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P-GROUPS

Approved: _
Dr. William M. Kantor

Finite p-groups are studied using bilinear methods which lead to using nonassociative

rings. There are three main results, two which apply only to p-groups and the third which applies

to all groups.

First, for finite p-groups P of class 2 and exponent p the following are invariants of fully

refined central decompositions of P: the number of members in the decomposition, the multiset

of orders of the members, and the multiset of orders of their centers. Unlike for direct product

decompositions, Aut P is not always transitive on the set of fully refined central decompositions,

and the number of orbits can in fact be any positive integer. The proofs use the standard semi­

simple and radical structure of Jordan algebras. These algebras also produce useful criteria for a

p-group to be centrally indecomposable.

In the second result, an algorithm is given to find a fully refined central decomposition of

a finite p-group of class 2. The number of algebraic operations used by the algorithm is bounded

by a polynomial in the log of the size of the group. The algorithm uses a Las Vegas probabilistic

algorithm to compute the structure of a finite ring and the Las Vegas MeatAxe is also used.

However, when pis small, the probabilistic methods can be replaced by deterministic polynomial­

time algorithms.

The final result is a polynomial time algorithm which, given a group of permutations,

matrices, or a polycyclic presentation; returns a Remak decomposition of the group: a fully refined

direct decomposition. The method uses group varieties to reduce to the case of p-groups of class

2. Bilinear and ring theory methods are employed there to complete the process.
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CHAPTER I

INTRODUCTION

I present three theorems in three chapters. The central theme of each is the use of bilinear

maps and algebras to answer questions about p-groups. This would be unremarkable if stated

for bilinear forms and, simple groups or simple algebras. For instance, the work of E. Artin, C.

Chevalley, T. A. Springer, and J. Tits uses nondegenerate bilinear forms to explain many of the

structures of classical and non-classical groups. On the algebra side the same was done by 1. N.

Herstein, 1. L. Kantor, M. Koecher, and N. Jacobson to understand the structure of simple Lie

and Jordan algebras. In this work I apply precisely the opposite philosophy.

Unlike bilinear forms, bilinear maps have a rich and complicated structure owing partly

to the enormous number of non-isometric bilinear maps of any fixed dimensions. There is no hope

to classify or broadly study individual isometry types of bilinear maps. My approach uses groups

and algebras to study bilinearity, in contrast to the goals of earlier works. Starting with a bilinear

map, associate to it a natural associative *-algebra, a Jordan algebra, and a Lie algebra. Also

define the group of isometries and conformal maps, just as is done with bilinear forms. Only now

the perspective is to use the structure theorems of these algebras and groups to inform us about

the structure of bilinear maps. With these tools I will show that bilinear maps have an unexplored

"radical and semisimple structure" - where radical here is not the usual radical of a bilinear map.

By recognizing this structure and its translation to p-groups it is possible to discover new theorems

and algorithms for these groups and other groups.

The use of bilinear maps to studying p-groups I believe began with Baer [6], and my use

is similar. These methods have lost favor due to the stronger connections between p-groups and

nilpotent Lie algebras. However, sometimes it is best to trade a hard problem for p-groups for

an easier problem for bilinear maps, rather than an equivalently hard problem for nilpotent Lie

algebras. Indeed, the results in this dissertation can be applied also to nilpotent Lie algebras.
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CHAPTER II

DECOMPOSING p-GROUPS VIA JORDAN ALGEBRAS

ILl Introduction

For finite p-groups P of class 2 and exponent p the following are invariants of fully refined

central decompositions of P: the number of members in the decomposition, the multiset of orders of

the members, and the multiset of orders of their centers. Unlike for direct product decompositions,

Aut P is not always transitive on the set of fully refined central decompositions, and the number

of orbits can in fact be any positive integer. The proofs use the standard semi-simple and radical

structure of Jordan algebras. These algebras also produce useful criteria for a p-group to be

centrally indecomposable.

A central decomposition of a group G is a set 1t of subgroups in which distinct members

commute, and G is generated by 1i but by no proper subset. A group is centrally indecomposable if

its only central decomposition consists of the group itself. A central decomposition is fully refined
I

if it consists of centrally indecomposable subgroups.

We prove:

Theorem 11.1.1. For p-groups P of class 2 and exponent p,

(i) the following are invariants of fully refined central decompositions of P: the number of mem­

bers, the multiset of orders of the members, and the multiset of orders of the centers of the

members; and

(ii) the number of Aut P-orbits acting on the set of fully refined central decompositions can be

any positive integer.

Central decompositions arise from, and give rise to, central products (cf. Section II.2.1),

and hence Theorem II.l.1.(i) is a theorem of Krull-Remak-Schmidt type (cf. [49, (3.3.8)]). That
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theorem states that the multiset of isomorphism types of fully refined direct decompositions

(Remak-decompositions) is uniquely determined by the group, and the automorphism group is

transitive on the set of Remak-decompositions. Theorem n.1.1.(ii) points out how unrelated the

proof of Theorem 11.1.1.(i) is to that of the classical Krull-Remak-Schmidt theorem. Moreover,

inductive proofs do not work for central decompositions. For example, a quotient by a member

in a central decomposition generally removes the subtle intersections of other factors and so is of

little use. Similarly, automorphisms of a member in a central decomposition usually do not extend

to automorphisms of the entire group.

We conjecture that under the hypotheses of Theorem n.1.l, even the multiset of isomor­

phism types of a fully refined central decomposition of P is uniquely determined by P. For details

see Section 11.8.1.

While the literature on direct decompositions is vast, little appears to have been done

for central decompositions. For p-groups, results similar to Theorem n.1.l have concentrated on

central decompositions with centrally indecomposable subgroups of rank 2 and 3, with various

constraints on their centers [1, 2, 55, 56]. Using entirely different techniques, our setting applies

to groups of arbitrary rank at the cost of assuming exponent p.

The methods used in this paper involve bilinear maps and non-associative algebras, but not

the nilpotent Lie algebras usually associated with p-groups. We introduce a *-algebra and a Jordan

algebra in order to study central decompositions. The approach leads to a great many other results

for p-groups and introduces a surprising interplay between p-groups, symmetric bilinear forms, and

various algebras. Most of these ideas will be developed in subsequent works. As the algebras we use

are easily computed, in [60] we provide algorithms for finding fully refined central decompositions

and related decompositions - even for p-groups of general class and exponent (including 2-groups).

In [63] we prove there are pZn
3
/27+Cn

2
centrally indecomposable groups of order pn, which is of the

same form as the Higman-Sims bound on the total number of groups of order pn [18, 53]. In [63]

we also prove that a randomly presented group of order pn is centrally indecomposable, and we

characterize various minimal centrally indecomposable p-groups by means of locally finite p-groups,

including those p-groups with pI ~ Z~. Finally, in [62] we address central decompositions of 2­

groups, p-groups of arbitrary exponent, and p-groups of arbitrary class, by means of an equivalence

on p-groups related to the isoclinism of P. Hall [16].
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II. 1.1 Outline of the Proof

Section II.2 contains background and notation for central decompositions of groups and

orthogonal decompositions of bilinear maps.

Section I1.3 translates p-groups P of class 2 and exponent p into alternating bilinear maps

on PIP' induced by commutation. This approach is well-known and appears as early as Baer's

work [6] and refined in [28J and [58J; however, such techniques have been upstaged by appealing

to various associated Lie algebras of Kaloujnine, Lazard, Mal'cev and others [32J. By contrast,

the bilinear approach translates unwieldy central decompositions into natural-looking orthogonal

decompositions, and automorphisms into pseudo-isometries (Theorem II.3.6).

In Section II.4 we introduce two algebraic invariants of bilinear maps: the associative *­

algebra of adjoi~t operators, and the Jordan algebra of self-adjoint operators. The first of these

encodes isometries, while the second encodes orthogonal decompositions via sets of pairwise or­

thogonal idempotents (Theorem II.4.29). We use these algebras to give criteria for indecomposable

bilinear maps and centrally indecomposable p-groups (Corollary I1.4.35 and Theorem I1.4.36). We

also prove the first part of Theorem II.l.l.(i) ..

In Section II.5 we prove that a certain subgroup of isometries acts on suitable sets of

idempotents of our Jordan algebra with the same orbits as the full isometry group. Using the radical

theory of Jordan algebras and the classification of finite dimensional simple Jordan algebras we

identify the orbits of the isometry group acting on the set of fully refined orthogonal decompositions

(and therefore the orbits of CAut p(P') on the set of fully refined central decompositions of P) (Cor­

ollary I1.5.16).

In Section II.6, semi-refined central decompositions are introduced. These are derived from

properties of symmetric bilinear forms and then interpreted in the setting of p-groups, leading to

the proof of Theorem I1.l.l.(i).

Section I1.7 proves Theorem II.1.1.(ii). We also build families of centrally indecompos­

able groups of the types in Theorem II.4.36. These examples are only a sample of the known

constructions of this sort and the proofs provided are self-contained versions of broader results in

[63J.

Section II.8 has concluding remarks.
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11.2 Background

Unless stated otherwise, all groups, algebras, and vector spaces will be finite and p will be

an odd prime. We begin with brief introductions to central products and central decompositions

of groups, followed by orthogonal decompositions of bilinear maps.

II.2.1 Central Decompositions and Products

Let H be a central decomposition of a group G (d. Section ILl). The condition [H, K] = 1

for distinct H, K E H shows that H n (H - {H}) ::; Z(G) for all H E H. Whence, the members

of H are normal subgroups of G.

Central decompositions can be realized by means of central products. Fix a set H of

groups and a subgroup N of ii := I1HE'H H such that N n H = 1 for all H E H. The central

product of 1{ with respect to N is ii/N. If H is a central decomposition of a group G, then define

1f: ii....-4 G by (XH)HE'HI-+ fIHE'HXH. Then G 9'! ii/ker1f. These two treatments are equivalent

[5, (11.1)].

In an arbitrary central decomposition H of a group G, in general H n K and H n J are

distinct, for distinct elements H, K, J E H.

Definition 11.2.1. Given a subgroup M ::; G and a central decomposition H ofG, we callH an

M -central decomposition if M = H n K for all distinct H, K E H. The associated central product

is an M-central product.

Every central decomposition induces a Z(G)-central decomposition

HZ(G) := {HZ(G) : H E H}.

Some authors write HI * ... *H s or HI 0'" 0 H s for a Z(G)-central product. These notations still

depend on the given N ::; HI X ... X H s . We require a precise meaning in the following specific

case:
n n
~~
H 0···0 H = H x '" x H /N

. j

where N := ((1, ... , X, 1, ... , x-I, 1, ... )11 ::; i < j ::; n, x E Z(H)).

(ILl)
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11.2.2 Central Decompositions of p-groups of Class 2 and Exponent p

Using standard group theory, we show that central decompositions of a finite p-group P of

class 2 and exponent p reduce to central decompositions of a subgroup Q where P' = Q' = Z(Q)

and P = QZ(P). Furthermore, we show that for our purposes we may consider only Z(Q)-central

decompositions (d. Corollary II.2.9).

Definition II.2.2. An automorphism <p E AutP is upper central if Z(P)x<p = Z(P)x, for all

x E P, and lower central if P' x<p = P' x, for all x E P. The group of upper central automorphisms

we denote by Aut, P and the lower central automorphisms by Aut'}' P.

As P has class 2, Aut'}' P ::; Aut, P. Furthermore, every 0: E Aut'}' P is also the identity

onP'.

Lemma IL2.3. (i) There are subgroups Q and A of P such that Z(Q) = Q' = P', A::; Z(P)

and P = Q x A.

(ii) Given subgroups Q and R of P such that Z(Q) = Q' = P' = R' = Z(R) and P = QZ(P) =

RZ(P), if A is a complement to Q as in (i) then it is also a complement to R so that

P = Q x A = R x A. Furthermore, there is an upper central automorphism of P sending Q

to R and identity on Z(P).

Proof. (i). Since P / P' is elementary abelian, there is P' ::; Q ::; P such that Q n Z (P) = P' and

P = QZ(P). Furthermore, P' = [QZ(P), QZ(P)] = Q' and [P, Z(Q)] = [QZ(P), Z(Q)] = 1, so

Q' ::; Z(Q) ::; Q n Z(P) = Q' ..

Also, Z(P) is elementary abelian, so there is a complement A to P' in Z(P). Whence,

P = QZ(P) = QA and Q n A ::; Q n Z(P) n A = P' n A = 1. As A is central in P, P = Q x A.

(ii). Fix two subgroups Q and R as described in the hypothesis. So there is a complement

A to Q as in (i). Since Q n Z(P) = P' = R n Z(P) it follows that P = Q x A = R x A. Let

7r : P ---; P be the projection of P to R with kernel A. Restricting 7r to Q gives a homomorphism

0: : Q ---; R. Furthermore, P = QA so 0: is surjective, and Q n A = 1 so a is injective. Hence a is

an isomorphism. Indeed, Q' = P' = R' and 7r is the identity on R, so 0: is the identity on Q' = R'.

Then (3 = 0: X lA : Q x A ---; R x A is a upper central automorphism of P sending Q to R. 0

Definition II.2.4. If 1i is a central decomposition of P, then define Z(1i) = {H E 1i : H ::;

Z(P)}.
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Lemma 11.2.5. Let 1i be a fully refined central decomposition of P. If Q = (1i - Z(1i)) and

A = (Z(1i)), then P = Q x A, Q' = Z(Q) and Q'A = Z(P).

Proof. Certainly A ::; Z(P) and P = QA. Also P' = Q' and Z(P) = Z(Q)A. As 1i is fully

refined, every H E 1i - A is centrally indecomposable and so also directly indecomposable. By

Lemma II.2.3 it follows that H' = Z(H), for all H E 1i - Z(1i). As a result, Q' = Z(Q). Thus

P=Q x A. 0

Definition 11.2.6. Two central decompositions 1i and K of a group G are exchangeable if, for

each.J ~ 1i, there is an a E AutG such that.Ja ~ K and (1i - .J)a = 1i -.J.

For instance, if G = HI 0··· 0 Hs = K I 0··· 0 K t are exchangeable decompositions, then

s = t and, for each 1 ::; i ::; s,

Replacing 0 with x we recognize this as the usual exchange property for direct decompositions.

The Krull-Remak-Schmidt theorem states that all fully refined direct decompositions (Remak­

decompositions) are exchangeable [49, (3.3.8)]. In light of Theorem II.l.l.(ii), a general p-group of

class 2 and exponent p will have fully refined central decompositions which are not exchangeable.

Subgroups in Z(1i) can only be exchanged with subgroups in Z(K), and similarly for the

complements of these sets.

Lemma 11.2.7. If1i and K are two fully refined central decompositions of P such that 1i-Z(1i) =

K - Z(K), then 1i and K are exchangeable.

Proof. Set Q = (1i - Z(1i)), A = (Z(1i)), R = (K - Z(K)) and B = (Z(K)). By Lemma II.2.3.(i)

it follows that P = Q x A = R x B and by Lemma II.2.3.(ii), P = Q x B as well. The projection

endomorphism 11" from P to B with kernel Q makes a = 1Q x 11" an automorphism sending A to B

and identity on Q. Since A and B are abelian, any fully refined central decomposition is a direct

decomposition so (Z(1i))a is exchangeable with Z(K) by automorphisms of B. As AutB extends

to Aut P inducing the identity on Q, it follows that 1i and K are exchangeable. 0

Theorem 11.2.8. If1i and K are two fully refined central decompositions of P such that 1iZ(P) =

KZ(P), then 1i and K are exchangeable.
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Proof It suffices to prove that a single subgroup of 1i can be exchanged with one in K. Let

M = Z(P) and fix HE 1i - Z(1i). As 1iM = KM there is a K E K such that HM = KM. Since

H is not contained in Z(P) neither is K. If J E K such that H M = J M then J :::; (K, M), and so

K - {J} generates P. As K is fully refined this cannot occur. So K is uniquely determined by H.

By Lemma II.2.3.(i) and the assumption that 1i and K are fully refined, it follows that

H' = Z(H) and K ' = Z(K). As Z(HM) = M = Z(KM) it follows that HZ(HM) = HM =

KM = KZ(KM). So by Lemma II.2.3.(ii) there is an automorphism a of HM = KM which

is the identity on M and maps H to K. Extend a to P by defining a as the identity on all

J E H - {H}. This extension exchanges Hand K. 0

Corollary 11.2.9. Let P be a p-group of class 2 and exponent p.

(i) Aut<; P is transitive on Remak-decompositions.

(ii) Given two fully refined central decompositions Hand K of P, there is a <p E Aut<; P such

that H<p = K if, and only if, 1iZ(P) = KZ(P).

Proof. (i). This is the Krull-Remak-Schmidt theorem.

(ii). Suppose that H<p = K for some <p E Aut<; P. Given H E H set K := H<p. Then

HZ(P)jZ(P) = (HZ(P)jZ(P))<p = KZ(P)jZ(P) so HZ(P) = KZ(P). Thus HZ(P) = KZ(P).

For the reverse direction, let HZ(P) = KZ(P). Then by Theorem II.2.8 there is a <p E

Aut<; P sending H to K. 0

II.2.3 Bilinear and Hermitian maps, Isometries, and Pseudo-Isometries

In this section we introduce terminology and elementary properties for bilinear maps which

we will use frequently. Throughout, let V and W be vector spaces over a field k.

A map b : V x V -+ W is k-bilinear if it satisfies

b(su + u/, tv + v') = stb(u, v) + tb(u' ,v) + sb(u, v') + b(u' ,v')

for all u, u/,V, v' E V and s, t E k. Given X, Y ~ V define

b(X, Y):= (b(u,v) : u E X,v E Y).
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For convenience we assume all our bilinear maps have W = b(V, V). Whenever X ~ V we can

restrict b to

The radical of b is

bx : X x X --t b(X,X).

radb:= {u E V: b(u, V) = 0 = b(V,u)}.

(II.2)

If rad b = 0 then b is non-degenerate. A k-bilinear map b : V x V --t W is called (}-Hermitian if

(} E GL(W) and

b(u,v) = b(v,u)(}, VU,v E V. (11.3)

As W = b(V, V), (} is an involution (which in this paper will mean (}2 1 and allow (} = 1).

Furthermore, (} is uniquely determined by b (assuming W i= 0) and so it is sufficient to say b is

Hermitian.

. If (} = 1w we say that b is symmetric and if (} = -1w we call b skew-symmetric. As

we work in odd characteristic it follows that every skew-symmetric bilinear map is equivalently

alternating in the sense that b(v, v) = 0 for all v E V.

Given two k-bilinear maps b : V x V --t Wand b' : V' x V' --t W' a morphism from b to

b' is a pair (a,j3) of linear maps a: V --t V' and j3: W --t W' such that

b'(ua,va) = b(u,v)j3, Vu,v E V. (II.4)

When 'a is surjective it follows that W' = b'(Va, Va); so, j3 is uniquely determined by a. 1nthis

case we often write <:1 for (3. If a and <:1 are isomorphisms then we say band b' are pseudo-isometric.

The term isometric is reserved for the special circumstance where W = W' and <:1 = 1w.

The pseudo-isometrygroup is

1som*(b) :=((a,<:1) E GL(V) x GL(W) :

b(ua,va) = b(u,v)<:1,Vu,v E V},

and the isometry group is

1som(b):= {a E GL(V): b(ua, va) = b(u,v),Vu,v E V}.

(II.5)

(II.6)
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(The decision to write the isometry group as a subgroup of GL(V) rather than GL(V) x GL(W)

is to match with the classical definition of the isometry group of a bilinear form.) When b is a

bilinear k-form (Le.: W = k), the pseudo-isometry group goes by various names, including the

group of similitudes and the conformal group of b. The following is obvious:

Proposition 11.2.10. (i) If (<p, 0) is a pseudo-isometry from b to b' then Isom*(b) S:! Isom*(b')

via (0:, &) ~ (0:'P, &'13), and Isom(b) S:! IsomW) via 0: ~ 0:'P.

(ii) If b : V x V ----> W is a bilinear map, then (0:, &) ~ & is a homomorphism from Isom*(b) into

GL(W) with kernel naturally identified with Isom(b).

In light of Proposition II.2.10.(ii) we will view Isom(b) as a subgroup of Isom*(b) and

Isom*(b)jIsom(b) as a subgroup of GL(W).

11.2.4 J..-Decompositions

Definition 11.2.11. Let b: V x V ----> W be a k-bilinear map.

(i) A set X of subspaces of V is a J..-decomposition of b if' (a) b(X, Y) = 0 for all distinct

X, Y E X and (b) V = (Y) for Y ~ X if, and only if, Y = X.

(ii) A subspace X of V is a J..-factor if there is a J..-decomposition X containing X. Furthermore,

define

X.L := (X - {X}).

(iii) We say b is J..-indecomposable if is has only the trivial J..-decomposition {V}.

(iv) A l--decomposition X of b is completely refined if bx is l--indecomposable for each X E X

(cf. (II.2)).

When b is Hermitian it is also reflexive in the sense that b(u, v) 0 if, and only if,

b(v,u) = 0, for u,v E V. Also, X.L = {x E V: b(X,x) = O}.

Let X be a J..-decomposition of b and take X E X. For each x E X n (X -:- {X}) we

know b(x, (X - {X})) = 0 and b(x,X) = 0; thus, b(x, V) = O. Hence, X n (X - {X}) :s; radb.

Thus a fully refined l--decomposition is also a direct decomposition of V (and more generally any

J..-decomposition, if the bilinear map is non-degenerate.)
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The pseudo-isometry group. (II.5) acts on the set of all J..-decompositions, but may not be

transitive on the set of all fully refined decompositions. This fact can already be seen for symmetric

bilinear forms (see Theorem II.5.5).

II.2.5 Symmetric Bilinear Forms

Various parts of our proofs and examples require some classical facts about symmetric

bilinear forms over finite fields.

Let K be a finite field and w E K a non-square. By [4, p. 144], every n-dimensional

non-degenerate symmetric bilinear K-form is isometric to d : Kn x Kn ---+ K defined by

(11.7)

where D is In or In- 1 E9 [w]. If n is odd then these two forms are pseudo-isometric, but they are not

pseudo-isometric if n is even. If A E GL(n, K) then d(uA, vA) = u(ADAt)vt . The discriminant

of d is

. (II.B)

for any A E GL(n, K) [4, (3.7)]. The discriminant distinguishes the two isometry classes of non­

degenerate symmetric bilinear forms of a fixed dimension.

Lemma 11.2.12. Let d: K2 x K 2 ---+ K be defined as in (11.7).

Ii) If di'cd ~ [1] then ([; ~a]'W) E [,om'Cd), wh're W ~ a' +fi' E K.

Iii) If discd ~ {wi th,n ([: ~],w) E hom'Cd)

Proof. In both cases ADAt = wD for the given matrix and scalar pair (A, w) and D as in (II.7). 0

Proposition 11.2.13. Let d be as in (11.7). Then (by definition) Isom(d) is the general orthogonal

group GO(d). Also,

(i) ifn is odd then Isom*(d) = ((a, 1), (sIn, S2) Ia E GO(d), s E KX)i hence, Isom*(d)jIsom(d) ~

(KX?i
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(ii) if n is even then Isom*(d) = ((0:,1), (sIn' S2), (<p,w) I 0: E GO(d), s E K X) where <p :=

¢ EB··· EB ¢ EB /1, (¢,w) is as in Lemma II.2.12.(i) and

(a) if discd = [1] then (/1,w) is as in Lemma II.2.12.(i); and

(b) ifdiscd = (w] then (/1,w) is as in Lemma II.2.12.(ii).

In particular, Isom*(d)/Isom(d) ~ K X.

Therefore, IIsom*(d)1 = c(q - 1)1 GO(d)1 where q = IKI, c = 1/2 if n is odd, and c = 1 if n is

even.

Proof. By Proposition II.2.1O.(ii) we start knowing Isom*(d)/Isom(d) :S: K X
• Furthermore,

Isom*(d) = {(A,8) E GL(V) x k X
: ADAt = sD}. Hence, for each (A, s) E Isom*(d) we must

have sn = (detA)2. (i). If n is odd then s must be a square. Hence, Isom*(d)/Isom(d) ~ (K X )2.

As (sIn, 8
2) E Isom*(d) it follows that Isom*(d) = ((0:,1), (sIn, s2) I 0: E GO(d), s E KX).(ii).

If n is even, then (<p,w) E Isom*(d). Thus Isom*(d)/Isom(d) = (s2,w : s E KX) = K X and

Isom*(d) = ((0:,1), (sIn,s2), (<p,w) 10: E GO(d), s E KX). D

II.3 Bilinear Maps and p-groups

In this section we transform fully refined central decompositions into ..i-decompositions,

automorphisms into pseudo-isometries, and back (Proposition 11.3.3 and Theorem 11.3.6).

The proofs use a well-known method to convert p-groups of class 2 into bilinear maps

explored as early as [6], compare [28], and [58, Section 5]. The method is closely related to the

Kaloujnine-Lazard-Mal'cev correspondence (see [32, Theorems 10.13,10.20]).

Our notation is additive when inside elementary abelian sections.

II.3.1 The Functor Bi

Let P be a p-group of class 2 and exponent p, V:= PIP', and W:= P'. Then V and W

are elementary abelian p-groups, that is, Zp-vector spaces. The commutator affords an alternating

Zp-bilinear map Bi(P) : V x V -; W where b := Bi(P) is defined by

b(P'x, P'y) := [x, y], Vx,y E P. (II.9)
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The radical of b is Z (P) I P'. If a : P -; Q is a homomorphism of p-groups of class 2 and exponent

p, then

Bi(a) := (alp/pI: P'x f-t Q'xa,alp, : x f-t xa) (IUO)

is a morphism from Bi(P) to Bi(Q) (d. (II.4)).

Remark 11.3.1. We have refrained from using V:= PIZ(P) and W:= Z(P). A homomorphism

a : P -; Q of p-groups need not map the center of P into the center of Q so with W = Z(P) we

cannot induce a morphism Bi(a) of Bi(P) -; Bi(Q). Moreover, using P' we have W = b(V, V).

The penalty is that b may be degenerate. We avoid this difficulty by means of Lemma II.2.3.(i).

Given another homomorphism (3 : Q -; R then Bi(a{3) = Bi(a)Bi({3); so, Bi is a functor.

Finally, if a,{3 : P -; Q are homomorphisms then Bi(a) = Bi({3) if, and only if, alp/pI = {3lp/pl

(which forces also aipi = (3lpl).

Finally, subgroups Q:::; P are mapped to bQpl/pl (see (II.2)). If Q' = Z(Q) (as in Lemma

II.2.3.(i)) then Q' :::; QnP' :::; QnZ(p) :::; Z(Q) = Q' so that Qnp' = Q'. Hence, QP' IP' ~ QIQ'

and bQPI / pi is naturally pseudo-isometric to Bi(Q).

Proposition 11.3.2. If 1i is a central decomposition of P, then Bi(1i) := {HP'I P' : H E 1i} is a

.i-decomposition of b.

Proof. Let Hand K be distinct members of 1i. As [H, K] = 1 it follows that b(H P' I P', K P'I P') =

O. Furthermore, 1i generates P and so X := Bi(1i) generates V = PIP'. Take a proper subset

Y c X. Define:1:= {H E 1i: HP'IP' E Y} ~ 1i. Note Y = Bi(:1). Since Y is a proper subset of

X, it follows that :1 generates a proper subgroup Q of P and thus Y generates QP'I P'. We must

show QP'IP' i= PIP', or rather, that QP' i= P.

Suppose that QP' = P. For each K E 1i -:1, K isnot contained in Q by the assumptions

on 1i. Now [P : P'] = [Q : Q n P'] :::; [QK : Q n P'] :::; [P : P'] so QK = Q and K :::; Q. This is

impossible. Hence Q is proper. D

II. 3.2 The Functor Grp

Suppose b : V x V -; W is an alternating Zp-bilinear map. Equip the set V x W with the

product

(u,w) * (v,x) := (u +V,w + x + ~b(U,v)), V(U,w), (v,x) E V x W.
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The result is a group denoted Grp(b). If (a,a) is a morphism from b to b' : V' x V' ----> W' (see

(11.4)), then Grp(a,a) : Grp(b) ----> Grp(b' ) is (v,w) H (va,wa).

By direct computation we verify that Grp(b) is a p-group of class 2 and exponent p with

center radb x Wand commutator subgroup 0 x W. Furthermore, Grp is a functor. Compare with

[58, Theorem 5.14] and [6, Theorem 2.1].

If <p E Aut, P (d. Definition II.2.2) then <p induces the identity on V = P/ pI and W = pl.

So write <p -1 for the induced Zp-linear map V ----> W defined by Plx(<p - 1) = X-I (x<p).

Proposition 11.3.3. Let P = Grp(b). All the following hold:

(i) Aut, P ~ hom (V, W) via the isomorphism <p H <p - 1, for all <p E Aut, P.

(ii) AutP ~ Isom*(b) ~ Aut,P, with (1 + <p)(a,&) = 1 + a- I <pa for each <p E hom (V, W) and

(a, a) E Isom*(b).

(iii) CAutP(PI) ~ Isom(b) ~ Aut, P.

Proof. These follow directly from the definition of Grp(b). o

If U ::; V then define Grp(bu ) as U x b(U, U) ::; Grp(b). It is evident that this determines

a subgroup. Similarly, given a set of subspaces X of V define Grp(X) = {Grp(bu) : U EX}.

Proposition 11.3.4. If X is a .i-decomposition of b then Grp(X) is a central decomposition of

Grp(b).

Proof. Let X and Y be distinct members of X. Set H:= Grp(bx ), K:= Grp(by ) and P = Grp(b).

Since b(X, Y) = 0 it follows that [H, K] = 1. Also, V is generated by X, and V x 0 generates P,

so that P is generated by 1£ := Grp(X).

Let :f be a proper subset of 1£. Define Y = {X EX: Grp(bx) E :f}. As:f =I- 1£ it

follows that X =I- Y and therefore U := (Y) =I- V. Furthermore, (:f) = Grp(bu ) = U x b(U, U) =l­

V x b(V, V) = P. So indeed, 1£ is a central decomposition. 0

11.3.3 Equivalence of Central and Orthogonal Decompositions

Here we relate fully refined central decompositions to fully refined .i-decompositions.

Proposition 11.3.5. Let b : V x V ----> W be an alternating Zp-bilinear map and Pap-group of

class 2 and exponent p.
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(i) There is a natural pseudo-isometry (7,i) from b to b':= Bi(Grp(b)).

(ii) Every function f : PIP' ---+ P to a transversal of PIP' in P, with Of = 1 determines an

isomorphism <Pe : P ---+ P where P:= Grp(Bi(P)).

Proof (i). Let b: V X V --t W be an alternating bilinear map. Set P = Grp(b) and b' = Bi(Grp(b)).

Recall P' = 0 x Wand define 7 : V ---+ PIP' by V7 = (v,O) + 0 x Wand i : W ---+ 0 x W by

wi = (O,w). This makes (7,7) a pseudo-isometry from b to b'. It is straightforward to verify that

(7, i) is indeed a natural transformation.

(ii). Now let P be an arbitrary p-group of class 2 and exponent p. Set V := PIP', W := P',

b := Bi(P) and P := Grp(Bi(P)). Given a lift R: V ---+ P with OR = 1, define X<pe := (x,x - xR)

where x := P'x. The group P has the presentation

(VR, WI [uf,vR] = b(u,v), exponent p, class 2)

and P has the presentation

(V x 0,0 x W I [(u, 0), (v, 0)] = (0, b(u, v)), exponent p, class 2).

