€G g,heG
(1) (1) (1)

< Yo ahmeugoir— D> ch hmgcgk gklg

h,g,k€G g,h,keG
(1) (1) (1) (1)
+ Z ChnTgCok,gkUg — Z Ch hTgCh hlg
g,h,k€G

< n2
< n'max ||z &1

1 (1)
+ Z Cg ng Cok,gkUg — Z Ch hc_fyk)gkwgug

g,hkeG g, hkEG
(1) (1) (1)y2
+ Z Ch nCok,gkTglg — Z (c,n) Tgg
g,hkeG h,geG
(1) (1) (1)
+ Z (chn) *Tgug — Z Ch hTgCh,ntg
h,g€G h,g€G

< n®max|jzy|| e +n® max oyl e + 0+ n® max|lzy | &

< 3n’e;. (VI1.19)

We are now in a position to prove part (3) of the statement. Note that

0 0
D((yn,g—1n)) = Zg’hec Cg,iyh,g—‘hcg,;—lh € D and so
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“(I)((yh,g‘lh)) - c(l)zc(l)” - Z Ch, 1yh,g—1hci ) -1p M ge®
g,heG

IA

9 c — c(o) U wie®qy
§ : h,1Yh,g=1hC1,g~1h h,hUhYh,g=tAURCY pUg
g9,h€qG g9,h€eqG

(0) (0) (0) (0)
+ Z ch,huhyh,g‘lhuzch,hug - Z Ch,huhzh,g‘lhu;;ch,hug
g.heC g,h€q

+ Z cglozlcglzlxgcg%cgozlu — Mg

< 3n? _
<3n Jnax, lyn,g-1rll(260 + €2)

+ n2250

+ 3n2%e; by Equations VIL.17, VIL.18, and VII.19
= n?(8ep + 31 + 3e3)
<e/b+3c/8+¢/7

<e.

This proves part (3) of the statement with y taken to be ®((yn,g-11))-
For part (1) of the conclusion, suppose d € ¢;, %Ac(l) Then

B(er,1 ®d) = efdel) = lim ef?)(c[))/md(el])/mel?) = lim () d(c{)™ = d.

n—o ’

This is the first half of (1).
For the second part of (1), let s € S. Recall that we have normalized so that ||s|| < 1. Let
d= cﬁscﬁ € cﬁAcfi. Then

Pegg®d) = c(o)dc(o) (0) cﬁscﬁcg gli scglg
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Furthermore,

dist(c!sef), A) < fleMsel') — ugelselus|

1 1 1 ¥
< llegd —ugefd [+ llefly — evaugll
2(e1 4+ 260 + €2) by Equation VII.13
2(e/6+¢/6+¢/12)

<E.

This completes (1).
To prove (2), let d € c(l)Ac(1 i Because (¢} @ ))1/ ™ acts as an approximate identity on this

algebra, we have d = limm__,oo(cﬁ)l/md(cﬁ)l/m. We compute:

lutgdisg — Beg,g @ )| = | lim_ug(e{) Y md(e{ ) mus — ci2)de?) |
= || Jim_ugel (D) ey — el |
= ||ugey idcﬂu* — (O)dcg?;”
< [|ugel@dcuz — e deuz +” © 3eut — cOde (0)”
< oo — e + |2y - 3]

2(2e9 + €2)||d|| using Equation VII.12
2(e/6 +¢/12)|d||

< e|d|.

This is condition (2) of the lemma.

For (4) we compute

1 0) (1) (0
Zfb egg®c() Zc( icgicgg Zcf}g:c(l).
geG geG geG
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For (5) we begin by computing for any = 3, s @hun € F how close z and 3 ;Y ,

are to commuting. We have

Sy, (Zu> _ (zu) ey

ge€G heG heG geG

= E Yg,gxhuh - E :Ehuhyh—lg,h—lg

g:heG g,heG
< Z ”YZJ:Q"Ehuh_$hthh_1g7h_1g”
g9,heG

S z HYg’g.’L'h’UJh - IZIhYg,guhH + E thuthYg,guh — -’Ehthh*lg,h—lgn
9,h€G g,heG

< 371262 + 271262
< 5n26,/(5n?)

< dg.

By the choice of d,, this implies || f1(3 0, cq Yo,0)% — f1(X4eq Yo,0)l < &1 <e. But, by
Lemma VL10, we have £ > | Xyeq fi(Yog)e — 2 5 yeq fi (Vo) = ez — ze®] which is (5).

Finally, we will show that (6) holds. We wish to show that 7(1 — ¢®) < & for all
7 € T(B). However, since 1 — ¢ € A and in light of Lemma VI1.15, it suffices to prove the
statement for all 7 € T'(A). Now, since [ag — Yg,q|| < €2, we have || 3o e ag —~ 2" e Yool < nea.
Therefore, 7(3° g ag) < nez+7(2,cq Yo,9)- By the assumption on ¢ from Lemma VIL3 we have
(1= 2gec 89) < W

Combining these facts we have

1 .
W>1_T Zag >1-7 ZYgu‘? — nea.
g€G geG
This implies

1
m‘f"nc‘z >’T(1— ZYg,g).
g€eG
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Therefore, by the choice of 43,

1

YV->53>T 1-f ZYQ*Q =T(1—C(1))

9€G
which is (6). 11
The following lemma is the analog for positive elements of Lemma 3.2 of [186].
Lemma VILS5. Let A be a C*-algebra, letz,y € Ay, let T be a tracial state on A. Letg:[0,1] > R
be a continuous function. Then T(g(y'/2xy/?)) = r(g(x/?yz!/?).

Proof. We first verify the statement for g(t) = t™:

(M 22y'/2)") = 7y 2 (zy)" 2!/ 221/ 2y1/2))
— T((z1/2y1/2)y1/2(zy)"—lxlﬂ)

= (@ 2yt/2))

Thus the lemma holds for any polynomial and so, by the continuity of functional calculus, for any

continuous function. Nl

Lemma VIL.9 is an analog of Lemma 3.3 of [16] for positive elements instead of projections.

The next few lemmas are used to prove Lemma VII.G.

Lemma VIL.6. Let g : [0,1] — [0,1] be a continuous function with g(1) = 1. For every e > 0,
there exists § > 0 such that whenever A is a unital C*-algebra, 7 is a tracial state on A, and
x,y are positive elements of A with norm less than or equal to 1 such that 7(x) > 1 — 6 and

7(4?) > lITlyagll — 6, then T(g(yzy)) > 7(y?) —e.

