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This dissertation examined a number of general vegetation-modeling issues, and

the sensitivity ofterrestrial net primary productivity (NPP), soil moisture and actual

evapotranspiration (ET) to climatic variations in China. The specific issues addressed

included: (1) the sensitivity of the performance of an equilibrium vegetation model to the

choice of monthly-mean climatologies, observed validation data sets, and three map­

comparison approaches; and (2) the limitations of existing map-comparison approaches

in vegetation modeling; and the variation and climate sensitivity of (3) terrestrial NPP

and (4) soil moisture and actual ET in China.

To address the first issue, BIOME4 (Kaplan et al., 2002), a typical example of an

equilibrium vegetation model, was used along with a set of 19 different monthly-mean

climatologies, three validation data sets, and several map-comparison methods. To

address the second issue, the "opposite and identity" (01) index (Tang, 2008) was
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developed for evaluating the correspondence of two simulation results. To examine the

third issue, a set of historical NPP dynamics were derived from normalized-difference

vegetation index data by modifying the CASA (Potter et al., 1999) approach and then

were linked to the variation of temperature and precipitation to analyze the climatic

effects on terrestrial NPP in China. To examine the fourth issue, a stand-alone water

balance model, LH (LPJ-hydrology), was developed by modifying the LPJ dynamic

global vegetation model (Sitch et al., 2003), and applying it to a China case study.

The results of these analyses indicate that (1) the 3D-year mean-climatology

preceding the observed data produces the most accurate vegetation simulations; (2) the 01

index is a useful tool to compare two simulation results or to evaluate simulation results

against observed spatiotemporal data; (3) climate and land-use change jointly controlled

NPP dynamics in the eastern monsoon zone ofChina. In contrast, NPP dynamics in the

north-west arid zone and in the Tibet Plateau frigid zone depended more on climatic

variation; and (4) the spatial patterns of soil moisture and ET in China were correlated with

the variation of temperature and precipitation. However, the strength ofsuch relationship

varies spatially.

This dissertation includes my published and coauthored materials.
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CHAPTER I

INTRODUCTION

The development and application of simulation models is motivated as an

important approach for studying various interactions or couplings in soil-vegetation­

atmosphere systems that govern exchanges of energy, water and momentum because (i)

direct or indirect experimental measurements of key variables in soil-vegetation­

atmosphere systems, such as terrestrial net primary productivity (NPP), soil moisture and

evapotranspiration (ET), are often expensive and difficult at the regional scale; (ii) model

simulation can provide finer spatiotemporal resolution of ecological and hydrological

variables than can experimental approaches; and (iii) models can mathematically express

some of the mechanistic processes that govern terrestrial vegetation and hydrology, such

as plant photosynthesis and the surface water and energy balance. However, the

sensitivity of model simulations (e.g. to input climate data) and the limitations of existing

approaches for comparing and evaluating model simulations (e.g. the sensitivity of the

Pearson correlation coefficient to influential data and outliers) may greatly affect

accuracy assessments of model results.

Terrestrial NPP, soil moisture and ET are three key components of soil­

vegetation-atmosphere systems and affect many important processes, such as the cycle of

carbon, water and energy, in soil-vegetation-atmosphere systems. Over the past decades,

attempts have been made to capture the dynamics of terrestrial NPP, soil moisture and

actual ET at the land surface (e.g. Brogaard et al. 2005; Zhao & Zhou, 2006; Gao et al.,

2007). However, because the spatiotemporal variations of these ecological and

hydrological variables are very complex and depend on multiple factors, and because

changes in these variables have important effects on vegetation and crop productivity,

and on the sustainable utilization of water resources, examination of their responses to
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external controls, especially climate variation, is important for understanding terrestrial

ecosystems and for managing agricultural systems and water resource.

The goals of this dissertation are (1) to review the approaches, issues and

challenges in vegetation modeling, (2) to examine the sensitivity of vegetation model

simulations to different input climate data, to the selection of observed validation data,

and to the choice of map comparison approaches used to compare simulated and

observed vegetation, (3) to develop a cell-by-cell-based continuous-data comparison

approach for evaluating the agreement between two sets of simulated time-series data, (4)

to investigate the variation and climate sensitivity of terrestrial NPP in China over the

years 1982-2000, and (5) to develop a stand-alone hydrologic model to examine the

variation and climate sensitivity of soil moisture and actual ET in China, including their

response to atmospheric C02 concentrations.

Toward these goals, the dissertation is organized into five major chapters, each of

which has been written as a stand-alone article. Chapter II aims (1) to review the

approaches for simulating the responses of terrestrial vegetation to climate change at the

regional to global scales, (2) to analyze potential issues in vegetation modeling, and (3) to

propose the strategies to address the existing issues. The author hopes that this literature

synthesis can provide researchers with useful information on using and developing

vegetation models in related research.

Chapter III examines the sensitivity of vegetation model simulations to different

input monthly-mean climato10gies and their associated CO2concentration, to the choice

of observed data for evaluating model results, and to the methods used to compare

simulated and observed vegetation. The equilibrium vegetation model BIOME4 (Kaplan

et at., 2002) was used as a typical example of vegetation models to simulate vegetation

for Asia under 19 different monthly-mean climato10gies that are derived from the CRU

TS 2.0 data set (Mitchell et aI., 2004). Three map comparison approaches were used to

quantify the agreement between the BIOME4-simu1ated vegetation under each of the

monthly-mean climato10gies and the observed vegetation from three different 1and- and
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tree-cover data sets. This study is intended to provide model users with assistance in

designing experimental protocols for simulating vegetation.

Chapter IV presents a new metric for quantifying the agreement between two sets

of simulated time-series data. The study first introduced the geometry and definition of

the new continuous-data comparison approach, the "opposite and identity" (01) index

(Tang, 2008). Then, a comparison between the 01 index and the Pearson correlation

coefficient was made to highlight the similarity and dissimilarity of the two concepts.

Finally, a case study was given to demonstrate the application and reliability of the 01

index in evaluating the agreement between two sets of simulated NPP dynamics for Asia

from 1982 to 2000. Chapter IV not only presents researchers with a useful tool for model

comparison and evaluation research, but also demonstrates that the 01 index can in some

cases quantify the agreement between two sets of simulated NPP dynamics for Asia more

robustly than the Pearson correlation coefficient.

Chapter V examines the variation of terrestrial NPP in China over the years 1982­

2000, and the sensitivity ofNPP to the temperature and precipitation variations over the

same period. To do this, the study first derived a set ofNPP data from satellite-based

normalized-difference vegetation index (NDVI) data using a modification of the CASA

approach (Potter & Klosster, 1999). Then, another set of terrestrial NPP data at the same

temporal and spatial scale was simulated by LPJ, a dynamic global vegetation model

(Sitch et al., 2003), and compared with the NDVI-derived NPP data. Finally, the NDVI­

derived NPP dynamics were linked to the variations of temperature and precipitation to

analyze the climatic sensitivity ofNPP in three climatic zones of China, i.e. the eastern

monsoon zone, the north-west arid zone and the Tibetan Plateau frigid zone. With this

analysis, Chapter V provides researchers with new insights into the climatic sensitivity of

NPP variations in China.

Chapter VI develops a stand-alone hydrologic model and employs it to examine

the climatic sensitivity of soil moisture and actual (as opposed to potential) ET in China.

This study first introduced the development of the LH (LPJ-hydrology) model in which

vegetation is prescribed as opposed to simulated, and which uses as input climate and



4

soils data, as well as atmospheric CO2 levels. Then, a series of simulations were run using

observed climate and CO2 data. Both observed and simulated (using different

approaches) data for runoff, soil moisture and ET at different spatial scales were used to

evaluate the LH simulations. Finally, the model results for five regions in China were

used to examine the climatic controls on soil moisture and ET. Chapter VI presents not

only a useful tool in hydrological modeling but also new insights into the climatic

sensitivity of soil moisture and actual ET in China.

Chapter VII summarizes the major conclusions from this dissertation. Of the five

major chapters, Chapter II, V and VI are coauthored with Patrick J. Bartlein (University

of Oregon), and are intended for submission to the journals Progress in Physical

Geography, Climatic Change and Journal of Hydrology, respectively. Chapter III is

coauthored with Sarah L. Shafer (U.S. Geological Survey), Patrick J. Bartlein, and Justin

O. Holman (TerraSeer, Inc.), and was submitted to the journal Ecological Modelling.

Chapter IV was published in "Global Ecology and Biogeography JJ (Tang, 2008).
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CHAPTER II

SIMLTLATING THE CLIMATIC EFFECTS ON VEGETATION:

APPROACHES, ISSUES AND CHALLENGES

The Chapter is coauthored with Patrick 1. Bartlein. G. Tang prepared the initial

draft of the manuscript and Patrick J. Bartlein edited the manuscript.

Introduction

The terrestrial biosphere and the atmosphere interact with each other through a

variety of mechanisms that include the carbon, nitrogen and water cycles. Through these

mechanisms, natural and human-induced climate change produces changes in terrestrial

vegetation. Over the past decades, studies have confirmed climate-induced effects on

vegetation, such as shifts in the environmental function of forests (e.g. Hollister et ai.

2005) and the changes of carbon cycles (e.g. Berthelot et ai., 2005). Moreover, additional

studies have revealed that climate-induced changes in vegetation are ongoing (e.g.

Hinzman et ai. 2005). Given that terrestrial vegetation is very important to human society

and that it has a limited capacity to adapt to rapid climate change (IPCC, 2001),

simulating climatic effects on terrestrial vegetation becomes a paramount practical issue.

Terrestrial vegetation responds to climate change at different spatiotemporal

scales. At the global scale, species evolution and migration due to climate change may

take years to millennia. At the regional scale, changes in succession, competition and

reproduction of vegetation require years to centuries. At the local scale, changes in the

physiological processes of plants such as respiration rate take hours to seasons. From a

biogeographical perspective, climate change can shift the distribution, structure and

composition of terrestrial vegetation (Jackson & Overpeck, 2000; Koca et ai., 2006).

From a biophysical and biogeochemical perspective, climate change can trigger changes

in the canopy height, biomass, and leaf area index (LAI) of vegetation as well as the
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cycling of carbon and nitrogen in terrestrial vegetation. Climate change can also shift the

regime of wildfires, thus further affecting terrestrial vegetation.

Because the mechanisms that trigger changes in vegetation are very complex,

vegetation modeling has been viewed as a major tool for investigating the effects of

climate change on vegetation (Bolliger et al., 2000; Schumacher et al., 2004). Vegetation

models, either static-equilibrium or dynamic-transient, have utility in examining the

climatic effects on vegetation because: (i) vegetation models can incorporate explicit

representations of some of the mechanistic processes of vegetation, such as tree

establishment, growth and death, and therefore are able to capture the response of

vegetation to climate change (Cramer, 2002); (ii) vegetation models can be applied at

large spatial scales, which enables researchers to study the broad spatial patterns of

vegetation (Prentice et al., 1996); (iii) vegetation models can be updated or revised when

new knowledge and techniques become available; and (iv) vegetation modeling is often

time-saving and less expensive compared to field observations.

Although vegetation models of differing sophistication have been developed to

study climatic effects on terrestrial vegetation, the uncertainty of model results is still a

key issue of concern to researchers. To improve model-based research, it is necessary to

assess the major methods and issues in vegetation modeling and to propose strategies for

promoting the quality of model results. However, few syntheses of the relevant literature

have been done. The goals of this study are: (i) to summarize the vegetation modeling

approaches for studying climatic effects on vegetation; (ii) to analyze the major issues

that lead to uncertainties in model results; and (iii) to identify the challenges that arise in

improving future model-related research.

Simulating the climatic effects on terrestrial vegetation: approaches

Static-equilibrium vegetation models

Simulating the climate-induced biogeographical dynamics of vegetation was a

main task for earlier generations of vegetation models. Correlations of control variables

(such as climatic factors) and response variables (such as vegetation-type, biome, or
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species distributions) have played a crucial role in predicting the response of vegetation

to climate change (Burke et at., 1997). For example, the Holdridge diagram (Holdridge,

1947) used three bioclimatic variables, i.e. the bio-temperature, mean annual precipitation

and a ratio of potential evapotranspiration to mean annual precipitation, to express the

relation of macroclimate pattern and life zones on the earth. Using the Holdridge

classification schemes to estimate climatic effects on vegetation assumes that the

distribution of vegetation is solely correlated to climate, and the climate-induced shift of

vegetation occurs as a fixed unit (as opposed to individualistic responses of the

component species in a vegetation type). Later, the Box model (Box, 1981) was

developed to organize plant species on the Earth into characteristic plant functional types

(PFTs) based on their physiognomic and morphological traits and their relation to

macroclimate. The geographic space of a PFT is then defined by its climatic limits, and a

particular, usually global, climatic data set.

Like the Holdridge classification scheme and the Box model, statistical

approaches such as climate responses surface (e.g. Huntley et at., 1995), regression

models (e.g. Smith & Shugart, 1993; Calef et at., 2005) and probabilistic models (e.g.

Siegel et at., 1995) were used to predict the climate-induced changes in the distribution

and habitat of natural vegetation. These approaches still assumed that the macroclimate is

the major factor determining the features of vegetation distribution at regional or global

scales. For example, climate-pollen response surfaces (e.g. Overpeck et at., 1991) have

been coupled with climate-model output to project climatic effects on the distribution of

terrestrial vegetation. Similarly, probabilistic models or presence-absence response

surfaces (e.g. Siegel et at., 1995; Shafer et at., 2001) utilized species or ecosystem

distributions and climate data to estimate the probability of occurrence of those

ecosystems or species under given climatic conditions.

Because vegetation models built on statistical relations between vegetation

distribution and macroclimate can not determine or distinguish the particular mechanisms

that may drive the spatial shift of vegetation (Neilson et at., 1992), researchers have

constructed rule- and the ecophysiology-based models. Rule-based models such as the
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CCVM (Lenihan & Neilson, 1993) used a set of rules (expressed as climate limits, much

like the Box model) to specify the distribution of vegetation. For example, minimum

temperature and evapotranspiration were used to constrain the distribution of different

life forms. Ecophysiology-based models such as BlOME (Prentice et al., 1992) aimed at

understanding the fundamental aspects of structure in terrestrial ecosystems. In these

models, terrestrial vegetation was grouped into several different PFTs based on a set of

climatic tolerances. Differing from simple bioclimatic classification schemes, the climate

limits of each PFT in ecophysiology-based models are expressed in terms of fundamental

phenological constraints rather than observed correlations between the macroclimate and

vegetation distribution.

The current equilibrium vegetation models incorporate more mechanistic

processes of plants, and consider more the interactions between the biosphere and the

atmosphere. For example, BIOME4 (Kaplan et al., 2002, 2003) is a typical example of

equilibrium vegetation models. Like the ecophysiology-based models, BIOME4 still

simulates the distribution of vegetation in the form of PFTs but with significant

improvements, including improved parameterization of the PFTs. In BIOME4, each PFT

is assigned a set of bioclimatic limits, which determine whether it will be simulated to

exist in a grid cell. Moreover, BIOME4 contains a coupled carbon and water flux

scheme, which determines the seasonal maximum LAI based on a daily time-step

simulation of the soil water balance and monthly calculations of canopy conductance,

photosynthesis and respiration (Haxeltine & Prentice, 1996; Kaplan et aI., 2002).

Compared to the rule- and ecophysiology-based models, current equilibrium vegetation

models can more accurately simulate the distribution and the biogeochemical dynamics

of terrestrial vegetation under climatic change.

Dynamic-transient vegetation models

In fact, vegetation is far from an equilibrium system. In 1926, Cooper (1926)

viewed vegetation dynamics as a "flowing stream". Because static vegetation models can

not capture nonlinear or threshold effects along the trajectory of vegetation change,

including interannual variations, dynamic vegetation models were developed to
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complement static vegetation models, to simulate vegetation dynamics such as the

succession of plants through time, and to estimate the variability of the terrestrial carbon

and nitrogen and their responses to episodic events such as drought and fire (Tian et at,

1998; Bachelet et at., 2001). To some degree, dynamic vegetation models fall into four

subcategories: (1) models simulating the species composition and distribution of

vegetation, (2) models focusing on the biogeochemical processes of vegetation, (3)

models addressing the physiological processes of vegetation, and (4) coupled dynamic

multifunctional models that incorporate all or some of the ecological, biogeochemical,

and physiological variations. Dynamic models often have an ability to predict the

responses of vegetation to climate change at time scales ranging from days to centuries,

and at spatial scales ranging from local to global (Woodward & Lomas, 2004).

Dynamic models can be constructed by coupling static models with smaller scale

ecosystems or species models. Because both ecosystems and species models are capable

of simulating vegetation and species change by considering the differential birth, growth,

and death of individual trees as a function of species' response to climatic factors, light

and nutrients, the resulting dynamic models are therefore able to simulate transient

changes in vegetation distribution. For example, Steffen et at. (1996) developed a

dynamic global vegetation model (DGVM) to simulate the transient changes in

vegetation distribution over a decadal time scale. The structure of this DGVM is based on

a linkage between an equilibrium global vegetation model and smaller scale ecosystem

dynamic modules that simulate the rate of vegetation change.

Physiological models simulate the physiological processes of vegetation such as

stomatal resistance and plant transpiration. In these models, the transpiration rates of

plants are linked to their photosynthesis via stomatal conductance or leaf area (Running

et at., 1989). When physiological models are linked to other models such as demographic

vegetation model or ecosystem model, they have an ability to simulate the succession,

competition and other ecological processes of plants under climate change. For example,

small-scale ecosystem models have an ability to estimate the gas exchange processes

such as photosynthesis, respiration and evapotranspiration (e.g. Kergoat et at. 2002).
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Biogeochemical models aim to predict the carbon and nitrogen cycle in terrestrial

vegetation. For example, a set of carbon cycle models (e.g. King et aI., 1997; Ito &

Oikawa; 2002) were used to examine the carbon dynamics in terrestrial ecosystems under

climatic change. In such models, terrestrial carbon storage is divided into different

compartments such as foliage, stem, root, litter, and mineral soil. The division of carbon

into different compartments allows researchers to understand the carbon fluxes in the

biosphere. These models estimates NPP and net ecosystem production (NEP) by

explicitly calculating such carbon fluxes as gross primary production (GPP), plant

respiration and soil decomposition on a monthly time-step. These fluxes are regulated by

a multitude of environmental factors at the physiological scale. In addition, empirical

models based on the normalized difference vegetation index (NDVI) and climate

variables can be used to analyze the response of terrestrial productivity to climate change

(e.g. Potter et al., 1999; Zhang et al., 2003).

Current dynamic vegetation models are mostly multifunctional and combine

process-based, large-scale representations of terrestrial vegetation dynamics and the

exchanges of carbon and water between the biosphere and the atmosphere (For these

reasons, they are referred to as DGVMs-dynamic global vegetation models). The Lund­

Potsdam-Jena (LPJ) DGVM (Sitch et aI., 2003) is such a typical example. In LPJ, the

PFTs are differentiated by their physiological, morphological, phenological, bioclimatic

and fire-response attributes. LPJ incorporates some of the principal processes of the

biosphere that influence the global carbon cycle (e.g. photosynthesis, autotrophic and

heterotrophic respiration of plants and in soils) and the latent, sensible and kinetic energy

exchanges at the surface of soils and plants. LPJ also considers competitive processes

between PFTs, such as light competition and sapling establishment. The carbon, water

and nitrogen flows are simulated on a daily basis, while vegetation structure, PFT

population densities and NPP of each PFT are updated montWy and annually. Most

current dynamic models can be coupled with climate or other land-cover models and are

able to simulate transient changes in vegetation distribution, structure and function, and
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the terrestrial carbon and nitrogen cycle under climatic change (Cowling & Shin, 2006;

Zaehle et al., 2005).

Simulating the climatic effects on terrestrial vegetation: issues

The issues related to vegetation models

The structure of vegetation models affects model results. The bioclimatic

classification models usually predict the distribution of high-level physiognomic units

such as biomes and life zones at the broad spatial scale but ignore the individualistic

response of species to climate change (Peng, 2000). Consequently, the equilibrium

character ofthe bioclimatic relationships limits the applications of such models to long­

term scenarios of changing climate (Kirilenko & Solomon, 1998). Static models may

ignore migration or succession processes of terrestrial vegetation, which further limits

their ability to simulate the transient dynamics of terrestrial vegetation (Prentice &

Solomon, 1990). Likewise, if dynamic models do not stress the structure difference

among different types of vegetation, their ability to simulate the categories and

distribution of terrestrial vegetation is limited. In addition, the simulations of the

biochemical dynamics such as the carbon and nitrogen cycle are mostly based on fixed

vegetation types (Walker, 1994) and the simulations of natural disturbances (e.g.

wildfire) or human disturbance (e.g. land use change) may not be adequate in both static

and dynamic models (e.g. Thonicke et al. 2001).

