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This dissertation consists of two related parts. In the first portion we use the tracial

Rokhlin property for actions of a finite group G on stably finite simple unital C*-algebras containing

enough projections. The main results of this part of the dissertation are as follows. Let A be a

stably finite simple unital C*-algebra and suppose a is an action of a finite group G with the

tracial Rokhlin property. Suppose A has real rank zero, stable rank one, and suppose the order

on projections over A is determined by traces. Then the crossed product algebra C*(G,A,a) also

has these three properties.

In the second portion of the dissertation we introduce an analogue of the tracial Rokhlin

property for C*-algebras which may not have any nontrivial projections called the projection free

tracial Rokhlin property. Using this we show that under certain conditions if A is an infinite

dimensional simple unital C*-algebra with stable rank one and a is an action of a finite group G

with the projection free tracial Rokhlin property, then C* (G, A, a) also has stable rank one.
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CHAPTER I

INTRODUCTION

This dissertation focuses on the properties of crossed product C* -algebras. Let A be a C*­

algebra and let a: C --+ Aut(A) be an action of a finite group C on A. We write a g instead of a(g).

As a set, the crossed product C* (C, A, a) is the group ring A[C]. However, the multiplication and

involution are skewed by the action a of C on A. If C is not finite but is discrete, we must complete

A[C] in a suitable norm. This construction has not only provided new examples of C*-algebras,

but has provided new ways of looking at old and naturally occurring C* -algebras. For example,

consider the irrational rotation algebras Ao, which were originally described as being generated by

elements u and v satisfying the relations uu* = 1, u*u = 1, vv* = 1, v*v = 1 and uv = e2niOvu.

One can also describe Ao as a crossed product by Z acting on C(Sl) by rotation by an angle of

21riB.

It is natural to ask which properties of A are shared by the crossed product. In particular

we would like to know when C* (C, A, a) has one of the following three properties.

Definition 1.1. Let A be a unital C*-algebra. We say that the order on projections over A is

determined by traces if whenever p, q E Moo (A) are projections such that T(p) < T(q) for all

T E T(A), then p ~ q.

Definition 1.2. A unital C* -algebra A has stable rank one if the invertible elements are dense

in A {25j.

Definition 1.3. A unital C* -algebra A has real rank zero if the invertible self-adjoint elements

are dense in the self adjoint elements {2j.

One reason that these properties are important is because they are satisfied for many C*­

algebras. Additionally, stable rank one, real rank zero, or both are hypotheses of many theorems

about C* -algebras. Finally, it is known that A having stable rank one is not sufficient to guarantee
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that the stable rank of C*(G, A, a) is one. Example 8.2.1 of [1] provides an example for which the

stable rank of the crossed product is two. However, by a theorem of Osaka and Teruya, for any

simple unital C* -algebra with property (SP) and any finite group action, the stable rank of the

crossed product is two or less [17].

Since real rank zero implies the existence of many projections, we need a notion of com­

paring projections.

Definition 104. For any projections p and q in A, we write p rv q if there exists an element

v E A such that v*v = p and vv* = q. In this case we say that p is (Murray-von Neumann)

equivalent to q. We write p ::5 q if there exists a projection l' such that p rv l' and l' :::; q. In this

case we say that p is (Murray-von Neumann) subequivalent to q.

We will also need a condition on the action.

Definition 1.5. Let A be an infinite dimensional simple unital C* -algebra, and let a: G -> Aut(A)

be an action of a finite group G on A. We say that a has the tradal Rokhlin property if for

every finite set F c A, every c > 0, and every positive element x E A with Ilxll = 1, there are

mutually orthogonal projections eg E A for g E G such that:

1. Ilag(eh) - eghll < c for all g, hE G.

2. Ilega - aegll < c for all g E G and all a E F.

3. With e = l:9EG eg, the projection 1 - e is Murray-von Neumann equivalent to a projection

in the hereditary subalgebra of A generated by x.

4. With eas in (3), we have Ilexell > 1 - c.

In Chapters III, IV, and V we prove the following theorems which are finite group analogs

of known results about actions of Z [16]:

Theorem 1.6. Let A be an infinite dimensional stably finite simple unital C* -algebra with real rank

zero, and suppose that the order on projections over A is determined by traces. Let a: G -> Aut(A)

be an action of a finite group with the tracial Rokhlin property. Then the order on projections over

C*(G,A,a) is determined by traces and C*(G,A,a) has real rank zero.

Theorem I.7. Let A be an infinite dimensional stably finite simple unital C* -algebra with real

rank zero and stable rank one, and suppose that the order on projections over A is determined by
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traces. Let a: G ----4 Aut(A) be an action of a finite group with the tracial Rokhlin property. Then

C*(G,A,a) has stable rank one.

The tracial Rokhlin property has already proven itself useful for proving theorems about

crossed products [7] and [21]. There is a related but strictly stronger notion called the Rokhlin

property. For an example of an action with the tracial Rokhlin property, but not the Rokhlin

property, let B be any simple C*-algebra with tracial rank zero. Let A = B0B and let a: 71,/271,----4

A be the action which interchanges the two copies of B. That is, the nontrivial element of 71,/271,

maps to the automorphism a2: a 0 b H b0 a [15].

There are relatively few actions with the Rokhlin property and many algebras which admit

no actions at all with the Rokhlin property. However, there are many examples of actions with

the tracial Rokhlin property.

It is clear from the definition of the tracial Rokhlin property that it guarantees the existence

of at least n projections, where n is the order of the group. In fact, it implies the existence of

infinitely many projections. Thus a C*-algebra with few projections cannot have any action with

the tracial Rokhlin property.

In Chapters VI and VII we have formulated a projection free generalization of the tracial

Rokhlin property called the projection free tracial Rokhlin property. This generalization replaces

the projections with positive elements and Murray-von Neumann equivalence with Cuntz equiva­

lence of positive elements.

Definition 1.8. Let x and y be positive elements of a C* -algebra A. We write x ;:, y if there

exist elements rj in A such that rjyrj ----4 x with the convergence in norm. In this case we say

x is (Cuntz) subequivalent to y. If x ;:, y and y ;:, x, we write x rv y and say x is (Cuntz)

equivalent to y.

It turns out that if p and q are projections and p is Murray-von Neumann subequivalent

to q, then pis Cuntz subequivalent to q.

We expect that if Z is the Jiang-Su algebra as defined in [10], then the action which

interchanges the two copies of Z in Z 0 Z provides an example of an action with the projection

free tracial Rokhlin property. The analogous result which leads to this belief is found in [19].
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The main result of the later chapters of this dissertation is Theorem VII.17:

Theorem 1.9. Let A be an infinite dimensional stably finite simple unital C* -algebra with stable

rank one. Assume also that A has a unique 2-quasi-trace which is also a trace, and strict comparison

of positive elements. Let a: G --t Aut(A) be an action of a finite group with the generalized tracial

Rokhlin property. Then C*(G, A, a) has stable rank one.

Unlike Theorem 1.6 and Theorem 1.7, the analog for actions of Z is not known. We do not

ask the analogous question for real rank zero. This is because an algebra with real rank zero has

many projections and so we can use the original definition of the tradal Rokhlin property.

Theorem VII.17 provides evidence that the generalization of the tradal Rokhlin property

has been chosen appropriately. It is known that if an action has this generalized tradal Rokhlin

property and the algebra is simple with tradal rank zero, then the action has the original tradal

Rokhlin property (Lemma 1.8 of [22]). Tradal rank zero implies real rank zero and thus the

existence of many projections, so this also an indication the generalization has the right definition.

The interest of this dissertation lies mainly in its applicability to the classification program.

The classification program has been one of the major thrusts in C* -algebras for the last 15 years.

This program is the search for invariants which will distinguish separable, nuclear C*-algebras up

to isomorphism. Most of the known theorems deal with simple C* -algebras. Ideally the invariants

used should be relatively computable. One of the most important of these invariants is Ko(A).

The group Ko(A) encodes information about projections in Mn(A) up to Murray-von Neumann

equivalence. In fact, K o is functor which can be considered as a non-commutative homology

theory. Analogously, the Cuntz semigroup encodes information about positive elements up to

Cuntz equivalence. Recent work by Brown, Perera, and Toms indicates that the Cuntz semigroup

will also be a useful invariant for the purposes of classification [3].

The results in sections II, III, IV, and V are modeled heavily on those in [16] and [23],

and the proof techniques here mimic those there whenever possible.
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CHAPTER II

THE TRACIAL ROKHLIN PROPERTY

Definition Il.l. Let A be an infinite dimensional simple unital C* -algebra, and let a: G ----+

Aut(A) be an action of a finite group G on A. We say that a has the tracial Rokhlin property if

for every finite set F c A, every c> 0, and every positive element x E A with Ilxll = 1, there are

mutually orthogonal projections eg E A for g E G such that:

2. Ilega - aegll < c for all g E G and all a E F.

3. With e = 2:
9E

G eg, the projection 1 - e is Murray-von Neumann equivalent to a projection

in the hereditary subalgebra of A generated by x.

4. With e as in (3), we have Ilexell > 1 - c.

When A is finite, as was shown in Lemma 1.12 of [23], Condition (4) of Definition ILl is

not needed:

Lemma 11.2. Let A be a finite infinite dimensional simple unital C* -algebra, and let a: G ----+

Aut(A) be an action of a finite group G on A. Then a has the tracial Rokhlin property if and only

if for every finite set F c A, every c > 0, and every nonzero positive element x E A, there are

mutually orthogonal projections eg E A for g E G such that:

2. Ilega - aegll < c for all g E G and all a E S.

3. With e = 2:9EG eg, the projection 1 - e is Murray-von Neumann equivalent to a projection

in the hereditary subalgebra of A generated by x.
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For the sake of comparison we also consider the Rokhlin property, which we call here the

strict Rokhlin property for emphasis.

Definition 11.3. Let A be a unital C* -algebra, and let a: G -4 Aut(A) be an action of a finite

group G on A. We say that a has the strict Rokhlin property if for every finite set F c A, and

every c > 0, there are mutually orthogonal projections eg E A for 9 E G such that:

1. Ilag(eh) - eghll < c for all g, hE G.

2. Iha - aegll < c for all 9 E G and all a E F.

3. LgEG eg = 1.

Notation 11.4. Let A be a unital C*-algebra. We denote by T(A) the set of all tracial states

on A, equipped with the weak* topology. For any element of T(A), we use the same letter for its

standard extension to Mn(A) for arbitrary n, and to M(X)(A) = U:':"=l Mn(A) (no closure).

Definition 11.5. Let A be a unital C* -algebra. We say that the order on projections over A

is determined by traces if whenever p,q E M(X)(A) are projections such that 7(p) < 7(q) for all

7 E T(A), then p ~ q.

The following lemma is the finite group analog of Lemma 1.4 in [16].

Lemma 11.6. Let A be an infinite dimensional stably finite simple unital C* -algebra with real rank

zero and such that the order on projections over A is determined by traces. Suppose a : G -4 A is

an action of a finite group on A. Then a has the tracial Rokhlin property if and only if for every

finite set F c A and every c > 0 there are mutually orthogonal projections eg E A for each 9 E G

such that:

1. Ilah(eg) - eghll < c for 9 E G.

2. Ilega - aegll < c for all 9 E G and all a E F.

3. With e = LgEG eg, we have 7(1 - e) < c for all 7 E T(A).

Proof. First assume that a has the tracial Rokhlin property. Let c > 0 and F c A finite be given.

Let n be large enough that 1/2n < c.

We claim that A has no minimal nonzero projections. The claim holds because if B is a

simple C*-algebra with real rank zero and which has a minimal projection, then B is isomorphic to
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the compact operators on some Hilbert space. However, the algebra A is both infinite dimensional

and unital, so it is not isomorphic to the compact operators on any Hilbert space. This is precisely

the condition "non elementary" required in Theorem 1.1 (i) of [28], so applying that theorem allows

us to write

for mutually orthogonal projections Pi satisfying Po ;:::) PI and PI rv •.• rv P2n • This implies

Thus we have
2n

LT(Pi) = 2n T(pI) :::; 1,
i=I

which implies T(PI) :::; 2~ < E.

On the other hand,

1 = T(l) = LT(Pi) = T(PO) + LT(Pi) :::; (2n + l)T(PI)'
i=O i=I

Therefore, PI i=- O.

Now apply the definition of the tracial Rokhlin property to x = PI, and to E and F as given

to get projections eg satisfying conditions (1) through (4) of Definition ILL It remains only to

show that condition (3) of this lemma holds. By setting e = I:9EG eg , condition (3) of Definition

11.1 gives 1 - e is equivalent to a projection in xAx, so T(l- e) :::; T(X) < E for all T E T(A).

Conversely, assume the condition of the lemma and let E; > 0, F c A finite, and x E A

a positive element of norm 1 be given. Choose a nonzero projection q in the hereditary sub­

algebra generated by x. Such a projection exists since A has real rank zero. Choose 0 with

o < 0 < min(E, infTET(A) T(q)). Now apply the condition of the lemma with E; replaced by 0 to

get projections ego Note that infTET(A) T(q) > 0 since T(A) is compact and T(q) > 0 for each

T E T(A). Set e = I:9EG ego Then since T(l - e) < T(q) for every tracial state and the order on

projections over A is determined by traces, 1 - e ;:::) q which gives condition (3) of the definition

and completes the proof. I
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Lemma 11.7. Let A be an infinite dimensional simple unital C*-algebra, and let a: G --> Aut(A)

be an action of a finite group G on A which has the tracial Rokhlin property. Then a g is outer for

every g E G \ {I}.

Proof. This is Lemma 1.5 of [23]. I

Corollary 11.8. Let A be an infinite dimensional stably finite simple unital C* -algebra and let a :

G --> Aut(A) be an action of a finite group G with the tracial Rokhlin property. Then C*(G, A, a)

is simple.

Proof. Using Lemma 11.7, this is immediate from Theorem 3.1 of [11]. I

Definition 11.9. Let A be a C* -algebra. We say that A has Property (SP) if every nonzero

hereditary subalgebra in A contains a nonzero projection.

Notation 11.10. For any compact convex set L\ in a topological vector space, we let Aff(L\) be the

set of all real valued continuous affine functions on L\.

Here we are particularly interested in Aff(T(A)).

The proof of Proposition 11.13 requires two lemmas.

Lemma 11.11. Let A be a unital C* -algebra, and let a: r --> Aut(A) be an action of a countable

amenable group. Let iI, ... , fl E Aff(T(A)) have the property that !J(T) > 0 for all r-invariant

T E T(A). Then there exist nand 11, ... , In E r such that for all T E T(A) we have

for 1 ~ j ~ I.

Proof. This is Lemma 2.2 in [16]. I

The following lemma is a more flexible version of a result of Zhang [28]. In Zhang's version,

which is used in the proof, the integer n of the hypotheses is required to be a power of 2.

Lemma 11.12. Let A be a simple unital infinite dimensional C* -algebra with real rank zero. Let

pEA be a projection, and let n EN. Then there exist projections PO,PI, ... ,Pn E A such that

n

LPk =p, PI "'P2 '" ... '""Pn, and Po ~PI'
k=O
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Proof. This is Lemma 2.3 in [16]. I

Proposition 11.13. Let A be a simple unital infinite dimensional G* -algebra with real rank zero,

and assume that the order on projections over A is determined by traces. Let a: r ----+ Aut(A) be

an action of a countable amenable group. Let p, q E Moo(A) be projections such that T(p) < T(q)

for every r-invariant tracial state T on A. (We extend T to Moo(A) as in Notation II.4). Then

there is s E Moo (G* (r, A, a)) such that

s* s = p, ss* ~ q, and ss* E Moo(A).

In particular, p ;::$ q in Moo(G*(r, A, a)).

Proof. This is Proposition 2.4 in [16]. I

The following lemma is the finite group analog of Lemma 2.5 in [16].

Lemma 11.14. Let A be an infinite dimensional stably finite simple unital G* -algebra with real

rank zero such that the order on projections over A is determined by traces. Let G be a finite

group of order n and let a : G ----+ Aut(A) be an action of G with the tracial Rokhlin property. Let

~: A ----+ G*(G, A, a) be the inclusion map. Then for every finite set Fe G*(G, A, a), everye > 0,

every N EN, and every nonzero positive element Z E G* (G, A, a), there exist a projection e E

A c G*(G, A, a), a unital subalgebra Dc eG*(G, A, a)e, a projection f E A, and an isomorphism

<p: M n 0 fAf ----+ D, such that:

1. With (eg,h) for g, h E G being a system of matrix units for M n , we have <p(el,1 0 a) = ~(a)

for all a E f Af and <p(eg,g 0 1) E ~(A) for g E G.

2. With (eg,g) as in (1), we have 11<p(eg,g 0 a) - ~(ag(a))" ~ ellall for all a E f AI.

3. For every a E F there exist bl , b2 E D such that Ilea - bIll < e, Ilae - b2 11 < e, and

Ilblll, IIb2 11 ~ Ilall·

4· e = 'E-9EC<p(e9,g (1).

5. The projection 1- e is Murray-von Neumann equivalent in G*(G, A, a) to a projection in the

hereditary subalgebra of G*(G, A, a) generated by z.
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6. There are N mutually orthogonal projections h, 12" .. , fN E eDe, each of which is MurTay­

von Neumann equivalent in C*(G, A, a) to 1 - e.

Proof We first make a simplification: It is not necessary to check the estimates Ilblll, Ilbzll ::; Iiall
in Condition (3) of the conclusion. To prove this, without loss of generality Iiall = 1 for all a E F.

(If 0 E F, then bl and bz may be taken to be zero which satisfy the norm estimates. Otherwise we

can normalize all the elements of F.)

Apply the statement without the bound on bl and bz with ~c in place of c, and with

all other pammeters the same. Let Cl and Cz be the resulting elements in Condition (3) of the

weakened conclusion. Then Ilelll, Ilczll ::; 1 + ~c. Set

and bz = (_1_
1
-) Cz.

1 + "2c

One checks that Ilbl - clll < ~c, so Ilbl - pall < c. Similarly Ilbz- apll < c. This proves the

simplification.

Now we do the main part of the proof. Let c > 0, and let F c C* (G, A, a) be a finite set.

Let N E N, and let z E C*(G, A, a) be a nonzero positive element.

Let ug for g E G be the standard unitaries in the crossed product C*(G,A,a). We regard

A as a subalgebra of C* (G, A, a) in the usual way.

For each x E F write x = LgEG agug. Let SeA be a finite set which contains all the

coefficients used for all elements of F. Let M = 1 +suPaES Iiali.

Let 00 < 16:2 M' Let 01 be such that if Pl,PZ are projections in a C*-algebra B and if

a E B is such that Ila*a - pIlI ::; 01 and Ilaa* - pzll ::; 01, then there is a partial isometry s E B

such that s* s = PI, SS* = Pz, and Iia - pil ::; 00. Let 0 < 0 < min{Oo, 01, 4~3' I}

Since A has real rank zero, it has Property (SP), and since (by Lemma 11.7) a g is outer for

all g E G, Theorem 4.2 of [9], with N = {I}, supplies a nonzero projection q E A which is Murray­

von Neumann equivalent in C*(G,A,a) to a projection in zC*(G,A,a)z. Moreover, Lemma 11.12

provides nonzero orthogonal Murray-von Neumann equivalent projections qo, ql, ... , qZN E qAq.

Apply the tracial Rokhlin property (Definition ILl) with 0 in place of c, with S in place of

F, and with qo in place of x. Call the resulting projections eg for each 9 E G, and let e = L9EG ego
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Set f = eI, and define Wg,h = Ugh-1eh. We claim that the elements (Wg,h)g,hEG form a

J-approximate system of n x n matrix units. To prove the claim we compute:

Ilw;,h - wh,gll = Ilehu:h-1 - Uhg-1egll

= IIUgh-lehu:h-l - egll

Then, using egeh = Jg,heh at the third step we find

= Ilug h-1(Ug h-1U* h-l)ehlUg h-1eh2 -ug h-1g h-1eh g-lh %211
1122922 22 1]22221

::; Ilu* h-1 eh1Ug h-1 - eh g-lh IIg2 2 2 2 2 2 1

For the final condition, since Ileqoell > 1 - J > 0, the projection eis nonzero, so eg is nonzero for

each 9 E G. This uses J < 1 again. In particular IlwI,III = IleI11 = 1 > 1- J. This proves the claim.

Since (Wg,h)g,hEG forms a J-approximate system of matrix units, each Wg,I is an approxi-

mate partial isometry for each 9 E G. More specifically,

since the eg are the tracial Rokhlin projections. Also,

because ug is a unitary for each g.
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Since 0 < 01, by the choice of 01 there exist partial isometries Zg E C* (G, A, O!) for each

9 E G such that Ilzg - wg,lll < 00 and such that zgz; = eg and Z;Zg = e1. Moreover, one may

check that we may take Zl = e1.

Let (eg,h)g,hEG be an n x n system of matrix units for M n . Define a linear function

ifJ : Mn 0 e1Ae1 ----- C* (G, A, O!) by ifJ(eg,h 0 a) = zgazh. One can then check in the usual way that ifJ

is a homomorphism. It is also worth computing at this stage that for g, h E G and a E e1Ae1, we

have IlifJ(eg,h 0a) -wg,lawh,lll :s; 21lalloo. Let D be the image of ifJ, so that ifJ is clearly surjective as

a map from M n 0e1Ae1 to D. To check that ifJ is injective we first recall that ker(ifJ) is an ideal in

M n 0 e1Ael which means that ker( ifJ) n (eg,h 0 e1Ae1) = eg,h 0 I where I is an ideal of e1Ae1 which

does not change as 9 and h vary. But we can compute that if 0 = ifJ(eg,h 0 a) = Zgazh for some

a E e1Ae1, then multiplying on the left by z; and on the right by Zh we see that e1ae1 = a = 0,

so I = 0, that is ker(ifJ) = {O}, so that ifJ is injective.

