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The theory of equivariant homology and cohomology was first created by

Bredon in his 1967 paper and has since been developed and generalized by May,

Lewis, Costenoble, and a host of others. However, there has been a notable lack of

computations done. In this paper, a version of the Serre spectral sequence of a

fibration is developed for RO(G)-graded equivariant cohomology of G-spaces for

finite groups G. This spectral sequence is then used to compute cohomology of

projective bundles and certain loop spaces.

In addition, the cohomology of Rep (G)-complexes, with appropriate

coefficients, is shown to always be free. As an application, the cohomology of real

projective spaces and some Grassmann manifolds are computed, with an eye

towards developing a theory of equivariant characteristic classes.
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CHAPTER I

INTRODUCTION

In [2], Bredon created equivariant homology and cohomology theories of

G-spaces, now called Bredon homology and Bredon cohomology, which yield the

usual singular homology and cohomology theories when the group acting is taken

to be the trivial group. In [11], a cohomology theory for G-spaces is constructed

that is graded on RO(G), the Grothendieck ring of virtual representation of G.

This RO(G)-graded theory extends Bredon cohomology in the sense that

HTI-(X) = H'Br(X) when 11 is the trivial n-dimensional representation of G.

Many of the usual tools for computing cohomolgy have their counterparts

in the RO(G)-graded setting. These include Mayer-Vietoris sequences, Ktinneth

theorem, suspension isomorphisms, etc. Missing from the RO(G) computational

tool box was an equivariant version of the Serre spectral sequence associated to a

fibration F --7 E --7 B. Also, perhaps partially because of a lack of this spectral

sequence, the theory of equivariant characteristic classes has not yet been

developed.

The main result of this paper is to extend the spectral sequence of a

G-fibration given in [15] from Bredon cohomology to the RO(G)-graded theory

with special attention to the case G = 7l/2. A p-dimensional real

7l/2-representation V decomposes as V = (JR1,O)P-q EEl (JR1,1)q = JRp,q where JRl,O is

1
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the trivial representation and lR1,1 is the nontrivial I-dimensional representation.

Thus the RO(Z/2)-graded theory is a bigraded theory, one grading measuring

dimension and the other measuring the number of "twists". In this case, we write

HV(X; M) = HP,q(X; M) for a Mackey functor M. Here is the spectral sequence:

Theorem. If f: E ---+ X is a fibration of Z/2 spaces, then for every r E Z and

every Mackey functor M there is a natural spectral sequence with

This is a spectral sequence that takes as inputs the Bredon cohomology of

the base space with coefficients in the local coefficient system 'j{q,r(j; M) and

converges to the RO(Z/2)-graded cohomology of the total space.

This is really a family of spectral sequences, one for each integer r. If the

Mackey functor M is a ring Mackey functor, then this family of spectral sequences

is equipped with a tri-graded multiplication. If a E HP,O(X; 'j{q,r(j; M)) and

bE HP',O(X; 'j{q',r' (j; M)), then a· b E HP+P',O(X; 'j{q+q',r+r' (j; M)). There is also

an action of H*'*(pt; M) so that if a E Hq',r' (pt; M) and a E HP,O(X; 'j{q,r(j; M)),

then a . a E HP,o (X; 'j{q+q' ,r+r' (j; M) ).

Under certain connectivity assumptions on the base space, the local

coefficients 'j{q,r(j; M) are constant, and the spectral sequence becomes the

following. This result is restated and proved as Theorem III. 1.

Theorem. If X is equivariantly I-connected and f: E ---+ X is a fibration of Z/2

spaces with fiber F, then for every r E Z and every Mackey functor M there is a

spectral sequence with
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The coefficient systems 'j{q,r(j; M) and Hq,r(F; M) that appear in the

spectral sequence are explicitly defined in the next section. They are the

equivariant versions of the usual local coefficient systems that arise in the Serre

spectral sequence.

This spectral sequence is rich with information about the fibration involved,

even in the case of the trivial fibration id: X ---+ X. In this case, the E2 page takes

the form Eg,q = HP,O(X; Hq,r(pt; M)) =?- HP+q,r(x; M). Set M = Z/2 and consider

the case r = 1. Then HP,O(X; Hq,r(pt; Z/2)) = 0 if q i= 0,1. The case q = 0 gives

HP,O(X; H°,l(pt; M)) = HP,O(X; Z/2), and if q = 1,

HP,O(X; H1,1(pt; Z/2)) = H:ing(XG;Z/2). The spectral sequence then has just two

non-zero rows as shown in Figure 1.1 below.

q

0 0 0

0 0 0

0 0 0

H~ing(XG) H;ing(XG) H;ing(XG) ...

HO,O(X) H1,O(X) H2,O(X) ...
p

Fig. 1.1: The r = 1 spectral sequence for id: X ---+ X.

As usual, the two row spectral sequence yields the following curious long

exact sequence:

0---+ HO,O(X;Z/2) ---+ HO,1(X;Z/2) ---+ 0 ---+ Hl,O(X;Z/2) ---+ Hl,1(X;Z/2)---+
-- -- --

H2ing(XG;Z/2) ---+ H 2,O(X; Z/2) ---+ H 2,1(X; Z/2) ---+ H;ing(XG;Z/2) ---+ •••
- -

Now, to any equivariant vector bundle f: E ---+ X, there is an associated
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equivariant projective bundle lP'(J): lP'(E) -+ X whose fibers are lines in the fibers

of the original bundle. Applying the above spectral sequence to this new bundle

yields the following result, which appears later as Theorem III.6.

Theorem. If X is equivariantly I-connected and f: E -+ X is a vector bundle

with fiber JRn,m over the base point, then the spectral sequence of Theorem III. 1

for the bundle lP'(J): lP'(E) -+ X with constant M = Z/2 coefficients "collapses".

Here, when we say the spectral sequence collapses, we do not mean it

collapses in the usual sense. Each fibration f: E -+ X maps to the trivial fibration

id: X -+ X in an obvious way. Naturality then provides a map from the spectral

sequence for id: X -+ X to the spectral sequence for f: E -+ X. In the above

theorem, the spectral sequence "collapses" in the sense that the only nonzero

differentials are those arising from the trivial fibration id: X -+ X. The projective

spaces involved are defined in Chapter VII.

In non-equivariant topology, the Leray-Serre spectral sequence gives rise to

a description of characteristic classes of vector bundles. Consider the universal

bundle En -+ Gn over the Grassmannian of n-planes in JRoo. Forming the

associated projective bundle lP'(En) -+ Gn yields a fiber bundle with fiber JRlP'oo.

Applying the Leray-Serre spectral sequence to this projective bundle yields

characteristic classes of En as the image of the cohomology classes

1, z, Z2,'" E H;ing(JRlP'oo; Z/2) under the transgressive differentials. Since this

universal bundle classifies vector bundles, characteristic classes of arbitrary

bundles can be defined as pullbacks of the characteristic classes, Ci E H i (Gn ;Z/2),

of the universal bundle. It would be nice to adapt this construction to the Z/2

equivariant setting. However, the equivariant space Gn((JR2,1)oo) = Gn (ll) = Gn is

not I-connected, and so the spectral sequence is not as easy to work with. It seems
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that there is no way to avoid using local coefficient systems in this setting.

Another approach involves using the splitting principle. This yields a map

lRpoo x ... x lRpoo ---+ Gn (11), inducing a map

H*'*(Gn(l1)) ---+ (H*'*(lRPOO) ® ... ® H*'*(lRpOO))~n. Here, the Mackey functor is

71./2. We then have the following conjecture.

Conjecture. The map

H*'*(Gn(11);71./2) ---+ (H*'*(lRpoo;71./2) ® ... ® H*'*(lRPoo;71./2))~n is an

isomorphism.

Chapter II provides some of the definitions and basics that are needed for

this paper. The main theorem is stated and proved in Chapter III, making use of

some technical homotopical details that are provided in Chapter IV. In Chapter

V, the spectral sequence is then applied to compute the cohomology of a projective

bundle P(E) associated to a vector bundle E ---+ X.

The above conjecture motivates the study of the structure of the

RO(G)-graded cohomology of projective spaces in Chapter VII and Grassmann

manifolds in Chapter VIII, preceded by a general discussion of Rep(G)-complexes

in Chapter VI.

Chapter IX provides an applications of the RO(71./2)-graded Serre spectral

sequence to certain loop space. The familiar Leray-Hirsch theorem is extended to

the RO(G)-graded setting in Chapter X and is used to compute the cohomology of

flag manifolds.

The final chapter, Chapter XI, gives some directions towards a theory of

RO(G)-graded characteristic classes.



CHAPTER II

PRELIMINARIES

The section contains some of the basic machinery and notations that will

be used throughout the paper. In this section, let G be any finite group.

A G-CW complex is a G-space X with a filtration x(n) where X(O) is a

disjoint union of G-orbits and x(n) is obtained from x(n-l) by attaching cells of

the form G/Ha x ~n along maps fa: G/Ha X a~n ----+ x(n-l). The space x(n) is

referred to as the n-skeleton of X. Such a filtration on a space X is called a cell

structure for X.

Given a G-representation V, let D(V) and S(V) denote the unit disk and

unit sphere, respectively, in V with action induced by that on V. A

Rep(G)-complex is a G-space X with a filtration x(n) where X(O) is a disjoint

union of G-orbits and x(n) is obtained from x(n-l) by attaching cells of the form

D(Va) along maps fa: S(Va) ----+ x(n-l) where Va is an n-dimensional real

representation of G. The space x(n) is again referred to as the n-skeleton of X,

and the filtration is referred to as a cell structure.

Let ~G(X) be the category of equivariant simplices of the G-space X.

Explicitly, the objects of ~G(X) are maps (J: G/H x ~n ----+ X. A morphism from

(J to T: G/K x ~m ----+ X is a pair (<p,0:') where <p: G/H ----+ G/K is a G-map and

0:': ~n ----+ ~m is a simplicial operator such that (J = T 0 (<p X 0:').

6
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Let IIc(X) be the fundamental groupoid of X. Explicitly, the objects of

IIc(X) are maps (7: GIH ---t X and a morphism from (7 to T: GIK ---t X is a pair

(<p, a) where <p: GI H ---t GI K is a G-map and a is a G- homotopy class of paths

from (7 to TO <po

There is a forgetful functor 7r: .6.c (X) ---t IIc(X) that sends

(7: GI H x .6.n ---t X to (7: GI H ---t X by restricting to the last vertex en of .6.n. A

morphism (<p, a) in .6.c (X) is restricted to (<p, a) in IIc(X) by restricting a to the

linear path from a(en ) to em in .6.m. There is a further forgetful functor to the

orbit category O(G), which will also be denoted by 7r, as shown below.

.6.c (X)~ IIc(X)~ O(G)

A coefficient system on X is a functor M: .6.c (X)OP ---t Ab. We say that the

coefficient system M is a local coefficient system if it factors through the forgetful

functor to IIc(X)OP (up to isomorphism). If M further factors through O(G)op,

then we call M a constant coefficient system.

According to [12], each Mackey functor M uniquely determines an

RO(G)-graded cohomology theory characterized by

{

M(GIH)
• Hn(GIH;M) = 0

ifn = 0

otherwise

• The map HO(GIK;M) ---t HO(GIH;M) induced by i: GIH ---t GIK is the

transfer map i* in the Mackey functor.
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Given a Mackey functor M, a G-representation V, and a G-space X, we

can form a coefficient system HV(X; M). This coefficient system is determined on

objects by HV(X;M)(G/H) = HV(X x G/H;M) with maps induced by those in

O(G).