Evidently <pe preserves the exponent relations. Furthermore,

[x, y]<pe = [xR, yR]<pe = b(x, y)<pe = (0, b(x, y))

for each x, YEP. Hence, <Pe preserves all the relations of the presentations and so <Pe is a

homomorphism, indeed, an isomorphism.

o

Theorem n.3.6. Let P be a p-group of class 2 and exponent p such that P' = Z(P), and let 'H

be a central decomposition of P.

(i) P is centrally indecomposable if, and only if, Bi(P) is l.-indecomposable.

(ii) 1i is a fully refined if, and only if, Bi('H) is fully refined.

(iii) if J( is a central decomposition of P, then
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(a) there is an automorphism a E Aut P such that (HP')a = KP' if, and only if, there is a

((J,~) E Isom*(Bi(P)) such that (Bi(H)){J = Bi(K).

(b) there is an automorphism a E CAut P (P') such that (HP')a = KP' if, and only if, there

is a (J E Isom(Bi(P)) such that (Bi(H)){J = Bi(K).

Proof. (i). Let P be a centrally indecomposable group and take b := Bi(P), V = PjP', W = P'.

Suppose that X is a ..i-decomposition of b. It follows that {X x b(X, X) : X E X} is central

decomposition of Grp(Bi(P)) Proposition 11.3.4. By Proposition 11.3.5.(ii) we know P is isomorphic

to Grp(Bi(P)) so that Grp(Bi(P)) must be centrally indecomposable. Therefore, X x b(X, X) =

Grp(Bi(P)) = V x W so that X = V, for each X E X. Since no proper subset of X generates V it

follows that X = {V} and b is ..i-indecomposable.

Next suppose that b is ..i-indecomposable and that P = Grp(b). Suppose that H is a fully

refined central decomposition of P. Then {HP'jP': H E 1i} is a ..i-decomposition of Bi(Grp(b)),

Proposition 11.3.2. Proposition 11.3.5.(i) states that b is pseudo-isometric to Bi(Grp(b)) and so

HP'jP' = PjP', or rather HP' = P, for each HE H. Hence H' = P' for each HE H. Since

P' =f- 1 there is an H E H which is non-abelian. Furthermore, H is centrally indecomposable

so that by Lemma 1I.2.3.(i), H' = Z(H). Therefore, H P' = H E!1 A for some A ::::; Z(P) such

that H' A = P', Lemma 11.2.3.(i). But H' = P' forces A = 1. Thus H = P, and P is centrally

indecomposable.

(ii). This follows from Proposition 11.3.4, Proposition 11.3.2 and (i). Finally, (iii) follows

from Proposition 11.3.3.

Example 11.3.7. If H is p-group of class 2 and exponent p with b = Bi(H) then

n n

Bi(Ho.~.oIi)=~,

o

n
~

(cf (11.1)). Furthermore, the canonical central decomposition {H1 , . .. , Hn } of H 0 •.. 0 H corr-e-
n

,.-A--...
sponds to the canonical ..i-decomposition {Vl,"" Vn } of b ..i ... ..i b.
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11.4 Adjoint and Self-adjoint Operators

In this section a structure theorem for isometry groups (Theorem II.4.l7) is proved. Also

a criterion is introduced for groups/bilinear maps to be indecomposable (Theorem II.4.36), and a

stronger version of the first part of Theorem II.I.l (Theorem II.4.32) is proved.

Throughout this section let b : V x V -; W be a non-degenerate Hermitian bilinear map

over a field k (d. (11.3)). We associate to b a *-algebra, and a Hermitian Jordan algebra of self­

adjoint elements. The isometry group of b is a subgroup of the group of units of the *-algebra

and ..i-decompositions are represented by sets of pairwise orthogonal idempotents of the Jordan

algebra.

II.4.1 The Adjoint *-algebra Adj(b)

Definition 11.4.1. (i) A map f E End V has an adjoint f* E End V for b if

b(uf,v) = b(u,vf*), Vu,v E V.

Write Adj(b) for the set of all endomorphisms with an adjoint for b.

(ii) A *-algebra is an associative k-algebra A with a linear bijection * : A --t A such that (ab)* =

b*a* and (a*)* = a for all a, bE A.

(iii) A homomorphism f : A --t B of *-algebras is a *-homomorphism if a* f = (af)* for all

aE A.

(iv) The trace of A is T(x) = x + x* for all x E A.

(v) The norm of A is N(x) = xx* for all x E A.

Proposition 11.4.2. Adj(b) is an associative unital *-algebra; in particular, adjoints are unique.

Proof. Let f E Adj(b) and 1',1" E End V where b(u, vf') = b(uf,v) = b(u,vl") for all u,v E V.

As b is non-degenerate, vf' = vI" so that I' = f". If f, 9 E Adj (b) then b(u(lg), v) = b(uf, vg*) =

b(u,v(g*f*)) for u,v E V; so, fg E Adj(b) with (lg)* = g*l*. Since b(u,v) = b(v,u)B for

u,v E V, it follows that b(uf*,v) = b(v,uf*)B = b(vf,u)B = b(u,vf) for every f E Adj(b). Hence,

f* E Adj(b) and (1*)* = f. 0
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Proposition 11.4.3. Let b : V x V -; Wand b' : V' x V' -; W' be non-degenerate Hermitian

maps.

(i) A pseudo-isometry (a, (3) from b to b' (cf. (II.4)) induces a *-isomorphism

of Adj(b) to Adj(b'). In particular, Isom*(b) acts on Adj(b).

(ii) Let cp E GL(V) and s E P. Then (cp, slw) E Isom*(b) if, and only if, cp E Adj(b) and

cpcp* = slv. Hence,

Isom(b) = {cp E Adj(b) : cpcp* = lv}.

Proof. (i) We have

b'(uf(a,{3),v) = b'(ua- 1 fa,va- 1a) = b(ua-1 f,va- 1)(3

= b(ua-l, va- 1 f*)(3 = b'(u, v(f*)(a,{3)),

for each u, v E V' and f E Adj(b). Hence f Ca ,(3) E Adj(b') with (f(a,{3))* = (f*)Ca,{3).

(ii) Take (cp, slw) E Isom*(b), s E P. Then

Vu,v E V.

Hence cp E Adj (b) with cp* = scp -1. Conversely, if cp E Adj (b) with cpcp* = s1v then

b(ucp,vcp) = b(u,vcpcp*) = sb(u,v),

Thus (cp,slw) E Isom*(b).

Vu,v E V.

o

II.4.2 Simple *-algebras and Hermitian C-forms d: V x V -; C

In this section we summarize in a uniform manner the known results of finite simple

*-algebras (Theorem II.4.4) and the corresponding finite classical groups (Proposition II.4.l3).

Theorem 11.4.4. For a finite simple *-algebra (A, *) over a field k of odd characteristic, there is
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an n E N and a field extension K/k such that (A, *) is *-isomorphic to one of the following:

Orthogonal case Mn(K) with the X f---t D-1xtD as the involution, for X E Mn(K), where D

is either In or In- 1 EB [w] and w E K is a non-square (compare (11.7)).

Unitary case M n (F) with involution X f---t Xt , where F / K is a quadratic field extension with

involutory field automorphism x f---t X, x E F, applied to the entries of X E Mn(F).

Exchange case Mn(K EB K) with involution X f---t j(t, where (x, y) := (y, x) for (x, y) E K EB K,

defines an involution on K EB K which is applied to the entries of X E Mn(K EB K),

Symplectic case Mn (M2 (K)) with involution X f---t j(t, where

] [ ] [ ] [ ]

-1

-b 0 1 abO 1

a -1 0 c d -1 0
(ILl1)

defines an involution on M 2 (K) which is applied to each entry of X E Mn (M2 (K)).

Proof See [25, p.178] restricting consideration to finite fields. (Compare with Theorem 11.4.7,

Proposition H.4.ll, (11.7), and Corollary IIA.12.) o

The above description of these algebras will allow us to give uniform proofs later; however,

there are simpler and more standard descriptions, for example:

Remark 11.4.5.. The exchange type *-algebras can also be described as Mn(K) EB Mn(K) with

(X, Y)* = (yt, X t ) for (X, Y) E Mn(K) EB Mn(K).

The symplectic type *-algebras are *-isomorphic to M 2n (K) with involution X* = JxtJ- 1,

for each X E M 2n (K), where J := In 0 [ 0 1] (25, p. 178].
-1 0

Definition 11.4.6. (27, Definition 6.2.2J A *-algebra C is an associative composition algebra over

a field K (where by convention x* is denoted x) if

(i) K={XEC:X=X} and

(ii) xax = 0 for all a E C implies x = O.

Theorem 11.4.7. (27, Theorem 6.2.3JOver a finite field K of odd characteristic each associative

composition algebra C is *-isomorphic to one of the following:
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(i) K with trivial involution,

(ii) a quadratic field extension F / K with the involutorial field automorphism,

(iii) K tB K with the exchange involution (x, y) = (y, x) for (x, y) E K tB K, or

(iv) M 2 (K) with the involution (II.ll).

In particular these algebras are simple *-algebras and with the exception of (iii) also simple algebras.

Norms (cf. Definition II.4.1.(v)) behave as follows: N(O) = Kif 0 > Kj otherwise, N(K) = K2.

Definition 11.4.8. Let 0 be an associative composition algebra and V be a free left O-module.

We call a K -bilinear map d : V x V --> 0 a Hermitian O-form if, for u, v E V and s E 0, it follows

that:

(i) d(u,v) = d(v,u), and

(ii) d(su,v) = sd(u,v) and d(u,sv) = d(u,v)s.

The rank of d is the rank of V as a free left O-module.

Note that a Hermitian O-form is also a Hermitian K -bilinear map and the usual definitions

of (pseudo-)isometries apply. It is most important to note that d(x,x) = d(x,x); hence, d(x,x) E

K, for all x E V.

Let 0 be an associative composition algebra over K and D E Mn(O) where D = Dt.

Then dD(u,v) := uDfi, for u,v E on, determines a Hermitian O-form dD : on X on --> O. Here

adjoints f,1* E Adj(dD) can be represented as matrices F, F* E Mn(O) such that:

uFDvt = dD(uf,v) = dD(u,v1*) = uD(F*)tvt, Yu,v Eon.

Hence, FD = D(F*)t. As D is invertible, Adj(dD) *-isomorphic to Mn(O) with involution defined

by

F* := DFt D-1 , (II.12)

Likewise, if d : V x V --> 0 is a Hermitian O-form and X is an ordered basis of V as a

free left O-module, then setting Dxy := d(x, y), for all x, y E X, determines a matrix Din Mn(O),

n = lXI, such that D = Dt and the Hermitian O-form given by D is isometric to d. Furthermore,

d is non-degenerate if, and only if, D is invertible. So we have:
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Corollary 11.4.9. Every simple *-algebra is *-isomorphic to Adj(d) for a non-degenerate Hermi­

tian C-form d: V x V ----} C.

In the cases where C has orthogonal or unitary type we have the usual symmetric and

Hermitian forms, respectively. Suppose instead the C = M 2 (K) and that d : V x V ----} C is the

non-degenerate Hermitian C-from d(u, v) := uvt , where V = Cn. There is a natural submodule U.

of V defined by:

Furthermore, d(U, U) ~ K; hence, the restrictiondu: U x U ----} K is a bilinear form. It is easily

checked that du is alternating and non-degenerate. The case when C has exchange type is not

usually handled as a form but for a uniform treatment we find it convenient. In particular we may

state:

Definition 11.4.10. Given a non-degenerate Hermitian C-form d: V x V ----} C, an element x E V

is non-singular if d(v, v) i=- 0 and dim Cv = dim C.

Proposition 11.4.11. Every non-degenerate Hermitian C-form d: V x V ----} C has an orthogonal

C -basis X (i. e.: X is a C -basis for V and d(x, y) = 0 if x i=- y, x, Y EX). FUrthermore, every

fully refined i.-decomposition of d determines an orthogonal basis and so every i.-indecomposable

has rank 1.

Proof First we show that there is always a non-singular vector x E V.

Suppose otherwise: d(x,x) = 0 for any x E V such that dimCx= dimC. Immediately,

d(v,v) = 0 for all v E V and thus -d(v,u) = d(u,v) = d(v,u) for u,v E V.

For each u E V, Cd(u, V) + d(V,u)C is a bar-ideal of C. As C is a simple bar-algebra

(Theorem II.4.7), Cd(u, V) + d(V,u)C = 0 or C. If Cd(u, V) + d(V,u)C = 0 then Cd(u, V) = 0

and d(V, u)C = 0; hence, u E radd = O. Thus, C = Cd(u, V) + d(V, u)C for all u E V - {O}. We

divide into two cases.

If C = Cd(u, V) then 1 = d(su, v) for some sEC and v E V. Then 1 = I = d(su, v) =

-d(su,v) = -1, so char K = 2, which we exclude. Similarly, d(V,u)C i=- c.
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Now suppose G =I- Gd(u, V), d(V, u)G. Then Gd(u, V) is a proper ideal of G. By Theo-

rem 11.4.7 we see that G = K El1 K with the exchange involution. Without loss of generality,

take Gd(u,V) = KEl10. Hence (1,0) = sd(u,v) for some s E G and v E V. Thus, (1,1) =

d(su, v) + d(su, v) = d(su, v) - d(su, v) = 0, which is false. Therefore, there exists a non-singular

vector x E V.

As 0 =I- d(x, x) = d(x, x) it follows that d(x, x) E K X
• Then d (v - ~i~::~ x, x) = d(v, x) -

d(v,x) d( ) 0 J: V Th' d(v,x) l- h d(v,x) ( d(V,x») hd(x,x) x,x = , lor v E. at IS, v - d(x,x)x EX; ence, v = d(x,x)x + v - d(x,x)x sows

that V = Gx + xl-. Since Gx n xl- = 0 it follows that V = Gx El1 xl-. Restrict d to xl- and induct

to exhibit an orthogonal basis X for d on xl-. Thus X U {x} is an orthogonal basis of d on V. D

Notice in the case of type symplectic type, if {Xl, ... , x n } is an orthogonal G-basis for

d, then V = GXI ..1 .. , ..1 Gxw Translating to the associated alternating bilinear form d', the

orthogonal basis becomes a hyperbolic basis:U = HI ..1 ... ..1 Hn where each Hi is a hyperbolic

line (cf. [4, Definition 3.5]). In the case of exchange type, a natural orthogonal basis is given by

{(x,x) : x E X} where X is a K-basis of U and V = U El1 U, U = K n
•

Corollary II.4.12. IfG does not have orthogonal type then d has an orthonormal G-basis (i.e.:

a basis X where d(x, y) = Oxy, for all x, y EX). In particular, d is pseudo-isometric to the G-dot

product d : Gn x Gn ---; G where d(u, v) := uii, for all u, v E V.

Proof. From Theorem H.4.7, N(G) = K whenever G > K. Therefore if v E V such that d(v, v) =I- 0

then d(v,v) = N(s) = ss for some s E G X
• Let u = S-IV so that d(u,u) = s-ld(v,v)S-1 =

S-1 N(S)S-l = 1. By Proposition HAll, we have an orthogonal basis X for d. Replace each

x E X with S;I X so that d(S;I X, S;I X) = 1 and {S-I X : x E X} is still an orthogonal G-basis. D

Proposition 11.4.13. Let d : V x V ---; G be a non-degenerate Hermitian G-form. Then Adj(d) ==

End V ~ Mn (G) as an algebra, and the following hold:

Orthogonal type G = K and Isom(d) = GO(d);

Unitary type G = F and Isom(d) = GU(d);

Exchange type G = K El1 K, Isom(d) ~ GL(U), V = U El1 U; and·

Symplectic type G = M 2(K) and Isom(d) ~ Sp(U), V = U El1 U.
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Proof. The first two cases are by definition alone. If C = KEEl K then Adjc(d) ~ End U EEl End U

with (J EEl g)* = 9 EEl f· Hence, the isometry group is:

Isom(d) = {f EEl 9 E GL(U) EEl GL(U) : (J EEl g)(J EEl g)* = 1 EEl I}

= {f EEl r 1
: f E GL(U)} ~ GL(U).

Finally, if C = M 2 (K) then Adj(d) ~ Adj(d') where d' is the non-degenerate alternating K-bilinear

form on U, Remark 11.4.5. Therefore Isom(d) ~ Isom(d') as both are the set of elements defined

by <p<p* = 1 (Proposition IIo4.3.(ii)). The latter group is by definition Sp(U). 0

II.4.3 Radical and Semi-simple Structure of *-algebras

Definition II.4.14. (i) A *-ideal is an ideal I of a *-algebra A such that 1* = I.

(ii) speco A is the set of all maximal *-ideals of A.

(iii) A *-simple algebra is a *-algebra with exactly two *-ideals.

(iv) A *-semi-simple algebra is a direct product of simple *-algebras.

(v) A *-ideal is nil if it consists of nilpotent elements.

Theorem II.4.15 (*-algebra structure theorem). Let A be a *-algebra with Jacobson radical rad A.

Then

(i) rad A is a nil *-ideal,

(ii) AI rad A is *-semi-simple, and

(iii) if A is *-simple then A ~ Adj(d) for a non-degenerate Hermitian C-form d.

Proof. (i) Since * is an anti-automorphism of A, every left quasi-regular element is mapped to a

right quasi-regular element. Thus (rad A)* ~ rad A. Since A is finite dimensional, the Jacobson

radical is nilpotent.

(ii) We induce * on AI rad A, so that AI rad A is a *-algebra which is product of uniquely

determined minimal ideals. If I is a minimal ideal of AI rad A then either 1* = I or In I* = 0 so

that (1,1*) = I EEl 1* is a minimal *-closed ideal. Thus AI rad A is a product of simple *-algebras.

For (iii) see Section 1104.2. 0
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II.4.4 Isometry Groups are Unipotent-by-classical

We describe the structure of the isometry group of a Hermitian bilinear map. To do this

we invoke the following generalization ofthe Wedderburn Principal Theorem for finite dimensional

*-algebras over fields not of characteristic 2 (d. [37]).

Theorem 11.4.16. [54, Theorem 1} Given a finite dimensional *-algebra A over a separable field

k J there is a subalagebra B of A such that B* = B, A = B EEl rad A as a k-vector space, and

B ~ A/radA.

Recall that the p-core of a finite group G, denoted Op(G), is the largest normal p-subgroup

of G.

Theorem 11.4.17. If Adj(b)/ radAdj(b) ~ Adj(d1) EB '" EB Adj(ds ) where d i is a non-degenerate

Hermitian Gi-form, for some associative composition algebra Gi, for each 1 :S i :S s, then

Isom(b) ~ (lsom(d1) x '" x Isom(ds )) ~ Op(lsom(b)),

where p is the characteristic of Adj(b).

Proof Let A := Adj(b). By Theorem 11.4.16 we have A = B EEl radA where the projection map

n : A --7 B is a surjective *-homomorphism with kernel rad A. Now set G = {<p E B : <p<p* = I}

and N = {<p E A : <p<p* = 1, <p - 1 E rad A}. If <p = 1 + z, r = 1 + z' E N, z, z' E radA,

then <pr -1 = z + z' + zz' E radA so that <pr E N. Hence, G and N are subgroups of Isom(b)

and G n N = 1. As n is a *-homomorphism, (<pn)(<pn)* = (<p<p*)n = 1 for all <p E Isom(b) C A

(Proposition 1I.4.3.(ii)). Hence, Isom(b)n = G. Finally, the kernel of n restricted to Isom(b)

is N. Thus Isom(b) = G ~ N. Since B ~ A/radA ~ Adj(d1) EEl· .. EEl Adj(ds ) it follows that

G ~ Isom(dd x ... x Isom(ds ) (Proposition II.4.3.(ii)). By Proposition 11.4.13, Op(G) = 1. Thus,

Op(lsom(b)) = N. 0

II.4.5 The Jordan Algebra Sym(b) of Self-adjoint Operators

At last we introduce the Jordan algebras associated to our bilinear maps (and thus to our

p-groups as well).
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. Definition II.4.18. For a k-bilinear map b : V x V ~ W, define

Sym(b) := {f E End V: b(uf, v) = b(u, vJ), Vu, v E V}

(The notation Sym(b) has no relationship to symmetric groups.) This is an instance of a

broader class of objects (see Theorem II.4.20):

Definition IIA.19. Given a *-algebra A, the special Hermitian Jordan algebra of A is the set

n(A,*) = {a E A: a = a*}

equipped with the special Jordan product x. y = ~(xy +yx) (25, pp. 12-13].

Special Hermitian Jordan algebras are part of the family of unital Jordan algebras, which

are algebras J with a binary product. such that:

(i) x. Y = Y • x,

(ii) x·2 • (y. x) = (x· 2 • y) • x where x·2 = x. x, and

(iii) x. 1 = 1 • x = x

for all x, y E J [25, Definition I,2). Unless stated otherwise, our use of Jordan algebras is restricted

to finite special Hermitian Jordan algebras. As we deal only with odd characteristic, the definitions

we provide for ideals, powers, and related properties are in terms of the classical x • y product

rather than the quadratic Jordan definitions. This said, we still have many uses for the quadratic

Jordan product which in a special Hermitian Jordan algebra J := n(A, *) is simply:

yUx := xyx E J, x,y E J. (II.13)

Evidently the Jordan product. need not be associative. However, we always have xi • xi =

~(Xi+i+Xj+i) = xi+i , i,j EN (d. [25, p. 5]). As J =n(A,*) and 1* = 1, the identity of J is the

identity of A. Furthermore, if x E J is invertible in A then (x- I )* = (X*)-I = X-I proving that

X-I E J. Hence we omit the. notation in the exponents of our Jordan algebra products.

From our discussion thus far we have:
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Theorem 11.4.20. For every non-degenerate Hermitian bilinear map b, Sym(b) is the special

Hermitian Jordan algebra Sj(Adj(b)). Furthermore, Isom*(b) acts on Sym(b) as in Proposition

II.4·3.

Proof This follows directly from the definitions. o

Definition 11.4.21. (27, 4.1-4.2] Let J be a Jordan algebra.

(i) A subspace I of J is an ideal if I • J ~ I. Then, in the usual way, J / I becomes a Jordan

algebra.

(ii) A nil ideal is an ideal that consists of nilpotent elements.

(iii) A subspace I is an inner ideal if JUr = {aUb : a E J, bEl} ~ I.

(iv) The radical, denoted rad J, is the intersection of all maximal inner ideals (27, 4.4.10].

(v) J is simple if it has exactly two ideals, and semi-simple if it is a direct product of simple

Jordan algebras.

In Jordan algebras, the inner ideals often play the role that left/right ideals play for

associative algebras. Every ideal of a Jordan algebra is also an inner ideal. As J = Sj(A, *) (d.

Definition 11.4.19) each ideal I of A determines an ideal In J of J. Likewise, if I is a left or right

ideal of A then In J is an inner ideal. For further details see [27,4.1-4.2).

We can account for all the special simple Hermitian Jordan algebras (also called special

Jordan matrix algebras) in much the same way as we have describe the simple *-algebras.

Definition 11.4.22. (25, III.2] Let C be a finite associative composition algebra over a field K

and D = Diag[wl,"" wn] a matrix in Mn(C) with entries in K X
• Then the special Jordan matrix

algebra with respect to D is

whose product is X. Y = ~(XY +YX) and where XUy = YXY for X, Y E Sj(D).

Following Section II.4.2 we know d(u, v) := uDvt , u, v E cn, determines a non-degenerate

Hermitian C-form and

Sj(D) = Sj (Adj (d)) = Sym(d). (II.14)
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By [25, p.178-179], .fJ(D) is a special simple Hermitian Jordan algebra (though typically the case

of C = K EB K is not specified in this manner).

Theorem 11.4.23 (Hermitian Jordan algebra structure theorem). Let A be a finite *-algebra with

Jacobson radical rad A, and let J = .fJ(A, *).

(i) rad J = J n rad A and is a nil ideal of J,

(ii) J / rad J is a semi-simple Jordan algebra,

(iii) every special simple Hermitian Jordan algebra is isomorphic to Sym(d) for some non-degenerate

Hermitian C-form d.

(iv) for every I E speco A, In I is a maximal ideal of J.

Proof (iii). This follows from [25, pp.178-179, Second Structure Theorem].

(ii). This follows from (iii) and Theorem I1.4.15.(ii), J/(J n radA) = .fJ(A/radA,*) is

semi-simple.

(i). By [25, p.161, First Structure Theorem] (interpreted in radical vocabulary in [27,

4.2.7,4.2.15]), rad(J/radJ) = 0 and also radJ = 0 if, and only if, J is semi-simple. Thus, by

(iii), it follows that J n rad A = rad J. By Theorem II.4.15.(i), rad A is a nil ideal, and so

rad J = J n rad A is also a nil ideal.

(iv). This is immediate from (iii) and Theorem I1.4.15.(iii). o

II.4.6 Decompositions, Idempotents, and Frames: t'(X)

We show how idempotents of Sym(b) parameterize J..-decompositions of a Hermitian k­

bilinear map b : V x V -+ W. We start with the elementary

Lemma 11.4.24. If f E Sym(b) then b(im f, ker 1) = o.

Proof Let u E V and v E ker f. Then b(uf, v) = b(u, vi) = o. o

By standard linear ,algebra, an idempotent e in End V decomposes V as im e EB ker e. In

light of Lemma 11.4.24, if e E Sym(b) then b(im e, ker e) = 0, so we arrive at a J..-decomposition

{ker f, im f}.

Definition 11.4.25. [25, pp.117-118] Let J be a Jordan algebra.
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(i) An idempotent is an element e in J such that e2 = e. It is proper if it is neither 0 nor L

(ii) The Peirce-l-space of an idempotent e is the subspace JUe. The Peirce-O-space is JUI - e·

These are Jordan algebras (in fact inner ideals) with identity e and 1 - e, respectively (cf.

Proposition II.4.26).

Proposition 11.4.26. Let e E End V with e2 = e, E := Ve and F := V(l - e).

(i) e E Sym(b) if, and only if, b(E, F) = O.

(ii) lfe E Sym(b) then Sym(b)Ue is isomorphic as a Jordan algebra to Sym(bE) via the restriction

of f E Sym(b)Ue to (jUe)IE :E --> E.

Proof. (i) Lemma II.4.24 proves the forward direction. 'For the converse, since b(E, F) = 0 it

follows that b(ue,v(l- e)) = 0 = b(u(l- e),ve) for all u,v E V. Hence

b(ue,v) b(ue,ve + v(l - e)) = b(ue,ve) b(ue + u(l - e),ve) b(u, ve),

for all u,v E Vi thus, e E Sym(b).

For (ii), note that Sym(b)Ue ~ eAdj(b)e and so Sym(b)Ue is faithfully represented in

EndE by restriction. Furthermore, b(uexe,v) = b(u,vexe) for all u,v E E and x E Sym(b). Thus

the restriction of Sym(b)Ue is Sym(bE). 0

:From Proposition II.4.26.(i) we see that F = E1- (d. Definition II.2.1L(ii)).

Definition 11.4.27. [25, pp.117-118/ Let J be a Jordan algebra.

(i) Two idempotents e, f in J are orthogonal if e. f = fUe = eU! = 0 [21, 5.1}.

(ii) An idempotent is primitive if it is not the sum of two proper orthogonal idempotents.

(iii) A set of idempotents is supplementary if the idempotents are pairwise orthogonal and sum

to L

(iv) A frame £ of J is a set of primitive pairwise orthogonal idempotents which sum to L

Idempotents in special Jordan algebras are idempotents in the associative algebra as well.

If e, f E Sym(b) then e and f are orthogonal idempotents in Sym(b) if, and only if, they are
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orthogonal in Adj(b). To see this, if 0 = e. f = ~(ef + fe) andefe = fUe = 0 then ef =

ef + efe = e(ef + fe) = 0 and also fe = O. If ef = 0 = fe then e. f = ~(ef + fe) = 0 (cf.[27,

p. 5.4]). However, if e is a primitive idempotent in Sym(b) it need not follow that e is primitive

in Adj(b) since there may be orthogonal idempotents in Adj(b) which sum to e but do not lie in

Sym(b).

The following definition is based on standard uses of idempotents in linear algebra.

Definition 11.4.28. Let V be a vector space over k.

(i) Let £(Y) be the set of supplementary idempotents parameterizing a (J}-decomposition Y of v.

(ii) Let X(F) be the (J}-decomposition arising from a set of supplementary idempotents F of

EndV.

Theorem 11.4.29. Let X be a (J}-decomposition of V and let £ = £(X).

(i) £(X) ~ Sym(b) if, and only if, X is a i.-decomposition of b.

(ii) X is a fully refined i.-decomposition if, and only if, £ is a frame.

(iii) Let X be a i.-decomposition. If (a, a) E Isom*(b), then Xa = x(£(a,a») and £(a,a) = £(Xa).

In particular, Isom*(b) acts on the set of all frames ofSym(b).

Proof. Part (i) follows from Proposition II.4.26. Part (ii) follows from observing that an idempotent

e E Sym(b) is primitive if, and only if, bVe is i.-indecomposable.

For part (iii), if e E £ and x E Vea, then x(e(a,a») = ((xa-1)e)a = xa-1a = x. Therefore

V(e(a,a»)=Vea. 0

II.4.7 Linking Central Decompositions, i.-Decompositions, Frames, and Orthogonal Bases: ?iI,

XI, £I, and Xd(I)'

We use the following notation repeatedly as a means to track the changes from p-groups,

to bilinear maps, to *-algebras, to Hermitian forms, and then back. As usual, we assume that P

has class 2, exponent p, and pI = Z(P).

Let ?i be a fully refined central decomposition of P, X a fully refined i.-decomposition of
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b := Bi(P), E a frame of J := Sym(b) , A := Adj(b), and I E speco A. Define:

Er = {e E E : e tf. I},

Xr = {X EX: e E E(X)r,X = Vel,

Hr = {H E H : HP'IP' E Bi(H)r}.

(11.15)

(11.16)

(11.17)

Since AII ~ Adj(d(I)) for some non-degenerate Hermitian C-form d := d(I), (Theorem 11.4.15.(iii))),

it follows that JI(I n J) ~ Sym(d). Hence, In J is a maximal ideal of J (Theorem 11.4.23.(iii)).

Therefore, Er parameterizes a frame

EJ/(InJ) := {(I n J) + e : e E Er}

of JI(I n J). Furthermore, this gives rise to a fully refined ..i-decomposition

Xd(I) := {Ue'T: e E Er}

(11.18)

(11.19)

of d(I) where 'T: All ---+ Adj(d(I)) is a *-isomorphism. Certainly, Xd(I) depends on the choice of

'T but we consider 'T fixed. This influences the definition of address in Section 11.5.1.

Proposition 11.4.30. Let H be a fully refined central decomposition of P, X := Bi(H), and

E := E(X). The sets Hr, Xr, Er~ EJ/(InJ), and Xd(I) are in bijection.

Proof. This follows from Theorem 11.3.6. (ii), Theorem 11.4.29. (ii), Theorem 11.4.23. (iii), and Prop­

osition 11.4.11. 0

Proposition 11.4.31. For every fully refined central decomposition H of P with P' = Z(P),

the set {Hr : I E speco Adj(Bi(P))} partitions H. Furthermore, IHrl depends only on P and

I Especo Adj(Bi(P)).