Proof. Choose d € (0,1) such that g(¢) >1—¢/2 for all ¢t € [1 — &y, 1]. Choose § so that § < 522.
Let A, 7, z, and y be as in the hypotheses.
We first estimate 7(yzy). We have 7 (yzy) +7(y (1 —z)y) = 7 (y?). By the condition on

z and since y < 1 implies (1 — ac)l/2 y? (1 — x)1/2 <1—z, we also have

T((l—m)l/2y2(1—x)l/2) =ry(l—-2)y) <7(1-2)<4d.
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Combining these two observations yields
T(yzy) =7(y°) —7(y(1 ~ 2)y) > 7(y*) — 6. (VIL.20)

Now restrict 7 to yAy. Call the restriction 7. Extend 7 to a trace 7 on yAy + Cl, by
7T(14) = ||7||. This implies that
71l = [I7]- (VIL.21)

Let 1 be the measure on X = sp(yzy) corresponding to the functional on C(X) defined by
h — T(h(yzy)) with the functional calculus evaluated in yAy + Cla. That is [y hdp = T(h(yzy)).

With 1 representing the constant function 1, [, 1du =7(14) = ||#||. Thus the total mass
of pis ||7

Let E = [1 — &, 1]. We compute

7(y?) — § < 7(yzy) by VIL.20

= / tdu(t) by the definition of y
[0,1]

< (1= 80)(u([0, 1]\ E)) + u(E)

= (L= 8)(I7]l = w(E) + u(E)

= |17} = (E) = &oll7|| + dop(E) + p(E)
= (L= 8o)lI7]l + dou(E)

< (1= 60)(T(y?) + 8) + Sou(E) by hypothesis.
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This implies

7(y%) = 6 — (1 = 80)(1(y*) + 8) < Sou(E)

T(2) — 6 — ((¥%) + 8 — Sor(y?) — 806) < dop(E)
(@2 = 6 — 7(4%) — 6 + ST (%) + 606) < Sou(E)
—26 4+ 607 (¥%) + 806 < Sou(E)

- +7(y?) +6 < u(E)

o
26
T(y?) - %+5<N(E)

Since g(t) > 1 —¢/2 for t € E, by using 7(y?) < 1 for the last inequality, we now get

(otway) = [ o®du(t)

[0,1]
> (1—&/2)u(E)
> (1-¢/2)(r(y?) — /2)

7(y%) — /2 —7(yHe/2 + /4

fi

>7(y?) —e.

This completes the proof. lI

Lemma VIIL.7. Given any § > 0, there exists an 1 > 0 such that whenever A is a unital C*-
algebra and y € A is a positive element of norm less than or equal to 1, with 7(y) > |7l —

then 7(y?) > |75l — o

Proof. Apply Lemma VII.6 with € replaced by §/2 and with g(t) = ¢2. Let 7 be the resulting value
of . Without loss of generality, 7 < /2. Let y € A be a positive element with [jy|| < 1 be such
that 7((y*/?)*) = 7(y) > lI7l5ll = 7 = I7k7azm77] — 7. Then by the choice of 7 using Lemma

VIL6 and letting ¢ = 1 and using y%/? in place of y yields
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™ (9 (v%y?)) > r(W2)) — /2
T(9()) > 7(y) —6/2
T(y?) > 7(y) —6/2
TW?) > |rlagll —n — 6/2

(%) > |Irlgayll - &.

This completes the proof. lI

Lemma VIL.8. Let g : [0,1] — [0,1] be a continuous function with g(1) = 1. For every € > 0,
there exists § > 0 such that whenever A is a unital C*-algebra, T is a tracial state on A, and

x,y are positive elements of A with norm less than or equal to 1 satisfying 7(z) > 1 — 6 and

() > |75zl — 6, we have T(g(yzy)) > 7(y?) —e.

Proof. Let §;1 be the ¢ obtained by applying Lemma VIIL.6 with ¢ and g as given. Let §2 be the 5
obtained by applying Lemma VIL.7 with 6 replaced by 1. Let d3 = min{d1,d2}. If 7(x) > 1 — d3,

then 7(z) > 1 — 81, so the condition on z is satisfied in Lemma VIIL.6. If
(W) > ITlgagl — 83 > [7l5zgll — b2,

then

(%) > |tz — 6

by the choice of 65 using Lemma VIL.7. Thus the condition on y in Lemma VII.6 is satisfied and

therefore 7(g(yzy)) > 7(y?) —&. i

Lemma VIL.9. Let g : [0,1] — [0,1] be a continuous function with g(1) = 1. For every € > 0,
there exists § > 0 such that whenever A is a unital C*-algebra, T is a tracial state on A, and

x,y are positive elements of A with norm less than or equal to 1 satisfying 7(z) > 1 — & and

7(y) > |17zl — 0, then T(g(zyz)) > 7(y) —&.

Proof. Apply Lemma VII.6 with g and ¢ as given to get §; > 0. Now apply Lemma VII.8 with
g(t) = t% and §6; in place of ¢ to get d;. Let 03 be the § obtained from applying Lemma VIL8 with
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g as given and ¢ as given. We may assume d3 < §y < §;. The number 83 is the desired §. By the
choice of 4, using Lemma VIL8 with 1 in place of y for any z satisfying 7(z) > 1 — 2 we have
7(g9(yzy)) = 7(g(z)) = 7(2?) > 1 — &;. So now if y is such that

T(y) > 715751l =02 > |7 |5z5 /| —d3. by the choice of d3 using Lemma VII.6 with y/? in place of y we
have 7 (g (y*/22%y'/?)) > 1 ((y1/2)2) — . But by Lemma VIL5, 7 (g (y*/?2%y*/?)) = 7(g(ayz)).
Thus 7(g(zyz)) > 7(y) — &. Additionally, since 7(z) > 1 —d2 > 1 — d3 and 7(y) > |75l — s,

we have 7(g(yzy)) > 7(y?) —¢. I
The following lemma is an analog for positive elements of Lemma 5.1 of [16].

Lemma VIL.10. Let § > 0. There exists a continuous function g : [0,1] — [0,1] such that
g(0) =0,9(1) =1, and whenever A is a C*-algebra and a € A is positive with ||a|| < 1, then there

is a positive element b € aAa with ||b]| < 1 such that ||bg(a) — g(a)|| < & and ||ab— b| < 6.

Proof. Choose tp and t; with 1 —§ < ¢ <t; < 1and let g:[0,1] — [0, 1] be a continuous function
which vanishes on [0,¢;] and such that g(1) = 1. Let A be a C*-algebra, and let a € A be positive
with |la]] < 1. Let A : [0,1] — [0,1] be a continuous function which vanishes on [0, ¢] such that
h(t) = 1 for t € [t1,1]. For n sufficiently large, ||g(a)/™g(a) — g(a)| < 8. So let b = g(a)'/™. Note
that since g(a)'/™ is positive, (||g(a)™||)" = ||g(a)|| = 1 = 1™, which implies that |(g(a))*/™| = 1.
From hg = g we have h(a)g(a) = g(a) and so h(a)b = b. Also ||ah(a) ~ h(a)|| < & because

|t — 1] €1 —tg < & whenever h(t) # 0. Accordingly, we have
llab — bl = llah(a)b — A(a)b|| < [lah(a) — A{a)||[lb] < 4,

which completes the proof. Il
The next lemma is used repeatedly and implicitly in the proof of Lemma VII.12.