For the precise definition of a Mackey functor for G = Z/2, the reader is

referred to [6] or [12]. A summary of the important aspects of a Mackey functor is

given here. The data of a Mackey functor are encoded in a diagram like the one

below.

m i*

M(Z/2) :=: M(e)
i*

The maps must satisfy the following four conditions.

• (t*? = id

• t*i* = i*

. (t*)-l .
• 'l* = 'l*

• i*i* = id + t*

In this paper, G will usually be Z/2 and the Mackey functor will almost

always be constant M = Z/2 which has the following diagram.

{id) 0

Z/2:=:Z/2
id

With these constant coefficients, the RO(Z/2)-graded cohomology of a

point is given by the picture in Figure ILL

Every lattice point in the picture that is inside the indicated cones

represents a copy of the group Z/2. The top cone is a polynomial algebra on the
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-2 -1 0

()
() !l.
p T

2 P

Fig. ILl: H*'*(pt; Z/2)

elements p E HI,! (pt; Z/2) and T E HO,l (pt; Z/2). The element () in the bottom

cone is infinitely divisible by both p and T. Details can be found in [6] and [4].

The cohomology of Z/2 is easier to describe: H*'*(Z/2; Z/2) = Z/2[t, t-l] where

t E HO,1(Z/2; Z/2).

Given a G-map 1: E -----+ X and a Mackey functor M, we can define a

coefficient system JCq,T(-, M): llc(X)OP -----+ Ab by taking cohomology of pullbacks:

JCq,T(j, M)((]") = Hq,T((]"*(E), M). In [15], it is shown that this is a local coefficient

system when 1 is a G-fibration.

Given a G-fibration 1: E -----+ X, we can define a functor r f: llc(X) -----+ 'Jop.

On objects, r((]") = (]"*(E). On morphisms, r(<p, a) = <p x a, where <p x a is the

map of total spaces in the diagram

(]"*(E) <pXCi. T*(E)

! !
G/H x lln~G/K x llffi.

Let 1: E -----+ X be a G-fibration over an equivariantly I-connected G-space

X with base point x E X and let F = 1-1 (x). Define a constant coefficient system

Hq,T(F; M) as follows: Hq,T(F; M)(G/H) = Hq,T((G/H) x F; M) and if

<p: G/H -----+ G/K is a G-map, then Hq,T(F;M)(<p) = (<p x id)*. It is this coefficient

system that appears in the spectral sequence of Theorem IIL6.
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CHAPTER III

CONSTRUCTION OF THE SPECTRAL SEQUENCE

Unlike in ordinary topology, the equivariant Serre spectral sequence for a

fibration f: E ---+ X will not be deduced from lifting a cellular filtration of X to

one on E. Instead, the spectral sequence is a special case of the one for a homotopy

colimit. Recall (from [7] for example) that given a cohomology theory c* and a

diagram of spaces D: I ---+ TOPe, there is a natural spectral sequence as follows:

(III.1)

For the case 1= .6.e (X), we know from [15] that the cohomology of .6.e (X)OP is

the same as Bredon cohomology. For a G-fibration f: E ---+ B, we can consider the

diagram rf : .6.e (X) ---+ TOPe that sends a: G/H x.6.n ---+ X to the pullback

a*(E). We then have the following technical lemma, whose proof is given in the

next section where it appears as Lemma IVA.

Lemma. The composite hocolim~G(x)r f ---+ colim~G(x) r f ---+ E is a weak

equivalence.

Here is the desired spectral sequence.

Theorem I1Ll. If f: E ---+ X is a fibration of G spaces, then for every

V E RO(G) and every Mackey Functor M there is a natural spectral sequence with
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Proof. The homotopy colimit spectral sequence of (IIL1) associated to r f and the

cohomology theory HV +*(-; M) takes the form

By [15, Theorem 3.2] and Lemma IVA, this spectral sequence becomes

Naturality of this spectral sequence follows from the naturality of the

homotopy colimit spectral sequence. 0

The standard multiplicative structure on the spectral sequence is given by

the following theorem. Recall that the analogue of tensor product for Mackey

functors is the box product, denoted by o. See, for example, [9] for a full

description of the box product.

Theorem 111.2. Given a G-fibration f: E -t X, Mackey functors M and M' and

V, V' E RO(G), there is a natural pairing of the spectral sequences of 111.1

E~,q(M, V) @ Et,q' (M'; V') -t E~+pl,q+ql(MOM'; V + V')

converging to the standard pairing

U: H*(E; M) @H*(E;M') -t H*(E; MOM').
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Furthermore, the pairing of E 2 terms agrees, up to a sign (-1 )p\ with the

standard pairing

HP,O(X; ']{v+q(l; M)) ® HP',O(X; ']{v'+q' (I; M'))

u!
HP+P',O(X; ']{v+v'+p+p'+q+q' (I; MOM'))

Proof. This is a straightforward application of [15, Theorem 4.1].

Remark 111.3. If M is a ring Mackey functor, then the product MOM --t M

gives a pairing of spectral sequences

E~,q(M,V) ® E~',q' (M, V') --t E~+P',q+q'(M, V + V').

Remark 111.4. Since every G-fibration f: E --t X maps to the G-fibration

id: X --t X, every spectral sequence of Theorem IlL1 admits a map from the

spectral sequence for the identity of X.

Lemma 111.5. If f: E --t X is a G-fibration over an equivariantly i-connected

based G-space X, then any local coefficient system A on X is constant.

Proof. Choose a base point x E X. Then x can be considered as a map

D

x: GIG --t X. Denote by x H the point x thought of as a G I H point. That is

XH = X 0 7f where 7f: G I H --t GIG is the projection. Notice that if

<p: GIH --t GIK, then XK = XH o<p.

Define a constant coefficient system A: O(G) --t Ab by A(GIH) = A(XH)

and A(<p: GI H --t GIK) = A(<p, cx ), where ex is the constant path from xH to xK.

The claim is that A factors through A up to isomorphism.

For any object a: GI H --t X, the connectivity assumptions ensure that

there is one homotopy class of paths from a to XH. Let (3u be a representative path.
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For any morphism (<p, a) in IIc(X) from a to T, one then has the following

commutative diagram:

A(T) A(~,a~ A(a)

A( id,{J,. )I IA(id,(3a )

A(XK)~)A(XH)'

Now, each of the vertical maps is an isomorphism since, for example, the

path {3u has the inverse path {3u and each of the compositions {3u * {3u and {3u * {3u

are homotopic to constant paths. The same is true for T.

Moreover, (A 0 7f)(a) = A(G/H) = A(XH), and

(A 0 7f)(<p, a) = A(<p) = A(<p, cx ).

This means that the above diagram exhibits an isomorphism from

A 0 7f --+ A. o

Theorem III.6. If X is equivariantly i-connected and f: E --+ X is a fibration of

G spaces with fiber F J then for every V E RO(G) and every Mackey Functor M

there is a spectral sequence with E~,q = HP,O(X; HV+q(F; M)) =? HV+p+q(E; M).

Proof. By Theorem III.1 and the above Lemma III.5, it suffices to show that for

the local coefficient system A = 9{v+q(J; M), the associated constant coefficient A

is HV+q(F; M).

Notice that XH = x 0 7f and so

X'HE= (xo7f)*E=7f*x*E=7f*F= (G/H) x F.

We then have
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CHAPTER IV

HOMOTOPICAL CONSIDERATIONS

What follows is an equivariant version of some of the statements about

homotopical decompositions in [7]. These are needed for the proof of Lemma IVA,

and may also be of independent interest. Because of the technical nature of this

material, the uninterested reader may skip ahead to the next section.

Consider the category G-sSet of equivariant simplicial sets. The objects are

simplicial sets endowed with a G-action and all of the face and degeneracy maps

respect the action. The morphisms are equivariant versions of the usual simplicial

maps. An n-simplex of an equivariant simplicial set X is an element (J E X n .

Alternatively, we can think of an equivariant n-simplex as an equivariant simplicial

map (J: G / H x .6.n -+ X. Both points of view can be useful.

G-sSets has a model category structure in which fibrations and weak

equivalences are defined in terms of the fixed sets, that is f is a fibration if for all

subgroups H the simplicial map fH is a fibration, and similarly for weak

equivalences. The cofibrations are then the maps with the appropriate lifting

properties.

Let D: I -+ G-sSet be a diagram of equivariant simplicial sets. Suppose

there is a map colimJ D -+ X. For each simplex (J E X let F(D)cr denote the

category whose objects are pairs [i, Q' E (Di)n] such that the map Di -+ X sends Q'
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to u, A map in F(D)u from [i, a E (Di)n] to [j, {3 E (Dj)n] is a map i ---+ j such

that Di ---+ Dj sends a to {3. Then F(D)u is called the fiber category of Dover u,

Proposition IV.l. Suppose that D: I ---+ G-sSet and X are as above, and assume

that for every n ~ 0 and every a E X n the fiber category F(D)u is contractible.

Then the map hocolim D ---+ X is a weak equivalence of equivariant simplicial sets,

Proof. The proof is nearly identical to that of Proposition 16.9 in [7]. The key

facts are that for a bisimplicial set B, the geometric realization satisfies

IBIH= IBHI and that weak equivalences are determined by their fixed sets. D

Now, suppose that D: I ---+ 'JoPe is a diagram of G-spaces. Suppose we

have a map p: colim D ---+ X. Then for each n ~ 0, each subgroup H :::; G and

each a: G/H x t:::.n ---+ X define the fiber category F(D)u of D over a to be the

category with objects pairs [i, a: G/ H x t:::.n ---+ Di ] such that p 0 a = a. A map

from [i,a: G/H x t:::.n ---+ D i ] to [J',{3: G/H x t:::.n ---+ D j ] is a map i ---+ J' making the

obvious diagram commute.

Proposition IV.2. In the above setting, suppose that for each n ~ 0, H:::; G, and

a: G/H x t:::.n ---+ X the category F(D)u is contractible. Then the composite

hocolim D ---+ colim D ---+ X is a weak equivalence.

Proof. A map a: G / H x t:::.n ---+ X is equivalent to a map (j: t:::.n ---+ X H. Thus we

can reduce to looking at the fixed sets. But, this is exactly Theorem 16.2 in [7].

The condition that F(D)u is contractible is equivalent to the condition that F(D)a­

is contractble. Thus the composite is a weak equivalence on fixed sets, and so is an

equivariant weak equivalence. D

There is a related simplicial version of the above theorem. Assume that in

addition there is a diagram fJ: I ---+ G-sSet and a natural isomorphism
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cPi: IDil----t Di· For each 0": G/H x!::J.n ----t X define the category F(D)(J to have

objects pairs [i, G/ H x !::J.~ ----t Di1such that the composite

IG/H x !::J.~I----t IDil ----t D i ----t X is 0". The morphisms are as expected. Here,

!::J.~ E sSet is the n-simplex. The following is a refinement of the previous theorem.

Proposition IV.3. In the above setting, suppose that for each n 2: 0, H ::; G, and

0": G/ H x !::J.n ----t X the category F(D)(J is contractible. Then the composite

hocolim D ----t colim D ----t X is a weak equivalence.