Proof. By Proposition 11.4.30 we know Hr is in bijection with Er for each maximal *-ideal of

Adj(Bi(P)). As E is partitioned by Er, as I ranges over the maximal *-ideals of Adj(Bi(P)), it

follows that {Hr: I E specoAdj(Bi(P))} partition H. 0
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II.4.8 All Fully Refined Central Decompositions Have the Same Size

We now prove the first part of Theorem II. 1.1. (i) - that fully refined central decompositions

of a p-group P of exponent p and class 2 have the same size.

Theorem 11.4.32. Let P be a finite p-group of class 2 and exponent p and'H a fully refined central

decomposition. Let Q := (IC), IC := 'H - Z(H). Then'H is partitioned into

Z(H) U {IC] : I E speco Adj(Bi(Q))}. (11.20)

Furthermore, JZ(H)I and IICI are uniquly determined by P, and IHI is uniquely determined by P.

Proof. By Lemma 11.2.3 we know P = Q ED A with A S; Z(P) and Q' = pI = Z(Q). Furthermore,

JZ(H)I = IAI = [Z(P) : PI]. Therefore, Lemma II.2.5 and Proposition II.4.31 complete the

~~ 0

II.4.9 The Five Classical Indecomposable Families

By Theorem II.4.29, a bilinear map b has no proper 1.-decompositions if, and only if, 0

and 1 are the only idempotents of Sym(b). But more can be said if Adj(b) is considered as well:

Lemma 11.4.33 (Fitting's Lemma for bilinear maps). If b is 1.-indecomposable then, for every

x E Adj(b), T(x) = x + x* is either invertible or nilpotent. In particular, every x E Sym(b) is

either invertible or nilpotent.

Proof. Set y = x + x* and note yr E Sym(b) for all r E N. By Fitting's lemma there is some

r > 0 such that V = imyr ED keryr. By Lemma II.4.24, b(imyr,keryr) = O. So we have a 1.­

decomposition of b. Since b is 1.-indecomposable, yr = 0 so that y is nilpotent, or keryr = 0 and

im yr = V so that y is invertible. 0

Theorem 11.4.34. [47, Theorem 2/ If (A, *) is a *-algebra over a finite field of odd characteristic

such that T(x) is either invertible or nilpotent for each x E A, then AI rad A is an associative

composition algebra.

Corollary 11.4.35. For a k-bilinear map b the following are equivalent:

(i) b is 1.-indecomposable,
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(ii) Sym(b) has only trivial idempotents,

(iii) J / rad J is isomorphic to a field extension of k.

(iv) A = Adj(b) has A/radA is isomorphic to an associative composition algebra.

Theorem 11.4.36. A p-group P of class 2 and exponent p is centrally indecomposable if, and only

if, one of the following holds with G:= CAutP(Z(P))/Op(CAutP(Z(P))):

Abelian /PI = p,

Orthogonal G S:! O(l,pe) S:! Z2 with Pi' 3, or p = 3 and

CAutPoP(P')/Op(CAutPoP(P')) S:! GO±(2, 3e);

Exchange IPI i' p and G S:! GL(l,pe) S:! Zpe_I, or

Symplectic G S:! Sp(2,pe) ~ SL(2,pe);

for some e > O.

Proof. This follows from Corollary 11.4.35, Theorem II.4.17 and Theorem II.3.6. o

In Section II.7 we demonstrate that with the possible exception of the unitary type, each

of these types can occur.

11.5 Isometry Orbits of .i-decompositions

In this section we describe the orbits of CAut p(P') in its action on the set of fully refined

central decompositions. To do this, we define a computable CAutP(P')-invariant for each fully

refined central decomposition called its address. Then we prove that any two fully refined central

decompositions with the same address lie in the same orbit.

II. 5. 1 Addresses

Definition 11.5.1. Let d: V x V -> C be a non-degenerate Hermitian C-form.
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(i) Given a non-singular x E V (cf. Definition II.4.10), the address of X := Gx is

X@:= d(x,x)N(G X),

as an element of KX IN(GX).

(ii) X@ := {X@ : X E X} (as a multiset indexed by X) for every fully refined i.-decomposition

X ofd.

From Theorem II.4.7 we know N(G) = K if G > K and therefore the addresses of

non-singular points of a non-symmetric non-degenerate Hermitian G-form are all equal to K X
•

Therefore we ignore this case. However, for non-degenerate symmetric bilinear forms, the address

is a coset of (KX)2.

Let d : V x V ~ K be a non-degenerate symmetric bilinear form.

Fix w E K X - (K X )2. Every address of a non-singular point of V is either [1] := (K X)2

or [w] := W(KX)2. If X is an orthogonal basis of d, then for some °:::; s :::; n,

n-s 8

,-"--., ....---"'-..
X@ = {[I], ... , [1], [w], ... , [w]},

We write (n - s : s) for the address X@.

The discriminant of Hermitian G-form d is

discd = IT X@
XEX

n = dimV.

(II.21)

as an element of K XIN(GX) (d. (II.8)). In particular, if d is symmetric then discd = [w B
].

Otherwise we can regard the discriminant as trivial.

Let P be a p-group P of class 2, exponent p, and pI = Z(P). Let 11. be a fully refined

central decomposition of P, X := Bi(11.), and £ := £(X). Using the notation of Section II.4.7 and

Proposition II.4.30, for each maximal *-ideal I of Adj(Bi(P)), assign the address of 11.1, XI, £1,
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and £J/(InJ) as the address of Xd(I)' Finally,

£@ := ((I,£[@) : IE speco Adj(Bi(P))},

X@:= {(I,X[@): I E specoAdj(Bi(P))},

1{@ := {(I, 1{[@) : I E speco Adj(Bi(P))}.

(II.22)

(11.23)

(II.24)

Remark 11.5.2. Recall that Xd(I) depends on the choice of non-degenerate Hermitian O-form

d := d(I) : U x U --> O. Any other choice is pseudo-isometric to d. Suppose that d' : U' X U' --> 0

is pseudo-isometric to d via (a,{3). Let u E U such that d(u,u) E KX (cf. Proposition II.4.11).

Then

d(u,u){3 = d(ua,ua) = d(ua,ua) = iJd(u,u). (II.25)

Hence, {3 = iJi thus, (3 E KX.

The affect is that Xd,@{3 = Xd@. Therefore the specific cosets in K XjN(OX) are not

significant. The pseudo-isometry invariant of Xd(I)@ is the partition into equal cosets. For finite

fields, the notation (n - s : s) records this partition.

Proposition 11.5.3. (i) If X is a fully refinedl..-decomposition of band cp E 1som(b) then

X@= Xcp@ for all X EX.

(ii) If 1{ is a fully refined central decomposition of P and cp E 0 Aut P (P') then B@ = H cp@ for

all HE 1{.

Proof. (i). Let I E specoAdj(b) and Adj(b)jI ~ Adj(d), d:= d(I) : U x U --> O. By Proposition

II.4.3.(ii), 1som(b) maps into 1som(d). Let X E X[ and Ox, x E U, the corresponding member of

Xd(I)' The address of X is by definition the address of Ox. As d(x, x) = d(xcp, xcp) it follows that

Oxcp@ = Ox@ and Xcp@ = X@. (ii). This follows from (i) and Theorem 11.3.6. 0

We now work towards the converse of Proposition II.5.3.

II.5.2 Orbits of Fully Refined l..-decompositions of Non-degenerate Hermitian O-forms

The theorems of this section are undoubtedly known, though with different terminology.

Lemma 11.5.4. Let d: V x V --> 0 be a non-degenerate Hermitian O-form and X a fully refined
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i.-decompositions of d. Then, for each cp E Isom(d) there is aTE Isom(d) which is a product of

involutions and such that Xcp = XT, for X EX.

Proof. If the rank of V is 1 then let T = 1. So assume the rank is greater than 1. By Proposition

11.4.13, we have the four classical groups to consider. The orthogonal groups are generated by

reflections so take T := cp. In the exchange, unitary, and symplectic cases, the rank of V excludes

the case GF(q)X, GU(l, q) and Sp(2, q). Therefore the relevant symplectic groups are generated

by their involutions and again T := cp. In the exchange and unitary cases the involutions generate

a normal subgroup N ::::: Isom(d) n SL(V). Therefore cp == J..l (mod N) where J..l is a diagonalizable.

Without loss of generality, XJ..l = X, so take T := J..l-lcp E N. 0

Theorem 11.5.5. Let d : V x V -> C be a non-degenerate Hermitian C-form and X and Y fully

refined i.-decompositions of d. Then there is an isometry cp of d such that Xcp = Y if, and only if,

X@ = Y@. Indeed, if cjJ: ,1'-> Y is a bijection where XcjJ@ = X@ for each X E X, then cp can be

taken as a product of involutions where Xcp = XcjJ, for each X EX.

Proof. Suppose Xcp = Y for some cp E Isom(d). Given X E X, d(xcp,xcp) = d(x,x) for each x E X;

hence, X@ equals Xcp@. Thus, the addresses of X and Y agree.

For the converse, suppose we have a bijection cjJ as described above. Fix generators x and

Yx for X ='Cx E X and XcjJ = CYx E Y, respectively. By assumption, there is an Sx E CX such

that d(x, x) = N(sx)d(yx, Yx).

Define cp : V -> V by xcp = SxYx for each X = Cx E X. It follows that d(xcp,xcp) =

N(sx)d(yx, Yx) = d(x, x) for all X = Cx E X; thus, cp E Isom(d). Furthermore, Xcp = Y and

Xcp = XcjJ. To convert cp into a product of involutions, invoke Lemma II.5.4. 0

We also require the following version of transitivity as well.

Theorem 11.5.6. Let d : V x V -> C be a non-degenerate Hermitian C-form. If X, Y E V

are non-singular points (Definition II.4.10), then Xcp = Y for some cp E Isom(d) if, and only if,

X@=Y@.

Proof. If X cp = Y then X@ = Y@.

For the reverse direction suppose that X@ = Y@. Since X@discdx-L = discd =

Y@discdy-L, it follows that discdx-L = discdyL By (II.7) for the symmetric case and Prop­

osition II.4.ll for all other cases, there are orthogonal bases X' of dX-L and Y' of dy-L such
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that X'@ = {[I], ... , [1], [discdx.L]} and X'@= {[I], ... , [1], [discdy.L]}. Set X = {X}UX' and

Y := {Y} U Y'. Then X and Yare fully refined -.i-decompositions of d. Furthermore,

X@ = {X@, [1], ... , [1], [discdx.L]} = {Y@,[l], ... ,[l], [discdy.L]} = Y@.

Therefore, by Theorem 11.5.5, there is a ep E Isom(d) such that Xr = Y and Xep = Y. 0

II.5.3 Orbits of Frames in Jordan Algebras

In this section we determine the orbits of Isom(b) acting on fully refined -.i-decompositions

of b, for an arbitrary Hermitian bilinear map b : V x V -; W. To do this we use frames, radicals,

and the semi-simple structure of the Jordan algebra Sym(b). We caution that we make frequent

use of results from Sections 11.4.5 and II.4.6, at times without specific reference.

Suppose X is a fully refined -.i-decomposition of b. By Theorem II.4.29, £ := £(,1') is a

frame of Sym(b). We also know that Isom(b) acts on Sym(b) by conjugation (Theorem II.4.20)

and that £'P = £(Xep) for each ep E Isom(b) (Theorem II.4.29). Therefore, it suffices to work with

the orbits of frames of Sym(b) under the action of Isom(b). To make use of the Jordan algebra we

also translate the action of Isom(b) into Jordan automorphisms of Sym(b) in the following way.

By Proposition II.4.3.(ii), every isometry ep has the defining property epep* = 1. Hence,

ep E Sym(b) n Isom(b) if, and only if, ep2 = 1.

Definition 11.5.7. Define Inv(J) = (UX : x E J, x 2 = 1) ::; GL(J) for a special Jordan algebra J.

We consider only those Jordan algebras J which are subalgebras or quotient algebras

of a special Hermitian Jordan algebra such as Sym(b). Note that if x E J with x2 = 1 then

yUx = x-lyx = yX for all y E J. Therefore each element of Inv(J) acts both as a product of

U-operators and as conjugation. So Inv(J) is a group of automorphisms of J built from elements

of J.

Remark 11.5.8. The group Inv(Sym(b)) is not contained in Isom(b) and we are careful to dis­

tinguish the action on J := Sym(b) by the two groups as follows: if ep E Isom(b) then write y'P

(cf. Proposition II.4.3.(i)), and if ep E Inv(J) then use the usual function notation yep, for y E J.

However, Inv(Sym(b)) embeds in Isom(b) by extending Ux f---f x, x E Sym(b), x2 = 1.

By Definition II.4.25, if e E J, e2 = e then JUe = eJe is a subalgebra with identity e.
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Proposition U.5.9. Let e be an idempotent in J. Then Inv(JUe ) embeds in Inv(J) acting as the

identity on JU1- e.

Proof. It suffices to extend the generators of Inv(JUe ) to J. Let v E JUe with v2 = e. Set

u := (l-e)+v E J. As v = vUe = eve it follows that u2 = (1-e)2+(1-e)eve+eve(1-e)+v2 = 1,

so Uu E Inv(J). Furthermore, if x E JUe, then xUu = xUeUu = ((I-e) +v)exe((l-e) +v) = xUv .

Finally, if x E JU1- e , then xUu = xU1- eUu = ((1 - e) + v)(l - e)x(l - e)((l - e) + v) = x. 0

Lemma 11.5.10. (25, III. 7, Lemma 4] Let N be a nil ideal in J. If N +u E JIN with u2-1 E N,

then there is a v E J such that N + u = N + v and v2 = 1.

Proposition 11.5.11. (i) Ifcp E Inv(J) then (radJ)cp = radJ and cplJ/radJ E Inv(J/radJ).

(ii) Suppose N ::9 J and N is nil (in particular for N S;; rad J). Then for each rj; E Inv(J IN)

there is a cp E Inv (J) such that cpl J/N = rj;.

Proof. (i) Inv(J) is a subgroup of the automorphism group of J and so maximal inner ideals are

mapped to maximal inner ideals and the radical is preserved. Since involutions of J are sent to

involutions of J/radJ, it follows that Inv(J)IJ/radJ::; Inv(J/radJ).

(ii) By definition Inv(J IN) is generated by the Un for which v is an involution of J IN. For

each v, by Lemma II.5.10 there is an involution v E J such that v = v + N. Thus Un = Uv +N =

o

Lemma U.5.12. Let e, e' E J be orthogonal idempotents. If z E J such that z2 = a and e + z

is an idempotent, then there is a v E J such that (i) v2 = 1, (ii) eUv = e + z and (iii) e'Uv =

e'-2e'.z+e'Uz .

Proof. Let v = 1 - 2e - z.

(i). Since e + z = (e + Z)2 = e + ez + ze it follows that z = ez + ze. Hence, v2 =

1 - 4e + 4e2 - 2z + 2ez + 2ze + z2 = 1. For (ii) note that a = z2= ez2 + zez so that zez = o.
Thus,

(1 - 2e - z)e(l - 2e - z) = ((1 - 2e - z)e)(e(l - 2e - z))

= (e + ze)(e + ez) = e + ez + ze = e + z.
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So eUv = e + z. Finally for (iii):

e'Uv = (1- 2e - z)e'(l - 2e - z) = (e' - ze')(e' - e'z) = e' - 2e'. z + e'Uz .

o

Lemma 11.5.13. Let N be an ideal in J such that N 2 = O. If & and F are both sets of supple­

mentary idempotents of J such that & == F (mod N), then there is <P E 1nv(J) such that &<p = F.

Proof. Take e E & - F and f = e + z E F, zEN so that z2 = O. By Lemma II.5.12.(i,ii), there

is an involution v E J such that eUv = e + z = f. Hence, &' := &Uv is a supplementary set

of idempotents of J. By Lemma II.5.12(iii), &' == & (mod N) so that &' == F (mod N). Also,

f E &' n F.

We now induct on the size of &. In the base case & = {e} and F = {f}, so &Uv = &' =:F.

Otherwise, as &' is a set of supplementary idempotents, for all e' E &' - {f}, e'Ul-1 = e' so

&' - {f} = &'Ul-I - {O} and similarly F - {f} = FU1- I - {O}. So &' - {f} and F - {f} are

both sets of supplementary idempotents in JU1_I, where &' - {f} == F - {f} (mod NUl-I)' By

induction there is a r' E 1nv(JU1_ I) such that (&' - {f} )r' = F - {f}. By Proposition 11.5.9 there

is arE 1nv(J) extending r' to J so that r is the identity on JUl' So &'r =:F. Thus Uvr E Inv(J)

with &Uvr = :F. 0

Proposition 11.5.14. Two sets of supplementary idempotents of J are equivalent under the action

ofInv(J) if, and only if, their images in JI rad J are equivalent under the action ofInv(JI rad J).

Proof. The forward direction follows from Proposition I1.5.11.(i). For the converse, let & and F be

sets of supplementary idempotents of J such that &rp == F (mod rad J) for some rp E Inv( JI rad J).

By Proposition II.5.11.(ii) we can replace rp with some <p E Inv(J).

We will induct on the dimension of rad J. In the base case rad J = 0 and the result is

clear. Now suppose N := rad J > O. By [25, Lemma V.2.2] there is an ideal M of J such that

N 2 ~ MeN. Then &<p == F (mod NIM) in JIM and (NIM)2 = 0, so by Lemma II.5.13 there

is a jl E Inv(JIM) such that &<pjl == F (mod M). By Proposition II.5.11.(ii), p, lifts to some

fL E 1nv(J) such that &<pfL == F (mod M). As M is a nil ideal properly contained in N, using M

in the role of N and inducting we find arE 1nv(J) such that &<pfLr = F. 0
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Theorem 11.5.15. Inv(J) tS transitive on the set of frames of Sym(b) which have any given

address.

Proof By Proposition II.5.14 we may assume rad J = O. By Theorem IIA.23.(ii, iii), J is the

direct product of a uniquely determined set M of simple Jordan matrix algebras. If e is a primitive

idempotent of J then eJe is a minimal inner ideal of J (cf. [25, Theorem 1.III]), and so e lies

in a minimal ideal of J, thus in a unique simple direct factor of J. Hence, if E is a frame of J

then M n E is a frame of M, for each M E M. Furthermore, Inv(J) restricts to Inv(M) for each

M E M. Thus Corollary II.5.5 and Remark 11.5.8 show that Inv(J) is transitive on frames with

the same address. 0

Corollary 11.5.16. (i) Isom(b) acts transitively on the set of fully refined .i-decompositions

with a given address.

(ii) If P is a p-group of class 2, exponent p, and P' = Z(P), then CAutP(P') acts transitively on

the set of fully refined central decompositions with a given address.

Proof (i). This follows from Theorem II.5.15 and Remark 11.5.8. (ii). This follows form part (i)

and Theorem II.3.6. 0

Corollary 11.5.17. Let b : V x V -; W be a non-degenerate Hermitian bilinear map. Suppose

that X and Yare two .i-factors of b.

(i) Then there is a rp E Isom(b) such that Xrp = Y if, and only if, X@ = Y@ (which includes

X E XI, Y E YI for the same maximal *-ideal I of Adj(b)).

(ii) bx is isometric to by if, and only if, X@ = Y@.

(iii) Let P be a p-group of class 2, exponent p, and P' = Z(P) with centrally indecomposable

subgroups H andK. Then there is a rp E CAutP(P') such that Hrp = K if, and only if,

H@=K@.

Proof The forward direction of (i) and (ii) are clear. For the reverse, use Theorem II.5.6, Lemma

II.5A, Remark II.5.8, and Proposition 11.5.11.(ii) to arrange for E({X, Xl.}) == E({Y, yl.}). Then

Proposition 11.5.14 completes the proof. (iii). This follows from (ii) and Theorem II.3.6. 0
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11.6 Semi-refinements and Proof of Theorem ILl.l.(i)

By Theorem H.5.16.(i), any two fully refined ..L-decompositions with the same address

have the same multiset of isometry types. This section is concerned with strengthening this result

by involving pseudo-isometries in order to prove Theorem H.l.l.(i).

II. 6.1 The Orthogonal Bases of Symmetric Bilinear Forms

Let d : V x V -; K be a non-degenerate symmetric bilinear form and recall the notation

(n - s : s) for addresses, given in Section II.5.l.

Lemma 11.6.1. If X and Yare fully refined ..L-decompositions of d with X@ = (n - s : s) and

Y@ = (n - r : r), then 218 - r.

Proof. Recall that the discriminant is independent of the basis of V. Hence, we have [w 8
] =

discd = [w r ] so that w8
-

r == 1 (mod (K X )2) and 21s - r. D

Theorem II.6.2. Let X be a fully refined ..L-decomposition with address (n - r : r). There is an

involution p E Isom(d) where X p = X and such that, if S ;= {X EX; X P = X} then

(i) if 1,1'1 = 2m + 1 then S = {X} with X@ = discd,

(ii) if 1,1'1 = 2m and discd = [w] then S = {X, X'} with X@ = [1], X'@ = [w],

(iii) if IX/ = 2m and discd = [1] then S = 0,

(iv) and for each 0 S; 8 S; n, where 21r - 8, there is a fully refined ..L-decomp08ition Y where

(a) Y@ = (n - 8: 8),

(b) (X,Xp) = (Y n (X,Xp)) for each X E X.

Proof. We proceed by induction on the size of X.

If X = {X} then let p = 1 and Y = X. Hence S = X and discd = X@, as required by

(i). Also (iv) is satisfied trivially.

If X = {X, X'}, X =I- X' then discd = X@X'@. If X@ =I- X'@ then take p = 1

and Y = S = X and up to relabeling, (ii) is satisfied. Once again, (iv) is satisfied trivially as

8=r=l.
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Suppose that X@ = X'@. By Theorem 11.5.5 there is apE 1som(d) where Xp = X' and

X' p = X, and indeed we may take p2 = 1. Notice S = 0 and discd = [1], as required by (iii). For

(iv), either s = r and we let Y = X or s = 2 - r. By Lemma II.2.12 there is (rp,w) E 1som*(d);

hence, Y := Xrp satisfies (iv).

If n = 1.1'1 > 2 then there are distinct X, X' E X with X@ = X'@. By induction on

Z := X - {X, X'} we have an isometry r of d(z} which permutes Z. We also induct on S to

locate an involution I-" E 1som(d(s}) such that XI-" = X'. Set p = r ffi I-" E 1som(d). Hence,

p2 = 1 and permutes X. Moreover, {X EX: Xp = X} = S = {Z E Z : Zr = Z} and

discd = X@X'@discd(z} = discd(z}. Therefore, each case of S is satisfied for X with p as it is

satisfied for Z with r. Therefore p satisfies (i), (ii), and (iii).

For (iv), let 21r - s. First assume s ~ 2. From the induction on Z there is a fully

refined ..L-decomposition W of (Z) of address (n - 2 : s - 2) such that (Z, Zr) = (Y n (Z, Zp))

for each Z E Z. If X@ = [w] then set Y = W U {XiX'} to complete (iv). If X@ = [1] then

use (rp, w) E 1som*(d(x,x/}) from Lemma II.2.12 and set Y := W U {Xrp, X'rp}. Finally, if s < 2

then take W to have address (n - 2 : s) and define Y := W U {Xrp,X'rp} if X@ = [w], and

Y := W U {X, X'} otherwise. 0

Corollary II.6.3. The set of addresses of orthogonal bases of d is

{
n-c}(n- (c+2k): c+2k): 0 ~ k ~ -2-.

where disc d = [wc], c = 0,1. In particular, there are 1 + ln2"cJ addresses.

Proof. From Theorem 11.5.2.(iv), there is a fully refined ..L-decomposition of d for each address in

the set. By Lemma II.5.1, these are the possible addresses of d. 0

Corollary II.6.4. Let d : V x V -+ K be a non-degenerate symmetric bilinear form with n = dim V

and let X and Y be orthogonal bases with addresses (n - s : s) and (n - r : r), respectively.

(i) If n is odd then Xrp = Y for some (rp, $) E 1som*(d) if, and only if, s = r.

(ii) If n is even then Xrp = Y for some (rp, $) E 1som*(d) if, and only if, s = r or s = n - r.

Proof Let Xrp = y. Then as $ E KX, $ == 1 or w (mod (KX )2). If x E X, then

X = (x).
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Thus y@ = X@ep. If ep == 1 (mod (K X)2) then s = r. If ep == w then s = n - 1', and

(disc d) [wn
] = II X@ep = II Y@ = discd.

XEX YEY

So, 2/n. This completes the proof of (i).

For the converse, by Theorem II.5.5 it remains only to consider s = n - 1', which means

X@ = Y@[w], and from above also n = 2m. By Proposition 11.2.13.(ii) there is a (cp, w) E 1som*(d).

Therefore Xcp@ = Y@. By Theorem 11.5.5 there is aTE 1som(d) such that XcpT = y. This

completes the proof of (ii).

11.6.2 Semi-refinements

o

Definition 11.6.5. A bilinear map b : V x V ---* W is .i-semi-indecomposable if it is either .i­

indecomposable or b has orthogonal type with a fully refined .i-decomposition {X, Y} such that

X@=Y@.

A .i-decomposition is semi-refined if it consists of .i-semi-indecomposables and it has no

coarser .i-decomposition consisting of .i-semi-indecomposables.

Remark 11.6.6. Suppose that b is a .i-semi-indecomposable bilinear map which is not .i-indecom­

posable. Then, we have a fully refined .i-decomposition {X, Y} of b with X@ = Y@. By Corollary

II.5.17.(ii), this is equivalent to having an isometry cp E 1som(b) in which Xcp = Y. Thus bx is

isometric to by. Hence, if c := bx then b is isometric to c .i c.

Theorem 11.6.7. Let b be a non-degenerate Hermitian bilinear map.

(i) Given a semi-refined .i-decomposition Z and any fully refined .i-decomposition X, there is a

fully refined .i-decomposition Y with X@ = Y@ and

Z = y[p] := {(Y, Yp) : Y E Y},

where p E 1som(b) is an involution. In particular, IZ/ ;::: IXI/2.

(ii) 1som(b) acts transitively on the set of semi-refined .i-decompositions.

(iii) Every fully refined .i-decomposition of a bilinear map b determines a semi-refined .i-decomposition

(as in (i)). In particular, semi-refined .i-decompositions exist.
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Proof. (i). The idempotents associated to a semi-indecomposable bz , Z E Z, project to the same

simple factor of Adj(b). By Proposition II.4.31, {ZI : I <J Adj(b) a maximal *-ideal } partitions Z.

Hence, it suffices to consider ZI for a fixed maximal *-ideal I of Adj(b).

For each Z E ZI, either bz is 1.-indecomposable or it has a 1.-decomposition of size 2 with

equal addresses. As ZI is semi-refined, the set S = {Z E Z: bz is 1.-indecomposable} has size 1 if

IZII is odd, or size 2 with S = {Y, Y'} and Y@ i= Y'@, or S = 0. It follows that ZI is determines

a fully refined 1.-decomposition

in which Yz @ = Yf@ and Z = (Yz ,Yf), for each Z E Z - S. By Theorem II.6.2 and Lem­

ma I1.5.10, there is an involution p E Isom(b) for which y[p] = Z and furthermore, such that

XI@=YI@.

(ii). Let W be another semi-refined 1.-decomposition of b. As in (i) we know W = U[T]

where U is fully refined and has address equal to that of y. By Corollary II.5.16, the bijection

¢ : Y ....... U induces a ip E Isom(b) such that Yip = Y¢ so that Yip = U and y[p]ip = U[T].

(iii). Let X be a fully refined 1.-decompositions. From (i), any semi-refined 1.-decomposition

can be fully refined to have the same address of X. By (ii) is this unique up to an isometry.

Therefore it remains only to prove that there is a semi-refined 1.-decomposition. This follows from

Theorem II.6.2. o

Definition 11.6.8. A p-group P of class 2 and exponent p is centrally semi-indecomposable if it

is either centrally indecomposable or P = H 0 H where H is centrally indecomposable of orthogonal

type.

A central decomposition is semi-refined if it consists of centrally semi-indecomposable sub­

groups and it has no coarser central decomposition consisting of centrally semi-indecomposable

subgroups.

Remark 11.6.9. If P is centrally semi-indecomposable and not centrally decomposable then P =

H 0 H where H is centrally indecomposable. Thus Bi(P) = Bi(H) 1. Bi(H). As in Remark 11.6.6,

this is equivalent to having a fully refined central decomposition {H, K} of P where H@ = K@.

Corollary II.6.10. Every fully refined central decomposition 1-{ of a p-group P of class 2, exponent
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p, and P' = Z(P), generates a semi-refined central decomposition

H[p]:= {(H,Hp): H E H},

for some p E CAutP(P') in which Hp = H. FUrthermore, CAutP(P') acts transitively on the set

of semi-refined central decompositions.

Proof. Let H be fully refined central decomposition of P.

As P' = Z(P), b := Bi(P) is non-degenerate. Let X := Bi(H) (d. Section II.3.1). By

Theorem II,3.6.(i) we know X is a fully refined l.--decomposition of b. By Theorem 11.6.7 there is

an isometry p which permutes X such that X[p] is semi-refined. Let r be the automorphism on

H induced by p (d. Proposition II,3.3). Thus, Hr 1= H only if H is centrally indecomposable

of orthogonal type (see Definition II,6.8 and Theorem IIA.36) and H@ = Hr@ (d. Corollary

II.5.17.(iii)). Hence, (H, Hr) ~ H 0 H for each H 1= Hr, H E H. This makes H[T] semi-refined.

Given any other fully refined central decomposition K of P it follows that K can be semi­

refined by an automorphism f.l which permutes K. Thus, H[T] and K[i<] have full refinements with

a common address. Therefore Corollary II.5.16, Theorem I1.3.6.(ii.b), and Corollary II,2.9 prove

the transitivity of CAutP(P'). 0

Proof of Theorem II.l.1.(i). First assume that P' = Z(P). By Theorem II,4.32 we know all fully

refined central decompositions have the same size. By Corollary II.6.1O, we know that all semi­

refinements of a fully refined central decomposition are equivalent under Aut P. Furthermore, this

also shows that a semi-refined central decomposition has the form H[p] = {(H, H p) : H E H} where

p E Aut P. Therefore the multiset {I (H, H p) I : H E H} is uniquely determined by P. Indeed,

IHI = I(H,Hp)I/[H: Z(H)] is uniquely determined by Hand P.

Let K := {H E H : Hp 1= H}. Then H is partitioned into

{H E H : H p = H} IJ K U Kp.

Hence, the multiset {IHI : H E H} equals

{IHI : H E H : Hp = H} U {IK/ : K E K} U {IKI : K E K}.

(II.26)

(II,27)
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Thus, the multiset of orders of members of 1i is uniquely determined by P. The similar argument

works for the multiset of orders of the centers of the members of 1i.

Finally, for the case when pI < Z(P) we invoke Lemma II.2.5 and Lemma 1I.2.3.(ii). 0

11.7 Unbounded Numbers of Orbits of Central Decompositions

As indicated in the introduction, the proofs of our main theorem have depended on a study

of CAutP(PI). Whenever CAutp(PI) is transitive on the set of fully refined central decompositions

(Theorem II.3.6 and Corollary II.5.16) this approach is sufficient. However, CAutP(PI) may have

multiple orbits. This occurs only if there are centrally indecomposable p-groups of orthogonal type

(cf. Theorem 11.4.36).