Lemma VII.11. Ify and z are orthogonal positive elements of a C*-algebra A and w € Ay and

z € 2A, then wz = 0 as well.
Proof. We have wz = lim,—o0 liMyy—yo0 wy/ "2z =w-0-z = 0. 1

The following lemma is used in the proof of the main theorem, Theorem VII.17, to replace

the decomposition of the identity into orthogonal projections used in the proof of Theorem V.4.
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Lemma VI1.12. Let ¢ > 0. Suppose by, by, bs,c1,ca,¢c3 are positive elements of a stably finite

unital C*-algebra A, and let a € A. Suppose:

® by +by+b3=1,

. C*(bl,bg,bg,cl,cQ,Cg,) is commutative,
e bicy =cy,

o byc3 = ¢,

o bycy = by,

e c1by = c3by =0,

e bibs =0,

o cyAcy have stable rank one, and

bia = abs = 0.
Then there exists an element a; € A such that a1 is invertible and ||a — a1]| <e.

Proof. Write 1 =c¢1 + (b1 — 1) + ba + (bg — ¢3) + ¢3. Make the following definitions:
as,1 = byacy.
asz = baa(by —c1).
a3,3 = baaba.
asq1 = (bg — c3)ac.
as,2 = (bg — c3)a(by — c1).
aa,3 = (bs — c3)abs.
5,1 = C30C1.
g2 = cza(by — c1).
as,3 = czabs.
Notice that Z?=3 Zg’zl a;; = a.

Let

0<éd< 'n{ ¢ £ E}
mi oAl == o
6llas,y +a41+as1]’ V63
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Since a3 3 € baAby, there is an invertible element tg € baAby + Cl4 with
lto — a3,3|| < 4. (VIL.22)

Write tg = t1 + A1 with ¢ € byAby and Ay € C. We can also express tal as o + /\1_11A with
ity € bgAbz.
Next we show that

((ag,1 + aa1 + as 1)ty 1)? = 0. (VI1.23)

We note that

(a3,1 + 041 +as1)to = (as,1 +aa1 +as,1)(t1+ A1) = (as1 + a4,1 +as,1) A1

Therefore,
(a3,1 +a41+as,1) = (as,1 + aa1 +as1)toty " = (as,1 + aa1 +as1)\itg "
This implies
AT (a3 + g1 +as;1) = (a3 + a1 +as1)t5

Therefore

((az,1 + ag1 +as,1)tg )2 = (az1 +aa1 +as51)?A7% = 0.

Now we compute

(3,1 + aq;1 +as,1 +to) tal (1 —(as,1 +a4,1 +as,1) to_l)
= ((asy +a4,1 + a5,1) to! + 1) (1- (a3 +aq1 +as1) to—l)

_ N2
= (ag,1 + a4,1 +as5,1)ty T ((as,l +aq1+0s51)t; 1) +1—(as1+0a4,1+as51)ty

=1. (VIL24)

Because A is stably finite this is enough to show that a3 1 + aq4,1 + as,1 + to and

to" (1 — (a3, + a1 +as51)ty") are mutual inverses.
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Next we multiply

tor (1~ (asq1 +aa1+as51)ty") (as1 +asz +to+as1 + as2 + aa3 +as1 + a5z + as,2)
=t5' (1 - (a3 +aa1 + a5,1)t51) (a3 + a4,1 + as,1 + to)

+t5" (1 - (a3 +as1 +a51)t5") (as2 + as2 + ass + as 2 +as3)

=14 tal (1 — (a3,1 +aq,1 + a5,1) tal) (a3,2 + 0642 +043+as2 + a5,3) . (VH.QS)
Using our expression for ¢ ! we can compute

((as,1 +aq +as1)tg!) bs = (as1 +ag1 +as,1) (t2 + A7) bs
= (a3 + aa,1 + a5,1) (t2b3 + A7 " b3)

= 0.

To get the last line we used Lemma VII.11 twice, once with y = ¢; and 2 = b3 and once with
y=oc and z = by.

Similarly,

(a3, + aq1 + a51)t5 b2 = (ag1 + aa1 +as1) (b2 + A7) ba

=0.

Notice that the previous two computations imply (as1 + a4,1 + as, 1)ty 103 =0 and

(as,1 +as1 +as,1)ty ' (bs — c3) = 0.
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Continuing our computation, we see the last expression in Equation VII.25 is equal to:

1+ (tg' —to' (as1 +as1 +as1)ty") (a2 + as2 + ass + asa + as,3)
=1+ ((t2+ )‘1_1) —t5* (as,1 + a1 +as5,1) tal) (a3 +as2 +as3+as2+ as3)
= 1+ taa32 + t2042 + taag3 +t2a52 + taas 3

—t5 (a3,1 + ag,1 + as1)ty as,e

~ty (as,1 + aa1 + a5,1)ty (as2 + aq,3) _

—ty (a1 + aa,1 + as,1)t5 (as2 + as3)

+ )\fla:s,z + )\fla4,2 + )\l_la4,3 + )\l_las,z + )\fla573

=14 taag,o +taag +toags +040

. -1 —131/n
— lim ¢4 ((1,3,1 +a4,1+a5,1)t0 b2 as2
n—00

- lim to (as,1 + a1 +as,1)t5 " (bs — c3)/™(as,2 + ay3)

. -1 -1 1/n
- dm to (a3, + a1 +as1)ty ¢5’ (as,2 + as,3)

+ AT az 2 + AT tag 2 + AT aas + AT as o + A Mas 3

=14+ toaz o + t2(1/472 + t2(1,4’3 + A1_1(1,3’2 + )\1"10,4’2 + A1_IO,4,3 + )\1_10,5,2 + )\-1_1(1,5’3. (VIIQG)

Let t3 = taaq 3+ 1. Notice that t3 € by Aby +Cl 4 since £y € by Aby and a4 3 € (bs — c3)Abs.

Thus there is an invertible element t4 € by AbsC1 4 with
||t4 — t3” < 6. (VIIQ?)