Proof Again, we can reduce to looking at fixed sets, this time invoking

Proposition 16.3 in [7]. o

For a G-fibration f: E ----t X, we can consider the diagram

r f: !::J.c (X) ----t Top that sends 0": G/ H x !::J.n ----t X to the pullback 0"* (E). We then

have the following technical lemma used in the construction of the spectral

sequence.

Lemma IV.4. The map hocolimb.c(x) r f ----t colimb.c (X) r f ----t E is a weak

equivalence.

Proof Consider the diagram D: !::J.c(X) ----t G-sSet sending ([k], a: G/ H X !::J.k) to

the simplicial set obtained as the pull back

G/H x!::J.~ ~ S(G/H x !::J.n) ----t S(X) ~ S(E), where S(-) is the singular

functor.

There is a map of diagrams IDI ----t r f which is an objectwise weak

equivalence since f is a fibration. We are reduced to showing that

hocolim IDI ----t colim IDI ----t E is a weak equivalence.

For each n 2: 0, H::; G, and 0": G/H x !::J.n ----t E, the category F(D)(J is

contractible. This is due to the presence of an initial object associated to the map

f 0 0": G/H x!::J.n ----t X. By Proposition IV.3, we are done. 0
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CHAPTER V

COHOMOLOGY OF PROJECTIVE BUNDLES

In this chapter, we specialize exclusively to the case where G = 7/.,/2.

To any equivariant vector bundle f: E ~ X, there is an associated

equivariant projective bundle JID(J): JID(E) ~ X whose fibers are lines in the fibers

of the original bundle. Applying the spectral sequence of Theorem III.6 to this

new bundle yields the following result:

Theorem V.l. If X is equivariantly i-connected and f: E ~ X is a vector bundle

with fiber IRn,m over the base point) then the spectral sequence of Theorem III. 6 for

the bundle JID(J): JID(E) ~ X with constant M = 7/.,/2 coefficients "collapses".

Here, the spectral sequence "collapses" in the sense that the only nonzero

differentials are those arising from the trivial fibration id: X ~ X. The projective

spaces involved here have actions on them induced by the action in the fibers.

Briefly, we denote by IRJIDrw = JID(IRn +1
, lnt

1

J), the equivariant space of lines in

JRn+l, lnt 1 J. For the other projective spaces, we simply denote the space of lines in

JRn,m by JID(IRn,m). These projective spaces themselves are studied in more detail in

Chapter VII.

Proof. By Lemma VII.6 we need only consider the case where n ::: m/2.

First, consider the case where the vector bundle has fiber IRn,l%J over the

base point.
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If n is odd, consider the vector bundle E E9 .!RI,O ----+ X, and if n is even

consider E E9 .!RI,1 ----+ X. In either case, denote this new bundle by E E9 L. Taking

the associated projective bundles gives a diagram

.!RlP'~;I • .!RlP'~w • pt

1 1~1
lP'(E) ~lP'(E E9 L) P(f) X

1 id p~fiJ' ~ Jd
Here and below pt is the one point set with trivial Z/2 action. The map s above is

the canonical splitting that assigns to each point x in X the line given by the

trivial factor in E E9 L. It is important to note that this is indeed an equivariant

splitting in both the case of .!RI,O and .!RI,I. This diagram yields maps between the

spectral sequences associated to these three bundles over X. Let us consider the

r = 1 spectral sequence for P(E E9 L). This is the sequence with ETpage given by

This spectral sequence is generated as an algebra over H*'*(pt) by the classes

a E HO,O(X; HI,I(.!RlP'~w)) and bE HO,O(X; H2,1(.!RlP'~w))' To see that the spectral

sequence collapses, we need only see that these classes a and b have trivial

differentials.

The splitting s induces a map s* from the r = 1 spectral sequences

associated to the bundle f : P(E) ----+ X to the one for the trivial bundle

id: X ----+ X. This map sends the class a E HO,o (X; HI,1 (.!RP~w)) to

oE HO,O(X; HI,I(pt)) since s*: H*'*(.!RlP'~w) ----+ H*'*(pt) is the projection. Thus
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s*da = d(s*a) = O. However, s* gives an isomorphism between coefficient systems

HO,l(IRJPl~w) "'s' HO,l(pt). Observe:

(HO,l(IRJPl~w)) (Z/2) = HO,1(Z/2 x IRJPl~)

= [Z/2 x IRJPl~w, K(Z/2(1), 0)]1£;2

= [IRJPl~w, K(Z/2, O)]e

= H~ing(IRJPln; Z/2)

~s' H~ing(pt; Z/2)

= HO,l(pt)

= (HO,l (pt)) (Z/2).
Here, K(A(q),p) is the representing space for HP,q( -; A).

Also, HO,l(IRJPl~w)(G/G) = HO,l(IRJPl~w) "'s' HO,l(pt). It now follows that

since s*da = 0, it must be that da = O.

Now, from the relation a2 = pa + Tb we get that 0 = d(a2) = pda + Tdb.

Hence Tdb = O. But, T: Hl,l (JRJPl~w) ~ Hl,2(IRJPl~w) is an isomorphism. Thus db = O.

Now, JPl(i)*(a) = a and JPl(i)*(b) = b, where JPl(i)* : JPl(E E9 L) ~ JPl(E). Thus

d(a) = 0 and d(b) = 0 in the spectral sequence for JPl(E) as well. Therefore the

spectral sequence "collapses," in the sense that all differentials are zero, except for

the part of the spectral sequence corresponding to the trivial fibration id: X ~ X.

For the other projective spaces, we can proceed inductively. Fix m and

induct on n 2: m/2. The base case is exactly the argument above. For the

inductive step, in going from JPl(IRn,m) to JPl(JRn+l,m), a single new cohomology

generator cn,m appears in degree (n, m), according to Lemma VII.8. Also, by

Proposition VII.lO, we have aCn-l,m = TCn,m, where Cn-l,m is the highest

dimensional cohomology generator in H*,* (JPl(JRn,m)). Then in the spectral

sequence we have d(acn-l,m) = Td(Cn,m)' But, by induction, d(acn-l,m) = O. Since

'T is still an injection in the range we are working in, it must be that d(cn,m) = o.



This gives the desired collapsing of the spectral sequence.

In fact, we can deduce even more about such a projective bundle.
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D

Corollary V.2. If f: E --+ X is a vector bundle with X equivariantly i-connected

with fiber JRn,m over the base point, then JPl(F) *: H*'* (X) --+ H*,* (JPl(E)) is an

injection.

Proof. By the preceding theorem, there is a natural injection of the spectral

sequence for idx into the one for JPl(j), thus an injection on the filtrations. We get

an injection on the E oo terms, and thus, by the following lemma, an injection

H*'*(X) --+ H*'*(JPl(E)). D

Lemma V.3. Let f: Ef,q --+ Ff,q be a map of first quadrant spectral sequences,

converging to A p+q and B p+q respectively, which is an injection for every p, q, and

r. Then f induces an injection l: A p+q --+ B p+q.

Proof. Fix n. Then there is a filtration 0 ~ A o ~ ... ~ An with AdA-l ~ E'~-i,i.

Similarly, there is a filtration 0 ~ Bo ~ ... ~ B n with Bd B i- 1 :::::: F::::,-i,i. Notice

that Ao = E'~o and Bo = y::,;o. Thus fo: Ao --+ Bo is injective. Induction starts.

Suppose that h: Ai --+ B i is injective. We also know that

fi+l: Ai+l/Ai --+ Bi+dBi is injective. We have a map fi+l : A i+1 --+ Bi+l that

restricts to h and we want to see that h+l is injective. Suppose h+l (a) = O. Then

fi+l([a]) = O. But this map is injective, so a E A. Since h+l restricts to fi on Ai,

we have that h+l(a) = h(a) = O. As fi is injective, a = O. By induction, fn = f is

injective. D
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CHAPTER VI

REP (G)-COMPLEXES

Computing the RO(G)-graded cohomology of a G-space X is typically

quite a difficult task. However, if X has a filtration X(O) ~ XU) ~ ... , then we can

take advantage of the long exact sequences arising from the cofiber sequences

x(n) ~ x(n+l) ---+ x(n+l) / x(n). These sequences paste together as an exact couple

in the usual way, giving rise to a spectral sequence associated to the filtration. We

will only be interested in the case G = 71.,/2. In this case, for each fixed q there is a

long exact sequence

and so there is one spectral sequence for each q. The specifics are given in the

following proposition.

Proposition VI.l. Let X be a filtered 71.,/2-space. Then for each q there is a

spectral sequence with

converging to HP,q(X; M).

For a proof, see, for example, Proposition 5.3 of [13]. The result above is
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dual to the homological result, and is, of course, for a cohomology theory other

than singular cohomology, but the construction is exactly the same.

For Z/2-spaces, it is convenient to plot the cohomology in the plane with p

along the horizontal axis and q along the vertical axis. This turns out to be a nice

way to view the above spectral sequences as well. However, it is important to keep

track of at what stage of the filtration each group arises. After doing so, the

differential on each page of the spectral sequence has bidegree (1,0) in the plane,

but reaches farther up the filtration on each page.

If X is a G-CW complex or a Rep(G)-complex, then X has a natural

filtration coming from the cell structure. In either case, if X is connected, the

quotient spaces x(n+l) / x(n) are wedges of (n + 1)-spheres with action determined

by the type of cells that were attached. Examples of this sort appear below and in

the next few chapters.

Another useful tool for computing is the following exact sequence of [1].

Lemma VI.2 (Forgetful Long Exact Sequence). Let X be a based Z/2-space.

Then for every q there is a long exact sequence

The map .p is multiplication by p E H1,1(ptj Z/2) and'ljJ is the forgetful map to

singular cohomology with Z/2 coefficients.
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It is often quite difficult to determine the effect of all of the attaching maps

in the cell attaching long exact sequences. If X is locally finite, then the cells can

be attached one at a time, in order of dimension. This simplicity will make it

easier to analyze the differentials in the spectral sequence of the 'one at a time'

cellular filtration.

First, consider the case where a single cell D(IRp,q) is attached to a

Rep(Z/2)-complex B to form the Rep(Z/2)-complex X. Suppose also that B has

cohomology that is free over H*'*(pt, Z/2) and is built only of cells of dimension

strictly less than p. The effects of attaching this cell can cause the lower

dimensional generators to hit either the 'top cone' or the 'bottom cone' associated

to the newly attached free generator v in dimension (p, q). Suppose first that all

nonzero differentials hit the top cone. Then any free generator Wi having a nonzero

differential in the spectral sequence must have degree (Pi, qi) where Pi = P - 1 and

qi ~ q. The E 1 page is pictured in Figure VI.l.

q.

q

p

Fig. VI.1: The E1 page of the cellular spectral sequence attaching a single (p, q)-cell
to B.
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Here, only the generator associated to the (p, q)-cell and the generators

with nonzero differentials are shown. There could, of course, be more than are

shown, and in different dimensions. This picture is only to facilitate the

conversation. Each of the Wi satisfies d(Wi) = TniV for integers ni' Relabeling if

necessary, we can arrange so that the Wi satisfy nl :::; n2 :::; .. '. Then, after a

change of basis, we can assume that d(WI) = Tn1V and d(Wi) = 0 for i > 1. In

effect, the attaching map can slide off of all the Wi except for one for which qi is

minimal. If WI happens to be in dimension (p - 1, q), then the newly attached cell

'kills' WI and v. (This happens, for example, in certain Rep(Z/2)-cell structures

for D(lRp,q).) Otherwise, after the above adjustment, the nonzero portions of the

spectral sequence are given in Figure VI.2.

q

q

p

Fig. VI.2: The nonzero portion of the same spectral sequence, after a change of
basis.