Now ifJ(e1,1 0 a) = zlazi = e1ae1 = a for any a E e1Ae1. Also, ifJ(eg,g 0 1) = zge1Z; =

ZgZ;ZgZ; = eg E A. These two conditions make up (1) of the conclusion.

To verify (2), let a E e1Ae1 and estimate

IlifJ(eg,g ® a) - O!g(a) II :s; IlifJ(eg,g 0 a) - Wg,laW;,lll + Ilwg,laW;,l - O!g(a) II

:s; 211alloo + Iluge1ae1U; - O!g(a)11

= 211alloo

:s; ell all·

For (4) we observe LgEGifJ(eg,g 01) = LgEGzge1Z; = LgEGeg = e.

Condition (5) holds essentially by construction since 1 - e is Murray-von Neumann equiv­

alent to a projection in qoAqo, but go E qAq and q is equivalent to a projection in the hereditary

subalgebra generated by z. In total this gives 1-e is subequivalent to a projection in the hereditary

subalgebra generated by z.

Now for condition (6), since qj rv qi and Murray von-Neumann equivalent projections have

the same trace, T(qj) < 27v for 0 :s; j :s; 2N and for any T E T(A). In particular, since 1 - e is

subequivalent to qo we have T(l - e) :s; T(qO) < 27v. This implies 1 - 27v < T(e). This gives

~ < T(e). Additionally T(qj) :s; 27v implies T(L~=l qj) < ~. Combining these statements gives

T(L;:l qj) < T(e) for all T E T(A). So since order on projections over A is determined by traces,
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2:f=1 qj ~ e. Let h E A be a projection satisfying 2:f=1 qj rv h ::; e and let s be a partial isometry

with s* s = 2:f=1 qj and ss* = h. Let hj = sqjs* for j = 1, ... ,N. One checks that hI, ... hN are

mutually orthogonal projections summing to h. Furthermore since hj ::; h ::; e we have hj ::; e.

Furthermore, hj rv gj via the partial isometry sgj' So now we have 1 - e ~ gj rv hj . Let ij

be a projection such that 1 - e rv ij ::; hj . Since ij ::; hj , and the hj are mutually orthogonal,

!I, ... ,iN are mutually orthogonal. Finally ij ::; hj ::; e in A and eAe ceDe, so !I, ... ,iN are

the projections we desired.

In order to show (3) we will use the following claim.

Claim: Ify = 2:gEGagug with ag E A and Ilagll::; M, and if [eg,ah] = 0 for all g,h E G,

then there are dl , d2 E D such that Iley - dIll, Ilye - d2 11 < 8n2M50.

Proof of claim: We can write ey = 2:gEG2:hEG egahUh = 2:gEG 2:hEdegaheg)(egUh)

since eg and ah commute. Now we make a norm estimate involving one of the factors in the third

expression for ey using the fact that Zg is a partial isometry at the third step:

Ilcp(eg,g ® elag-l(ahh) - egahegll

= IlzgeIa;l(ah)elz; - egahegll

= lIegzga;l(ah)z;eg - egahegll

::; Ilzga;l(ah)z; - zga;l(ah)w;,lll

+ Ilzga;l(ah)w;,l - w9,la;1(ah)w;,111 + Ilugela;l(ah)elu; - egahegll

Now we make an estimate involving the other factor:

This last line is less than or equal to 250 + Ilag(eduh - eguhll by an estimate we made previously.

This in turn is less than or equal to 250 + 5.
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:::; Ildo(g, h) - <p(eg,g 0 elCtg-l(ah)el)egUhll + 11<p(eg,g 0 elCtg-l(ah)el)egUh - (egaheg)(egUh) II

:::; 11<p(eg,g 0 elCtg -l(ah)el)II(20o+ 0) + 2Moo + 2Mo

:::; M(20o+ 0) + 2Moo+ 2Mo

= 4Moo +3Mo.

Now let d1 = I:9EG I:hEG do(g, h). Then

IId1 - eyll = L L do(g, h) - L L egahUh
gEG hEG gEG hEG

:::; L L Ildo(g,h) - egahUhl1
gEG hEG

We now turn our attention to the construction of dz. We can write

ye = L L ahUheg = L L ahCth(eg)uh.
gEG hEG gEG hEG

We note that

L L ahCth(eg)uh - L L ahehgUh
gEG hEG gEG hEG

:::; L L IICth(eg ) - ehgll
gEGhEG

But I:gEG I:hEG ahehgUh = I:hEG I:gEG ehgahUh = I:hEG I:kEG ekahuh by making the

change of variables, k = hg. This last is of the same form as ey, so using the argument above there
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is an element d2 E D such that

II L L ek ah uh- d211 ::;n
2M(40o+3Mo).

hEG kEG

Thus

We are now in a position to prove (3). Let x E F and choose bg E S such that x =

EgEG bgug. Define ag = (1 - e)bg(l - e) + E hEG ehbgeh' Now by writing the 2 by 2 matrix

decomposition for bg and subtracting we get

bg - ag = L [(1 - e)bgeh + ehbg(1- e)] + L L ekbgeh'
hEG hEG kEG

k#h

Because bg E S which was the set to which we applied the tradal Rokhlin property,

I\bg - agll ::; L [11(1- e)bgehll + Il ehbg(l- e)IIJ + L Ilekbgehll
hEG kEG

k#h

::; L [11(1 - e)[bg,eh]lI + 11(1 - e)ehbgll + II [bg, eh](l - e)11 + Ilbgeh(l - e)IIJ
hEG

kEG
k#h

kEG
k#h

::; n[O + 0 + 0 + 0 + (n - 1)0 + 0]

= (n2 +n)0

Set y = E9EG agug. Then

Ilx - yll ::; EgEG II(bg - ag)ug\1 ::; Ilbg - agll ::; n(2n20) = 2n30.

One easily checks that lag, ek] = 0 for all g, kEG. Thus the claim applies to y and

provides d1 E D such that Iley - dIll < 8n2 Moo. Thus
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by the choice of 6 and 60.

Similarly, the claim provides d2 E D such that Ilye - d2 11 < 8n2 M 60 which then satisfies

Ilxe - d2 11 < c. I

Given objects satisfying part (1) of the conclusion of Lemma II.14, we can make a useful

homomorphism into C*(G,A,a) which should be thought of as a kind of twisted inclusion of A.

The following lemma is stated in terms of an arbitrary unital C*-algebra B, but we note it applies

when B = C*(G, A, a) and the standard embedding is the map ~.

Lemma 11.15. Let A be any simple unital C*-algebra, let B be a unital C*-algebra, and let

~ : A ----> B be a unital injective homomorphism.

Let e, f E A be projections, and let n E N. Assume that there is an injective unital

homomorphism ep: M n 0fAf ----> ~(e)B~(e) such that, with (ej,k) being the standard system ofmatrix

units for M n , we have ep(el,l 0 a) = ~(a) for all a E f Af. Then there is a corner Ao C M n +1 0 A

which contains

{ (: ~) a E (!- e)A(! - e) and b E Mn " f Af}

as a unital subalgebra, and an injective unital homomorphism 1/J: A o ----> B such that

nt, (Oa °b)'P =~(a)+ep(b)

for a E (1 - e)A(l - e) and b E M n 0 f Af.

Moreover, if a: G ----> Aut(A) is an action of a finite group on A, B = C*(G, A, a), and ~

is the standard inclusion, then for every a-invariant tracial state r on A there is a tracial state a

on C* (G, A, a) such that the extension r of r to M n +1 0 A satisfies rlAo = a 0 1/J.

Proof Set

q = diag(l - e, f, f, ... , 1) E Mn+l 0 A,

and set

Ao = q(Mn +1 0 A)q and eo = diag(O, f, f, ... ,1) E A o.
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In M n +1 , call the matrix units ej,k for 0 ::; j, k < n. Then q - eo

'ljJ: Ao --+ C*(G,A,o:) as follows.

eo,o ® (1 - e). Define

1. For a E (q - eo)Ao(q - eo), write a = eo,o ® x with x E (1 - e)A(l - e), and set 'ljJ(a) = [(x).

2. For a E eoAoeo, write a = 'L,7,k=l ej,k ® Xj,k with Xj,k E f Af for all j and k. Regard this

sum as an element of Mn ® f Af in the obvious way, and set 'ljJ(a) = <p(a).

3. For a E (ej,j ® J)Ao(q - eo) for some j with 1 ::; j ::; n, write a = ej,O ® x with x E f A(l - e),

and set 'ljJ(a) = <p(ej,l ® f)[(x).

4. For a E (q - eo)Ao(ej,j ® f) for some j with 1 ::; j::; n, set 'ljJ(a) = 'ljJ(a*)* using (3).

Then extend by linearity.

To prove the first part of the lemma, it suffices to prove that 'ljJ defined this way is in fact

a homomorphism. It is clear that 'ljJ is linear and that 'ljJ(a*) = 'ljJ(a)* for all a E Ao, so we prove

multiplicativity. We must show that 'ljJ(ab) = 'ljJ(a)'ljJ(b). It suffices to consider 16 cases, namely

when a falls into each of the four categories above and when b falls into each of the four categories

above. We number the cases using ordered pairs, with the first coordinate saying which category

a is in and the second coordinate for b. We will treat the four most involved cases first.

For (3,1), write a = ej,O ® x as in (3) and write b = eo,o ® y analogously to (1). Then

ab = ej,O ® xy analogously to (3), so

For (3,4), the analogous expressions are: a = ej,O®x and b = eO,k®Y, then, using xy E f Af

we compute [(xy) = <p(el,l ® xy),

'ljJ(a)'ljJ(b) = <p(ej,l ® J)[(x)[(y)<p(el,k ® f) = <p(ej,l ® J)[(xy)<p(el,k ® J)

= <p(ej,l ® J)<p(el,l ® xy)<p(el,k ® J) = 'ljJ(ab),

since ab has the form described in (2).



------------------------------

18

Similarly, in (4,2) write a = eO,j 0 x with x E (1 - e)Af and b = 'L,'j,k=1 ej,k 0 Yj,k with

all Yj,k E f Af; then
n

ab = L eO,k 0 XYj,k
k=1

with XYj,k E (1 - e)Af, and

n n

'IjJ(a)'IjJ(b) = L L(x)cp(el,j 0 f)cp(ej,k 0 Yj,k) = L L(x)cp(el,1 0 Yj,k)cp(el,k 0 f)
k=1 k=1

n

= L L(X)L(Yj,k)cp(el,k 0 f) = 'IjJ(ab).
k=1

Finally, in (4,3) if j -I- k one easily gets 'IjJ(a)'IjJ(b) = 0 = 'IjJ(ab), and otherwise one writes

a = eO,j 0 x, b = ej,O 0 Y, and

'IjJ(a)'IjJ(b) = L(x)cp(el,j 0 f)cp(ej,1 0 f)L(Y) = L(x)cp(el,1 0 f)L(Y)

= L(X)L(f)L(Y) = L(XY) = 'IjJ(ab).

In case (1,1) and (2,2) multiplicativity comes from the multiplicativity of Land cp respec-

tively. In the cases (1,2), (1,3), (2,4), and (3,3), one easily checks that both 'IjJ(ab) and 'IjJ(a)'IjJ(b)

are zero. The remaining cases may be obtained by taking adjoints of those cases already done.

It remains to prove the statement about the tracial states. Let T be an a-invariant tracial

state on A. Let E: C*(G,A,a) ----. A be the map given by E('L,9ECa9u9) = al. One can check

that E is a conditional expectation. Let (Y = ToE and we check that this is a tracial state on
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C*(G,A,o:). That a is a state is clear, so we just verify that it is tracial. We compute

a(ab) = T (E(ab))

= LT (agO:g (bg-l)).
gEG

Meanwhile

u(ba) ~T (E ((~bhUh) (~a,u,)))

= T (E ( L bhUhagUg))
g,hEG

= T (E ( L bhO:h(ag)Uh9))
g,hEG

=T (Lb9_lo:g_l(ag))
gEG

= LT (O:g (bg-l) ag)
gEG

= L T (agO:g(bg-l)) .
gEG

If i = 0 then Ao = A and 'IjJ = ~, so the statement is immediate. Otherwise, for a E i Ai,

we have

a 0 'IjJ(el,l 0 a) = a 0 <p(el,l 0 a) = a 0 ~(a) = T(a).

Therefore a 0 'IjJ and T agree on the full corner (el, 101) (Mn+l 0 A) (el,l 01) of Ao. So a 0 'IjJ = T. I
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CHAPTER III

TRACES AND ORDER ON PROJECTIONS IN CROSSED PRODUCTS

In this section, we prove that if A is a simple unital C*-algebra with real rank zero such

that the order on projections over A is determined by traces, and if ex : G ----+ Aut(A) is an action of

a finite group G with the tracial Rokhlin property, then the order on projections over C*(G, A, ex)

is determined by traces. The methods are adapted from Section 3 of [16] which are adapted from

Section 3 of [20], and originally came from [24].

We begin with a comparison lemma for projections in crossed products by actions with

the tracial Rokhlin property.

Lemma 111.1. A ssume the hypotheses of Lemma II.15 with B = C* (G, A, ex)! and assume in

addition that A has real rank zero and that the order on projections over A is dete'rmined by traces.

Let 'IjJ: Ao ----+ C*(G,A,ex) be as in the conclusion of Lemma II. 15. Suppose thatp, q E 'IjJ(Ao)

are projections such that T(p) < T(q) for all tracial states T on C*(G,A,ex). Then there exists a

projection r E 'IjJ(Ao) such that r ~ q and r is Murray-von Neumann equivalent to p in C* (G, A, ex).

Proof If the projection f as in Lemma ILlS is zero, then Ao = A and 1/J = L So the statement

follows from Proposition 11.13.

Otherwise, as in the proof of Lemma 11.15, let ej,k, for 0 ~ j, k ~ n, be the matrix units

in M n +1 . Also let L: A ----+ C*(G,A,ex) be the inclusion, and let D = L(A) and Do = 'IjJ(Ao). Since

a E f Af implies L(a) = 'P(el,l@a) = 'IjJ(el,l@a), the algebra E = L(fAI) is a hereditary subalgebra

of both D and Do.

Now let p, q E Do be projections such that T(p) < T(q) for all tracial states T on

C*(G,A,ex). Note that Ao is the corner of the simple algebra M n +1 @ A. Thus Ao and hence
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'IjJ(Ao) = Do are both simple. Thus there is m such that

1 EB 0 ... EB 0 ;:S L(j) EB ... EB L(j)

in Mm(Do). We identify D and Do with corners in Mm(D) and Mm(Do) in the standard way.

Then, since P, q ::; 1, there exist projections

in Mm(Do) such that P rv Po and q rv qo in Mm(Do). Clearly Po, qo E Mm(E) C Mm(D), and

similarly, Po, qo E Mm(E) C Mm(Do), They also satisfy T(PO) < T(qo) for T E T(C*(G,A,a)). We

now wish to apply Proposition II.13. Let T be an a-invariant tradal state on A and let T also denote

its extension to Mn +1 (A). Then, by the statement about traces in Lemma II.15, TIAo = (J o'IjJ for

some tradal state (J on C*(G, A, a). Now since Po and qo are elements of both j(Mm('IjJ(A)))j and

j(Mm(L(D)))j, we have 'IjJ(Po) = L(PO) and 'IjJ(qo) = L(qO)' So

since (J E T(C*(G,A,a)). Thus by applying Proposition II.13 to Po and qo, there is a projection

ro E Mm(D) such that Po rv ro in Mm(C*(G, A, a)) and ro ::; qo. Then ro E Mm(E) C Mm(Do).

Choose s E Mm(Do) such that s*s = qo and ss* = q. Set r = sros*. Then r E Mm(Do)

and satisfies p rv Po rv ro rv r in M m (C*(G, A, a)) and r ::; q. Also, r = sroS* ::; sqos* = ss* ss* = q,

that is r ::; q And since p, q are actually in C*(G, A, a) we get p rv r in C*(G, A, a). I

The next three lemmas are Lemma 3.2, Lemma 3.3, and Lemma 3.4 of [16].

Lemma 111.2. Let A be a C* -algebra, let p, q E A be projections, let T be a tracial state on A,

and let g: [0,1] ----'> JR be a continuous junction. Then T(g(pqp)) = T(g(qpq)).

Lemma 111.3. Let g: [0,1] ----'> [0,1] be a continuous junction such that g(l) = 1. Then jor every

c > 0 there exists 6 > 0 such that whenever A is a unital C* -algebra, T is a tracial state on A, and

p, q E A are projections such thatT(p) > 1-6, then T(g(qpq)) > T(q)-c andT(g(pqp)) > T(q)-c.
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Lemma 111.4. Let 8 > O. Then there exists a continuous function g: [0, 1] ~ [0,1] such that

g(O) = 0, g(l) = 1, and whenever A is a C*-algebra with real rank zero and a E A is a positive

element with Iiall S; 1, then there is a projection eE aAa such that g(a)e = eand Ilea - all < 8.

The proof of the following theorem is adapted from the proof of Theorem 3.5 in [16], which

is based on the proofs of Theorem 3.5 and Lemma 3.3 of [20J, which in turn are based on Section 3

of [24].

Theorem 111.5. Let A be an infinite dimensional simple unital C* -algebra with real rank zero,

and suppose that the order on projections over A is determined by traces. Let a : G ~ Aut(A) be

an action of a finite group with the tracial Rokhlin property. Then the order on projections over

C*(G,A,a) is determined by traces.

Proof We first observe that the hypotheses on A imply that A is finite, but Mn(A) satisfies all

the same hypotheses, so A is in fact stably finite.

The next step is to reduce from considering projections in Moo (C* (G, A, a)) to considering

those in C* (G, A, a). That is, we claim it suffices to prove that if q, r E C* (G, A, a) are projections

such that T(q) S; T(r) for all T E T(C*(G,A,a)), then q j r. To do this we will show that since a

has the tradal Rokhlin property then idMn Q9 a as an action on M n Q9 A has the tradal Rokhlin

property for any n EN. Thus M n Q9 A satisfies all the same hypotheses as A and so we get the

same conclusion for projections in M n Q9 C*(G, A, a) which implies the statement of the theorem.

In order to show idMn Q9 a has the tradal Rokhlin property, let r:: > 0, let F c Mn(A) ~

M n Q9 A be finite, and let x E Mn(A) be a positive element with !lxll = 1. Let S be a finite subset

containing all elements of A which appear as entries in elements of F. We use the convention that

all traces are normalized on A.

Let q be a nonzero projection in the hereditary subalgebra generated by x. Let 0 <

80 = minrET(A) {T(q)}. Let 0 < 8 < min{80/n,r::/n}. Apply the tracial Rokhlin property as

given in Lemma 11.6 with 8 in place of r:: and S in place of F to get projections eg for each

group element satisfying the conditions of Lemma 11.6. Set e = I:gEG ego Then we compute
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T(1 - e) < 61n < T(g)/n. Set Pg = In ® eg and P = 2:gEG Pg = In ® e. Now

T(1n - p) = T(l n) - L T(Pg)
gEG

= m(IA) - L m(eg )

gEG

= m(IA - e)

m(g)
<--.

n

Since the order on projections over A is determined by traces, In ® P ~ g, that is 1 - pis

subequivalent to a projection in the hereditary subalgebra generated by x. That the projections Pg

satisfy the two norm estimates for the tradal Rokhlin property is routine to check, so this proves

the reduction.

Having proved the reduction, let g, r E C*(G, A, a) be projections such that T(g) < T(r)

for all tradal states T on C*(Z, A, a). Since the tradal state space is weak-* compact, there is

c: > a such that T(r) - T(g) > c: for all tradal states T. We may assume with out loss of generality

that c: :::; 1.

Choose TJ > asufficiently small so whenever B is a C*-algebra and e, i E B are projections

such that Ilei - ill < TJ, then i ~ e.

Choose continuous functions 91, 92: [0, 1] ----> [0, 1] such that

and 191 (t) -tl < h for all t E [0,1]. Let 9: [0,1] ----> [0,1] be a continuous functionfrom Lemma IlIA

with b 2 in place of 6.

Using continuity choose 6 > a small enough that whenever B is a C*-algebra and a, bE B

are positive elements satisfying Iiall, Ilbll :::; 1 and Iia - bll < 6, then

Also require 6 < ~TJ.
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Apply Lemma III.3 with 92 in place of 9 and with 21110 in place of 10, to get a number

<50 > O. Choose an integer N satisfying N ~ max.(001, 6c1).

Apply Lemma II.14 with {q, r} replacing F, with ~<5 replacing 10, with N as given, and

with 1 replacing z. This gives us a projection e E A c C*(G, A, a), a unital subalgebra D c

eC*(G,A,a)e, a projection f E A, and an isomorphism ip: M n 0 fAf ----. D, satisfying the six

conditions in the conclusion of Lemma II.14.

Next we seek to construct a projection ro ED such that ro ~ rand T(ro) > T(r) - iE for

every tracial state T on C*(G,A,a).