Write t4 = t5 + Asla with t5 € byAby and As € C. Similarly, write t;l = tg + )\5_11,4 with
te € by Aby.
Using the same argument used to show Equation VII.23 we can show that

(tr (A tass + AT tas ) = 0.
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Next we find the inverse to Af1a5y3 + Af1a5,2 + t4. We have

[(1 — tZl ()\1_1615,3 + )\Ilas,Q)) tZl] ()\1_1615’3 + )\1_1(15,2 + t4)
=(1-t7' (\[lass + AT 'as2)) (t(7 (AT tas3 + AT las2) + 1)
=t;' (A\ass + AT tas2) +1— (t3 (AT lass + A;1a5,2))2 ~t;' (AT tas,3 + A tas,2)

=1.
Since A is stably finite, this is enough to get
(1 —t7 O as,s + AT as2))trt = O\ tass + AT tas,e +ta) 7t (VIL1.28)

Also notice (1 —t3' (ATas3 + A7 as)) 7! = t7t — i7" (M 'ass + A\ tas2) 7

Next we show bltzl (/\1_10,5,3 —I—)\l_las,g) = 0. By applying Lemma VII.11, since tg €

boAby, by € b1 Aby, and as2+ as53 € Cg—A, we have

b1t4_1 ()\1—1(15,3 + /\1_1(15’2)
=b1 (ts + A5") (\las,s + A\ las,2)
=bitg (A as3 + A las2) +birgt (AT ass + A tas,2)

= 0. (VIIL.29)

Similarly, b2t4_1(/\1_1a5,3 + /\1"10,5,2)) = 0. These two also imply that

(b1 —ci)ty "(ATtas 3 + AT as,2)) = 0 and erty "(A Mass + AT tas2)) = 0.
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Now

(toas +taass +ts + A lage + AT tage + AT tasgs + A tas 2 + )\1_105,3)
(=t (AT Mas2 + AT las ) Y]

=1+ (taas2 +taas2 + AT as2 + AT ag3) (871 —t5" (AT tas2 + AT as3) t7Y)

=1+ taasaty" +taaaaty + A Tagaty ' + AT agoty !t + A Tag sty !

—taaz oty L( AT ase + AT as 3)t7 — taaa oty {0 Yas 2 + A as 3)t;
— A las oty (A a5 2 + A tass) B — AT aaaty T (AT Mas 2 + A las s) £
— A lagstst (A lase + AT as3) ty !
= 1+ taagaty " +taaaty " + A ag oty + AT ag oty + AT ag sty
— nlglgo ta (a3, + ag2) (by — C1)l/n ! ()\1—105,2 + )\1—105,3) tyt
— lim A7 (a32+ as2) (b1 — )" 7 (O Yas,2 + AT tas ) £
= lim AT tan by Mt (A as s + AT as 3) 7
=1+4toazaty’ +toaa oty + A7 az oty + AT ag oty + AT ag sty — 0 (VI1.30)
by Equation VII.29 and the statements that follow it
=1+ tyazate + taaa,ate + A\ azats + A\ Laa 2t + A tag st

+taaz o5 Ft2as 225t + AT as 25T F AT ag 25t + AT ag s

Denote the quantity just computed by t7 and notice that

t;l € ((bl — Cl) + by + (b3 + Cg))A((bl — Cl) + by + (b3 + 03)) = ¢coAcy,

which has stable rank one by hypothesis.

Thus there exists an invertible element tg € cpAco + Cl4 such that

]

. VIL.31
AT as2 + AT as,s + taf| + 1 ( )

[ts —t7]| <



89

Now

[tor (1 — (a3 + aa1 +as1)t5")] e [(1—t7" (M tas2 + A tass)) t7!] -t

= (as,1 +a4,1 +as1 +%o0)ts ()\1_105,2 + A tass + t4)

is invertible, and as we will now compute,

“(L — ((1,3,1 +a41+as1+ to)t5(}\1_1a5,2 + }\;10,5’3 + t4)“ < &.

We have

lla — (as,1 + aa,1 + as,1 + to)ta(A tas,2 + AT tas 3 +ta)||
=|las,1 +as2+as3+as1+aa2 +ag3+as1+as2+ass3
— (@31 +a41 +as1 + to)ts(A tas 2 + AT tas 3 + )|
< las;s — ol
+ |l(as,1 + aa1 + as1 +to)tg (1 — (a1 + aa1 +as1)t5 )
(@31 +az2+to+aa1+as2+as3+as1+as2+ a5,3)

—(as,1 + a4, +as1 + to)tg()\l_las,z + )\l_las,3 + t4)|| by Equation VII.24

<04 |las + aq,1 +as5,1 + Lo
|11 4 taas2 +taaan 4 toass + AT as2 + AT aa2 + A tags

+ A as 2+ A las 3 — ts(AT as 2 + AT as s + ta)|

by Equations VII.25 and VII.26
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<6+ |las,1 + as,1 + as,1 + to|
14 toas s + taass +t2aa3 + A taz s + AT aa s + AT ags + AT tas 2+ AT las 5
— (tza3,2 +t2aa +ta + AT az 2 + A tag e + AT ags + AT as 2 + AT tass)||
+ ||las,1 + aq,1 + as,1 + tol|
|I(t2as,2 + taaae +ta+ AT tas 2 + AT aa s + A taas + AT tas,e + AT as 3)
(1=t (A Mas,2 + AT as,3))tr T (A Tas g + AT as,a + )
—ta(A\Ttase + A\ tas 3 + t4)|| by Equation VI1.28
<8+ |lasy +ag1 +as,1 + toll[|1 + t2aq 3 — 4|
+ |las,1 + a4,1 + as,1 + tol|
I+ toas oty taaaatst + A s oty + AT ag ot AT rag sty — tg|
-|IATtas,2 + AT tas 3 + t4|| by Equation VIL30

<5+ 6||a3,1 +a41+as51+ tO”
é

A lase + A tass +t
P Tana s a1 e

+ |las,1 + a4,1 + as,1 + tol|

by the choice of t4 and tg
=6+ 26||ag1 + a4, + as,1 + tol|
< 64 26||ag + as,1 + as,1 + azs|| + 26| as,s — tol|
<e/2+42¢/6 +26°
< 3e/3

=E.

This completes the proof.

Lemma VII.13 uses Lemma VII.12 to produce a simpler replacement for the decomposition

of the identity into orthogonal projections.

Lemma VI1.13. Let A be a stably finite unital C*-algebra, let € > 0 be given, and let 1,710,273 € A
be positive elements such that x1 + 22+ 23 =1 and z1z3 = 0. Let a € A be such that
r1a =0, axs =0, and xoAxy has stable rank 1. Then there exists an element a1 € A such that aq

is invertible and |la1 — al| < e.
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Proof. It suffices to show that the hypotheses here imply the hypotheses of VIL.12. Let f : [0,1] —
[0,1] and A : [0,1] — [0,1] be defined by the formulas

0 telo,l
£ — [0, 3]
2t—1 tels,1]
and
ot 0,1
PBERLLE
1 tel[d1]

It is clear that fh = f. Now set by = h(z1), c1 = f(z1), bs = h(z3), cg = f(z3), b2 = f(x2), and
¢g = h{z3), all of which are positive. Then since C*(z1,Z2, Z3) is commutative,
C*(f(z1), f(z2), f(z3), M{z1), h(z2), h{x3)) is commutative.

Note that the formulas c1b1 = ¢1, csbs = c¢3, and caby = by all hold. Since z123 = 0, we
have b1bs = h(z1)h(z3) = 0, and so also ¢1b3 = 0 = byc3. Similarly, z1a = 0 and az3 = 0 imply

that bia = h{z1)a = 0 and abs = ah(z3) = 0, and these in turn imply that c;a =0 and acs = 0.