After taking cohomology, the spectral sequence collapses, and we have

Figure VI.3.

As we will see with the Grassmannians, nonzero differentials can shift
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q

q

p

Fig. VI.3: The Ez = Eoo page of the above spectral sequence.

generators and, in particular, can affect the module structure. There is a class

WI ~ that, potentially, could satisfy p. WI ~ = v. However, for dimension reasons,
T T

p . WI r!!+1 = aand since p and T commute, it must be that p . WI ~ = O. This
T T

means v determines a nonzero class in H*>*(X) that is not in the image of 'p. If B

is based, then X is based, and so, by the forgetful long exact sequence, v

determines a nonzero class in singular cohomology. Then since T maps to 1 in

singular cohomology, TnV is nonzero for all n. But, as the picture indicates, TnV

must be zero for large enough n. This contradiction implies that there could not

have been any nonzero differentials hitting the top cone of v. In fact, this

argument is independent of whether there are any differentials hitting the bottom

cone, and so there simply cannot be any nonzero differentials on the top cone.

We've just proven the following lemma.

Lemma VI.3. Let B be a Rep(71/2)-complex with free cohomology that is built

only of cells of dimension strictly less than p. If X is obtained from B by attaching
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a single (p, q)-cell v) then after an appropriate change of basis either all attaching

maps to the top cone of v are zero (that is) d(a) = 0 for all a with a E H*,qa(B)

with qa 2: q - 1)} the cell attaching 'kills} v and a free generator in dimension

(p - 1, q)} or all nonzero differentials hit the bottom cone of v.

The behavior on the bottom cone is more interesting and, according to the

previous lemma, this is in fact where all of the nonzero differentials must occur.

For the attaching maps in the bottom cone, we can, again, slide the map off of

some of the generators in certain relative positions. Before going into the general

details, let's consider an example first. Consider the space X formed by attaching

a single (p, q)-cell to a space B where H*'*(B) = H*,*(SP-l,q-2) generated by w.

There is a cofiber sequence B ~ X ~ sp,q. Denote by v the generator of

H*,*(Sp,q). The E 1 page of the cellular spectral sequence is in Figure VIA.

q

q-2 w

v

()v

p

Fig. VIA: An example where the nonzero differential hits the 'tip' of the bottom
cone.

There is a single nonzero differential d(w) = ()v. After taking cohomology,
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the spectral sequence collapses and we have Figure VI.5.

q

a b

q-2

p

Fig. VI.5: The E2 = Eoo page of the above spectral sequence.

Denote by a the generator in degree (p - 1, q - 1) and by b the one in

degree (p, q - 1). Notice that b is not in the image of .p. By the forgetful long

exact sequence, b determines a nonzero class in singular cohomology, and so Tnb is

nonzero for all n. In particular, pa and Tb generate Hp,q(X). Consider the portion

of the long exact sequence associated to the cofiber sequence B ~ X ~ 8p,q given

below:

Since i*(pa) = i*(Tb) = pTW, exactness implies that j*(v) = pa +Tb. Also j*

is an H*'*(pt)-module homomorphism, and so j*(~v) = ()a and j*(~v) = ()b. In

particular, we can create a map f from a free module with generators a and f3 in

dimensions (p - 1, q - 1) and (p, q - 1) respectively to iIp,q(X) with f(a) = a and

f(f3) = b. The previous calculation implies that f is in fact an isomorphism. This
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is a special case of the following proposition.

Proposition VIA. Suppose X is a Rep(71/2)-complex formed by attaching a

single (p, q)-cell to a space B. Suppose also that i!*'*(B) is a free H*'*(pt)-module

with a single generator w of dimension smaller than p. Then H*,*(X) is a free

H*'*(pt)-module. In particular) one of the following must hold:

1. H*'*(X) rv H*'*(pt).

2. H*,*(X) rv H*'*(B) E9 ~l/H*'*(pt)) where the degree of 1I is (p, q).

3. H*'*(X) is free with two generators a and b.

In (3) above) the dimensions of the generators a and bare

(p - n - 1, q - n - 1) and (p, q - m - 1) where d(w) = pn~m 1I.

Proof Under these hypotheses, there is a cofiber sequence of the form
i j

B <-7 X -» sp,q. Denote by 1I the generator of H*'*(Sp,q).

If d(w) = 1I then (1) holds and H*,*(X) is free. If d(w) = 0, then (2) holds

and again H*'*(X) is free. The remaining case is d(w) =j:. 0. By the above

discussion, this must mean that the nonzero differentials must be in the bottom

cone and so d(w) = pn~mll for some nand m. Recall that 1I has dimension (p, q)

and so w has dimension (p - n - 1, q - n - m - 2). The E 1 page of the cellular

spectral sequence is given in Figure VI.6.

After taking cohomology, the spectral sequence collapses, and what remains

is pictured in Figure VI. 7.

Here, a has dimension (p - n - 1, q - n - 1) and b has dimension

(p, q - m - 1). For purely dimensional reasons, b is not in the image of .p and so

determines a nonzero class in singular cohomology. Thus, Tib is nonzero for all i,

and so we have that bi = Tib. In particular, pn+l a and Tmb generate Hp,q(X).
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q

p

Fig. VI.6: The E 1 page of the cellular spectral sequence with a single nonzero
differential hitting the bottom cone of an attached (p, q)-cell.

a b1

b

p

Fig. VI. 7: The E2 = E oo page of the cellular spectral sequence with a single nonzero
differential hitting the bottom cone of an attached (p, q)-cell.
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Consider the portion of the long exact sequence associated to the cofiber sequence

B ~ X ~ Sp,q given below:

Since i*(pn+I a) = i*(Tmb) = pn+ITmW , exactness implies that

j*(v) = pn+I a + Tmb. Also j* is an H*'*(pt)-module homomorphism, and so

j* (p!+l v) = Ba and j*C~ v) = Bb. In particular, we can create a map f from a free

module with generators a and fJ in dimensions (p - n - 1, q - n - 1) and

(p, q - m - 1) respectively to iIp,q(X) with f(a) = a and f(fJ) = b. This f is an

isomorphism.

o

Theorem VI.5 (Freeness Theorem). If X is a connected} locally finite} finite

dimensional Rep(Z/2)-complex} then H*,*(X; Z/2) is free as a

H*'*(pt; Z/2)-module.

Proof. The Mackey functor Z/2 will be assumed throughout and so will be

dropped from the notation.

Since X is locally finite, the cells can be attached one at a time. Order the

cells aI, a2, . .. so that their dimensions satisfy Pi ::; Pj if i ::; j and qi ::; qj if

Pi = Pj and i ::; j. We can proceed by induction over the spaces in the filtration

XCD) ~ ... ~ xCn) ~ ... ~ X, with the base case obvious since X is connected.

First, suppose that H*,*(xCn») is a free H*'*(pt)-module and that xCn+l) is

obtained by attaching a single (p, q)-cell and that xCn) has no p-cells. Denote by v

the free generator of H*,*(xCn+l) / XCn») f'V H*'*(Sp,q). Consider the spectral

sequence of the filtration XCn) ~ xCn+I). This is pictured below in Figure VI.8

A change of basis allows us to choose a subset WI, ... ,Wn of the free
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Fig. VL8: The spectral sequence of a filtration for attaching a single (p, q)-cell to a
space with free cohomology.

generators of H*,*(xCn)) whose differentials hit the bottom cone of v and that

satisfy

• d(Wi) =1= 0 for all i,

• Iwfl > Iwfl when i > j,

and all other basis elements have zero differentials to the bottom cone of v. This is

similar to what is referred to in [9] as a ramp of length n. Also, we can change the

basis again so that there is only one free generator, (t, of H*·*(xCn)) with a nonzero

differential to the top cone of v. Then, after this change of basis, the nonzero

portion of the spectral sequence of the filtration looks like the one in Figure VL9

Using an argument very similar to the one above, (t cannot support a

nonzero differential, and we can see that each of the Wi'S will shift up in degree and
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Fig. VI.9: The nonzero portion of the above spectral sequence, after a change of
basis.

v will shift down. Thus, H*,*(xCn+l)) is again free.

Now suppose that xCn+l) is obtained by attaching a (p, q)-cell Vi and that

xCn) has a single p-cell v already. Then by the previous case, the generator for v

was either shifted down, killed off, or was left alone at the previous stage. In any

case, because of our choice of ordering of the cells, the generator for v cannot

support a differential to the generator for Vi. Thus, the only nonzero differentials

to Vi are from strictly lower dimensional cells. Thus, we are reduced again to the

previous case and H*,*(XCn+l)) is free. By induction, H*'*(X) is free.

Corollary VI.5. Real and complex projective spaces and Grassmann manifolds

have free cohomology with 7L/2 coefficients.

D
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CHAPTER VII

COHOMOLOGY OF REAL PROJECTIVE SPACES

In this section, G = Z/2 exclusively.

Recall that IRlP'~ = G1('U), the space of lines in the complete universe 'U. In

this section we compute the cohomology of real projective spaces, in particular we

compute H*'*(IRlP'~;Z/2). The Mackey functor in this section will always be

M = Z/2 and will be suppressed from the notation.

Theorem VII.I. H*'*(IRlP'~) = H*'*(pt) [a, b]/(a2 = pa + Tb)) where

deg(a) = (1,1) and deg(b) = (2,1).

First, a Z/2-representation space structure for IRlP'~ is obtained by

considering IRlP'~ as a limit of certain other projective spaces. Denote by

IRlP'fw = lP'(IRn+1
, l~J), the equivariant space of lines in IRn+1

, lnt1
J. For example,

IRlP'3 = lP'(IR4,2) IRlP'4 = lP'(IR5,2) and IRlP'l = Sl,l There are natural inclusionstw ,tw , tw .

IRlP'fw --+ IRlP'f:1 which, by the following lemma, are cellular.

Lemma VII.2. IRlP'fw has a Z/2-representation space structure with cells in

dimension (0,0)) (1,1)) (2,1)) (3,2)) (4,2)) ... ,(n, 1%1).

Proof. Consider a Schubert cell decomposition using the filtration

IRn,l~J = IR 1,o EEl IRl,l EElIR1,o EElIR1,1 EEl···. This decomposition ends in either IR 1,o or

IR1,1 according to the parity of n.
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Proceed by induction. For the case n = 1, a line in ~1,O EB ~l>l is either the

span of (1,0), giving the (O,O)-cell, or the span ((a, 1)) of a vector (a,l). The

action of Z/2 sends ((a, 1)) f-+ ((a, -1)) = ((-a, 1)). Thus we have a (l,l)-cell.

Induction starts.

Inductive step: ~IPrw is obtained from ~JID~;1 by attaching a single

(n, ?)-cell. It remains to determine the number of twistings.

Suppose n is even. Then the points in the attached cell are of the form

Thus we have attached an (n, i)-cell.

Suppose n is odd. Then the points in the attached cell are of the form

= (-Xl, X2,···, -Xn , 1). Thus we have attached an (n, nt l )-cell.

This lemma can also be proven with the use of Proposition VIILL

o

The above lemma implies that ~JID~ has a cell structure with a single cell in

dimension (n, Ii1), for all n E No This is simply because of the inclusions

~JID;w ~ ~IP;w ~ ... , the colimit of which is ~IP~.