In this section we have two principal aims: first to show how symmetric bilinear forms arise

in the context of p-groups. Secondly, we develop examples of centrally indecomposable p-groups

of the other types specified in Theorem 11.4.36, with the exception of the unitary type.

Most the constructions and theorems in this section are subsumed by more general results

in [63], but the proofs provided here are self-contained and require fewer preliminaries.

II. 7.1 Centrally Indecomposable p-groups of Orthogonal Type

In [63] we prove that there are exponentially many p-groups of order pn which have class

2, exponent p, and are centrally indecomposable of type 1. Indeed, we also show that a p-group

of class 2 and exponent p with "randomly selected presentation" is "almost always" a centrally

indecomposable group of type 1. Here we describe just one family of centrally indecomposable

p-groups of type 1.

Lemma 11.7.1. Let V be a k-vector space of dimension n > 2. Define b : V x V --- V /\ V by

b(u,v) := u/\ v, for all u,v E V. Then b is alternating and Adj(b) ~ k with trivial involution, that

is, b is J..-indecomposable of type 1.

Proof. Take 9 E Adj(b). We show that 9 is a scalar matrix and thus Adj(b) ~ k. Hence b is

J..-indecomposable of type 1 with respect to k.

Let V = (el, ... ,en) so that {ei/\ej: 1:S i < j:S n} is a basis of V /\ V. Fix 1:S i,j:S n,
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i =I- j. We have

1 S. i < j S. n. (1I,28)

n n

0= eig 1\ ej - ei 1\ ejg* = Lgis(es 1\ ej) - L gjt(ei 1\ et)
s=1 t=1 .

n n

L gis(es 1\ ej) + (gii - gjj)ei 1\ ej - L gjt(ei 1\ et).
s=l,s#i t=l,t#j

So we have gis = a for all s =I- i and gjt = a for all t =I- j, 1 S. s, t S. n and furthermore gii = gk

As this is done for arbitrary 1 S. i, j S. n, i =I- j, we have gll = g22 = gii for all 2 < i S. n.

Finally, g22 = gil = gss = gll so in fact g = gllIn and similarly g* = gllIn . As g was arbitrary,

Adj(b) = k. 0

If dim V· == 2 then· V 1\ V ~ k and the k-bilinear map b is simply the non-degenerate

alternating k-bilinear form of dimension 2. This is indecomposable of symplectic type (Lemma

11.7.11) and the corresponding group is the extra-special group of order pS and exponent p.

Corollary II.7.2. Let V be an IF'q-vector space of dimension n > 2 and let b: V x V -> V 1\ V be

defined by b(u, v) = u 1\ v for all u, v E V. Then Grp(b) is centrally indecomposable of orthogonal

type (see Section II.3.2).

Proof. This follows from Theorem 11.3.6. o

When q = p, Grp(b) ~ (al,'" ,an I class 2, exponent p). Note that the smallest example

of an orthogonal type group is (ai, a2, as I class 2, exponent p) - the free class 2 exponent p-group

of rank 3 and order p6.

II. 7.2 Direct Sums and Tensor Products

Direct sums and tensor products are two natural ways to construct bilinear maps from

others. To use these we must demonstrate that the adjoint algebras of such products are determined

by the adjoints of the components. A full account is given in [63] but here we give only the cases

required and supply direct computational proofs.
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Definition II. 7 .3. Let b : V x V ---. Wand b' : V' x V' ---. W' be k-bilinear maps. Let b EEl b' :

V EEl V' x V EEl V' ---. W EEl W' be the bilinear map defined by

(b EEl b') (u EEl u', v EEl v') = b(u, v) EEl b' (u', v')

for all u, v E V and u' ,v' E V'.

Proposition II.7.4. Let band b' be two non-degenemte bilinear maps. Then Adj(bEElb') = Adj(b)EEl

Adj(b'), where the *-opemtor on the right hand side is componentwise. Hence also Sym(b EEl b') =

Sym(b) EEl Sym(b').

Proof Evidently Adj(b) EEl Adj(b') :::; Adj(bEElb'). For the reverse, let f E Adj(bEElb') E End(VEElV').

Given u, v E V, v' E V', take (uEElO)f = xEElx' and (vEElv')f = yEEly' for some xEElx', yEEly' E VEElV'.

It follows that

b(x, v) EEl b' (x', v') = (b EEl b')( (u EEl O)f, v EEl v')

= (b EEl b')(u EEl 0, (v EEl v')f*) = b(u, y) EEl b'(O, y') = b(u, y) EEl O.

Therefore b'(x', v') = 0 for all v' E V'. So x' E radb' = O. Thus (u EEl 0)/ E V EEl 0 for all u E V.

Similarly (0 EEl v')f E 0 EEl V'. So f E (End V) EEl (End V').

Let / = 9 EEl hand f* = g* EEl h* for g, g* E End V and h, h* E End V'. It follows that

b(ug, v) EEl 0 = b(ug, v) EEl b' (u', 0) = (b EEl b')( (u EEl u')f, v EEl 0)

= (b EEl b')(u EEl u', (v EEl O)f*) = b(u, vg*) EEl b'(u', 0).

Therefore 9 E Adj(b) and similarly h E Adj(b'). So f E Adj(b) EEl Adj(b'). o

Given two bilinear maps b : V x V ---. Wand b' : V' x V' ---. W' we induce a multi-linear

map (b x b') : V x V' x V X V' ---. W 0 W' defined by:

(b0b')(u,u',v,v'):= b(u,v) 0b'(u',v'), Vu,v E V,u',v' E V'. (11.29)

Let W denote the induced linear map V 0 V' 0 V 0 V' ---. W 0 W', With this notation we give:
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Definition 11.7.5. Let b 0 b' : V 0 V' X V 0 V' ---. W 0 W' be the restriction of W to

V 0 V' x V 0 V', where b : V x V ---. Wand b' : V' x V' ---. W' are bilinear maps.

Evidently, b0 b' is bilinear. Using tensor products and the following obvious result, we

can convert symmetric bilinear maps to alternating bilinear maps.

Proposition 11.7.6. Let b : U x U ---. Wand c : V x V ---. X be Hermitian maps over k with

involutions () and r, respectively. Then b0 c is Hermitian with involution () 0 r. In particular, the

tensor of two symmetric bilinear maps is symmetric, the tensor of a symmetric and an alternating

bilinear map is alternating, and the tensor of two alternating bilinear maps is symmetric.

Proposition 11.7.7. Let d: U x U ---. C be a non-degenerate Hermitian C-form with k = {x E

C : x = x} and let b' : V x V ---. W be a k-bilinear map. Then Adj(d 0 b) = Adj(d) 0 Adj(b) and

Sym(d 0 b) = Sym(d) 0 Sym(b).

Proof. Clearly Adj(d) 0 Adj(b) ~ Adj(d 0 b). For the reverse inclusion, let X be an orthogonal

basis of d and £ = £(X). Take gE Adj(d 0 b). We show that 9 E Adj(d) 0 Adj(b).

If x, Y E X with associated idempotents e, f E £, then (e 01)g(l 01) restricts to (x) 0 V ---.

(y) 0 V, so there is a gx,y : V ---. V defined by vgx,y = Vi, where (x 0 v)(e 01)g(l 01) = y 0 Vi.

Let (x,y) be the transposition interchanging x and y and identity on X - {x,y}, treated as an

element of End U = Adj(d). Set ex,y = e(x, y)f. Thus, (e 01)g(l 01) = ex,y 0 gx,y. Since

9 = (2: e 01) 9 (2: f 01)
eEt: fEt:

it suffices to prove that gx,y E Adj(b).

= 2: (e 01)g(l 01) = 2: ex,y 0 gx,y,
e,fEt: x,yEA'

As (e 01)g(l 01) E Adj(d 0 b) with ((e 01)g(l 01))* = (I 01)g*(e 01) it follows that:

10 b(v(d(y, y)gx,y), Vi) = d(y, y) 0 b(vgx,y, Vi)

= (d 0 b)((x 0 v)(e 01)g(l 01), y 0 Vi)

= (d 0 b)(x 0 v, (y 0 v')(1 01)g*(e 01))

= d(x, x) 0 b(v, Vig;,x) = 1 0 b(v, Vi (d(x, x)g;,x)).

Notice we have used the fact that d(x,x),d(y,y) E k X and that the tensor product is taken over



49

k. Therefore b(vgx,y, v') = ~t~:~~b(v,v'g;,x) for all v,v' E V. Hence gx,y E Adj(b) with adjoint

~t~:~~g;,x. This completes the proof. 0

It can be shown that Adj(bI8lc) = Adj(b) I8lAdj(c) for any two bilinear maps band c [63].

II. 7.3 Proof of Theorem II.1.1.(ii)

The best known examples of central products are the extra-special p-groups of exponent p
n
A

sociated associative composition algebra e:= Adj(Bi(H))j rad Adj(Bi(H)) (d. Theorem IIA.36).
n

. ~

Recall that K := {x E e : x = x} is a field (d. Definition II.4.6). Set P := H 0'" 0 Hand
n n

b := Bi(H o· ~. 0 H}. As in Example 11.3.7, b = Bi(H) 1. .~. 1. Bi(H)' which we can express com-

pactly as b = d I8lK Bi(H), where d : Kn x Kn -> K is the usual dot product d(u,v) := uvt ,

u,v E Kn. Hence, by Proposition 11.7.7, it follows that Adj(b) = Adj(d) I8lK Adj(Bi(H)) and thus

Adj(b)jradAdj(b) ~ Adj(d) I8lK e. Yet, Adj(d) I8lK e ~ Adj(d'), where d' : en x en -> e is

defined by d' (u, v) := uiJt , for u, v E en. If e > K then Corollary 11.5.16 proves that all fully

refined central decompositions are conjugate under automorphisms. We now demonstrate that the

same is not generally possible with orthogonal type.

Lemma 11.7.8. Let H = (X) be a centrally indecomposable p-group of orthogonal type over JFq
n
~

with X a minimal generating set of H. Set P := H 0'" 0 H and let 1io = {HI,"" Hn } be the

canonical central decomposition given by the central product, so that Hi = (Xi: x E X) where Xi

denotes x in the i-th component.

Let w = a 2 + (32 E Zp be a non-square. If 0:::; m :::; nj2 then define

where
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for I ::; j ::; m. Then every member of Hm is isomorphic to Hand Hm is a fully refined central

decompositions of P with address (n - 2m: 2m), for I ::; m ::; n/2.

Proof As X is a minimal generating set of H, if x, y E X with Z(H)x = Z(H)y then x = y.
n
~

Therefore, X x ... x X is mapped injectively into P via the homomorphism IT : ITHE1i H ~ P

described in Section 11.2.1. This makes the groups Hi, K 2j- 1 , and K 2j well-defined, for each

I ::; i ::; n and I ::; j ::; n/2. Furthermore, Hi 9:! H for each I ::; i ::; nand Ho is a fully refined

central decomposition of P.

Set Xi = Hi/HI = HiP'/P', W = P' = HI, I::; i::; n. Also set Lj := (H2j-l,H2j) =

(K2j-l,K2j), I ::; j ::; n/2. Then Lj/Lj = X 2j- 1 EB X 2j and blLi/Lj is b 1.. b where b = Bi(H).

Recall that Bi(P) = d0b where d: kn xkn ~ k is the dot product and X := Bi(Ho) = {Xi: I ::; i ::;

n} is a fully refined 1..-decomposition of Bi(P). As Adj(Bi(P)) = Adj(d) 0 Adj(Bi(H)) 9:! Adj(d),

it follows that Xd = {Yb ... , Yn } is fully refined 1..-decomposition of d. In fact, the implied

isomorphism Adj(Bi(P)) to Adj(d) maps f 0 1 ~ f, so £(X) is sent to the canonical frame

{Diag{l, O, ... }, ... , Diag{... , 0, I}} of Adj(d). So, Ho@ = Xd@ = (n: 0).

Define

( A) ( [0:IX2i_l<Pj, <Pj :=
{3lx2i _1

(3lx2i ] 2 2)) *,(0: + (3 Iw E Isom (bI Lj / Lj ).
-aIx2i

Set Tj := Grp(<Pj, epj) E Aut L j . Then K 2j- 1 = H2j- 1Tj and K 2j = H2jTj for I ::; j ::; n/2.

Furthermore, (<pj, epj) induces

( [
a (3] ,w) E Isom*((Y2j-b Y2j )).
{3 -a

Therefore, K 2j- 1@ = [w] and K2j@ = [wI. Thus we have proved that H m has address (n - 2m :

2m). o

At this point we know there are multiple CAutP(P')-orbits of fully refined central decom­

positions of P, for any P satisfying the hypothesis of Lemma II.7.8. But we have not worked with

Aut P-orbits yet. We now show that there are multiple Aut P-orbits as well.

Lemma 11.7.9. Given vector spaces U and V, the map a EB {3 ~ 0: 0 (3 from GL(U) EB GL(V) ~
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GL(U 18) V) has kernel

Z:= (slu EEl s-llV I s E P).

and the image is isomorphic to GL(U) 0 GL(V) = (GL(U) EEl GL(V))/Z.

Proof. To verify that Z is the kernel, fix a basis for V and consider matrices. o

Theorem 11.7.10. Let H := (x, y, zl class 2, exponent p) (which is centrally indecomposable by
2n
~

Corollary II. 7.2), P := H 0··· 0 Hand 'Hm be as in Lemma II. 7.8. Then all the following hold:

(i) every member of 'Hm is isomorphic to H.

(ii) 'Hm is a fully refined central decomposition of P.

(iii) For every fully refined central decomposition K of P, there is is a unique m and some a E

CAut P(P') such that K'" = 'lim. So,there are 1+n orbits of fully refined central decomposition

under the action of CAutP(P').

(iv) 'Hm and 'Hml are in the same Aut P-orbit if, and only if, m' = n - m.

Hence there are exactly 1+ ln/2J orbits in the set of fully refined central decompositions of P under

the action of Aut P.

Proof. Let k := 'llp.

By definition, Bi(H) is the map c: V x V ~ W where U = k3 , W := k3 /\ k3 ~ k3 and

c(u, v) = u/\ v, u, v E V. Hence (i) and (ii) follow from Lemma II.7.8. Furthermore, every possible

address (see Corollary II.6.3) of Bi(P) is given by one of the 'Hm . Therefore (iii) follows from

Corollary II.5.16 and Theorem II.3.6.

To prove (iv) we start by describing the structure of Isom*(b). Set b := Bi(P) and recall

that b = d 18) c where d: U x U ~ k is the dot product on U := kn • Following Lemma 11.7.9 we

find that

Isom* (d) 0 Isom*(c) = Isom*(d) EEl Isorn*(c)/ ((sl u EEl s-llv, 1k0W) : s E P)

embeds in Isom*(b). We claim that Isom*(b) equals this embedding.
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By Proposition II.7.7 we know that Adj(b) = Adj(d) ® Adj(c) e=: Adj(d). Hence Isom(b) e=:

Isom(d) = GO(d). Indeed this shows that

Isom(b) = {a ® Iv: a E GO(d)}.

In particular, Isom(b) embeds in Isom*(d) oIsom*(c).

Therefore, following Lemma 11.2.13 we have

[Isom*(d) 0 Isom*(c) . 1som(b)J = (p -1)1 GO(d)11 GL(3,p)! = \GL(3 p)\
. (p -1)1 GO(d)1 ' .

As 1som*(b)/1som(b) ::; GL(k ® W) e=: GL(3,p), we conclude by orders that 1som*(b) =

1som*(d) o1som*(c). Hence the orbits ofIsom*(b) on fully refined central decompositions are those

of Isom*(d) 0 Isom*(c), that is, the orbits described in Corollary 11.6.4.

Theorem II.l.l.(ii). This followsfrom Theorem II.7.m

II. 7.4 Centrally Indecomposable p-groups of Non-orthogonal Type

o

D

Centrally indecomposable families of type symplectic are the easiest to construct by clas­

sical methods. Already the extraspecial p-groups pl+2 of exponent p serve as examples. We

generalize the extraspecial example to include field extensions of Zp. We let k be an arbitrary

field.

Lemma 11.7,11, Th' k-bilinmr form d , k' x k' ~ k d'fined by d(u, v) ~ det [:l for oil u, v E

P, has Adj(d) = M 2 (k) with the adjugate involution, thus d is .l-indecomposable of symplectic

type.

Corollary 11.7.12. Let d : IF~ x IF~ --+ IFq be the non-degenerate alternating bilinear form of

dimension 2. Then Grp(d) is centrally indecomposable of symplectic type.

Proof. This follows from Theorem II.3.6. o

Presently we are not aware of any alternating bilinear maps which are centrally indecom-

posable of unitary type. We expect infinite families over any field IFq2 to exist. Our search for such

examples is on-going.
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We next construct a family of centrally indecomposable p-groups of exchange type. This

family furthermore illustrates that there can be a non-trivial Op(CAutP(P')). There are families

of exchange type without this feature but we choose this family for the ease of proof.

Lemma 11.7.13. Let V be a k-vector space of dimension n > 1. Define the k-bilinear map

b: (k EB V) x (k EB V) -7 V by

Then b is alternating and

b(a EB u,,B EB v) := av - ,Bu. (11.30)

h ] : hE hom(k, V),a,,B E k}'
,Blv

where the multiplication and the action on k EB V is interpreted as matrix multiplication and where

the involution is defined by

[
alk h] * ._ [,Bolk

O. ,Blv
-h]
alv

In particular, Adj(b)j rad Adj(b) 9"! k EB k with the exchange involution and the radical is

Thus b is .i-indecomposable of exchange type.

Proof. It is easily checked that e := lk EB Ov, f ;= Ok EB Iv E End(k EB V) are both in Adj(b) and

furthermore e* = f, e2 = e, P::= f. Fix 9 E Adj(b). Then ege, egf, fge and fgf lie in Adj(b).

Let u, v E V be linearly independent. Since (0 EB u)fge = A EB 0 and (0 EB v)fg*e = rEB 0

for some A, r E k, it follows that

AV = b(A EB 0, 0 EB v) = b((O EB u)g, 0 EB v) = b(O EB u, (0 EB v)g*)

= b(O EB u, r EB 0) = -ru.

However, u and 11 are linearly independent, and hence A = 0 = r so fge = 0 = fg*e.
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Next let (1 EB O)ege = a EB 0 and (0 EB u)fg* f = 0 EB v for some a E k and v E V. Then

au = b(a EB 0, 0 EB u) = b((l EB O)ege, 0 EB u) = b(l EB 0, (0 EB u)g*)

= b(l EB 0, 0 EB v) = v.

Thus fg* f = 0 EB a1 V where ege = a1k EB Ov. Setting (0 EB u)fgf = 0 EB v and (1 EB O)eg*e = ,8 EB 0

we similarly find fgf = 0 EB ,81v where eg*e =,8h EB Ov.

Finally, set (1 EB O)egf = 0 EB u and (1 EB O)eg* f = 0 EB v. Then

-u = b(O EB u, 1 EB 0) = b( (1 EB O)egf, 1 EB 0) = b(l EB 0, (1 EB O)eg* f)

= b(l EB 0, 0 EB v) = v.

So egf is induced by a k-linear map h: k -> V and eg* f is induced by -h. o

Corollary II.7.14. Let b: (IB'q EBIB'~) x (IB'q EBIB'~) -> IB'~ be as in (11.30) with n > 1. Then Grp(b)

is centrally indecomposable of exchange type.

Proof This follows from Theorem II.3.6. o

If n = 1 then b is simply the non-degenerate alternating bilinear k-form of dimension 2.

The smallest example of a p-group with exchange type is in fact of order p5 with rank 3.

We can use this example as evidence that the radicals accounted for in Section 11.5.3 do

arise for the setting of p-groups. We emphasize that instances of non-trivial radicals are known in

far more general settings than .i-indecomposable bilinear maps of exchange type.

The radical in of Adj(b), for b as in (II.30), intersects Sym(b) trivially. However, if we

define c : (k EB V) x (k EB V) -> V by

c(a EB u,,8 EB v) := av + ,8u, 'Va,,8, E k,u,v E V; (II.31)

then Adj(c)jradAdj(c) ~ k EB k with the exchange involution. Here radAdj(c) :::; Sym(c). To

make this example alternating we may simply tensor by the alternating bilinear map from Lemma

II.7.I. To further make a .i-decomposable bilinear map we may tensor with a dot-product. By

Proposition II.7.7, the result has a non-trivial radical in Sym(b).
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H.8 Closing Remarks

II. 8.1 Conjecture on Uniqueness of Fully Refined Central Decompositions

It remains open whether or not the multiset of isomorphism types of fully refined central

decompositions of a p-group P of class 2 and exponent p is uniquely determined. It suffices to

answer the following:

Let Hand K be centrally indecomposable p-groups of class 2, exponent p, and of

orthogonal type. Is it true that whenever H 0 H ~ K 0 K then H ~ K?

We conjecture this is true. Because such groups involve symmetric bilinear forms, it is possible

that a solution will divide along the congruence of p modulo 4. Some evidence of this has been

uncovered while attempting to develop counter-examples. It appears that a counter-example would

have order at least 530 .

II. 8.2 Further directions

The condition that an endomorphism f E End V lies in Adj(b) (or Sym(b)) is determined by

a system of linear equations. This is the source of polynomial time algorithms for computing central

decompositions of p-groups found in [60]. In contrast, the equations to determine if f E Isom(b)

or Isom*(b) (and hence to determine the automorphism group of a p-group) are quadratic and

generally difficult to solve.

Our theorems apply (at least over finite fields) to central decompositions of class 2 nilpotent

Lie algebras. See also [3] and [9, pp. 608-609].

II. 8. 3 Other fields

The use of finite fields removed the need to consider Hermitian forms over non-commutative

division rings in the classification of *-simple algebras, and consequently also the related simple

Jordan algebras (Theorem 11.4.15 and Theorem II.4.23); therefore, this assumption affects Section

II.5.2. Furthermore, as finite fields are separable, we are able to apply Taft's *-algebra version of

the Wedderburn Principal theorem (Theorem II.4.16) in proving Theorem II.4.36. Evidently our

proofs apply also to bilinear maps over algebraically closed fields of characteristic not 2.
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II. 8.4 2-gro71,pS of exponent 4

The omission of 2-groups of exponent 4 in the proof of Theorem II.3.6 can be relaxed [60].

The known obstacles for 2-groups of class 2 and exponent 4 derive from the usual complications of

symmetric bilinear forms in characteristic 2. We are presently investigating whether or not these

are indeed the only limitations.
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CHAPTER III

FINDING CENTRAL DECOMPOSITIONS OF p-GROUPS

IIL1 Introduction

An algorithm is given to find a fully refined central decomposition of a finite p-group of

class 2. The number of algebraic operations used by the algorithm is bounded by a polynomial in

the log of the size of the group. The algorithm uses a Las Vegas probabilistic algorithm to compute

the structure of a finite ring and the Las Vegas MeatAxe is also used. However, when p is small,

the probabilistic methods can be replaced by deterministic polynomial time algorithms.

A set 7-{ of subgroups of a group G is a central decomposition of G if 7-{ generates G but no

proper subset does, and distinct members of 7-{ commute. We say that G is centrally indecomposable

if it has only the trivial central decomposition. A fully refined central decomposition of G is a

central decomposition consisting of centrally indecomposable groups. Such decompositions arise

from to central products in which the centers of the factors need not be the same.

For computational purposes, we assume groups are input and output via generators in a

useful computational representation, such as a set of permutations, a set of matrices, or a polycyclic

presentation (see Section IIl.2.1). We prove:

Theorem IILl.l. Assuming a discrete log oracle module p, there is a Las Vegas polynomial time·

algorithm which, given a p-group P of class 2, returns a fully refined central decomposition. The

algorithm uses in O(10g6[P : PI]) time. When p ::; loge IPI, for some constant c, there is also a

deterministic polynomial time algorithm for the same task.

The discrete log oracle in our algorithm is unavoidable (Proposition IlL7.1). Although

Theorem IlL1.1 concerns groups, most of the work of the algorithm is concentrated on computing

the semisimple and radical structure of certain finite rings. Our algorithm introduces methods to

compute the structure of *-rings and constructive recognition of simple *-algebras.
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At a high level, the algorithm proceeds by passing from P to a related bilinear map b;

and it is shown that central decompositions of P correspond to orthogonal decompositions of b,

see Proposition III.3.1 and Theorem III.3.2. To find a fully refined orthogonal decomposition of b,

a ring with involution (Le. a *-'T'ing) Adj(b) is introduced and shown to parameterize orthogonal

decompositions of b via sets of suitable idempotents; see Corollary III.4.3.

In Section III.5 we find such sets of idempotents using the semisimple and radical structure

of Adj(b). This structure can be computed efficiently by reducing to rings of characteristic p and

applying the algorithms of Ronyai, Friedl, and Ivanyos for finite /Zp-algebras [51, 22, 24]. This

stage uses a Las Vegas polynomial time algorithm for factoring polynomials over finite fields of

characteristic p, such as the methods of Berlekamp or Cantor-Zassenhaus [57, Chapter 14]. We

select [22J as the specific approach to compute the structure of the rings we encounter. This leads

us to use of the Las Vegas MeatAxe [21, 23J in one stage of our algorithm, d. Theorem III.5.3.

However, for a deterministic algorithm (for small p), both of these Las Vegas algorithms can be

avoided (Section III.7.2).

Having found a fully refined orthogonal decomposition of b we convert this to a fully refined

central decomposition of P using straightforward group theory (Corollary III.3.4).

The methods of Theorem III.!.1 took root in [59J where central decompositions of p-groups

P of class 2 and exponent p were studied. There the *-ring Adj(b) and its associated Jordan algebra

Sym(b) were used to describe the Aut P-orbits of the set of fully refined central decompositions of

P. Here, the algorithms apply in all exponents and include 2-groups.

A result in a different direction is the development of efficient algorithms to find direct

product decomposition not only of p-groups, but general groups [61J. That work illustrates how

decompositions of p-groups of arbitrary class can be reduced to the case of p-groups of class 2,

where once again bilinear and ring theory methods are introduced to solve the problem.

III.2 Background

Throughout this work we assume p is a prime. Unless otherwise obvious, all our groups,

rings, modules, and algebras (Le.: rings over a field) are finite. All our rings are associative and

unital. We express all abelian groups additively and refrain from indicating this elsewhere.

We use .it. U B for the disjoint union of sets A and B, and A - B for the complement of
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AnB in A. We measure the efficiency of our algorithms by bounding the total number of algebraic

operations (in a group, module, or ring) by a polynomial in the size of the iriput, roughly log IFI.
The probabilistic aspects of our algorithm are of Las Vegas type, which means they return correct

result but with probability c > 0 they may fail to return in the alloted number of steps.

III. 2.1 Representing Groups for Computation

We assume throughout that P is a finite p-group for a known prime p. We allow P to

be input by various means including via a polycyclic presentation, as a permutation group, or as

a matrix group [20, Section 3.:l.J. In all cases we assume that P is specified with generators; a

method to multiply, invert, and test equality of elements in P; and a method to test if an element

9 E P lies in a subgroup (T), where T ~ P. That is, we may consider P to be a black-box group

with a membership test oracle [20, Section 3.2J. For large primes p, membership testing already

assumes an instance of the discrete log problem (d. Section III.7.1). We count each of these tasks

as a single algebraic operation though we are mindful that each requires more than constant time.

The assumptions on P give rise to deterministic algorithms which use a polynomial number

of group operations and which: find I(T) I for any T ~ P; find generators for the normal closure

(TG) of the subgroup (T), T ~ Pj find generators for the commutator subgroup pI of Pj and find

generators for the center Z(P) of P [20, Section 3.3J.

Remark III.2.1. (i) Though in practice most p-groups are input by polycyclic presentations,

the current methods to multiply in such groups, and to test membership, have exponential

complexity (even when p = 2,3) within the collection process [35, p. 670J.

(ii) Permutation groups use fast multiplication and membership testing, but various p-groups have

no small degree faithful permutation representations [45, Example 1.1].

(iii) For matrix p-groups, multiplication is efficient and membership testing can be done if p is

small or if p is the characteristic of the ground field [38, Theorem 3.2J.

III.2.2 Abelian p-groups, Bases, Effective Homomorphisms, and Solving Systems of Equations

A basis of a finite abelian p-group V is a subset X of V such that V = EI1xEx (x). Every

basis of V gives a natural isomorphism to Zpel E!1 ••. E!1 Zpes for el :::; ... :::; es E Z+. Operating

in the latter representation is preferable to V's original representation and we assume all abelian
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groups are handled in this way. Each endomorphism f of V can be represented by an integer

matrix F = [Fij ] such that pej-e i Wij, 1 ::; i ::; j ::; s, and furthermore, every such matrix induces

an endomorphism of V (with respect to X) [19, Theorem 3.3].

We have need in various places to apply homomorphisms and isomorphisms between finite

abelian p-groups, rings, and algebras. We say a homomorphism is effective when it can be evaluated

efficiently - for instance with the same cost as matrix multiplication - and a coset representative

for the preimage of a point in the codomain can also be found efficiently. This means that effective

isomorphisms are easily evaluated and inverted.

Suppose we have a system of Zpe linear equations with solutions in· a Zpe.,module V.

There are efficient deterministic methods to solve for a basis of the solution space of the system

[39, Theorem 8.3]; however, it is essential to note that for large p, this process assumes a discrete

log oracle of p and we must do the same. For simplicity, we use the usual cubic polynomial-time

methods of Gaussian elimination and traditional matrix multiplication.

III.2.3 Bilinear Maps, -i-decompositions, and Isometry

A Zpe-bilinear map b: V x V --f W is a function of Zpe-modules V and W where

b(su + u', tv + v') = stb(u, v) + sb(u, v') + tb(u', v) + b(u', v'), (III.1)

for each u, u', v, v' E V and s, t E Zpe. A -i-decomposition of b is a decomposition V of V into a

direct sum of submodules which are pairwise orthogonal relative to b, i.e. b(X, Y) = 0 for distinct

X,YEV.

Let X and Z be ordered bases of V and W respectively. We define B~V E Zpe by

Set

= L LsxtyB~Vz,
x,YEX zEZ

(III.2)

B - ~B(z)xy - L...J xy z,
zEZ

Vx,y E X;

so that B = [Bxy]x,YEX is an n x n-matrix with entries in W, where n = IXI. Writing the elements
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of V as row vectors with entries in Zpe with respect to the basis X we can then write:

b(u, v) = uBvt , 'Vu,v E V. (111.3)

Take j, g E End V represented as matrices F and G with respect to the basis X above.

Define FBand BGt by the usual matrix multiplication, but notice the results are matrices with

entries in W. Evidently, (F + G)B = FB + GB, F(GB) = (FG)B, and similarly for the action

on the right. The significance of these operations is seen by their relation to b:

b(uj,v) = uFBvt and b(u,vg) = uBGtv\

for all u,v E V.

(IlIA)

An isometry between two bilinear maps b : V x V --. Wand b' : V' x V' --. W is an

isomorphism 0: : V --. V' such that b' (uo:, vo:) = b(u, v) for all u, v E V. Evidently, isometries map

-i-decompositions of b to -i-decomposition of b'.