Also, by Abs and cy Acy have stable rank one because they are hereditary subalgebras of
oAz,

Since z1, z2, and z3 all commute, we have C*(21,z2,23) = C(Y) with ¥ C [0,1]. So
think of z1, 2, and z3 as f1, fo, and f3 respectively.

Let Y; ={y €Y : fi(y) > 1/2} and note that ¥;NY; = @ for i # j. Then on Y], we have
(c1b2)(y) = f(z1) f(22) (W) = F(F1(w)f(f2(y)) = [2f1(y) —1] - 0 = 0 and c3b2 = f(21) - 0 =0. The
same equalities also hold on Y3. On Y3, we have ¢1by = f(f1(¢)) f(f2(t)) = 0-f(f2(t)) = 0 and c3by =
f(f3s()b2=0-b2=0. On Y \V; ={y € Y : fi(y) < 1/2}, we have c1bs = f(f1(¥))f(f2(t)) =
0- f(f2(t)) = 0 and csby = F(fa(t)b2 = 0-by = 0. If ¢t € ¥;, then fy(t) > 1/2, which implies
f3(t) =0 and 1— f1(t) — f3(t) < 1/2. This implies that f(f1(t) + f3(t)) + h(1 — f1(t) - f3(¢)) = 1.
Symmetrically, if t € Y3, then f(fi(t) + f3(t)) + h(1 — f1(t) - fa(t)) = 1.

Now suppose that ¢t € Y \ (Y1 UY3). Then fi(t) < 1/2 and f3(t) < 1/2, and at most one
of them is nonzero, so 1 — f1(t) — f3(t) > 1/2. This gives f(fi1(t) + f3(t)) +h(1 — f1(t) = fa(t)) =
0+0+1 = 1. Tt follows that f(z1)+f(z3)+h(z2) = 1, which is equivalent to ¢; +cg+c3 = 1. Next,
ift € Y1, then f1(t) > 1/2 and f3 < 1/2, which together imply 1 — fi (¢) -fé(t) <1/2and f3(t) =0
(using orthogonality, since fi(t) # 0). It follows that h(f1(t)) + h(f3(t)) + f(1 — f1(t) — fa(t)) =
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1+ 2f3(t) + 0 = 1. Symmetrically, if £ € Y3, then A(f1(£)) + h(fs(¢)) + fF(1 = f1(t) — f3(t)) = 1.

Suppose that ¢ € Y \ (Y7 U Y3). Then as before, we have 1 — fi(¢) — f3(t) > 1/2. This gives

h(f1(8)) + A(f3(2)) + F(1 = fu(t) — f3(1)) = 2fu(t) + 2f3(t) +2(1 — fu(?) — f3(t)) —1=2—-1=1.
Therefore, h(x1) + h(z3) + f(z2) = 1, which is equivalent to b; + by + b3 = 1.

Lemma VIIL.14. Let A be a simple, unital C*-algebra, and let a,b € Ay with |o| = ||b] = 1.

Then there ezists ¢ € Ay with ||c|| = 1 such that ¢ < a and c < b.

Proof. Since A is simple and a,b € A are nonzero, by Proposition 1.8 of [5] there is a nonzero
y € A such that yy* € aAa and y*y € bAb. Without loss of generality we may assume that
lyy*|l < 1, and so yy* < 1. Set ¢ = a'/?yy*al/?. Set z = (a'/?y)*, and choose 0 < B < 1. Then,
2*z < z*2, so by Proposition 1.4.5 of [18] there is u € A such that z = u(2*2)?/2. Note that
[u(2*2)8/2](2* 2)P/2 (u*) = [u(z*2)P/?|[u(2*2)P/?]* = zz* and so zz* < (2*2)P/2. But since f(t) =t
and g(t) = t# are zero on the same set, 2*z ~ (2*2)® by Lemma VI.4. Therefore z2* < z*2.
Symmetrically, z*z < zz*. This implies zz* ~ 2*2.

Note that y*ay < y*y € bAb, so y*ay € bAb. Therefore, y*ay < b by the second paragraph

of section 1 in [6]. Combining this with ¢ = z*z ~ 22* = y*ay yields ¢ < b. Furthermore, yy* <1

which implies ¢ = a*/2yy*a*/? < a. |

. Lemma VIIL.15. Let A be a simple unital C*-algebra which is not the compact operators over
H for any Hilbert space H. Let a1,a2,a3,64 € A satisfy ai0i41 = a;41, for i = 1,2, and 3, and
0 < ay,az2,a3,a4 < 1. Also assume that ot least one of a1, a2, and ag is not a projection, or that

ay, a9 and az are not all equal. Then 7(ay) > limp_o0 7((aa)/™) for any tracial state T on A.

Proof. Notice that we have a; = a%/zlaiagﬁ < a;-1 for i = 2,3 or 4. Thus, 7(a4) < 7(a3) <

il
T(a2) < 7(a1).

We first show that 7(a)) > 7(a3). Since we have already observed that 7(a1) > 7(a3),
we only must show that they are not equal. Suppose 7(a1) = 7(as). Then 7(a; — az) = 0.
The hypotheses on A imply that 7 is faithful, so a; = a3. But this means that aja; = a; and
a1az = azaz = as, so az = ag as well. If a;, ao, and a3z are all distinct then this is a contradiction

already. Otherwise, we now see a; = ag = a1a2 = a2, s0 a; is a projection, but since all three are

equal, we now see that as and as are also projections, which is a contradiction.
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1/n 1/n
4

Now because azas = a4, we also have aza,’” = a,’" for any n. Using a similar argument

to the one used in the first paragraph this implies that that T(ai/ ™) < 7(a3) for all n. Thus,

limy o0 T(as’™) < 7(a3). Therefore, T(a1) > T(as) > limy_o0 7(ag’™). I

The following theorem is an analog of Lemma 5.2 of [16] with projections replaced by

positive elements.

Lemma VII.16. Let A be an infinite dimensional stably finite simple unital C*-algebra. Suppose
A has a unique 2-quasi-trace which is also a trace. Suppose also that A has strict comparison. Let
a: G — Aut(A) be an action of a finite group with the projection free tracial Rokhlin property. Let
B = C*(G, A, ). Suppose qi,...,q, € B are nonzero positive elements of norm at most one and
ai,...,am € B are arbitrary. Let € > 0 and N € NU {0}. Then there ezxist a subalgebra D C B

isomorphic to a matriz algebra over o hereditary subalgebra of A, a positive element d € D with

2|l < 1, nonzero positive elements ry; € dDd of norm at most 1 fori =0,...,N andk =1,...,n,
and elements by, ..., b, € B such that the following conditions are satisfied.
1 |lgere,n — TN <€ forallk=1,...,n.