To compute the cohomology from these cell structures, the spectral

sequence associated to the cellular filtration will be of particular use. Recall that

all differentials on all pages of this spectral sequence have degree (1,0).

Lemma VII.3. As a H*>*(pt)-module, H*'*(~JIDrw) is free with a single generator

in dimension (k, I~l) for k = 0,1, ... ,n.

Proof. It suffices to show that the free generators a(k, I~ l) associated to the

(k, I~l )-cell map to zero in the spectral sequence associated to the cellular

filtration XO ~ Xl ~ ... ~ x n = ~JIDrw' It will then follow from the module
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structure that d(>"· a(k,r~l)) = 0 for all >.. E H*'*(pt), and the result immediately

follows.

We will proceed by induction on the dimension.

The base case n = 1 is immediate, since d(al,d E H 2,l(X2 /X 1
), But, JRJPl;w

has no 2-cells, and so d(al,l) = O. Induction starts.

Now, suppose n > 1. We divide into even and odd cases. If n is odd, then

Figure VII.1 gives a picture of the E 1 page of the cellular spectral sequence for

q

-2 p

Fig. VII.1: The E 1 page of the cellular spectral sequence for JRJPlfw for n odd.

By induction, we know that each of the d(a(k,r~l)) = 0 for k < n, since

restriction to the smaller dimensional projective space sends a(k, r~ l) to a(k,r~ l)'
For purely dimensional reasons, we must have that d(a(n,r~l)) = O.

If n is even, the E 1 page of the cellular spectral sequence for JRJPlfw is

pictured in Figure VII.2.

Again, by induction we know that each of the d(a(k, r~ l)) = 0 for k < n - 1.
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q

-2 p

Fig. VII.2: The E 1 page of the cellular spectral sequence for lRJPl~w for n even.

q

m+

m

m-

2

o
-2 -1 0 2 3 4 n n+1 p

Fig. VII.3: The E 1 page of the cellular spectral sequence for lRJPl~w for n even using
flag symbol (1,2, ... ,a - 1, n + 1).
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Also, for purely dimensional reasons, we must have that d(a(n, r~ l)) = O. However,

there is the potential for d(a(n-1,rn;-ll)) to be non zero.

Let m = lnil J. Consider instead the flag symbol (1,2, ... , m - 1, n + 1).

With this flag symbol, the projective space has cells in dimensions (n, m + 1) and

(n - 1, m - 1). The picture of the E1 term of this spectral sequence is in Figure

VII.3. In this picture, only the contribution of the nand n - 1 cells are depicted.

The differential leaving the (n - 1)-cell must be nonzero. This spectral

sequence implies that the cohomology in degree (n, n/2) must be nonzero. Thus

the original spectral sequence has no nonzero differentials. o

Lemma VIlA. As a H*'*(pt)-module, H*'*(JRJP>~) is free with a single generator

in dimension (n, r~l), for all n E N.

Proof. JRJP>~ is the colimit of the above projective spaces. Thus, any non-zero

differential for jRJP>~ would induce a non-zero differential at some finite stage. This

cannot be the case by the above argument. Hence, H*'*(JRJP>~) is a free

H*'*(pt)-module with the specified generators. o

Lemma VII.5. As a H*'*(pt)-module, H*'*(S1,1) is free with a single generator a

in degree (1,1). As a ring, H*,*(Sl,l) ~ H*'*(pt) [aJl(a2 = pa).

Proof. The statement about the module structure is immediate since Sl,l ~ jRJP>iw'

Now, Sl,l is a K(Z(1), 1), so we can consider a E [Sl,l, Sl,1] as the class of

the identity and p E [pt, Sl,l] as the inclusion. Now a2 is the composite

a2: Sl,l~ Sl,l/\ Sl,l~ S2,2 ------- K(Z/2(2), 2) .

Similarly, pa is the composite

plla
pa: S1,1~ SO,o /\ S1,1 ------- S2,2 ------- K(Z/2(2), 2) .

The claim is that these two maps are homotopic. Considering the spheres involved

at one point compactifications of the corresponding representations, the map a2 is



38

inclusion of (IR1,1)+ as the diagonal in (IR2,2)+ and pa is inclusion of (IR1,1)+ as the

vertical axis. There is then an equivariant homotopy H: (IR1,1)+ X I ---+ (IR2,2)+

between these two maps given by H(x, t) = (tx, x). 0

With these lemmas, we are ready to compute H*'*(IRJID~).

Proof of Theorem VII.i. By the above lemmas, it remains to compute the

multiplicative structure of the cohomology ring. Let R = H*'*(IRJID~). Denote by

a = a(l,l), and b = a(2,1). Observing the forgetful long exact sequence, Lemma VI.2,

we see that the forgetful map 'I/J: R ---+ H;ing(IRJlDOO) maps 'lj)(a) = z and 'I/J(b) = Z2

where z E Hling(IRJlDOO) is the ring generator for singular cohomology. Since 'I/J is a

homomorphism of rings, 'I/J(ab) = z3 i= 0, and so the product ab is nonzero in R.

Observe that pb is also in degree (3,2) in R, but 'I/J(pb) = °since 'I/J(p) = 0. Thus

ab and pb generate R in degree (3,2). Also, 'I/J(b2) = z4, and so b2 in nonzero in R.

This means that b2 is the unique nonzero element of R in degree (4,2). Inductively,

it can be shown that if n is even the unique nonzero element of R in degree (n, ~)

is bn/2 and that if n is odd, then ab(n-l)/2 is linearly independent from pb(n-l)/2.

Now, a2 E H2,2(IRJID~) and so is a linear combination of pa and Tb. Since

'I/J(a2) = Z2, there must be a Tb term in the expression for a2. Also, upon

restriction to IRJID£w = 81,1, a2 restricts to a2 = pa. Thus, there must be a pa term

in the expression for a2. Thus, a2 = pa + Tb E R.

This gives the multiplicative structure of R as described in the statement of

the theorem. o

We can also compute the cohomology of projective spaces associated to

arbitrary representations. The following easy lemma will be useful. In particular,

it allows us to only consider the projective spaces associated to representations

V ~ IRp,q where q ~ p/2.
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Lemma VII.6. lP'(JRp,q) rv lP'(JRp,p-q).

Proof. Consider a basis of JRp,q in which the first q coordinates have the nontrivial

action, and a basis of JRp,p-q in which the first q coordinates are fixed by the

action. Then the map f: lP'(JRp,q) -t lP'(JRp,p-q) that sends the span of (Xl, ... , X p )

to the span of (Xl,"" X p ) is equivariant. It is clearly a homeomorphism. 0

Lemma VII.7. If q ::; p/2, then lP'(JRp,q) has a cell structure with a single cell in

each dimension (0,0), (1,1), (2,1), (3,2), (4,2), ... , (2q - 1, q), (2q, q), ... ,

(p - 1, q).

For example, lP'(JR4,1) has a single cell in each dimension (0,0), (1,1), (2,1),

and (3,1).

Proof. The argument will be similar to the one above for JRlP'rw' One can

decompose this representation as JRp,q = JR2q,q E9 JRP-2q,O. Now, with this

decomposition, the (2q - I)-skeleton is obtained exactly as in Lemma 4.2. Next,

consider the span of a line of the form (Xl, ... , X q , Xq+l, ... ,X2q, 1). The Z/2-action

sends this to (-Xl, ... , -Xq , Xq+l,' .. ,X2q, 1), yielding a (2q, q)-cell. Continuing to

add cells in this way, each successive cell will have exactly q twists. 0

Lemma VII.S. As a H*,* (pt) -module, H*'* (lP'(JRp,q)) is free with a single generator

in dimensions (0,0), (1,1), (2,1), (3,2), (4,2), ... , (2q, q), (2q + 1, q), ... ,

(p - 1, q).

Proof. Fix q and proceed by induction on p ~ q/2. The base case is exactly

Lemma 4.3 where p = 2q. For the inductive step, notice that d(ap,q) = °for

dimensional reasons. Again, by considering the flag symbol (1,2, ... ,q - 1, 2q), one

sees that all differentials in the spectral sequence must be zero. 0
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Next, we compute H*'*(IP(lRn,l%J)). For the case n = 2, we have

IP(lR2,l) rv 8 1,1 and so the result is Lemma 4.5 above.

Lemma VII.9. Let n > 2. If n is even, then

H*'*(IP(lRn,%)) = H*'*(pt) [al,l, b2,1]/ rv where the generating relations are

a2 = pa + Tb and bk = 0 for k ;::: ~. If n is odd, then

H*,* (IP(lRn,n;l )) = H*,* (pt) [al,l, b2,1]/ rv where the generating relations are

a2 = pa + Tb, bk = 0 for k ;::: nt1, and a . b(n-1)!2 = O.

Proof. Only the multiplicative structure needs to be checked since the cohomology

is free and the generators given above are in the correct dimensions. Considering

the restriction of the corresponding classes a and b in H*'*(lRIP~), the relation

a2 = pa + Tb is immediate. The relations bk = 0 for k > ~ when n is even and

bk = 0 for k ;::: nt1 when n is odd follow for dimensional reasons. Also, since the

class ab E H*'*(lRIP~) is a free generator, it restricts to zero in H*'*(IP(lRn
,n21)).

Thus ab = 0 E H*,* (IP(lRn,n 21)). 0

The ring structure of the other projective spaces can be computed in a

similar manner, by considering the restriction H*,* (lRIP~) to H*,* (IP(lRp,q)). For

example, consider IP(lR4,1). By the above lemmas, the cohomology of IP(lR4,1) is

free, generated by classes a1,1, b2,1, and C3,1' The corresponding classes a and b in

H*'*(lRIP~) restrict to the a and b here, so we automatically know that

a2 = pa + Tb in H*'*(IP(lR4,1 )). Now, ab has degree (3,2) and so ab =?pb+7Tc.

However, the product ab in H*'*(lRIP~) restricts to the class TC. Since restriction is

a map of rings, it must be that ab = TC in H*'*(IP(lR4,1)). Similar considerations

show that bc = 0 and c2 = O. Thus H*'*(IP(lR4,1)) = H*'*(pt)[a1,1, b2,1, C3,1]/ rv,

where the generating relations are a2 = pa + Tb, ab = TC, bc = 0, and c2 = O. Using

similar arguments, one can compute the cohomology of the remainder of the
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projective spaces. While an explicit description of the ring structure is

complicated, this result can be summarized by the following proposition.

Proposition VII.IO. H*,*(JP>(ffi'p,q)) is a truncated polynomial algebra over

H*'*(pt) on generators in dimensions (1,1), (2,1), (2q + 1, q), (2q + 2, q), ... ,

(p - 1, q), subject to the relations determined by the restriction of H*'*(lRJP>~) to

To end this section, let's highlight the connection of the structure of the

RO(Z/2)-graded cohomology of real projective spaces with their singular

cohomology. This will make explicit the use of the forgetful long exact sequence in

the proof of Theorem VII.L Letting X = lRJP>~, we have the following exact

sequence.

All groups above are taken with constant Z/2 or Z/2 coefficients. The

generators of these groups are given in the diagram below.

'p 'ljJ 8
... ------ (1) ------ (p, a) ------ (z)~ 0

From this, it is evident that the forgetful map 'I/J takes a to z and b to Z2.