Second, the assumptions and theoretical foundations of vegetation models affect

model results. Static models mostly assume that climate is the primary factor for

controlling vegetation dynamics. The resilience of terrestrial vegetation under external

environmental alterations and other important factors such as human activities that affect

the vegetation dynamic are ignored (Loehle & LeBlanc, 1996). However, other

disturbances such as wildfire, grazing and deforestation can be the dominant factors

controlling the distribution of terrestrial vegetation in a given area. Therefore, vegetation

models that only take into account climatic factors may not accurately simulate the

spatiotemporal dynamics of terrestrial vegetation under climate change (Camill, 2000),
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largely because the implicit cause-effect relationship in vegetation models may be

problematic (Scheffer et al., 2005). In addition, the aggregation of all species into several

PFTs that may encompass the full spectrum of migration rates hinders the accuracy of

model results (Neilson et al., 2005).

Third, the parameterization of physiological, biological and biogeochemical

processes of terrestrial vegetation is still difficult because of our limited knowledge of

plant physiology and biology, the limitation of sampling and the key processes which

may be currently unknown (Grieb et al., 1999; Mitchell & Csillag, 2001). For example,

Arora & Boer (2005) pointed out that leaf phenology remains one ofthe most difficult

processes to parameterize in vegetation models because of our incomplete understanding

of leaf onset and senescence. In addition, information with considerable uncertainty may

continue to be used to parameterize future vegetation models (Gifford, 1992,2003). The

selection and use of static parameters (e.g. leaf Nitrogen concentration) in vegetation

model is likely to affect model results by overestimating the respiration of plants and

subsequently underestimating the productivity estimates (Wythers et al. 2005).

The issues related to analytical data

The outputs from vegetation models are often hampered by considerable

uncertainties associated with the input data used to run a model (Kickert et al. 1999).

Problems with the input data include missing key components, errors associated with

biased or incomplete observations, and the resolution of the data. For example, climate

data from general circulation models (GCMs) may be biased because ofthe uncertainties

in future greenhouse gases and aerosols emissions, radiative forcings, global and regional

climate sensitivity (Forest et al., 2002; Stott & Kettleborough, 2002), and the cycle of

carbon (Lenton & Huntingford, 2003) specified in GCMs. In addition, the uncertainties

related to future population growth, technological progress, economic activity, land use

and cover changes, and the simplification of the complex physical processes that govern

climate in GCMs can affect the accuracy and reliability of GCM data (Loeh1e & LeBlanc,

1996), which in tum affects vegetation modeling being run using such GCM data (Jones,

2000).
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Satellite-based land- and tree-cover data are increasingly used to evaluate a

model's ability to simulate terrestrial vegetation. However, human-induced errors in

satellite-image processing such as image classification may bias the realistic distribution

pattern of vegetation in an area (Campbell, 2002). Therefore, satellite-based land-cover

data used to validate model results may greatly influence the accuracy assessment of

model results. In addition, lack of data that would help to make vegetation models

mechanistic and to provide evidence on what climate-induced impacts will occur is one

of the critical gaps in developing dynamic models and in validating model results (Tian et

al., 1998). For example, Neilson et al. (2005) pointed out that theories about climate

change and migration of vegetation are limited by inadequate data for key processes at

the different spatiotemporal scales. The spatial resolution of input data affects model

results. Turner et al. (1996) pointed out that the model simulations run by coarser input

data is more likely to bias the resulting estimates of vegetation dynamic than those run by

finer input data.

The issues related to analytical approaches

Categorical-data comparison approaches are used to assess the accuracy of model

results through comparing simulated and observed distributions of vegetation type.

Statistics, such as the Kappa statistic (Congalton & Green, 1999), Kappa-for-Iocation

(Pontius, 2000), and Fuzzy kappa (Hagen, 2003) have strengths and weaknesses in

assessing a model's accuracy. For example, the Kappa statistic lacks the ability to

measure error magnitude (Congaltong, 1991; Foody, 2002) and tends to underestimate

the overall similarity between simulated and observed spatial pattern of terrestrial

vegetation (Foody, 1992). The Fuzzy Kappa can underestimate a model's ability by

overestimating the expected similarity between two compared data sets (Hagen, 2003).

The receiver (or relative) operating characteristic (ROC) technique is sensitive to the

number of vegetation types in the two data sets being compared (Fielding & Bell, 1997;

Pontius & Schneider, 2001).

Continuous-data comparison approaches assess a model's ability to simulate the

state of ecological variables that are numerical. Statistics, such as confidence levels
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(Barrett et al., 2001), correlation and regression coefficients, Kendall's tau and measures

of absolute and relative error (Gordon et al., 2004) are widely used in model comparison

and evaluation research. However, they may be problematic in some cases. For example,

the correlation coefficient cannot determine whether two patterns have the same

amplitude of variation (Taylor, 2001). The correlation coefficient is sensitive to

influential data and outliers from two compared simulations but insensitive in situations

when the compared data differ by a constant factor (Murphy & Epstein, 1988; Storch &

Zwiers, 1998). Similarly, root-mean-squared error is very sensitive to systematic errors

because the penalty grows as the square ofthe error (Storch & Zwiers, 1998). In addition,

most statistics assume that the data being compared are independent of one another.

However, model results are often spatiotemporally auto-correlated.

The issues related to the spatiotemporal scaling

The spatiotemporal scaling in vegetation modeling may greatly affect the model

results. For example, the mismatch between the coarser spatial resolution of GeM data

and the relatively finer resolution of vegetation models has long been a concern in

vegetation modeling (Adams, 2003). In addition, modeling interactions between land-use

change and vegetation dynamic is still a challenge because vegetation models often rely

on pixel sizes of a few kilometers or more but the land-use change frequently occurs on a

much smaller scale (Peng, 2000), which makes the interactions among land-use drivers,

topography and climate change difficult to simulate.

The 'scaling-up' approaches used in vegetation modeling to extrapolate

information from individuals to ecosystems, or from sites to regions to the globe are often

based on observations, experiments and modeling of individuals or sites. However, the

basic assumptions of environmental homogeneity across different spatial scales are

questionable (Tian et al., 1998; Liu et al., 2006). Likewise, the 'scaling-down'

approaches that apply the relation of large-scale patterns of vegetation and climate to

local and landscape scales may ignore the fact that other process rather than climate may

play important roles in vegetation dynamics at local scales (Moorcroft et al., 2001).
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Simulating the climatic effects on terrestrial vegetation: challenges

To improve the model design and parameterization

Because vegetation modeling often involves a variety of processes ofplants, such

as water and carbon cycle among the soil-vegetation-atmosphere systems, and because

the intent of a same vegetation model may vary in practical applications, establishing

model with a clear structural hierarchy would allow researchers to easily alter and

compare the individual equations and to select the level of model detail based on the

availability of data or the particular research question being investigated (Homann et al.,

2000). Given that static models may ignore the biogeochemical processes ofplants, it

would be rewarding to couple them with biogeochemical models to address the effects of

climate change on vegetation. Similarly, if dynamic models do not consider competition

between plants and instead determine the existence and fractional coverage of vegetation

based on inferred climate-vegetation relationships, then it would be desirable to include

the mechanisms of competition for light and water among different PFTs (Daly et al.,

2000; Arora & Boer, 2006). In addition, both static and dynamic models need to

incorporate the impacts of land-cover change on vegetation (Bond-Lamberty et al., 2005)

and the coupling of climate and carbon cycle models should be improved to better

represent the photosynthesis process ofplants (Matthews et al., 2005).

Second, vegetation models should be developed to incorporate as many factors as

possible that have a big role in shifting the vegetation's structure and function and the

cycle of carbon and nitrogen in terrestrial ecosystems. Van et al. (2000) suggested that

the ability of plant species to migrate is one of the critical issues for accurately assessing

future responses of terrestrial vegetation to climate change. Given that natural

disturbances (e.g. forest fire and insects) and human activities (e.g. land-use and grazing)

are critical factors in determining the composition, structure and dynamics of most

vegetation (Thonicke et al. 2001), new vegetation models should have an ability to

simulate the role of these factors on vegetation dynamics (Peng, 2000). For example,

better estimates of carbon sources and sinks require improved assessments of current and
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future deforestation (Cramer et al., 2004) and the role ofland-cover changes in shifting

the cycle of terrestrial carbon and nitrogen (Chen et al., 2006).

Third, it is very important to determine which processes and parameters

contribute most to the uncertainty of model results (Knorr & Heimann, 2001; Mitchell &

Csillag, 2001). For example, Peters (2002) argued that our limited understanding of the

key processes in many ecotones hinders the reliability of model results. The uncertainty

in the simulation ofPFT distributions and in the estimates of the carbon cycle mainly

result from the uncertainty in parameters controlling the photosynthesis,

evapotranspiration and root distribution of plants and the water balance (Hallgren &

Pitman, 2000; Zaehle et al., 2005). Therefore, efforts must be made to determine which

parameters need further attention in observational work and in their representation in

models (Matthews et al., 2005). For those parameter uncertainties caused by limited

sampling, much work on sampling and corresponding statistical analysis is needed

(Higgings et al., 2003).

To improve the quality of model-driven and validation data

The reliability of model results highly depends on the quality of climate data used

to run a model (Kickert et al., 1999). To accurately simulate the effects of climatic

variations on vegetation requires input climate data to capture those aspects of climate

that control ecological processes, including key spatial gradients and modes of temporal

variability (Kittel et al., 2004). Therefore, it is necessary to further the study of climate

projection and the positive feedbacks between the terrestrial carbon cycle and climate

(Matthews et al., 2005; Meir et al., 2006). Meanwhile, more efforts should be made on

studying the frequency, intensity and magnitude of extreme weather events, and on how

they affect terrestrial vegetation. In addition, because one of the major uncertainties in

vegetation modeling is in understanding processes in soil-vegetation-atmosphere systems,

continuous, long-term data are therefore needed to correctly model the balances of water,

energy and CO2 in these systems (Halldin et al., 1999; Lundin et al., 1999).

The quality of other data is also important for the accuracy and evaluation of

model results (Pan et al., 1996). Long time-series data or experiments allow researchers
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to better understand the relative magnitudes of short- and long-term responses of

vegetation under climate change (Hanson et al., 2005). In addition, more and continuing

field observations are needed at sites where studies already have been conducted in order

to calibrate the model results (Higgins et al., 2003). In order to make full use of

vegetation models, it is necessary to establish the magnitude and sources of uncertainty

associated with data, which will be useful for guiding field surveys and experiments

(Grieb et al. 1999).

To improve the model evaluation and the uncertainty analysis

Vegetation models must be tested for their ability to reproduce features of real

vegetation (Hickler et al., 2004). Model evaluation allows researchers to determine the

accuracy and applicability of a model (Bolliger et al., 2000). However, because model

evaluation is likely sensitive to the selection of the evaluation methods, the evaluation

strategy needs to be prescribed to solve such sensitivity issues. In addition, model

evaluation should be closely related to its intended purpose: description, understanding

and prediction (Araujo & Guisan, 2006). Intercomparison of results from different

models should be stressed because they are very important to improve our understanding

of the model behavior, to assess the robustness of inferred mechanisms used to build a

model, and to measure the stability of selected variables (Bolliger et al., 2000; Knorr &

Heimann, 2001).

The promotion of approaches for evaluating model results is important. The

statistical confidence levels (Barrett et al., 2001), Markov chain (Schulz et al., 2001) and

Monte Carlo-based uncertainty estimation (Paltoniemi et al., 2006), Bayesian

probabilities (Webster & Sokolov, 2000; Katz et al., 2002), and statements of uncertainty

such as probability density functions (Grieb et al., 1999; Radtke et al., 2001), allow us to

weigh the analytical results and to estimate the predictive uncertainty of vegetation

dynamics to climate change. Nevertheless, innovative methods for evaluating model

results and for exploring parameter uncertainty in complex vegetation models are still
,

needed. Different approaches for model evaluation and uncertainty analysis can
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complement each other and thus provide more insights into the contribution of various

factors to the uncertainty of model results (House et al., 2003).

To strengthen the development of coupled dynamic vegetation models

Vegetation models are developed at different levels ofbiological organization:

global, regional or landscape, community and individual plants (Dale & Rauscher, 1994).

However, no model can address all aspects of vegetation dynamic at different spatial

scales. Moreover, the biosphere and the atmosphere are a coupled system with

biogeophysical and biogeochemical processes occurring across a range of timescales,

ranging from short (i.e. seconds to hours) to intermediate (i.e. days to months) and to

longer (e.g. seasons, years and decades) timescales (Foley et al., 2000). On different

timescales, the processes that control the exchange of matter and energy between the

biosphere and the atmosphere are different. In order to consider the full range of coupled

atmosphere-biosphere processes, vegetation models should include short, intermediate

and long-term ecological phenomena occurring at different spatial scales, which

necessitates coupling different vegetation models or coupling vegetation models with

other land-use and climate models.

Scale is an important issue in simulating climatic effects on vegetation (Higgins &

Vellinga, 2004) and has been a critical impediment to incorporate important fine-scale

processes into large-scale vegetation models (Moorcroft et al., 2001). Our knowledge of

fine-scale physiological and ecological processes comes from a variety of measurements

and experiments made at spatial resolutions considerably smaller than the large scale at

which many vegetation models are defined. However, it is the interactions of factors and

processes at different scales that determine the vegetation dynamics. Therefore, new

vegetation models should have an ability to quantify the mechanisms from micro-level

fast eco-physiological responses to macro-level slow acclimation in the pattern, structure

and function of vegetation (Cao et al., 2005). Integrating approaches of different

vegetation models is therefore necessary because they can help us to understand the

interconnections and interactions among different mechanisms at different scales. Given
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that the role oflocal-scale effects is poorly explored, new integrated vegetation models

need to stress fine-scale processes such as species dispersal (Del et aI., 2006).

Conclusion

Vegetation models have progressed from static-equilibrium to transient-dynamic

models. The former simulates vegetation dynamic primarily as a function of the abiotic

biophysical environment. Because the data used to infer the abiotic environment are from

large spatial scales, these vegetation models are considered a top-down approach in

vegetation modeling. In contrast, the latter simulates vegetation dynamics based on some

mechanistic processes of terrestrial vegetation. Because local-scale or species-specific

information are often used to describe the mechanistic processes of plants, these

vegetation models are considered a bottom-up approach. In comparing the two, dynamic

models are superior in simulating climatic effects on vegetation because they can include

many mechanistic processes of plants and incorporate more non-climatic factors.

The factors that affect the accuracy of model results are multifold. First, the

structure, assumptions and parameterization of a model each influence the model results.

Static models often ignore some mechanistic processes of vegetation. In contrast,

dynamic models may overlook the structural differences among PFTs. A model's

assumption may overemphasize the roles of some factors but overlook other factors that

are important in controlling vegetation dynamics. The parameterization of some key

process of plants is a key issue in vegetation modeling; second, the quality of data used to

run a model and to assess model results greatly affects the accuracy of model results;

third, both categorical- and continuous-data comparison approaches have their own

weakness and thus may bias the accuracy assessment of model results; and fourth, the

mismatch of the spatiotemporal resolution of data used in vegetation modeling and the

extrapolation of information from one scale to another greatly influence the accuracy of

model results.

To address the major factors resulting in the uncertainty of model results, more

attention should be put on: (i) establishing structural models with a good hierarchy that
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can incorporate as many factors as possible in affecting the vegetation's structure,

function and the cycle of carbon and nitrogen in terrestrial vegetation; (ii) improving the

quality of model input and validation data, especially high quality input climate data and

field observations needed to calibrate model results; (iii) strengthening the

intercomparison between different model results, the validation of model results by

multiple approaches and the development of new methods for evaluating model results;

and (iv) promoting the coupling of different vegetation models or vegetation models with

climate or land-cover models, which will greatly contribute to our understanding of the

mechanisms from micro-level fast response to macro-level slow acclimation of

vegetation to climate change.

Bridge

As mentioned above, the data used to run a model and to evaluate model results

greatly affect the accuracy assessment of model results. To demonstrate these, Chapter III

aims to examine how the accuracy assessment of vegetation model simulations is

sensitive to different input climate data, to the selection of observed validation data and

to the choice of map comparison approaches by taking the equilibrium vegetation model

BIOME4 (Kaplan et al., 2002) as a typical example.
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CHAPTER III

EFFECTS OF EXPERIMENTAL PROTOCOL ON GLOBAL

VEGETATION MODEL ACCURACY: A COMPARISON OF

SIMULATED AND OBSERVED VEGETATION PATTERNS FOR ASIA

The Chapter is coauthored with Sarah L. Shafer, Patrick J. Bartlein, and Justin O.

Holman. The overall research design was conceived by G. Tang, S. Shafer, and P.

Bartlein, with input from J. Holman. J. Holman developed the Nomad index and

contributed to the analysis of map-comparison methods. G. Tang prepared the initial

draft of the manuscript, tables, and figures, with contributions from all authors.

Introduction

Over recent decades, many studies have examined the impacts of climate change

on terrestrial vegetation dynamics (e.g. Prentice et al., 1993; Harrison & Prentice, 2003)

and the global carbon cycle (e.g. White et al., 2000; Woodward & Lomas, 2004). To

assist with these studies, a number of prognostic vegetation models have been developed

and used to examine the interactions between environmental change and biological

systems (Bolliger et al., 2000). Vegetation models such as IBIS (Foley et al., 1996),

BIOME4 (Kaplan et aI., 2002), LPJ (Sitch et al., 2003), CENTURY (Parton et aI., 1987)

and BIOME-BGC (Running & Coughlan, 1988), have greatly improved our ability to

understand the response of terrestrial vegetation to past and future environmental

variation at global-to-regional scales. However, evaluations of the performance of model­

based simulations are subject to a number of limitations, both inherent in the models

themselves and in the input data used to run the models (Allen et al., 2001; Barrett et al.,

2001). For example, many equilibrium vegetation models assume that climate is the

primary factor controlling the dynamics of terrestrial vegetation, and so model-simulated
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vegetation is highly dependent on the quality and characteristics of the specific input (or

baseline) climatology data, including the number of years of climate data included in the

climatology (Kickert et al., 1999).

Remotely sensed global land- and tree-cover data sets, such as the Advanced Very

High Resolution Radiometer (AVHRR) Pathfinder Land data, are frequently used to

evaluate the ability of vegetation models to simulate global terrestrial vegetation because

these data map the pattern of vegetation over large areas (Turner et al., 1993; Gould,

2000). However, errors created in remotely sensed image processing steps, such as image

classification and geo-registration, may misclassify the vegetation pattern in a given area

(Campbell, 2002). In addition, remotely sensed image classifications developed for

different purposes may put different emphases on the categories and characteristics of the

post-classified data. For example, NOAA's 1992-93 AVHRR data have been used to

produce both l-km global land-cover characteristics data with 97 different land cover

types (Loveland et al., 2000) and continuous field tree-cover data with only three tree­

cover classes (DeFries et aI., 2000; Hansen et al., 2000). The accuracy assessment of

simulated vegetation may vary significantly depending on the choice of the observed

vegetation data set used to evaluate the simulated vegetation.

A number of quantitative map-comparison techniques have been used to assess

the ability of vegetation models to simulate observed vegetation. These techniques, such

as the Kappa statistic (Cohen, 1960; Congalton & Green, 1999), Tau (Ma & Redmond,

1994), Kappa-for-location (Pontius, 2000), and Fuzzy Kappa (Hagen, 2003) are used in

raster-based categorical data comparison through pixel-to-pixel arithmetic. Each

approach has its own strengths and weaknesses for evaluating a model's performance.

For example, the Kappa statistic may greatly underestimate the similarity of two maps if

they display a similar data pattern but that pattern is slightly offset from one map to the

other (Foody, 1992,2002). The assessed accuracy of simulated vegetation will vary

depending on the choice of which quantitative techniques are used to compare maps of

simulated and observed vegetation.
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The goal of this study is to examine the effects of three elements of experimental

protocols on the evaluation of global vegetation model accuracy: I) the choice of the

input climatology (and its associated atmospheric C02 concentration), 2) validation data

selection, and 3) map-comparison method. We use vegetation simulated with the

equilibrium model BIOME4 (Kaplan et al., 2002; Kaplan et al., 2003) as a typical

example of the output from a vegetation model. The geographic focus of this study is

most of Asia, ranging from 60.0oE to 150.0oE and from 8.0oN to 80.0oN. This region was

chosen because it contains a diversity of terrestrial vegetation and climate zones, and few

detailed studies assessing vegetation simulations have been done for this area (e.g. Song

et al., 2005). Methodologically, the well-known Kappa statistic, Fuzzy Kappa statistic

(hereafter Fuzzy Kappa) and a newly developed method for map comparison, the Nomad

index (Holman, 2004), are employed to quantify the agreement between BIOME4­

simulated biomes and those derived from three global land- and tree-cover data sets.

Through this analysis, we hope to improve our understanding of the model's behavior

and provide model users with information to use in designing experimental protocols for

vegetation model simulations.