2.1—d<rgn forallk=1,...,n

3 TiiTki+l =Thit1 forallk=1,...,nandi=0,...,N.
4. rrod=rro forallk=1,...,n.

5. |la; —bjll <€ forallj=1,...,m.

6. dbjded—Ddforalljz—-l,...,m.

Proof. By rescaling, we may assume that ||gx|| =1 for 1 <k < n. Let & =¢/6. Let hy : [0,1] —
[0,1] be the continuous function which has h;(0) =0, hy(¢t) =1 for t € [1 —£1,1], and is linear on
[0,1—¢4]. Let hg : [0,1] — [0, 1] be the continuous function with hg(t) =0 for ¢ € [0,1 —¢;], linear
on [1 —ey,1], and ha(1) = 1. Set ¢;,1 = hi(g;) and w; = ha(g;). Note that ||g; —g; 1] < 1. Set
A =min;<;<n{7(w;)}. Note that A # 0 since B is simple. If h is any continuous function which

has A(1) =1 and 0 < h < 1, then 7(A(g;,1)) > 7(w;), thus we have

T(h(g;1)) > A (VIL32)
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Apply Lemma VIL10 with min{e/12, A} in place of § to get a continuous function g :
[0,1] — [0,1]. Let e2 < A/4. Now apply Lemma VI.11 with g as just obtained and with &5 in place
of € to get ds.

Let €3 < min{e/24, d5, A/8}. Then choose g4 < 5 such that if z, y are selfadjoint elements
of B, with ||z||,|ly|| < 1 and ||z — y|| < €4, then |jz4 — y4| < e3. Without loss of generality, we
may assume that g4 < m

Choose €5 < min{f;, m, %, %}. Define the continuous function f; to be zero at
zero, 1 on [1 — &5,1] and linear on [0,1 — g5]. For ¢ = 2,...,5, define f; to be the continuous
function which is zero on [0,1 — €5/(2°72)], linear on [1 — &5/(272),1 — 5/(2°"1)], and one on
[1 —e5/(271),1]. Note that fifa = fo, fafs = f3, etc. and [|fi —t] < es.

Apply Lemma VI.12 with ¢ replaced by 3 and with f replaced by f4, to get gg such that
Iz, ]|l < es implies [|[fa(y),z]|| < es if sp(y) C [0,1] and [lz[| < 1.

Apply Lemma VIIL.9 with ¢ as defined above and with €3 in place of € to get 7.

Let p be the measure obtained from 7 by the Riesz representation theorem. Using the

outer regularity of u choose €5 with £1/2 < g5 < £ and with
p([l —es,1]) < p([l —e1/2,1]) + &7 (VIL33)

Define a continuous function hg such that h3(t) =0 for t € [0,1 —eg], hg(t) =1fort € [1 —€1/2,1]
and hg is linear on [1 — eg,1 — £1/2]. Notice that hgh; = h3. Let gr 3 = h3(gx). Choose M with
4 <min{\/8 — €3, &7}

Apply Lemma VII4 with F = {q13,...¢5,3,01,...,0m}, with min{e4/2,£6} in place of
g, and with M in place of N, to obtain positive elements ¢(!) € B and cgli € A, a subalgebra
D € ¢®BcM and an isomorphism & : M, ® cﬁAcﬂ — D such that there exist elements

Zlyeees Ty, €1,...8m € D with

eMq; 3¢V — 25]| < e4/2 for all 5 =1,...n by part 3.

llz;ll < llgjsll =1forall j =1,...n by part 3.

lcMarc®) — ex]| < £4/2 for all k = 1,...m by part 3.

eMq; 3¢ — 2] < e4/2 for all j =1,...n by part 3.
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o [[cWg;5 —qj 3¢ || < g6 for all j =1,...n by part 5, and

o 7(1—-cW) < & by part 6.

Set dV) = fi(cM),...,d® = fs(cV). We have ||[dV — M| < e5. Also, dVd®? =
d@,...,d®d®) = d®)  Notice that since 1 — fo(t) is zero on a larger set than 1 — ¢, we have

1—d® g1 —cW, Similarly, we have
1-d® 1-d® g1-d® 1 -d® <1,
Now

14D ¢j,5dY — ;]| < [|dMg;,3dD — dDgaeD |+ [1dDgj8¢D — DgjacM | + Mgy 5e® — a4

< 2e5 + £4/2.

Similarly, [|[dPa;d®) — e;]| < (2e5 + €4/2)|ja4]-
Set d =d@. Set b; = a; +e; —dYa;dD. Then

by —ail| = |le; — dVadD| < (265 + €4/2)||a; <(2 i + 2 ) aill <e.
by = a5l = lleg = dMasd® | < (225 +ea/2)losl < {2ty oSy ) lall <

Also, db;d = de;d € dDd. These are parts (5) and (6) of this lemma.
Notice that 2d®)(z; 4 27)d® € d®Dd® c dDd C D is a selfadjoint element of norm at

most 1. We compute

1 x
d(3)qj,3d(3) - §d(3)(xj + xj)d(?’) < ||d(3)qj’3d(3) _ d(?’)xjd(?’)”

= ||d(3)d(1)qj,3d(1)d(3) — d(3)xjd(3)||
< | dMg;,5d™ — ]|
< 25 +€4/2

< &4.

Thus since d®g;3d®) > 0, by the choice of &4, we see y; = (3d®(z; + 23)d®), is a

positive element of dDd with ||d® g;,3d® — y;|| < e3.
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Now by the choice of ¢ using Lemma VIL.10 there exists a positive element of norm at

most 1, sx € yrDyx, C d®Dd®) C D such that
llskg(yx) — 9(yx)|| < min{e/12,\/4} and ||skyr — sk|| < min{e/12, \/4}. (VIL.34)
Let 7, = sxd®. Note that 74 € W, S0
driy = dPry, = 1y (VIL.35)
Using the choice of ¢ in the last step since ||gx,3c(Y) — Mgy 3| < £, We see that

ka3 — 7ell = | sed®q,s — skd®||
< ||3kd(4) _ Skykd(4)|l + Hskykd(4) _ skd(3)qk,3d(3)d(4) n
+ ||55d®gr,3dDd® — 5,d®dD gy 5| + ||sxdPdPgr 3 — s.d Py 3|
< e/12+ lyr = dPar3d®|| + [lgr,sd® — d Vg 3] +0

<ef12+e3+e3.
Furthermore,

lreae — Tl < I7eare — Toar,1ll + |176k,1 — Tee,3k,1 || + [|75qk,38%,1 — T ||

<t = hall + llre — rrar,sll + [|76%,3 — 7]
<&+ 2(8/12 + 283)
= &1 + /6 + des

< g/2. (VIL.36)

Define h to be the continuous function which is 0 on [0,&3], linear on [e3,1], and 1 at
t = 1. Notice |h(t) —t|| < €3 so ||[rx — h(ri)|| < 3. Now define continuous functions hy = hy_.;
for j =1,...,N by hy_; is 0 on [0,e3 — %], linear on [e3 — &,e3 — £5*] and 1 on [e5 — 2,1

Set hyy = h. Notice that hjhj1q = hjy1.
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Define 74,7 = hj(ry). Thus, 7k ;7% j+1 = Tk j+1. This is part (3) of the lemma. Now, by
Equation VII.35, we have dry = ry, so since hn(0) = 0, we also get drg, v = i,y which is part (4)
of the lemma.