Finally, we call a bilinear map Hermitian if there is () E GL(W) of order at most 2 such

that

b(u,v) = b(v,u)(), 'Vu,v E V. (111.5)

This meaning of Hermitian includes the usual symmetric, b(u, v) = b(v,u); and skew symmetric,

b(u, v) = -bev, u) flavors of bilinear maps. If W = (b(u, v) : u, v E V) then () is uniquely determined

by b and so in that case we make no effort to specify () explicitly.

111.2.4 Rings

All our rings will have characteristic a power of p and so they are input with a generating

set. Furthermore, each of our rings will be represented in End V for some abelian p-group V and

thus multiplication is done by the usual matrix multiplication.

I1L3, Reducing Central Decompositions to Orthogonal Decompositions
, "

i

In this section we reduce the problem of finding a central decomposition of a p-group of

class 2 to the related problem of finding a -i-decomposition of an associated bilinear map.
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III.3.l Bilinear Maps and p-groups

Let P be a p-group of class 2 and pi ::; M ::; Z(P). Associated to P are various bilinear

maps b := Bi(P, M) defined by b : P/M x P/M -> pi where b(Mx, My) := [x, y], for each

x, yEP. We will express the operations in P /M, pi, and b additively. Notice that b is alternating

and skew-symmetric: b(Mx,Mx) = 0 and b(Mx,My) = -b(My,Mx) for all x,y E P.

III. 3. 2 Central Decompositions from Orthogonal Decompositions

We recall some ideas from [59, Section 4] involving class 2 and exponent p and modify

them to p-groups P of class 2 of general exponent, including 2-groups.

Let 1{ be a set of subgroups of P. Given a normal subgroup M of P we define:

'HM:= {HM: H E 'H} - {M},

'HM/M := {HM/M : H E 'H} - {M/M}.

(IlL6)

(III.7)

A central decomposition 'H is an M -central decomposition if H n ('H - {H}) ::; M for each H E 'H.

We may assume that M ::; Z(P) as every central decomposition of P is a Z(P)-central decompo­

sition. Given an M -central decomposition 'H, it follows that 'HM/ M is a direct decomposition of

P/M.

Suppose that V is a direct decomposition of P/M. Define

'H(V) := {H::; P: M::; H,H/M E V}.

Note that V and 'H(V) are in a natural bijection..

Proposition 111.3.1. Let P be a p-group of class 2, pi::; M ::; Z(P), and b:= Bi(P, M).

(i) If'H is an M -central decomposition of P then 'HM/ M is a .l-decomposition of b.

(IlL8)

(ii) IfV is a .l-decomposition of b then 'H(V) is an M -central decomposition of P where 'H(V)M =

'H(V) and 'H(V)/M = V.

Proof. (i). If 'H is an M-centraldecomposition of P then 'HM/M is a direct decomposition of

V := P/M. Furthermore, if Hand K are distinct members of 'H then [H, K] = 1, which proves

that b(HM/M, KM/M) = O. Thus, 'HM/M is a .l-decomposition of b.
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(ii). Let V be a ..i-decomposition of b and set K := H(V). By definition, K = KM and

KIM = V, so that K n (K - {K}) = M for all K E K. Therefore, it remains to show that

K is a central decomposition of P. As V i= 0 it follows that K i= 0. Furthermore, V = (V) so

P = (K, M) = (K), as M ::; K for any K E K. Since K is in bijection with V, if:J is a proper subset

of K then :JIM is a proper subset of V and as :JIM does not generate V it follows that :J does

not generate P. Finally, if Hand K are distinct members of K then 0 = b(HIM,KIM) = [H,K].

Thus, K is a central decomposition of P. 0

Theorem III.3.2. If P is a p-group of class 2, then P is centrally indecomposable if, and only if,

Bi(P, Z(P)) is ..i-indecomposable and Z(P) ::; iI?(P).

Proof Assume that P is centrally indecomposable.

Let V be a ..i-decomposition of Bi(P, Z(P)). By Proposition III.3.1.(ii), H(V) is a central

decomposition of P and therefore H(V) = {Pl. Hence, V = H(V)IZ(P) = {PIZ(P)}. As V was

an arbitrary ..i-decomposition of Bi(P, Z(P)), it follows that Bi(P, Z(P)) is ..i-indecomposable.

Next let iI?(P) ::; Q ::; P be such that PliI?(P) = QliI?(P) EEl Z(P)iI?(P)/iI?(P) as Zp-vector

spaces. Set 11. = {Q,Z(P)}. Clearly [Q,Z(P)] = 1 and P is generated by H. Therefore, 11.

contains a subset which is a central decomposition of P. As P is centrally indecomposable and

P i= Z(P), it follows that P = Q, and so 1 = Z(P)iI?(P)/iI?(P) , which proves that Z(P) ::; iI?(P).

For the reverse direction we assume that Bi{P, Z(P)) is ..i-indecomposable and that Z(P) ::;

iI?(P). Let H be a central decomposition of P.

By Proposition III.3.1.(i) we know HZ(P)IZ(P) is a ..i-decomposition of Bi(P, Z(P)).

Thus, HZ(P)IZ(P) = {PIZ(P)} so that HZ(P) = {Pl. Hence, for all H E H, either H ::; Z(P)

or HZ(P) = P. As Z(P) ::; iI?(P) < P, it follows that at least one H E H is not contained in

Z(P) and furthermore, P = HZ(P) = H as Z(P) consists of non-generators. Since no proper

subset of H generates P and P E 11., it follows that 11. = {Pl. Since 11. was an arbitrary central

decomposition of P it follows that P is centrally indecomposable. 0

Proposition III.3.3. Suppose Pis ap-group of class 2 such that Bi(P, Z(P)) is ..i-indecomposable.

Then

(i) every central decomposition of P has exactly one nonabelian member, and
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(ii) there is deterministic algorithm using O(10g4[P : Pi]) algebraic operations which returns a

nonabelian centrally indecomposable group Q such that P = Q or {Q, Z(P)} is a central

decomposition of P.

Proof. (i). Let H be a central decomposition of P. Since P =I- Z(P) and Bi(P, Z(P)) is 1.­

indecomposable, there is a nonabelian H E 'H and HZ(P) = {P} proves that P = HZ(P). If

K E H - {H} then [K,Pj = [K,HZ(P)] = [K,H] = 1, since distinct members of'H commute.

Thus K :<::; Z(P), which proves that H is the only nonabelian group in H.

(ii). If Z(P) :<::; <T>(P) then the algorithm returns P. Otherwise, compute generators for a

vector space complement Q/<T>(P) to Z(P)<T>(P)/<T>(P) in P/<T>(P), <T>(P) :s; Q < P. Recurse with

Q in the role of P and return the result of this recursive call.

If we find that Z(P) :<::; <T>(P) then Theorem III.3.2 proves that P is centrally indecom­

posable. Otherwise, Z(P)<T>(P)/<T>(P) is a proper subspace of the vector space P/<T>(P). The

group Q satisfies P = QZ(P). Hence, pi = [QZ(P), QZ(P)] = Q' (so Q is nonabelian) and

[Z(Q), P] = [Z(Q), QZ(P)] = 1, so that Z(Q) = Q n Z(P) ;::: P'. In particular, the isomorphism

of P/Z(P) = QZ(P)/Z(P) ~ Q/Z(P) n Q = Q/Z(Q) gives an isometry between Bi(P, Z(P)) and

Bi(Q,Z(Q)) which implies that Bi(Q,Z(Q)) is 1.-indecomposable. Thus we may recurse with Q.

By induction, the return of a recursive call is a centrally indecomposable subgroup pi :<::; R :<::; P

such that Q = RZ(Q) and so P = RZ(P), which proves that {R, Z(P)} is a central decomposition

of P.

For the timing we note that [Q : Qll < [P : Pi]. Thus the number of recursive calls

is bounded by 10g[P : Pi]. To find a vector space complement amounts to finding a basis of

Z(P)<T>(P)/<T>(P) and extending the basis to one for P/<T>(P) and so it uses O(10g3[P : Pi]) algebraic

operations. Hence, the algorithm uses O(log4[p : Pi]) algebraic operations. 0

Corollary 111.3.4. Let P be a p-group of class 2 and V a fully refined 1.-decomposition of

Bi(P, Z(P)). There is a deterministic algorithm using O(log5[p : Pi]) algebraic operations, which

returns a fully refined central decomposition H of P such that HZ(P)/Z(P) = V.

Proof Algorithm. Computing H := H(V). Set fe = 0. Then, for each HE H, use the algorithm of

Proposition III.3.3.(ii) to find a nonabelian centrally indecomposable subgroup K :<::; H such that

H = KZ(P) and add K to fe. Next, given Z(P) = (8), set.:J:= feU {(x) : x E 8 - (fen. Using a

greedy algorithm, remove the abelian members from .:J until no proper subset of.:J generates P.
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Correctness. By Proposition IlI.3.1 we know that 1i is a central decomposition of P

in which every member H has Z(H) = Z(P) and Bi(H, Z(H)) is -i-indecomposable. Thus the

algorithm of Proposition IlL3.3.(ii) can be applied to H and so the set IC consists of nonabelian

centrally indecomposable subgroups where distinct members pairwise commute. Furthermore,

ICZ(P) = 1i. Let Q := (IC). We now have P = QZ(P). Thus, at every stage of the greedy

algorithm, the set .:J generates P, distinct members pairwise commute, and every member is

centrally indecomposable. Thus.:J contains a central decomposition of P (i.e.: a subset which

generates P and no proper subset does). If {, c .:J and generates P, then given H E .:J - {, it

follows that 1 = [H, (J:,)] = [H,P] so that H :::; Z(P). Hence, the greedy algorithm need only

consider the abelian members of.:J. The algorithm halts when a central decomposition is found.

Timing. There are IVI calls made to the algorithm of Proposition IlL3.3.(ii), which uses

O(10g4[H : H'D algebraic operations for each H E 1i. The greedy algorithm halts after lSI steps

as then it has tested each abelian member of .:J.

111.4 The *-ring of Adjoints of a Bilinear Map

o

We have discussed the necessary group theory and now concentrate on the ring theory

required in proving Theorem IlLl.l. In this section we introduce a ring with involution (Le. a

*-ring [37]) as a means to compute -i-decompositions of a Hermitian bilinear map.

Throughout this section we assume that b : V x V ---+ W is a Zpe-bilinear map.

111.4.1 Adjoints

The ring of adjoints of b is:

Adj(b):= {(f,g) E End V EEl (End V)OP: b(uf,v) = b(u,vg), "iu,v E V}.

There is a natural subset of Adj(b) of self-adjoint elements:

Sym(b) := {(f, f) E End V EEl (End V)OP : b(uf, v) = b(u, vI), "iu, v E V}.

(III.9)

(IlUO)

Remark 111.4.1. Notice that Sym(b) is not an associative subring but rather a Jordan algebra,

quadratic in the case of characteristic 2, cf. [59, Section 4.5J. This is a vital observation for an-
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swering questions surrounding .i-decompositions; however, for algorithmic purposes this perspective

is not necessary.

If b is Hermitian then (f, g) E Adj (b) if, and only if, (g, f) ~ Adj (b). Hence, (f, g) f-' (g, f)

is an anti-isomorphism * (which uses multiplication in (End V)OP in the second variable). Indeed,

* has order 1 or 2 so that Adj(b) is a *-ring.

In general, for a *-ring (R,*) and additive subgroup S ~ R, we define Sj(S,*) = {s E S:

s* = s} which is again a subgroup of S, as * is additive. (Sj is for Hermitian and is a notation

encouraged by Jacobson.)

III.4.2 Self-adjoint Idempotents

Recall that an endomorphism e E End V is an idempotent if e2 = e. Hence, V = Ve EEl

V(l - e). Indeed, every direct decomposition V of V is parameterized by the set of projection

idempotents £ := £(V); that is, for each U E V, eu E £ where eu projects V onto U with kernel

(V - {U}). It follows that distinct members e and f of £ are orthogonal (Le. ef = 0 = f e) and

1 = 2:eEt: e.

Note that 1 E Sym(b). All idempotents in Sym(b) are self-adjoint and vice-versa, but to

emphasize this requirement we call these self-adjoint idempotents. The significance of Sym(b) is

the following:

Theorem 111.4.2. A direct decomposition V of V is a .i-decomposition ofb: V x V --> W if, and

only if, £(V) ~ Sym(b).

Proof. See [59, Proposition 4.30, Theorem 4.33.(i)] (whose proof applies in any characteristic). 0

Aself-adjoint idempotent e E Sym(b) is self-adjoint-primitive if it is not the sum of proper

(Le.: not anor 1) pairwise orthogonal self-adjoint idempotents in Sym(b). Such idempotents need

not be primitive in Adj(b). A set of pairwise orthogonal self-adjoint primitive idempotents of

Sym(b) which sum to 1 is called a frame of Sym(b). More generally, in a *-ring (R, *), a (self­

adjoint) frame is a set of self-adjoint-primitive pairwise orthogonal idempotents which sum to

1.

Corollary 111.4.3. There is a natural bijection between the set of fully refined .i-decompositions

of b and the set of all frames of Sym(b).
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III.4.3 Computing Adj(b) and Sym(b)
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o

Let V and W be finite abelian p-groups specified with bases X and Z respectively. Take

b : V x V --+ W to be a Zpe-bilinear map. Assume that b is input with structure constant matrix

B with respect to the bases X and Z (d. (III.3) ).

If End V is expressed as matrices (see Section III.2.2) with respect to X then

Adj(B) = {(X, Y) E End V EB End V: X B = Byt }.

To find a basis for Adj(B) we solve for X and Y such that:

(III.ll )

0 - "'" X ,B(z) _ "'" v ,B(z)- L-J xx x'y L-J .[ yy xy"
xEX yEX

'Vx,y E X,z E Z. (III.12)

This amounts to solving IXI 2 1ZIlinear equations over Zpe, each in 21XI variables and can be done

using O(/XI 4 IZI) operations in Zpe (d. Section III.2.2). Computing a basis of Sym(b) can be done

in similar fashion.

Remark 111.4.4. If b is Hermitian then the number of equations determining Adj(b) can be

decreased by 2 by considering the ordering of the basis X and using only the equations (III.12) for

x ::; y, x, Y E X and z E Z.

111.5 Algorithms for *-rings

In this section we prove effective versions of the classical semisimple and radical structure

theorems for finite *-rings. Most of the work reduces to known algorithms for the semisimple and

radical structure theorems of finite algebras over Zp.

III. 5. 1 A Fast Skolem-Noether Algorithm

Let K be a field of characteristic p. The Skolem-Noether theorem states that every ring

automorphism cp of Mn(K) has the form Xcp = D-IxoD for (D,(]') E GLn(K) ~ Gal(K/Zp), for

X E Mn(K), [10, (3.62)]. Given an effective automorphism cp, there is a straightforward method
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to find (D, a) which involves solving a system of n 2 linear equations over K and thus uses O(n6 )

field operations. We offer the following improvement by analyzing the proof of the Skolem-Noether

theorem in [26, Chapter VIII].

Proposition IlL5.I. Given an effective ring automorphism cp of Mn(K), K a finite field of

characteristic p, there is a deterministic algorithm using O(n4 + dimzp K) algebraic operations

which finds (D,a) E GLn(K) XI Gal(K/Zp ) such that Xcp = D-1xuD, for all X E Mn(K).

Proof. Define g , K" ~ Mn(K) by x ~ :] ""d r , K n ~ Mn(K) by xr ~ xg'P. Fix. bMffi

:'~[:~(~~f]:nM~:~n::c~: ~~i:~:: :::":~:~:,r:h~n :e::;~,:)j $ n. Set
Xi(XnT)
We summarize how the steps in this algorithm perform the various stages of the proof of

Skolem-Noether, given in [26, Chapter VIII].

Let I be the image of g. As I is a minimal right ideal, the image] := Icp is also a

minimal right ideal. Thus, there is an 1 :s: i :s: n such that Xi] =1= O. Since Xi] is a simple right

Mn(K)-module, it follows that Xi] ~ Kn. As {Xlg, ... ,xng} is a K-basis of I, {XIT, ... ,XnT} is

a K-basis of ] and so {Xi(XIT), ... , Xi (XnT)} is a basis of xJ. Thus D is an invertible matrix in

Mn(K). Finally, (aln)cp = (aa)In, for a E K, defines a field automorphisms of K. It follows that

Xcp = D-1Xu D for each X E Mn(K).

The algorithm searches over the set of all 1 :s: i,j :s: n and tests whether Xi(XjT) i= 0, a

test which uses O(n2
) field operations in K. The additional task of inducing a uses O(dimzp K)

operations in Zp. D
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III.5.2 Constructive Recognition of Simple *-algebras

Let A be a finite simple *-algebra of characteristic p. There is an elementary yet highly

useful observation that:

every simple *-algebra is either simple as an algebra, or

the sum of two simple algebras with the involution exchanging

the two simple factors.

(III.13)

We call the second case a simple *-algebra with exchange involution, that is, (Mn (K) EB Mn (K), e)

where (X, Y)· = (y t , X t ) for each (X, Y) E Mn(K) EB Mn(K). (Note, we could have treated this

simple *-algebra as Adj(d) for a nondegenerate Hermitian bilinear map d: K 2n X K 2n -7 K EB K

as in [59, Corollary 4.11].)

When A is a simple algebra it is *-isomorphic to Adj(d) where d : Kn x X n
-7 K is a

nondegenerate Hermitian form (recall from Section III.2.3 that our meaning of Hermitian includes

alternating and symmetric as well). The proof of this follows from [26, IX.lO-ll] and adapts well

to an algorithm:

Theorem III.5.2. Given a *-algebra (A, *) with an effective (easily evaluated and inverted) ring

isomorphism cp : A -7 Mn(K) for some field extension KjZpJ there is a deterministic algorithm

using O(n4 +dimzpK) algebraic operations which returns an effective *-isomorphism fL : (A, *) -7

Adj(d) for some nondegenerate Hermitian form d : Kn x Kn -7 K.

Proof. Define the ring anti-automorphism e : X 1-+ ((Xcp-l )*)cp, and the ring automorphism

T : X 1-+ (X·)t on Mn(K). Apply the algorithm of Proposition III.5.1 to T to find (D, a) E

GLn(K) )<J Gal(KjZp) such that XT = D-lxaD, for X E Mn(K). Define d : Kn x Kn -7 K by

d(u, v) := uDvat , u, v E Kn. Return fL : (A, *) -7 Adj (d) defined by afL := (acp, acp·).

To see that the algorithm is correct, notice that cp is now a *-isomorphism from (A, *) to

(Mn(K), e). Furthermore, it is easy to check that d(uX,v) = d(u,vX·) for each X E Mn(K) and

u, v E Kn, Thus (Mn(K), e) is *-isomorphic to Adj(d) via X 1-+ (X, X·). Hence the return fL is a

*-isomorphism.

For timing we note that the only computation is in apply the Skolem-Noether theorem

which uses O(n4 + dimzp K) algebraic operations. 0
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III.5.3 Computing the *-semisimple and *-radical Structure of Adj(b)

.We require the following generalization of the algorithm of [22] using effective homomor­

phism (Section III.2.2).

Theorem 111.5.3. There is a Las Vegas algorithm using which, given R ~ End V, for a finite

abelian p-group V, returns a set n of effective ring epimorphisms such that:

(i) for each 1r : R -; EndK W in n, W is a K -vector space so that EndK W is a simple ring and

ker 1r is a maximal ideal of R;

(ii) for each maximal ideal M of R there is a unique 1r E n such that M = ker 1r, and

(iii) if x, Y E R such that X1r = Y1r then the representatives Xl, yl E R of the pullbacks to R

of X1r and Y1r given by the effective 1r E n, satisfy Xl == yl (mod pR). Each evaluation or

computation of preimages of 1r uses O(rank3 R) operations.

The algorithms use O(rank5 V) algebraic operations.

Proof. Pass to R := R/pR ~ End V, V = V/pV, and using [22, Corollary 1.5] compute a Wedder­

burn complement decomposition R = S EEl rad R, where S is a subring of Rand S 2:! R/ rad R as

rings (note that the direct decomposition is as vector spaces not necessarily as rings).

Now apply the MeatAxe, [21, 23], to S to find a decompositio~ of V := V/pV into a sum

of irreducible S-modules V = VI EEl··· EEl 111, and express R in a baSis exhibiting this decomposition

so that R is block lower triangular. Use an obvious greedy algorithm to find a minimal subset W

of {VI,"" 111} such that S acts faithfully on (W). Let 7 : R -; S be the projection of x E R to S

given by the vector space decomposition R= SEElrad if.. For each W E W, define 1rW : R -; End W

by X1rW := (x + pR)7Iw, for x E R. The coset representative of the inverse image of f E End W

is created by extending f to V as 8 acting as 0 on each ~ =J W, 1 ::; i ::; I (Le., 8 has f in the W

diagonal block of the matrix and O's elsewhere), and then returning a coset representative of 87-1 .

Thus 1r is an effective homomorphism. The algorithm returns the set {1rW : W E W}.

First we validate the algorithm. If M is a maximal ideal of R then R/M 2:! EndK W

for some field extension K/'lLp and K-vector space W. Hence, R/M is a 'lLp-vector space and so

R/ rad R is a 'lLp-vector space, which proves that pR ::; rad Rand rad R = (rad R) /pR. Therefore,

it suffices to find the projections of R onto its simple factors.
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Since RjpR S;;; End V we can apply [22, Corollary 1.5]. Hence, we obtain a Wedderburn

complement decomposition R = S EB rad R. As S is semisimple its action on V is completely

reducible and the MeatAxe [21, 23] finds a decomposition V = VI EB ... EB ill as above. For each

WE W, the map 1rW is a ring homomorphism as T is a ring homomorphism and Wis an S-module.

Since W is also irreducible it follows that T := R1rW :::; S is a simple subring of Endzp W. The

appropriate field of scalars is the center K of T. Thus W is a K-vector space and 1rW is a ring

epimorphism onto EndK W with kernel a maximal ideal of R, proving (i). Since W is minimal

with respect to having S represented faithfully on (W), the returned set of epimorphism has one

epimorphism for each maximal ideal of R, thus proving (ii).

Finally, for (iii) we note that the representative matrix for the inverse image under 1r E

n, of a point in EndK W is trivial in every block except the block on which 1r is projected.

Furthermore, to evaluate 1r, we compute (x + pR)T which is done by writing x + pR in the bases

of the block decomposition given by {VI,"" VI} and uses O(dim3 V) operations. To compute a

preimage of f under 1r requires we write f in the basis X T where X is the fixed basis of R. Therefore

the algorithm returns correctly.

For the timing, we note the significant tasks are computing the Wedderburn decomposition

and the use of the MeatAxe, which use O(dim5 V) and O(dim4 V) algebraic operations, respectively

[22, Corollary 1.4], [21, 23]. o

Corollary 111.5.4. Given a *-ring (R, *) where R S;;; End V for an abelian p-group V, there is a

Las Vegas algorithm using O(rank5 V) algebraic operations which returns a set r = {r : (R, *) ---->

(T, *)} of *"ring epimorphisms.

(i) There is exactly one, E r for each maximal *-ideal M of (R, *), and ker, = M.

(ii) For each, : (R, *) ----> (T, *) E r either:

(a) T = (Mm(K) EB Mm(K),.) a simple *-algebra with exchange involution, or

(b) T = Adj(d) for a nondegenerate Hermitian form d: Km x Km ----> K.

(iii) If x, y E (R, *) such that x, = y, then the representatives x', y' E (R, *) of the pullbacks to

(R,*) of x, and Yf given by the effective, E r, satisfy x' == y' (mod pR).

Proof We build r recursively.
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Let r = 0. Using the algorithm of Theorem III.5.3, compute a representative set of ring

epimorphisms n = {71" : R ---+ EndK W} corresponding to the maximal ideals of R. Take 71" E n
and set M := ker7l". Test if M* = M. If so then apply Theorem III.5.2 to construct an effective

isomorphism <p : EndK W ---+ Adj(d). Add <p to r and continue. Otherwise, find 71"' E n where

ker7l"' = M*. Then remove 71"' from n and define,: R ---+ (EndK WEBEnd K lV,.) by r,:= (r7l",r7l"').

Add, to r and continue.

Theorem III.5.3 and (III.13) prove that the algorithm returns correctly and the number

of operations is dominated by the algorithm for Theorem III.5.3.

III. 5.4 Self-adjoint Pullbacks

o

We need an improvement over Corollary III.5.4.(iii) which allows us to pull back elements

which are self-adjoint in the *-simple factors to self-adjoint elements of our *-ring.

Lemma IlL5.5. Assume a discrete log oracle for Zp. Let,: (R, *) ---+ (T, *) be an effective

epimorphism and R a ring of characteristic a power of p. Given t E T such that t* = t, there is

an O(rank3 R) algorithm which finds an s E R such that s, = t and s* = s.

Proof. Set M := ker, and compute bases for .fJ(M, *), .fJ(R, *), and the abelian group J .­

.fJ(R, *)/.fJ(M, *). The map L : .fJ(M, *) + X f--+ M +x embeds J isomorphically into .fJ(R/M, *). Fix

a basis X for J and note that images and inverse images of L are completely determined by the basis

and require O(rank3 H(R/M, *)) operations to compute. Therefore, L is an effective isomorphism.

Now take t E .fJ(T, *). As, is effective, compute a coset representative r E R of the

preimage t,-l, that is, t = r,. Hence, M +r E .fJ(R/M, *) and so (M +r)L- 1 E .fJ(R, *)/.fJ(M, *).

As L- 1 is effective we have (M + r)c 1 = H(M, *) + s for some s E .fJ(R, *). Thus, s* = sand

s, = r, = t.

The timing of the algorithm is dominated by computing bases for the various abelian

subgroups and quotient groups. This uses O(rank3 R) algebraic operations and a discrete log

oracle for Zp (d. Section II1.2.2). o

III. 5. 5 Finding Self-adjoint Frames

Let (R, *) be a finite ring with involution *. We outline how to find a self-adjoint frame

of .fJ(R, *) = {r E R : r* = r}. To do this we require the following lemma:
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Lemma 111.5.6 (Lifting idempotents). Suppose that e E R such that e2 - e E radR. Then there

is an n E N such that (e2 - e)n = 0, and setting

n-l (2n -1) . .e := en L . en- 1- J (1 - e)J
j=O J

it follows' that:

(i) e2 = e,

(ii) e == e (mod radR),

(iii) r=e = 1 - e, and

(iv) If * is an involution on Rand e* = e then e* = e.

(III.14)

Proof. (i) through (iii) can be verified directly, compare [10, (6.7)]. For (iv) notice that e is a

polynomial in Z[e]. As 1* = 1 and e* = e it follows that e* = e. o

Proposition 111.5.7. (i) Given Adj(d) for a nondegenerate Hermitian form d: Kn x K n ----> K,

there is a deterministic algorithm using O(n3 ) operations in K which finds a frame ofSym(d).

(ii) If (Mn(K) EB Mn(K), e) a simple *-ring with exchange involution, then £ = {(Eii , Eii ) : 1 :::;

i:::;n} is a frame ofSJ(Mn(K)EBMn(K),e).

Proof. (i). By Corollary 111.4.3 we know that the set of frames of Sym(d) is in bijection with the

fully refined ..i-decompositions of d. As d is a bilinear form the fully refined ..i-decomposition of

d are parameterized by standard bases; Le. a bases X of d such that for each x E X there is a

unique y E X such that d(x,y) i- O. Finding a standard basis ofd can be done by standard linear

algebra at a cost of O(n3 ) operations in K. Given a standard basis X of d, create the fully refined

..i-decomposition V := {(x) : x E X} and compute associated projection idempotents £ := £(V).

This is the return of the algorithm.

(ii). This is obvious from Section III.5.2. o

Theorem 111.5.8. Given a *-ring (R, *) with R :::; End V, V an abelian p-group, there is a Las

Vegas algorithm using o(rank6 R) algebraic operations which finds a frame ofSJ(R, *).
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Proof Using Corollary III.5.4 we compute a set r of *-epimorphisms onto simple *-algebras, one

for each maximal *-ideal of (R,*). Given,: (R,*) ---+ (T,*) E r, use Proposition IIl.5.7 to

compute a self-adjoint frame £"1 of (T,*). By Corollary III.5A.(iii), we pullback E-y to a set

F-y = {e + pR ~ e2 == e (mod pR), e* == e (mod pR)}

such that F maps to E via e + pR f--7 e, + pRo Next, using Lemma IlI.5.5, choose coset represen-

tatives 1 E R for each e + pR E F such that 1* = f so that now:

F~ = {f + pR : 12 == 1 (mod pR), j* = f}

and F-y, = £"(' Apply Lemma IlI.5.6 to the members of F-y to create f = {j :1 E F-y}, which is a

set of pairwise orthogonal self-adjoint primitive idempotents.

Since F-y projects onto a unique *-simple factor of (R, *), and there is exactly one, E r

for each maximal *-ideal of (R, *), it follows that F:= U-YEI'F-y is a self-adjoint frame of (R, *).

Now we consider the number of operations. By using Corollary IlI.5A we use O(rank5 V)

algebraic operations. Now fix , : (R, *) ---+ (T-y, *) E r with T-y = EndK W"(' Proposition IlI.5.7

uses O(rank3 W-y) operations. Since 2:-YEI' rank W-y is at most rank V, it follows that this stage

takes at most O(rank3 V) operations.

Next, the computation applies Lemma IIl.5.5 which uses O(rank3 T-y) operations. Since

the bases computed in Lemma IlI.5.5 can be reused for each application with respect to a fixed " it

follows that the total cost of this stage is 0 (2:-YEI' rank3 T-y) = 0 (2:-yEI' rank6 W-y) = O(rank6 V)

operations. 0

111.6 Proof of Theorem 111.1.1

Given a finite p-group P of class 2, compute bases for PjZ(P) and pi and compute a

structure constant representation of b := Bi(P, Z(P» (which is straightforward from the definitions

in Section III.3.1 and (III.3».

Next, compute a basis for Adj(b) (Section IlI.4.3). Apply Theorem III.5.8 to find a self­

adjoint fra~e £ of Adj(b). Induce a fully refined .i-decomposition V = {(PjZ(P»e : e E £} of b

(d. Corollary IIIA.3).
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Apply Corollary III.3.4 to produce a fully refined central decomposition of P.

Since rankAdj(b) ~ log;[p : Z(P)]2 ~ log2[P : pI], the total number of algebraic opera-

tions is at most O(log6[P : PI]). 0

III.7 Closing Remarks.

III. 7.1 Discrete Logs are Required

The discrete log problem for Zp, is: given two elements x, y in an elementary abelian p­

group, determine if y E (x) [20, Section 7.1]. That is, can we decide if (x, y) is isomorphic to Zp

or Zp x Zp.

This problem occurs in many fields of computational mathematics. It has no known

polynomial-time solution and is generally regarded as a hard problem. A stronger version of the

discrete log problem asks further for an exponent e such that x e = y and this is the version required

in Section III.2.2 to use [39, Theorem 8.3] for large primes.

Since the abelian centrally indecomposable p-groups are the cyclic p-groups, we cannot

test if an abelian p-group is centrally indecomposable without solving the discrete log problem,

i.e.: determining if (x, y) is Zp or Zp x Zp. For p-groups of general class the situation does not

improve:

Proposition III.7.1. The discrete log problem for Zp is polynomial-time reducible to testing if a

central decomposition of finite p-group of class 2 is fully refined.

Proof. Let V = (x, y) be an instance of the discrete log problem for Zp. Set P := p1+2 x V,

where p1+2 is the extraspecial p-group of order p3 and exponent p, in particular, p1+2 is centrally

indecomposable of class 2.