By condition (3) of Lemma II.14, there exists xED such that lire - xii < ~<5 and Ilxll :::; 1,

so that Ilrer - xx* II < <5. Note that xED ~ Mn 0 f Af, which has real rank zero. Thus we may

apply Lemma 3.2 of [20J with a there taken to be 91(XX*) and b there taken to be 92(XX*) to get

a projection ro E D such that

91(xx*)ro = ro and Il r092(xx*) - 92(xx*)11 < AE.

Next we show Ilrro-roll < 'TJ which implies ro ~ r. By the choice of <5, since Ilrer-xx*11 < 0

we have 1191(rer) - 91(xx*)11 < h· Then 91(xx*)ro = ro gives 1191(rer)ro - roll < -h. Combining

this with 191(t) - tl < -h yields Ilrerro - roll < ~'TJ' Now we can compute

Ilrro - ro II :::; Ilrro - rerro II + Ilrerro - ro II

:::; Ilrllllro -rerroll + ~'TJ < 'TJ

as desired. So we indeed have ro ~ r as claimed.

Now let T E T(C*(G, A, a)). We work to obtain a lower bound on T(ro). The choice

of <5 and the fact that Ilrer - xx*11 < <5 together imply that 1192(rer) - 92(xx*)11 < AE. Thus

Il r092(XX*) - 92(XX*) II < A10 implies 11ro92(rer) - 92(rer) II < 23110, and so

11ro92(rer)ro - 92 (rer) II :::; Ilr092(rer)ro - r092(rer) II + Ilr092(rer) - 92(rer)11

:::; IlroIII192(rer)ro - 92 (rer) II + ~~
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Therefore

Now Lemma II.14 part (6) guarantees that T(l- e) ::::; N-1T(e) ::::; N- 1 < 00, so T(e) > 1- 00, and

the choice using Lemma III.3 gives T(g2(rer)) > T(r) - AE. Therefore

We have now shown that ro is the desired projection.

Next we construct a projection qo E (1 - e) + eDe such that q ;::$ qo and T(qo) < T(q) + ~E

for every tracial state T on C*(G, A, a). We will proceed by a method which is similar to that for

ro, but which is more complicated.

By Lemma II.14 part (3), there exists xED such that Ileq - xii < ~o and Ilxll ::::; 1. Note

that ex also satisfies Ileq - exll ::::; Ilelllleq - xii < ~o and Ilexll ::::; 1 so that by replacing x by ex we

may assume ex = x so that xx* E eDe and Ileqe - xx*11 < O. As D ~ Mn ® j Aj, has real rank

zero, we can apply the choice of g to find a projection ql E xx* Dxx* CeDe such that

Set qo = 1 - e+ ql E (1 - e) + eDe. Then we wish to estimate Ilqoq - qll. We begin by

computing,

IlqlX - xl1 2 = II(qlX - X)(qlX - x)*11

::::; IlqlXX* - xx*II'llq;11 + IIqlxx* - xx*11

::::; 21lqlxx* - xx* II
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Then, using ql e = ql at the second step,

Ilqoq - qll = 11(1 - e)q + qlq - qll

= Ilqleq - eqll

S; 211eq - xii + I!qlx - xii

< 6 + h
< I'll + I'll
- 2'1 2'1

= 'rJ.

Thus by the choice of 'rJ, we have q ;::$ qo.

Now we estimate the values of tradal states on qo, Let T E T(C*(G, A, 0:)).

Since Ileqe - xx*11 < 6, the choice of 6 gives Ilg(eqe) - g(xx*)11 < ie.
Then using the choice of ql at the first step, inequality in the C*-algebra at the third step,

the previous estimate at the fourth step, Lemma III.2 at the fifth step, and g(qeq) S; q at the sixth

step, we estimate

T(ql) = T(qlg(XX*)ql)

= T(g(xx*)1/2 q1g(xx*)1/2)

S; T(g(XX*))

< T(g(eqe)) + ie
= T(g(qeq)) + ie
S; T(q) + ie.

For the same reason we had T(I- e) < 60 when estimating T(rO) we now have T(I- e) < ie. Thus

Therefore, qo is the desired projection.

Apply Lemma 11.15 with 'P: M n 0 i Ai -; D and the projection e as given to obtain Ao

and a unital homomorphism 'I/J: Ao -; C* (G, A, 0:).



Note that 1jJ(Ao) contains D, and thus TO; also 1, e E 1jJ(Ao) and so

qo E (1 - e) +eDe c 1jJ(Ao).

Also, for every T E T(C*(G,A,a)

So by Lemma III.I, qo;::$ TO in C*(G,A,a). Therefore,

which completes the proof. I
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CHAPTER IV

REAL RANK OF CROSSED PRODUCTS

In this section, we prove that if A is a simple unital C*-algebra with real rank zero such that

the order on projections over A is determined by traces, if G is a finite group and if a : G ----+ Aut(A)

has the tradal Rokhlin property, then C*(G,A,a) has real rank zero, and every tradal state on

C*(G,A,a) is induced from an a-invariant tradal state on A. The methods are adapted from

Section 4 of [16] which are in turn adapted from those of Section 4 of [20].

Theorem IV.l. Let A be an infinite dimensional stably finite simple unital C* -algebra with real

rank zero. Suppose that the order on projections over A is determined by traces and a : G ----+ Aut(A)

is an action of a finite group with the tracial Rokhlin property. Then C*(G, A, a) has real rank

zero.

Proof. Set B = C*(Z, A, a).

As in the proof of Theorem 111.5, the other hypotheses imply that A is stably finite.

Let a E B be selfadjoint with Iiall :::; 1. Let e > O. We will approximate a to within e by

an invertible selfadjoint element. If a is already invertible, there is nothing to prove. Therefore we

assume 0 E sp(a). Set co = ie, and choose a continuous function g: [-1, 1] ----+ [0,1] such that

g(O) = 1 and supp(g) c (-co, co).

Recalling the notation T(B) from Notation 11.4, define

TJ = inf r(g(a)).
TET(R)

The algebra B is simple by Corollary 11.8, which implies that every tradal state is faithful. Also,

the facts that g(a) js a nonzero posjtjve element, and T(B) is weak* compact together give TJ > O.
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Choose 80 > 0 such that whenever G is a unital G*-algebra and x, y E Gsa satisfy

Ilxll, Ilyll ~ 2 and Ilx - yll < 80 , then Ilg(x) - g(y)11 < irJ·
Set 8 = min (80 , 1, Eo). Choose N E N such that

1 "7-<-N 4'

Since a has the tradal Rokhlin property, we can apply Lemma 11.14 to find projections

e, i E A, a unital C*-subalgebra D C eBe, and an isomorphism <p: D -t Mn ® i Ai, such that

<p(e) = L eg,g ® 1fAf E Mn ® i Ai,
gEG

such that

dist(ea, D) < ~8 and dist(ae, D) < ~8,

and such that there are N mutually orthogonal projections il, fz, ... ,iN E eDe, each of which is

Murray-von Neumann equivalent in B to 1 - e.

From the last condition, we see that for every T E T(B) we have

T(e) 1 "7
T(l- e) < - < - < -.- N - N 4

Set

x = a - (1 - e)a(l - e) = ea + (1 - e)ae.

Notice that x* = x since a* = a.

Choose Xl, x2 E D such that

Ilea-XIII < ~8 and Ilae-x211 < ~8.

Since e E D and D is a unital subalgebra of eBe, we have (1 - e)x2 = 0 and eXl E D. Set

do = eXl = eXl + (1 - e)x2e E D and set d = ~(do + do).

Notice that

lido - xii = Ilexl - ea + (1 - e)aell ~ Ilexl - eall + 11(1 - e)ae - (1 - e)x211 < ~8 + ~8 = 8.
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Now set ao = a - x + d. The element ao satisfies

aD = ao, ao - (1 - e)ao(l - e) = d E D, and Iia - aoll < 6.

Next we compute

since Xl E D c eBe. That is, e and ao commute.

Set y = eaoe and notice that this is a selfadjoint element of D since ao+(l-e)ao(1-e) E D

which implies e(ao + (1 - e)ao(1- e))e E D. We also have Ilyll :::; Ilaoll < Iiall + 6 :::; 2. Let g(y)

be the result of evaluating functional calculus in eDe = D. Since D has real rank zero, there is a

projection r E g(y)Dg(y) such that Ilrg(y) - g(y)11 < ~'TJ.

Let 7 E T(B); we claim that 7(r) > 7(1 - e). By the previous estimate,

Ilrg(y)r - g(y)11 :::; Ilrg(y)r - rg(y) II + Ilrg(y) - g(y)11 < i·

Since 9 :::; 1 we get g(y) :::; 1 and so rg(y)r :::; r, so that

7(r) ~ 7(rg(y)r) > 7(g(y)) - ~'TJ.

Next we compute,

Ilao ~ ((1 - e)ao(l - e) + y)11 = Ilao - (1 - e)ao(l - e) - eaoell = Ileao(1- e) + (1 - e)aoell = 0

since [e, ao] = O.

Let 9 ((1 - e)ao(1- e)) be the result of evaluating functional calculus in (1 - e)B(l - e).

Then orthogonality of (1 - e)ao(1- e) and y, together with the above computation gives

Ilg(ao) - [g ((1 - e)ao(1- e)) + g(y)]11 = IIg(ao) - 9 ((1 - e)ao(l - e) + y)11 = O.
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Since g((l - e)ao(1- e)) ~ 1 - e, the estimate T(l - e) < -b implies

T (g(y)) = T (g(ao)) - T (g ((1 - e)ao(1 - e))) ~ T (g(ao)) - T(l - e) > T (g(ao)) - i:17.

Moreover, Iia - aoll < 8 ~ 80 so Ilg(a) - g(ao)ll < f;17, thus T(g(ao)) > T(g(a)) - h. By

the choice of 17 we have T(g(a)) ~ 17. So putting all of this together, we get

T(r) > T(g(y)) - h > T(g(aO)) - 1
7217 > T(g(a)) - h ~ i:17 > T(l - e).

This proves the claim. Since r E g(y)Bg(y), and supp(g) c Boo, by Lemma 4.5 of [20] we have

Ilry - yrll < 2Eo and Ilryrll < EO.

Since r ~ e and y = eaoe, we have raor = reaoer = ryr, whence Ilraoril < EO. Also,

II[r, ao]11 = Ilraoe - eaor + rao(1- e) - (1 - e)aorll

= Ilreaoe - eaoer + reao(1- e) - (1 - e)aoerll

= Ilry + reao(1 - e) - yr - (1 - e)aoerll

= II [r, y] + 0Il < 2Eo·

Define

al = (e - r)ao(e - r) + (1 - e)ao(l - e).

We would like to estimate Iial - all. First we compute

ao - al = (e - r)ao(l - e) + (e - r)aor + (1- e)ao(e - r) + (1 - e)aor

+ rao(e - r) + rao(1 - e) + raor.
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Recalling that 11[(1- e),aolll = 0 and r:::; e, we get

Ilao - alii = II(e - r)aor + rao(e - r) + raorll

:::; I!(e - r)aor - (e - r)raoll + Ilrao(e - r) - aor(e - r)11 + liraoril

:::; 211e - rll . II lao, r] II + EO

Now since Ilao - all < 0 :::; EO, we have

Iial - all < 6Eo.

Let A o and 'l/J: A o ---4 C* (G, A, a) be as in Lemma 11.15, using cp-l in place of cp and with

e as above. Then 1- e E 'l/J(Ao), as indicated in Lemma ILlS, and by construction rED C 'l/J(Ao).

We proved above that T(r) > 7(1 - e) for all 7 E T(B). So Lemma IILl implies 1 - e ~ r in

B. Since r :::; e this gives 1 - e ~ e. Therefore Lemma 8 of [8] provides an invertible selfadjoint

element bl E (1 - e + r)B(l- e + r) such that Ilbl - (1- e)ao(1- e)11 < EO' Also, by construction,

we have e, r, and y = eaoe E D so (e - r)ao(e - r) ED. Since D has real rank zero, there is an

invertible selfadjoint element b2 E (e - r)D(e - r) such that

IIb2 - (e - r)ao(e - r)11 < EO'

Since bl and b2 are orthogonal, bl + b2 is an invertible selfadjoint element of B, and satisfies

II(b l + b2 ) - all:::; Iia - ad + Iial - (b l + b2 )11

:::; 6100 + 11(1- e)ao(l- e) - hI! + II(e - r)ao(e - r) - b2 11

=10

This completes the proof. I

Corollary IV.2. Let A be an infinite dimensional stably finite simple unital C* -algebra with

real rank zero, and suppose that the order on projections over A is determined by traces. Let
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a : G ----t Aut(A) be an action of a finite group with the tracial Rokhlin property. Then the

restriction map is a bijection from the tracial states of C* (G, A, a) to the a-invariant tracial states

of A.

Proof. Since C*(G,A,a) has real rank zero by Theorem IV.l, this follows from Proposition 2.2

of [12]. I

It is worth mentioning here the following theorem found as Theorem 2.6 of [23].

Theorem IV.3. Let A be an infinite dimensional simple unital C*-algebra with tracial rank zero.

Let a : G ----t Aut(A) be an action of a finite group with the tracial Rokhlin property. Then

C* (G, A, a) has tracial rank zero.
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CHAPTER V

STABLE RANK OF CROSSED PRODUCTS

In this section, we prove that if A is an infinite dimensional simple unital C*-algebra with

real rank zero and stable rank one, such that the order on projections over A is determined by

traces, and if a : G ----t Aut(A) is an action of a finite group with the tradal Rokhlin property,

then C*(G,A,a) has stable rank one. The methods are adapted from Section 5 of [16] which are

adapted from Section 5 of [20].

Lemma V.l. Let 15 > O. Then there exists a continuous function g: [0,1] ----t [0,1] such that

g(O) = 0, g(l) = 1, and whenever A is a C*-algebra with real rank zero and a E A is a positive

element with II all ~ 1, then there is a projection e E aAa such that Ileg(a) - g(a)11 < 15 and

Ilae - ell < J.

Proof. This was Lemma 5.1 in [16]. I

Lemma V.2. Let A be an infinite dimensional simple unital C*-algebra with real rank zero and

such that the order on projections over A is determined by traces. Let a : G ----t Aut(A) be

an action of a finite group with the tracial Rokhlin property. Let ql, . .. ,qn E C* (G, A, a) be

nonzero projections, let aI, ... , am E C* (G, A, a) be arbitrary, and let E: > O. Then there exists a

unital subalgebra A o c C*(G, A, a) which is stably isomorphic to A, a projection p E Ao, nonzero

projections rl, ... , rn E pAop, and elements bl , ... , bm E C* (G, A, a), such that:

2. For 1 ~ k ~ n there is a projection gk E rkAOrk such that 1 - p '" gk in C*(G, A, a).

3. Ilaj - bj II < E: for 1 ~ j ~ m.

4. pbjp E pAop for 1 ~ j ~ m.
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Proof. Set B = C*(G,A,a).

Let

TJ = min ( inf T(qk)) > 0 and co = min (!i
5

, c
2

2

) .
lsksn rET(B)

Apply Lemma V.1 with co in place of <5, to get a continuous function g: [0, 1] ----7 [0,1]. Apply

Lemma 111.3 with this function 9 and with co in place of c, to get a number <5 > 0 such that

whenever T E T(B) and p, q E B are projections such that T(q) > 1-<5, then T(g(qpq)) > T(p) -co.

Next choose C1 > 0 with C1 ::; min (co, c) and small enough that whenever x, y E Bare

positive elements with Ilxll, Ilyll ::; 1 and Ilx-yll < C1, then IIg(x) -g(y)11 < co. Then choose C2 > 0

with C2 ::; C1 and small enough that if x, y E B are selfadjoint elements with Ilxll, Ilyll ::; 1 and

Ilx - yll < C2, then the positive parts x+ and y+ satisfy Ilx+ - y+ II < C1·

Apply Lemma 11.14 with F = {q1' ... , qn, a1, ... , am}, with C2 in place of c, with an integer

N so large that liN < min(<5, co), and with z = 1. We obtain projections e, f E A c B, a unital

subalgebra Dc eBe, and an isomorphism ep: M n 0 f Af ----7 D, with

satisfying

and

for 1::; j::; m and for 1::; k::; n. Moreover, T(l- e)::; tt < min(<5,co) for every T E T(B).

Apply Lemma IU5 with ep: M n 0 f Af ----7 D and the projection e as given to obtain a

C*-algebra Ao which is stably isomorphic to A and a unital homomorphism 'IjJ: Ao ----7 C*(G, A, a).

The subalgebra 'IjJ(Ao) will be the algebra Ao called for in the statement of the current lemma.

The projection e will be the projection p called for in the statement. Note that 'IjJ(Ao) contains D,

and hence e.
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For I ::; j ::; m, set bj = aj + e(cj - aj)e, which satisfies

These are parts (3) and (4) of the conclusion.

Now, for I ::; k ::; n, observe that ~(exke+ exke) is a selfadjoint element of eDe = D of

norm at most one such that

So, since eqke is a positive element,

is a positive element of eDe of norm at most one such that Ileqke - Ykll < 6"1.

By the choice of g using Lemma V.I, there exists projections rk E eDe c 'ljJ(Ao) such that

Using rk ::; e at the second step, we now have
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Thus

lirkqk - rk 11 2 = II (rkqk - rk) (rkqk - rk)* II

= lirk - rkeqkerk II

:s; lirk - rkYkrkl1 + lirkYkrk - rkeqkerkll

:s; lirk - rkYkll· Iirk II + IIYk - eqkell

so Ilrkqk - rk II < e, and this is Part (1) of the conclusion.

We now estimate the traces on rk. For every T E T(B), we have T(rk) ~ T(rkg(Yk)rk).

By construction lirkg(Yk) - g(Yk)11 < eo, thus lirkg(Yk)rk - g(Yk)11 < 2eo. Since IIYk - eqkell < el,

by the choice of el, we obtain Ilg(Yk) - g(eqke) II < eo. Since T(e) > 1 - 0, the choice of 0 using

Lemma IIL3 implies that T(g(eqke)) > T(qk) - eo. Combining all these, we get

On the other hand, T(l - e) :s; eo < t77 :s; tT(qk) Thus T(rk) > T(l - e). Since T E T(B)

is arbitrary, and since 1 - e and rk are in 1/J(Ao), Lemma IILI gives Part (2) of the conclusion. I

Lemma V.3. Let A be a simple, unital C*-algebra with property (SP). Suppose p and q are

nonzero projections in A. Then there exists a nonzero projection r in A such that r ;:S p and r :s; q.

Proof. Let x E pAq be nonzero. Then x*x E qAq and xx* E pAp are both nonzero. Let

0< e < Ilx*xll. Set j(t) = t -e for t ~ e and j(t) = 0 otherwise. Let g(t) be a continuous function

with g(t) = C I / 2 for t ~ e. Also set v = g(x*x)x*, with the functional calculus being evaluated in

qAq.

One can easily compute that g(t)2t = 1 for t ~ e and vv* j(x*x) = j(x*x) = j(x*x)vv*.

Set C = Her(f(x*x)) and z = j(x*x). We claim if a E C, then vv*a = a. We first

observe that zl/n is an approximate identity for C since for any a E C, a = lim>'EA za>,z and so

zl/na = lim>'EA zI+I/na>,z which goes to lim>'EA za>,z = a as n goes to infinity. A similar argument
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on the other side shows that z is an approximate identity. To complete the proof of the claim we

now compute vv*a = limn --+oo vv* Zl/n a = limn --+oo Zl/n a = a.

For any n EN, (xx*)n x = x(x*x)n, thus for any polynomial h we have h(xx*)x = xh(x*x).

Then by the continuity of continuous functional calculus, for any continuous function h we have

h(xx*)x = xh(x*x).

Since c < Ilx*xll, j(x*x) is nonzero, so using property (SP), let r E Her(j(x*x)) be a

nonzero projection.

We claim v*rv is a projection in Her(j(xx*)). It is easy to check that it is a projection.

For the other part of the claim, writing r = lim.xEA r.x we compute

v*rv = (g(x*x)x*)*rg(x*x)x*

=xg(x*x)rg(x*x)x*

= g(xx*)xrx*g(xx*)

= lim g(xx*)xj(x*x)r.xj(x*x)x*g(xx*)
.xEA

= lim g(xx*)j(xx*)xr.xx* j(xx*)g(xx*)
.xEA

= lim j(xx*) [g(xx*)xr.xx*g(xx*)]j(xx*) E Her(j(xx*))
.xEA

Finally compute (rv)*rv = v*rv and rv(rv)* = rvv*r = r 2 = r. Thus, r rv v*rv. Now we

note, r E Her(j(x*x)) c qAq, so r :S q and v*rv E Her(j(xx*)) c pAp, so r ~ p. I

Theorem VA. Let A be an infinite dimensional simple unital C*-algebra with real rank zero

and stable rank one, and such that the order on projections over A is determined by traces. Let

a : G -4 Aut(A) be an action oj a finite group with the tracial Rokhlin property. Then C* (G, A, a)

has stable rank one.

Proof. Let B = C*(G,A,a).

We proceed by showing that every two sided zero divisor in B is a limit of invertible

elements. Because B has a faithful tradal state, everyone sided invertible element is invertible.

We combine this with Theorem 3.3(a) of [26] which says that B \ GL(B) is the one sided, but not

two sided invertible elements, to get B \ GL(B) = 0. That is, every element is a limit of invertible

elements, so B has stable rank one.
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Suppose a E B is such that there are nonzero x, y E B such that xa = ay = 0. Let c > 0,

we show there is an invertible element eE B such that Iia - ell < c.