Materials and Methods

The BIOME4 model and baseline climatology data sets

BIOME4 (version 2bl) is an equilibrium, coupled biogeography and

biogeochemistry vegetation model that simulates global vegetation in the form of 13

plant functional types (PFTs) that are combined to form 27 biomes (Table 3.1; Kaplan et

al., 2002, 2003). The model also calculates a variety of other variables, such as net

primary productivity and leaf area index for each PFT under a prescribed global

atmospheric CO2 concentration. BIOME4 has been employed in a number of studies of

past, present and potential future vegetation patterns (e.g. Bigelow et al., 2003;

Diffenbaugh et al., 2003; Song et al., 2005).

The input variables required to run BIOME4 include monthly mean temperature

(DC), monthly mean total precipitation (mm), monthly mean sunshine (%), soil water
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holding capacity (mm) for each of two soil layers, a conductivity index of water

movement through the soil column (mm/day), and atmospheric CO2 concentration (ppm).

We used the CRU TS 2.0 data set from the Climatic Research Unit (CRU), University of

East Anglia (U.K.), to create the input climatologies for running BIOME4. The CRU TS

2.0 data set is supplied on a 0.5-degree global land grid at a monthly time-step for 1901­

2000 and builds upon several previous CRU gridded data sets (New et al., 1999; New et

al., 2000; Mitchell et al., 2004). Soil data were obtained from the derived soil properties

defined in the FAO digital soil map of the world (Food & Agriculture Organization,

1995). Annual atmospheric CO2 values for 1901 to 1995 were provided by the Carbon

Cycle Model Linkage Project (Kicklighter et al., 1999).

Table 3.1 Original biome types simulated by BIOME4

Biome types simulated by BIOME4 (Kaplan et a1.,2002; Kaplan et aI., 2003)
1) Tropical evergreen forest
2) Tropical semi-deciduous forest
3) Tropical deciduous forest/woodland
4) Temperate deciduous forest
5) Temperate conifer forest
6) Warm mixed forest
7) Cool mixed forest
8) Cool conifer forest
9) Cold mixed forest
10) Evergreen Taiga/montane forest
11) Deciduous taiga/montane forest
12) Tropical savanna
13) Tropical xerophytic shrubland
14) Temperate xerophytic shrubland

15) Temperate sclerophyll woodland
16) Temperate broadleaved savanna
17) Open conifer woodland
18) Boreal parkland
19) Tropical grassland
20) Temperate grassland
21) Desert
22) Steppe tundra
23) Shrub tundra
24) Dwarf shrub tundra
25) Prostrate shrub tundra
26) Cushion forb lichen moss tundra
27) Barren

We designed 19 scenarios to analyze the sensitivity ofBIOME4 simulations to

different climatologies and their associated atmospheric CO2 concentrations. The 19

monthly mean climatologies used to run BIOME4 are derived from the CRU TS 2.0 data

set and each of them extends backward in time from December of 1992 for 2,5, 10, 15,

20, 25, 30, 35,40,45, 50, 55, 60, 65, 70, 75, 80, 85 and 90 years respectively. The year

1992 was chosen as the common end point for the climatologies because all three
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observed vegetation data sets used in this study were developed from remotely-sensed

images taken over the period of April 1992 to March 1993. The associated atmospheric

CO2 concentrations for each BIOME4 simulation were developed by averaging annual

CO2 values for each of the 19 different climatology time periods. We also designed 8

scenarios to examine the sensitivity ofBIOME4 simulations to different 30-year monthly

mean climatologies (1963-1992,1961-1990,1951-1980,1941-1970, 1931-1960, 1921­

1950, 1911-1940 and 1901-1930) and their associated atmospheric CO2 concentrations

following the same approach.

Global land cover and forest cover data

We used one tree-cover and two global land cover data sets to investigate how the

selection of observed vegetation data influences the accuracy assessment of the model­

based simulations. The data sets include (i) the global potential natural vegetation (PNV)

data (Ramankutty & Foley 1999), (ii) the I-kIn global land cover characteristic (GLCC)

data (version 2.0) (Loveland et a!., 2000), and (iii) the global AVHRR continuous field

tree-cover data (DeFries et a!., 2000; Hansen et al., 2000). Each observed vegetation data

set was compared to each of the 19 BIOME4 simulations.

The gridded global PNV data describe the distribution of global potential natural

vegetation patterns that would most likely exist in the absence of human activities

(Ramankutty & Foley, 1999). For regions not dominated by human land use, the PNV

vegetation types were based on the DISCover land cover data set derived from the

International Geosphere-Biosphere Programme (IGBP) AVHRR data of 1992 to 1993

(Loveland et al., 2000). For regions dominated by human land use, the vegetation types

were based on the Haxeltine and Prentice (1996) potential natural vegetation data. The

PNV data are classified into 15 biome types (Table 3.2) at a spatial resolution of 0.5°,

which matches the resolution at which biomes were simulated by BIOME4 for this study.

The GLCC data were generated from IGBP I-kIn AVHRR lO-day composites from April

1992 through March 1993 (Eidenshink & Faundeen, 1994), and the data were classified

into 97 global land cover types at a 30 arc-second spatial resolution. The GLCF data were

obtained by combining the "Global maps of proportional cover for three vegetation
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characteristics" data (DeFries et ai., 1998) with the "Global land cover classification"

data (Hansen et ai., 2000). Both ofthese data sets were derived at a I-Ian spatial

resolution from NOAA's AVHRR data acquired in 1992-1993. The GLCF data used in

this study are at a 30 arc-second spatial resolution and consist of continuous fields of

vegetation characteristics divided into three classes: (i) percent tree cover with values

ranging from 10 to 80 percent; (ii) percent tree cover less than 10 percent (coded as

"255"); and (iii) non-vegetated areas (coded as "254") (DeFries et ai., 2000; Hansen et

ai., 2000).

Table 3.2 Original biome types classified in the PNV data

Biome types classified in the PNV data (Ramankutty & Foley, 1999)
1) Tropical evergreen forest/woodland 9) Savanna
2) Tropical deciduous forest/woodland 10) Grassland/steppe
3) Temperate broadleaf evergreen Forest/woodland 11) Dense shrubland
4) Temperate needleleaf evergreen forest/woodland 12) Open shrubland
5) Temperate deciduous forest/woodland 13) Tundra
6) Boreal evergreen forest/woodland 14) Desert
7) Boreal deciduous forest/woodland 15) Polar desert/rock/ice
8) Mixed forest

Data processing

Unlike the global PNV data, which have the same spatial resolution (0.5°) as the

CRU TS 2.0 data set, the global GLCC and GLCF data have a much finer spatial

resolution. In order to compare the BIOME4-simulated biome types with the land cover

classes in the GLeC data and the tree-cover classes in the GLCF data, we first

reregistered the 30 arc-second GLCC and GLCF data into 0.5° gridded data using a

nearest-neighbor algorithm we developed. For each 0.5° grid point we assigned the value

of the geographically nearest point in the GLCC and GLCF data. We compared this

nearest neighbor approach with reclassification using the modal land cover type in a 60

by 60 grid cell window, which produced similar results to those obtained using the

nearest-neighbor method.
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After regridding the GLCC and GLCF data, we reclassified the vegetation in each

pair of data sets (BIOME4 vs. GLCC, BIOME4 vs. PNV, and BIOME4 vs. GLCF) into

matching or comparable biome types. Given that BIOME4 produces 27 biome types and

that there are 51 land cover classes in the GLCC data for Asia, we attempted to maximize

the number of reclassified biome types. BIOME4 biomes that did not match a land cover

type in the GLCC data were grouped with related BIOME4 biomes to produce a total of

16 reclassified (BIOME4) biomes (Table 3.3). In general, the BIOME4 biomes that were

grouped in this manner consisted of small numbers of grid cells in our research area (e.g.

tropical grassland simulated under the 1961-1990 3D-year climatology consists of only

three grid cells and was combined with tropical savanna).

The GLCC data were reclassified into the same 16 biome types (Table 3.3) by: (i)

classifying the same or similar land cover types in each pair of compared data sets as the

same biome types; (ii) classifying the land cover types located in one climate zone into

the biomes shared by the same climate zone (e.g. temperate vegetation was grouped into

temperate biome types rather than tropical biome types); and (iii) for a land cover type

that could not be classified based on the steps described above, we first assigned it the

value of its most-likely neighbor (i.e. the mode of land cover types in neighboring grid

cells) in the source data and then reclassified it according to the steps outlined above. In

practice, those land cover types hardest to classify, such as "heath scrub" (which consists

of 23 grid cells in the GLCC data), are often clustered in specific areas and represented

by relatively few grid cells. Thus, they do not have a large effect on the accuracy

assessments of the BIOME4 simulations. In addition, given that BIOME4 simulates

potential vegetation in the absence of human activity, we excluded from our analysis all

grid cells in which the GLCC land cover types represent human activities (e.g. crops,

urban).
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Table 3.3 Reclassified BIOME4 biome types and GLCC land cover types

Reclassified biome types BIOME4 biomes GLCC land cover
1) Tropical evergreen forest 1 19,33,72
2) Tropical semi- and deciduous forest 2,3 5,29,34,90,96
3) Temperate deciduous/conifer forest 4,5 5,27
4) Warm mixed forest 6 24
5) Cool/cold mixed forest 7,9 23,24
6) Cool conifer forest 8 22,57
7) Evergreen taiga/montane forest 10 19,21,44,62
8) Deciduous taiga/montane forest 11 4,61
9) Tropical savanna and grassland 12,19 2,10,58,94
10) Tropical xerophytic shrubland 13 51,55,56
11) Temperate xerophytic shrubland 14 51
12) Temperate savanna and grassland 16,20 2,10,40,43,58,92
13) Barren and desert 21,27 8,50
14) Steppe tundra 22 11
15) Shrub tundra 23 63,64
16) Dwarf and prostrate shrub and moss tundra 24,25,26 9,69

The BIOME4 biomes with codes 15, 17, and 18 (Table 3.1) are not listed because they
were not simulated to occur in the study region. The land-cover types with codes 2,5, 10,
19,24 and 51 are divided into their tropical (latitude ~ 23.5°) and temperate (latitude>
23.5°) subparts. The land-cover types with code 16, 17, 19,40,45,60 and 91 are not
listed because they are reassigned the value of their nearest neighbor in the source data.
The human-related land-cover types with codes 1,30,31,36,37,38,55,56,57,58 and
93, and inland water (code 14) are excluded in the comparison. The GLCC land cover
types and codes are listed in the "Global Ecosystem Legend"
(http://edcsnsI7.cf.usgs.gov/GLCC/globdoc2_0.html, owned by the U.S. Geological
Survey's (USGS) National Center for Earth Resources Observation and Science).

There is good agreement between the BIOME4 biome categories and the PNV

categories (Tables 3.1 and 3.2). We reclassified vegetation types from these two data sets

into 6 biome types: forest cover, tropical/temperate savanna, grassland, tropical/temperate

shrubland, tundra, and barren/desert (Table 3.4). In order to compare the BIOME4­

simulated biomes with those classified in the GLCF data, we grouped the BIOME4­

simulated biomes into three categories: forest biomes, grassland and savanna biomes, and

desert biomes including barren areas (Table 3.5). As with the comparison ofBIOME4 vs.

GLCC, the comparison ofBIOME4 vs. GLCF data also excluded all grid cells where the

GLCC land cover types reflected human activities.
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Table 3.4 Reclassified biome types and PNV types for comparison

Reclassified biome types
1) Forest cover
2) Tropical/temperate savanna
3) Grassland
4) Tropical/temperate shrub1and
5) Tundra
6) Barren and desert

BIOME4 biome codes
1,2,3,4,5,6,7,8,9,10,11
12,16
19,20
13,14
22,23,24,25,26
21,27

PNV biome codes
1,2,3,4,5,6,7,8
9
10
11,12
13
14,15

Table 3.5 Reclassified biome types and tree-cover percentage classes for comparison

Reclassified biome types
1) Forest cover
2) Grassland/percent tree cover
«10%)
3) Barren and desert

BIOME4 biome codes
1,2,3,4,5,6,7,8,9,10,11
12,13,14,16,
19,20,22,23,24,25,26
21,27

GLCF tree cover codes
10-80

255

254

Map Comparison Methods

The Kappa statistic

The Kappa statistic (Cohen, 1960) has been widely used to quantitatively assess

the accuracy of land cover classifications derived from remotely sensed data, such as

AVHRR data (Roy & Joshi, 2002). It also has gained widespread use in global-change

research (Diffenbaugh et ai., 2003; Prentice et ai., 1992). The advantage of the Kappa

statistic is that it takes into account chance agreement, regardless of the number of

categories in the maps being compared. In addition, it is easy to calculate and is an

intuitive measure of agreement (Monserud & Leemans, 1992; Foody, 2002). For each

pair of compared observed and simulated vegetation data sets, an error matrix, A, is

constructed. Then, for each category i in the constructed error matrix A, the Kappa

statistic is calculated by the following equation:

K j = (Pii - Pi.rowPcoIJ/((Pi.row + Pcol. i )/2- Pi.rowPcol. i )

where Pi.row is the row total for each category i; Pcol.i is the column total for each

(1)

category i; and Pii is the individual entry for the row and column on the main diagonal
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of constructed error matrix A. The overall agreement between two compared maps is

estimated by the formula:

(2)

c c

where Po = LPii ; Pe = LPi.rowPCOI.I ; and c is the number of categories in each data set.
1=1 i=!

The Fuzzy Kappa statistic

Like the Kappa statistic, the Fuzzy Kappa statistic is also a cell-by-cell-based map

comparison approach. However, the Fuzzy Kappa takes the neighborhood of a cell into

account to express the similarity of that cell to its neighbor. In order to distinguish minor

differences from major differences, the Fuzzy Kappa assesses two types of fuzziness:

fuzziness of category and fuzziness of location. Category fuzziness refers to the ordinal

similarity among all categories on a map. Location fuzziness refers to the fact that the

spatial location of a category on a map is not always precise (Hagen, 2003; Hagen­

Zanker et al., 2005). For each cell, a local measure of similarity can be calculated based

on a two-way comparison. An overall Fuzzy Kappa statistic can be obtained by averaging

the similarity calculated for all grid cells, which yields a result between 0 (for total

disagreement) and 1 (for identical maps). The formula for Fuzzy Kappa is identical in

form to equation (2) but different in the calculation of the expected similarity (~), which

is expressed by the formula:

R

~ =LE(i)xM(d;)
1=1

(3)

where R is the number of the furthest ring (cells that are at the same distance from a

central cell are said to form a neighborhood ring); M is the fuzzy membership function;

d , is the radius of ring i; and E(i) refers to the probability of matching central cells and

is calculated separately according to the Kappa statistic. In this study, we calculate

location fuzziness using an exponential decay membership function with a halving

distance of 0.5 and a neighborhood radius of 1 grid cell. Category fuzziness is not

considered. A Fuzzy Kappa statistic for all individual categories in two maps can be

calculated through the creation of "temporary category similarity matrices," in which all
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categories are set equal to each other except for the category being considered (Hagen,

2003).

The Normalized Minimum Agreement Distance (Nomad) index

The Nomad index (Holman, 2004) was developed to better quantify the

agreement of spatial patterns between maps and to overcome map coregistration issues

(e.g. Costanza, 1989). For each category in two raster datasets, the calculation of the

Nomad index follows three steps: (i) determine a set of grid-cell pairs (one grid cell in

map A, one grid cell in map B) that minimizes the total distance between all possible

pairs; (ii) calculate the average distance for this minimum distance-based set of pairs and

the overall average grid-cell-to-cell-based distance of a category; and (iii) compare the

average minimum distance with the overall average distance to quantify the level of map

agreement (Holman, 2004). If the minimum distance between pairs for a category is less

than the overall average distance of a category, then map agreement will be relatively

high and vice versa. For each category, the values of the Nomad index range from near or

below 0 for poor agreement to 1 for perfect agreement. The overall agreement is

determined by calculating a frequency-weighted average of individual Nomad values.

The individual Nomad index nee) for category e in two maps is calculated

according to the following equation:

nee) =l-((Id(e)/ davg)/gc) (4)

where d(e) =min(Idab ), which stands for the minimum geometric distance for all

possible grid-cell comparisons ab; dab is the distance from grid cell a in map A to its

match b in map B; davg is the overall average distance of dab; and gc is the number of

grid cells in category e. The overall Nomad index (N) for two maps with k categories is

expressed as the following equation:

N =[In(e)]/ k e =1,2, ... ,k (5)

The rating system used in the accuracy assessment

For the Kappa statistic and Fuzzy Kappa, we used the accuracy rating system of

Landis and Koch (1977) and Monserud and Leemans (1992) where values greater than
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0.75 indicate very good-to-excellent agreement, values between 0.40 and 0.75 indicate

fair-to-good agreement, and values of 0.40 or less indicate poor agreement. Values close

to 0.0 suggest that the agreement is no better than would be expected by chance. For the

Nomad index, Holman (2004) suggests values greater than 0.75 indicate very good-to­

excellent agreement, values between 0.60 and 0.75 indicate fair-to-good agreement, and

values less than 0.60 indicate poor agreement.

Results and Discussion

Effect of different input climatologies and their associated CO2 concentrations on

simulated vegetation

A number of patterns emerge when the BIOME4 vegetation simulated under each

of the 19 different climatologies and their associated atmospheric CO2 concentrations

(hereafter "climatologies") is compared to each of the observed land cover data sets.

First, the simulated vegetation accuracy differs from one biome to another under the same

climatology. For example, the shrub tundra biome simulated using the 2-year climatology

agrees well (Kappa statistic=0.46, Fuzzy Kappa=0.47 and Nomad index=0.62) with the

GLCC data while other biomes from the same simulation, such as evergreen taiga

montane forest (EvTMF), display relatively poor agreement (Kappa statistic=0.30, Fuzzy

Kappa=0.30 and Nomad index=0.38). These differences in simulated accuracy may

reflect differences in the model's ability to simulate particular vegetation types or they

may indicate that the input data, in this case the 2-year climatology, fails to capture the

long-term mean climate for certain regions.

Second, the simulated vegetation accuracy varies with the length of the

climatology used to simulate the vegetation data. For example, under the "BIOME4 vs.

GLCC" comparison, when the climatology length is less than 30 years the Kappa

statistic, Fuzzy Kappa and the Nomad index values vary substantially from one

simulation to the next for most biomes. In contrast, the three statistics tend to vary less

from one simulation to the next when the climatology length is greater than 30 years

(Figure 3.1). This consistency reflects the fact that climatological means spanning longer
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time periods are less influenced by the addition of individual years than climatological

means spanning shorter time periods.
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Figure 3.1 Sensitivity ofBIOME4-simulated biomes to different input climatologies
when compared to the GLCC data as illustrated by the variation of three standardized
statistics. In general, the simulations under climatologies with a length less than 30 years
vary more among simulations than those under the climatologies with a length greater
than 30 years (TrEF = tropical evergreen forest, TrSDF = tropical semi- and deciduous
forest, TeDCF =temperate deciduous/conifer forest, EvTMF = evergreen taiga/montane
forest, DeTMF = deciduous taiga/montane forest, TrSG= tropical savanna and grassland,
TeSG= temperate savanna and grassland, DPC tundra = dwarf and prostrate shrub and
cushion forb lichen moss tundra).

Third, the vegetation simulations run with the 25-, 30- and 35-year climatologies

produce simultaneously the highest overall Kappa statistic, Fuzzy Kappa and Nomad

index when compared to the three observed data sets (Figure 3.2 & Table 3.6). This

accuracy may reflect the general adaptation of regional-scale vegetation to the long-term

mean climate of a region. It also indicates that climatologies including 25 or more years
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are of sufficient duration to capture the the interannual and regional climate variations

that affect a region's vegetation (Carter et al., 2001). The overall accuracy of the

simulated vegetation supports the continued use of 30-year climatological means, which

have been a standard length for climatologies used in vegetation modeling studies.

• BIOME4 VS. GLCC "* BIOME4 VS. PNV .... BIOME4 VS. GLCF

-~ai - (bl--i------- (c) i
.~U"l rotJ"l~' x~:
.~'t.: a."" .{!j"; *:.. ..,."".,i.. ..........,..,..,.
+-'0. 0.0· C~

~ •. ~...... . ~ ~: 1i~!
&~?i'~~~~:: ::J~ '.. -"'.'.If'. g !
-!:! 0 1 ---..... ~ 0 1 -- ~:i:; ~ •• 1. . ...
~U1 i ~U"l i ~o
QJM. >ro, ~o __~..-.__ ~ __......

6 .,; i OO! 0~ .-··· ..···r···---..------·
2 10 20 30 40 50 60 70 80 90 2 10 20 30 40 50 60 70 80 90 2 10 20 30 40 50 60 70 80 90

Numbers of years included in different "mean-climatology + CO;' driVing scenarios

Figure 3.2 Sensitivity ofBIOME4-simulated overall vegetation to different mode1­
driving scenarios as illustrated by the variation of three overall statistics. Under all
comparisons, the three overall statistics are simultaneously high under the 1963-1992 30­
year climatology.