Since'I/J is a map of rings, we now have that 'I/J(an . bm ) = zn+2m. Similar

computations will yield that, in any of the finite projective spaces and for each n,

the free generator in degree (n, 7) maps to zn under the forgetful map.
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CHAPTER VIn

GRASSMANNIANS

The Grassmann manifold plays an important role in the theory of vector

bundles. Let Gn(lRp,q) denote the space of n-planes in lRp,q with action induced by

that on lRp,q.

The inclusions in the commutative diagram

(where trivial representations are always added on the right and nontrivial ones

added on the left) give inclusions Gn(lRp,q) C Gn(lRP+1,q) and

Gn(lRp,q) C Gn(lRP+1,q+l). The colimit of these inclusions is Gn = GnCU), the space

of n-dimensional subspaces of 11. The action can be thought of as the one induced

by the action on 11.

The usual Schubert cell decomposition endows the Grassmann manifolds
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with a Rep(Z/2)-cell structure. However, the number of twists in each cell is

dependent upon the flag of subrepresentations of jRp,q that is chosen. Consider

Gn (jRp,q). A sequence of integers <P = (<PI, ... , <pq) satisfying 1 ::; <PI < ... < <pq ::; q

determines a flag of subrepresentations. A flag Vo = a C VI C ... C V; = jRp,q

determined by <P satisfies Vcp)Vcpi- l = jRl,l for all i = 1, ... , q, and all other

quotients of consecutive terms are jR1,0, and consists of a sequence of subspaces in

which a coordinate basis vector is adjoined to get from one term to the next. Such

a <P will be called a flag symbol. For example, there is a flag in jR5,3 determined by

the flag symbol <P = (1,3,4) of the form jRo,o C jRl,l C jR2,1 C jR3,2 C jR4,3 C jR5,3.

Let a = (al,"" an) be a Schubert symbol, in other words a sequence of

integers such that 1 ::; al < a2 < ... < an ::; p. Given a Schubert symbol a and a

flag symbol <P, let e(a, <p) be the set of planes £ E Gn (jRp,q) for which

dim(£ n VaJ = 1 + dim(£ n Vai- l ), where Vo C ... C Vn is the flag determined by <p.

Then e(a, <p) is the interior of a cell D(W) for some representation W. The

dimension of the cell is determined by the Schubert symbol a just as in

nonequivariant topology, but the number of twists depends on both a and the flag

symbol <p.

For example, consider G2(jR5,3), a = (3,5), and <p = (1,3,4). Then e(a, <p)

consists of planes £ which have a basis with echelon form given by the matrix

below.

+ - +

(::~::)
Here, the action of Z/2 on the columns, as determined by <p, has been
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indicated by inserting the appropriate signs above the matrix. After acting, this

becomes the following.

+ +

Since we require the last nonzero entry of each row to be 1, we must scale

the fisrt row by -1.

+ - +

(~* ~* ~ ~* :)
Since we have five coordinates which can be any real numbers, three of

which the 7l,/2 action of multiplication by -1, this cell is a (5, 3)-cell. Through a

similar process, we can obtain a cell structure for Gn(IRP,q) given any flag <po The

type of cell determined by the Schubert symbol a and the flag <p is given by the

following proposition. Here, ai = {I, ... ,ai} and a(i) = {aI, ... ,ai}'

Proposition VIlLI. Let a = (al,"" an) be a Schubert symbol and

<P = (<PI,"" <pq) be a flag symbol for w,q. The cell e(a, <p) of Gn(IRp,q) is of

dimension (a, b) where a = I.:~l (ai - i) and

b = I.:lTiE'P lai \ (<p U a(i))1 + I.:lTi\l'P I(ai n <p) \ a(i)l·

Proof. The formula for a is exactly the same as in the nonequivariant case. The

one for b follows since the number of twisted coordinates in each row is exactly the

number of * coordinates for which the action is opposite to that on the coordinate

containing the 1 in that echelon row. D
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With these Schubert cell structures, the spectral sequence of the filtration

can sometimes be used to determine the cohomology of certain Grassmannians. It

is important to recall that all differentials in this spectral sequence have degree

(1,0) and they reach further up the filtration as you go from page to page. As an

example, consider the space X = G2 (IR4,l). Then by considering the flag !.pI = (4),

X has a cell structure with cells of dimension (0,0), (1,0), (2,2), (2,0), (3,2), and

(4, 2). The E 1 term of the spectral sequence of the filtration associated to this cell

structure is in Figure VIlLI below.

q

-2 p

Fig. VIlLI: The E 1 term of the spectral sequence of the filtration of G2 (IR4,1) with
!.pI = (4).

If instead we had chosen the flag symbol !.p2 = (3), the cell structure would

have cells of dimension (0,0), (1,1), (2,1), (2,1), (3,1), and (4,2). The E1 term of

the spectral sequence for the filtration of this cell structure is in Figure VIIL2

below.

From this second picture, we can actually determine the
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q

3

2

-2 3 4 p

Fig. VIII. 2: The E 1 term of the spectral sequence of the filtration of G2 (lR4,1) with
!.p2 = (3).

H*'*(pt;Z/2)-module structure of H*'*(G2(JR4,1);Z/2). Applying the forgetful long
- -

exact sequence VI.2 to X = G2 (JR4,1) and taking q = 0 yields the sequence below.

The second spectral sequence tells us that H1,O(X) = H2,O(X) = 0, and so the

forgetful map 'IjJ is an isomorphism. Since H;ing(X) = Z/2 EEl Z/2, both of the

(2, l)-cells must determine cohomology classes. Since all of the differentials in the

spectral sequence of the filtration have degree (1,0), all differentials leaving the

(1, l)-cell must be zero and the (4,2)-cell determines a free generator in

cohomology. Thus all differentials are zero, and Figure VIII.2 displays the

cohomology of G2 (JR4,1). This is summarized by the following proposition.

Proposition VIII.2. H*,*(G2(JR4,1); Z/2) is a free H*'*(pt; Z/2)-module with

generators in dimensions (O,O)J (l,l)J (2,1)J (2,1)J (3,1)J and (4,2).
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Now, this result was obtained from the second choice of flag symbols where

the dimensions of the free generators is the same as the dimensions of the cells,

but it should also follow from the first choice of flag symbols. In that case, the

dimensions of the cells do not line up with the dimensions of the free generators,

but they are still in bijective correspondence. This phenomenon is similar to the

one observed by Ferland and Lewis in their book [9].

A similar type of calculation using the flag symbols CPl = (4) and CP2 = (3)

will yield the cohomology of G2(JR5,1).

Proposition VIII.3. H*'*(G2 (JR5,1);Z/2) is a free H*'*(pt;Z/2)-module with
- --

generators in dimensions (0,0), (1,1), (2,1), (2,1), (3,1), (3,1), (4,1), (4,2),

(5,2), and (6,2).

q

3

2

p

It should be noted that since by extending from JR4,1 to JR5,1 no twistings

were added, there is a cellular inclusion from G2(JR4,1) <------+ G2(JR5,1) using the cell
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structures coming from the flag symbol C{J2 = (3). This is an example of a more

general trend.

Proposition VIllA. If V ~ V'is an inclusion of representations and C{J ~ C{J' is

an extention of flag symbols for V and V', then there is a cellular inclusion

So far, the fact that the cohomology of these Grassmannians is free comes

from ad hoc arguments like the ones above. As another example, consider now

x = G2 (lR4
,2). Consider the three flag symbols C{J1 = (2,3), C{J2 = (2,4), and

C{J3 = (3,4). The respective spectral sequences associated to the cell structures with

these flag symbols have E 1 term given in Figures VIllA, VIlI.5, and VIlI.6 below.

q

-2 p

Fig. VIllA: The E1 page of the cellular spectral sequence for G2(lR4,2) using C{J1 =
(2,3).

In the picture for C{J2, H1,O(X) = 0, and so the differential leaving the (1,0)

generator in the C{J1 spectral sequence must be non-zero. Thus, H 1,1(X) = '"£/2,

H 2,1(X) = '"£/2 and H2,O(X) = '"£/2. In particular, there must be a free generator
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q

p

Fig. VIII.5: The E 1 page of the cellular spectral sequence for G2 (lR4,2) using !.p2 =
(2,4).

q

-2

3

2

3 4 p

Fig. VIII.6: The E 1 page of the cellular spectral sequence for G2 (lR4
,2) using !.p3 =

(3,4).
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in degree (1,1) and there is a nontrivial differential leaving the (2,1) generators of

the spectral sequence for 'P2. After a change of basis, if necessary, the differential

can be adjusted so that it is zero on one of the (2,1) generators and the other

generator maps nontrivially. Now from 'PI we see that H 4,1(X) = 0, and so there

must be a nontrivial differential leaving the (3,1) generator in the 'Ps spectral

sequence. This means that the (4,2) generator in the 'PI and 'P2 spectral sequences

must survive. Thus, all differentials in the 'P2 spectral sequence are known. They

are all zero, except for the one leaving the two (2,1) generators, which behaves as

described above. That spectral sequence collapses almost immediately to give the

following picture of the cohomology of G2 (1R4,2).

q

3

2

-2 3 4 p

From this picture, it is not clear whether H*'*(G2(1R4,2)) is free or not.

However, counting the Z/2 dimensions in each bidegree reveals that the

dimensions are the same as those of a free H*'*(pt)-module with generators in

dimension (1,1), (2,1), (2,2), (3,2), and (4,2). In fact, by Theorem VI.5, we know
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that H*'*(G2(~4,2)) must be free. Thus we have the following computation.

Proposition VIII.5. H*'*(G2(~4,2)) is a free H*'*(pt)-module with generators in

dimension (1,1)) (2,1)) (2,2)) (3,2)) and (4,2).

That is, H*,*(G2(~4,2)) has free generators as displayed in Figure VIII.8.

q

3

2

-2 p

Fig. VIII.8: H*'*(G2(~4,2)) with free generators shown.

Remark VIII.6. It should be noted that in the case of G2(~4,1), one of the cell

structures was such that the differentials were all zero, and so the cohomology was

free with generators in the same dimensions as the cells, at least after the proper

choice of flag symbols. This is not the case with G2(~4,2). Regardless of the choice

of flag symbol, there must be some nonzero differentials. However, the cohomology

should still be free, but with generators in degrees different than those of the cells.

This suggests that there is some sort of dimension shifting, similar to those

observed in [9] with cell complexes built of "even" dimensional cells.
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In some special cases, we can deduce the additive structure of the

cohomology of certain Grassmann manifolds without playing different cell

structures off of each other like was done above. Instead, we can appeal to the

freeness theorem.

Proposition VIII.7. H*'*(GnC~U,V)) is a free H*'*(pt)-module with generators in

bijective correspondence with the Schubert cells.

Proof. Since Gn(~U,V) has a Rep(G)-complex structure, it must be that

H*'*(Gn(lRu,V)) is free by the freeness theorem, Theorem VI.5. Let {WI, ... ,wd be

a set of free generators. Then k ::; m where m is the number of Schubert cells.