Without loss of generality Iiall ::; ~ and c ::; 1. Since B has real rank zero by Theorem IV.l,

there are are nonzero projections

e E x*Bx and f E yBy*,

and they satisfy ea = af = 0.

Apply Lemma V.2 to the nonzero projections e and f and the element a, with 113c in place

of c. Call the resulting subalgebra Ao, the resulting projection Po, the resulting nonzero projections

eo and fa, and the resulting element xo. Thus

eo, fa, POXOPo E PoAoPo, 1 - Po ;::$ eo, fa,

and

Ileeo - eoll, Ilffo - fall, Iia - xoll < /3 c.

Define ao = (1 - eo)xo(1 - fa). We clearly have eoao = aofo = 0, and we claim that

Iia - aoll < 153c. First, using

II all ::; 1 and Ileoe - eoll = Ileeo - eoll < /3c,

we have

Ileoxoll ::; Ileoll . Ilxo - all + Ilea - eoell'llall + lleoeall < l~c + /3 c +°= 1
2
3 c .

Similarly, Ilxofo II < 123c. Therefore

Iia - aoll ::; Iia - xoll + II xo - (1- eo)xo(1- fo)11

::; Iia - xoll + Ileoxoll + 111- eoll '1lxofoll

This proves the claim. Since Iiall ::; ~ and c ::; 1we now get Ilaoll ::; 1.
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Since A has real rank zero and A o is stably isomorphic to A, the algebra A o also has real

rank zero. Now Lemma V.3 shows that there is a nonzero projection r ::; eo such that r ~ fa. Since

A has stable rank one and Ao is stably isomorphic to A, by Theorem 3.6 of [25], Ao has stable

rank one. Thus, there is a unitary v E Ao such that v*rv ::; fa. Then r(aov*) = (aov*)r = O.

Apply Lemma V.2 to the nonzero projection r and the element aov*, with 11310 in place of

c. Call the resulting subalgebra AI, the resulting projection PI, the resulting nonzero projection

el, and the resulting element Xl. Thus

since el E PlAlPl, so PI acts as the identity on el. Furthermore, since Ilaov*11 ::; 1, the argument

used above to prove Iia-aoll < t3c now shows that Ilaov* -ad < l~c. So Ilav* -alii < ~~c. The

conclusion of Lemma V.2 provides s E B such that

Set e2 = ss* and w = s + s* + PI - e2. Since e2 ::; el ::; PI, it follows by computation that w is a

unitary satisfying

as

With respect to this decomposition, set c = (PI - e2)alw(Pl - e2) and for suitable X, y, Z E B, the
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element alw has the block matrix form

alw = (: : :).

y z a

Now use the fact that W(PI - e2) = PI - e2 and e2 ~ PI to rewrite

e = (PI - e2)al (PI - e2)

= (PI - e2)PlalPl (PI - e2) E (PI - e2)A l (PI - e2).

Since (PI - e2)Al (PI - e2) has stable rank one, there exists an invertible element

dE (PI - e2)Al (Pl - e2) such that lie - dll < /310. Then

[

t3e2 a a 1
a2 = x d a

y z t3 (1 - pd

is invertible in B, and satisfies IIa2 - alwll < 13310. So also a2w*v is an invertible element in B, and

satisfies

Il a2w *V - all = Il a2w * - av* II

~ II a2 - alwll + Iial - av*11

=10.

This is the required approximation by an invertible element. I
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CHAPTER VI

THE PROJECTION FREE TRACIAL ROKHLIN PROPERTY

Recall the following definition from the introduction.

Definition VI.l. Let x and y be positive elements of a C* -algebra A. We write x <. y if there

exist elements rj in A such that rjyrj ----> x with convergence in norm. In this case we say x

is (Cuntz) subequivalent to y. If x <. y and y <. x, we write x rv y and say x is (Cuntz)

equivalent to y.

Definition VI.2. For e > 0, let fe be given by fe(t) = 0 for 0:::; t :::; e, by fe(t) = C1(t - c) for

e:::; t:::; 2e and fe(t) = 1 fort;?: 2e.

It is useful to have alternate formulations of this concept. The following proposition is

Proposition 2.4 in [27] .

Proposition VI.3. Let fe be as in Definition VI. 2. Let x, y be positive elements of the unital

C* -algebra A. The following are equivalent:

1.x<.y.

2. For all e > 0, there exists rEA with fe(x) :::; ryr*.

3. There exist elements rj and Sj of A with rjysj ----> x.

4. For all e > 0, there exists 0> 0 and rEA such that fe(x) = r fo(y)r*.

Additionally, if A has stable rank 1, then (1)-(4) above are equivalent to:

5. For all e > 0 there exists a unitary u E A such that ufe(x)u* E yAy.

The following proposition is useful for determining subequivalence of elements constructed

using functional calculus.
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Proposition VIA. Let f and 9 be positive functions in C(X) or Co(X) for some space X.

1. If {x EX: f(x) i- O} C {x EX: g(x) i- O}, then f ~ g.

2. Suppose that f ~ g, that Xc [0,00), and that a E A is a positive selfadjoint element of a

C*-algebra A with sp(a) eX. Then f(a) ~ g(a).

Proof The first part is a comment just before Proposition 2.1 of [27].

For the second part let hj E C(X) be functions such that hjgh; ---t f. Then, since func­

tional calculus is a continuous homomorphism, (hjgh;)(a) = hj(a)g(a)h;(a) ---t f(a). Therefore,

f(a) ~ g(a) by definition. I

The following definition is a projection free analog of Definition 1.2 of [23] .

Definition VI.5. Let A be an infinite dimensional unital simple C* -algebra. Let 0: : G ---t Aut(A)

be an action of a finite group G on A. We say 0: has the projection free tracial Rokhlin property

if for every finite set F C A, every E; > 0, and every positive element x E A with Ilxll = 1, there

exist mutually orthogonal elements ag E A for each 9 E G with 0 ::; ag ::; 1 such that:

2. Ilagb - bag II < E; for all 9 E G and b E F.

3. With a = I:gEG ag, the element 1 - a is Cuntz subequivalent to an element of the hereditary

subalgebra generated by x.

4. lIaxall > 1 - E;.

5. 7(1 - a) < E; for all 7 E T(A).

Note that since any element of xAx is subequivalent to x, the third condition implies

1- a ~ x.

Lemma VI.6. Ifa and ag are as in Definition VI. 5, then Iiall = maxgEG Ilagll.

Proof It is sufficient to prove that, for any n E N, if al,"" an are positive mutually orthogonal

elements of A, then II I:~=l a'ill = max{llalil,· .. , Ilanll}· Furthermore, since positive mutually

orthogonal elements commute, it is sufficient to prove that for any n E N, if il, ... fn are positive

mutually orthogonal elements of C(X) or Co(X) for some compact Hausdorff space X or some
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locally compact Hausdorff space X, then II I:~=l fill = max{llh II,···, Ilfnll}· However, this last

statement is obvious since for each x E X we can have fi(x) =J 0 for at most one index i. I

Lemma VI.7. Let A be an infinite dimensional unital simple C*-algebra. For any E > 0, finite

set F c A, and positive element x of norm one, if a and ag are as in Definition VI. 5, then

1. Iiall > 1 - E

2. Ilagll > 1 - 2E for all 9 E G.

Proof. Using Definition VI.5 to get the the last inequality, we have

IIal1
2 = Ilallllxllllall 2 Ilaxall > 1 - E.

However since 0 ::; ag ::; 1 for all 9 E G and these elements are mutually orthogonal, 0 ::; a ::; 1, so

Iiall 2 Ila112. This proves part 1.

By Lemma VI.6, maxgEG Ilagll = lIall > 1 - E. Thus there exists some h E G so that

Ilahll > I-E. However, for any 9 E G, we have IICYgh-1 (ah)-agll < E. Thus, IICYgh-1 (ah)II-llagll < E.

Since CYgh-1 is an isomorphism, this gives Ilahll -llagll < E. Therefore, Ilagll > Ilahll - E > 1 - 2E.

This proves part 2. I

The following lemma and its corollary are analogs of Lemma 1.5 and Corollary 1.6 of [23].

Lemma VI.B. Let A be a simple, infinite dimensional unital C* -algebra. Let CY : G --t Aut(A) be

an action of a finite group with the projection free tracial Rokhlin property. Then CYg is outer for

every 9 E G \ {I}.

Proof. Suppose u is a unitary and 9 =J 1. Let 0 < E < 3v0IGI' Notice that E < 1/2. We will

show that there is some b such that Ilu*bu - CYg(b) II > E. Apply the projection free tradal Rokhlin

property with this E, with F = {u} and with x = 1 to get mutually orthogonal ag E A for each

9 E G with 0 ::; ag ::; 1 satisfying the properties there. Set a = I:9EG ago In particular, the fourth

property, Ilaxall > 1 - E, implies IIa211 > 1 - E. Thus

L Ilagll 2 II all > vr=t: > \11 - 1/2 = Vlfi·
gEG
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Thus there exists h E G such that Ilahll > l/(V2IGI). Next we compute

Ilag(ah) - uahu*11 2: Ilagh - ahll -Iluahu* - ahll - Ilag(ah) - aghll

2: max{llagkll,llakll}-e-e
g,kEG

2: l/(V2IGI) - 2e

This completes the proof. I

2: 3e - 2e

= e.

by the choice of e

Corollary VI.9. Let A be an infinite dimensional simple unital C* -algebra and let a : G ----t

Aut(A) be an action of a finite group with the projection free tracial Rokhlin property. Then

C*(G, A, a) is simple.

Proof. In view of Lemma VI.8, this follows from 3.1 of [11] I

Lemma VI.I0. If f : IR ----t IR is continuous with f(O) = 0 and al, ... , an E A+ are mutually

orthogonal, then f(L-~=l ai) = L-~=l f(ai)'

Proof. It suffices to prove that the lemma holds for two orthogonal elements a and b. We claim

that the lemma holds for f(x) = xn. Since a and b are orthogonal, they commute, and using these

two facts we have

which proves the claim. Therefore, the lemma also holds for any polynomial with zero constant

term. Now let f be an arbitrary continuous function with f(O) = 0, and let (Pn) be a sequence of

polynomials with zero constant term which converges uniformly t9 f on sp(a) U sp(b) U sp(a + b).

Since Pn(a + b) = Pn(a) + Pn(b) for all n, it follows that f(a + b) = f(a) + f(b). I

Lemma VI.ll. Suppose f : [0,1] ----t IR is continuous. Then for all e > 0, there exists a 0> 0 such

that for any C* -algebra A and any self-adjoint elements x and y of A with sp(x), sp(y) C [0,1] and

Ilx - yll < 0, then Ilf(x) - f(y) II < e.
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Proof We first show that the lemma is true whenever f(t) = t k for a natural number k. The

lemma clearly holds for k = 1. Now suppose the lemma holds for k - 1. Then

Ilxk -lll ::; Ilxk - xk-1yll + Ilxk-1y _ ykll

::; Ilxk-11111x _ yll + Ilx k
-

1
_ yk-11111yll

::; Ilx - yll + Ilxk- 1_ yk-111·

Thus the lemma also holds for k.

Therefore, by the triangle inequality the lemma is true for all polynomials.

Now suppose f is arbitrary and let c > 0 be given. Let P be a polynomial with Ilf - PII <

c/3. Choose 5 > 0 corresponding to P with c/3 in place of c. Then for Ilx - yll < 5 we have

IIf(x) - f(y)l\ ::; Ilf(x) - P(x)11 + IIP(x) - P(y)11 + IIP(y) - f(Y)I'1

::; c/3 + c/3 + c/3

=c.

This completes the proof. I

Lemma VI.12. Suppose f : [0,1] ---t IR is continuous. Then for all c > 0, there exists a 5 > 0

such that if x is self adjoint in some C*-algebra D with sp(x) c [0,1] and if zED with Ilzll ::; 1

and II[x,z]11 < 5, then 11[f(x),z]11 < c.

Proof We first show that the lemma is true for any monomial f(t) = t k .

The lemma is trivial for k = 1. Now suppose the lemma holds for all n < k with the

choice of 5 for a given pair of c and f called 5(c,j). Let 0 < 5 < min{c/2,5(c/2,xk - 1 )} and let

II [x, z] II < 5. Then we have

II [x, zx] II = Ilxzx - zx2
11 ::; II [x, z]" Ilxll < 5 ::; 5(c/2, X

k- 1)

and Ilzxll < 1. Thus,
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This shows that the lemma holds for all monomials.

By the triangle inequality, the lemma holds for all polynomials. Then let f be arbitrary

and P be a polynomial with Ilf - PII < c/3 converging uniformly to f. Let c > 0 be given. Let

0= 0(c/3, P). Then

Ilf(x)z - zf(x)11 :s; Ilf(x)z - P(x)zll + IIP(x)z - zP(x) II + IlzP(x) - zf(x) II < c

which completes the proof. I

Lemma VI.13. Let A be an infinite dimensional simple unital C* -algebra. Let G be a finite group

and let a : G ----+ Aut(A) be an action with projection free tracial Rokhlin property. Let c > 0 be

given, let F c A be a finite set, and let x E A be a positive element of norm 1. Then there exist

bg E A and cg E A for each g E G such that cgbg = cg, O:S; bg :s; 1, and 0 :s; cg ::; 1, and such that

the elements bg are mutually orthogonal elements satisfying:

2. Ilbgz - zbgll < c and Ilcgz - zcgll < c for all 9 E G and Z E F.

3. With b = E gEG bg, the element 1 - b is Cuntz subequivalent to an element of the hereditary

subalgebra generated by x.

4. Ilbxbll > 1 - c.

Proof. Let n = IGI. Let c> 0 be given. Without loss of generality Ilyll :s; 1 for all y E F.

Choose 01 so that ot!2+2nol < c. Define continuous functions rand f on the nonnegative

real numbers by:

• r(O) = 0,

• r is linear for t E [0,1 - oil,

• r(t) = 1 for t E [1 - 01, 1],

• f(t) = 0 for t E [0,1 - oil,
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• f is linear for t E [1 - (h, 1 - 0I/2]' and

• f(t) = 1 for t E [1 - 0I/2, 1].

Apply Lemma VI. 11 to the function r with 01 in place of c. Let 02 be equal to the 0 given

by the lemma. Now apply Lemma VI.11 to the function f with 01 in place of c. Let 03 be equal

to the 0 given by the lemma. Apply Lemma VI.12 to the function r with 01 in place of c and then

to the function f with OJ in place of c, and call the minimum of the two deltas that you get 04.

Choose 05 < min{0?!2, 02,03, 04}. Apply Definition VI.5 with 05 in place of c, with F as

given, and with x as given to get positive mutually orthogonal elements ag for each g E G. Set

bg = r(ag) and cg = f(ag). Note that since Ilr(t) - til < 01, we have IIbg - agll < oJ. Therefore,

with a = L:gEG ag and b = L:9EG bg, we have Iia - bll < nOl.

First we investigate the effect of the action on bh. Using the choice of 02,

Similarly, Ilag(ch) - cghll < 01. We have now verified (1).

Next we prove that bg and cg approximately commute with the elements of F. For any

y E F and g E G we have Ilyag - agyll < 05, so by the choice of 04 using Lemma VI.12 for r we

have Ilybg - bgYl1 = Ilyr(ag) - r(ag)yll < 01. Similarly, Ilycg- cgyll < 01. We have now verified (2).

To verify (3), recall 1- a =;< x. Thus it suffices to show that 1 - b =;< 1- a. Let t denote the

function h(t) = t. For each g E G define a homomorphism rPg : Co((O,:I.]) -. A such that rPg(t) = ago

Note that if g =I- h then rPg(t)rPh(t) = agah = 0. Thus, since rPg and rPh are homomorphisms, for

any polynomials PI and P2 with zero constant term, we have rPg(Pl)rPh (P2) = °if g =I- h. Therefore,

for any iI, 12 E Co((O, 1]) we have rPg(iI)rPh(12) if g =I- h.

This means we can define a homomorphism

rP: E9 Co ((0, 1]) -. A
gEG

by

rP ((j9)9EG)) = L rPg(jg).
gEG
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Since A is unital we can unitize to obtain a unital homomorphism

¢+: [EBGO((0,1])] + ------.A.
gEC

The G*-algebra [EBgEc GO ((0, 1])]+ is isomorphic to G(Y) with Y = ([0,1] x G)j rv where

(0, g) rv (0, h) for all g, h E G. This is because Y is the one point compactification of UgECGO((0, 1D.

Define functions dg : Y ----+ C by dg(t, h) = t if g = hand dg(t, h) = °if g =1= h. Note that dg is

continuous, so dg E G(Y). Also observe that ¢+(dg) = ago

Now, by the definition of r we see that {t E [0, t] : 1 - r(t) = O} :=J {t E [0,1] : 1 - t = O}.

Therefore, {YEY:1-r(LgECd9(Y)) =0}:=J {YEY:1-LgECd9=0}. Thus by Lemma

VIA, we have 1 - r (L9EC dg) ~ 1 - L9EC dg which gives

Since ¢+ is unital, we have

Now using the fact that functional calculus commutes with homomorphisms and then that ¢+ is a

homomorphism we see 1 - ¢+ (r (L9ECd9)) = 1 - r (¢+ (L9EC dg)) = 1 - r (L9EC ¢+(dg)).

Therefore,

However, we observed above that ¢+(dg) = ag so this shows

Now the mutual orthogonality of the elements ag means r (L9EC ag)

Lemma VI.10. Therefore, 1 - b ~ 1 - a ~ x which is (3).

b by
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Finally, we verify condition (4). We have

Ilbxbll 2': Ilaxall -ilaxa - axbll - Ilaxb - bxbll

> 1- 01 -llaxlllla - bll- Iia - bllllxbli

> 1- c.

This completes the proof. I

Lemma VI.14. Let T be a tracial state on A. For all c > 0, there is a 0 > °such that if

9 : [0,1] ----t [0,1] is a continuous function satisfying g(O) = °and g(t) = 1 for t E [1 - c, 1], and

if a E A with °::::; a ::::; 1 and with T(a) > 1 - 0, then T(1 - g(a)) < c. Moreover, we may choose

0= c2
•

Proof. Let /-L be the measure on sp(a) C [0,1] obtained from T. If T(a) > 1 - 0, then

l-o<T(a)

::::; (1 - c)/-L([O, 1 - c]) + 1· /-L((1 - c, 1])

= (1 - c)/-L([O, 1 - cD + 1 - /-L([O, 1 - cD

= /-L([O, 1 - cD - c/-L([O, 1 - cD + 1 - /-L([O, 1 - cD

= 1 - c/-L([O, 1 - cD,

which implies that

-0 < -c([O, 1 - cD

or equivalently

0> c/-L([O, 1 - c]).

This gives

o
- > /-L([O, 1 - cD·
c
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Now we compute

7(1 - g(a)) = r (1 - g(t)) dt :s; 1· /1([0, 1 - cD < ~.
i[O,l] c

So if 6 :s; c2 then
c2

7(1 - g(a)) < - = c.
c

I

Lemma VIo15. Suppose A is an infinite dimensional simple unital C* -algebra. Suppose G is

a finite group. Let a : G ----'> Aut(A) be an action of G with the projection free tracial Rokhlin

property. Suppose 7 E T(C*(G,A,a), then there exists a E T(A) such that 7 = a 0 E where

E : C* (G, A, a) ----'> A is the conditional expectation.

Proof. It suffices to show that if x E A and 9 E G\ {O}, then 17(xug)1 < c for any c > O. Let c > 0

be given. Let n = card(G). Without loss of generality, Ilxll :s; 1.

Choose 61 using Lemma VI.12 with 3~ in place of c and with t 1/ 2 in place of f. Choose

62 using Lemma VI.11 with 3~ in place of c and with t 1
/

2 in place of f. Choose 63 < min{ 1~ ,n·
Choose 64 using Lemma VI.14 with 63 in place of c. Choose a continuous function 9 : [0,1] ----'> [0,1]

such that g(O) = 0 and g(t) = 1 for t E [1 - 63, 1]. We also require that Ilg - (2t - t 2)11 < 63. This

is possible since SUPtE[1-cl3,1] 111 - (2t - t 2 )11 = 6~.

Apply the projection free tradal Rokhlin property with 64 in place of c, with F = {x}

and with 1 in place of the positive element x to get mutually orthogonal positive elements ah for

each h E G. Set a = 2:hEG ah' One of the properties satisfied by a is that 7(a) > 1 - 64. By the

choice of 9 and 64, this implies 7(1 - g(a)) < 63' By the second requirement on g we now have

7((1 - a)2) = 7(1 - (2a - a2)) < 7(1 - g(a)) + 63 < 263'

Next we need to bound 17(xug(1 - a)W. By the Cauchy-Schwartz inequality, we have

Therefore, we can conclude

17(xug(1 - a))1 < c/3. (VI.1)
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We are now in a position to compute 17(xug)l. We have

17(XUg)1 = 17 (XU9) - L 7(xa~/2a~(2ug)1
hEG

::::; 17 (xug) - 7(xuga)1 + IL 7 (XUgah) - L 7 (a~/2XUga~/2) I
hEG hEG

I
'" (1/2 1/2 * ) '" (1/2 1/2 ) I+ 0 7 ah xu9ah UgUg - 0 7 ah xagh ug
hEG hEG

I
'" (1/2 1/2 ) '" ( 1/2 1/2 ) I+ 0 7 ah xagh Ug - 0 7 xah agh Ug
hEG hEG

( )) I '" I (1/2 1/2 * 1/2 1/2 ) I::::; 17 (XUg 1- a + 0 + 0 7 ah xu9ah UgUg - ah xagh Ug
hEG

'" I (1/2 1/2 1/2 1/2 ) I+ 0 7 ah xagh Ug - xah agh Ug
hEG

< E:/3 + L Ilugahu; - a~(211 + L lIa~/2x - xa~/211 by Equation VI.1
hEG hEG

E: E:
< E:/3 + n

3n
+ n

3n
by the choice of 01 and 02

= E:.