Table 3.6 The three scenarios with the highest overall statistics under all comparisons

Compared Statistic Years included in 19 different "mean-climatology + CO2'' scenarios
data 2 5 10 15 20 25 30 35 40 Others
GLCC K 0.40 0.40 0.39
PNV K 0.48 0.46 0.46
GLCF K 0.41 0.42 0.41
GLCC FK 0.42 0.42 0.42
PNV FK 0.47 0.46 0.45
GLCF FK 0.40 0.41 0.40
GLCC NI 0.61 0.61 0.60
PNV NI 0.74 0.72 0.73
GLCF NI 0.66 0.64 0.64
Total numbers 2 2 0 0 1 7 9 6 0 0
K ----Kappa statistic; FK ----Fuzzy kappa; NI ----Nomad index.

For the simulations run using 30-year mean climatologies for different time

periods, the vegetation simulated using the most recent 30-year c1imatologies (i.e. 1963­

1992 or 1961-1990) produce the highest overall Kappa statistic, Fuzzy Kappa and Nomad
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index under all three comparisons (Figure 3.3). These high values may reflect the

influence of recent climate on the GLCC and GLCF observed vegetation data. In

addition, the statistics show that the 1963-1992 30-year climatology can accurately

simulate the greatest number ofbiomes (e.g. 9 out of 16 biomes under the "BIOME4 vs.

GLCC" comparison) (Table 3.7).
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Figure 3.3 Sensitivity of the BIOME4 simulations to eight different 30-year
climatologies: 1 (1963-92), 2 (1961-90), 3 (1951-80), 4 (1941-70), 5 (1931-60), 6 (1921­
50), 7 (1911-40) and 8 (1901-30). The high values for the three statistics in the early part
of the 20th century may reflect the relaxation of the CRU TS 2.0 monthly climate data for
this period towards the 1961-1990 climatology values because of an insufficient number
of Asian climate station records (see New et al., 2000).

Although the 5-year climatology produces a high overall Kappa statistic and

Fuzzy Kappa under the "BIOME4 vs. PNV" comparison, the values of these statistics are

relatively low under the "BIOME4 vs. GLCC" and "BIOME4 vs. GLCF" comparisons

(Table 3.6). Similarly, although the 2-year climatology produces a high Nomad index

under the "BIOME4 vs. PNV" and "BIOME4 vs. GLCF" comparisons, it results in the

lowest overall Kappa statistic and Fuzzy Kappa under all three comparisons (Figure 3.2).

Compared to other climatologies, the simulations run using the 2- and 5-year

climatologies have the greatest potential to incorrectly simulate the greatest number of

individual biomes (Figure 3.4), largely because the climate data included in the 2- and 5­

year climatologies may not reflect the long-term climate mean of a given area. Assuming

that vegetation is responding to conditions that prevail over the long-term as opposed to
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those of any given year, the accuracy of the vegetation simulated using a 30-year

climatology should be better than that simulated using a 2- or 5-year climatology.

Table 3.7 Comparison of GLCC biomes with the BIOME4 biomes simulated under the
1963-1992 30-year mean climatology

Kappa statistic Fuzzy Kappa
0.25 0.26
0,45 0,48

Reclassified biome types
1) Tropical evergreen forest
2) Tropical semi-deciduous and

deciduous forest
3) Temperate deciduous/conifer forest
4) Warm mixed forest
5) Cool/cold mixed forest
6) Cool conifer forest
7) Evergreen taiga/montane forest
8) Deciduous taiga/montane forest
9) Tropical savanna and grassland
10) Tropical xerophytic shrubland
11) Temperate xerophytic shrubland
12) Temperate savanna and grassland
13) Barren and desert
14) Steppe tundra
15) Shrub tundra
16) Dwarf and prostrate shrub and moss

tundra
Overall statistics

0041
0.51
0.16
0.07
0.38
0,42
0.26
0.29
0040
0.36
0.55
0.50
0042
0,48

0,40

0043
0.54
0.17
0.08
0.38
0040
0.28
0.29
0.41
0.36
0.56
0.54
0,42
0.50

0,42

Nomad index
0.30
0.61

0.68
0.76
0.35
0.05
0.39
0.83
0044
0.65
0.80
0.38
0.89
0.84
0.56
0.58

0.61
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Figure 3.4 Standardized Kappa values (z-score) for the BIOME4 biomes simulated under
the 19 climatologies as compared with the GLCC data (see Table 3.3). For each
individual biome, the different simulations are indicated by asterisks ("*") except for
those simulations using the 2- and 5-year climatologies, which are indicated by the
numbers 2 and 5, respectively. For each biome, the 2- and 5-year climatologies tend to
produce standardized Kappa values that are 1.0 or more standard deviation above or
below the mean of all the Kappa values for that biome.

Effect of observed data choice on model accuracy assessment

The choice of what observed vegetation data to use in evaluating model results

can significantly affect the assessment of a model's ability to simulate the overall

vegetation pattern for a region. For example, when the BIOME4 simulations created with

the most recent 30-year (1963-1992) climatology are compared with the PNV data, the

Kappa statistic (K=0.46) indicates that BIOME4 has a fair ability to simulate potential

natural vegetation patterns in continental Asia (Table 3.8). However, BIOME4's ability

to accurately simulate vegetation is weaker when compared to both the GLCF data

( K=0.42) and the GLCC data (K=0.40). As illustrated in Figure 3.5, the "BIOME4 vs.

PNV" case produces both a higher overall Kappa statistic, a higher overall Fuzzy Kappa

and a higher overall Nomad index under all 19 scenarios than either the comparison of

"BIOME4 vs. GLCC" or "BIOME4 vs. GLCF" does.



38

Table 3.8 Comparison of PNV biomes with the BIOME4 biomes simulated under the
1963-1992 30-year mean climatology

Reclassified biome types
1) Forest cover
2) Tropical/temperate savanna
3) Grassland
4) Tropical/temperate shrub1and
5) Tundra
6) Barren and desert

Overall statistics

Kappa statistic
0.49
0.01
0.32
0.37
0.65
0.57
0.46

Fuzzy Kappa
0.45
0.01
0.31
0.37
0.65
0.58
0.46

Nomad index
0.77
0.16
0.41
0.75
0.78
0.84
0.73
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Figure 3.5 Overall Kappa statistic versus overall Fuzzy Kappa values (left) and overall
Kappa statistic versus overall Nomad index values (right) from the comparisons the
GLCC, PNV, and GLCF observed vegetation with the BIOME4 vegetation simulated
under each of the 19 climato10gies. The BIOME4-simu1ated overall vegetation pattern
for Asia under the 19 simulations agrees more with the PNV data than does with either
the GLCC or the GLCF data as illustrated by the relatively higher three statistics under
the comparison of "BIOME4 vs. PNV".

BIOME4 was originally developed to simulate potential natural vegetation and

thus it is not surprising that the BIOME4 simulated vegetation better matches the PNV

data than it does either the GLCC or GLCF data. The PNV data used in this study were

derived from a combination of the DISCover land cover data set (Loveland et al., 2000)

and the Haxeltine and Prentice (1996) potential natural vegetation data (Ramankutty &

Foley, 1999). In the PNV data, the vegetation types in regions dominated by human land
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use were based on the Haxeltine and Prentice (1996) potential natural vegetation data,

which in turn were based primarily on the vegetation maps of Melillo et al. (1993). In

contrast, both the GLCC and GLCF data were developed completely from remotely­

sensed AVHRR data, which were snapshots of the actual vegetation over the period of

April 1992 to March 1993. Although we excluded all grid cells with human-altered land

cover types in both the "BIOME4 vs. GLCC" and "BIOME4 vs. GLCF" comparisons,

other human-induced effects on terrestrial vegetation (e.g. past deforestation, changes in

disturbance regimes) may still exist in the reclassified GLCC and GLCF data.

The extent to which the observed data must be reclassified to be compared with

the simulated data will also affect the accuracy assessment of a model to simulate a given

biome. For example, the Kappa statistic (K >0.55) indicates that BIOME4 has a good

ability to simulate the spatial distribution ofbarren and desert areas (the only common

category classified in all three comparisons) in continental Asia when compared with the

GLCC and PNV data (Tables 3.7 and 3.8), but a poor ability (K=0.35) when compared

with the GLCF data (Table 3.9). This difference in accuracy is mainly a result of how

barren and desert areas are classified in the three observed data sets (Figure 3.6). In the

GLCF data, "unvegetated" areas were reclassified as barren and desert (Figure 3.6f),

which excluded areas with little vegetation. In contrast, the reclassified barren and desert

consists of either "bare desert and sand desert" in the GLCC data or "desert and

polar/rock/ice" in the PNV data, both of which were largely based on the "barren or

sparsely vegetated" land cover type in IGBP DISCover data set (Ramankutty & Foley,

1999; Loveland et al., 2000) and thus included areas with little vegetation (e.g. the spatial

extent of reclassified barren and desert in west China is much larger in both GLCC

(Figure 3.6b) and PNV (Figure 3.6d) data than in GLCF data (Figure 3.6f)). Because the

definitions and attributes of the reclassified barren and desert biome are different in these

three datasets, the spatial pattern of the GLCC- and PNV-based barren and desert biomes

display better visual agreement with the BIOME4-simulated barren and desert biome

than with the GLCF-based biome (Figure 3.6).
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Figure 3.6 Comparison between the BIOME4-simu1ated vegetation for Asia (a, c and e)
under the 1963-1992 30-year mean climatology and the observed vegetation from the (b)
GLCC, (d) PNV and (1) GLCF data. The white areas in (a), (b), (e) and (1) refer to
human-modified land and inland water.



41

Table 3.9 Comparison of GLCF biomes with the BIOME4 biomes simulated under the
1963-1992 30-year mean climatology

0.35
0.42

Reclassified biome types Kappa statistic
1) Forest cover 0.52
2) Grassland! percent tree cover 0.33

less than 10%
3) Barren and desert

Overall statistics

Fuzzy Kappa
0.50
0.27

0.36
0.41

Nomad index
0.68
0.58

0.71
0.64

Effect of map comparison methods on accuracy assessment

The choice of map comparison methods will affect the accuracy assessment of a

model simulation. Given the same observed and simulated vegetation data, different

comparison methods can produce similar judgments of a model's ability to simulate a

given biome. For example, the individual Kappa statistic, Fuzzy Kappa and Nomad index

all indicate that BIOME4 can accurately predict temperate deciduous/conifer forest,

deciduous taiga/montane forest, temperate savanna and grassland, temperate xerophytic

shrubland, steppe tundra and barren/desert (Table 3.7 & Figure 3.6a vs. b), forest cover,

tundra and barren/desert (Table 3.8 & Figure 3.6c vs. d), and forest cover (Table 3.9 &

Figure 3.6e vs. f) in continental Asia. These reclassified biomes consist of a large number

of continuously distributed grid cells in the two compared maps. In contrast, the three

statistics suggest that BIOME4less accurately simulates cool conifer forest (Table 3.7 &

Figure 3.6a vs. b) and tropical/temperate savanna (Table 3.8 & Figure 3.6c vs. d). These

biomes often consist of a small number of discretely distributed grid cells spread over a

large area.

Different conclusions about a model's ability to simulate a given biome may also

occur when different comparison methods are used for the assessment. For example, for

tropical/temperate shrubland in the "BIOME4 vs. PNV" comparison, the low Kappa

(0.37) and Fuzzy Kappa (0.37) values suggest an inability ofBIOME4 to correctly

simulate shrubland in our research area. In contrast, the high Nomad index value (0.75)

indicates that BIOME4 has a relatively good ability to simulate shrubland. Figures 6c and

6d indicate that the pattern of the BIOME4 simulated shrubland resembles to some
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degree that of the PNV shrubland. Because the Nomad index assesses pattern agreement

based on geographic distance instead of location accuracy (i.e. the correct location of a

category), the relatively good agreement of spatial pattern (especially in the mid-latitude

areas) between observed and simulated shrubland and a large number of total compared

grid cells (see equation 4) result in the high Nomad index. However, because the Kappa

and Fuzzy Kappa statistics depend on a pixel-by-pixel comparison that emphasizes

location accuracy, the large disagreement between observed and simulated shrubs in

India produces low Kappa and Fuzzy Kappa values.

~HD=O.5 -HD=1.0 ~HD=2.0

i.:-- ~ /conSider the fuziness of category

~~:~~::~---~---~--~---~---~--~---~--~\1--_ ~~- ~----- --- --- -- --- ---
'\ ' .....
\\\ --~-- ---II---~---II---II---~---II

~, ~Do "'""0'",,"'" fu,;",~ of ''',gory

Kappa statistic \ j
-~- ---~---~---~---~---~

O1 -~ ---~.

o 2 3 4 5 6 7 8 9 10
Neighborhood radius

Figure 3.7 Sensitivity of the Fuzzy Kappa under the "BIOME4 vs. PNV" comparison to
different settings of the neighborhood radius and the exponential decay function halving
distance (HD). Without considering category fuzziness and when the neighborhood
radius is zero, the Fuzzy Kappa equals the Kappa statistic.

Although the Kappa and Fuzzy Kappa statistics in this study are approximately

equal to each other under all comparisons, the simulated vegetation accuracy assessment

is still sensitive to how they are used. For example, Figure 3.7 illustrates how the Fuzzy

Kappa varies with changes in the neighborhood radius and the fuzzy membership

function, two parameters that need to be specified to calculate the Fuzzy Kappa. The
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Fuzzy Kappa values decrease as the neighborhood radius increases largely because of an

increased expected similarity. In this case, the Fuzzy Kappa value tends to be lower than

the Kappa statistic if category fuzziness is not considered (Figure 3.7). If category

fuzziness is considered, the Fuzzy Kappa is likely to be higher than the Kappa statistic.

Therefore, when using the Fuzzy Kappa to assess the accuracy of simulated vegetation

model, users must exercise care in choosing the values of neighborhood radius, the

"fuzzy membership function," and category fuzziness values. For 0.5-degree data, the

Fuzzy Kappa calculated using a neighborhood radius of 2 and exponential decay function

halving distance of 2 will greatly underestimate the accuracy of simulated vegetation

(Figure 3.7).

Conclusion

First, the evaluation of global vegetation model accuracy is sensitive to the

selection of input climatologies and their associated atmospheric CO2 concentrations. The

BIOME4 simulations run with the most recent 30-year (1963-1992) CRU TS 2.0

climatology and its associated atmospheric CO2 concentration simultaneously result in

the highest agreement when the simulated biomes are compared to each of the three land­

and tree-cover data sets. In addition, the simulations driven by 25-,30- and 35-year

climatologies most accurately simulate the greatest number of individual biomes. Our

results support the use of30-year (or longer) climatologies (and their associated

atmospheric CO2 concentrations) when using an equilibrium vegetation model to

simulate terrestrial vegetation, particularly the 30-years that correspond to the time period

represented by the observed vegetation data that will be used to evaluate the simulated

results.

Second, the results reveal that the choice of which observed data set to compare

with the simulated data will affect the assessment of a vegetation model's ability to

simulate terrestrial vegetation patterns at global-to-regional scales. The BIOME4­

simulated Asian terrestrial vegetation displays better agreement with the PNV data than

with either the GLCC or GLCF data, because both the BIOME4 simulations and the PNV
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data share the same goal of describing potential vegetation determined largely by climate

and in the absence of human activity. However, the agreement between the BIOME4­

biomes and those reclassified from the GLCC and GLCF data is lower because these two

AVHRR-derived data sets are snapshots of modem vegetation at a particular time (April

1992 to March 1993) and include the effects of human activities on vegetation (even

though we excluded the human-influenced grid cells in our comparison). Therefore, when

choosing observed data for model evaluation, model users must take into account the

nature ofboth the model and the observed data. A correct assessment of a model's

accuracy requires that the attributes and definitions of the simulated vegetation match that

defined or classified from observed data.

Third, the results demonstrate that the use of different map comparison methods

will affect the evaluation of a model's accuracy. Our results reveal that the accuracy

assessments of the BIOME4 simulations based on the Kappa statistic, Fuzzy Kappa and

Nomad index agree well when the compared vegetation types consist of a large number

of continuously distributed grid cells on both the simulated and observed maps. However,

when the patterns of the simulated and observed biomes are similar but consist of a large

number of grid cells that are not continuously distributed, the Nomad index tends to

indicate better agreement than the Kappa or Fuzzy Kappa statistics because it stresses

pattern agreement instead oflocation accuracy. In contrast, the Kappa statistic and Fuzzy

Kappa are better suited for accuracy assessments that emphasize the location accuracy of

the simulated vegetation. In addition, this study suggests that when using the Fuzzy

Kappa to assess a model's simulated vegetation accuracy it is essential to consider the

spatial resolution of the compared data. Our results indicate that a neighborhood radius of

1.0 and exponential decay function halving distance of 0.5 are good for data with a 0.50

spatial resolution and that cover a broad area, largely because a larger radius increases the

potential for underestimating a model's simulation accuracy by increasing the expected

similarity between compared categories (Figure 3.7).
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Bridge

As discussed in Chapter III, the accuracy assessment of model results is sensitive

to the choice of map comparison approaches because different map comparison approach

has different weakness and strength. Therefore, new approach that can address the

weaknesses of existing comparison approaches is still needed for vegetation modeling

and other applications that use spatial accuracy assessments. Chapter IV aims to develop

a new metric for evaluating the correspondences of spatial patterns in vegetation models

and to demonstrate its application.
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CHAPTER IV

A NEW METRIC FOR EVALUATING THE CORRESPONDENCE OF

SPATIAL PATTERNS IN VEGETATION MODELS

This chapter was published in 2008 in the journal "Global Ecology and

Biogeography, volume 17, page 465-478".

Introduction

Vegetation models have been recognized as key analytical tools with high

potential for investigating the spatiotemporal dynamics of ecological variables such as

net primary productivity (NPP) and leaf area index (LAI) of forests (Cramer et al., 1999).

However, simulation results are often worth challenging because of: (i) uncertainties

inherent in the models themselves, such as their structure, assumptions and

parameterization (Allen et al., 2001; Barrett et al., 2001); (ii) the quality of input data

used to run the models (Kickert et al., 1999); and (iii) the inadequacy of vegetation

models in simulating or incorporating all factors that may have important effects on

vegetation. Therefore, model simulations must be tested for their ability to reproduce

features of real vegetation. This can generally be done by analyzing the agreement

between simulated and observed behaviors of terrestrial vegetation.

Large-scale spatial and long-term time-series data are often not available to

validate simulation results. In addition, simulation results may vary substantially from

one model to another. As a result, effective and efficient tools are critical for evaluating

the agreement and differences between simulations, and between simulated and observed

data. Such agreement analyses allow researchers to better understand model behavior, to

assess the robustness of inferred mechanisms used to build the model, and to measure the

sensitivity ofparticular variables (Kicklighter et al., 1999; Bolliger et al., 2000; Knorr &

Heiman, 2001). They also allow researchers to weigh analytical results and to estimate
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the predictive uncertainty of ecological dynamics (Kicklighter et al., 1999). The Potsdam

NPP Model Intercomparison Project (e.g. Cramer et al., 1999; Kicklighter et al., 1999) is

one example of an attempt to survey agreement-related research on different model

outputs.

The approaches for analyzing the agreement between two simulation results or

between simulated and observed data can be broadly classified into two categories: the

categorical-data and the continuous-data comparison approaches. The categorical-data

comparison approaches, such as the Kappa statistic (Congalton & Green, 1999), Fuzzy

Kappa (Hagen, 2003), Tau (Ma & Redmond, 1994), Kappa-for-location (Pontius, 2000)

and the receiver (or relative) operating characteristic (ROC) technique (e.g. Pontius &

Schneider, 2001; Luoto et al., 2005), are used to quantify the agreement between two

categorical datasets, such as the distribution patterns of simulated plant functional types

or of species presence or absence. The continuous-data comparison approaches, such as

correlation and regression analysis, root mean squared error (RMSE) (e.g. Murphy, 1988;

Potts et al., 1996), measures of absolute and relative error (e.g. Gordon et al., 2004) and

analysis of variance, are used to assess the correspondence between two continuous

datasets, such as time-series dynamics of terrestrial NPP and LA!.

However, both categorical-data and continuous-data comparison approaches may

be problematic in some cases. For example, the Kappa statistic lacks the ability to

measure error magnitude (Congaltong, 1991; Foody, 2002) and tends to underestimate

the overall similarity between two simulated spatial patterns of terrestrial vegetation

(Foody, 1992). Fuzzy Kappa considers the grades of similarities between pairs of cells in

two maps, but may underestimate the overall agreement between two maps by

overestimating the expected similarity (Hagen, 2003; Hagen-Zanker et al., 2005). The

ROC technique has gained widespread use in evaluating ecological presence-absence

models (e.g. Luoto et al., 2005), but it is most suitable for maps with exactly two land­

cover types (Fielding & Bell, 1997; Pontius & Schneider, 2001).