These spaces are based, so we can appeal to the forgetful long exact

sequence Lemma VI.2. As a consequence of freeness, the map

.p: H*,q(Gn(lRu,V)) -t H*+l,q+l(Gn(lRu,V)) is an injection for large enough q. Thus

the forgetful map to singular cohomology is surjective. Since H;ing(Gn(lRu,V)) is

free with generators aI, ... am in bijective correspondence with the Schubert cells,

H*'*(Gn(lRu,V)) has a set of elements, {al"'" am}, with 1/J(ai) = ai. We can

uniquely express each ai as ai = 2:;=1 peijTJijWj' We can ignore any terms that

have p in them since 1/J(p) = O. This gives a new set of elements,

ai = 2:;=1 EijTJijWj, where Eij = 0 or 1 and 1/J(ai) = ai' Since 1/J(T) = 1, we have

that 2:;=1 Eij1/J(Wj) = ai. Since linear combinations of the linearly independent w/s

map to the linearly independent a/s, there must be at least as many w/s as there

are ai's. That is, k ~ m.

As was seen above, the free generators may be in degrees different than

those of the cells. However, knowing the number of generators in each dimension

can allow us to deduce the additive structure of the cohomology of some

Grassmann manifolds.

D
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Consider again G2 (IR5,1). Using the Schubert cell structure coming from the

flag symbol cp = (2)\ (or equivalently cp = (3)), we get the picture of the E 1 term of

the cellular spectral sequence as shown in Figure VIII. 9.

q

3

2

-2 p

Fig. VIII.9: The cellular spectral sequence for G2 (IR5,l) using cp = 3.

Any nonzero differentials would completely kill at least one of the free

generators. Since the cohomology generators are in bijection with the cells, there

can be no nonzero differentials. Thus, this cell structure gives the additive

cohomology structure exactly.

A similar argument for G2 (IR6,1) using the Schubert cell structure coming

from the flag symbol cp = (2) gives the additive structure of H*,*(G2(IR6,1)). This is

recorded in Figure VIII.I0 below.
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CHAPTER IX

EQUIVARIANT ADAMS-HILTON CONSTRUCTION

This sections provides a G-representation complex structure to the space of

Moore loops of a G-representation space Y under certain assumptions on the types

of cells involved.

Let (Y, *) be a based G-space. Let OM (Y, *) ~ M ap([O, 00), X) x [0,00)

denote the subspace of all pairs (<p, r) for which <p(0) = * and <p(t) = * for t 2:: r.

The space OM (Y, *) is the space of Moore loops of Y. It inherits a G-action given

by g. (<p, r) = (g. <p, r), where (g. <p)(t) = g' <p(t). (The action of G on both IR and

[0,00) are assumed to be trivial, so this is the usual diagonal action of G on a

product restricted to the subspace of Moore loops.)

Proposition IX.I. O(Y, *) is a G-deformation retract of OM (Y, *).

Proof. The argument from nonequivariant topology adapts effortlessly to the

equivariant setting. What follows is essentially the argument from Proposition

5.1.1 of [15].

First consider O(Y, *) ~ OM(y, *), the subspace of all (<p, t) with t 2:: 1. A

deformation retraction, H, of OM (Y, *) onto O(Y, *) is given by the following

formulae:
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H(s, ('P,r)) = ('P,r + s) when r + s::; 1

H(s, ('P, r)) = ('P, 1) when r ::; 1 and r + s ~ 1

H(s, ('P,r)) = ('P,r) when r ~ 1

Now a deformation retraction K from D(Y, *) to O(Y, *) is given by the

formula

K(s, ('P,r)) = ('Ps, (1- s)r + s),

where 'Ps(t) = 'P(l_~r+st).

Notice that Hand K are both equivariant deformation retractions.

o

Given any based G-space (X, *), one can form the free G-monoid M(X, *)

just as in the nonequivariant setting. As a space, M(X, *) = II xn/ rv. Here, rv is

the equivalence relation generated by all the relations of the form

The G-action on M(X, *) is inherited from the diagonal action of G on each

of the products xn. Note that since the basepoint * is fixed by G, this action

factors through the relation rv.

This free G-monoid on (X, *) enjoys the universal property that any based

G-map f: X ----+ M, where M is any topological G-monoid with f( *) = e, can be

extended uniquely to a G-map 1: M(X, *) ----+ M.

OM(Y, *) is a topological G-monoid. The loop concatenation product

respects the G action in the sense that g. (('P, r) * ('l/J, s)) = ((g. 'P) * (g. 'l/J), r + s).

The point (*,0), where * denotes the contant loop at the base point of Y, is the

identity element.

Let (X, *) be a based G-space. The equivariant James map is the G-map

J: (X, *) ----+ (O~X, *) given by J(x)(t) = [t, x] E ~X. Here, the G-action is given



57

by (g. J(x))(t) = [t,g· x]. Compose this G-map with the inclusion of OI;X into

OMI;X to obtain a G-map J: (X, *) -+ (OMI;X, *) that does not carry the base

point to the identity. Let X = X U[O, 1]/(1 rv *) and define an extension] of J to

X by ](8) = (*,8) for 8 E [0,1] where * denotes the constant path at the

basepoint. Note that X and X are based G-homotopy equivalent if X is a G-CW

complex. By now considering 0 to be the basepoint of X, ] is now a based G-map.

This now extends uniquely to a G-map J: M(X,O) -+ OMI;X. This is the map in

James'theorem.

James' Theorem states that if X is a connected CW complex, the map

J: M(X, 0) -+ OMI;X is a homotopy equivalence. See [3] for a proof of James'

theorem. This can be easily extended to the equivariant setting in the case that X

has connected fixed sets.

Theorem IX.2 (Equivariant James Theorem). If X is a connected G-GW

complex with X H connected for all H ::; G, the G-map J: M(X,O) -+ OMI;X is a

G-homotopy equivalence.

Proof Observe that M(X, O)H = M(X H, 0) and (OMI;X)H = OMI;(XH). Now,

JH: M(X, O)H -+ (OMI;X)H is a homotopy equivalence by James' theorem since

XH is a connected CW complex by assumption. Thus J is a G-homotopy

equivalence.

D

The space J(X) = M(X, 0) is called the James construction. J(X) is a

free, associative, unital G-monoid. If the basepoint * of X is a vertex, then J(X)

has a natural G-CW complex structure coming from the decomposition of x n as a

product G-CW complex. Thus J(X) has the following properties:
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1. every element v E J(X) has a unique expression v = * or v = XIX2' .• X n ,

Xi EX \ * for 1 :::; i :::; n.

2. Xl'" X n is contained in a unique cell of J(X), the cell Cl x ... X Cn where

Xi E Int(Ci ), 1 :::; i :::; n, so that no indecomposable cell contains

decomposable points, and

3. non-eqivariantly, the cell complex has the form of a tensor algebra

T(C#(X)), where the sub complex C#(X) is exactly the indecomposables,

and the generating cells in dimension i are in bijective correspondence with

the cells in dimension i + 1 of ~X.

Nonequivariantly, we have the Adams-Hilton construction as follows. Let Y

be a CW complex with a single vertex * and no I-cells. Then there is a model for

nM (Y) which is a free associative monoid, with * the only vertex, the generating

cells in dimension i are in 1-1 correspondence with the (i + I)-dimensional cells of

Y, and it satisfies (2) above. This will generalize to the following equivariant

version.

Theorem IX.3 (Equivariant Adams-Hilton). Let Y be a Rep(G)-complex with a

single vertex *, no 1-cells, and the only cells in higher dimensions are V ffi I-cells

where V is a real representation of G with all fixed sets of BV connected. Then

there is a model for nM (Y) which is a free associative monoid, with * the only

vertex, the generating cells in dimension V are in 1-1 correspondence with the

(V ffi I)-dimensional cells ofY, and it satisfies (2) above.
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For the case G = 7l/2 the theorem becomes the following.

Theorem IXA (71/2-Equivariant Adams-Hilton). Let Y be a Rep(71/2)-complex

with a single vertex * and no (n, n)-cells or (n, n - l)-cells for n ?: 1. Then there

is a model for OM (Y) which is a free associative monoid) with * the only vertex)

the generating cells in dimension (p, q) are in 1-1 correspondence with the

(p + 1, q)-dimensional cells ofY) and it satisfies (2) above.

With these restrictions on the types of cells in our Rep(G)-complex, the

proof of the Adams-Hilton theorem in [3] adapts to the equivariant case. For

example, in the base case of the inductive argument, one has that the 2-skeleton

y(2) = V SVaEBI = ~1(V SVa). Since each SVa has connected fixed sets the
~ ~ ,

equivariant James construction applies and the result is immediate.

For the inductive step, the prolongation construction and quasifibering

arguments are already equivariant. This allows the remainder of the argument to

adapt to the equivariant setting.

One application of this model is the computation of H*,*(OSp,q; 7l/2) when

Sp,q has a connected fixed set and p ?: 2.

Proposition IX.5. If Sp,q is equivariantly 1-connected) then H*,*(OSp,q; 7l/2) is

an exterior algebra over H*'*(pt; 7l/2) on generators aI, a2, ... ) where

ai E H(P-I).2i
-

1 ,q.2i
-

1 (OSp,q; 7l/2).

Sketch of proof. For each value of p and q, the argument is similar, so let's focus

on the case p = 4 and q = 2 to compute H*'*(OS4,2).

Now, since the fixed set of S4,2 is connected, by the Adams-Hilton

construction we have an upperbound for the cohomology of the loop space given in

Figure IX.1.
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q
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o
-2 -1 0 p

Fig. IX.I: The E 1 page of the cellular spectral sequence for OS4,2.

In the spectral sequence of the filtration, it is clear that all differentials

must be zero, and so Figure IX.I reveals the structure of H*'*(OS4,2) as a free

H*'*(pt)-module. Denote the generators of H3.2i-1,2.2i-1 (OSp,q; 7l/2) byai'

Consider the path-loop fibration OS4,2 ---+ P S4,2 ---+ S4,2. The base is

I-connected, so we can apply the spectral sequence of Theorem 111.6, which will

converge to the cohomology of a point since the total space P S4,2 ':::: pt. Consider

first the r = 2 portion of the spectral sequence.

To fill in the entries in the spectral sequence, the Mackey functors

HQ,2(OS4,2) need to be computed for various values of q. These can be obtained

from the module structure above. The calculations yield that

HO,2(OS4,2) = H3,2(OS4,2) = 7l/2, H 1,2(OS4,2) = H 2,2(OS4,2) = (71/2), and

H 4,2(OS4,2) = H 5,2(OS4,2) = O. The Mackey functor H 6,2(OS4,2) is dual to 7l/2,

though this information will not be needed.

Given the above Mackey functors, we have that the q = 0 and q = 3 rows
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are H*,O(S4,2; 71./2), the q = 1 and q = 2 rows are H;ing(S2; 71./2), and the q = 4 and

q = 5 rows are entirely zeroes. Thus the spectral sequence is as shown in Figure

IX.2.

q

6

5

4

3

2

1

0

?? ?? ?? ?? ?? ??

0 0 0 0 0 0

0 0 0 0 0 0

71./2 0 0 0 71./2 0

71./2 0 71./2 0 0 0

71./2 0 71./2 0 0 0

71./2 0 0 0 71./2 0
o 1 2 3 4 p

Fig. IX.2: The r = 2 spectral sequence for OS4,2 ------t pS4,2 ------t S4,2.

Since the total space of the fibration is contractible, the spectral sequence

converges to HP+Q,2(pt). Since H4,2(pt) = 0, there must be a nontrivial differential

d2: EO,3 ------t E2,2 sending the generator al E HO,O(S4,2; H 3,2(OS4,2)) to the generator

z E H2,O(S4,2; H2,2(OS4,2)).