This completes the proof. I

The following definition appears near the end of section 2 of [3].

Definition VI.16. Given a normalized 2-quasi-trace 7 on A, one may define a map

by

dr(a) = lim 7(a1
/

n
).

n->oo

We say that A has strict comparison (of positive elements) if limn->oo 7(a1/ n ) < limn->oo 7(b1/ n )

for every normalized 2-quasi-trace 7 on A, implies a =:;< b for all elements a, bE A+ \ {O}.

Notice that since the definition is already treating Moo (A), if A has strict comparison, so

does Mn(A) for any positive integer n.
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Lemma VIol7. If A has strict comparison and c E A+ 1 then cAe has strict comparison.

Proof. Suppose a, b E A+ and limn--->oo 7(a1
/
n ) < limn--->oo 7(b1/ n ) for every normalized 2-quasi­

trace on cAe. Note that any 2-quasi-trace (J on A restricts to a 2-quasi-trace on cAe, so for such

(J, we have limn--->oo (J(a1/ n ) < limn--->oo (J(b1/ n ). Therefore, a ~ b by the strict comparison on A. I

Remark VIol8. The hypothesis that all 2-quasi-tmces are tmces appears frequently in what fol­

lows. Thus it is worth noting as is done near the end of Section 2 of (3] that every exact C* -algebra

satisfies this hypothesis.

Lemma VIol9. Let A be a C*-algebm with strict comparison. Fix Z E A with 0 ~ Z ~ 1 and

Z =1= o. If 0 < E: < 7(Z) for every 2-quasi-tmce 7, if g : [0,1] ----+ [0,1] is continuous and satisfies

g(O) = 0 and g(t) = 1 for t E [1 - E:, 1], and if a E A with 0 ~ a ~ 1 and 7(a) > 1 - E:2 for every

2-quasi-tmce 7, then 1 - g(a) ~ z.

Proof. We first claim that (1- g(t))l/n = 1- gn(t) for some continuous gn satisfying gn(O) = 0 and

gn(t) = 1 for t E [1-E:, 1]. To see this, observe that this is equivalent to saying (1- g(t))l/n = fn(t)

for some continuous function fn satisfying fn(O) = 1 and fn(t) = 0 for t E [1 - E:, 1]. But the left-

hand side is the composition of continuous functions, hence continuous, and the left-hand side

maps 0 to 1 and [1 - E:, :I.] to 0, so the equivalent statement is clear.

By the claim and the previous lemma, since each gn is a function of the same type as g,

we have 7((1- g(a))l/n) = 7(1 - gn(t)) < E:. So now

which implies that

lim 7((1 - g(a))l/n) ~ E: < 7(Z) ~ lim 7(zl/n),
n----tCX) n----tCX)

which gives

lim 7((1 - g(a))l/n) < lim 7(zl/n).
n----+CX) n----+CX)

Since A has strict comparison, it follows that 1 - g(a) ~ z. I
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CHAPTER VII

STABLE RANK AND THE PROJECTION FREE TRACIAL ROKHLIN PROPERTY

Lemma VII.I. Let j be a continuous junction on [0,1] with j(O) = O. Let {eg,h} be a set oj

matrix units jor Mn- Then in C([O, 1]) ® Mn , we have j(t ® eg,g) = j(t) ® eg,g'

Proof. We first claim that td ® eg,g = (t ® eg,g)d for all dEN, d > O. This is true since e~,g = eg,g'

Next, we claim that if p is a polynomial that vanishes at zero, then p(t ® eg,g) = p(t) ® eg,g. This

holds by combining the first claim with the equality a ® eg,g + b ® eg,g = (a + b) ® eg,g' Finally,

we claim that this holds for any continuous function j on [0,1.] with j(O) = O. For any E. > 0, let

p be a polynomial such that p(O) = 0 and lip - jll < E.. Then we have

Ilj(t ® eg,g) - j(t) ® eg,g\l ::::; Ilj(t ® eg,g) - p(t ® eg,g)11 + IIp(t ® eg,g) - p(t) ® eg,gll

+ IIp(t) ® eg,g - j(t) ® eg,gll

< 2E.

Since this holds for any E. > 0, the result follows. I

The following proposition and proof are very similar to Proposition 3.3.1 of [13]

Proposition VII.2. The universal C* -algebra A generated by {Yj,k : 1 ::::; j, k ::::; n} subject to the

relations

2. Yj,k = Yk,j,

3. Yl,l "I- 0, and
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4. 0:::; Yj,j :::; 1

is isomorphic to C Mn .

Proof. We identify CMn as Co((O,:I.]) 0 M n . Let {ej,k} be an n by n set of matrix units for M n .

Define the map ¢: A -I CMn by Yj,k I----> t0ej,k. Since the elements {t0ej,k} satisfy the relations

which {Yj,k} satisfy this a well defined homomorphism.

By the Stone-Weierstrass Theorem the elements {t 0 ej,k} generate CMn .

Consider an irreducible representation 1r : A -I H of these relations. Let Zj,k = 1r(Yj,k)'

Consider the element C = Zi,1 + ... + z~,n' For any j and k between 1 and n,

Zj,kC = Zj,kZk,kZk,k = Zj,jZj,jZj,k = CZj,k.

Thus C is central in C*({zj,kh~j,k~n)' Because 1r is irreducible, this implies that C is a scalar

multiple of the identity. That is, for some "( E [0,1]' we have C = "(1.

If "( = 0, then C = 0. In this case, given land k with 1 :::; l, k :::; n, we have

Z-1 n

0= C = LZ],j + L z],j + ZZ,kZ(k'

j=1 j=Z+1

Note that this sum consists entirely of positive elements and yet adds to zero, therefore each item

in the sum is zero. In particular zz,kzi,k = °which implies ZZ,k = 0. Therefore, if "( = 0, then ZZ,k

is the image of t 0 eZ,k under the zero representation of CMn .

If "( > 0, then "(-1 is defined. Note that "(zj,j = cZ],j = Zf,j' This implies that "(-l z ],j is

a projection for every j. From this we can also conclude that "(-1/2 Zj ,j is a projection. Next we

check that the elements "(-1/2 Zj,k satisfy the relations for a set of matrix units for M n . We have

-1/2 -1/2 _ -I.\" .
"( Zj,k"( ZZ,m - "( Uk,ZZj,jZj,m

= 6k Z",,-1/2 Z ' .",,-1/2Z ·
, I J,J I ),m

(
n )-1/2 -1/2= 6k,1 L"( Yg,g "( Yj,m

g=1

= 6k,n-
1

/
2 (t yg,g) "(-1/2

g=1

.\" -1/2= Uk,n Yj,m'



56

The other two relations are clear.

Up to unitary equivalence, H = en and Zj,k = ,1/2ej ,k' These are the images of {t (>9 ej,d

under evaluation at ,1/2. Thus by Lemma 3.2.2 of [13] we are done. I

The following lemma guarantees the existence of elements of C* (G, A, a) which satisfy the

cone relations above, approximately respect the action of G, and are near elements produced using

the projection free tracial Rokhlin property.

Lemma VII.3. Suppose A is an infinite dimensional unital simple C* -algebra. Let c > 0, let

F c A be a finite set, and let x E A be a positive element of norm one. Suppose G is a finite group

and a : G -+ Aut(A) is an action of G on A with the projection free tracial Rokhlin property. Then

there exist J > 0, positive elements ag E A for each g E G, and elements Yg,h E C*(G,A,a) for

each g, hE G such that for g, h,j, kEG we have

3. Yl,1 -I- 0, where 1 is the identity of G.

5. IlukYj,l - Ykj,lll < c.

6. IIYj,guk - Yj,kgll < c.

8. Yl,l EA.

9. IIYj,jb - bYj,jll < 2cllbll + c for any b E F.

10. Ilaj(ak) - ajkll < J .

11. Ilajb - bajll < J for all b E F.

12. With a = LgEG ag we have 1 - a is Cuntz subequivalent to an element of the hereditary

subalgebra generated by x.
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13. IIaxail > 1 - 6.

14. 7(1- a) < 6 for all 7 E T(A).

Proof. First observe that if n = card(G), then (1) through (4) are the relations needed for CMn by

Proposition VII.2. Also observe that (5) and (6) are equivalent by taking adjoints, so we will only

We will proceed by induction on the matrix size of the cone, showing at each stage that

all the relations are satisfied.

First we work on C M 2 . Let 1 be the identity of G and let 9 E G be a fixed non identity

element. Let 6 > 0 be given. Choose 60 with 0 < 60 < 6 such that if x and yare positive elements

of norm less than or equal to one in any C*-algebra, and if Ilx - yll < 60, then Ilx1/ 2 - y1/211 < 6/4.

Without loss of generality, 60 < 6. Apply the projection free tradal Rokhlin property with 60 in

place of 6 and with F and x as given to get aj for each group element j E G. Properties (10),

(11), (12), (13), and (14) are true by the definition of the projection free tradal Rokhlin property.

Define

Y =(a1/2u a u*a1/ 2)1/2g,g 9 9 1 9 9

Y =a1/2u*a1/21,g 1 9 9

Using the fact that a1 and ag are mutually orthogonal, it is easy to check that properties

(1), (2), and (3) of the statement are satisfied. For (4) we recall from the definition of the projection

free tradal Rokhlin property that 0 s:; aj s:; 1 for each j E G. This implies

o s:; a~/2u;aguga~/2 s:; a1 s:; 1. Therefore, 0 s:; Y1,1 s:; 1. Similarly, 0 s:; aY2u9a1U;a~/2 s:; ag s:; 1.

Therefore, 0 s:; yg,g s:; 1.

To show (5), we use

to compute,
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Similarly, IlugYl,l - Yg,lll < c. But now

and

Next we show that (7) holds. By the choice of 00, we have

which implies

Similarly, IIYg,g - agll < c/2.

For property (8), we note that u;agug = ag-l (ag) E A, so Yl,l E A.

Next we show (9). For any bE F and j = 1 or j = g, we have

For the purposes of induction it is helpful to have one more property, namely, that Yj,k

for j, k E {I, g} are each orthogonal to am for all mEG \ {I, g}. This is clear since ajam = 0 if

j =1= m. This completes the base case.

From now on call the elements of G, 1, ... , j, ... , n instead of gl, ... gn to avoid an excess

of double subscripts. In order to avoid confusion, 1 will be the identity of G.

Now suppose that for any Cl > 0 there exists a positive number o(c, m) such that if

{aj LEG are the elements which come from applying the projection free tradal Rokhlin property

with o(c, m) in place of c and with F and x as given, then there exist elements Zj,k E C*(G, A, a)

for 1 ::; j, k ::; m and aj E A for j E G such that

1. Zj,kZl,h = Ok,IZj,jZj,h for 1 ::; j, k, l, h ::::; m,

2. zj,k = Zk,j for 1 ::; j, k ::; m,

3. Zl,l =1= 0,
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4. 0:::; Zl,l :::; 1,

5. Ilukzj,z - zkj,zll < C1 if j, k, l, kj :::; m,

6. Ilzj,luk- zj,kzll < C1 if j, k, l, kl :::; m,

8. Zl,l E A,

12. With a = EgEG ag we have 1 - a is Cuntz subequivalent to an element of the hereditary

subalgebra generated by x,

13. Ilaxall > 1 - 6,

14. 7(1 - a) < 6 for all 7 E T(A), and

15. Zj,kaZ = aZZj,k = 0 if 1 :::; j, k :::; m and m + 1 :::; l :::; n.

Given any c > 0 we wish to show we can produce elements Yj,k and ag which satisfy the

above properties for 1 :::; j, k :::; m + 1, for all 9 E G and with c in place of C1 above. Without loss

of generality, c < 1.

Let 0 < 60 < c/192. Choose 61 so that if x and yare positive elements with Ilxll :::; 1,

Ilyll :::; 1 and Ilx - yll < 61, then Ilx1/ 2 - y1/211 < 60. Without loss of generality, 61 < 60. Then

choose 62 > 0 such that if x and yare positive elements with Ilxll :::; 1, Ilyll :::; 1 and Ilx - yll < 62,

then Ilx1/ 2 - y1/211 < 8I/8. Choose 63 = minU2,2t}. Now choose 0 < 84 < min{82,6I/4}.

Define a continuous function f to be zero on [0,84], one at t = 1, and linear on [84,1].

Define a continuous function 9 to be zero at t = 0, one on [84,1], and linear on [0,64]' Notice that

IIf(t) - til < 64 and that fg = f.

Choose a polynomial p in G('[0,1]) with lip - t 1
/

2
11 < 6d3 and p(O) = O. Write p(t) =

E~=l bmtm. Let Ap = E~=l Ibml. Suppose'IjJ : GMn -7 B is a homomorphism to a G*-algebra
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60

Band u E B is a unitary satisfying

Then

Ilu"p(t1
/

2 181 el,k) - "p(t1
/

2 181 ej,k) II

~ Ilu"p(t1
/

2 181 el,k) - u"p(p 181 el,k) II + Ilu"p(p 181 el,k) - "p(p 181 ej,k) II + 11"p(p 0 ej,k) - "p(t1
/

2 0 ej,k) II
d

~ Ilt1
/

2
- pll + L Ilu"p(bmtm 0 el,k) - "p(bmtm 0 ej,k) II + lip - t1

/
2 11

rn=l

d

< 263/3 + L Ibmlllu"p(t 0 el,k)"p(tm- 1 0 ek,k) - "p(t 0 ej,k)"p(tm- 1 181 ek,k)II
m=l

(VII.l)

This implies

(VII.2)

Choose 0 < 65 < min{~, :2'~' ~}. Let 0 < 66 < min{c/48,61/2}. Apply the induction

hypothesis with 65 in place of Cl to get elements Zj,k and ag which satisfy the fifteen properties

above. We also require that 8(85, m) < 86, That is, we may assume the projection free tracial

Rokhlin property was applied with a number smaller than 66 in place of c. Once again, properties

(10), (11), (12), (13), and (14) are satisfied by the definition of the projection free tradal Rokhlin

property.
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These elements Zj,k allow us to define a homomorphism 1> : CMm ----+ C*(G, A, a) by

(t 0 ej,k) f--7 Zj,k. Let Sj = 1>(11/2 0 ej,l) for j = 1, ... ,m. For 1 :::::: j :::::: m, set

Before we start to prove that these elements satisfy the cone relations, we make some

which equals Sk if j = t.

Notice that

for any positive integer d. Therefore, for any polynomial P with P(O) = 0 we have

This implies that for any continuous function 1 with 1(0) = 0 we have

In particular we have
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Therefore,

(VIl.3)

(VIlA)

Now we check property (1). For this portion of the proof assume that 1::::: i,j,k,l,::::: m.

It is easy to see that Yj,m+lYm+l,j = Y;'j and that Ym+l,jYj,m+l = Y~+l,m+l' Next we see

= Yj,jYj,k

Since j ::::: m, using the fifteenth property of the induction hypothesis at the second step,

we have

=0.

Now suppose that j i- k. Then

= (h,IYj,j¢;(g ® ej,I)Yl,1

= (h,lYj,jYj,j¢;(g ® ej,l) by Equation VII.3

If j i- k we also have Yj,jYk,k = 0 since sjsk = O.
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Now if k -=1= i, and j -=1= k and i -=1= l, we have Yj,kYi,1 = Yj,j¢(g ® ej,k)¢(g ® ei,I)Yl,1 = O. On

the other hand, if k = i, but j -=1= k and k -=1= l we get Yj,kYi,1 = Yj,j¢(g2 ® ej,I)Yl,l. This shows (1).

For (2), note equation VII.3 implies Yj,k = Yk,j for 1 :::; j, k :::; m. The rest of the adjoint

conditions required for (2) are clear from the definitions of the elements.

Next we show (5) by checking the various cases as we did for (1). However we begin by

computing some useful estimates. Using Ili(t) - til < 04 < 02 and 11¢(t ® el,l) - ad < Os < 02 for

the penultimate step, we compute

Ilyi,1 - aill :::; 211¢(fl/2 ® el,d - a~/211 + Ilu;;"Ham+lum+l - ad

:::; 211¢(fl/2 ® el,l) - ¢(t l / 2 ® el,dll + 211¢(tl /2® el,d - a~/211 + 06

:::; 2 ( 0; ) + 2 C;)+ 0;

= 01.

By the choice of 01, this implies that

(VII.5)

Using the facts that Iiai - ZI,111 < Os < 02 and lit - ill < 04 < 02 we see that

(VII.5)

(VII.7)

Note that Iluj¢(t ® el,k) - ¢(t ® ej,k)11 = Iluj Z l,k - zj,z11 < Os < -If;.
Thus by Equation VII.1 we have Iluj¢(tl/2® el,k) - ¢(t l / 2 ® ej,k)11 < 03. Therefore, by

Equation VII.2,

(VII.8)
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Additionally,

IIUj¢(g 0 el,k) - ¢(g 0 ej,k) II = Iluj¢(fl/2 0 el,k)¢(g 0 ek,k) - ¢(fl/2 0 ej,k)¢(g 0 ek,k) II

::::; Iluj¢(fl/2 0 el,k) - ¢(fl/2 0 ej,k)11

< e/160 (VII.9)

Now

IIUjYi,luj - Y;,jll ::::; Iluj¢(fl/2 0 el,l)u;;'+lam+lUm+l¢(fl/2 0 el,l)uj

- ¢(fl/2 0 ej,du;;'+l am+!Um+l ¢(fl/2 0 el,j) II

::::; Iluj¢(fl/2 0 el,du;;'+lam+lUm+l¢(fl/2 0 el,l)uj

- Uj¢(fl/2 0 el,du;;'+lam+l um+l ¢(fl/2 0 el,j) II

+ Iluj¢(fl/2 0 el,1)u;;'+lam+lUm+l¢(fl/2 0 el,j)

- ¢(fl/2 0 ej,1)u;;'+lam+lUm+l¢(fl/2 0 el,j)11

::::; 11¢(fl/2 0 el,l)uj - ¢(fl/2 0 el,j)11

+ Iluj¢(fl/2 0 el,l) - ¢(fl/2 0 ej,l) II

= 21Iuj¢(fl/2 0 el,l) - ¢(fl/2 0 ej,l)11

< 264 + 63

< 61 0

(VIIolO)
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If j = m + 1, but l -I=- m + 1, and l -I=- 1, then

IIUjYl,l - Yj,dl = Ilum+lYl,l - Ym+l,lll

= Ilum+lYl,l¢(g 0 el,l) - a~~lum+lsill

::; II(slu~+lam+lUm+lSl)1/2¢(g 0 el,l) - al¢(g 0 el,l)11

+ Ilal¢(g0el,l) -a~/2sill

+ Ila~/2si - u~+la~~lum+lsill

::; II(slu~+lam+lUm+lSl)1/2 - ad

+ lIa~/2¢(g 0 el,l) - ¢(fl/2 0 el,I)¢(g 0 el,l) II

II 1/2 * 1/2 II+ a l - um+l am+ l Um+l

::; IIYl,l - alii

+ Ila~/2 - ¢(fl/2 0 el,I) II

+ 00 by Equation VII.7

::; 00 + 01/4 + 00 by Equations VII,5 and VII,6

< 300

3c:
<­

192

< c:/2.

Next suppose that j = m + 1 and l = 1. Then, using Equation VII.5 in the third to last

step and Equations VII.6 and VII,7 in the second to last step we see that
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IIUjY1,t - Yj,t11 = IIUm+1Y1,1 - Ym+1,Ii1

= IIY1,1 - U:n+1a;,{~lUm+1S111

-:; IIY1,1 - alii + II a1 - ai/
2

S111 + Ilai/
2

s1 - U:n+la;,{~lUm+lS111

< 60 + Ilai/
2

- ¢(f1/2 I2i e1,1) II + Ilai/
2

- U:n+1 a;,{~l Um+lll

-:; 60 + 260 + 60

< E:/2.

Now let j = l = m + 1. We use Ilum+la1u:n+1 - am+111 < 65 < 61/2, the estimate

11¢(t I2i el,l) - alii < 65, and lit - j(t)11 < 64 for the third to last step to get

IIUjY1,t - Yj,tll = Ilum+1Y1,m+1 - Ym+l,m+Ii1

_II ( 1/2 ) * 1/2 (1/2 ( ) * 1/2) 1/211- Um+1¢ j 12i e1,1 um+lam+l- am+1Um+1¢ jl2i e1,1 um+lam+1

II d,(j1/2 ) * 1/2 1/2 * 1/2 II-:; Um+1'f' 12i e1,1 Um+1am+1-Um+1a1 um+1am+1

by Equation VII.6

II( 1/2 ,1,( ) * 1/2 )1/2 (1/2 d,(j ) * 1/2 )1/211+ am+1Um+1'f' tl2i e1,1 um+1 am+1 - am+1Um+1'f' 12i e1,1 um+1am+1

+ 60 + 260

< 560

< E:/2.