To obtain part (1) of the lemma we compute

Irenae — i || < lre,vae — Tegell + I7ege — r&ll + I7e — 7&, ]|
< %5 + % by VIL.36
£ £
I
<2173

_76
T 12

<E.

Thus (1) is proved.
It remains only to prove part (2). Since A and hence D have strict comparison we will
begin by looking at traces.

We observe that
(1 —d®) (1 —d*D) =1 — gk —glk=1) 4 g gle=b) — 1 _ glk=1), (VIL37)
Now

T ((1 - d(4)) 9(yi) sk <1 - d(S))) =7 (1 - d(5)> <1 - d(4)) g(yk)Sk)

<T (1 - d(4)>
<rT (1 — c(1)>
< 1
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But on the other hand

T ((1 - d(4)) 9(Yr) Sk (1 - d(s))) T (9 (ye)sk — dDglyr) sk — g(yr)sed® + d(4)g(yk)3kd(5))
7 (g(y)sk — dDg(yx) sk — g(yr)skd® + g(yk)skd(5)d(4))

(s
T (g Yi)Sk — d(4)g(?}k)3k>
(s

I

TL9(yx)sk — yk)skd(4))

=7 (9(yr) sk — 9(Yx)Tk) -

Therefore,

T(9(yk)sk — g(yk)Ti) < % (VIL38)

If z € qk,3Dqr3 and ||z|| < 1, then 7(2) < p([l —es,1]) < u([1 —e1/2,1]) +¢e7 by Equation
VII.33. Thus

Il ma=l — &7 < 7(g53)- (VIL.39)

Next we get a lower bound on 7(rg n). We have

T(re,n) > 7(re) — €3
>T (Tk/ g(yk)f‘k/z) — &3
=7 (g(ye)rr) — €3
7 (9(yk)sk) — 1/M — &5 by VIL38
> 7 (g(yk)) — N4 —1/M —e3 by VIL34

>T (g (d(s)qj,gd(g’))) —e3—N4~1/M — €3 since ||d(3)q]-,3d(3) —y;ll < ez < da.

We can improve on this, because Equation VI1.39 and 7(1 —d®) < 7(1—cV) < 1/M < &7
together imply 7 (g (d®¢;3d®)) > 7(g;,3) — e2 by the choice of &7 using Lemma VIL9. So now

we get
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T(rk,N) > T (9 (d(g)fb‘,zd(g))) —~€2— A4~ 1/M —e3
> 7(gj3) —€2—€2—A/4—1/M — &3
> A —2e3 — A/4—1/M — g3 by Equation VII.32 with hj in place of h

SA—2)/4—A/4—)/8—¢e;

—)\/8— &3
>1/M

> (1 - c(1)>
>7 (1 - d(5)) :

If at least one of 1 —d®, 1 —d®, and 1 — d® is not a projection, then we have

T (1 - d(s)) > nli—>r207- ((1 - d(2)) l/n)

by Lemma, VIL.15.

We can reach the same conclusion if all three of them are projections. First notice that
by definition of the functions, 0 < 1 — fo(t) < 1 — f5(t) < 1 for all £. But this implies that
0<1—fy(cW) <1~ f5(cM) < 1, which means that 0 < 1—d® < 1-d® < 1. By using
exercise 12 of Chapter VII, section 3 in [4] to get the inequality and the fact that 1 — d® is a
projection to get the equality we see that (1 - d(2))1/n < (1 — d(s))l/n =1—d® for any positive
integer n. Therefore, lim,_ oo T ((1 — d(2))1/n) <7 (1-d®).

Either way, combining the estimate on 7(1 — d®) and the estimate on (¢ n) gives

T(re,N) > T (1 - d(s)) > lim 7 ((1 — d(2))1/n> .

n—00

This implies

lim 7 ((Tk,N)l/") > lim 1 ((1 — d(2))1/n) .

7—00 —00

Because A and hence D has strict comparison, we now can conclude that 1 — d® = 7k, Ny Which is

part (2) of the lemma. 1
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The following theorem is the main theorem of the dissertation. It is a projection free

analog of Theorem V.4, which is the finite group analog of Theorem 5.3 of [16].

Theorem VII.17. Let A be an infinite dimensional stably finite simple unital C*-algebra with a
unique 2-quasi-trace which s also a trace. Assume A has stable rank one and strict comparison.
Let a: G — Aut(A) be an action of a finite group with the projection free tracial Rokhlin property.
Then B = C*(@G, A, a) also has stable rank one.

Proof. Note that B has a faithful tracial state, so every one sided invertible element is invertible.
Now, Theorem 3.3 (a) of [26] states that if the two sided zero divisors of B are contained in the
closure of the invertible elements, then the complement of the invertible elements consists of those
elements of B which are one sided, but not two sided invertible. Combining these two statements
would give B \ GL(B) = §) which means B has stable rank one. Therefore, it is sufficient to prove
that for every two sided zero divisor a € B and every € > 0, there is an invertible element of B
within & of a. Without loss of generality, ||a|| <1/2 and ¢ < 1.

Now suppose z,y € B are nonzero and satisfy za = ay = 0. Since ||z*z| " 'z*za =
ayy*|lyy*|| 7! = 0 we may assume that z and y are positive elements of norm 1.

Let 67 = min {-2-%, 53\/5%, %4} Apply Lemma VII.16 to the positive elements z and ¥ in
place of q1,...,q, and the element a in place of a1,...,ay, with N = 1 and with §; in place of
&. Call the resulting subalgebra Ag. Let po be the resulting positive element d. Let o0, 0,1, 0,0,
and yp ;1 be the nonzero positive elements of norm one ry ;. Let ag be the resulting element b;.

Define a; = (1 —2o,0)ao(1 —yo,0)- Note that zo1a; = (20,1 — Z0,1%0,0)@0(1 ~ Yo,0) = 0 and

similarly, a1yo,1 = 0. Next we wish to show that @, is near a. Since |a|| < 1/2, we have

[Zo,0a0l| < [|Zo,0a0 — Zo,0all + [|[20,0a — zo,0za| + [|zo0zall
< lzo,ollllao — al + [lzo,0 — To,0z||[lall +0

< 24.