Like the categorical-data comparison approaches, correlation cannot determine

whether two patterns have the same amplitude of variation, such as the difference in the
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average anomalies of two datasets relative to their means (Taylor, 2001). It is also

insensitive when the compared data differ by a constant factor (Murphy & Epstein, 1988;

Storch & Zwiers, 1999). In addition, correlation and regression analyses are very

sensitive to influential data and outliers (e.g. Belsley et al., 1980), and thus are not always

able to accurately quantify the agreement between two datasets. RMSE can be used to

quantify the magnitude of the difference of variation between two datasets, but it is very

sensitive to systematic errors because the penalty grows as the square of the error (Storch

& Zwiers, 1999). Moreover, most statistics are based on the assumption that the values in

two compared datasets are independent of one another. However, the research subjects of

ecological modeling are often spatiotemporally autocorrelated. New approaches to

analyzing the agreement between two simulation results are therefore essential in order to

address these limitations.

This study presents a new cell-by-cell-based numerical approach, the "opposite

and identity" (01) index, to quantify the agreement between two simulation results or to

evaluate simulation results against observed data. The study first introduces the geometry

and definition of the 01 index. A comparison of the 01 index with the correlation

coefficient highlights the similarity and dissimilarity of concepts underlying both

approaches. A case study demonstrates the application of this method and the reliability

of the 01 index in quantifying the agreement between two simulated time-series NPP

dynamics for Asia (ranging from 60.0oE to lSO.ooE and from 8.0oN to 80.00 N) from

1982 to 2000; this demonstrates the utility of the 01 index in model-related comparison

and evaluation research.

The geometry and definition of the opposite and identity (01) index

The geometry of the 01 index

In math, vectors are used to conveniently denote physical quantities with both a

magnitude and a direction (such as force). In the field of ecological modeling, the

spatiotemporal dynamics of an ecological variable, such as terrestrial NPP, can be

expressed as either an anomaly or as a ratio of change relative to its long-term mean. In a
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sense, both anomaly and change ratio are direction- (positive or negative) and magnitude­

(the amplitude of change) related quantities. Therefore, vectors can be used in the

Cartesian plane to conveniently denote them. For example, the origin of the Cartesian

plane can be used to represent both of the long-term means of an ecological variable

derived from the two sets of the simulations or observations being compared. Thus, the

vectors starting from the origin and on the y-axis, such as AI, A2, A3 and A4 (Figure

4.1 a), can be used to denote a set of anomalies (or change ratios) from one simulation and

those on the x-axis, such as B 1, B2, B3 and B4 (Figure 4.1 a), can be used to denote

another set of anomalies from another simulation. The length of a vector represents the

magnitude of an anomaly, and the direction of a vector indicates the positivity (if a vector

is directed upward or rightward) or negativity (if a vector is directed downward or

leftward) of an anomaly.
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Figure 4.1 (a,b) Using pairs of vectors in the Cartesian plane, such as Al vs. BI, A2 vs.
B2, A3 vs. B3, A4 vs. B4, A5 vs. B5, A6 vs. B6, and A7 vs. B7, to denote compared
time-series anomalies of an ecological variable. The length of a vector stands for the
magnitude of an anomaly and its direction indicates the positivity (if upward or
rightward) or negativity (if downward or leftward) of an anomaly. The vector Cl, C2, C3,
C4, C5, C6 and C7 are the corresponding vector sum, respectively. (c,d) The definitions
of the identity axis and the opposite axis and their implications for comparing two
simulation results. For any pair ofvectors, such as Al and B I in (a), if the vector sum,
such as CI, is on the line y=x (i.e. the defined identity axis), their magnitudes and
directions are identical. In contrast, for any pair of vectors, such as A4 and B4 in (b), if
the vector sum, such as C4, is on the line y=-x (i.e. the defined opposite axis), their
magnitudes are the same but directions are opposite. In general, the size of the acute
angle between the vector sum and the identity axis, such as al ' az ,a3 and a4 in (c) and

(d), indicates the differences in both magnitudes and directions of compared anomalies.
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If the direction and magnitude of any pair of compared vectors are the same (such

as Al vs. Bl, A2 vs. B2, or A3 vs. B3), then the vector sum (such as Cl, C2 and C3) is

always on the line y= x (Figure 4.1 a), which means that the compared anomalies of an

ecological variable are identical. In this case, the variations of two simulation results are

identical. On the other hand, if the direction or magnitude of any pair of compared

vectors (such as A5 vs. B5, A6 vs. B6, or A7 vs. B7) is different, then their vector sum

(such as C5, C6 and C7) will deviate from the line y= x at an angle (such as as, a6 and

a7 ) between each of the resultant vectors and the line y= x (Figure 4.1b). The existence

of such an angle implies that the variations of two simulation results are not identical.

Likewise, when the direction of any pair ofcompared vectors are opposite but their

magnitudes are the same (such as A4 vs. B4), the vector sum (such as C4) is always on

the line y= -x (Figure 4.la). This study defines the line y= x as the identity axis (i.e., the

compared anomalies are identical) and the line y= -x as the opposite axis (i.e., the

direction of the compared anomalies is opposite but the magnitude is identical) (Figure

4.lc & d).

In theory, the size of the acute angle between the vector sum and the defined

identity axis reflects the difference between two simulation results at a given time or

location. In particular, when the angle is less than 45.0° (such as a\ and a2 in Figure

4.1c), the two simulation results generally agree, largely because the direction of the

compared anomalies is identical. In contrast, when the angle is greater than 45.0° (such as

a 3 and a4 in Figure 4.1 d), the two simulation results do not agree well because the

direction of the compared anomalies is opposite. The smaller the acute angle, the greater

the agreement between the two simulation results.

The definition of the 01 index

Assume that Q and b refer to two sets of time-series simulations. Let vector Q ..
',J

and bi'i (i =1,2, ... ,m; j =1, 2 ... ,n) be the simulated anomalies of an ecological variable

in grid cell i at time step j , where m and n are the total numbers of grid cells and time

steps respectively. Let c. J. be the vector sum of Q . . and b. . , and a. . be the acute angle
I, ',J I,J I,J
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between the vector sum c.. and the identity axis. Then, the opposite and identity (01)
1,./

index of the two simulation results in grid cell i and at all time is defined as:

01;=1-8;190.0° i=1,2, ... ,m (1)

n n

where 8; = tan-1(Llc;,;1 sinai,; IL/ci,;/cosai,;). Correspondingly, the overall opposite
;=,1 ;=1

and identity (001) index of the two simulation results in all grid cells and at all time is

defined as:

001 = 1- 8190.0°

m n m n

where 8 = tan-1
(,"' ""Ic..1sina. . 1"" ""Ic. ·1 cosa.. ) . The derivations of the 01 andL...L... 1,./ 1,./ L...L... 1,./ 1,./

i=l ;=1 i=1 ;=1

001 indices (equations 1 and 2) are described in Appendix Sl (see Appendix A in

Supplementary Material).

(2)

Comparison between the 01 index and the correlation coefficient

The basic concepts underlying the 01 index and Pearson correlation coefficient

are somewhat similar, because both are based on the means of two datasets and the

deviation of each value in the two datasets from these means. Taking the 001 index (see

equation 2) as an example, let ai,; and bi,; be the deviations of A; and B;.; from the

means of datasets A and B, respectively. Let point P (Figure 4.2a) be a random sample

of the points (ai,J' bi,) derived from datasets A and B. The coordinates ofP are

OL=ai,; and LP=bi,J' Let the perpendicular distance PM be denoted by d;,;, and the

acute angle between OP and the line bi,; =ai,J be denoted by a i,;' Thus (see Appendix B

in Supplementary Material), the 001 index between A and B can also be expressed as:

m n m n

001==1-tan-1
(Lz)bi,; -ai,)ILL(bi,; +ai,))/90.0°

i=l ;=1 i='l ;=1

According to Jackson (1924), the correlation (r) between A and B is

mathematically expressed as:

(3)



r=

m n

1-(LL(b;,j _a;,)2 1(2m *n))
;=1 j=l

m n

-1+(LL(b;,j +a;,j)2 1(2m *n))
;=1 j=l

a ..b.. ;:::O
',J ',J

a ..b.. <0
',J I,J
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(4)

Equations 3 and 4 suggest that both the oar index and the correlation reach their

maximum value 1 when b. . equals a. " When the magnitudes of b"J' and a,'J' are
',J ',J "

identical but their signs are opposite, the oar index has its minimum value 0 and the

correlation has the value -1. When the oar index approaches 0.5, the correlation

coefficient approaches zero. rn addition, an oar index near 0.5 suggests that the averaged

deviations are large between the two compared simulations. In general, the oar index

varies from 0 to 1, and the correlation coefficient changes from -1 to 1 (Figure 4.2b). The

or index is also not a substitute for the square of correlation coefficient.
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Figure 4.2 (a) For any point P, the or index depends on the measure of the acute angle
a and the correlation is associated with the perpendicular distance PM. (b) The
relationship (as shown by the dashed line) between the or index and the correlation, and
the relationship (as shown by the solid black curve) between the or index and the
difference in the averaged deviations of two compared datasets from their corresponding
means. Each data point in (b) is based on two sets of data points that are randomly
created with values between 0 and 1. The total number of data points in each dataset is
16.
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Although the basic concepts underlying the 01 index and the correlation are

similar, the two quantities are different from each other. Algebraically, correlation

measures the direction and strength of the linear association between two datasets. The

01 index, however, measures the directions and magnitudes of variations between two

datasets. Geometrically, correlation is related to the perpendicular distance from one

point to the identity axis, such as the PM in Figure 4.2a (Jackson, 1924). The 01 index,

on the other hand, depends on the acute angle between the vector sum and the identity

axis, such as the a in Figure 4.2a. This study shows that correlation is more sensitive

than the 01 index to influential data or outliers from two datasets. In some cases, this

allows the 01 index to more accurately quantify the agreement between two datasets.

The resistance of the 01 index to influential data or outliers from the two datasets

X and Y (two randomly created sets of 50 data points) is illustrated in Figure 4.3. Figure

4.3a shows that X is strongly negatively correlated with Y (r=-0.74, p<O.OI). In this case,

the 01 index is 0.22, which implies there is little agreement between X and Y. However,

the addition of only two influential data points (the filled dark points in Figure 4.3b)

increases the correlation coefficient by 0.74 to 0.0, indicating that X is no longer

negatively correlated with Y. The 01 index, on the other hand, only increases by 0.12 to

0.34, which still suggests that the agreement between X and Y is low. A similar situation

occurs in Figure 4.3c and 4.3d. In Figure 4.3d, the addition of two influential data points

(the filled dark points in Figure 4.3d) causes X to be no longer positively correlated with

Y (as it is in Figure 4.3c). However, the 01 index only decreases by 13% from 0.71 to

0.62, which still suggests a good agreement between X and Y. Under all four

comparisons, the t-statistic (-2.0<t<2.0, p>0.05) between the means implies no significant

difference between the means of any pair of compared datasets. The rating system for the

01 index in quantifying the agreement between two datasets is described in Table 4.1.

Like other statistics, such as Kappa statistic, the rating system for the 01 index is more or

less subjective and therefore could be adjusted in related research.
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Figure 4.3 The 01 index is more resistant to outliers or influential data from the two
datasets X and Y (two randomly created sets of 50 data points) than are correlation and
regression analysis. (a) Both the 01 index and the correlation suggest a poor agreement
between the dataset X and Y. (b) An addition of two influential data points (filled black
points) to X and Y in (a), the correlation suggests that X and Yare no longer negatively
correlated but the 01 index still suggests a poor agreement. (c) Both the 01 index and the
correlation suggest a good agreement between the dataset X and Y. (d) An addition of
two influential data points (filled black points) to X and Y in (c), the correlation suggests
that X and Yare no longer positively correlated but the 01 index still suggests a good
agreement. The dashed line is fitted regression line.

Table 4.1 The rating systems for using the 01 index to quantify the agreement between
two datasets

01
' d Corresponding The meaning of the 01 index
In ex .

correlatIOn Changing direction Changing magnitude Agreement levels
0.7-1.0 0.6-1.0 Identical Almost the same Very good
0.6-0.7 0.3-0.6 Identical No big difference Good
0.5-0.6 0.0-0.3 Mostly identical Big difference Fair
0.4-0.5 -0.3 to 0.0 Mostly opposite Big difference Poor
0.3-0.4 -0.6 to -0.3 Opposite No big difference Worse
0.0-0.3 -1.0 to -0.6 Opposite Almost the same Worst

Changing direction suggests if the positivity (or negativity) of compared anomalies (or
ratio changes) in most grid cells is identical or opposite. Changing magnitude measures
the difference in the averaged anomalies (or ratio changes) between two compared
datasets. The definition of the 01 index levels and the corresponding ranges of the
correlation, the meaning of changing direction and magnitude are based on their general
relationship (see Figure 4.2b) and are also inferred from their mathematical expressions.
The definition of agreement levels is based on the classifications of changing direction
and magnitude.
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A case study using the 01 index

Two simulated time-series NPP dynamics in Asia

In order to demonstrate the applicability and reliability of the 01 index, this study

used the Lund-Potsdam-Jena (LPJ) dynamic global vegetation model (Sitch et al., 2003;

Gerten et al., 2004) to simulate a set of Asian terrestrial NPP dynamics from 1982 to

2000. The study then derived another set of Asian terrestrial NPP dynamics for the same

period from the Global Inventory Modeling and Mapping Studies (GThlIMS) NDVI data

(Pinzon, 2002; Tucker et al., 2005) by following the Carnegie-Ames-Stanford Approach

(CASA) (Potter & Klooster, 1999). The two approaches and the simulated and derived

NPP dynamics for Asia are described in more detail in Tang and Bartlein (by personal

communication).

Data required for estimating Asian terrestrial NPP dynamics

The climate data required to run the LPJ model include monthly mean

temperature (OC), monthly mean precipitation (mm), monthly mean percent cloudiness

(%) and monthly mean wet-day frequency (days). These data are based on a 0.5 degree

geospatial resolution and come from the CRU TS 2.0 data sets developed by the Climate

Research Unit (CRU) at the University of East Anglia (U.K.) (New et al., 2000; Mitchell

& Jones, 2005). The monthly mean temperature and monthly mean precipitation data

from the CRU TS 2.0 are also used to calculate the temperature and water stress scalars

required to derive NPP from NDVI. The soil data used in the LPJ model were obtained

from the derived soil properties defined in the FAO world digital soil map (Food &

Agriculture Organization, 1995). Annual CO2 values needed to run LPJ for the years

1901-1998 were originally provided by the Carbon Cycle Model Linkage Project

(Kicklighter et al., 1995). The atmospheric CO2 concentrations in 1999 and 2000 were set

at the 367.7- and 369.0-ppm levels, respectively, by referencing other observations (e.g.

Keeling et al., 2002).

An additional set of Asian terrestrial NPP dynamics was derived using the

GIMMS-NDVI monthly dataset for Asia with a spatial resolution of 0.5 degree for the

years 1982-2000. This dataset provides a multi-year satellite record of monthly changes
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in terrestrial vegetation (Pinzon, 2002; Tucker et al., 2005). Grid cells missing the

original NDVI data were excluded in the estimate ofNPP dynamics. The ten LPJ­

simulated plant functional types were selected as basic biomes to summarize the NDVI­

derived NPP.

Simulating Asian terrestrial NPP dynamics by LPJ-DGVM

LPJ (Sitch et al., 2003; Gerten et al., 2004) combines process-based, large-scale

representations of terrestrial vegetation dynamics and the exchanges of carbon and water

between land and atmosphere. Ten plant functional types (PFTs) (Figure 4.4) are defined

in LPJ by their physiological, morphological, phenological, bioclimatic and fire-response

attributes. In LPJ, the vegetation type in a grid cell is determined by the dominant PFT,

which has the largest fractional foliage coverage. The NPP of each PFT is calculated as

the difference between its gross primary productivity and total respiration, and is updated

monthly and annually. The LPJ simulation starts from unvegetated ground and 'spins up'

for 1000 model years until approximate equilibrium is reached regarding the carbon pools

and vegetation cover (Sitch et al., 2003). LPJ has been used to examine terrestrial NPP

dynamics at regional and global scales (e.g. Cowling & Shin, 2006).
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Figure 4.4 The spatial pattern of the 10 LPJ-simuiated plant functional types (Sitch et al.,
2003) for Asia
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Deriving Asian terrestrial NPP dynamics from NDVI data

In CASA, monthly NPP is calculated as the product of cloud-corrected solar

irradiance (S) (Bishop & Rossow, 1991), fractional intercepted photosynthetically active

radiation (FPAR) and a maximum light-use-efficiency term (crnax ), adjusted by

temperature and moisture stress scalars (T: & w.). The CASA approach is

mathematically expressed as:

NPP=Sx FPARx cmaxx T.~x W s (5)

where the estimation ofFPAR at regional-to-global scales is based on a vegetation index

derived from remotely sensed NDVI data and is calculated as a linear function of a

NDVI-derived simple ratio (SR) as follows:

SR =(l+NDVI)/(l-NDVI)

FPAR =min[(SR - SRmin)/(S~ax - SRm,n) , 0.95]

(6)

(7)

where SRmin represents the SR for unvegetated land area. This study sets S~ax and S~in

in each grid cell as the approximate maximum and minimum NDVI-derived SR from

1982 to 2000, respectively.

The cmax value for major biomes varies from one biome to another and is

determined by local NPP inventory data (see Appendix C in Supplementary Material). In

each basic biome, the monthly temperature stress scalar (1(s,m) ) is determined by the

deviation of temperature from the low and high temperature limits for C02 uptake and by

the optimum photosynthetic temperature as follows:

1(s,m) =

0.15

(Tm- I;ow)/(T;,Ptl - I;ow)

(Thigh - Tm)/(Thigh - Top(2 )

0.95

if Tm< I;ow or Tm> Thigh

if I;ow :0::; Tm< T;,Ptl

if T;,pt2 < Tm :0::; I;,igh

if T;,Ptl :0::; Tm :0::; T;,pt2

(8)

where Tm represents monthly mean temperature, T10w and Thigh refer to the low and high

temperature limits for CO2uptake, and Topt! and Topt2 represent the lower and upper limits

of the temperature range for optimum photosynthesis. The specific values of T\ow, Thigh,
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Toptl and Topt2 for the basic biomes under study come from other research (e.g. Sitch et

al., 2003) (see Appendix D in Supplementary Material).

The monthly moisture stress value in each biome derives from a comparison of

monthly estimated and potential evapotranspiration (EET & PET) (Potter et al., 1999):

W(s.m) =min(0.5 +0.5EETm/ PETm, 1.0) (9)

The LPJ-simuiated and NDVI-derived NPP estimates: basic results

The LPJ-simuiated NPP estimates for Asia are similar to those derived by NDVI

in most biomes (difference less than 10%). Both simulations suggest that the lowest

annual mean NPP estimate occurs in C3 grasslands (from 154 to 300 gC m-2 year-I), and

that the highest annual mean NPP estimate occurs in tropical broadleaf evergreen forest

(from 745 to 910 gC m-2 year-I). Estimates ofNPP decrease with increasing latitude in

East Asia, as the climate shifts from tropical to temperate to boreal (Figure 4.5). In

addition, estimates ofNPP are relatively low in most of mid-latitude Asia, such as

southern Mongolia, western China and the Tibetan Plateau, southeastern Pakistan and

northwestern India, in which the dominant biomes are grasses. Estimates ofNPP are

higher in South Asia and the southeastern peninsula of Asia, where tropical forests are

dominant. However, LPI-simulated NPP estimates are more spatially homogenous within

regions than NDVI-derived NPP estimates, which include human effects on terrestrial

vegetation. In general, the two model-simulated NPP estimates resemble other model­

based research such as BIOME3 (e.g. Ni et al., 2001) and CASA (e.g. Potter et al., 1999).
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Figure 4.5 NPP values for the most similar (01 index=0.67) pattern ofNPP estimates of
1990 by (a) the LP1-simulation and (b) the NDV1-derivation; the most dissimilar (01
index=0.56) pattern ofNPP estimates of 1997 by (c) the LP1-simulation and (d) the
NDV1-derivation. Annual NPP is measured in gC m-2 yea{l.

Quantifying the spatial agreement of NPP estimates

The 01 indices calculated for each grid cell are used to map the spatial variations

in the extent of agreement between LP1-simulated and NDV1-derived NPP estimates

(Figure 4.6a). To test the spatial agreement on the basis of 01 indices, the correlation

coefficients are used to create another map of spatial agreement ofNPP estimates (Figure

4.6b). According to the grayscale of the map, the visual agreement is good between areas

with an 01 index larger than 0.5 (or smaller than 0.5) and areas with a correlation larger

than 0 (or smaller than 0) (an 01 index equal to 0.5 is equivalent to a correlation close to

0), which suggests the spatial pattern of agreement measured by the 01 indices matches

that measured by the correlation coefficients. After transforming all the 01 indices and

the correlation coefficients whose values are within a specific range specified for the
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same agreement level (Table 4.1) into the same category for comparison, the calculated

Kappa statistic for five levels of agreement, i.e., very good, good, fair, bad and worse,

between that measured by the or indices in Figure 4.6a and those measured by

correlation coefficients in Figure 4.6b are 0.78, 0.59, 0.61, 0.71 and 0.67, respectively.