Now suppose 1 < j :S m and j = l. In this situation,

IIUjYI,1 - Yj,lll = IIUjYI,j - Yj,j II

= IIUjYI,I¢(g ® el,j) - Yj,j II

= IIUjYI,1ujUj¢(g ® el,j) - Yj,j II

:S IlujYI,1ujUj¢(g ® el,j) - Yj,jUj¢(g ® el,j) II

+ IIYj,jUj¢(g ® el,j) - Yj,j¢(g ® ej,j)11

+ I\Yj,j¢(g ® ej,j) - Yj,j II

:S IlujYI,1uj - Yj,j II + IIUj¢(g ® el,j) - ¢(g ® ej,j) II

+ 0 by Equation VIl.4

:S 60 + &/16 by Equations VIl.10 and VIl.9

< &/2.

Now suppose 1 < j :S m and 1 :S l :S m with l =1= j. Then,

IIUjYI,1 - Yj,lll = IlujYI,I¢(g ® el,l) - Yj,j¢(g ® ej,d II

= IlujYI,lujUj¢(g ® el,l) - Yj,j¢(g ® ej,I)11

:S IlujYI,lujUj¢(g ® el,l) - UjYI,luj¢(g ® ej,I)11

+ lI ujYI,luj¢(g ® ej,l) - Yj,j¢(g ® ej,l)11

< &/16 + 60 by Equations VIl.9 and VILlO

< &/16 + e:/192

< e:/2.

67
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Finally, suppose 1 < j :::; m and l = m + 1. Then

IIUjYl,m+l - Yj,m+lll = Iluj¢(fl/2 0 el,l)u:n+la;,(~l _¢(fl/2 0 ej,du:n+la;,(~lll

:::; Iluj¢(fl/2 0 el,l) _¢(fl/2 0 ej,l)11

< c/16 by Equation VII.8

< c/2.

Since we do not need to consider j = 1 because Uj = 1, this shows (5) and hence (6) hold.

For (3), we use Equation VII.5, namely that IIYj,j - ajll < 00 < c/192. Combining this

with Lemma Vr.7 we see that IIYj,jll > 1 - 06 - 00 ~ 1 - c/48 - c/192 > 1/2 by our assumption

that c < 1.

To check (7), we compute IIYj,j - ajll using Equation VII.I0

IIYj,j - aj II :::; IIYj,j - UjYl,l uj II + IlujYl,luj - Ujal uj II + Ilujaluj - aj II

:::; od8 + 05 + 06

< c/192 + c/8 + c/48

< c.

Next we check (8). Since Sl E A and u:n+l am+lUm+l = a;;'~l (am+d E A, it is clear that

Yl,l E A.

Now we verify (9). For any b E F we have

For (4), we first recall that 0 :::; ag :::; 1 for all g E G by the definition of the projection free

tradal Rokhlin property. Thus, 0 :::; Sju:n+lam+lUm+lsj :::; Sjsj = Zj,j' The induction hypothesis

that 0 :::; Zj,j :::; 1 now gives us 0 :::; Y;,j :::; 1 which implies 0 :::; Yj,j :::; 1 for 1 :::; j ::; m. A similar

argument shows that 0 :::; Ym+l,m+l :::; 1.

Finally, we check the extra hypothesis for inducting, namely (15). Let 1 ::; j, k :::; m and

m + 1 < l :::; n. By the induction hypothesis, 0 = Zj,kaZ = ¢(t 0 ej,k)az, and the same on the other
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side. Thus we also have ¢(Jl/2 <3) ej,k)al = 0 and ¢(g <3) ej,k)al = O. This implies Ym+l,jal = 0, and

that alYj,m+l = O. We also have alYj,j = a/Yj,j = 0 and thus Yj,kal = alYj,k = O.

Since al is orthogonal to ah for every other group element h, we also have Ym+l,m+lal =

alYm+l,m+l = O. Similarly Yj,m+lal = 0 and alYm+l,j = O. This completes the induction step.

For the statement of the theorem, let Yj,k be given by the Yj,k constructed when m+ 1 = n,

where n = IGI and let aj by the elements of A given by the projection free tracial Rokhlin property

in that same step. I

The following lemma is the projection free analog of Lemma II.14 which is a finite group

analog of Lemma 2.5 of [16]. It finds an isomorphic copy of matrices over a hereditary subalgebra

of A as a large subalgebra of the crossed product. This is useful because we wish to show the entire

crossed product has stable rank one and such a subalgebra has stable rank one.

Lemma VIlA. Let A be an infinite dimensional stably finite simple unital C* -algebra. Let G be

a finite group; let n = card(G). Let a: G -4 Aut(A) be an action with the projection free tracial

Rokhlin property. Let L: A -4 C*(G,A,a) be the standard inclusion, write B = C*(G,A,a), and

let ug E B be the standard unitary implementing ago Then for every finite set FeB, every E > 0,

and every natural number N, there exists a positive element c(l) E B, a subalgebra D c c(l) Bc(l) ,

a positive element ci~i E A, an isomorphism <II : Mn <3) ci~i ACi~{ -4 D and elements c~~h for each

g and h in G such that: With {eg,d being matrix units for M n and 8 c A a finite set such that

each element of F can be expressed as l:9EG bgug with coefficients bg in 8, we have

1. For any d E ci~iAci~i we have <II(el,l <3) d) = d, and for any s E 8 there are elements

(l)A (1) (d ) (1) (1) . ((1) (1) A)dg E Cl,l Cl,l such that <II eg,g 0 9 = Cg,l SC1,g and dlst Cg,l SC1,g, < E.

3. For all x E F, there is ayE D such that Ilc(l)xc(l) - yll < E and Ilyll ::; Ilxll.

4 '" ""( (1)) - (1). LJgEG'*' eg,g <3) Cl,l - C .

5. IIcCl)x - xc(1) II < E for every x E F.

6. 1'(1 - C(1)) < liN for all l' E T(B).

Proof Let F, c, and N be given. Without loss of generality, IIxll ::; 1 for all x E F and Ilyll ::; 1

for all Y E 8. We can always rescale to achieve this.
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First we observe that we do not need to prove the norm condition in (3) above. Suppose

we have proven the above lemma without the norm condition in (3) and that Y is an element

resulting from applying the lemma with c/2 in place of c so that Ilcxc - yll < c/2. Notice that this

means Ilyll:S l+c/2. SetY1 = (l+;/2)Y' Then IIY-Y111 = IIY-(l+;/2)YII:S 1~~2(I+c/2)=c/2.

Therefore, Ilcxc - Y111 < c.

Let a < co < min{c/(40n2),c/(12)}. Define continuous functions fa and!l on [0,1] as

follows:

fo(O) = 0,

fo(t) = 1 for t in [1 - co, 1], and

fa is linear on (0,1 - co).

!l(t) = a for t in [0,1- co],

!l(t) = 1 for tin [1-co/2, 1], and

!l is linear on (1- co, 1 - co/2).

Let a < C1 < min{c/(8n2),c/(12)}.

Apply Lemma VI.ll to !l with C1 in place of c to get 61. Apply Lemma VI.12 to !l with

C1 in place of c to get 62.

Let

Let 63 be the value of 6 given by applying Lemma VI.14 with min{~, nC2 + iJ} in place of c. We

also require 63 < it.
Let {eg,h} for g, h E G be a system of matrix units for Mn . Let t represent the function

f(t) = t. Notice that {t 0 eg,h}g,hEG generate CMn .

Apply Lemma VII.3 with S in place of F, with 1 in place of x and with C2 in place of c.

This provides us with 6 > 0, ag E A for 9 E G and Yg,h E B for g, hE G satisfying the conclusions

of that lemma. Thus we can define a homomorphism, <Po: CMn --> B given by <po(t0eg,h) = Yg,h.

We also require 6 < 2~'

Let c~~~ = <Po (fa 0 eg,h). Similarly define c~~~ = <Po(!l0 eg,h)' Also set c(O) = I:9EG c~~~

and similarly c(1) = I:9EG c~~~. Notice that since Y1,1 E A, we also have ci~i E A and ci~i E A.
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Notice

= 'Po(!I 0 Jh"g2 eg"h2)

J: (1)= Uh, ,g2 Cg, ,h2 .

S' '1 1 (1) (0) J (1)
1m1 ar y, Cg2 ,h2Cg, ,h, = h2,g, Cg2 ,h, .

--,-,-,-....,.,...,-

Define a function <I> : Mn(ci~iAci~i) ----> B by <I>((Xg,h)) = 'L:g,h C~~iXg,hCi~~ for Xg,h E
--;:-,-....,.,...,-

ci~i Aci~i. Set D = Im(<I».

Next we check that <I> is a homomorphism. It is easy to check that <I> is additive and is

star preserving. We will check that it is multiplicative.

Let x = (Xg,h) and Y = (Yg,h) and note that (XY)g,h = 'L:kEG Xg,kYk,h. Then, using the

facts that Xg,h and Yk,l are in ci~iAci~i and that ci~ici~i = ci~i, we get:

<I>(X)<I>(y) = [L C~~iXg'hCi~~] [L C~~iXk'ICi~i]
g,hEG k,lEG

'" (0) ( (0))2 (0)
~ Cg,lXg,h C1,1 Yh,ICl,l

g,h,IEG

'" (0) (0)= ~ Cg,lXg,hYh,IC1,1
g,h,IEG

'" (0) ('" ) (0)= ~ Cg,l ~ Xg,hYh,1 Cl,l
g,lEG hEG

= <I>(xy).

Furthermore, <I> is injective. To see this, since A is simple implies ci~i Aci~i is simple by

Theorem 3.2.8 of [14] it is enough to show that <I> is nonzero. Now notice,

<I> (ci~i) = ci~i ci~i ci~i = ci~i i- O.
Next we make some norm estimates to be used later on.

Note we have 'Po(!I 0eg,g) = 'Po(!I(t0eg,g)) = !I('Po(t0eg,g)), with the first equality by

Lemma VII.1 and the second because functional calculus commutes with homomorphisms. Also

note that Ilc~~k - Yh,kll :::; lifo - til < co·
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Next we estimate the affect of conjugating c~~~ by ug . Since

using the choice of 61 using Lemma VLlI for the last step, we have

IIUgC;,~~U; - c~~,ghll = Ilug'Po(!I Q9 eh,h)u; - 'Po(!I Q9 egh,gh) II

= Ilug(!I('Po(t Q9 eh,h)))U; - !I ('Po(t Q9 egh,gh)) II

= II !I (ug('Po(t Q9 eh,h))u;) - !I('Po(t Q9 egh,gh)) II

(VILlI )

Now we compute,

Next we compute the similar quantity using c~~~:

II (1) (1) II _ II (1) (0) (1) (0) II
u9ch,k - cgh,k - u9ch,hCh,k - Cgh,ghCgh,k

II (1) * (0) (1) (0) II II (1) (0) (1) (0)
::::: u9ch,hu gu9ch,k - Cgh,ghu9ch,k + Cgh,ghu9ch,k - Cgh,ghCgh,k II

(VII.12)

(VII.13)

using Equations VILlI and VII.12 for the last inequality.

Let 8E S and recall that we have normalized so that 11811 ::::: 1 for all 8E S. We have
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Using the preceding estimate and the choice of 02 using Lemma VII.l we now get

II[C~~b,s]11 = 11[~o(h(t)®eg,g),slll

:::; II[h(~o(t®eg,g)),s]11

(VII.14)

Let y E Band g, h, k, lEG. Then we observe

IIC~~~y4~i - Y9,hYYk,l11 :::; 211ylilit - foil

:::; 211yll EO·

Let y E B. Then

(VII.15)

II
(0) (0) (0) * (0) II II (0) (0) (0) (0) II

Ch ,lYC1,g-lh - ch,hUhyuhch,h u g :::; Ch ,lYC1,g-lh - ch,hUhYC1,g-lh

II
(0) (0) (0) * (0) II+ ch,huhYC1,g-lh - ch,huhyuhch,hU9

:::; IIYIIIIC~~i - c~~~Uh II + IIYIIIIci~~-lh - Uh-lC~~~-lh II

I I II
(0) (0) * II+ Iy I uh-1Ch,g-lh - Uh-lCh,hUg-l

(VII.16)

by Equation VII.12.

Now let {Yg,d C B for g, h E G. Then,

(VII,17)

Now given x E F, we can write x = 2:9EG XgU g with x g E S.

S * ( (1) (1) ) d (1) ( ) (1) N h (l)A (1)et Zh,g = Uh Ch,hXhg-lCh,h Uh an Yh,g = C1,10'.h-1 Xhg- 1 C1,1' ote t at Yh,g E C1,1 C1,1'

Then, using Equation VII.ll and the fact that Ilxgll :::; 1we compute:
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(VII. 18)

Next we estimate the effect of C(l) on x. In the third step we used Equation VILll. For

the second to last step we used Equation VII.14 and the fact that c~~~c~~~ = 0 unless 9 = h. For

the last step we used the fact that Ilxgll ~ 1, since x g E S to compute:

C(l)XC(I) - '" c(O) C(l) x C(l) c(O) u
~ h,h h,h 9 h,h h,h 9

g,hEG

<

(VII. 19)

We are now in a position to prove part (3) of the statement. Note that

'\' (0) (0)
<[>((Yh,g-lh)) = L..g,hEG Ch,IYh,g-lhCI,g-lh ED and so
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<

+ "" c(O) C(l) x C(l) C(O) U - C(1) XC(1)
L....- h,h h,h 9 h,h h,h 9
g,h

+ 3n2c1 by Equations VII.I7, VII.I8, and VII.I9

= n2(8co + 3101 + 3102)

< 10/5 + 310/8 + 10/7

< c.

This proves part (3) of the statement with Y taken to be <p((Yh,g-lh))'

For part (1) of the conclusion, suppose d E ci~i Aci~i. Then

This is the first half of (1).

For the second part of (1), let sE S. Recall that we have normalized so that Iisil :::; 1. Let

d = ci~i sci~i E ci~i Aci~i. Then
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Furthermore,

. (1) (1) ) II (1) (1) (1) (1) * IIdlst(Cg,1 SC1,g' A ::; cg,1 SC1,g - u 9 c1,1 SC1,1 u g

II (1) (1) II (1) * II::; cg,1 - ugc1,111 + C1,g - Cl,1 u g

::; 2(cl + 2co + c2) by Equation VII.13

::; 2(c/6 + c/6 + c/12)

< c.

This completes (1).

To prove (2), let d E c~liAc~li. Because (c~li)l/m acts as an approximate identity on this
" ,

algebra, we have d = limm->oo(c~~i)l/md(c~~i)l/m. We compute:

II U du* - <I>(e ® d) II = II lim U (c(I))I/md(c(I))I/m u * - c(O) dc(O) IIg g g,g m-+oo g 1,1 1,1 g g,1 l,g

= II lim U c(O) (c(l) )1/md(c(l) )1/mc(O) u* _ c(O) dc(O) II
m->oo g 1,1 1,1 1,1 1,1 g g,1 l,g

= IIUgc~~i dci~iu; - c~~i dc~~~ II

::; IIUgC~~idc~~iu; - c~~i dci~iu; II + Ilc~~i dc~~iu; - c~~i dc~~~ II

::; IIUgC~~i - c~~ililldil + IH~iu; - ci~~lllldll

::; 2(2co + C2) Ildll using Equation VII.12

< 2(c/6 + c/12)lldll

< clldll·

This is condition (2) of the lemma.

For (4) we compute

"" <I>(e ® c(I)) = "" c(O) c(l) c(O) = "" c(l) = c(l).L...J g,g 1,1 L...J g,1 1,1 l,g L...J g,g
gEG gEG gEG
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For (5) we begin by computing for any x = L:hEG XhUh E F how close x and L:9EG Yg,g

are to commuting. We have

L Yg,gXhUh - L XhuhYh-1g,h-1g
g,hEG g,hEG

< L IIYg,gXhUh - XhuhYh-1g,h-1gll
g,hEG

:::; L IlYg,gXhUh - XhYg,gUhll + L Ilxhuhu;;'Yg,gUh - XhuhYh-1g,h-1gll
g,hEG g,hEG

By the choice of 152, this implies IlfI(L:gEG Yg,g)x - xfI(L:gEG Yg,g)11 < CI < c. But, by

Lemma VI.10, we have C> II L:9EG fI(Yg,g)x - X L:9EG fI(Yg,g)11 = Ilc(1)x - xc(I)11 which is (5).

Finally, we will show that (6) holds. We wish to show that 7(1 - c(l)) < 1:t for all

7 E T(B). However, since 1 - c(l) E A and in light of Lemma VI.15, it suffices to prove the

statement for all 7 E T(A). Now, since Ilag - Yg,gll < C2, we have II L:9EG ag - L:9EG Yg,gll < nC2'

Therefore, 7(L:9EG ag) < nC2 +7(L:gEG Yg,g). By the assumption on 15 from Lemma VII.3 we have

7(1 - L:9EG ag) :::; 2~'

Combining these facts we have

2~ > 1 - 7 (L ag) > 1 - 7 (L Yg,g) - nC2·
gEG gEG

This implies
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Therefore, by the choice of 83 ,

which is (6). I

The following lemma is the analog for positive elements of Lemma 3.2 of [16].

Lemma VII.5. Let A be a C* -algebra, let x, y E A+, let T be a tracial state on A. Let 9 : [0,1] ----> lR

be a continuous junction. Then T(g(yl/2 xyl/2)) = T(g(x 1/2yx1/2).

Proof. We first verify the statement for g(t) = tn:

T((yl/2 xy l/2)n) = T(yl/2(xy)n-l x l/2(x1/2yl/2))

= T((x 1/2yl/2)yl/2(xy)n-lx l/2)

= T( (x 1/2yx1/2)n)

Thus the lemma holds for any polynomial and so, by the continuity of functional calculus, for any

continuous function. I

Lemma VII.9 is an analog of Lemma 3.3 of [16] for positive elements instead of projections.

The next few lemmas are used to prove Lemma VII.9.

Lemma VII.6. Let 9 : [0,1] ----> [0,1] be a continuous function with g(l) = 1. For every c > 0,

there exists 8 > 0 such that whenever A is a unital C* -algebra, T is a tracial state on A, and

x, yare positive elements oj A with norm less than or equal to 1 such that T(X) > 1 - 8 and

T(y2) > IITlyAyl1 - 8, then T(g(yXY)) > T(y2) - c.

Proof. Choose 80 E (0,1) such that g(t) > 1 - c/2 for all t E [1 - 80 , 1]. Choose 8 so that 8 < ~.

Let A, T, x, and y be as in the hypotheses.

We first estimate T(YXY). We have T (yxy) +T (y (1 - x) y) = T (y2). By the condition on

x and since y ~ 1 implies (1- x)1/2 y2(1- X)1/2 ~ 1- x, we also have
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Combining these two observations yields

(VII.20)

Now restrict T to yAy. Call the restriction f. Extend f to a trace l' on yAy + CIA by

T(l A ) = Iii II· This implies that

111'11 = Ilfll· (VII.21)

Let JL be the measure on X = sp(yxy) corresponding to the functional on C(X) defined by

h 1-+ T(h(yxy)) with the functional calculus evaluated in yAy +CIA. That is Ix hdJL = T(h(yxy)).

With 1 representing the constant function 1, Ix 1dJL = T(lA) = Ilfll. Thus the total mass

ofJLis Ilfll.
Let E = [1 - 60,1]. We compute

T(y2) - 6 < T(YXY) by VII.20

= r tdJL(t) by the definition of JL
irO,I]

::; (1 - (0)(JL([O, 1] \ E)) + JL(E)

= (1 - (0)(11+11- JL(E)) + JL(E)

= 11+11- JL(E) - 601lill + 60JL(E) + JL(E)

= (1 - (0)11+11 + 60JL(E)

< (1 - (0)(T(y2) + 6) + 60JL(E) by hypothesis.
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This implies

r(y2) - 0 - (1 - 00)(r(y2) + 0) < oof.L(E)

r(y2) - 0 - (r(y2) + 0 - 00r(y2) - 000) < oOf.L(E)

r(y2) - 0 - r(y2) - 0 + 00r(y2) + 000) < OOf.L(E)

-20 + 00r(y2) + 000 < Oof.L(E)

-20
~ + r(y2) + 0 < f.L(E)

20
r(y2) - 00 + 0 < f.L(E)

20
r(y2) - 00 < f.L(E)

( 2) 2t:00/4 (E)ry ---<f.L
00

r(y2) - ~ < f.L(E).

Since g(t) > 1 - t:/2 for tEE, by using r(y2) ::::; 1 for the last inequality, we now get

r(g(yxy)) = r g(t)df.L(t)
irO,I]

~ (1- t:/2)f.L(E)

~ (1 - t:/2)(r(y2) - t:/2)

= r(y2) - t:/2 - r(y2)t:/2 + t:/4

~ r(y2) - t:.

This completes the proof. I

Lemma VII.7. Given any 0 > 0, there exists an rJ > 0 such that whenever A is a unital C*-

algebra and yEA is a positive element of norm less than or equal to 1, with r(y) > IlrlyAyl1 - rJ,

then r(y2) > IlrlyAyl1 - o.