Similarly ||aoyo,ol < 261.
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Now we can compute

la = a1l = lla — (1 — Zo,0)a0(1 ~ yo,0)|l
< lla —aoll + [lao — (1 — @o,0)a0(1 — yo,0)l
< 61+ |lao — ao + agyo,0 + Zo,000 — Zo,000Y0,0||
< 61+ [lagyo,oll + [[%o0,0a0ll11 — yo,oll

< 761,

Now apply Lemma VII.14 with o1 in place of b, and yo,1 in place of a. From this lemma
we get a positive element 7 of norm 1 with 7 < zq; and 7 < yg,1.

Choose 85 < 28;. Since Ay is is stably isomorphic to A, Theorem 3.6 in [25] implies that
the stable rank of A is one. Thus for f5, as defined in Definition VI.2, by Proposition V1.3 there
exists a unitary v € U(A7) such that v* fs, (r)v € yo,14y0,1 where A7 is the unitization of Ag. Set
1 = fo, (7).

Next we prove that a,v* is a zero divisor. We have

larv™r1| = [larv™r1v||

/

)

= lim [a1yg v riv)
n—00
= |0 v*r1v]

=0.

Therefore, (a1v*)r1 = 0. On the other side we see that, since r < xq,1, the elements 7 and

thus 71 are in the hereditary subalgebra generated by zo 1, so

r1{a1v*) = nh_}rgo rl(mo,l)l/“alv* =0.

Let 43 = min{ 5, \/‘/_i_l} Apply Lemma VII.16 with the positive element of norm one 71 in

2

place of q1,...¢qn, and with a;v* in place of ay,...,amn. Use d3 in place of € and N = 1.
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Call the resulting algebra A;. Let ps be the resulting positive element of A;, Let the resulting
positive elements 7 ; of norm at most 1 be called z2 and x5, and let the resulting element b;
be called a,.

Define ag = (1 — z20)a2(1 — z2,0). Then x4 103 = azzo; = 0. Next we compute the norm

of ||az|l. We have

lazll < llag — ar®|| + [lar® — av*|| + fJav”]|
<83+ [lax —all + [lall

<é3+ 76+ 1/2.
Now in order to estimate |laz — as|| we bound ||z oaz||. We have

lz2 002 < l|z2pa2 — 22,0a10"|| + ||Z2,0010* = @2 071010™ || + ||22,0m1010™ ||
< lz2,0l/03 + [lz2,0 — 22,071 ||l @1v™[| + 0
< 83+ dsja|
< 83+ 83(761 +1/2)
_ 345

— 0361.
5 + 70301

Similarly, ||asza,0ll < %ﬁ- + 7630,

Next we can estimate |jag — as||. We have

laz — as|| = [laz — (1 — z2,0)a2(1 — z2,0) ||
< |laaa,0 + z2,0a2 — T2, 082220
< llazzz,0ll + l|z2,0a2][[I1 — z2,0l

35 5
< 73 7636, +2 [% + 75351}

)
= % + 216,65
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The conclusion of Lemma VII.16 gives us that x5 ops = z2,0. Thus

1
D2a3p2 = p;/z (1 - $2,0) (p;/2a2p2/2) (1 - $2,0)P5/2-

Now (pé/zagpém) € paAopa, and 1 — g € p2A2+p2. Therefore, paagpg & p2A2+p2.

With f5, as defined in VI.2, choose 44 so that f5,(1 — ps) # 0 . Note that this is possible
unless sp(1 — pa) = {0} in which case po = 1. If this occurs, then psAsps = Az which has stable
rank one. Then we can approximate ag by an invertible element and be finished with the proof.
Therefore, we may assume that we can choose such a 4.

By the conclusion of Lemma VII.16, we have 1 —ps < 22,1. Thus by Proposition V1.3 there
exists a unitary u € U(A2+) such that ufs, (1 — pa)u* € m Then, since z2,0%21 = Z2,1

and ufs, (1 — pa)u* € x2,1A2+x2,1, we have
T2,0ufe,(1 — p2)u” = ufs, (1 — p2)u* = ufs, (1 — p2)u”z2,0.

Thus

ufs, (1 — pa)u™(asu) — ufs, (1 — p2)u*(1 — z20)az(l — z2,0)u =0

and similarly, (asu)fs, (1 — p2)u* = 0. This implies agufs, (1 — p2) = 0.
Next we observe that ufs, (1 — p2)u* and f5,(1 — p2) are orthogonal. First, using

T2,0Z2,1 = T2,1 again we see

[u(l = p2)u*](1 — p2) = u(l — p2)u*z2,0(1 — p2)
= u(l — p2)u™ (22,0 — Z2,0P2)

=0.

Therefore, for any continuous function f with f(0) = 0, we have uf(1—ps)u* is orthogonal
to f(1 — p2). In particular, ufs, (1 — p2)u* is orthogonal to fs, (1 — pg). Set z1 = ufs, (1 — pa)u*
and z3 = f5,(1 — pa). Set x5 =1 — x; — z3. Since z; and z3 are orthogonal and have norm less
than or equal to one, 0 < zo < 1. Our goal now is to use Lemma VII.13 with these choices of
z1, T2, and z3 and with a replaced by azu. We have already shown that zia3u = agurs = 0. We

must show that x5 € paAJ pa.
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First we show that 1 — f5,(1—p2) € pyAaps. First observe that 1 —(1—p2) = pa € paAaps.
Also, since 1 and ps commute, using the binomial expansion theorem, we can show that
1 - (1 — p2)™ € paAape. In fact for any polynomial with f(0) = 0 and f(1) = 1, we have
1 — f(1 —p2) € pyAgpe. Since fs, is the limit of such polynomials, 1 — f5,(1 — p2) € paAaps.

Next recall that ufs,(1 — pe)u* € z21AF 21 C AY. Additionally,

1/n

nli_l}gop;/"ufg‘l(l —po)u* = lim lim p, :1:2 Tufs, (1 — pa)u*

—00 M—00

= lim z¥™ufs, (1 - po)u*
m—00 ’

= ufs, (1 — p2)u’

A similar computation works on the other side, so we see that ufs, (1 — p2)u* € pgA—ng
This implies that o = 1—ufs, (1 —p2)u* — f5,(1—pa) € pgA—ng which has stable rank one because
As is isomorphic to matrices over a hereditary subalgebra of A.

Now we may apply Lemma VII.13 with z1,z9, and z3 as above, with A replaced by A;L ,
with agu in place of a, and with €/44 in place of . The lemma gives us an invertible element

as € AF with ||as — azul| < £/44. Then aqu*v is invertible and near a. More specifically,

lasu™v —al| < [lasgu™v — agv|| + [lazv — agv|| + [lazv — a1[| + [la1 — al

< llas — agul| + ||lag — az[| + [laz — a1v*|| + [la1 - al

<e/dd+ —92—3 + 216165 + 83 + 78

\/_ \/_
4 =
<e/ 4+222+2 2\/_2\/_4—6/22—!-75/28

=E.

Therefore, C*(G, A, @) has stable rank one. I
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