Evidently P is a p-group of class 2 and H = {p1+2 X 1, 1 x V} is a central decomposition

of P. Furthermore, H is fully refined if, and only if, V = (x, y) is cyclic. 0

A version of Proposition III.7.1 for p-groups P of any class c shows that there exists a

centrally indecomposable p-group of any class c.
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111.7.2 Deterministic Version

Suppose that p is small, for instance bounded by loge IPj. In this case the discrete log

problem can be solved by brute force. FUrthermore, by replacing the Las Vegas method of [22]

with the original deterministic methods of [24] in the algorithm of Theorem IlL5.3, we can avoid

all use of nondeterministic methods.

III. 7.3 A Faster Las Vegas Algorithm

Suppose that we are only interested in testing if a p-group P of class 2 is centrally inde­

composable. By Theorem IlL3.2, the key step is to prove that Bi(P, Z(P)) is i.-indecomposable.

This means that we must prove that Sym(b)j(Sym(b) n radAdj(b)) is a field. This can be done

without polynomial factorization as we must only verify that various polynomials are irreducible

(see the algorithm of [24, Corollary 5.2]). Testing irreducibility can be done deterministically [57,

Theorem 14.37]. The use of discrete log oracles could also be avoided in this constrained setting

as we use this only in our pullback algorithm Lemma IlL5.5. So it appears possible that a deter­

ministic method can prove that a rgroup of class 2 is centrally indecomposable. (Note, the same

is impossible for abelian p-groups by Section III.7.l.)

If we can test if a p-group of class 2 is centrally indecomposable in a deterministic and

efficient manner then there is an alternative approach to proving Theorem IlLl.l, with discrete

logs reserved only to determine if abelian central factors are centrally indecomposable. The algo­

rithm would replace Theorem IIl.5.8 by a random search for self-adjoint idempotents in Sym(b).

Unfortunately, Sym(b) is a (quadratic) Jordan algebra, and there are presently no known estimates

on the the number of zero-divisors in Sym(b) and therefore finding idempotents at random may

not be easy. These questions are being investigated.

III. 7.4 Parallel Implementation

The algorithm described here is sequential. Recent investigations have revealed alternative

parallel algorithms for associative algebras, and the algorithms added here can be modified to a

parallel setting [64].



77

III. 7. 5 Finding Orbits of Central Decompositions

In [59J, the action of the automorphism group of a p-group P of class 2 and exponent p

was studied. Though not presented in detail, it is clear that the methods here can be used to find

a representative fully refined central decomposition for each CAutp(P')-orbit as described in [59,

Corollary 5.23.(iii)]. The necessary step is to choose an orthogonal basis in Proposition III.5.7 with

the desired address in the sense of [59, Definition 5JJ.
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CHAPTER IV

FINDING DIRECT PRODUCT DECOMPOSITIONS

IV.1 Introduction

A polynomial-time algorithm is provided which, given a group of permutations, matrices,

or a polycyclic presentation; returns a Remak decomposition of the group: a fully refined direct

decomposition. The method uses group varieties to reduce to the case of p-groups of class 2.

Bilinear and ring theory methods are employed there to complete the process.

One of the most elementary methods to create a group is through a direct product of other

groups. This immediately suggests the problem of decomposing a group into a direct product of

nontrivial subgroups or proving that no such decomposition exists. By the classical Krull-Remak­

Schmidt theorem, finding one direct decomposition with maximal size is sufficient to understand

all other direct decompositions, as any two maximal direct decompositions are equivalent up to

an automorphism of the group. However, this does not resolve the problem of finding even one

proper direct factor, should one exist. For finite groups G this is a finite problem, but surprisingly

algorithms to accomplish this task use IG/IOg IGI+O(I) steps, see Section IV.6.!.1 Thus such methods

. are impractical and here we present a substantial improvement as seen in the following special case

of our main theorem:

Theorem IV.I.L There is a polynomial-time algorithm which, given G = (T) :::; Sn, returns a

direct decomposition of G into nontrivial subgroups: G = HI X ••• x He, with emaximal.

As every group Gcan be represented as a permutation group of degree IGI, this leads to

a polynomial-time, in IGI, algorithm to find a direct decomposition of any group. With a careful

analysis we prove that in fact such an algorithm is nearly optimal:

1 In this work, all logs are with base 2.
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Corollary IV.L2. There is a nearly linear-time, O~(N), algorithm which, given the multipli­

cation table of a group G of order N, returns a direct decomposition into nontrivial subgroups

G = HI X .,. X He, with l maximal.

We have not pursued every notable optimization in the algorithm of Theorem IV. l.1. How­

ever, much of that algorithm adapts to matrix groups and groups given by polycyclic presentations.

To explain this some vocabulary is required.

Groups and subgroups are given by sets of generators. To decompose a group into a direct

product of nontrivial subgroups it suffices to provide a set of generating sets for the members of

the direct decomposition. A group G is directly indecomposable if its only direct decomposition is

{G} - owing to the fact that we do not allow 1 as a direct factor. A Remak decomposition is a

direct decomposition consisting of directly indecomposable subgroups.

We let Gn denote a class of groups suitable for computation, together with a list of

hypothesized routines available for members of Gn which are described in Section IV.2.2. If

G = (B) E Gn then G is input by O(IBjn) bits of data, and the algorithm's complexity is measured

in terms of IBln + log IGI. In some domains Gn , there are no efficient deterministic algorithms

for some of the hypothesized routines, but often there are Las Vegas algorithms or the inherent

obstacles appear infrequently in practical settings. Section IV.2.2 expands on these issues. We can

now present our main theorem:

Theorem IV.L3. There is a deterministic polynomial time algorithm which, given a group G E

Gn , returns a Remak decomposition ofG.

IV.I.1 Outline of the Algorithm of Theorem IV.I. 3

The algorithm works recursively through the following characteristic series of the given

finite group G f 1:

(IV.1)

where (i(G) represents the upper central series of G, i E Z+, 06(G) is the solvable radical, and

S(G)/06(G) = soc(G/06 (G)) is the pullback of the socle of G/06(G). Using this series we

describe the stages of the algorithm.
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• Case: G > 0 15 (G) = 1. This case is settled in Section IV.5A, utilizing the unique Remak

decomposition of the socle of G to build the unique Remak decomposition of G.

• Case: G = 015(G) > 1. This case is settled in Sections IV.5.1- IV.5.3 and breaks into five

subcases.

- Subcase: G> (1(G) = 1. This case is settled in Theorem IV.5.4, reducing to the case

of p-groups by means of a Sylow system for the group.

- Subcase: G = (1 (G) > 1. This case is settled in Section IV.2.3. Here G is a direct

product of cyclic groups of prime power order. To find such a decomposition is routine

but in general relies on factoring and discrete logs.

- Subcase: G > (2 (G) = (1 (G) > 1. This is settled in Section IV.5.3, using a recursive

call to find a Remak decomposition of Gj (1 (G). Using the algorithm for abelian groups,

the algorithm lifts and reduces that decomposition to a Remak decomposition of G.

- Subcase: G = (2(G) > (1(G) > 1. This is settled in Sections IVA.9 and IV.5.l. This

stage of the algorithm uses the bilinear map of commutation of the group G and the

structure of a certain commutative ring. This translates the problem to one of factoring

polynomials over finite fields.

- Subcase: G > (2(G) > (1 (G) > 1. This is settled in Sections IV.5.2 and IV.5.3,

using a recursive call to find a Remak decomposition of Gj (1 (G). Using the algorithm

for nilpotent groups of class 2, the algorithm lifts and reduces that decomposition to a

Remak decomposition of G .

• Case: G > 0 15 (G) > 1. This is settled in Section IV.5.5 making a recursive call to find

a Remak decomposition of Gj015(G). Then using the algorithm for solvable groups, the

algorithm lifts and reduces that decomposition to a Remak decomposition of G.

The recursive calls in the third and fifth subcases, and the final case, use the same frame­

work. Indeed, the algorithm handles them uniformly through the use of group varieties. That is

carried out in Section IV.4.l.
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IV.2 Background

IV.2.1 Notation

Unless otherwise obvious, we assume all groups, rings, and modules are finite. We use

A - B for the complement of A n B in A, and Au B denotes a union of disjoint sets. In general p

denotes a prime.

Groups, rings, and modules will be denoted by capital Roman letters, i.e.: G, H, etc. Sets

of subgroups, subrings, and submodules will be denoted with calligraphy, for instance, H, X, etc.

Varieties will be denoted in Gothic letters, i.e: W, 91, etc.

The direct product of groups A and B is denoted by A x B, whereas the direct product of

rings or modules A and B is denoted by A ED B. Given a set H of groups we let ITHEfi H denote

the direct product of the members of H. Given a set H oj normal subgroups oj G, we use only the

notation (H) := (H : H E H) jor the product oj the members in H and thus avoid confusion with

the notation ITHEfi H. As we contend with many notions of "product" we take care to include the

adjective "direct" whenever appropriate.

Given a group G, our convention is that gh := h-1gh and [g, h] = g-1 g\ for g, h E G.

Also, [H, K] := ([h, k] : hE H, k E K) and CH(K) := {h E H : [h, K] = I}, for H, K :S G. We

make repeated implicit use of the following: given normal subgroups A, B, C of G: [A, B] :::! G,

[A,B]:S AnB, [A,B] = [B,A], and [A,BC] = [A,BHA,C].

Set (I(G) := Cc(l) and inductively define (i+1(G) ;::: (i(G) so that (i+l(G)!(i(G) =

(1(G!(i(G)), i E Z+; that is the usual upper central series of G. We say that G is nilpotent of

class c if (c(G) = G > (c-1(G).

The derived series begins with G(O) := G and recursively GCi+1) = [GCi), G(i)], i E N. We

call G solvable oj derived length d if G(d-l) > G(d) = 1. The solvable radical of G, O(5(G), is the.

largest solvable normal subgroup of G..

The socle of G, soc G, is the subgroup generated by all minimal normal subgroups of G.

IV.2.2 Gn and its Hypothesized Routines

For Gn we have in mind permutation groups, matrix groups, and groups given by polycyclic

presentations. More generally, Gn is a class of groups for which:

(i) given G = (8) E Gn is input using 0(18In) bits,
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(ii) if H = (T) :::; G, G E Gn , then HE Gn , and

(iii) the list of hypothesized routines (IV.2.3-IV.2.12) below, are available for members of Gn .

The complexity of all algorithms is with respect to 18ln+log IGI. The additional log IGI term allows

for recursion through chains of subgroups of G (which have length at most log IG/). In the examples

of Gn above, this is implicit since log IGI E O~(n). Though we discuss current implementation and

complexities for (IV.2.3-IV.2.12), these algorithm can be taken as oracles in that the algorithm of

Theorem IV.1.3 is a deterministic polynomial-time reduction to these hypothesized routines. In

the context of permutation groups, (IV.2.3-IV.2.12) has a deterministic polynomial-time solution,

which leads to Theorem IV.1.1.

Quotients of Permutation Groups: Gn = QPERMn' Here G E QPERMn if, and only if,

G = GIM where G = (8) :::; Sym(n), Inl = n, and M = (TG ) g G.

Remark IV.2.1. Theorem IV.1.1 references permutation groups but the algorithm applies also

to quotients of permutation groups. In fact, it requires this generality (actually the quotients in

IV. 2. 7). But a benefit of this requirement is that it allows for larger families of groups. For example,

extraspecial2-groups of order 2l+2m have no faithful permutation representations of degree less than

2m . However, such groups are obvious quotients of a permutation group of degree 8m.

"Proto" Matrix groups: G n = PRMAT(d, q) with n = d2 log q, and q a power of a known prime

p. Here G E PRMAT(d, q) if, and only if, G = Glei (G) for some i E N or G = G10'5 (G), where

G = (8) :::; GL(V), V a d dimensional vector space over IF'q.

Remark IV.2.2. Working with general quotients of matrix groups would seem the appropriate

context here; however, algorithms for such general settings do not exist. As they are not required,

this generality suffices, and indeed, it this generality alone that is required for permutation group

setting.

Polycyclic groups: Gn = PC(Pl,'" ,Pd) with n = (d!l) logmax{pl,'" ,Pd}, and Pi not neces­

sarily distinct primes, for 1 :::; i :::; d. Here

(IV.2)
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It follows that every g E G can be written as

(IV.3)

Hypothesized Routines.

IV.2.3. Given x,y E G = (8) E Gn , compute xy, X-I, and test if x = y.

IV.2.4. Given G= (8) E Gn , return IGI.

IV.2.5. Given H = (T) ~ G = (8) E Gn and x E G, test if x E H. If x E H then also return x

as a word (or straight line program) in T.

The routines (IV.2.3-IV.2.5) are interrelated. For QPERMn and PRMAT(d, q) both xy and

x-I can be computed efficiently by obvious means. To test x = y requires testing equality of cosets

in some instances, and is thus essentially equivalent to (IV.2.4) and (IV.2.5).

Deterministic polynomial-time algorithms for (IV.2.3-IV.2.5) for QPERM are in [29, PI].

For PRMAT(d, q), these problems presently require many of the methods of the ongoing matrix

group project, [46]. Many of those methods are nondeterministic Monte Carlo and Las Vegas

routines, and also require large integer factorization and discrete logs (see [57, Chapter 19, p.

569]) - though in practice these are reportedly of little concern. 2 Deterministic polynomial time

algorithms are known for restricted classes of matrix groups including solvable groups involving

only small primes [38, Theorem 3.2J and other generalizations as in [41J.

For groups in PC, none of these problems have polynomial-time solutions at present. The

most popular method to test equality is through (IV.3). However, the known methods to write

words W(XI, . .. ,Xd) as a words of the form (IV.3) have exponential complexity, even in the average

case [35]. An improvement was given for p-groups in [36], but the complexity of that algorithm is

not established. However, the domain Pc has a great deal of successful uses in practice. and is

often the easiest method to input solvable groups. In this case the algorithm of Theorem IV.1.3

will not be polynomial-time but rather will use a polynomial number of group multiplications.

IV.2.6. Given IGI for G= (8) EGn , return the primary factorization of IGI.

For G E QPERMn , the prime divisors of IGI are at most n and so the factorization is

always easy. For G E PC(PI,." ,Pd), following (IV.3), IGI divides Pl'" Pd. To factor IG] is

2Thanks to C.R. Leedham-Green for communicating the state of these at Groups and Computation V.
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straight forward as the primes {PI, ... , Pd} are known. If G E PRMAT(d, q) this routine can

involve the difficult problem of factoring qi - 1 for various 1 ~ i ~ d.

IV.2.7. Given G = (B) E G n and ME {(I(G), (2(G), ... , Oe;(G)}, return H = (T) E Gf(n) and

an isomorphism cp : G / M ~ H, where f (n) is a polynomial in n independent of G.

For the domains QPERMn , PRMAT(d, q), and PC(PI, ... ,Pd), this routine is trivial, with

f(n) = n, as these classes are closed to quotients by these subgroups. If we consider simply the

class of permutation groups (without quotients) then it is not even clear that quotients of this

form have faithful permutation representations of degree a polynomial in n.

IV.2.8. Given M = (TG) ~ G = (B) E Gn , return CG(M). Consequently, given G = (B) E Gn

and i E Z +, return the i -th upper central series term (i (G) .

For QPERM see [29, P7J. This presently depends upon the classification of finite simple

groups. For PRMAT we have not found a treatment of this problem; however, for solvable matrix

groups this is solved in [38, Theorem 3.2.(8)J under the assumption that all primes in the order

of the group are small. That condition can be removed by hypothesizing routines for integer

factorization and discrete logs, and it is possible that methods from the matrix group project

apply for the general matrix group setting. For Pc see [20, Section 8.8.2].

IV.2.9. Given G = (B) E G n , return the solvable radical: Oe;(G).

For QPERM see [29, P29J. As the groups in Pc are solvable, there G = Oe;(G) so the

problem is trivial. For PRMAT this problem has long been studied as part of the matrix group

project, but has not been resolved in general, though in many situations this can be computed;

see [46, Section 1.3].

IV.2.10. Given G = (8) E Gn with Oe;(G) = 1, return a minimal normal subgroup ofG. Conse­

quently, also find the sode of G: soc G.

See [29] for QPERM and [46, Section 1.3] for PRMAT. For groups G > 1 in Pc, Oe;(G) =

G > 1 so this problem is not applicable..

iV.2.11. Given a solvable group 0 = (B) E G n , return a Bylow system P = {PI, ... , Pt } of 0: Pi

a Bylow subgroup ofG for 1 ~ i ~ t, G = Pt ···pt , and PiPj = PjPi for 1 ~ i,j ~ t.
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For details on the existence and uniqueness of Sylow systems see [11, Section 1.4].

For Pc see [13], for QPERM [29, P13], and for PRMAT [31].

IV.2.12. Given H = (T) :::; G = (8) E Gn , return K:::; G such that G = H x K, or prove that no

such K exists.

(IV.2.12) was solved independently by E. M. Luks and C.R.B. Wright in 2004 in a back

to back lectures given at the University of Oregon. Earlier Holt and Luks independently produced

polynomial-time algorithms to find a complement K to H in G, though possibly not a direct

complement; see for instance [30, Proposition 3.8]. Their methods are essentially the same and

can be viewed as applications of I-cohomology. Coupled with the (IV.2.8), this leads to:

Theorem IV.2.13 (Luks,Wright; 2004 (unpublished». Given a method to find general comple­

ments and solutions to (IV.2.5) and (IV.2.8) in Gn , there is a deterministic polynomial time

algorithm which solves (IV. 2. 12}.

Proof Let G E Gn .

Algorithm. Use (IV.2.5) to determine if H::9 G. If not, then report that H is not a

direct factor of G. Otherwise, use (IV.2.8) to compute Gc(H) and Z(H). Use (IV.2.5) to test if

G :::; HGc(H) and if not, report that H is not a direct factor of G. Next, find a general complement

K:::; Gc(H) to Z(H), if one exists, and return K; otherwise, report that H is not a direct factor

ofG.

Correctness. Evidently, G = H x J, for some J :::; G, requires that H ::9 G, Gc(H) =

Z(H) x J, and G = HGc(H). Therefore, a negative return is given only if H is not a direct factor.

Now suppose that H is a direct factor of G. Then every direct complement of H lies in

Gc(H). Furthermore, a direct complement of H is also a direct complement of Z(H) in Gc(H).

As Z(H) is central in G, so also in Gc(H), a complement K :::; Gc(H) to Z(H) is a direct

complement to Z(H). Furthermore, H n K :::; H n Gc(H) = Z(H), so H n K :::; Z(H) n K = 1.

Also, HK ~ HZ(H)K = HGc(H) = G. Finally, [H,K] = 1 so G = H x K.

Timing. The algorithm makes a bounded number of calls to assumed routines. 0

Remark IV.2.14. For clarity we point out that the only computational domains considered here

which have deterministic polynomial time algorithms. for each of the hypothesized routines are

quotients of permutation groups and solvable matrix groups whose orders involves small primes.
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IV.2.3 Abelian p-groups, Bases, Effective Homomorphisms, and Solving Systems of Equations

A basis of a finite abelian p-group V is a subset X of V such that V = EBxEX (x). Every

basis of V gives a natural isomorphism to Zpel EB ... EB Zpes for el :S ... :S es E Z+. Operating

in the latter representation is preferable to V's original representation and we assume all abelian

groups are handled in this way. Each endomorphism f of V can be represented by an integer

matrix F = [Fij ] such that pej-eiIFij, 1:S i :S j :::;; s, and furthermore, every such matrix induces

an endomorphism of V (with respect to X) [19, Theorem 3.3].

In various places we apply homomorphisms and isomorphisms between finite abelian p­

groups, rings, and algebras. We say a homomorphism is effective when it can be evaluated efficiently

- for instance with the same cost as matrix multiplication - and a coset representative for the

preimage of an element in the codomain can also be found efficiently. This means that effective

isomorphisms are easily evaluated and inverted.

Suppose we have a system of Zpe-linear equations with solutions in a Zpe-module V. There

are efficient deterministic methods to find a basis of the solution space of the system [39, Theorem

8.3]; however, it is essential to note that for a large p, this process assumes a discrete log oracle

mod p. However, we have elected to assume (IV.2.5) which incapsulates this problem for large p

and so we do not make explicit mention of the discrete log problem below.

Proposition IV.2.15. There is a deterministic polynomial time algorithm which, given an abelian

group in Gn , returns a Remak decomposition of the group.

Proof. Let G E Gn be abelian.

Algorithm. Use (IV.2.4) and (IV.2.6) to compute and factor N := IGI. For each prime

piN, let mp be the p' part of N, and set Gp := Gmp • Use [39, Theorem 8.3] to find a basis Xp for

Gp • Return U{(x) : x E Xp }.

piN

Correctness. The subgroups Gp are the p-primary components of G and so [39, Theorem

8.3] applies. Furthermore, G = ITplN (Xp), and (X) = ITXEX (x) by the definition of a basis.

Timing. The algorithm applies deterministic polynomial time methods. As log IGI :S n,

the number of applications of these routines is polynomial in n. o
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IV.2.4 Rings, Idempotents, and Frames

All our rings will have characteristic a power of p and are input with a basis. Furthermore,

each of our rings will be represented in End V for some abelian p-group V and thus multiplication

is the usual matrix multiplication.

Let R be a finite ring. An element e E R is an idempotent if e2 = e. The trivial

idempotents are °and 1 and all other idempotents are called proper. Two idempotents e and f

are orthogonal when ef = °= fe. Given any idempotent e, 1 - e is also an idempotent and is

orthogonal to e, and if f is orthogonal to e then f(I - e) = f = (1 - e)f. A set E of pairwise

orthogonal idempotents is supplementary if 1 = LeEe e. An idempotent is primitive if it is not

the sum of proper pairwise orthogonal idempotents. Finally, a frame is a supplementary set of

primitive pairwise orthogonal idempotents.

As R is finite, it follows that R has a frame and any two frames of R are conjugate under

a unit of R [10, p. 14IJ. The unique size of a frame we call the capacity of R. If R has capacity 1

then we say R is a local ring. As idempotents are not quasi-regular, they lie outside ofthe Jacobson

radical J(R) of R. Thus, a frame of R induces a frame of R/J(R). We have occasion to use the

following classic formula for the lifting of idempotents:

Lemma IV.2.16 (Lifting idempotents). Suppose that e E R such that e2 - e E J(R). Then there

is an n E N such that (e2 - e)n = 0, and setting

n-l (2n -1) . .e := en L . en- 1- J(1 - e)J
j=O J

it follows that:

(i) e2 = e,

(ii)e == e (mod J(R)),and

(iii) r=e = 1 - e.

(iv) If E is a frame of RjJ(R) , then t := {e : e E E} is a frame of R.

(IVA)

Proof (i)-(iii) are verified directly, compare [10, (6.7)]. For (iv) note that J(R) consists of nilpo­

tent elements as R is finite. By (i), t is a set of idempotents of R. Given e E E, we have assumed

that 1 - e = LfE&-{e} f, and so by (iii) e is orthogonal to j for all fEE - {e}. Finally, by (ii),
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if e is not primitive in R then e is not primitive in R/J(R), which contradicts our assumptions.

Thus t is a frame of R. 0

Consequently, if R is a finite commutative ring, then R/J(R) is a product of fields and so

there is a unique frame & of R; that is, {Re : e E &} is the unique direct decomposition of R into

commutative local subrings.

Let R be a finite ring and V a finite (left) R-module. If S is a subring of EndR V then

every idempotent e E S decomposes V into R-modules: V = Ve EB V(l - e). In general a direct

decomposition X of V determines a supplementary set &(X) of pairwise orthogonal idempotents

which are the projection endomorphisms to the various components. If instead we start with a

set & c EndR V of supplementary pairwise orthogonal idempotents then the associated direct

decomposition is denoted X(&) := {Ve: e E &}. Notice that &(X(&)) = & and X(E(X)) = X.

IV.2.5 Biadditive and Bilinear Maps

Let V and W denote finite abelian groups. A map b : V x V --> W is biadditive if

b(u +u/, V +VI) = b(u, v) +b(u l
, v) +b(u, VI) + b(u/,VI),

for all u, ulv, VI E V. Define

b(X, Y) := (b(x, y) : x E X, Y E Y)

for X, Y ~ V. If X::; V then define

bx : X x X --> b(X,X)

as the restriction of b to inputs from X. The radical of b is

radb:= {v E V: b(v, V) = a= b(V, v)}.

(IV.5)

(IV.6)

(IV.7)

(IV.8)

We say that b is nondegenerate if rad b = O.

If R is a ring, then a biadditive map b : V x V --> W is R-bilinear if V and Ware (left)
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R-modules such that

b(ru,v) = rb(u,v) = b(u,rv), Vu, v E V, and r E R. (IV.9)

We say b is faithful R-bilinear when AnnR VnAnnR W = 0, where the annihilator of an R-module

V is AnnR V = {r E R: rV = O}. Every biadditive map is also Z-bilinear. More generally, if R is

a subring of Sand b is S-bilinear then b is also R-bilinear. In that case rad band b(V, V) are both

R- and S-modules.

IV.2.6 Representing Bilinear Maps for Computations

Assume that b : V x V ~ W is a Zp.-bilinear map. Let X and Z be ordered bases of V

and W respectively. We define B~fJ E Zp' by

Set

b (I: Sx X , I: ty y)
xEX yEX

= I: I: sxtyB~fJZ,

x,yEX zEZ
(IV. 10)

B - "" B(z)xy - L.... xy Z,

zEZ
Vx,y E X;

so that B = [BXY]X,YEX is an n x n-matrix with entries in W, where n = IXI. Writing the elements

of V as row vectors with entries in Zp' with respect to the basis X we can then write:

b(u, v) = uBvt
, Vu,v E V. (IV.ll)

Take F, G E End V, represented as matrices with respect to the ordered basis X. Define

F Band BG t by the usual matrix multiplication, but notice the result is a matrix with entries in

W. Evidently, (F+ G)B = FB +GB, F(GB) = (FG)B, and similarly for the action on the other

side of B. If H E End W then define BH by [BH]x,y := BxyH for each x,y E X. The significance

of these operations is seen by their relation to b:

(IV.12)

for all u, v E V.
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IV.3 Direct Decompositions

In this section we develop various properties of direct decompositions. Our principal aim

is to establish when direct products can be lifted from direct products of a quotient (Subsection

IVA).

IV.3.l Normal, Central, and Direct Decompositions

A set H of normal subgroups of a group G is a (normal) decomposition of G if'H generates

G but no proper subset does. Evidently, 1 rf- H. Thus, if G = 1, its the only decomposition is 0.

A decomposition H is central if [H, (H - {H})] = 1 for each H E 'H, or direct if H n (H ­

{H}) = 1 for each H E H. Direct decompositions are also central decompositions.

If H is a decomposition where [H,K] = 1 for distinct H, K E H, then [H, (H - {H})] = 1

so H is a central decomposition.

A subgroup H ::; G is a direct factor of G if there is a direct decomposition H of G with

H E H. Notice H =J. 1.

Remark IV.3.l. Central decompositions are in the internal description of central products while

direct decompositions are the internal description of direct products.

Remark IV.3.2. Suppose that G = (H) = (J) for some sets of subgroups J ~ H ..

(i) If [H, (H - {H})] = 1 for each H E H, then K::; Z(G) for each K E H - J.

(ii) If Hn (H - {H}) = 1 for each H E H, then K = 1 for any K E 'H - J. Thus, the definition

of direct decompositions given in the introduction agrees with definition just given.

Proposition IV.3.3. If H is a normal, central, or direct decomposition of G and K is a subset

ofH, then K is a normal, central, or direct decomposition of (K), respectively.

IV.3.2 Finer and Coarser Decompositions

A set H of subgroups of a group G is finer than another set K of subgroups of G if

K = (H E H : H::; K), VKEK. (IV.13)
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Note this is not the same as H ~ K. Evidently this gives a partial ordering on the decompositions

of G with top element {G}. We also say that K is coarser than H, or that H refines K.

Remark IV.3.4. Note that we have not required that Hand K be decompositions in the definition

of refinement. This allows us to speak of refinements of induced sets as in (IV.14)-(IV.16), below.

Proposition IV.3.5. Suppose that H is a finer decomposition than K. IfH is normal, central,

or direct, then K is central or direct, respectively.

Proof. If every member of H is normal then any group generated by a subset of H is normal; thus,

the members of K are normal. Now assume H is central and fix K E K. As (K - {K}) = (H E

H : H i K) it follows that

[K, (K - {K})] ([H, (H E H: H i K)] : H E H,H:::; K)

< ([H, (H - {H})] : H E H,H:::; K) = 1.

So K is a central decomposition. Finally assume that H is a direct decomposition. Note that

K n (K - {K}) = (H E H: H:::; K) n (H E H: H i K).

As H is a direct decomposition, each 9 EGis expressed uniquely as 9 = I1HE'H gH, gH E H. If

9 E Kn (K - {K}) then 9 E K so gH = 1 for all H i K, H E H. Also, 9 E (K - {K}) so gH = 1

for all H:::; K, H E H. Hence, 9 = 1. 0

IV.3.3 Induced Decompositions and Generically Split Subgroups

Let M be a normal subgroup of a group G and H a set of subgroups of G. The following

notation is convenient (coincidences can occur, but the resulting objects are sets so coincidences

are ignored):

HnM .- {HnM:HEH}-{1},

HM .- {HM: H E H} - {M}, and

HM/M .- {HM/M: H E H} - {M/M}.

(IV.14)

(IV.15)

(IV.16)



92

Remark IV.3.6. IfH is a decomposition, it is generally possible to that H n M, HM, or HMIM

is not a decomposition of M, G, or GIM, respectively.

Proposition IV.3.7. Let G be a group with a direct decomposition H. If M::::JG and M = (HnM)

then:

(i) H n M is a direct decomposition of M;

(ii) HM = KM for H, K E H implies H, K ::; M (so HM, HMIM, and H- {H E H : H ::; M}

are in bijection);

(iii) HM1M is a direct decomposition of G1M; and

(iv) if N ::::J G with N = (H n N) then M n N = (H n M n N) and M N = (H n M N).

Proof. (i). Suppose that M = (H n M). If H n M E H n M, then H n M::::J M. Furthermore,

(H n M) n (H n M - {H n M}) ::; H n (H - {H}) = 1. By definition, 1 ¢ H n M, and so H n M

is a direct decomposition of M.

(ii). FixH,K E H, H -=f. K. Set J:= (H-{H,K}). By Proposition IV.3.5, G = HxKxJ

and by (i), M = (H n M) x (K n M) x (J n M). Thus,

HM H x (KnM) x (JnM),

KM = (HnM) x K x (In M).

If H M = K M then H = H n M and K = K n M.

(iii). As G = (H) = (H, M) it follows that G1M is generated by HMIM and the members

of HMIM are normal in GIM.

Fix H E H. Clearly M ::; HM n (H - {H})M. Next we reverse the inequality. Set

J := (H - {H}), so G = H x J. So HM = H x (J n M) and JM = (H n M) x J. Thus

HMnJM = (HnM)x(JnM) = M. Furthermore, HM is in bijection with H-{H E H: H::; M}.

So

(H - {H})M = {KM: K E H,K i M,K -=f. H} = HM - {HM}.