Proof. Apply Lemma VII.6 with t: replaced by 0/2 and with g(t) = t 2 . Let rJ be the resulting value

of O. Without loss of generality, rJ < 0/2. Let yEA be a positive element with [Iyll ::::; 1 be such

that r((yl/2)2) = r(y) > IlrlyAy II - rJ = Ilrlyl/2Ayl/211 - rJ. Then by the choice of rJ using Lemma

VII.6 and letting x = 1 and using yl/2 in place of y yields

----_._--
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T (g (y1/2 Xy 1/2)) > T((y1/2)2) - 6/2

T(g(y)) > T(Y) - 6/2

T(y2) > T(Y) - 6/2

T(y2) > IITlyAy11 - 'r/ - 6/2

T(y2) > IITlyAyl1 - 6.

This completes the proof. I

Lemma VII.B. Let 9 : [0,1] -4 [0,1] be a continuous function with g(l) = 1. For every c > 0,

there exists 6 > °such that whenever A is a unital C* -algebra, T is a tracial state on A, and

x, yare positive elements of A with norm less than or equal to 1 satisfying T(X) > 1 - 6 and

T(Y) > IITlyAyll- 6, we have T(g(yXY)) > T(y2) - c.

Proof. Let 61 be the 6 obtained by applying Lemma VII.6 with c and g as given. Let 62 be the 'r/

obtained by applying Lemma VII,7 with 6 replaced by 61. Let 63 = min{61,62}' If T(X) > 1- h

then T(X) > 1 - 61, so the condition on x is satisfied in Lemma VII.6. If

then

by the choice of 62 using Lemma VII.7. Thus the condition on y in Lemma VII.6 is satisfied and

therefore T(g(yXY)) > T(y2) - c. I

Lemma VII.9. Let 9 : [0,1] -4 [0, 1] be a continuous function with g(l) = 1. For every c > 0,

there exists 6 > °such that whenever A is a unital C* -algebra, T is a tracial state on A, and

x, yare positive elements of A with norm less than or equal to 1 satisfying T(X) > 1 - 0 and

T(Y) > IITlyAyl1 - 0, then T(g(XYX)) > T(Y) - c.

Proof. Apply Lemma VII.6 with 9 and c as given to get 01 > 0. Now apply Lemma VII,8 with

g(t) = t2 and 01 in place of c to get 62' Let 63 be the 6 obtained from applying Lemma VII.8 with
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g as given and e as given. We may assume 03 < 02 < 01' The number 03 is the desired O. By the

choice of 02 using Lemma VII.8 with 1 in place of y for any x satisfying T(X) > 1 - 02 we have

T(g(yXY)) = T(g(X)) = T(X2) > 1 - 01' So now if y is such that

T(Y) > IITl yAy ll-02 > IITl yAy ll-03' by the choice of 03 using Lemma VII.6 with y1/2 in place ofy we

have T (g (y1/2 x2y1/2)) > T ((y1/2)2) - e. But by Lemma VII.5, T (g (y1/2 x2y1/2)) = T(g(XYX)).

Thus T(g(XYX)) > T(y) - e. Additionally, since T(X) > 1 - 02 > 1 - 03 and T(Y) > IITlyAyl1 - 03,

we have T(g(yXY)) > T(y2) - e. I

The following lemma is an analog for positive elements of Lemma 5.1 of [16].

Lemma VII.IO. Let 0 > O. There exists a continuous junction g : [0,1] -> [0,1] such that

g(O) = O,g(1) = 1, and whenever A is a C*-algebra and a E A is positive with Iiall :::; 1, then there

is a positive element bE aAa with Ilbll :::; 1 such that Ilbg(a) - g(a)11 < 0 and Ilab - bll < o.

Proof. Choose to and t1 with 1- 0 < to < t1 < 1 and let g : [0,1] -> [0,1] be a continuous function

which vanishes on [0, t 1] and such that g(l) = 1. Let A be a C*-algebra, and let a E A be positive

with Iiall :::; 1. Let h : [0,1] -> [0,1] be a continuous function which vanishes on [0, to] such that

h(t) = 1 for t E [t1, 1]. For n sufficiently large, Ilg(a)l/ng(a) - g(a)11 < o. So let b = g(a)l/n. Note

that since g(a)l/n is positive, (1Ig(a)l/nll)n = Ilg(a)11 = 1 = In, which implies that II(g(a))l/nll = 1.

From hg = g we have h(a)g(a) = g(a) and so h(a)b = b. Also Ilah(a) - h(a)11 < 0 because

It - 11 :::; 1 - to < 0 whenever h(t) -I=- o. Accordingly, we have

lIab - bll = Ilah(a)b - h(a)bll :::; Ilah(a) - h(a)llllbll < 0,

which completes the proof. I

The next lemma is used repeatedly and implicitly in the proof of Lemma VII.12.

Lemma VII.II. If y and z are orthogonal positive elements of a C* -algebra A and w E Ay and

x E zA, then wx = a as well.

Proof. We have wx = limn->cxl limm->cxl wyl/nz1/mx = w· o· x = o. I

The following lemma is used in the proof of the main theorem, Theorem VII.17, to replace

the decomposition of the identity into orthogonal projections used in the proof of Theorem VA.
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Lemma VII.12. Let c > O. Suppose b1,b2,b3,Cl,C2,C3 are positive elements of a stably finite

unital C* -algebra A, and let a E A. Suppose:

• C2Ac2 have stable rank one, and

Then there exists an element al E A such that al is invertible and II a - ad < c.

Proof Write 1 = Cl + (h - Cl) + b2 + (b3 - C3) + C3. Make the following definitions:

a3,3 = b2ab2.

a4,1 = (b3 - C3)acl.

a4,2 = (b3 - c3)a(b1 - Cl)'

a4,3 = (b3 - c3)ah

a5,3 = C3 ab2'

Notice that I:~=3 I:~=l ai,j = a.

Let

. { c If c}0<<5 < mm , -, - .
611a3,1 + a4,1 + a5,111 6 3
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Since a3,3 E b2Ab2, there is an invertible element to E b2Ab2 + CIA with

lito - a3,311 < O. (VII.22)

Write to = tl + >'1IA with tl E b2Ab2 and >'1 E C. We can also express tal as t2 + All1A with

t2 E b2Ab2.

Next we show that

We note that

(a3,1 + a4,1 + a5,1)to = (a3,1 + a4,1 + a5,1)(h + Ad = (a3,1 + a4,1 + a5,1)Al'

Therefore,

This implies

Therefore

Now we compute

(a3,1 +a4,1 +a5,1 +to)tol (1- (a3,1 +a4,1 +a5,1)tol)

= ((a3,1 + a4,1 + a5,1) tal + 1) (1 - (a3,1 + a4,1 + a5,1) tal)

= (a3,1 + a4,1 + a5,d tal - ((a3,1 + a4,1 + a5,1) tol )2 + 1- (a3,1 + a4,1 + a5,1) tal

(VII.23)

=1.

Because A is stably finite this is enough to show that a3,1 + a4,1 + a5,1 + to and

tal (1 - (a3,1 + a4,1 + a5,1) tal) are mutual inverses.

(VII.24)
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Next we multiply

tal (1 - (a3,1 + a4,1 + as,l) tal) (a3,1 + a3,2 + to + a4,1 + a4,2 + a4,3 + as,l + as,2 + as,2)

= tal (1 - (a3,1 + a4,1 + as,l)tol) (a3,1 + a4,1 + as,l + to)

+ tal (1- (a3,1 + a4,1 + as,l) tal) (a3,2 + a4,2 + a4,3 + as,2 + as,3)

= 1 + tal (1 - (a3,1 + a4,1 + as,l) tal) (a3,2 + a4,2 + a4,3 + as,2 + as,3).

Using our expression for tal we can compute

((a3,1 + a4,1 + as,l) tal) b3 = (a3,1 + a4,1 + as,d (t2 + All) b3

= (a3,1 + a4,1 + as,l) (t2b3 + Al l b3)

= o.

To get the last line we used Lemma VILl1 twice, once with y = Cl and z = b3 and once with

y = Cl and z = b2 •

Similarly,

=0.

Notice that the previous two computations imply (a3,1 + a4,1 + as,1)tolc3 = 0 and

(a3,1 + a4,1 + as,1)to
l (b3 - C3) = o.



86

Continuing our computation, we see the last expression in Equation VII.25 is equal to:

1 + (tal - tal (a3,1 + a4,1 + a5,1) tal) (a3,2 + a4,2 + a4,3 + a5,2 + a5,3)

= 1 + ((t2 + .All) - tal (a3,1 + a4,1 + a5,1) tal) (a3,2 + a4,2 + a4,3 + a5,2 + a5,3)

= 1 + t2a3,2 + t2a4,2 + t2a4,3 + t2a5,2 + t2a5,3

- to1(a3,1 + a4,1 + a5,1)to1a3,2

- to1(a3,1 + a4,1 + a5,1)to1(a4,2 + a4,3)

- to1(a3,1 + a4,1 + a5,1)to1(a5,2 + a5,3)

+ ,-1 + ,-I ,-I + ,-I + ,-I1\1 a3,2 1\1 a4,2 + 1\1 a4,3 1\1 a5,2 1\1 a5,3

= 1 + t2a3,2 + t2a4,2 + t2a4,3 + 0 + 0

1· t-1( )t-1b1/n
- 1m 0 a3,1 + a4,1 + a5,1 0 2 a3,2

n--+oo

1· t-1( )t-1 l/n( )- 1m 0 a3,1 + a4,1 + a5,1 0 c 3 a5,2 + a5,3
n--+oo

,-I + ,-I + ,-I + ,-I + ,-I+ 1\1 a3,2 1\1 a4,2 1\1 a4,3 1\1 a5,2 1\1 a5,3

(VII.26)

Let t3 = t2a4,3 + 1. Notice that t3 E b2Ab2+CIA since t2 E b2Ab2 and a4,3 E (b3 - c3)Ah

Thus there is an invertible element t4 E b2Ab2CIA with

(VII.27)

Write t4 = t5 + .A5IA with t5 E b2Ab2 and .A5 E Co Similarly, write til = t6 + .A51IA with

t6 E b2Ab2.

Using the same argument used to show Equation VII.23 we can show that

(til (.A11a5,3 + .A11a5,2))2 = O.
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[(1- t4"1 (A1
l a5,3 + A1la5,2)) t4"l] (A1la5,3 + A1la5,2 + t4)

= (1- t4"1 (A1la5,3 + A1la5,2)) (t4"I(A1la5,3 + A1la5,2) + 1)

= t4"1 (A1la5,3 + A1la5,2) + 1- (t4"1 (A1la5,3 + A1la5,2))2 - t4"1 (A1la5,3 + A1la5,2)

=1.

Since A is stably finite, this is enough to get

(VII.28)

Also notice (1- t4"1 (A1la5,3 + A1la5,2)) t4"1 = t4"1 - t4"1 (A1la5,3 + A1la5,2) t4"l.

Next we show bltil (A1la5,3 + A1la5,2) = O. By applying Lemma VILlI, since t6 E

b2Ab2, bl E blAbl , and a5,2 + a5,3 E C3A, we have

= bl (t6 + A5"1) (A1la5,3 + A1la5,2)

= blt6 (A1la5,3 + A1la5,2) + bl A5"l (A1la5,3 + A1 la5,2)

=0.

Similarly, b2til(Alla5,3 + A1la5,2)) = O. These two also imply that

(b l - cl)t4"l(A1la5,3 + A1la5,2)) = 0 and clt4"l(A1la5,3 + A1la5,2)) = O.

(VII.29)
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= 1 + (t2a3,2 + t2a4,2 + A11a3,2 + A11a4,3) (til - til (A1
1as,2 + A11as,3) til)

= 1 + t2a3,2ti1 + t2a4,2ti1 + Alla3,2til + Alla4,2til + Alla4,3til

t t -l(,-1 ,-I )t-1 t t- 1(,-1 ,-I )t-1- 2a3,2 4 Al as,2 + Al as,3 4 - 2a4,2 4 Al as,2 + Al as,3 4

,-I t-1 (,-I + ,-I ) t-1 ,-I t-1 (,-I ,-1) t-1- Al a3,2 4 Al as,2 Al as,3 4 - Al a4,2 4 Al as,2 + Al as,3 4

,-I t-1('-1 +,-1 )t-1- Al a4,3 4 Al as,2 Al as,3 4

1 t t -l+t t-l+,-1 t-1 ,-I t- 1 ,-I t- 1= + 2a3,2 4 2a4,2 4 Al a3,2 4 + Al a4,2 4 + Al a4,3 4

1, ,-I b1/ n t- 1 (,-I ,-1) t- 1- n.!:...~ Al a4,3 2 4 Al as,2 + Al as,3 4

by Equation VII.29 and the statements that follow it

+t '-I+t ,-1+,-1 ,-I ,-I ,-I ,-I ,-I2a3,2 AS 2a4,2 AS Al a3,2 As + Al a4,2 As + Al a4,3 As .

Denote the quantity just computed by h and notice that

which has stable rank one by hypothesis,

Thus there exists an invertible element t s E C2Ac2 + CIA such that

<5

Iits - hll < II A11as,2 + A1
1as,3 + t411 + I'
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(VII.3D)

(VII,31)
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[tal (1 - (a3,1 + a4,1 + as,l) tal)] -1 ts [(1- til (A1 las,2 + A1 las,3)) t4l ]-1

= (a3,1 + a4,1 + as,l + to) ts (A1
las,2 + A1

las,3 + t4)

is invertible, and as we will now compute,

We have

Iia - (a3,1 + a4,1 + as,l + to)ts(A1
l as,2 + A1las,3 + t4)11

= lI a3,1 + a3,2 + a3,3 + a4,1 + a4,2 + a4,3 + as,l + as,2 + as,3

- (a3,1 + a4,1 + as,l + to)ts(A1
las,2 + A1

las,3 + t4) II

:::; Il a3,3 - toll

+ II(a3,1 + a4,1 + as,l + to)tol (l - (a3,1 + a4,1 + as,dto l )

. (a3,1 + a3,2 + to + a4,1 + a4,2 + a4,3 + as,l + as,2 + as,3)

- (a3,1 + a4,1 + as,l + to)ts(A1
las,2 + A1

las,3 + t4)11 by Equation VII.24

:::; 8 + Ila3,1 + a4,1 + as,l + toll

. III + t2a3,2 + t2a4,2 + t2a4,3 + A1la3,2 + A1la4,2 + A1 la4,3

+ A1
las,2 + A1

las,3 - tS(A1
l as,2 + A1

1as,3 + t4)11

by Equations VII.25 and VII.26

89
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+ Il a3,1 + a4,1 + a5,1 + toll

. II (t2 a3,2 + t2a4,2 + t4 + X1la3,2 + A1la4,2 + X1la4,3 + X1la5,2 + X1la5,3)

. (1 - t;I(A1la5,2 + Alla5,3))t;I(Alla5,2 + A1la5,3 + t4)

- tS(A1la5,2 + A1la5,3 + t4)11 by Equation VII.28

::::: 5 + Ila3,1 + a4,1 + a5,1 + toll 111 + t2a4,3 - t411

+ Il a3,1 + a4,1 + a5,1 + toll

::::: 5 + 511a3,1 + a4,1 + a5,1 + toll

5
+ Il a3,1 + a4,1 + a5,1 + tollllAlla5,2 + A

1 la5,3 + t411 + 111Alla5,2 + A1 la
5,3 + t411

by the choice of t4 and ts

= 5 + 2511a3,1 + a4,1 + a5,1 + to II

::::: 5 + 2511a3,1 + a4,1 + a5,1 + a3,311 + 2511a3,3 - toll

< E/2 + 2E/6 + 252

< 3E/3

=E.

This completes the proof. I

Lemma VII. 13 uses Lemma VII.12 to produce a simpler replacement for the decomposition

of the identity into orthogonal projections.

Lemma VII.13. Let A be a stably finite unital C* -algebra, let E > 0 be given, and let Xl, X2, X3 E A

be positive elements such that Xl + X2 + X3 = 1 and XIX3 = o. Let a E A be such that

xla = 0, aX3 = 0, and X2Ax2 has stable rank 1. Then there exists an element al E A such that al

is invertible and Iial - all < E.
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Prooj. It suffices to show that the hypotheses here imply the hypotheses of VII.12. Let j : [0,1] ----­

[0,1] and h : [0,1] ----- [0,1] be defined by the formulas

and

j(t) = {a
2t -1

t E [o,~]

t E [~, 1]

{

2t t E [O,~]
h(t) =

1 tE[~,I].

It is clear that jh = j. Now set bl = h(XI), CI = j(XI), b3 = h(X3), C3 = j(X3), b2 = j(X2), and

C2 = h(X2), all of which are positive. Then since C*(XI,X2,X3) is commutative,

have blb3 = h(XI)h(X3) = 0, and so also cl b3 = a = b1C3' Similarly, xla = a and aX3 = a imply

that bla = h(xda = a and ab3 = ah(x3) = 0, and these in turn imply that CIa = a and aC3 = O.

Also, b2Ab2 and C2Ac2 have stable rank one because they are hereditary subalgebras of

X2 Ax2.

Since Xl, X2, and X3 all commute, we have C*(XI,X2,X3) = C(Y) with Y c [0,1]. So

think of Xl, X2, and X3 as JI, 12, and 13 respectively.

Let Y; = {y E Y : ji(Y) > 1/2} and note that Y; n}j = 0 for i -=1= j. Then on Yi, we have

(clb2)(y) = j(Xdj(X2)(Y) = j(JI(y))j(12(y)) = [2JI(y) -1] . a = a and C3b2 = j(XI) . a= O. The

same equalities also hold on Y3. On Y2, we have clb2 = j(JI (t))j(12(t)) = O·j(f2(t)) = aand C3b2 =

j(13(t))b2 = o· b2 = O. On Y \ YI = {y E Y : JI(y) ~ 1/2}, we have cl b2 = j(JI(t))j(12(t)) =

o· j(12(t)) = a and C3b2 = j(13(t))b2 = o· b2 = O. If t E Yi, then JI(t) > 1/2, which implies

13(t) = a and l-lI(t) - 13(t) ~ 1/2. This implies that j(JI(t) + h(t)) + h(l- JI(t) - 13 (t)) = 1.

Symmetrically, if t E Y3, then j(JI(t) + 13(t)) + h(l-lI(t) - h(t)) = 1.

Now suppose that t E Y \ (YI UY3). Then JI(t) ~ 1/2 and 13(t) ~ 1/2, and at most one

of them is nonzero, so 1 - JI(t) - h(t) ~ 1/2. This gives j(JI(t) + 13 (t)) + h(1 - JI(t) - h(t)) =

0+0+1 = 1. It follows that j(XI)+ j(x3)+h(X2) = 1, which is equivalent to CI +C2+C3 = 1. Next,

ift E YI, then JI(t) > 1/2 and 13 < 1/2, which together imply l-lI(t) - 13(t) ~ 1/2 and 13(t) = a
(using orthogonality, since JI(t) -=1= 0). It follows that h(JI(t)) + h(13(t)) + j(1 - JI(t) - h(t)) =
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1 + 2J3(t) + 0 = 1. Symmetrically, if t E Y3, then h(h(t)) + h(J3(t)) + f(1 - h(t) - J3(t)) = 1.

Suppose that t E Y \ (Y1 U Y3)· Then as before, we have 1 - h(t) - J3(t) 2: 1/2. This gives

h(h(t)) + h(J3(t)) + f(l- h(t) - J3(t)) = 2h(t) + 2J3(t) + 2(1- h(t) - J3(t)) -1 = 2 -1 = 1.

Therefore, h(xd + h(x3) + f(x2) = 1, which is equivalent to b1+ b2+ b3 = 1. I

Lemma VII.14. Let A be a simple, unital C*-algebra, and let a, b E A+ with 110.11 = Ilbll = 1.

Then there exists cE A+ with Ilcll = 1 such that c::; a and c~ b.

Proof Since A is simple and a, b E A are nonzero, by Proposition 1.8 of [5] there is a nonzero

yEA such that yy* E aAa and y*y E bAb. Without loss of generality we may assume that

Ilyy*11 ::; 1, and so yy* ::; 1. Set c = a1/2yy*a1/2. Set z = (a 1/ 2y)*, and choose 0 < (3 < 1. Then,

z*z ::; z*z, so by Proposition 1.4.5 of [18] there is u E A such that z = u(z*z)f'J!2. Note that

[u(z*z)t3/ 2](z*z)f'J!2(u*) = [u(z*z)f'J!21[u(z*z)t3/2]* = zz* and so zz* ~ (z*z)f'J!2. But since f(t) = t

and g(t) = tt3 are zero on the same set, z*z rv (z*z)t3 by Lemma VIA. Therefore zz* ~ z*z.

Symmetrically, z* z ~ zz*. This implies zz* rv z* z.

Note that y*ay ::; y*y E bAb, so y*ay E bAb. Therefore, y*ay ~ b by the second paragraph

of section 1 in [6]. Combining this with c = z*z rv zz* = y*ay yields c ~ b. Furthermore, yy* ::; 1

which implies c = a1/2yy*a1/ 2 ::; a. I

Lemma VII.15. Let A be a simple unital C* -algebra which is not the compact operators over

H for any Hilbert space H. Let 0.1,0.2,0.3,0.4 E A satisfy aiaH1 = aH1, for i = 1,2, and 3, and

o::; 0.1,0.2,0.3,0.4 ::; 1. Also assume that at least one of 0.1,0.2, and 0.3 is not a projection, or that

0.1, 0.2 and 0.3 are not all equal. Then 7(0.1) > limn--->oo 7((a4)1/n) for any tracial state 7 on A.