This proves that the spatial pattern of agreement as measured by the or index coincides

with that measured by correlation. The overall pattern of agreement as measured by the

or index is also consistent with that measured by correlation (the overall Kappa statistic

is 0.66).

Figure 4.6 The spatial pattern of agreement between LP1-simu1ated and NDVr-derived
NPP variations from 1982 to 2000 in Asia measured by (a) the or indices and (b) the
correlation coefficients. Area A with high or index and area B with low or index are
randomly selected for testing.

The spatial pattern of agreement as measured by the or index allows researchers

to pinpoint the extent to which compared variations between two simulations agree or

disagree. To demonstrate this, an area with strong agreement (area A in Figure 4.6) and

another with low agreement (area B in Figure 4.6) as suggested by the or index were

randomly selected for testing. According to the rating system for the or index (Table

4.1), the high or index (0.75) in area A suggests that the LP1-simu1ated NPP dynamics

agree well with the NDVr-derived dynamic; concordant with the strong correlation

(r=0.69, p<O.Ol) between the two simulation results (Figure 4.7a). rn addition, the grid
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cells in which the direction of the LP1-simulated NPP anomalies is the same as those

derived from NDV1 account for 69.6% out of 3021 compared grid cells. The difference of

the average NPP anomalies between the two simulation results is less than 5.3%. The

standard deviations of LP1-simulated and NDV1-derived NPP estimates are 47.9 and

48.1, respectively. All these statistics illustrate that the LP1-simulated NPP variation

resembles that derived by NDV1 in area A.
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Figure 4.7 Comparisons of LP1-simulated and NDV1-derived annual NPP estimates (gC
m-2 yea{l) in two selected areas (a) A and (b) B in Figure 4.6. (a) Both the 01 index and
the correlation suggest a good agreement. (b) Both the 01 index and the correlation
suggest a poor agreement. The solid black line is fitted regression line. For points inside
the region enclosed by the lower and upper solid grayish line, the absolute difference
between two simulation results is less than 25%. The grid cells in area A and Bare 3021
and 1654, respectively.

The low 01 index (0.44) in area B, on the other hand, suggests that the LP1­

simulated NPP dynamics do not coincide with those derived by NDVI. The non­

significant relationship (r=0.03, p=0.26) between LP1-simulated and NDV1-derived

annual NPP variation in area B (Figure 4.7b) can somewhat justify the agreement as

measured by the 01 index. Other statistics can further prove the rationality of the

agreement as measured by the 01 index. For example, the grid cells in which the

direction of LP1-simulated NPP anomalies is opposite to the NDV1-derived direction

account for 48.8% out of 1654 compared cells in area B. The difference between the
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average NPP anomalies between the two simulation results is as high as 35.9%, which

indicates that the amplitude of LP1-simu1ated NPP variation does not resemble that

derived by NDVI (Figure 4.7b). The standard deviations of LP1-simu1ated and NDVI­

derived NPP estimates are 44.1 and 67.9 respectively, indicating that the LP1-simu1ated

NPP estimates are less variable than the NDVI-derived estimates.

The dominant biome types in areas A and B are boreal need1e1eaved summergreen

woody PFT (BoBS) and temperate broad1eaved raingreen woody PFT (TeBR),

respectively (Figures 4.4 & 4.6a). Compared to area A, which is located in uppermost

northern Russia and has little human activity, area B is located in the Yungui Plateau of

China, which is characterized by a high level of human social and economic activity.

Unlike the LPl simulation, which depends largely on input climate and soil data without

considering human effects on terrestrial vegetation, the NDVI derivation involves direct

observations of the spatiotempora1 dynamics of terrestrial vegetation shaped by human

activities, such as land-use change. Therefore, the spatial homogeneity of climate and

NDVI data used to run both models contributes to the strong agreement between the two

simulation results in BoBS as confirmed by other model-based intercomparison research

(e.g. Cramer et ai., 1999; Kicklighter et al., 1999). The effects of human activities on

terrestrial vegetation help explain why the NDVI-derived NPP estimates are apparently

smaller than the LP1-simu1ated estimates in area B (Figure 4.7b). For example, Fang et

ai. (2003) and Piao et at. (2003) argued that terrestrial NPP decreased in areas of China

that experienced rapid urbanization.

Quantifying the agreement of NPP estimates in a given biome

The 001 index calculated from equation 2 can be used to quantity the agreement

between two simulation results in a given biome or for the overall simulated vegetation.

For example, the calculated 01 index in tropical broad1eaved raingreen woody PFT

(TrBR) is 0.51 (Table 4.2), which suggests that there is some agreement between LP1­

simulated and NDVI-derived NPP dynamics in TrBR. The negative relationship (r=-0.21,

p<O.Ol) based on 10,556 compared cells also reveals that the two simulation results do
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not coincide; this is illustrated by the standardized annual NPP variations from 1982 to

2000 (Figure 4.8), in which the direction of LP1-simulated NPP anomalies are clearly

opposite those derived by NDVI in the years of 1984, 1988, 1989, 1992, 1997 and 2000.

In addition, the value of the 01 index (close to 0.5) implies that the difference in the

amplitudes ofvariations between the two simulations is large. The difference of the

average NPP anomalies between the two simulation results is relatively large (Table 4.2),

which confirms the difference in the amplitudes of LP1-simulated NPP variation and

NDVI-derived data.

Table 4.2 Using the 01 index to measure the agreement between LP1-simulated and
NDVI-derived NPP estimates for the 10 LP1-simulated plant functional types in Asia and
its approving by other statistics.

Correlation AveDevl AveDev2 ~Dev RMSE NPP NPP
PFTs 01 index coefficient (LP1) (NDVI) (absolute) (LP1) (NDVI)
TrBE 0.51 -0.17 49.0 71.5 22.5 276.7 909.7 744.7
TrBR 0.51 -0.21 44.2 58.3 14.1 188.2 710.6 689.4
TeNE 0.55 0.44 45.4 48.5 3.1 324.9 458.9 434.9
TeBE 0.53 0.34 58.3 47.1 11.2 238.7 560.4 504.1
TeBS 0.59 0.62 45.6 47.3 1.7 248.6 455.4 419.4
BoNE 0.61 0.57 47.6 56.5 8.9 226.6 458.9 464.7
BoNS 0.67 0.79 33.0 39.0 6.0 85.4 357.5 304.5
BoBS 0.69 0.82 47.2 45.8 1.4 120.4 345.8 355.6
TeH 0.59 0.60 48.4 44.5 3.9 264.7 153.7 300.7
TrH 0.54 0.12 112.3 60.3 52.0 285.4 641.5 554.9
Overall 0.60 0.53

Annual NPP (net primary productivity) is measured in gC m-2 yeaf1
• AveDev is short for

'Average NPP deviations from the 19-year mean' calculated at grid cell level. LPl refers
to the Lund-Potsdam-lena dynamic global vegetation model. NDVI is normalized
difference vegetation index. ~Dev is the absolute difference between two average NPP
deviations. RMSE stands for 'Root Mean Squared Error'. The full name of each plant
functional type (PFT) is as follows: TrBR-Tropical broadleaved evergreen woody PFT;
TrBR-tropical boradleaved raingreen woody PFT; TeNE-Temperate needleleaved
evergreen woody PFT; TeBE-temperate broadleaved evergreen woody PFT; TeBS­
Temperate broadleaved summergreen woody PFT; BoNE-Boreal needleleaved
evergreen woody PFT; BoNS-boreal needle1eaved summergreen woody PFT; BoBS­
boreal broadleaved summergreen woody PFT; TeH-C3 herbaceous; TrH-C4
herbaceous (see Sitch et al., 2003).
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Figure 4.8 The standardized annual NPP variation in tropical broadleaved raingreen
woody PFT from 1982 to 2000.

The dissimilarity between LPJ-simulated and NDVI-derived NPP dynamics in

TrBR is caused primarily by the input data used to run LPJ and to derive NPP from

NDVI. The LPJ-simulated TrBR is mainly distributed in the southeastern peninsula of

Asia, in places such as Thailand, Cambodia and part of India (Figure 4.4). Compared to

the climate and soil data used to run LPJ, the NDVI data used to derive NPP estimates are

more spatially heterogeneous because of the direct effects of human activities on

terrestrial vegetation and the complexity of topography. As a result, the NDVI-derived

NPP estimates are more spatially heterogeneous than the LPJ-simulated results (Figure

4.5). For example, the calculated Moran statistics based on the four nearest neighbors

algorithm for 567 compared cells show that the LPJ-simulated NPP estimates in 2000

(1=0.81, p<O.Ol) are more spatially autocorrelated than those derived by NDVI (1=0.67,

p<O.OI).

Quantifying the agreement of NPP estimates at a given time

Keeping the time dimension variable (see Appendix S1 in Supplementary

Material) allows the 001 index to be used to analyze the agreement between two

simulation results at a given time (e.g. Figure 4.9a & b). For example, the calculated 01

index is high (0.75) for the simulation of 1989 in BoBS (Figure 4.9b), suggesting that the

LPJ-simulated NPP estimates agree well with the NDVI-derived estimates in this year.

Table 4.3 shows that the LPJ-simulated annual mean NPP and average NPP anomaly

approximately equal those derived by NDVI. In addition, given that there are 672
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compared grid cells and that the annual mean NPP is as high as 348, the relatively low

RMSE (95.8) suggests that the two simulation results in 1989 are largely similar. The

regression analysis robustly proves that the LP1-simulated NPP estimates in 1989 are

strongly linearly correlated with the NDVI-derived estimates (r=0.69, p<O.Ol) (Figure

4.10). The agreement between two model-simulated NPP estimates in 1989 may be due

to: (i) the spatial homogeneity of the climate data, especially that of temperature, which

may be the dominant factor controlling NPP dynamics in boreal forests, and NDVI data

used to run two models; and (ii) the BoBS not being strongly influenced by human

activities.
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Figure 4.9 (a) The standardized annual NPP variation in boreal broadleaved
summergreen woody PFT (BoBS) from 1982 to 2000. (b) The 01 index and the
correlation calculated for each year's simulation in TrBR. Note: the 01 index for each
year's simulation is based on the acute angle between the summation of all anomalies
(each of them is treated as a vector) at all grid cells ofBoBS. Standardizing annual NPP
estimates in a year may bias the real relationship between two simulated NPP estimates,
which helps explain why the standardized annual NPP variations in 1984 and 1995
appear to be opposite between two simulations but the corresponding 01 indices are
above 0.5.
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Table 4.3 Comparison between LPI-simulated and NDV1-derived annual NPP estimates
in 1989 and 1993 in boreal broadleaved summergreen woody PFT.

1989 1993
Statistics LPI NDV1 LPI NDV1
01 index 0.75 0.79
Correlation coefficient 0.48 0.06
Compared cells 672 695
Common cells 514 587
Percentage of common cells 76.5 84.5
Annual mean NPP 348.3 348.6 369.2 369.1
Annual NPP difference 0.08% 0.02%
Average NPP anomaly 48.4 43.8 62.9 66.9
Anomaly difference 10.5% 6.0%
Root mean squared error 95.8 126.7

LPI refers to the Lund-Potsdam-lena dynamic global vegetation model. NDV1 is
normalized difference vegetation index. Common cells are the number of cells in which
the positivity or negativity of compared NPP (net primary productivity) anomalies is
identical. Percent of common cells is the ratio of common cells to all compared cells.
Annual NPP difference and anomaly difference are in reference to the NDV1-derived
values. Annual mean NPP and average NPP anomaly are measured in gC m-2 year-I.
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Figure 4.10 Comparison between LPI-simulated and NDV1-derived NPP estimates in
boreal broadleaved summergreen woody PFT in 1989. The number of compared grid
cells is 672. The solid black line in (a) is fitted regression line. For points inside the
region enclosed by the lower and upper solid grayish line, the difference between two
simulation results is less than 25%. The grayish solid line in (b) is fitted loess curve.

Accurately quantifying the agreement between two simulated NPP estimates

The resistance of the 01 index to influential data and outliers is important in

model-related comparison and evaluation research. For example, linear regression shows
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that LP1-simulated NPP estimates are not strongly correlated with NDVI-derived ones in

1993 in BoBS (r=0.24, p<O.OI) (Figure 4.11a, b & c). However, the 01 index is as high

as 0.79, indicating that the two simulation results agree well in this year as illustrated by

the standardized annual NPP variation (Figure 4.9a). The 01 index-measured agreement

is consistent with that suggested by other statistics (Table 4.3).
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Figure 4.11 The linear regression analysis may bias the real agreement between two
simulation results in 1993 in boreal broadleaved summergreen woody PFT. (a) Without
leaving out some influential points and outliers in two compared simulations (695
compared cells), the linear relationship is low (r=0.24, p<O.OI) as illustrated in (b) and
(c). (d) After leaving out 13 cells, the linear relationship is greatly improved (r=0.50,
p<O.OI). Under both comparisons, however, the 01 index (above 0.70) consistently
suggests a good agreement between two simulation results. The solid black line in (a) and
(d) is fitted regression line and the grayish solid line in (b) and (e) is fitted loess curve.

The failure of the regression to correctly quantify two simulation results in 1993

results from its sensitivity to influential simulations and outliers in the two compared

simulations. A plot of LP1-simulated against NDVI-derived annual NPP estimates

(Figure 4.11a) shows that there are influential outliers as illustrated by the residual

(Figure 4.11b) and Normal Q-Q plots (Figure 4.11 c). These outliers indicate either that
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the two simulation results are distinct from each other or that the results of the two

simulations deviate from the major overall pattern ofNPP estimates in some grid cells.

Consequently, the agreement measured based on regression analysis differs from the

results of the 01 index and other statistics. In fact, after leaving out some influential

simulations and outliers (13 out of 695 compared cells), the linear association between

the two model simulations is greatly improved (r=0.50, p<O.O 1) (Figure 4.11 d, e & f).

Conclusion

This study created and introduced a novel cell-by-cell-based numerical approach,

the "opposite and identity" (01) index, intended to quantify the agreement between two

simulation results or to evaluate simulation results against observed spatiotemporal data.

The 01 index is built on the vector addition rule and is a novel cell-by-cell-based

numerical comparison approach. By comparing the directions and magnitudes of

variations of two datasets, the results reveal the following.

(l) The 01 index provides an intuitive measure of agreement between two

simulated variations of an ecological variable. The suggested rating system of the 01

index is straightforward and easy to use. Like other numerical comparison approaches,

the 01 index can be used not only to analyse the agreement between two simulated

spatiotemporal dynamics of ecological variables, but also has potential for evaluating

simulation results when observed data are available.

(2) The 01 index provides researchers with multiple and flexible ways to analyze

the agreement of two simulation results. The 01 indices calculated in each grid cell can

be used to map the spatial agreement of variations between two simulation results,

allowing researchers to pinpoint the extent to which two simulation results agree or

disagree. The 01 indices calculated for time-series simulations allow researchers to

analyze why two simulation results agree more at one time but less at another, which is

important for improving model's structure. The 01 index can also be calculated for

different biomes, allowing researcher to examine why two simulations are good in one
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biome but poor in another, which is useful for analyzing the sensitivity of model

simulations to the input data used to run the model.

(3) This study shows that the 01 index is more resistant to influential data and

outliers of two datasets than are correlation and regression analysis. In practice, because

of the difference in input data and model structure, two simulation results may be similar

in most grid cells but distinct in just a few. These few outliers can unduly influence the

measurement of agreement in correlation and regression analysis, resulting in a biased

measurement of agreement. In addition, because the target of ecological modeling is

often spatiotemporally autocorrelated with simulated values that are spatially clustered in

a scatter plot, the agreement measurement based on correlation and regression analyses

can also be biased because the underlying assumptions are violated, stressing the linear

association but overlooking the difference in the magnitudes of variations in two

simulation results.

(4) The calculation of the 01 index requires that two compared datasets be time­

series data with the length of time steps greater than 1. The longer the time steps in two

compared datasets, the better the performance ofthe 01 index in evaluating the

agreement of variations in two compared datasets. Like the correlation, the 01 index

should not be used to measure the difference in the absolute magnitudes of values in two

compared datasets, largely because it is based on the means of two datasets and the

deviation of each value in the two datasets from these means.

Bridge

So far, Chapter III has examined the sensitivity of vegetation model simulation to

input data, to observed validation data and to map comparison approach, and Chapter IV

developed a new metric for comparing two simulation results or evaluating model results

against observed data, which are two goals of this dissertation. The foci of Chapter V and

VI are on analyzing the climate sensitivity ofterrestrial NPP, soil moisture and actual

evapotranspiration in China, which are another two goals of this dissertation.
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CHAPTER V

VARIATION AND CLIMATE SENSITIVITY OF TERRESTRIAL NET

PRIMARY PRODUCTIVITY IN CHINA DERIVED FROM SATELLITE­

BASEDNDVI DATA

This chapter contains unpublished coauthored material with Patrick J. Bart1ein

(Department of Geography, University of Oregon). It is intended for submission as an

article to a jouma11ike "Climatic Change". Guoping Tang prepared the first draft of

manuscript and Patrick J. Bart1ein edited the paper and provided guidance and comments

on the paper.

Introduction

The net primary productivity (NPP) of terrestrial vegetation has been the subject of

considerable research over the past several decades because of its important role in the global

carbon cycle and in ecosystem processes (Raich et al. 1991; Fang et al. 2003; Chen et al.

2004). As a key component of terrestrial carbon cycle, NPP provides the basic energy source

for the growth and maintenance of most organisms (Wang et al. 2003), and forms an

important link between the biosphere and atmosphere, which has profound influences on

water fluxes, nutrient cycles and climate variation (Prentice et al. 2000). Terrestrial NPP

varies spatially and temporally because the rates of photosynthesis and respiration of plants

are sensitive to changes in environmental conditions caused by both natural and human

activities (Jenkins et al. 1999). Study of the spatio-tempora1 pattern of terrestrial NPP is

therefore pivotal for understanding the feedbacks between climate systems and terrestrial

ecosystems (Potter et al. 1998; Piao et al. 2003) and the sustainable human utilization of the

global biosphere (Sche1lnhuber et al. 2006).

Because the distribution and variation of terrestrial NPP cannot be observed directly

at the regional or global scales (Cramer et al. 1999), forest-inventory data, satellite-based
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vegetation indices and results from vegetation modeling (e.g. dynamic global vegetation

model (DGVM)-based simulations) are typically used to analyse the large-scale dynamics of

terrestrial NPP. Forest-inventory data can be used estimate forest NPP and carbon budget at

landscape and regional scales (Luo et al. 2002; Ni, 2004; Zhao and Zhou, 2006). However,

such data are often limited and do not describe fine-grained spatial variation of terrestrial

vegetation, and must be interpolated to describe large-scale patterns ofNPP. Satellite-based

vegetation index, such as Normalized Difference Vegetation Index (NDVI) data, can be

incorporated into light-use efficiency models such as LULUE (Brogaard et al. 2005) to

estimate the spatio-temporal dynamics of terrestrial NPP over large areas (Clein et al. 2002;

Markon and Peterson, 2002; Dawson et al. 2003). However, such estimates ofNPP are often

based on an empirical relationship between NPP and other environmental factors, such as

fractional intercepted photosynthetically active radiation (Jenkins et al. 2001; Nabuurs et al.

2003), which themselves must be estimated, and the data are necessarily limited by the length

of the satellite record. Vegetation models such as BIOME-BGC (Running and Coughlan,

1988), BIOME4 (Kaplan et al. 2002), CENTURY (Parton et al. 1987), LPJ (Lucht et al.

2002; Sitch et al. 2003), and MC1 (Daly et al. 2000), include mechanistic representations of

the processes ofecosystem carbon cycle variations and their dynamic responses to

environmental alterations and therefore are capable of quantifying NPP (Cramer et al. 2001),

but do not explicitly consider anthropogenic land-cover changes. Consequently, there is no

single approach that may be optimal for describing the temporal and spatial variations of

NPP.

Unlike forest-inventory NPP data, which are a direct measure of forest NPP in the

field, both NDVI-derived and DGVM-simulated NPP estimates involve the use of some kind

of a model and of observed climate data. However, they are different in some aspects. For

example, NDVI-derived NPP estimates are often based on the empirical relationship between

NPP and satellite-based NDVI data, but also use direct observations of spatio-temporal

variation in terrestrial vegetation. In contrast, the DGVM-simulated NPP estimates are based

on the parameterizations of some mechanistic processes of terrestrial vegetation, and the

model simulations may require only climate, soil and other environmental data (e.g. CO2),

and thus some spatio-temporal variations in terrestrial vegetation (e.g. human-induced land

cover change) are not simulated.
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Several studies have examined the spatio-temporal dynamics of terrestrial NPP in

China using forest-inventory data (e.g. Luo et al. 2002; Ni, 2004; Zhao and Zhou, 2006),

satellite-based NDVI data (e.g. Fang et al. 2003; Brogaard et al. 2005; Piao et al. 2003,

2005), and vegetation models (e.g. Cao et al. 2003,2004; Ni, 2000; Fang et al. 2003).