Thus, (HMIM) n (JMIM) = MIM implies (HMIM) n (HMIM - {HMIM}) = 1. As MIM ¢

HMIM (by (IV.16)) it follows that HMIM is a direct decomposition of GIM.
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(iv). Let gEM n N. By (i), H n M is a direct decomposition of M and since gEM,

it follows that g = IlHEH hH for unique hH E H n M, H E H. Similarly, H n N is a direct

decomposition of N and by the uniqueness of the hH , it follows that hH E H n N, and so

hH E H n M n N. Thus M n N::; (H n M n N) ::; M n N.

The argument for M N = (H n M N) is equally transparent. 0

Definition IV.3.8. A subgroup M:::J G is generically split if given any direct decomposition H of

G, then H n M is a direct decomposition of M.

Evidently 1 and G are always generically split. Furthermore, Proposition IV.3.7.(iv) show

that the set of all generically split subgroups of G form a lattice. In Section IV.4.3 we uncover a

great number of generically split subgroups but for now we give some simpler examples.

Example IV.3.9. (i) If G ~ Z~ then the only generically split subgroups are 1 and G.

(ii) In any group, the subgroups (i(G) are generically split; see Proposition IV.4.11.(i).

(iii) In any finite group, the solvable radical is generically split; see Proposition IV.4.11. (ii).

Proposition IV.3.10. If M ::; N are normal subgroups of G such that M is generically split in N

and N is generically split in G, then M is generically split in G. In particular, every characteristic

generically split subgroup of N is generically split in G.

Proof. Let H be a direct decomposition of G. As N is generically split in G, N n H is a direct

decomposition of N. As M is generically split in N, also M n (N n H) = M n H is a direct

decomposition of M. Thus, M is generically split in G. 0

IV. 3.4 Krull-Remak-Schmidt Redux

We make crucial use of the classical theorem for direct products of groups:

Theorem IV.3.11 (Krull-Remak-Schmidt). Let G be a finite group with Remak decompositions

Hand K. Then for each .1 <;;;; H, there is a cp E CAutG(InnG) such that .Jcp <;;;; K and Hcp =

(H - .1) u .1cp. In particular, there is a cp E CAut G (Inn G) with Hcp = K.

Proof See [49, (3.3.8)]. o
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Remark IV.3.12. Theorem IV.3.11 was proved by Remak in his 1911 thesis [48]. Over the

next two years, Remak and Schmidt exchanged successive improvements in the proof concluding in

Schmidt's 3 page proof [52].

Krull was 12 years old at the time of these results, but 14 years later contributed a version

for modules [33], a simpler but widely used version of the theorem. Modern group theory texts

synthesize both versions into one statement involving operator groups. Incomprehensibly, Remak's

name is sometimes dropped from the title.

Remark IV.3.13. The Krull-Remak-Schmidt theorem is a hybrid of an exchange theorem (in the

sense of a matroid) and a transitivity theorem. Both of these interpretations are used in the proof

of Theorem IV.l.S.

We need the following consequence:

Corollary IV.3.14. Let G be a finite group, H a direct decomposition of G, and R a Remak

decomposition of G. Then

(i) RM refines HM whenever Z(G) ::; M ~ G, and

(ii) R n M refines H n M whenever M ~ G, M ::; G'.

Hence, RZ(G) and R n G' are uniquely determined by G, and Aut G acts on both sets.

Proof (i). Let K be a Remak decomposition which refines Ji (there always is one). By Theorem

IV.3.lI, there is some <p E CAutc(InnG) such that R<p = K. As <p E CAutc(InnG), [x,<p] E

Z(G) ::; M (see [49, 3.3.6]) and we have that xM<p = xM for all x E G. So RM = RM<p = KM.

As KM refines HM, so does RM.

(ii). The argument is identical to (i) except that it relies on the fact that [x, y]<p = [x, y]

for all x, y E G. So R n M = K n M. 0

Remark IV.3.15. The sets RM, JiM, R n M, and H n M in Corollary IV.S.14 need not be

decompositions in our strict sense; see Remark IV.3.4 and Remark IV. 3. 6. The special cases

M = Z(G) or M = G' lead to direct decompositions in the respective subgroups or quotient groups

by Proposition IV.4.11.

Proposition IV.3.16. Let G be a group and Z(G) ::; M::; G such that M is generically split.
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(i) V(M) := {HM : H a direct decomposition of G} is a boolean lattice under the partial ordering

of refinement; see (IV.13).

(ii) If H = HM is a normal decomposition of G, then there is a direct decomposition K of G

such that H refines KM and so that if H refines :JM for a direct decomposition :J of G,

then KM refines :JM.

Proof (i). Let R be a Remak decomposition of G. As M is generically split, RM is in a bijection

with R(M) := R - {R E R : R :s:; M}, Proposition IV.3.7.(ii). By Corollary IV.3.14.(i), this

bijection is induces a lattice isomorphism between V(M) and the boolean lattice of partitions of

R(M).

(ii). Let S = {K E V(M) : H refines K}. Evidently {G} E S so S =I 0. The meet KM of

the members of S satisfies the conclusion.

IVA Pulling Back Direct Decompositions of Quotient Groups

o

In this section we develop a method to create direct decompositions of a group G from

direct decompositions of G/M, for selected M ~ G. The quotients required by the algorithm

for Theorem IV.1.3 (as outlined in Section IV.l.l) are handled uniformly using group varieties.
,

Sections IV.4.1 and IV.4.2 introduce necessary vocabulary and objects. Sections IV.4.3 and IV.4.4

develop the relationship between direct decompositions of G/M and direct decompositions of G.

Finally, Section IV.4.6 provides the algorithms to pullback direct decompositions of G/M to direct

decomposition of G.

IV.4.1 Group Varieties W, Verbal Subgroups W(G), and Marginal Subgroups W*(G)

In this section we review group varieties, verbal, and marginal subgroups.

Throughout this section let X be a countable set and W =I 0 a subset of the free group

F(X) on X. Given a group G and a function f : X ~ G, define I: F(X) ~ G as the induced

homomorphism with xl = xf, x E X. If X is enumerated as X = {Xl, X2, ... } then we may treat

W E F(X) as a function in the variables X, denoted W(Xl, X2, ... ), and f : X ~ G as a sequence

(91,92, ... ) of elements in G where xi! = gi, i E Z+. In this way wI = W(91,92, ... ), compare

[44, pp.3-4J.
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The W-verbal subgroup of G is

W(G) := (wI IwE W, f : X ----> G). (IV.17)

This is the subgroup generated by all evaluations of the words in W with elements from G.

Given f, f' : X ----> G we form the product f f' : X ----> G pointwise. Thus, in the indexed

sequence notation above we have:

wff' = w(g19~, g2g~, ... ) (IV.18)

forw E F[X], gi = xi! and g~ = xii', i E Z+.

The counterpart to verbal subgroups are the W-mar:ginal subgroups introduced by P. Hall

[17J.

W*(G) := {a E G I W(91, •.. ,gi-l, agi, gi+l, ... ) = W(gl, ... ,gi-l, gi, gi+l, ... ),

Vgi E G,i E Z+,w E W}

However, we will prefer the definition in the following equivalent forrtiulation:

Nullx-+c(W) .- {f': X ----> G Iwf'f = wI, "If: X -+ G, Vw E W},

W*(G) = U imf·
!ENullx_a(W)

(IV.19)

(IV.20)

(IV.21)

Notice f': X ----> G has imf' ~ W*(G) if, and only if, f' E Nullx-+c(W).

Verbal subgroups are fully-invariant (F. Levi, [17]) while marginal subgroups are in general

only characteristic (P. Hall, [17]).

Example IV.4.1. (i) Let [X1J := Xl and [Xl, ... , Xc+lJ := [[Xl"", Xc]' Xc+l], c E N. If We =

{[Xl",' ,xc+d}, then W(G) = IC+l(G), the (c+ 1)-st term in the lower central series. Also,

W;(G) = (c(G), the c-th term in the upper central series of G [49, 2.3].

(ii) Let O(Xl) := Xl and O(Xl"",X2d+1) = [O(Xl"",X2d),O(X2d+l"",X2d+1)], dEN. If

Wd = {O(Xl,'" ,X2d)}, then W(d)(G) = G(d) is the d-th derived group of G. It appears

that W*(G) is not generally encountered and has no associated name. However, a philo-
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sophically appropriate title might be the d-th upper derived subgroup of G, since WJ (G) is a

solvable group of derived length d. However, it is not generally true that the quotients of the

series Wtl) (G) ~ W(2) (G) ~ . .. are abelian. 3

Proposition IV.4.2. Given a class m of groups, the following are equivalent:

(i) there is a countable nonempty set W of words such that GEm if, and only if, W(G) = 1;

(ii) (P. Hall) there is a countable nonempty set W of words such that GEm if, and only if,

W*(G) = 1;

(iii) (G. Birkhoff) 1 E mand m is closed to homomorphic images, subgroups, and direct products.

If m satisfies any of these properties then m is called a variety of groups. Given a set of words,

the associated variety is denoted m(W).

Proof. See [49, 2.3]. o

Remark IV.4.3. Given sets of words W, W' ~ F[X], it is be possible that m(W) = m(W') with

W =I W'. Therefore, the subgroups W (G) and W* (G) are not necessarily determined by the variety

m(W), but rather by set of words W.

Example IV.4.4. (i) The variety 91c := m([Xl"'" XC+l]) is the class of nilpotent groups of

class at most c [32, Theorem 3.9].

(ii) The variety 6d := m(5(Xl,"" X2d)) is the class of solvable groups of derived length at most

d [32, Theorem 3.20].

Definition IV.4.5. Am-subgroup H of a group G is a subgroup contained in the variety m.

Proposition IV.4.6. Let m:= m(W) be a group variety and G a group. If H is a m-subgroup of

G then so is W*(G)H, that is: W*(G)H Em.

Proof. Let f : X -> G with im f ~ W* (G)H. As each element of W* (G)H has the form ah for

a E W* (G) and h E H, choose functions f', f" from X to G where im f' ~ W* (G), im f" ~ M,

and f = f'f" (pointwise). By the definition of W* (G), wI = wf' f II = wf" for all w E W. As

HEm, W(H) = 1 and so wf" = 1 for all wE W. Thus, wI = 1 for all wE Wand all f: X -> G

with imf ~ W*(G)H; that is, W(W*(G)H) = 1 and hence, W*(G)H Em. o
3Peter Neumann informs me that for reasons such as this, marginal subgroups are not generally used except in

the context of nilpotent groups. Indeed, they do not appear in [11].
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IV.4·2 W-cores: O'XJ(G)

Following Remark IVA.3 we know that W*(G) may depend on the choice of Wand

might not be uniquely determined by the variety W(W). In this section we define a characteristic

subgroup O'XJ(G) of G with properties similar to W*(G) which depends only on W(W), not W.

Definition IVA.7. Fix a variety Wand a group G.

(i) A subgroup M :::! G is a maximal normal W-subgroup if whenever M 2: N :::! G and NEW,

then M = N.

(ii) The W-core, O'XJ(G), of G is the intersection of all maximal normal W-subgroups of G.

As 1 E W, the set of maximal normal W-subgroups of a group G is always nonempty. It

can be a singleton set, Examples .(ii)-(iii), but it need not be, Example .(i). Also note that W is

closed to subgroups so O'XJ(G) E W.

Example IV.4.8. (i) 01)11 (G) is the intersection of all maximal normal abelian subgroups ofG.

Generally there can be any number of maximal normal abelian subgroups of G so 01)11 (G) is

not a trivial intersection.

(ii) Omc (G) is the intersection of all maximal normal nilpotent subgroups of G with class at most

c. If c > log IG I then all nilpotent subgroups of G have class at most c and therefore Omc (G)

is the Fitting subgroup of G: the unique maximal normal nilpotent subgroup of G.

(iii) Similar to (ii), OSd (G), d > log IGI, is the unique maximal normal solvable subgroup of G,

i. e.: the solvable radical Os (G) of G.

Proposition IVA.9. Let W := W(W) be a group variety and G a group. Then

(i) W* (G) ::; O'XJ(W) (G), and

(ii) if M:::! G then O'XJ(G)O'XJ(M) is a normal W-subgroup of G.

Proof. (i). By Proposition IVA.6, every maximal normal W-subgroup of G contains W*(G).

(ii). As M :::! G and O'XJ(M) is characteristic in M, it follows that O'XJ(M) is a normal

W-subgroup of G. Thus, O'XJ(M) lies in a maximal normal W-subgroup N of G. As O'XJ(G) ::; N

we have O'XJ(G)O'XJ(M) 2: NEW. As W is closed to subgroups, it follows that O'XJ(G)O'XJ(M) is

in W. 0
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Remark IV.4.IO. (i) If W, W' ~ F[X] with m(W) = m(W'), then OW(W)(G) = OW(W,)(G)

and (W')*(G) ::::; OW(W)(G).

(ii) It is possible to have W*(G) < OW(W)(O). For instance, with SJ11 = m((Xl,XZ]) and G =

83 X Cz, the marginal subgroup is the center 1 x Cz, whereas the SJ11-core is C3 x Cz.

IV.4.3 Induced Decompositions with Margins and Cores

We now prove that marginal and core subgroups behave well when considering direct

decompositions. Throughout we assume W ~ F[X] and m= m(W) as defined in Section IV.4.I.

Proposition IVA.II. Let G be a finite group with a direct decomposition 'H. Then

. (i) 'Hnw*(G) = {W*(H) : H E 'H}, this is a direct decomposition ofW*(G), and'HW*(G)jW*(G)

is a direct decomposition of GjW*(G); and

(ii) 'HnOw(G) = {Ow(H) : H E 'H}, this is a direct decomposition ofOw(G), and'HOw(G)jOw(G)

is a direct decomposition of GjOw (G) .

In particular, margins and cores are generically split subgroups for any set ofwords and any variety.

Proof (i). We must show that 'H n W*(G) = {W*(H) : H E 'H} and by Proposition IV.3.7

that W*(G) = ('H n W*(G). If 'H = {G} then these are true trivially. Fix H E 'H and set

K:= ('H-{H}). By induction we may assume that ('H-{H})nW*(K) = {W*(K): K E 'H-{H}}

and this is a direct decomposition of W*(K).

As G = H x K, every f : X -t G decomposes uniquely as f = fH X fK, where fH :

X -t H, fK : X -t K. Moreover, if w E W, then w1 = WfH x WfK. Take f~ : X -t H with

im f~ ~ W*(H), and fi< : X -t K with imfi< ~ W*(K), and define!, : X -t G by !' = f~ x fi<.

Thus, by the definition of W*(H) and W*(K), for each wE W:

w!'f = w(J~ x fi<)(fH x !Id = (wf~fH) x (wfi<!Id = (WfH) x (WfK) = wf. (IV.22)

Thus im!, ~ W*(G) and hence W*(H) x W*(K)::::; W*(G). Whence, W*(H)::::; HnW*(G) and

W*(K) ::::; K n W*(G). We now reverse these last three inclusions.

Fix f' : X -t W*(G). So!, = f~ x fi< where f~ : X -t H, 1;< : X -t K with

im f~ ~ H n W* (G) and im fi< ~ K n W* (G). Take fH : X -t H, f K : X -t K, and w E W, and
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compute:

(IV.23)

As G = H X K, it follows that wfRfH = WfH and wfKfK = WfK. Thus, H n W*(G) ::::; W*(H),

K n W*(G) ::::; W*(K), and W*(G) ::::; W*(H) x W*(K). So H n W*(G) = W*(H), K nW*(G) =

W*(K), and W*(G) = W*(H) x W*(K). Thus, by induction (i) is proved.

(ii). Let H E Hand K := (H - {H}). Let M be a maximal normal QJ-subgroup of

G = H x K. Let M H be the projection of M to the H-component. As QJ is closed to homomorphic

images, MH E QJ. Furthermore, MH :::J H so there is a maximal normal QJ-subgroup N of H such

that M H ::::; N.

We claim that M N E QJ.

As G = H x K, every gEM has the unique form 9 = hk, hE H, k E K. As MH is the

projection of M to H, h E MH::::; N. Thus, g, hE MN so k E MN. Thus, MN = N X MK , where

MK is the projection of M to K. Now let QJ = QJ(W) and fix w E W. For each f : X --> MN,

write f = fN X fK where fN : X --> Nand fK : X --> MK. Hence, wf = WfN X fK' = WfN X WfK'

However, W(N) = 1 and W(MK ) = 1 as N,MK E QJ. Thus, wJ = 1, which proves that

W(MN) = 1. So MN E QJ as claimed.

As M is a maximal normal QJ-subgroup of G, M = MN and N = MH. Hence, H n M =

N is a maximal normal QJ-subgroup of H. So we have characterized the maximal normal QJ­

subgroups of G as the direct products of maximal normal QJ-subgroups of members H E H. Thus,

H n Ol)J(G) = {Ol)J(H) : H E H} and this generates Ol)J(G). By Proposition IV.3.7, H n Ol)J(G) is

a direct decomposition of Ol)J(G). 0

IV.4.4 QJ-separated Direct Decompositions

In this section we define QJ-separated direct decompositions. These decompositions are

direct decompositions which can be partitioned into subgroups lying in QJ, together with subgroups

with no direct factors in QJ. This is the key organizational device for the proof of Theorem IV.1.3,

through the use of Theorem IV.4.22.

Definition IV.4.12. Let QJ be a variety and G a group with a direct decomposition H.

(i) QJnH:={HEH:HEQJ}.
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(ii) H - \21 := {H E H : H rf \21} = H - (\21 n H).

(iii) H is \21-separated if each H E H - !1.1 has no direct factor in !1.1 (note 1 rf H).

(iv) His \21-refined if it is \21-separated and every member ofH n!1.1 is directly indecomposable.

Example IV.4.13. (i) For the variety sn1 of abelian groups, an snl-separated direct decompo­

sition is a decomposition in which all nonabelian members have no abelian direct factors

(recalling 1 is not a direct factor).

(ii) Given a group G and the variety 6d, d > log IGI, an 6d-separated direct decomposition of G

is a decomposition in which the nonsolvable members have no solvable direct factors.

Proposition IV.4.14. Let \21 be a variety and G a finite group.

(i) Every Remak decomposition of G is \21-separated and so every direct decomposition can be

refined to a \21-separated decomposition of G.

(ii) If H is a \21-separated direct decomposition of G then {(H - \21), (\21 n H)} is a \21-separated

direct decomposition of G.

(iii) IfH and K are any two !1.1-separated direct decompositions of G then (H -!1.1) U (\21 n K) is

a !1.1-separated direct decomposition of G.

(iv) If!1.1 = \21(W) and H is a \21-separated decomposition of G then (\21 n H) ~ W*(G).

Proof. (i). Let H be a Remak decomposition of G. As every H E H is directly indecomposable,

the only direct factor of H is H. Thus, the members of H - \21 have no direct factors in \21. So H

is \21-separated.

(ii). Let K be a Remak decomposition of G which refines H. As \21 is closed to subgroups,

J := {K E K : 3H E \21 n H with K ~ H} ~ \21 n K. (IV.24)

Furthermore, every K E K - J lies in some H E H - \21 and so is a direct factor of H. As H is

\21-separated it follows that K rf \21, for any K E K - \21. Thus J = \21 n K. Set L := (H - \21) =

(K - \21) = (K - J) and V = (\21 n K) = (\21 n H). We claim {L, V} is \21-separated.

If L has a direct factor which lies in \21 then, as \21 is closed to subgroups, it follow that

L has a directly indecomposable direct factor M which lies in \21. However, K - \21 is a Remak
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decomposition of L (Proposition IV.3.3) and so M is isomorphic to a member of K - m (Theorem

IV.3.11) and ME m by assumption. This is impossible as no member of K - m lies in m. Finally,

as m is closed to direct products it follows that V E m. Thus {L, V} is m-separated.

(iii). Let Hand K be two m-separated decompositions. Choose Remak decompositions

:J and I:. which refine Hand K, respectively.

Without loss of generality, assume that 1m n:J1 ~ 1m n 1:.1 (we will see shortly these

are equal). By Theorem IV.3.11 applied to m n:J ~ :J and 1:., there is W ~ I:. such that

I := (:J - m) u W is a Remak decomposition of G. Thus, I is m-separated by (i). Theorem

IV.3.11 provides a 'P E Aut G such that (m n :J)'P = W. As m is closed to isomorphic images, it

follows that W ~ mn 1:.. As Imnl:.l :::; Imn:J1 = IWI, mnl:. = W. Thus, I = (:J -m) u (mnl:.).

As shown in the proof of (ii), :J - m refines H - m, and m n I:. refines m n K. Thus, Prop­

osition IV.3.5 proves that (H - m) u (m n K) is a direct decomposition of G, and it is m-separated.

(iv). Let V:= (m nH) and H:= (H - m). Fix wE w, f,!': X ~ G with im!, ~ V.

As G = H x V we write f = fv X fH for unique fH : X ~ Hand fv ; X ~ V. As V E m,

1 = W(V) = {wg: g: X ~ V,W E W} so that wfi;fv = 1 = wfv for each w E W. Hence,

wf'f = w(fi; x 1H)(fv x fH) = wfi;fv x WfH = WfH = WfH x wfv = wf.

Hence, im!, ~ W*(G) so that V:::; W*(G). o

Proposition IV.4.15. Let m= m(W), G be a group, such that Z(G) :::; W*(G) :::; M:s! G where

M is generically split in G. If X is a Remak decomposition of M, then then either {G} is m­
separated or there is a nonempty subset W ~ X and a subgroup H :::; G, such that G = H ~ (W).

Furthermore, ifH is a m-refined direct decomposition ofG, then (Hnm)Z(M) = WZ(M).

Proof If GEm then G = W*(G) = M and so any X is a m-separated direct decomposition of G.

Thus we assume that G 1. m.

Suppose that {G} is not m-separated. Then by Proposition IV.4.14.(ii) there is a direct

decomposition {H, V} of G which is m-separated and 1 ::J V E m. Since M is generically split,

{H n M, V n M} is a direct decomposition of M. By Proposition IV.4.14.(iv), V:::; W*(G) :::; M

so that {H n M, V} is a direct decomposition of M. Let H be a Remak decomposition of G. Set

Z := {Y E H : Y :::; V}, and then extend Z to a Remak decomposition Y of M. From Theorem
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IV.3.11, applied to M and Z ~ Y, there is W ~ X such that (Y-Z)UW is a Remak decomposition

of M. As V =11, 0 < 121 = IWI. Also, G = (H, V) = (H,Y-Z, W). As, Hn (W) :::: M, it follows

that H n (W) = (H nM) n (W) = (Y - Z) n (W) = 1. So G = H ~ (W). By Corollary IV.3.14.(i),

YZ(M) = «Y - Z) U W)Z(M), so ZZ(M) = WZ(M). 0

Iv'4.5 Central Reduction Algorithms

Definition IVA.IB. A centrally-refined direct decomposition 1{ of a group G is a direct decompo­

sition in which every abelian member is cyclic of prime power order, and every nonabelian member

has no abelian direct factor.

Theorem IVA.17. There is a deterministic polynomial-time algorithm which, given a group in

iGn , returns a centrally-refined direct decomposition of G.

Proof. Let G E iGn .

Algorithm. Use the algorithm for Definition IVA.I9.(i) to compute Z(G). If Z(G) = 1 then

return {G}. If Z(G) > 1, use the algorithm for Definition IVA.I9.(ii), find a Remak decomposition

X for Z(G). Use (IV.2.12) to build W := {W EX: 3K :::: G, G = K x W}. Use (IV.2.12) to find

K :::: G such that G = K x (W). Return {K} U W.

Correctness. If Z (G) = 1 then G has no abelian direct factors and so {G} is a centrally­

refined direct decomposition of G. Now assume Z(G) > 1 and that X is Remak decomposition

of G. By Proposition IVA.I5, W, G = H ~ (W) with H having no central direct factor. As

(W) :::: Z(G) it follows that G = H x (W) and {H}UW is a centrally-refined direct decomposition

ofG.

Timing. The algorithm uses G(log IGI) calls to polynomial-time algorithms for iGn . 0

Theorem IVA.IB. There is a deterministic polynomial-time algorithm which, given G E iGn and

a decomposition 1{ of G, returns a centrally-refined direct decomposition K of G such that if JiM

refines .JM for a generically split abelian subgroup M 2 Z(G) and a direct decomposition .J of G,

then KM refines .JM .

Proof. Algorithm. Begin with K := 0 and J:= 1 :::: G. Now loop over each HE 1{ and perform the

following steps. Set J := (J, H) and use (IV.2.12) to construct.c := {K E K : 3X :::: J, J = KxX}.

Use (IV.2.12) to compute X :::: J such that J = (.c) x X. Let X be the return of the algorithm
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for Theorem IV.4.17 applied to X, and set K := .c U X. Then continue with the next term in the

loop. When the loop ends, return K.

Correctness. We claim the following loop invariants: J is generated by a subset of H, K

is a centrally-refined direct decomposition of (K). At the end of each loop iteration, (K) = J and

so at the end of the loop, J = G and so K is a centrally-refined direct decomposition of G.

The loop invariants are initially true. It is also clear that J is generated by a subset of

7-{ and the loop ends once J = G. Within the loop, .c S;; K and so .c is a centrally-refined direct

decomposition of (.c). By assumption, X is also a centrally-refined direct decomposition of X. As

J = (.c) xX, it follows that .c U X is a centrally-refined direct decomposition of J. Hence, K is

maintained as a centrally-refined direct decomposition of (K).

Now suppose that 7-{M refines .:JM for some direct decomposition .:J of G. Suppose that

H E H is the current iterate. By induction we assume that K refines (K) n.:J. By assumption,

there is a unique JH E .:J such that H :::; JH M. Since H is not contained in (K) it is also not

contained in (.c). As JH is a direct factor of G, J n JH is a direct factor of J. Furthermore,

Z(G) :::; M ::; HM ::; JM so Z(G) :::; Z(JM). Thus, H:::; (J n hf)Z(JM). Therefore H lies in

YZ(JM) for some (unique) direct factor Y of J; see Corollary IV.3.14.(i). By Corollary IV.3.14.(i)

applied to J = (.c) x X, and the fact that H does not lie in .cZ(JM), it follows that H S; X Z (JM).

As the members of K - .c satisfy (IV.13), it follows that X Z (J) ::; (J n JH) Z (JM) (inequality is

possible). Thus, the updated K := (.c U X)Z(JM) refines (J n .:J)Z(JM). At the end of the loop,

G = J and so KM refines .:JM.

Timing. The algorithm uses polynomial time methods with [HI::; log IGI recursive calls.

o

IV.4.6 Reduction Algorithms

In this section we provide the algorithms to reduce a direct decomposition of G/M(G),

M E {W*, Omcw)} to a direct decomposition of G, see Theorem IVA.23.

Throughout this section, we assume that QJ := QJ(W) is a group variety (Section IV.4.1)

and that Gn is a computational domain (Section IV.2.2).

Definition IV.4.19. A computational domain Gn is W -computable if there are polynomial-time

algorithms (in n) for each of the following:
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(i) given G E Gr" return generators for M (G), where M (G) is either W* (G) or O'!T(W) (G), and

(ii) given G E Gn with G E QJ(W), return a Remak decomposition of G.

Example IV.4.20. Let W = [Xl, X2], so QJ := QJ(W) is the group variety of abelian groups and

the marginal subgroups W*(G) are the center of groups G E Gni see Example IV.4.4.(i). Then any

computational domain Gn with the hypothesized routines of Section IV.2.2 (for example: QPERM,

PRMAT, and Pc) are W-computable; see (IV. 2.8) and Proposition IV.2.15.

Remark IV.4.21. It is possible that for some words Wand computational domains Gn , generators

can be obtained for both W* (G) and O'!T(W) (G). In such a case either subgroup can be used as

M(G) for the algorithms of this section.

Theorem IV.4.22. Let Gn be W-computable and V := QJ(W). Then there is a deterministic

polynomial-time algorithm which: given G E Gn , returns a QJ-separated direct decomposition 1t of

G in which I'H - QJI ::; 1 and each member of QJ n 'H is directly indecomposable.

Proof Algorithm. Use the algorithm for Definition IVA.19.(i) to compute M(G). If M(G) = 1

then return {G}. If M(G) > 1, use the algorithm for Definition IV.4.19.(ii), find a Remak

decomposition X for M(G). Use (IV.2.12) to build

W:= {W EX: :JZ(G) ::; K::; G,GjZ(G) = KjZ(G) x WZ(G)jZ(G)}. (IV.25)

Use (IV.2.12) to find Z(G) ::; K ::; G such that GjZ(G) = KjZ(G) x (W)Z(G)jZ(G). Now apply

the algorithm for Theorem IVA.18 to {K} U Wand return the output of that algorithm.

Correctness. If M(G) = 1 then either 1 = O'!T(G) :2: W*(G) (Proposition IVA.9.(i)) or

1 = W*(G); in any case, W*(G) = 1. By Proposition IV.4.14.(iv), if G has a direct factor which

lies in QJ then that factor lies in W*(G) = 1. Hence, G has no direct factor which lies in QJ and so

{G} is QJ-separated.

Now let M(G) > 1 and X be a Remak decomposition of M(G). The set 1t := {K} U W

is a normal decomposition of G where 1t = 'HZ(G). Therefore, the algorithm of Theorem IVA.18

can be applied. Furthermore, Z(M) is characteristic in M and generically split in Z(M). As M is

generically split in G, it follows by Proposition IV.3.1O that Z(M) is generically split in G. Thus,

Theorem IVA.18 guarantees that the return is a centrally-refined direct decomposition K of G such
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that if 1iZ(M) refines .:JZ(G) for a direct decomposition .:J of G, then KZ(M) refines .:JZ(M).

By Proposition IVA.I5, we know 1iZ(M) refines .:JZ(M) for some QJ-refined direct decomposition

of G, and thus the return is indeed QJ-refined.

Timing. The algorithm applies polynomial-time algorithms O(log IGI) times. 0

Theorem IV.4.23. Let Gn be a W-computable computational domain where W*(G) ~ Z(G) for

each G E Gn , and QJ := QJ(W). Then, there is a deterministic polynomial-time algorithm which:

given G E Gn and a normal decomposition 1i of G, returns a QJ-refined direct decomposition K of

G such that if 1iN refines .:JN for M(G) :::; N :::; G with N generically split in G, and .:J a direct

decomposition of G, then KN refines .:IN.

Proof Algorithm. Begin with K := 0 and J := 1 :::; G. Now loop over each H E 1i and perform the

following steps. Set J:= (J, H) and use (IV.2.I2) to construct £ := {K E K : ::JX ~ J, J = KxX}.

Use (IV.2.I2) to compute X ~ J such that J = (£) x X. Let X be the return of the algorithm

for Theorem IVA.22 applied to X, and set K:= £ U X. Then continue with the next term in the

loop. When the loop ends, return K.

Correctness. We claim the following loop invariants: J is generated by a subset of 1i and

K is a QJ-refined direct decomposition of (K). At the end of each loop iteration, (K) = J and so

at the end of the loop, J = G and so K is a QJ-refined direct decomposition of G.

The loop invariants are initially true. It is also clear that J is generated by a subset of 1i

and the loop ends once J = G. Within the loop, £ ~ K and so £ is a QJ-refined direct decomposition

of (£). By assumption, X is also a QJ-refined direct decomposition of X. As J = (£) xX, it follows

that £ U X is a QJ-refined direct decomposition of J. Hence, K is maintained as again QJ-refined.