Now, the products ar and a . z live in the r = 4 spectral sequence and so to

determine the differentials on ar, we need the picture of that spectral sequence.

This is shown in Figure IX.3.

Since H 7,4(pt) = 0, there must be a nontrivial differential d2: EO,6 ------t E2,5

sending the generator a2 isomorphically to a· z. Since d2(ar) = 0, it must be that

ar = O. An inductive argument will show that the ring structure is indeed that of

an exterior algebra with the specified generators. D
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o

Z/2 0 0 0 Z/2 0

Z/2 0 Z/2 0 0 0

(Z/2)2 0 (Z/2)2 0 0 0

(Z/2)2 0 Z/2 0 Z/2 0

Z/2 0 Z/2 0 0 0

Z/2 0 Z/2 0 0 0

Z/2 0 0 0 Z/2 0
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o 1 2 3 4 p

Fig. IX.3: The r = 4 spectral sequence for ns4,2 -----+ pS4,2 -----+ S4,2.
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CHAPTER X

EQUIVARIANT LERAY-HIRSCH THEOREM

In this section, the familiar Leray-Hirsch Theorem is adapted for use in the

equivariant setting. This will be useful for advancing a theory of equivariant

characteristic classes.

Theorem X.I (Equivariant Leray-Hirsch). Let B be a based Z/2-CW complex

with zero skeleton contains only trivial orbits. Let F ~ E .!.." B be a Z/2-fiber

bundle with fiber F over each point in the O-skeleton of B. Suppose that for some

ring Mackey Functor M the following conditions are satisfied:

1. H*'*(F; M) is a finitely generated free H*'*(pt; M)-module) and

2. there exist classes Cj E H*'*(E; M) whose restrictions i*(cj) form a basis for

H*,* (F; M) in the fiber F over each point in the O-skeleton of B.

Then the map <P: H*,*(B; M) 0H*.*(ptjM) H*'*(F; M) --+ H*,*(E; M) given by

2..:ij bi 0 i* (Cj) r----+ 2..:ij p* (bi ) U Cj is an isomorphism.

In other words, H*,*(E; M) is a free H*,*(B; M)-module with basis {Cj},

with action bc = p*(b) U c.

The fibers F are not only required to be the same topological space, but

must be homeomorphic as Z/2-spaces. This is certainly the case when X is
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equivariantly 1-connected and we are working in a slightly more general setting

here.

The proof of this theorem will be an adaptation of the proof in [10] of the

Leray-Hirsch theorem for singular cohomology.

Proof. Throughout this proof, the Mackey functor M will be understood and

suppressed from the notation. Also, all tensor products are taken over H*'* (pt; M)

and so this will be suppressed as well.

First, suppose B is a finite dimensional G-CW complex. The proof in this

case will be by induction on the dimension of B. If B is a-dimensional, then the

result is clear. For the inductive step, suppose B is n-dimensional and let B' c B

be the subspace obtained by deleting a point GjH Ci x XCi from the interior of each

n-cell GjH Ci x ~~ of B. Let E' = p-l(B'). Then there is the following

commutative diagram:

... -+ H*,*(B, B') @ H*'*(F) -+ H*'*(B) @ H*'*(F) -+ H*'*(B') @ H*'*(F) -+ ...

l~ l~ l~
--_. H*'*(E, E') • H*'*(E) • H*,*(E') • ...

The top row of the diagram is exact since tensoring with a free module

preserves exactness. The bottom row is also exact. Commutativity of the diagram

is an easy check.

The subspace B' deformation retracts onto Bn-l, and so therefore the

inclusion p-l (Bn-l) <---+ E' is a homotopy equivalence. Thus by induction, the

right-hand <I> is an isomorphism.

Now, let UCi ~ ~~ be neighborhoods of XCi so that the bundle is trivial over
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each G/Ha x Ua. Let U = Ua G/Ha x Ua and U' = Un B'. By excision we have

H*,*(B, B') ~ H*,*(U, U'). Also H*'*(E, E') ~ H*'*(p-l(U),p-l(U')) ~

H*,* (U x F, U' x F). The map <I>; H*,* (U, U') ® H*,* (F) ---+ H*,* (U x F, U' x F) is

an isomorphism by the Kiinneth formula (see [8], Theorem 8.6 and Remark 8.7),

and so the left-hand <I> is an ispomorphism. Now by the 5-1emma, the middle <I> is

an isomorphism.

Next, suppose B is an infinite dimensional G-CW complex. Then since

(B, Bn) is n-connected, (E,p-l(Bn)) is also n-connected. There is the following

commutative diagram:

H*,*(B) ® H*'*(F) ------'J>- H*'*(Bn) ® H*'*(F)

l~ l~
H*'*(E) ) H*'*(p-l(Bn))

The horizontal maps are isomorphisms through dimension (n, *). By the

above argument, the right-hand map is an isomorphism. Thus the left-hand map is

an isomorphism up to (n, *). Since n was arbitrary, <I> is an isomorphism. D

As an application, we have the following calculation. Let Fn (li) denote the

set of n-flags in li = (1R2,1)OO, that is ordered n-tuples (.e l , ... ,.en) of mutually

orthogonal I-dimensional subspaces of li. This space inherits a Z/2-action from li.

lt also has a Rep(Z/2)-complex structure coming from Schubert cells. All of the

O-cells in this decomposition are fixed points. There are projections

7ri: Fn(li) ---+ lRlP~ given by taking the ith line. Let Xi = 7ri(a) and Yi = 7ri(b) ,

where a E Hl,l(lRlP~) and b E H2,1(lRlP~) are the ring generators for cohomology

with constant Z/2 coefficients.

Consider the fiber bundle lRlP~ ------'J>- Fn (li)~ Fn - l (li) , where p forgets
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the last line. Now, the classes x~ . Y~ , where e E {O, I} and fEN, restrict to

generators of the cohomology of the fiber, so the Leray-Hirsch theorem applies,

and FnCU) is a free Fn _ I (11)-module with basis these products of Xn and Yn' By

induction, H*,* (Fn- l (11)) is polynomial on Xl, YI, ... ,Xn-l, Yn-l subject only to

x; = PXi + TYi for all i. By Leray-Hirsch, the product of xi's and yj's form an

additive basis for H*>* (Fn(11)). Thus we have just proven the following.

Proposition X.2. H*>*(Fn(11)) is polynomial on Xl, YI, ... , Xn,Yn subject only to

x; = PXi + TYi for all i.
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CHAPTER XI

ON CHARACTERISTIC CLASSES

Characteristic classes play many interesting roles in algebraic topology.

They have applications to the study of vector bundles, smooth manifolds,

obstruction theory, and cobordism. In singular cohomology with Z coefficients, the

Chern classes generate the cohomology of the complex Grassmann manifolds.

Similarly, the Stiefel-Whitney classes generate the singular cohomology with Z/2

coefficients of the real Grassmann manifolds. The theory of RO(G)-graded

characteristic classes has not yet been fully developed. Some of the tools developed

in this dissertation could, potentially, be used to further such a theory.

In Chapter VIII, the RO(Z/2)-graded cohomology of the Z/2-equivariant

real Grassmann manifolds is shown to be free as a module over H*'*(pt; Z/2), the

cohomology of a point with Z/2 coefficients. However, specific generators have not

yet been identified. We could simply define equivariant Stiefel-Whitney classes of

the tautological bundle En over Gn to be these cohomology generators. Of course,

we would then define equivariant Stiefel-Whitney classes of an arbitrary vector

bundle E ---7 X as pull back of these classes over a classifying map X ---7 Gn for E.

We would then want to check the usual dimension, naturality, Whitney sum, and

nontriviality axioms. Already, these classes would have a different feel to them

than the non-equivariant Stiefel-Whitney classes. We have seen that
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H*'*(Gl ;7!../2) = H*'*(pt; 7!../2)[a, b]/(a2 = pa +Tb) where lal = (1,1) and

Ibl = (2,1). Thus, with this definition, the tautological line bundle over G l would

have a nonzero I-dimensional equivariant characteristic class and a nonzero

2-dimensional class. By naturality, every line bundle would have a 2-dimensional

characteristic class. This suggests that the dimension axiom is written differently

for equivariant characteristic classes than it is for the singular cohomology

characteristic classes.

One approach to getting generators for the cohomology of the Grassmann

manifolds, and thus characteristic classes, is to use the splitting principle. Since

Gn classifies equivariant vector bundles, there is a map lRIP'oo x ... x lRIP'oo ---+ Gn

classifying E l x ... X E l , the n-fold product of the tautological line bundle over

lRIP'~. This map is invariant, up to homotopy, under the obvious action of I:n on

lRIP'OO x ... x lRIP'OO. We then get a map in cohomology with 7!../2 coefficients which,

nonequivariantly, is an isomorphism. Thus, we have the following conjecture.

an isomorphism.

At this point, neither injectivity nor sujectivity of the map in cohomology is

known. However, the calculations in Chapter VIII seem to support this conclusion,

at least in low dimensions.

Another typical approach to nonequivariant characteristic classes uses the

Leray-Serre spectral sequence. Consider the tautological bundle En ---+ Gn. We can

then take the projective bundle IP'(En) ---+ Gn which has fibers lRIP'oo. Applying the

Leray-Serre spectral sequence, we see that E~'* = H;ing(lRIP'OO). We can then define

characteristic classes Wi E H;ing (Gn) as the image of Zi-l under the transgressive

differential, where z is so that H;ing(lRIP'OO) = 7!../2[z]. Equivariantly, this procedure
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can be duplicated, at least in theory. The main issue with computing is that the

equivariant Serre spectral sequence of Theorem IlL I demands the use of local

coefficient systems. We cannot avoid this since Gn is not equivariantly

I-connected. Local coefficients are difficult enough already in singular cohomology

and are much more complicated in this equivariant setting.

Nonequivariantly, we can use the Leray-Hirsch Theorem to obtain

characteristic classes. Given an n-plane bundle E ---+ X, we can create the

associated projective bundle P(E) ---+ X. The classifying map for E gives a map

E ---+ lRoo that is a linear injection on the fibers of E. This in turn gives a map

P(E) ---+ lRpoo. The generators Zi E H;ing(lRPoo; 71.,/2) for 0 ~ i ~ n - I pull back to

give a basis of the fibers lRpn-1 of P(E), which by abuse of notation will again be

denoted by Zi. By the Leray-Hirsch theorem, H;ing(P(E); 71.,/2) is a free

H;ing(pt; 7I.,/2)-module with basis the restriction of the Zi'S. This allows us to

uniquely express zn E H;ing(lRP; 71.,/2) as

I n n-I n-2 I. z = WI • Z + W2 . Z + ... + W n .

where Wi E H~ing(X; 71.,/2). These are again the Steifel-Whitney classes of E. The

difficulty in adapting this method to the equivariant setting is the extra hypothesis

in the equivariant Leray-Hirsch theorem, which essentially imposes a requirement

on the equivariant connectivity of the base space X. So again we find ourselves

faced with having to handle computations with local coefficient systems.

One final technique from nonequiavariant topology that we could adapt to

the development of characteristic classes uses equivariant cohomology operations.

These operations are developed in [4]. One could hope that when these

cohomology operations are combined with a Thom isomorphism, in a method
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similar to the one in [14], the result is some kind of Stiefel-Whitney classes. Such

Thorn isomorphisms have been developed in [5], though nothing has been done yet

towards getting characteristic classes from this point of view.
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