Proof Notice that we have ai = a~~;aia~~; ::; ai-1 for i = 2,3 or 4. Thus, 7(0.4) ::; 7(0.3) <

7(0.2) ::; 7(ad·

We first show that 7(ad > 7(0.3)' Since we have already observed that 7(0.1) 2: 7(0.3),

we only must show that they are not equal. Suppose 7(ad = 7(0.3)' Then 7(0.1 - 0.3) = O.

The hypotheses on A imply that 7 is faithful, so 0.1 = 0.3' But this means that 0.10.2 = 0.2 and

0.10.2 = 0.30.2 = 0.3, so 0.2 = 0.3 as well. If 0.1, 0.2, and 0.3 are all distinct then this is a contradiction

already. Otherwise, we now see 0.1 = 0.2 = 0.10.2 = ar, so 0.1 is a projection, but since all three are

equal, we now see that 0.2 and 0.3 are also projections, which is a contradiction.
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Now because aSa4 = a4, we also have asa~/n = a~/n for any n. Using a similar argument

to the one used in the first paragraph this implies that that T(a~/n) :s T(aS) for all n. Thus,

limn-+ooT(a~/n) :ST(aS)' Therefore, T(al) >T(as) ::=:limn-+ooT(ayn) .•

The following theorem is an analog of Lemma 5.2 of [16] with projections replaced by

positive elements.

Lemma VII.l6. Let A be an infinite dimensional stably finite simple unital C* -algebra. Suppose

A has a unique 2-quasi-trace which is also a trace. Suppose also that A has strict comparison. Let

a : G ---> Aut(A) be an action of a finite group with the projection free tracial Rokhlin property. Let

B = C*(G, A, a). Suppose ql,"" qn E B are nonzero positive elements of norm at most one and

al, ... , am E B are arbitrary. Let C > 0 and N E N U {O}. Then there exist a subalgebra DeB

isomorphic to a matrix algebra over a hereditary subalgebra of A, a positive element d E D with

Ildll :s 1, nonzero positive elements rk,i E dDd of norm at most 1 for i = 0, ... , Nand k = 1, ... , n,

and elements bl , ... , bm E B such that the following conditions are satisfied.

2. 1 - d ~ rk,N for all k = 1, ... , n

3. rk,irk,HI = rk,HI for all k = 1, ... , nand i = 0, ... ,N.

4· rk,od = rk,O for all k = 1, ... ,n.

5. Ilaj - bjll < C for all j = 1, ... ,m.

6. dbjd E dDd for all j = 1, ... , m.

Proof By rescaling, we may assume that Ilqkll = 1 for 1 :s k :s n. Let CI = c/6. Let hI : [0,1] --->

[0,1] be the continuous function which has hl(O) = 0, hl(t) = 1 for t E [1- CI, 1], and is linear on

[0,1- CI]' Let h2 : [0,1] ---> [0,1] be the continuous function with h2 (t) = 0 for t E [0,1- CI], linear

on [1 - CI, 1], and h2 (1) = 1. Set qj,l = hl(qj) and Wj = h2 (qj). Note that Ilqj - qj,Ii1 :s CI' Set

>. = minl:'Oj:'On {T(Wjn. Note that>' =I- 0 since B is simple. If h is any continuous function which

has h(l) = 1 and 0 :s h :s 1, then T(h(qj,l)) > T(Wj), thus we have

(VII. 32)
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Apply Lemma VII.I0 with min{E:/12,'\} in place of 0 to get a continuous function g :

[0,1] -+ [0,1]. Let E:2 < ,\/4. Now apply Lemma VI.11 with g as just obtained and with E:2 in place

of E: to get 02.

Let E:a < min{E:/24, 02, V8}. Then choose E:4 < E:2 such that if x, yare selfadjoint elements

of E, with Ilxll, Ilyll ::; 1 and Ilx - yll < E:4, then Ilx+ - Y+II < E:a. Without loss of generality, we

may assume that E:4 < 2 max: Iluj II .

Choose E:5 < min{ t2' 4max: Iluj II ' ~, T}. Define the continuous function h to be zero at

zero, 1 on [1 - E:5, 1] and linear on [0,1 - E:5]' For i = 2, ... ,5, define Ii to be the continuous

function which is zero on [0,1 - E:5/(2 i - 2)], linear on [1 - E:5/(2'i-2), 1 - E:5/(2 i - I )], and one on

[1- E:5/(2 i
-

I ), 1]. Note that iIh = h, hh = 13, etc. and IliI - til < E:5'

Apply Lemma VI.12 with E: replaced by E:a and with I replaced by 14, to get E:6 such that

II[x,y]11 < E:6 implies 1I[14(y),x]11 < E:3 ifsp(y) C [0,1] and Ilxll::; 1.

Apply Lemma VII.9 with g as defined above and with E:2 in place of E: to get E:7.

Let JL be the measure obtained from T by the Riesz representation theorem. Using the

outer regularity of JL choose E:s with E:I/2 < E:s < E:I and with

JL([1- E:s, 1]) < JL([1- E:I/2, 1]) +E:7· (VII.33)

Define a continuous function ha such that h3(t) = afor t E [0, l-E:s], h3(t) = 1 for t E [1-E:I/2, 1]

and h3 is linear on [1 - E:s, 1 - E:I/2]. Notice that hah l = ha. Let qk,3 = h3(Qk). Choose M with

k <min{V8-E:3,E:7}.

Apply Lemma VIlA with F = {QI,3,oo.Qn,3,al,.oo,am }, with min{E:4/2,E:6} in place of

E:, and with M in place of N, to obtain positive elements c(1) E E and ci~i E A, a subalgebra

D C c(1) Bc(l) and an isomorphism <I> : M n Q9 ci~i Aci~i -+ D such that there exist elements

Xl, ... , x n , el, ... em E D with

• Ilc(l)Qj,3c(l) - Xj II < E:4/2 for all j = 1, ... n by part 3.

• IIXj II ::; IIQj,all = 1 for all j = 1, ... n by part 3.

• Ilc(l)Qj,3c(l) - Xj II < E:4/2 for all j = 1, ... n by part 3.
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• Ilc(l)qj,3 - qj,3C(I) II < C6 for all j = 1, ... n by part 5, and

• 7(1 - C(l») < )j by part 6.

Set d(l) = !l(c(l»), ... , deS) = fs(c(1»). We have Ild(l) - c(l) II < cs. Also, d(1)d(2) =

d(2), ... , d(4)d(S) = d(S). Notice that since 1 - h(t) is zero on a larger set than 1 - t, we have

1 - d(2) ~ 1 - c(l). Similarly, we have

Now

Similarly, Ild(1)aj d(l) - ejll :s; (2cs +c4/2)llajll·

Set d = d(2). Set bj = aj + ej - del) ajd(l). Then

Also, dbjd = dejd E dDd. These are parts (5) and (6) of this lemma.

Notice that ~d(3)(Xj + xj)d(3) E d(3)Dd(3) c dDd cD is a selfadjoint element of norm at

most 1. We compute

IId(3) qj,3d(3) - ~d(3) (Xj + xj)d(3) II :s; Ild(3) qj,3d(3) - d(3) x j d(3) II

= Ild(3)d(I)Qj,3d(l)d(3) - d(3)Xj d(3) II

:s; Ild(1)Qj,3d (l) - Xj II

Thus since d(3)Qj,3d(3) ~ 0, by the choice of C4, we see Yj = ad(3)(Xj + xj)d(3»)+ is a

positive element of dDd with Ild(3) QY',3d (3) - Yj II < C3.
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Now by the choice of 9 using Lemma VII.lO there exists a positive element of norm at

most 1, Sk E YkDYk C d(3)Dd(3) cD such that

(VII.34)

(VII.35)

Using the choice of 106 in the last step since Ilqk,3C(I) - c(1)qk,311 < 106, we see that

IITkqk,3 - Tkll = Ilskd(4)qk,3 - Sk d (4) II

:::; Ilskd(4) - SkYkd (4) II + IlskYkd(4) - Skd (3)qk,3d (3)d(4) II

+ Ilskd(3)qk,3d(3)d(4) - Skd(3)d(4)Qk,311 + Ilskd(3)d(4)Qk,3 - Sk d (4)Qk,311

:::; 10/12 + IIYk - d(3)Qk,3 d (3) II + IIQk,3d(4) - d(4)Qk,311 + 0

Furthermore,

IhQk - Tk II :::; IhQk - TkQk,111 + IhQk,1 - TkQk,3Qk,111 + IhQk,3Qk,1 - Tk II

:::; lit - hIli + Ih - TkQk,311 + IhQk,3 - Tk II

< 101 + 2(10/12 + 2103)

< 10/2. (VII.36)

Define h to be the continuous function which is 0 on [0,103], linear on [103,1], and 1 at

t = 1. Notice Ilh(t) - til < 103 so lirk - h(Tk)11 < 103. Now define continuous functions hk = hN-j

for j = 1, ... ,N by h N - j is 0 on [0,103 - ir], linear on [103 - ir,E3 - iif] and Ion [103 - iif,l].

Set h N = h. Notice that hjhj+l = hj+l.
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Define rk,j = hj(rk)' Thus, rk,jrk,j+l = rk,j+l' This is part (3) of the lemma. Now, by

Equation VII.35, we have drk = rk, so since hN(O) = 0, we also get drk,N = rk,N which is part (4)

of the lemma.

To obtain part (1) of the lemma we compute

c
::::; 2c3 + 2" by VII.36

c c
< 224 + 2"

7c

12

< c.

Thus (1) is proved.

It remains only to prove part (2). Since A and hence D have strict comparison we will

begin by looking at traces.

We observe that

Now

T ((1- d(4)) 9(Yk)Sk (1- d(5))) = T ((1- d(5)) (1- d(4)) 9(Yk)Sk)

= T ( (1 - d(4)r/2
g(Yk)Sk (1 - d(4)r/2

)

::::;T(1-d(4))

::::; T ( 1 - C(l))

1
< M'

(VII.37)
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But on the other hand

7 ( (1 - d(4)) g(Yk)Sk (1 - d(5))) = 7 (9(Yk)Sk - d(4) g(Yk)Sk - g(Yk)Skd(5) + d(4) 9(Yk)Skd(5))

= 7 (9(Yk)Sk - d(4)g(Yk)Sk - g(Yk)Skd(5) + 9(Yk)Skd(5)d(4))

= 7 (9(Yk)Sk - d(4)g(Yk)Sk)

= 7 (9(Yk)Sk - 9(Yk)Skd(4))

= 7 (g(Yk)Sk - g(Yk)rk) .

Therefore,

(VII.38)

If Z E Qk,3Dqk,3 and Ilzll :::; 1, then 7(Z) :::; p,([1- C8, 1]) < p,([1- cI/2, 1]) +c7 by Equation

VII.33. Thus

(VII.39)

Next we get a lower bound on 7(rk,N). We have

7(rk,N) > 7(rk) - C3

~ 7 (r~/2g(Yk)r~/2) - c3

= 7 (g(Yk)rk) - c3

> 7 (g(Yk)Sk) - 11M - C3 by VII.38

> 7 (g(Yk)) - '>./4 - 11M - C3 by VII.34

> 7 (g (d(3)Qj,3d(3))) - c2 - '>./4 - 11M - C3 since Ild(3)Qj,3d(3) - Yjll < C3 < 02.

We can improve on this, because Equation VII.39 and 7(1-d(3)) :::; 7(1-c(1)) < 11M < C7

together imply 7 (g (d(3)%,3d(3))) > 7(%,3) - C2 by the choice of C7 using Lemma VII.9. So now

we get
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7(rk,N) > 7 (g (d(3)Qj,3d(3»)) - 1':2 - >"'/4 -11M - 1':3

> 7 (Qj,3) - 1':2 - 1':2 - A/4 - 11M - 1':3

> >... - 21':2 - >"'/4 - 11M - 1':3 by Equation VII.32 with h3 in place of h

> >...-2>"'/4-A/4->"'/8-1':3

> 11M

> 7 (1 - c(1»)

> 7 (1 - d(5») .

If at least one of 1 - d(3), 1 - d(4), and 1 - d(5) is not a projection, then we have

7 (1 - d(5») ;::: nl~~ 7 ( (1 _d(2) ) lin)

by Lemma VII.15.

We can reach the same conclusion if all three of them are projections. First notice that

by definition of the functions, 0 ::; 1 - h(t) ::; 1 - i5(t) ::; 1 for all t. But this implies that

o ::; 1 - h (c(l») ::; 1 - i5 (c(1») ::; 1, which means that 0 ::; 1 - d(2) ::; 1 - d(5) ::; 1. By using

exercise 12 of Chapter VII, section 3 in [4] to get the inequality and the fact that 1 - d(5) is a

projection to get the equality we see that (1 - d(2») lin::; (1 - d(5») lin = 1 - d(5) for any positive

integer n. Therefore, limn->oo 7 ( (1 - d(2») lin) ::; 7 (1 - d(5») .

Either way, combining the estimate on 7(1 - d(5») and the estimate on 7(rk,N) gives

This implies

Because A and hence D has strict comparison, we now can conclude that 1 - d(2) ~ rk,N which is

part (2) of the lemma. I
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The following theorem is the main theorem of the dissertation. It is a projection free

analog of Theorem VA, which is the finite group analog of Theorem 5.3 of [16].

Theorem VII.17. Let A be an infinite dimensional stably finite simple unital C* -algebra with a

unique 2-quasi-trace which is also a trace. Assume A has stable rank one and strict comparison.

Let 0: : G ----> Aut(A) be an action of a finite group with the projection free tracial Rokhlin property.

Then B = C* (G, A, 0:) also has stable rank one.

Proof. Note that B has a faithful tracial state, so everyone sided invertible element is invertible.

Now, Theorem 3.3 (a) of [26] states that if the two sided zero divisors of B are contained in the

closure of the invertible elements, then the complement of the invertible elements consists of those

elements of B which are one sided, but not two sided invertible. Combining these two statements

would give B \ GL(B) = 0 which means B has stable rank one. Therefore, it is sufficient to prove

that for every two sided zero divisor a E B and every c > 0, there is an invertible element of B

within c of a. Without loss of generality, IIall ::::; 1/2 and c ::::; 1.

Now suppose x, y E B are nonzero and satisfy xa = ay = O. Since IIx*xll-1x*xa

ayy* Ilyy* 11- 1 = 0 we may assume that x and y are positive elements of norm 1.

Let 81= min {2"'8' 2yjft, {4}' Apply Lemma VII.16 to the positive elements x and y in

place of Q1, ... , qn and the element a in place of a1, ... , am, with N = 1 and with 81 in place of

c. Call the resulting subalgebra Ao. Let Po be the resulting positive element d. Let xo,o, XO,1, yp,o,

and YO,1 be the nonzero positive elements of norm one rk,i' Let ao be the resulting element b1.

Define a1 = (1- xO,o)ao(1- YO,o). Note that XO,1a1 = (XO,1 - XO,1xO,O)ao(1- Yo,o) = 0 and

similarly, a1Yo,1 = O. Next we wish to show that a1 is near a. Since Iiall ::::; 1/2, we have

Ilxo,oaoll ::::; Ilxo,oao - xo,oall + Ilxo,oa - xo,oxall + Ilxo,oxall

::::; Ilxo,o 1IIIao - all + Ilxo,o - xo,oxliliall + 0

Similarly Ilaoyo,oll < 281 .
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Now we can compute

Iia - ad = Iia - (1 - xO,o)ao(1- YO,o)11

:::; Iia - aoll + Ilao - (1 - xO,o)ao(l - YO,o)11

:::; 01 + Ilao - aO + aoYo,o + XO,OaO - xO,oaoYo,o II

:::; 01 + IlaOYO,OII + Il xo,oaoIII11- Yo,oll

Now apply Lemma VII.14 with XO,1 in place of b, and YO,1 in place of a. From this lemma

we get a positive element r of norm 1 with r :::; XO,1 and r ~ YO,I'

Choose 02 < 201' Since Ao is is stably isomorphic to A, Theorem 3.6 in [25] implies that

the stable rank of Ao is one. Thus for 102 as defined in Definition VI.2, by Proposition VI.3 there

exists a unitary v E U(At) such that v*102 (r)v E YO,IAYO,1 where At is the unitization of Ao. Set

Next we prove that alv* is a zero divisor. We have

lI al v*rIil = Il alv*rl v ll

= lim IlalY6/1nV*rl v II
n---+oo '

=0.

Therefore, (alv*)rl = O. On the other side we see that, since r :::; XO,I, the elements rand

thus rl are in the hereditary subalgebra generated by XO,I, so

Let 03 = min{ ;2' 2~} Apply Lemma VII.16 with the positive element of norm one rl in

place of Ql, ... qn, and with al v* in place of aI, ... , am' Use 03 in place of c and N = 1.
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Call the resulting algebra Az. Let pz be the resulting positive element of Az, Let the resulting

positive elements rk,i of norm at most 1 be called xz,o and XZ,I, and let the resulting element bj

be called az.

Define a3 = (1 - xz,o)az(l - xz,o). Then XZ,la3 = a3xZ,1 = O. Next we compute the norm

of Ilazll. We have

Ilazll :s: lIaz- al v* II + Ii al v* - av* II + Ilav* II

:s: 63 + Ii al - all + Iiall

Now in order to estimate Ilaz - a311 we bound Ilxz,oazll. We have

:s: Ilxz,o 11 63+ Ilxz,o - xz,ordllal v* II + 0

:s: 63 + 6311 ad

:s: 63 + 63(761 + 1/2)
363

= 2 + 763 61'

Similarly, Ilazxz,oll :s: ~ + 76361'

Next we can estimate Ilaz - a311. We have

Ilaz - a311 = Ilaz - (1 - xz,o)az(l - xz,o)11

:s: llazxz,o + xz,oaz - xz,oazxz,o II

:s: Ilazxz,oll + Ilxz,oazlll11 - xz,o II

363 [363 ]:s: 2 + 76361 + 2 2 + 76361

963
= 2 + 216163'
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The conclusion of Lemma VII.16 gives us that xz,oPz = xz,o. Thus

l/Z ( ) (l/Z liZ) ( ) l/ZPZ a3PZ = pz 1 - xz,o pz azpz 1 - xz,o pz .

Now (p~/zazp~/z) E pzAzpz, and 1 - xz,o E PzAtpz. Therefore, PZa3PZ E pzAtpz.

With 104 as defined in VI.2, choose 84 so that 104 (1 - pz) i= 0 . Note that this is possible

unless sp(l - pz) = {O} in which case pz = 1. If this occurs, then pzAzpz = A z which has stable

rank one. Then we can approximate az by an invertible element and be finished with the proof.

Therefore, we may assume that we can choose such a 84 .

By the conclusion of Lemma VII.16, we have 1-pz =;< XZ,l' Thus by Proposition VI.3 there

exists a unitary u E U(At) such that uf04(1 - pz)u* E xz,lAtxZ,l. Then, since xZ,OXZ,l = XZ,l

and uf04(1- pz)u* E xz,lAtxZ,l, we have

Thus

and similarly, (a3u)fo4(1- pz)u* = O. This implies a3ufo4(1 - pz) = O.

Next we observe that uf04(1 - pz)u* and 104 (1 - pz) are orthogonal. First, using

XZ,OXZ,l = XZ,l again we see

[u(l - pz)u*](l - pz) = u(l - pz)u*xz,o(l - pz)

= u(l - pz)u*(xz,o - xz,oPz)

=0.

Therefore, for any continuous function f with f(O) = 0, we have uf(l-pz)u* is orthogonal

to f(l - pz). In particular, uf04(1 - pz)u* is orthogonal to f04(1 - pz)· Set Xl = ufo4(1- pz)u*

and X3 = 104 (1 - pz)· Set Xz = 1 - Xl - X3. Since Xl and X3 are orthogonal and have norm less

than or equal to one, 0 ::::; Xz ::::; 1. Our goal now is to use Lemma VII.13 with these choices of

Xl,XZ, and X3 and with a replaced by a3u. We have already shown that Xla3U = a3uX3 = O. We

must show that Xz E pzAtpz.
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First we show that 1- 104(1- pz) E pzAzpz. First observe that 1- (1- pz) = pz E pzAzpz.

Also, since 1 and pz commute, using the binomial expansion theorem, we can show that

1 - (1 - pz)n E pzAzpz. In fact for any polynomial with j(O) = 0 and j(l) = 1, we have

1 - j(l - pz) E pzAzpz. Since 104 is the limit of such polynomials, 1 - 104(1 - pz) E pzAzpz.

Next recall that u104(1 - pz)u* E xz,lAt XZ,l c At. Additionally,

A similar computation works on the other side, so we see that u104(1 - pz)u* E pzAtpz.

This implies that Xz = 1- u104(1- pz)u* - 104 (1- pz) E PzAt pz which has stable rank one because

Az is isomorphic to matrices over a hereditary subalgebra of A.

Now we may apply Lemma VII.13 with Xl, xz, and X3 as above, with A replaced by At,

with a3u in place of a, and with c/44 in place of c. The lemma gives us an invertible element

a4 E At with IIa4 - a3ull < c/44. Then a4u*v is invertible and near a. More specifically,

Il a4u*V - all:::; Il a4u*V - a3v II + II a3v - azvll + Ilazv - alii + Iial - all

:::; II a4 - a3u ll + II a3 - azll + Ilaz - alv*11 + Iial - all
903

< c/44 + 2 + 210103 + 03 + 701

< c/44 + ~2 2
c
2 + 21 ~ ~ + c/22 + 7c/28

2y 112y 11

=c.

Therefore, C* (G, A, a) has stable rank one. I
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