Now suppose that 1iM refines .:JM for some direct decomposition .:J of G. Suppose that

H E 1i is the current iterate. By induction we assume that K refines (K) n.:J. By assumption,

there is a unique JH E .:J such that H ~ JHM. Since H is not contained in (K) it is also not

contained in (£). As JH is a direct factor of G, J n JH is a direct factor of J. Furthermore,

Z(G) ~ M(G) :s:; N so Z(G) :s:; Z(JN). Thus, H ~ (In hf)Z(JN). Therefore H lies in YZ(JN)

for some (unique) direct factor Y of J; see Corollary IV.3.I4.(i). By Corollary IV.3.I4.(i) applied

to J = (£) x X, and the fact that H does not lie in £Z (JN), it follows that H :::; X Z (JN). As the

members ofK - £ satisfy (IV.I3), it follows that XZ(J) :s:; (J n JH)Z(JN). Thus, the updated

K := (£ U X)Z (JN) refines (J n .:J)Z(J N). At the end of the loop, G = J and so KN refines .:JN.
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Timing. The algorithm loops over the elements of 'H and within each loop it uses

polynomial-time methods on a set of size at most I'HI. Thus, the algorithm uses O(I'HI) polynomial­

time methods. D

IV.4.7 Enrichment

In this section we define the largest ring over which a biadditive map b is faithfully bilinear.

In the next section, we show how this ring parameterizes the direct decompositions of b. This

technique arose in [42, 43] to study the model theory of bilinear maps. Here the definitions are

different (and apply more generally) but they are ultimately equivalent.

Throughout this section let b : V x V -> W be a biadditive map of abelian p-groups V

and W.

Definition IV.4.24. Define

Rich(b) := {(f, g) E End V EB End W : b(uf, v) = b(u, v)g = b(u, vJ), \:Iu, v E V}.

This is the enrichment ring of b.

The title of "enrichment" is justified by the following:

Theorem IV.4.25. Let b : V x V -> W be 'a biadditive map. Then the following hold:

(i) Rich(b) is a subring of End V EB End W, and V and W are (right) Rich(b)-modules.

(ii) If b is K-bilinear, for a commutative ring K, then K/(AnnK V n AnnK W) embeds in

Rich(b)OP. Whence, Rich (b) is the largest ring over which b is "faithful" bilinear, i.e.:

AnnRich(b) V n AnnRich(b) W = o.

Proof. (i). Set S:= RichR(b). Evidently S is closed to sums. For composition, let (f,g), (f',g') E

S. Then for all u, v E V we have

b(uff' , v) = b(uf,v)g' = b(u,vJ)g'= b(u,v)gg'

.b(uff' , v) = b(uf,v)g' = b(u,vJ)g' = b(u,vfJ').

Hence (ff',gg') E S.
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(ii). Let b be K-bilinear. As V and Ware K-modules, there are p : K -; End V and

p : K -; End W such that rv = p(r)v and rw = p(r)w for v E V, w E W, and r E K. As b is

K-bilinear, b(ru,v) = rb(u,v) = b(u,rv) so (p(r),p(r)) E Rich(b)OP. 0

Proposition IV.4.26. Ifradb = 0 and b(V, V) = W then Rich(b) is commutative.

Proof For all (f, g), (f', g') E Rich(b) and u, v E V we have

b(u[f, 1'], v) = b(u, vf1') - b(u, v1' f) = b(u, vf1') - b(u, v1')g

= b(u,vf1') - b(u1',v)g = b(u,vf1') - b(u1',vJ)

= b(u, v f 1') - b(u, v f 1') = o.

This is easily repeated in the second variable to show that v[f, 1'] E rad b = 0, for all v E V. Thus,

[f, 1'] = O. Also,

b(U,V)[g,g'] = b(u,v)gg' - b(U,V)g'g = b(u,vf1') - b(u,v1'f)

= b(u, v[f, 1']) = O.

As W is generated by b(u,v), u,v E V, and b(u,V)[g,g'] = 0, it follows that [g,g'] = O. 0

Remark IV.4.27. If radb = 0 and (f,g), (f',g) E Rich(b) then f = 1'. If W = b(V, V) and

(f,g),(f,g') E Rich(b) then 9 = g'. So ifradb = 0 and W = b(V,V) then the first variable

determines the second and vice-versa. In this setting we write (f, j) for elements in Rich(b).

IV.4·8 Direct Products of Bilinear Maps

In this section we define the direct product of bilinear maps and then use the enrichment

ring to parameterize the direct decompositions of a bilinear map.

Let b : V x V -; Wand b' : V' x V' -; W' be two K-bilinear maps. Then form

b ED b' : V ED V' x V ED V' -; W ED W' by

(b ffi b' )(u ffi u' , v ffi v') := b(u, v) ffi b(u' , v'). (IV.26)

This makes b ffi b' an K.:bilinear map. This is the product in the category of K-bilinear maps.
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We also have a natural internal description. Suppose that b : V x V --. W is an K-bilinear

map. Then a direct decomposition of b is a set B <; PG(V) x PG(W) (here PG(X) denotes the

set of K-submodules of an K-module X) such that

V= EB Z,
CU,Z)EB

W = EB Z, and b(U, U) :::; z, V(U, Z) E B.
CU,Z)EB

(IV.27)

This makes b naturally isomorphic (in the category of bilinear maps) to EBCU,Z)EB cCU,Z), where

c(U,Z) : U xU --. Z is defined by c(u, v) := b(u, v) for all U,v E U. (Note that b(U, U') :::; Z nz' = 0

for distinct (U, Z), (U', Z') E B so that U and U' are perpendicular.)

By standard linear algebra, given a direct decomposition X of an R-module V there

is a corresponding set of pairwise orthogonal supplementary idempotents £(X) which are the

projections of the decomposition. Therefore given a direct decomposition B of an K -bilinear map

b : V x V --. W, we define £(B) as the set of ordered pairs (e,e) of projection endomorphisms

e E EndK V, e E EndK W resulting from the direct factors in B. Likewise, given a set £ of

supplementary idempotents of EndK V x EndK W, then B(£) := {(Ve, We) : (e,e) E £}.

Theorem IV.4.28. Let b be a non-degenerate bilinear map and B a direct decomposition of b.

(i) £(B) is a set of pairwise orthogonal supplementary idempotents ofRich(b) and B(£(B)) = B.

(ii) B(£) is a direct decomposition of band £(B(£)) = £.

(iii) B is fully refined if, and only if, £(B) is a frame of Rich(b).

(iv) b is directly indecomposable if, and only if, Rich b is a local ring.

Proof. These are readily verified, compare [42, Section 3]. o

Corollary IV.4.29. Given a biadditive map b: V x V --. W where radb = 0 and W = b(V, V),

there is a unique fully refined direct decomposition of b.

Proof. By Proposition IVA.26, Rich(b) is commutative. Thus it has a unique direct decomposition

into a product of local commutative rings, that is, it has a unique frame. Thus, by Theorem

IV.4.28.(iii), b has a unique fully refined direct decomposition. o
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IV.4.9 Finding Direct Decompositions of Bilinear Maps

In this section we give an algorithm to find a direct decomposition of a bilinear map.

The general setting depends on the work of Ronyai [50] on algorithms for associative algebras.

However, the setting we require for Theorem IV.1.3 requires only the work of Berlekamp to factor

polynomials over finite fields [8]. Thus the method is deterministic if the characteristic is small,

otherwise, the method is only Las Vegas.

Let b : V x V -4 W be a Zpe-bilinear map for which bases X and Z are known for V and

W. Thus b(u, v) = uBvt as in (IV.11). In this notation we have:

Rich(B) = {(F, G) E End V x End W: FB = B G = BFt }. (IV.28)

We recognize FB = BG = BF t is a system oflinear equations over Zpe in the variables Fx,x' and

Gz,z' , for x,x' E X, and z,z' E Z. This can be solved deterministically, see Section IV.2.3. Thus

we have:

Proposition IV.4.30. There is is a deterministic polynomial time algorithm which, given a Zpe­

bilinear map b : V x V -4 W specified by bases X for V, Z for W, and structure constants matrix

B with respect to these bases, returns a basis for Rich(b) as a subring of End V x End W.

Theorem IV.4.31. There is a deterministic polynomial time algorithm, assuming an omde for

polynomial factorization of a field of chamcteristic p, which given a Zpe -bilinear map b as in

Proposition IV.4.30, returns a fully refined direct decomposition of b.

Proof. Algorithm. Use Proposition IV.4.30 to compute Rich(b). Then use the algorithm of [50,

5.1] to find a frame Eof Rich(b)j J(Rich(b)) and apply the lifting of idempotents formula, Lemma

IV.2.16, to t to obtain a frame £ of Rich(b). Return {bve : Ve x Ve -4 We: (e,e) E £}.

Correctness. Let R := Rich(b). As RjJ(R) is a semisimple of characteristic dividing pe, it

is in fact of characteristic p and a Zp-vector space. Thus pR ~ J(R). Hence, RjpR is a Zp-algebra,

so [50, Section 5.1] can be applied to find a frame of E. As R is finite, J(R) is nilpotent and so

we can apply the lifting of idempotents lemma to produce a frame of R. By Theorem IV.4.28, the

return is a fully refined direct decomposition of b.

Timing. The algorithms of [50, 5.1] are deterministic polynomial-time, up to the factoring

of polynomials over finite fields of characteristic p. 0
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Remark IV.4.32. (i) Berlekamp [7] provided a deterministic polynomial time algorithm to fac­

tor polynomials over finite fields if the characteristic is small compared to the degree. His

later Las Vegas method works in all characteristics, and subsequent algorithms have improved

the timing, see [57, Chapter 14].

(ii) The method of [50, 5.1] can be replaced by the nearly optimal Monte Carlo method of [12].

For Las Vegas speedup, observe that Rich(b)jpRich(b) embeds in Md(Zp) ED MJ(Zp) where

d = rank V and f = rank W. Thus, [22] can be applied as well.

(iii) If rad b = 0 and W = b(V, V), then by Proposition IV.4.26, Rich(b) is commutative and

there is a unique fully refined direct decomposition of b, (Corollary IV.4.29). Thus, instead

of [50, 5.1] we may use [14], and in fact the entire problem is naturally equivalent to factoring

polynomials, that is, it does not require the reductions used in [50] using general associative

algebras.

IV.5 The Remak Decomposition Algorithms

In this section we prove Theorem IV.1.3. This relies on five distinct stages. First, in

Section IV.5.1, a proof is given for p-groups of class 2. In Section IV.5.2 the algorithm is extended

to p-groups of any class. Section IV.5.3 addresses solvable groups. Section IV.5.4 deals with almost

semisimple groups, and Section IV.5.5 puts these methods together to prove Theorem IV.1.3.

IV. 5.1 p-groups of Class 2

In this section we prove Theorem IV.1.3 for the case of p-groups P of class 2. The algorithm

depends on a bilinear map associated to P, the algorithm of Theorem IV.4.31, and the algorithm

of Theorem IV.4.22 where the variety is 1)11 , the variety of abelian groups (Corollary??).

Write the operations of P j Z (P) and pi additively. A result of Baer [6] associates to P a bi­

additive map b := Bi(PjZ(P), Pi) defined by b : PjZ(P)xPjZ(P) -> pi where b(Z(P)x, Z(P)y) :=

[x, y], for each x, yEP. Note that rad b = 0 and b(PjZ(P), PjZ(P)) = [P, PJ. Also, b is naturally

Zpe-bilinear where ppe = 1.

Theorem IV.5.l. There is a deterministic polynomial time algorithm which, given a p-group of

class 2 in <Gn , returns a Remak decomposition of the group.
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Proof Let P be a p-group of class 2 in Gn .

Algorithm. Let b := Bi(PjZ(P), PI). Use the algorithm of Theorem IV.4.31 to find a

central decomposition H = HZ(P) of P such that {bH/Z(p) : H E H} is the fully refined direct

decomposition of b. Apply Corollary?? and return the output of that algorithm.

Correctness. Suppose that R is a Remak decomposition of P. Then [RZ(P) , (R ­

{R}Z(P))] = [R, (R - {R})J = 1, for R E R. By Proposition IV.4.ll, RZ(G)jZ(G) and R n pI

are direct decompositions of PjZ(P) and pI, respectively. Hence, 1) :={bRZ(p)/Z(P) : R E R} is

a direct decomposition of b. As b is nondegenerate and pI = b(PjZ(P),PjZ(P)), it has a unique

fully refined direct decomposition (Corollary IVA.29). Thus the return of Theorem IVA.31 is this

unique direct decomposition of b and so it refines 1). Therefore, H refines RZ(P) for any (thus by

all, Corollary IV.3.14) Remak decomposition of P. Hence, Theorem IVA.18 applies and returns a

Remak decomposition of P.

Timing. The algorithm uses a constant number of polynomial time subroutines. 0

Corollary IV.5.2. There is a deterministic polynomial time algorithm w~ich, given G E Gn and a

decomposition H ofG such that H = H(2(G) and H refines .:J(2(G) for some SJh-separated direct

decomposition .:J of G, returns an SJh-separated direct decomposition K, of G where .:J(2(G)

K,(2 (G) and in which the members of SJh n K, are all directly indecomposable.

Proof Use Theorem IV.5.1 (together with the obvious decomposition of a nilpotent group into its

Sylow subgroups) and (IV.2.8) to compute (2 (G) to satisfy the hypothesis of Theorem IVA.23. 0

IV.5.2 p-groups of General Class

In this section we prove Theorem IV.1.3 for the case of p-groups. The algorithm is a

recursive use of Theorem IV.4.22 and uses Theorem IV.5.1 as the base case.

Theorem IV.5.3. There is a deterministic polynomial time algorithm which: given a p-group

group in Gnl returns a Remak decomposition of the group.

Proof Let P be a p-group in G n •

Algorithm. If (2(P) = P then apply the algorithm of Theorem IV.5.1 to P and return the

result. Otherwise, make a recursive call with P j (1 (P) in the role of P to obtain a decomposition H

of P in which H = H(I(P) and Hj(l(P) is a Remak decomposition of Pj(l(P), Use the algorithm

of Corollary IV.5.2 on H(2(P), and return the output of that algorithm.
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Correctness. Theorem IV.5.1 validates the return for the case were P has class c at most

2. So assume that c > 2. Thus, P/(l(P) has class c - 1 and by induction the recursive call

returns a decomposition 11. of P where 11. = 11.(l(P) and 11./(l(P) is a Remak decomposition of

P/(l(P), Let R be a Remak decomposition of P. By Proposition IVA.ll, R(l(P)/(l (P) is a direct

decomposition of P/(l(P). Hence, 11.(l(P/(l(P))/(l(P) refines R(1 (P/(l (P))/(l (P) by Corollary

IV.3.14.(i) (applied to P/(l(P)). That is, 11.(2(P) refines R(2(P), Therefore, Corollary IV.5.2

applies and returns a lJh-separated direct decomposition K of G in which K(2(P) = R(2(P) and

every member of 1)12nK is directly indecomposable. We now show that K is a Remak decomposition

of P.

As n is a Remak decomposition of P it is 1)12-separated. By Proposition IV.4.14.(iii),

it follows that J ;= (R - 1)12) u (1)12 n K) is a direct decomposition of P. As the members of

J are directly indecomposable it follows that J is a Remak decomposition of P. In particular,

IR n 1)121 = IK n 1)121.

Next, as K(2(P) = R(2(P) and both are 1)12-separated, it follows from Proposition

IV.3.7.(ii) that IK -1)121 = IR -1)121· Thus,

IKI = IK -1)121 + [1)12 n KI = IR -1)121 + 11)12 n RI = IRI·

Hence, K is a direct decomposition of G of size equal to the size of a Remak decomposition of P:

K is a Remak decomposition of P by Theorem IV.3.11.

Timing. The algorithm depends on polynomial time algorithms in a recursion of depth

c-2. D

IV.5.3 Solvable Groups

In this section we prove Theorem IV.1.3 for solvable groups. The algorithm has two phases.

First if the group has a trivial center then the algorithm uses Sylow system to reduce to the case

of a p-group, where it uses Theorem IV.5.3. The second phase uses a recursion to the centerless

case together with Theorem IV.4.18 and Corollary IV.5.2.

Theorem IV.5.4. There is a deterministic polynomial time algorithm which: given a solvable

group in Gn with trivial center, returns a Remak decomposition of the group.
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Proof Let G be a solvable group in Gn .

Algorithm. If G = 1 then return 0. Otherwise, use (IV.2.11) to find a Sylow system

S of G. For each PES, use Theorem IV.5.3 to find a Remak decomposition P(P) of P. Set

K := UPES P(P). Then while there are distinct X, Y E K such that [X, Y] 1= 1, set K :=

(K - {X, Y}) u {(X, Y)}. When this loop completes, return K.

Correctness. Assume G 1= 1 and note that lSI> 1 since G is not nilpotent (Z(G) = 1).

By Theorem IV.5.3 we knowP(P) is a Remak decomposition of P for each PES. Let V :=

U PES P(P) be the set of vertices in a graph where edges are defined between members X and Y

if, and only if, [X, Y] 1= 1. If X, Y, Z E V are vertices where X and Y lie in the same connected

component and Z does not, then [Z, (X, Y)] = 1. Throughout the loop, K generates G. The

loop ends when the distinct members of K pairwise centralize each other; that is, the loop returns

the subgroups spanned by the connected components of the graph. Therefore, [H, K] = 1 for

H, K E K, H 1= K. Furthermore,

G = (S) = (P(P) : PES) = (K).

Thus, some .:J ~ K is a central decomposition of G. However, Z(G) = 1 and 1 ¢:. K so .:J = K.

Furthermore, as H n (1i - {H}) :S Z(G) = 1 for all H E K, we conclude that K is a direct

decomposition of G.

Now we prove that each K E K are directly indecomposable. Recall K = (Q E V : Q :S K).

Suppose that K = A x B, A,B 1= 1 and take PES. As A and B are normal in K,

{P n A, P n B} is a direct decomposition of P n K. Let Q be a Remak decomposition of P n K

refining {P n A, P n B}. Notice that PK(P) := {Q E P(P) : Q :S K} is a direct decomposition

of P n K consisting of directly indecomposable groups, thus, also a Remak decomposition of

P n K. As PK(P) and Q are conjugate under a central automorphism of P n K, we can partition

PK(P) to create a coarser direct decomposition {A(P),B(P)} which is conjugate under a central

automorphism to {P n A, P n B}. As this is done for arbitrary PES it can be done for all PES.

Now take Q,R E {Q E V: Q:S K} such that Q:S A(PA) and R:S B(PB) for PA,PB E S. Then

[Q, R] :S [A, B] = 1. Letting R range over all possibilities we see that {Q E V : Q :S K} has at

least two connected components, which contradicts the assumption of how K was built.

Timing. Evidently we require integer factorization to find the primes dividing IGI, but
."
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this is handled by an oracle. The recursion has depth equal to the number of prime divisors of IGI.

Finally, the loop is a transitive closure and so it terminates in polynomial time. 0

Corollary IV.5.5. There is a deterministic polynomial time algorithm which: given a solvable

group in Gn , returns a Remak decomposition of the group.

Proof. Let G E Gn be a solvable group.

Algorithm. If G is nilpotent then find the unique Sylow system S of G and apply the

algorithm of Theorem IV.5.3 on each PES to obtain a Remak decomposition P(P) for each

PES. Return UPES P(P).

Now G is not nilpotent. If Z(G) = 1 then use Theorem IV.5A and return the output of

that algorithm. Else, if (2(G) = (l(G) then use Theorem IV.5A to find a set H = H(l(G) such

that H/(l(G) is a Remak decomposition of G/(l(G). Then apply Theorem IVA.I8 to return a

Remak decomposition of G. Finally, if (2(G) > (l(G), use a recursive call to find H = H(l(G)

such that H/(l(G) is a Remak decomposition of G/Z(G). Then apply the algorithm of Corollary

IV.5.2 to H(2(G) and return the result.

Correctness. If G is nilpotent this is clear, as is the case when (1 (G) = 1. If (2 (G) = (1 (G)

then there is a unique Remak decomposition of G/(l(G) and so H refines R(l(G) for any Remak

decomposition R of G. Thus, Corollary IVA.I8 applies to return a Remak decomposition of G.

Otherwise, G > (2(G) > (1 (G) and by induction H/(l(G) is a Remak decomposition of G/(l(G).

So H(2(G) refines R(2(G) and so Corollary IV.5.2 returns a Remak decomposition of G.

Timing. The algorithm makes at most log IGI recursions using polynomial time algorithms

in the base cases. o

IV. 5.4 Almost Semisimple Groups

In this section we prove Theorem IV.1.3 for almost semisimple groups, that is groups G

with no proper normal abelian subgroups, equivalently 0 6 (G) = 1. The proof given is just one of

many natural approaches for this case. Though it is not explicitly necessary in the following proofs,

note that a group with trivial solvable radical has trivial center; hence, by Theorem IV.3.11, the

group has a unique Remak decomposition.

The socle, soc(G), of G is the subgroup generated by all minimal normal subgroups.
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Lemma IV.5.6. IfG is a finite group with Oe(G) = I, then the set of minimal normal subgroups

of G is a direct decomposition of soc(G).

Proof See [49, pp. 85-88].

Theorem IV.5.7. Let G be a finite group with Oe(G) = 1 and direct decomposition 1i. Then

(i) H n soc(G) = soc(H) for all H E 1i,

(ii) 1i n soc(G) = {soc(H) : H E 1i} is a direct decomposition of soc(G),

(iii) if M is the set of minimal normal subgroups of G, then M refines 1i n soc(G); and

(iv) 1i = {CG(CG(soc(H))) : H E 1i}.

o

Proof. Since 1i is a direct decomposition of G, if H E 1i and M is a minimal normal subgroup of

H, then M is a minimal normal subgroup of G. Thus soc(H) ~ H n soc(G).

Now suppose that M is a minimal normal subgroup of G. Since each H E 1i is normal in G

it follows that HnM is normal in G; hence, HnM is 1 or M. Suppose that HnM = 1 for all H E 1i.

Hence, [H, M] ~ H n M = 1 for all H E 1i. Thus, [G, M] = [(1i) , M] = ([H, M] : H E 1i) = 1.

This proves that M ~ Z(G) = 1. This is impossible as M > 1. Thus, there exists some HM E 1i

such that HM n M = M, that is, M ~ HM. Since HM n K = 1 for all K E 1i - {HM}, it follows

that M is not contained in any K E 1i - {H} and so H M is uniquely determined by M.

To prove (i), note that H n soc(G) is normal in G and therefore generated by minimal

normal subgroups of G contained in H. Thus H n soc(G) ~ soc(H).

For (ii) and (iii), 1i n soc(G) = {soc(H) : HE 1i} = {(M EM: M ~ H) : H E 1i}, and

by Lemma IV.5.6, M is a direct decomposition of soc(G). As M refines 1i n soc(G), 1i n soc(G)

is a direct decomposition of soc(G), by Proposition IV.3.5.

For (iv), fix HE 1i. Since G = Hx (1i-{H}) it follows that CG(soc(H)) = CH(soc(H)) x

(1i - {H}). As soc(H) :::lH, CH(soc(H)):::l H and thus CH(soc(H)) = 1 or CH(soc(H)). The later

means that CH(soc(H)) contains a minimal normal subgroup of Hand 1 < CH(soc(H))nsoc(H) ~

Z(soc(H)) = 1, which is impossible. So CG(soc(H)) = (1i - {H}) and CG(CG(soc(H)) = H, by

reapplying the argument interchanging the roles of Hand (1i - {H}). 0

Theorem IV.5.S. There is a deterministic polynomial time algorithm which: given an almost

semisimple group in CGn , returns a Remak decomposition of the group.
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Proof Let G be an almost semisimple group in Gn .

Algorithm. Use (IV.2.1O)to find a minimal normal subgroup N of G. Use (IV.2.8) to

compute Gc(N). If Gc(N) = 1 then return {G}. Otherwise, recurse with Gc(N) in the role of G

to find a Remak decomposition K of Gc(N). Use (IV.2.12) to create the set .c := {K E K : 3X :::;

G, G = K x X}. Then (IV.2.12) to find H :::; G such that G = H x (.c). Return {H} u.c.
Correctness. Let R. be the Remak decomposition of G. As N is a minimal normal subgroup

of G as soc(G) is semisimple, it follows that N is a directly indecomposable direct factor of soc G.

As R. n socG is a direct decomposition of socG, it follows that N .$ RN for a unique RN E R.. If

Gc(N) = 1 then R. = {RN}' As R. generates G it follows that G = RN, or rather that {G} is the

Remak decomposition of G. So now we assume that Gc(N) > l.

As N is a direct product of nonabelian simple groups it follows that N i Gc(N) and

so Gc(N) is smaller than G. If M <l Gc(N) is abelian, then as [N, M] = 1, M ::::! G and so G

has a proper normal abelian subgroup, which is excluded by assumption. Thus, Gc(N) is almost

semisimple as well.· Thus by induction the recursive call returns the Remak decomposition K of

Gc(N) which therefore refines the direct decomposition Gc(N) = GRN(N) x (R.- {RN }). In

particular, R. - {RN } <;;; K as the members of R. - {RN } are directly indecomposable.

We claim that .c = R. - {RN}' Clearly R. - {RN} :::; .c. However, if K E .c - (R. - {RN})

then K is a direct factor of G and also directly indecomposable. Thus K lies in the Remak

decomposition of G, that is, K E R. - (R. - {RN }). Thus, K = RN which contains N. Yet

K :::; Gc(N), which does not contain N. Thus no such K exists. This proves the claim.

As .c = R. - {RN} it follows that (.c) has a direct complement and it is RN. So the

algorithm returns the Remak decomposttion R..

Timing. The algorithm relies on polynomial time routines in a recursion of depth equal

to the number of minimal normal subgroups of G. As the minimal normal subgroups are products

of finite nonabelian simple groups and form a direct decomposition of soc(G), it follows that the

recursion depth is bounded above by l~g6o 1soc(G) I. 0

IV.5.5 Proof of Theorem IV.l.B

In this section we prove Theorem IV.l.3 for all groups.

Proof. Let G E Gn .
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Algorithm. Use (IV.2.9) to find 015(G). Use the algorithm of Theorem IV.5.8 to find a

decomposition 'H = 'H015(G) of G such that 'Hj015(G) is a Remak decomposition of Gj015(G).

Then apply the algorithm of Theorem IV.4.23 to 'H and return the result.

Correctness. Gj 0 15 (G) is almost semisimple, so Theorem IV.5.8 can be applied and the

return is a decomposition 'H with the properties stated. If n is a Remak deco~positionof G, then

n015 (G)j015 (G) is a direct decomposition of Gj015 (G), by Proposition IV.3.7. As Z(Gj015(G)) =

1 and 'Hj015(G) is the Remak decomposition of Gj015(G), by Corollary IV.3.14.(i), 'Hj015(G)

refines no15 (G)j015 (G), that is, 'H refines no15 (G). As the class of solvable groups has an

algorithm to find Remak decompositions (Corollary IV.5.5), Theorem IV.4.23 can be applied. The

return is a direct decomposition K of G in which K015 (G) = no15 (G) and every solvable member

of K is directly indecomposable. Therefore IKI = Inl and so K is a Remak decomposition of G.

Timing. The algorithm uses a constant number of polynomial time algorithms. 0

IV.5.6 Proof of Theorem IV.l.l and Corollary IV.l.2

Proof of Theorem IV.l.l. Let Gn = QPERMn in Theorem IV.1.3.

IV.6 Closing Remarks

IV.6.1 Nearly Linear-time Algorithm: Corollary IV.l.2

o

The previous algorithms for finding direct decompositions are part of a family of similar

"NlogN_problems", N = IGI, such as group isomorphism; see [40].4 One such algorithm lists all

n-tuples (91, ... ,9n) E Gn, n = llog IGIJ, and tests if

(IV.29)

for some 1 :::; i :::; n. That method uses miniscule amounts of group theory and requires IGIIog 101+0(1)

steps to prove G is directly indecomposable. Asymptotically the same number of steps can be ex­

pected if G is directly decomposable. For example, a direct product G of two extraspecial p-groups

of order 2l+2m has fewer than IjlGI10g 101-6 elements of Gn which satisfy (IV.29).

4Thank you to E. M. Luks and C.L. Miller for sharing the folklore of this problem.
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Proof of Corollary IV.1.2. For a polynomial time algorithm for a group given by its Cayley table

it suffices to use the regular representation of the group in Theorem IV.I.I. To achieve a nearly

linear time bound it suffices to show the hypothesized routines in Section IV.2.2 have deterministic

nearly linear time solutions. Our use of those methods in Theorem IV.I.3 proceeds through loops

and recursions which are a polynomial in log IGI, and therefore do not affect the soft-O asymptotic

estimates in the timing.

(IV.2.3-IV.2.5) have straight-forward nearly linear time implementation. As we can list

the order of G, we can also factor Gin N-steps, thus handling (IV.2.6).

For (IV.2.7) we simply handle an arbitrary quotient of G by listing its multiplication table

via cosets. To find the centralizer of any subgroup H :::; G can be done from the definition, thus

(IV.2.8) has a nearly linear times solution.

Finding a minimal normal subgroup requires considering the subgroups generated by the

conjugacy class of G, all of which can be listed. Thus the socle can be found in nearly linear

time which handles (IV.2.10). For (IV.2.9), a greedy algorithm can be used which begins with a

minimal normal abelian group, passes to the quotient to recursively find the solvable radical of the

quotient, then pulls back to the whole group.

To find a Sylow system of a solvable group G, we note that Sylow and Hall subgroups

can be built (in nearly linear time) from their usual proofs of existence; see [49, Chapter 9]. This

handles (IV.2.11).

Finally, Theorem IV.2.13 also handles (IV.2.12) in nearly linear time. 0

IV.6.2 Decompositions of Nonassociative Rings

The algorithm to find a direct decomposition of a bilinear map can be modified to provide

an algorithm which finds a direct decomposition of a nonassociative ring. For, a nonassociative

finite ring is simply a biadditive map b : A x A -t A. Define:

Rich(A) := {J E End A : b(uf,v) = b(u,v)f = b(u,vj),u,v E A}.

(EndA here means additive endomorphisms only.) The algorithm of Theorem IV.4.31 can be

applied to the bilinear map of multiplication in b. It is evident that a direct sum decomposition of

b is also direct sum of A as ring. Thus we have:
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Theorem IV.6.1. There is a polynomial-time algorithm which, given a nonassociative finite ring,

returns a Remak decomposition of the ring. The algorithm is deterministic in the characteristic of

the ring plus the size of the input, and Las Vegas for all characteristics, with an oracle to factor

the characteristic.

This result is known for semisimple associative and semisimple Lie algebras over fields

[51]. However, those techniques rely on specific theorems about associative and Lie algebras and

do not provide a general purpose algorithm such as Theorem IV.5.l. As a tradeoff, they are far

more efficient.

IV.6.3 A Top-down Approach

The method just used depends on a bottom-up approach proceed from the trivial group

up a characteristic series of marginal subgroups. That method depends on Corollary IV.3.14.(i).

It appears possible (at least for solvable groups) that Corollary IV.3.14.(ii) can be used along

with verbal subgroups to provide a "top-down" approach from the top of the group proceeding

recursively down a characteristic series. This would likely improve the efficiency of the algorithm

as verbal subgroups are often easier to compute than marginal subgroups.
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