However, uncertainty may still exist in the estimates ofNPP dynamics in China because of:

(i) limitations inherent in vegetation models (e.g. the parameterization of physiological,

biological and biogeochemical processes of plants); (ii) the quality of input data used to run a

model (e.g. the quality ofNDVI and climate data); and (iii) the spatio-temporal scale or

resolution of analytical data (e.g. scaling-up local forest-inventory data to estimate NPP

dynamics at the regional scale may ignore the heterogeneity of environmental conditions at

different locations). To address these limitations, additional and novel research is necessary

for accurate quantification of the spatio-temporal pattern of terrestrial NPP in China.

Climate in China can be generalized into three zones: the eastern monsoon zone, the

north-west arid zone and the Tibetan Plateau frigid zone. The corresponding dominant

vegetation in each climatic zone is forest, grass steppe and alpine tundra respectively.

Because the attribute and variation of temperature and precipitation are considered two major

factors for controlling the dynamics of terrestrial NPP in China (Ni et al. 2001; Cao et al.

2003; Kimball et al. 2003; Piao et al. 2006), the spatio-temporal pattern of NPP across

different locations should be relatively homogenous within each climate zone, while differing

across climate zones because of the difference in prevailing climate among each zone.

The goals of this study are: (i) to analyse the interannual and seasonal variation of

terrestrial NPP in China over the years 1982-2000, and (ii) to examine climatic (temperature

and precipitation) controls on the dynamics ofNPP in each climatic zone of China. Toward

these ends, we first used satellite-based NDVI data to derive a set of terrestrial NPP dynamics

in China over the years 1982-2000. Then, we employed a DaVM to simulate another set of

NPP dynamics with the same spatio-temporal resolution for comparing with the NDVI­

derived NPP dynamics. Finally, the variability and climate sensitivity of terrestrial NPP in

each climate zone are examined based on the NDVI-derived NPP estimates and the observed

temperature and precipitation variation.

The first approach uses direct observation of vegetation, but relies on empirical

correlations with climate to illustrate the sensitivity ofNPP to climate variations. In contrast,
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the second approach uses mechanistic approaches to simulate NPP using observed climate

data, but those data do not include the direct effects ofland-use and land-cover change on

terrestrial NPP.

Material and Methods

The basic biomes used to summarize the NPP estimates

The biomes classified in the Potential Natural Vegetation (PNV) data (Ramankutty

and Foley, 1999) are used to describe the basic biomes for China. The gridded global PNV

data are classified into 15 biome types, ofwhich ten occur in China (Figure 5.1 a). These

biome types fall into three main categories: forests (including tropical, temperate and mixed

forests), grassland (including grass and savanna) and tundra, with spatial distribution patterns

that largely agree with the three general climate zones in China, i.e. the eastern monsoon

zone (Area A in Figure 5.1 a), the north-west arid zone (Area B in Figure 5.1 a) and the

Tibetan Plateau frigid zone (Area C in Figure 5.1a). Moreover, the biome types classified in

the PNV data match well with the ten plant functional types specified in the Lund-Potsdam­

lena global dynamic vegetation model (LPl-DGVM). Consequently, the DGVM-simulated

NPP variations can be used to compare with the NDVI-derived NPP dynamics.

(a)

~
~ Tropical evergreen foresttwoodland it.-'t
~ Tropical deCIdUOUS foresttwoodland

CE:£J Temperate broadleaved evergreen forest rl"T, Mixed fotest

~o!lrJ~ j Temperale deciduous foresllwoodland [i-iil Savanna

~ Temperate needleleaved evergreen foresl ~ Grassland

Shrub

Tundra

BarrenlDesert

D---The Northeast Plain
E--The North Plain
F--The Sichuan Basin

.::::5 <200

1...,.... j Data Missing
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Figure 5.1 (a): the basic biomes for China derived from the PNV data (Ramankutty and
Foley, 1999). The spatial resolution ofPNV data used in this study is 0.5°. The areas A,
Band C approximate the eastern monsoon zone, the north-west arid zone and the Tibetan
Plateau frigid zone respectively. (b): The spatial pattern of annual mean NPP over the
years 1982-2000 in China derived from NDVI data.
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To examine the variation and climate sensitivity of terrestrial NPP in China, we will

aggregate the NDVI-derived NPP into four biomes: forests, grassland, shrub, and tundra. We

did not combine shrub with forests because shrubs are common in the north-west arid zone

dominated by grass (Figure 5.la). The inclusion of shrub into forests would therefore be

likely to affect the accuracy of the climate-sensitivity analysis. In addition, aggregating NPP

into four biomes rather than ten will greatly simplify the analysis of interannual and seasonal

variability ofNPP in China under historical climatic variation.

The climate and NDVI data used to run the models

The input climatology data used in this study to derive NPP from NDVI and to run

the LPJ-DGVM come from the CRU TS 2.0 data sets developed by Climate Research Unit

(CRU), University ofEast Anglia (U.K.). The CRU TS 2.0 data sets are supplied on a 0.5­

degree global land grid at a monthly time-step for 1901-2000, and build upon several

previously gridded data sets created by the CRU (New et al. 2000; Mitchell and Jones, 2005).

Monthly mean temperature (0C) and precipitation (mm) from the CRU TS 2.0 data sets are

used to estimate the temperature and water stress scalars required to derive NPP from NDVI.

In addition to monthly mean temperature and precipitation, other climate data from the CRU

TS 2.0 data sets required to run the LPJ-DGVM include monthly mean percent cloudiness

(%), and monthly wet-day frequency (days). The soil data used to run the LPJ-DGVM were

obtained from the derived soil properties defined in the FAO digital soil map of the world

(Food and Agriculture Organization, 1995). Annual CO2 values to run the LPJ-DGVM for

the period of 1901 to 1998 were originally provided by Carbon Cycle Model Linkage Project

(Kicklighter et al. 1995). For 1999 and 2000, the CO2 concentration is set at 367.70 and

369.00-ppm level respectively by referencing other observations (e.g. Keeling et al. 2002).

The GIMMS (Global Inventory Modeling and Mapping Studies) NDVI data sets for

China at a monthly time-step for the period of 1982 to 2000 are used to derive terrestrial NPP

dynamics in each of basic biomes at the same time-series scale. These data sets provide a

multi-year satellite record ofmonthly changes in terrestrial vegetation. New features of these

data sets include reduced NDVI variations arising from calibration, view geometry, volcanic

aerosols, and other effects not related to actual vegetation change (Pinzon, 2002; Tucker et

al. 2005). The spatial resolution ofGIMMS NDVI data used in this study is 0.5°. For the
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grid cells in which the NDVI data were missing due to high solar zenith angle or other factors

in the original GIMMS-derived NDVI data will be excluded in the estimate ofNPP

dynamics.

Estimates of NPP variation from NDVI data

Estimates ofNPP from NDVI data in each biome under study follow the logic of the

CASA model (Carnegie-Ames-Stanford Approach) (Potter and Klosster, 1999). Monthly

NPP in CASA is calculated as a product of cloud-corrected solar irradiance (S) (Bishop and

Rossow, 1991), fractional intercepted photosynthetically active radiation (FPAR), and a

maximum light-use-efficiency term (crnax ), which is adjusted by temperature- and moisture-

stress scalars (T". and ~). The CASA approach is expressed in the following equation:

NPP = Sx FPARx cmax X Ts X W s (1)

The estimation of FPAR at regional-to-global scales is based on a vegetation index

derived from remotely sensed NDVI data and is calculated as a linear function of the NDVI­

derived simple ratio (SR) as follows:

SR = (l + NDVI)/(l- NDVI) (2)

where SRmin represents SR for unvegetated land area. In this study, the S~x and SRm,n for

each grid cell approximate the maximum and minimum NDVI-derived simple ratio SR over

the period of 1982 to 2000 respectively. FPAR is then estimated as:

FPAR =min[(SR - SRm,n)/(SR.nax - SRmin ) , 0.95] (3)

The Crnax value in major biomes under study is determined by local NPP inventory

data (Table 5.1). For shrub and tundra, the crnax is set as 0.56 as in other research (e.g. Potter

et al. 1999). In theory, the value of crnax has no influence on the NPP trend analysis if the

trend analysis is based on NPP anomalies or percentage variations.
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Table 5.1 Description of selected NPP inventory data for detennining the cmax of biomes

under study

Biome types NPP inventory data Location Data description cmax

Tropical forests Zheng et al. (2003) Asia NPP data for multi-biomes 0.67
Temperate forests Zheng et al. (2003) Asia NPP data for multi-biomes 0.56

Savanna and Xiao & Ojima, (1996) China NPP grassland for 1980-1989
0

46
Grassland Xiao & Ojima, (1999) China NPP grassland for 1981-1990 .

Tropical forests include tropical evergreen and deciduous forest/wood land; Temperate
forests include temperate broadleaf and needle leaf evergreen forest, temperate deciduous
forest/woodland and mixed forests.

In each biome, the monthly temperature stress scalar (J;s,m) ) is detennined by the

deviation of temperature from the low and high temperature limits for CO2 uptake and the

optimum photosynthesis temperature as follows:

J;s,m) =

0.15

(Tm- T;mJ /(1',,1'11 - T;ow)
(Thigh - Tm ) I(Thigh - 1',,1'12)

0.95

if Tm< T;ow or Tm> Thigh

if T;ow ::; Tm< 1',,1'/1

if 1',,1'12 < Tm ::; T;,igh
if ToplI ::; Tm ::; TOPl2

(4)

Where, Tm represents monthly mean temperature; T10w and Thigh refer to the low and high

temperature limits for CO2 uptake; Topt! and Topt2 represent the lower and upper range of

temperature optimum ofphotosynthesis. The specific values ofT1ow, Thigh, ToptI and Topt2 for

the basic biomes under study are listed in Table 5.2,

Monthly estimated and potential evapotranspiration (EET and PET) calculated by

referring to BIOME4 (Kaplan et al. 2002) and LPJ (Sitch et al. 2003) are used to define the

monthly moisture-stress value in each biome as follows (Potter et al. 1998, 1999):

W"es,m) =min(0.5 + EETm1PETm , 1.0) (5)
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Table 5.2 The temperature limits for CO2uptake and the temperature optimum for
photosynthesis

T\ow
Classified biomes in PNV data CC)
Tropical evergreen forest/wood land (TrEFW) 2.0
Tropical deciduous forest/wood land (TrDFW) 2.0
Temperate broad-leaved evergreen forest (TeBEF) -4.0
Temperate deciduous forest/woodland (TeDFW) -4.0
Temperate needle-leaved evergreen forest (TeNEF) -4.0
Mixed forest -4.0
Tundra -4.0
Shrub -4.0
Savanna and Grass 6.0

25.0
25.0
20.0
20.0
20.0
20.0
10.0
10.0
20.0

Topt2
CC)
30.0
30.0
30.0
25.0
30.0
30.0
30.0
30.0
45.0

Thigh
CC)
55.0
55.0
42.0
38.0
42.0
42.0
45.0
45.0
55.0

The values ofT\ow, Topt \, Topt2 and Thigh for each biome refer to other research (e.g. Sitch
et al., 2003)

Estimates of NPP variation by DGVM simulation

Simulations ofNPP dynamics by LPJ-DGVM are used to compare the NDVI-derived

NPP dynamics at the same temporal and spatial scale. LPJ-DGVM combines process-based,

large-scale representations of terrestrial vegetation dynamics and the exchanges ofcarbon

and water between land and atmosphere. Ten plant functional types (PFTs) are differentiated

in LPJ-DGVM by their physiological, morphological, phonological, bioclimatic, and fire­

response attributes (Sitch et al. 2003). Vegetation type in a grid cell is determined by the

dominant PFT, i.e. the one that has the largest fractional foliage coverage (FPC).

Photosynthesis, evapotranspiration and soil water dynamics in LPJ-DGVM are modeled at a

daily time-step, while vegetation structure, PFT population densities and NPP of each PFT

are updated monthly and annually.

In LPJ-DGVM, the calculation of gross primary productivity (GPP) in each grid cell

is based on the climate data and the current FPC, which is used as a surrogate for FPAR. The

maintenance respiration of each PFT is calculated in each simulation based on the size of the

living tissue pools, their assigned C:N ratio and climate data. The growth respiration of each

PFT -is taken as a fraction ofNPP. NPP of each PFT is then calculated as the difference

between its GPP and the total respiration (maintenance respiration plus growth respiration).

The LPJ-DGVM simulation starts from unvegetated ground and 'spins up' for 1,000 model
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years until approximate equilibrium is reached with respect to carbon pools and vegetation

cover (Sitch et at. 2003).

Results and Discussion

The NDVI-derived estimates of NPP in China: the basic results

The NDVI-derived estimates ofNPP in China not only vary from one biome to

another but also vary spatially within biomes (Figure 5.1b). At the grid-cell level, annual

NPP estimates in China range from below 200 gC m-2 per year to above 800 gC m-2 per year

(Figure 5.1b). Among different biomes, the lowest annual NPP estimates mainly occur in

tundra (around 344 gC m-2 per year) and the highest annual mean NPP estimates occur in

tropical broadleaved evergreen forest (around 565 gC m-2 per year). In addition, the NDVI­

derived NPP estimates are higher in mountainous areas than areas of relatively flat terrain

(e.g. the northeast plain, the north plain and the Sichuan basin in China) with an exception of

the Tibetan Plateau, in most areas of which annual NPP is less than 400 gC m-2 per year

(Figure 5.1b). Overall, the range ofNDVI-derived estimates ofNPP for China is similar to

other model-simulated estimates such as LPl (Sitch et at. 2003) and BIOME3 (e.g. Ni, 2001).

Comparison between NDVI-derived and DGVM-simulated annual NPP variation

Interannual variations in NDVI-derived annual NPP values agree well with the

DGVM-simulated values in most of the individual biomes for China. For example, the

calculated correlation coefficients between NDVI-derived and DGVM-simulated annual NPP

variation over the years 1982-2000 for forested biomes are 0.81 (p<O.OO1) in temperate

needleleaved evergreen forest (TeNEF), 0.47 (p<0.05) in temperate deciduous

forest/woodland (TeDFW), 0.47 (p<0.05) in mixed forests, and 0.31 (p<0.20) in tropical

evergreen forests/woodland (TrEFW) (Figure 5.2). Tropical deciduous forest and woodland

(TrDFW) accounts for only a small part of total forests under study «5%). For non-forested

biomes, the NDVI-derived interannual NPP variation is linearly correlated with the DGVM­

simulated NPP variations in savanna (R2=0.25, p<0.04), grassland (R2=0.64, p<O.OOl) and

tundra (R2=0.36, p<0.005). For annual NPP variations in shrubs, the correlation ofNDVI­

derived and DGVM-simulated NPP is relatively low (R2=0.07, P=0.28), partially because in
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regions where the PNV shrubs are dominant the DGVM-simulated biomes consist of grass

and temperate broadleaved evergreen tree (LPJ-DGVM does not simulate shrubs).

• NDVI-Derived • DGVM-Simulated
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Figure 5.2 Comparison between the NDVI-derived and DGVM-simulated NPP
variations in China over the years 1982-2000. The standardized NPP (or Z-score) is
summarized for each of the ten biomes classified in the PNV data. The "r" refers to
correlation.

The spatial pattern ofannual NPP dynamics derived from NDVI data also agrees well

with that simulated by the DGVM in most areas ofChina (as illustrated by the correlation

coefficients in Figure 5.3). Especially in areas of relatively flat terrain, such as in the

Northeastern Plain, the North Plain and the Pearl River Plain of China, the NDVI-derived

NPP variation is highly consistent with the DGVM-simulated. In each of these regions, the

homogeneity of the NDVI values, climate, and soil characteristics across different locations

is high, which resulted in the high consistency between the NDVI-derived NPP dynamics and

the DGVM-simulated. However, the interannual variability ofNPP derived from NDVI data

does not agree well with that simulated by the DGVM in the Yungui Plateau of China (Figure

5.3). In this region, the NDVI-derived annual NPP is much larger than the DGVM-simulated

annual NPP.
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Figure 5.3 The performance ofNDVI-derivation in each grid cell as shown by the calculated
correlation coefficients between the NDVI-derived and the DGVM-simulated annual NPP
variation over the years of 1982 to 2000. The white area in inland China is a result of NDVI
data missing.

Comparison between NDVI-derived and DGVM-simulated seasonal NPP variation

The seasonality ofNDVI-derived NPP is broadly similar to the DGVM-simulated

across different latitudinal bands (Figure 5.4). In general, the seasonal cycles ofNDVI­

derived NPP resembles the DGVM-simulated NPP when the latitude is greater than 30~,

where seasonal NPP is relatively high from June to September but low from November to

March. When the latitude is less than 30~, the NDVI-derived seasonal NPP clearly differs

from the DGVM-simulated. The difference mainly occurs in the estimation of winter and

summer NPP. The relative distribution ofNDVI-derived winter NPP is higher (Figure 5.4a)

than the DGVM-simulated (Figure 5.4b). In summer, the relative distribution ofNPP

estimates under both NDVI-derivation and DGVM-simulation is high but the pattern is more

complicated under the DGVM-simulation. In spring and autumn, seasonal NPP derived from

NDVI data matches to some degree that simulated by the DGVM, which may suggest that the

climate transition from winter to summer or from summer to winter is not very significant in

areas south of30~.
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Figure 5.4 Comparison between the NDVI-derived (a) and DGVM-simulated (b) monthly
NPP across different latitude (0.5° band), expressed as percentages ofthe annual total NPP in
each latitudinal band.

In detail, both the NDVI-derivation and DGVM-simulation estimate a negative NPP

in winter at latitudes higher than about 30~, which indicates that plant respiration is greater

than the uptake ofcarbon by plants during winter. In contrast, the estimates ofNPP in

summer from both NDVI data and DGVM-simulated data are greater than the annual mean,

concordant with the concept that the release ofcarbon due to plant respiration is generally

smaller than the uptake ofcarbon by plants during summer. In addition, the proportion of

annual NPP represented by the summer NPP peak is relatively higher under the NDVI­

derivation than that under the DGVM-simulation (Figure 5.4a and b).

The interannual and seasonal variability of NPP in China

The interannual variability of annual NPP in China

The general trend ofterrestrial NPP dynamics in China over the years 1982-2000

appears in Figure 5.5, in which loess curves (Cleveland, 1979) are used to describe annual

NPP variation over the years 1982-2000 in each of four biomes. The results show that annual

NPP in forests varies from -16.7 below to 21.5 gC m-2 above its 19-years' mean (470.4 gC m­

2 per year). The variation ofNPP anomaly in forests is least among the four aggregated

biomes. Over the whole period, annual NPP in forests tended to increase during the 1980s

and decrease during the 1990s (Figure 5.5). Compared to annual NPP in 1990, it decreased

by 7.4% in 1991 and 1992 and continued to decrease in 1993. This short-term decrease is
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associated with the negative anomaly in both temperature and precipitation, which (at least

for temperature) was partially a result of the Pinatubo eruption and the resulting cooling

effects as mentioned by other studies (e.g. Lucht et al. 2002; Cao et ai. 2003; Piao et al.

2006). In addition, estimates of annual NPP in forests show a decrease during the £1 Nino

years of 1987-1988 and 1997-1998. However, it did not show a decrease during the £1 Nino

year of 1982-1983 (Figure 5.5), which suggests that the £1 Nino-related climatic variation in

the eastern monsoon zone was spatially complex, or that other factors contributed to the NPP

dynamics in forests in these particular years.

Unlike the forests, annual NPP in grassland tended to increase over most of the 1982­

2000 period though it showed a decrease in the last two years of 1990s. The rate of increase

was 0.005 gC m-2per year (R2=0.17, p<0.08). Especially over the years 1982-1998, the

annual NPP increase was as high as 4.2 gC m-2per year (R2=0.39, p<O.Ol). Such an

increasing trend is highly consistent with studies by Cao et ai. (2004). On average, the

magnitude ofNPP change in grassland varied from 25.0 to 25.1 gC m'2 per year, which

accounts for 5.5 percent of its 19-years' mean (451.1 gC m'2 per year). Like annual NPP in

forests, annual NPP in grassland diminished in 1991 largely due to the cooling effects

introduced by the Pinatubo eruption.

Figure 5.5 The NDVI-derived Annual NPP variation as shown by the solid line in China
over the years 1982-2000. The dashed horizonta11ine (fitted loess curve) helps visualize the
generalized NPP trend. The dashed vertica11ine locates the year in which Mt. Pinatubo
erupted.

Annual NPP in shrubs and tundra increased slightly over the years 1982-2000. The

increasing rate was 0.01 gC m-2per year (R2=0.36, p<0.007) in both shrubs and tundra. The
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averaged annual NPP in shrubs is 383.4 gC m-2 per year, which is larger than the average

annual NPP of305.5 gC m-2 per year in tundra. Even though the increasing rate of annual

NPP in shrubs and tundra is similar, the specific variation ofNPP differs from one biome to

another. For example, the fitted loess curve shows annual NPP in shrubs increased gradually

from 1982 to 1998. After 1998, there was a decreasing trend for NPP in shrubs. In contrast,

annual NPP in tundra tended to increase gradually over the whole research period. In

addition, our results indicate that annual NPP in both shrubs and tundra decreased in the year

(1991) when Mt. Pinatubo erupted. However, annual NPP in shrubs tended to increase during

the EI Nino years of 1982-1983, 1986-1987 and 1997-1998 (Figure 5.5).

Annual NPP Change
(gC/m'/yr)

Increase

_ Decrease

N

A

Figure 5.6 The changes of annual mean NPP between 1980s and 1990s (Here we only show
the change direction rather than the magnitude of averaged-annual NPP change).

When the difference between the averaged-annual NPP in 1980s and that in 1990s

was mapped, we found the spatial pattern of annual NPP change was relatively complicated

in the eastern monsoon zone (dominated by forests). In contrast, the spatial pattern of annual

NPP change in the north-west arid zone (dominated by grass) and the Tibetan Plateau frigid

zone (dominated by tundra) of China is more uniform, showing an increasing trend (Figure

5.6). The complexity of the annual NPP pattern in the eastern monsoon zone ofChina may be

explained by the climatic gradient from south to north and the rapid land use change, such as

urban sprawl and agricultural activities. For example, the NDVI-derived annual NPP in the
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Pearl River Delta Economic Zone and The Yangtze River Delta Economic Zone of China

decreased sharply from 1980s to 1990s, concordant with other research (e.g. Fang et al. 2003;

Piao et al. 2003). The decreasing magnitude ofannual NPP in these two areas was beyond 60

gC m,2 per year, which was the highest among all decreasing areas.

The variability of seasonal NPP in China

This study reveals that NPP in winter (December, January and February) varied

slightly in all four combined biomes as might be expected. Especially in grassland and

tundra, NPP in winter seemed to be consistent over the years 1982-2000 (Figure 5.7A). In

forests and shrubs, the NPP anomaly in winter varied from -7.2 below to 6.1 gC m-2 above

their 19-years' mean respectively (47.9 gC m-2per season in forests and 34.3 gC m'2 per

season in shrubs). In contrast, NPP in spring (March, April and May), summer (June, July

and August), and autumn (September, October and November) varied more acutely than that

in winter (Figure 5.7B, C and D). For example, NPP in spring tended to increase gradually at

a rate of0.66 gC m-2per season (R2=O.l6, p<0.10) in forests, 0.48 (R2=0.15, p<0.10) in

grassland and 0.72 (R2=0.68, p<O.Ol) in tundra, respectively. The increasing trend of spring

NPP is consistent with the concurrent increase of spring temperature, which wi111ikely

advance the onset of the growing season or ofbudburst of terrestrial ecosystems (Lucht et al.

2002; Fang et al. 2003).

In contrast to NPP in spring, the variation ofNPP in summer was more complicated.

Our results show that summer NPP in forests and grassland had no clear increasing trend.

However, summer NPP in tundra increased gradually over the years 1982-2000 at a rate of

1.60 gC m-2per season (R2=0.21, p<0.05). In autumn, the statistics suggest that seasonal NPP

increased gradually at a rate of 0.60 gC m-2per season (R2=O.l7, p<0.08) in grassland, 1.00

gC m-2 per season (R2=0.24, p<0.04) in shrubs, and 0.52 gC m-2per season (R2=0.15, p<O.lO)

in tundra. Our results also reveal that seasonal NPP in most biomes tended to decrease in the

year (1991) when Mt. Pinatubo erupted. However, seasonal NPP differed both from one

biome to another and from one season to the next during the E1 Nifio years of 1982-1983,

1986-1987 and 1997-1998 (Figure 5.7), which suggest other factors contributed to the NPP

dynamics in China or the climatic variation during different E1 Nifio years was spatially

complex in China.
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Figure 5.7 The variability of seasonal NPP in China over the years 1982-2000. The dashed
vertica11ine locates the year in which Mt. Pinatubo erupted.

Sensitivity of NPP to precipitation and temperature variation in China

The relationship of annual NPP to annual mean temperature and precipitation

To examine the relationship ofterrestria1 NPP dynamics in China to the spatial

variation of annual mean precipitation and temperature, we first averaged the 19-years'

annual mean NPP, precipitation and temperature in each grid cell respectively and then

plotted them using an enhanced scatter plot (Figure 5.8). The results reveal that the highest

estimates ofannual NPP in China are in regions where annual mean temperature is above

20DC (warm) and annual mean precipitation beyond 1500 mm (wet). These regions are

mainly distributed in southeast China such as Hainan, Guangdong and part of Guangxi and

Fujian provinces (Figure 5.1b), in which the dominant vegetation is tropical forest. Our

estimates of the highest NPP are consistent with other research. For example, Jiang et al.

(1999) and Ni (2000) found that the highest productivity in China was in tropical seasonal

and rain forests. In addition, a study based on inter-comparison of multiple model-based

results at the global scale revealed a similar conclusion (e.g. Schloss et al. 1999).

In contrast, the lowest estimates of annual NPP occur in regions where annual mean

precipitation is less than 500 mm and annual mean temperature is below zero. These regions

are mainly located in the Tibetan Plateau frigid zone and the western part ofInner Mongolia

of China (Figure 5.1 b), in which the dominant vegetation is alpine tundra and grass/steppe

and desert respectively. The lowest NPP estimates in these areas are largely attributed to the
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low temperature and moisture deficit (Ni, 2004). However, the relatively low estimates of

NPP in the Northeastern and North plain and Sichun Basin of China are caused by the low

NDVI value, which are largely a result of the local socio-economic activities such as

urbanization and agriculture practises. For example, Piao et ai. (2003) argued rapid

urbanization resulted in a sharp decrease in NDVI in the Yangtze River and Pearl River

deltas. In the whole of China, estimates ofNPP tended to increase as both temperature and

precipitation increase (Figure 5.8). The high temperature and precipitation in summer results

in high actual evapotranspiration. But, because precipitation mainly occurs in summer, it

greatly minimizes the water stress on plant growth and in return causes the highest NPP to

occur in summer (Ding et al. 2005).
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Figure 5.8 The general relationship ofannual NPP to annul mean temperature and
precipitation in China. Annual NPP does not increase uniformly and consistently with
increase in annual mean temperature and precipitation because of the effects of human social
and economical activities on terrestrial NPP in China, and because there are areas where
actual crops were treated as forests in summarizing NDVI-derived NPP.

The sensitivity of annual NPP to the variation of temperature and precipitation

Our results show that the climate sensitivity of annual NPP estimates differs from one

biome to another. In forests, the interannual variability ofNPP was not significantly

correlated with the variation of temperature and precipitation (Figure 5.9a and Table 5.3).
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The non-significant relationship implies other factors may have important effects on the

dynamics of annual NPP in forests or the climatic conditions were not limiting for plant

growth in the eastern monsoon zone. For example, Jiang et al. (1999) argued that the spatial

pattern ofNPP in Chinese forests was a result ofboth natural environmental factors and

human land use patterns. Land use change can either enhance terrestrial NPP in cropping­

grazing transition zone (Gao et al. 2005) or decrease it in areas undergoing rapid urbanization

(Fang et al. 2003; Piao et al. 2003).

Figure 5.9 The sensitivity of annual NPP to the temperature and precipitation change in four
biomes as illustrated by the loess surface, which is derived from the 19 black points. Each of
points refers to the NDVI-derived NPP (the NPP values on Z-axis are reduced by an order of
10 for plotting), the observed precipitation and temperature in a specific year.

In contrast to forests, the variations of annual NPP in grassland were significantly

correlated with the variation of temperature and precipitation. Our results show that the

increase ofprecipitation tended to decrease annual NPP in grassland when annual mean

temperature is less than 4.5°C. However, when annual mean temperature is greater than

4.5°C, the variation of annual NPP was positively correlated with the variation of

precipitation (Figure 5.9b). The bivariate regression analysis also indicates that annual NPP

in grassland was positively and linearly correlated with the variation ofprecipitation (Table

5.3). Such a positive relationship between precipitation and annual NPP in grassland suggests

that soil moisture was limiting and a major factor for controlling the spatial distribution and

temporal variation ofNPP in the north-west arid zone of China (Ni, 2004; Lu and Ii, 2006).

Compared to precipitation, the variability of annual NPP was more strongly and positively

correlated with the variation of temperature (Figure 5.9b), which indicates temperature also

played an important role in controlling the NPP dynamics in grassland. For example, Ni
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(2004) stated that belowground and total productivity in the temperate grassland ofChina

was influenced more by temperature than by precipitation.

Table 5.3 The bivariate regression analyses between NPP and temperature or precipitation

Forests Grass Shrub Tundra
Slope R2 P «) Slope R2 P «) Slope R2 P «) Slope R2 P «)

T 34.2 0.32 0.01
Annual p 3.18 0.39 0.01 2.88 0.34 0.01

DJF
T 2.54 0.42 0.01 0.41 0.22 0.04 1.26 0.24 0.03 0.68 0.31 0.01
P

MAM T 12.2 0.50 0.01 5.26 0.33 0.01 5.23 0.35 0.01
P 0.32 0.39 0.01

JJA
T 30.7 0.29 0.01
P -0.29 0.23 0.04 0.65 0.41 0.01 0.50 0.34 0.01

SON
T 8.11 0.42 0.01 7.35 0.21 0.05 8.25 0.36 0.01
P -0.11 0.13 0.08 -0.29 0.27 0.03-------------_._-----

DJF (December, January, February), MAM (March, April, May), JJA (June, July,
August) and SON (September, October, November) refer to winter, spring, summer and
autumn respectively. T and P stand for temperature and precipitation respectively. "-"
means there is no statistically significant linear relationship.

Similar to grassland, the variation ofannual NPP in tundra was significantly

correlated with the variation oftemperature and precipitation. In particular, our results reveal

the increase of temperature increased annual NPP in tundra and so did the decrease in

precipitation (Figure 5.9d). Given that there was a positive relationship between annual NPP

and temperature in tundra (Table 5.3), and that temperature increased gradually at a rate of

0.05°C per year (R2=0.43, p<0.002) over the years 1982-2000 in tundra, we argue that

temperature was limiting for plant growth in the Tibetan Plateau frigid zone. In addition, the

negative relationship between annual NPP and precipitation implies that soil moisture was

sufficient for the growth ofplants in the Tibetan Plateau frigid zone. For example, the

bivariate regression between NDVI-derived annual NPP and observed precipitation shows

that annual NPP in tundra decreased by 1.09 gC m'2 per year (R2=O.l4, p<O.ll) as a result of

precipitation increase by 1 percent. In shrubs, annual NPP tended to increase as both the

temperature and precipitation increase (Figure 5.9c).
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The sensitivity of seasonal NPP to the variation of temperature and precipitation

Although the sensitivity of seasonal NPP to temperature and precipitation variations

is more complex than that of annual NPP, several patterns appear when seasonal NPP

dynamics were assumed to be a result of the combination of temperature and precipitation

variations. First, winter and spring NPP dynamics in four biomes were mostly and positively

correlated with the temperature variations, especially in forests, grassland and tundra (Table

5.3). However, NPP dynamics in these two seasons appeared to be insensitive to the

precipitation variations in most biomes, as suggested by relevant non-significant statistics in

Table 5.3. Second, summer NPP appeared to be insensitive to the combination of temperature

and precipitation variations though the precipitation variations alone increased summer NPP

in grassland and tundra (Table 5.3). Third, temperature increase in autumn tended to increase

autumn NPP in grassland, shrub and tundra. Fourth, compared to seasonal NPP in other

biomes, seasonal NPP in tundra was consistently and positively correlated with the

temperature variations in all seasons (Table 5.3), indicating that the temperature or solar

radiation is a major factor associated with changes ofNPP in the Tibetan Plateau frigid zone

(Piao et at. 2006).

Conclusion

This study examined both the variability and the climate sensitivity of terrestrial NPP

in China over the last two decades. Through comparing the NDVI-derived NPP estimates

with the DGVM-simulated NPP data, and through combining the spatiotemporal variation of

NPP estimates with three general climatic zones in China, our results reveal that:

(i) The NDVI-derived interannual variability ofNPP agrees well with the DGVM­

simulated variability ofNPP in most areas ofChina. Specifically, the NDVI-derived

seasonality ofNPP agrees better with the DGVM-simulated seasonality when the latitude is

greater than 30~, in which both estimates show plant respiration is greater than the uptake of

carbon by plants in winter but smaller in summer. South of30~, winter NPP is slightly

higher under the NDVI-estimation. Over China as a whole, the NDVI-derived annual NPP

variations are consistent with the DGVM-simulated variations in areas whose terrain is

relatively flat, such as in the Northeastern Plain, the North Plain and the Pearl River Plain of
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China. This consistency is largely a result of the homogeneity of the NDVI-values, climate

and soil condition inside each ofthe regions.

(ii) Annual NPP in forests had an increasing trend in the 1980s but showed a

decreasing trend in the 1990s. Annual NPP in grassland, shrubs and tundra increased

respectively over the whole period of 1982-2000. The increase was 0.01 gC m-2 per year

(R2=0.17, p<0.08) in grassland, and 0.01 gC m-2 per year (R2=0.36, p<O.Ol) in both shrubs

and tundra. In addition, NPP in spring, summer and autumn varied more acutely than that in

winter. NPP in spring also increased at a rate of 0.66 gC m-2 (R2=O.l6, p<O.lO) in forests,

0.48 (R2=0.15, p<O.lO) in grassland and 0.72 (R2=0.68, p<O.Ol) in tundra, respectively.

However, NPP in summer did not show an increasing trend in both grassland and forests with

an exception of tundra, in which summer NPP increased gradually over the years 1982-2000.

(iii) The dominant factor controlling the spatiotemporal patterns ofNPP in China

varies from one climatic zone to another. In specific, our results reveal that the interannual

variability ofNPP in grassland (or in the north-west arid zone) was sensitive to both

temperature and precipitation change. In contrast, the dynamics of annual NPP in tundra (or

in the Tibetan Plateau frigid zone) depended more on temperature than on precipitation. In

the eastern monsoon zone in which forests dominate, the dynamics of annual NPP did not

correlate well with both the temperature and precipitation variation, which suggests that the

complex spatial pattern ofNPP variation is largely a result of both climate change and human

socio-economic activities.

Bridge

Chapter V investigated the sensitivity of terrestrial NPP in China to historical

climate variation. Like terrestrial NPP being a key ecological variable in soil-vegetation­

atmosphere transfer (SVAT) schemes and being sensitive to climate variation, soil

moisture and actual ET are two key hydrological variables in the SVAT schemes and are

also sensitivity to climate change. Chapter VI will analyze how historical climate

variation affected soil moisture and actual ET in China by modifying a dynamic global

vegetation model.
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CHAPTER VI

SIMULATING THE VARIATION AND CLIMATE SENSITIVITY OF

SOIL MOISTURE AND EVAPOTRANSPIRATION IN CHINA OVER

THE YEARS 1961-2002

This chapter contains unpublished coauthored material with Patrick J. Bart1ein

(Department of Geography, University of Oregon). Guoping Tang developed the LH

model and prepared the first draft of manuscript. Patrick J. Bart1ein provided guidance on

the paper and edited the manuscript.

Introduction

Soil moisture and evapotranspiration (ET) are two major components of the

hydrologic cycle at the land surface, and affect many important processes in the soi1­

vegetation-atmosphere system (Lu et al., 2003; Murphy & Lodge, 2004). For example,

soil moisture can influence near-surface atmospheric variability (Arora & Boer, 2006)

and can also influence atmospheric circulation on seasona1-to-interannua1 time scales

(Shukla & Mintz, 1982; Manabe & De1worth, 1990). Soil-moisture deficits can restrict

the respiration and productivity of plants and thus can influence species composition,

type, and structure of vegetation (Brabson et al., 2005; Evans & Trevisan, 1995).

Similarly, changes in actual and potential ET have implications for nutrient flux, forest

function, and plant productivity (Chattopadhyay & Hulme, 1997; Kosugi et al., 2007),

and for the global carbon cycle (Engstrom et al., 2006).

Climate change can trigger changes in the hydrologic cycle by altering the spatial

and temporal patterns of precipitation, temperature, and other hydrologically important

variables (Arora & Boer, 2001; Bums et al., 2007), and by influencing potential

interactions among hydrologic variables. For example, higher temperature can reduce soil
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moisture either by increasing the energy available for evaporation (Arora, 2002) or by

enhancing forest ET by lengthening the growing season of plants (Chiew & McMahon,

2002; Glenn et al., 2007; Huntington, 2003). Precipitation directly influences the

availability of water and thus can affect soil and actual ET. For example, Guo et al.

(2004) found that terrestrial ET is more sensitive to the spatiotemporal distributions of

precipitation than is soil moisture. In addition, an increase in atmospheric C02

concentration can change the state of the water balance at the land surface through

increasing temperature (Claessens et al., 2006), contributing to changes in vegetation

structure and distribution (Leipprand & Gerten, 2006), and inducing the stomatal closure

of plants that increases their water use efficiency (Claessens et al., 2006; Edraki et al.,

2004).

Approaches for estimating soil moisture and ET can be classified into

experimental and model-based approaches. Direct measurement based on instruments

such as moisture-flux towers (e.g. Glenn et al., 2007), and indirect measurement based on

the eddy-correlation method (e.g. Running et al., 1999; Wever et al., 2002) and the

Bowen-ratio approach (Bowen, 1926) have been used to quantify soil moisture or actual

ET at the land surface. However, measurement of soil moisture and ET are often costly

and time-consuming, and difficult at the regional scales (Song et al., 2000). As a result,

observed data are confined to low temporal resolutions and small spatial scales (Miller et

al., 2007; Rodell et aI., 2004). To address these limitations, hydrologic models, either

conceptual or physical, have been developed to study various water-related issues

because they can provide finer spatiotemporal resolution of the hydrologic variables than

do experimental approaches (Hamlet et aI., 2007). In addition, most current climate

models such as HadCM3 (e.g. Pope et al., 2000) or terrestrial biosphere models such as

LPJ (e.g. Stich et al., 2003) contain some kind land-surface or hydrologic model and have

been used to simulate terrestrial soil moisture and ET (e.g. Gerten et aI., 2004; Gordon &

Famiglietti, 2004; Hirschi et al., 2007).

Water is one of the most critical resources in China (Tao et al., 2005). To date,

efforts have been made to examine the climate-related hydrologic variation in China,



93

including the historical trend ofET (e.g. Gao et al., 2007) and soil water deficit (e.g.

Thomas, 2000), the climatic controls on water balance in lakes of Tibet (e.g. Morrill,

2004), and future climate-induced changes in the water cycle (e.g. Tao et al., 2003).

However, because the spatiotemporal changes in hydrologic variables are very complex

and depend on multiple factors, and because the climatic controls on water balance at the

land surface are still poorly understood (Kosugi & Katsuyama, 2007; Wilson et al.,

2004), additional study of their historical dynamics is still important for improving the

management of water resource and agricultural systems (Chiew & McMahon, 2002;

Hailemarian, 1999), and for understanding the roles of vegetation in the interactions

between the atmosphere and the biosphere (Metcalfe & Buttle, 1999).

The importance of soil moisture and ET for human well being and terrestrial

ecosystem sustainability requires that we be able to simulate the water balance at the land

surface. This requires a model that can correctly simulate the roles of climatic variation,

vegetation, soil characteristics, and atmospheric composition (i.e. C02) in controlling

terrestrial soil moisture and ET. Dynamic global vegetation models (e.g. LPl) have

illustrated a strong ability to simulate transient responses of vegetation and water balance

to climate variation at the global scale. However, they may not correctly simulate

vegetation at the regional scale because they do not include many factors that have

important roles in determining vegetation and water dynamics, and because of human

modification ofland cover. Ideally, when applying such a model to a regional-scale study

with known vegetation, we would specify vegetation instead of dynamically simulating

it. The specification of vegetation can help in theory to more accurately simulate the

effects of climate and vegetation on soil moisture and ET.

The goals of this study are (1) to present an attempt to modify the LPI dynamic

global vegetation (DGVM) (Sitch et al., 2003; Gerten et al., 2004) in order to simulate

terrestrial soil moisture and ET under predefined vegetation, (2) to evaluate the ability of

this model, named LH (LPl-hydrology), to simulate soil moisture and ET at the land

surface, and (3) to demonstrate its application in China. Toward these ends, we first

describe the structure of the LH model and the parameterization of some key hydrologic
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variables in the LH model. As input to the LH model, we develop the necessary data sets,

including climate, soils, vegetation type, foliar vegetation cover for each specified

vegetation type and CO2• Then, a series of simulations on a 0.5-degree global land grid

are run using the historical climate and CO2 data. Both observed and simulated data for

runoff, soil moisture and ET at the different spatial scales are used to evaluate the LH

simulations. Finally, the model results for China are used to analyze the variation and

climate sensitivity of soil moisture and ET.

Methods and Data

The development of the LH model

The stand-alone LH (LPJ-hydrology) model was developed by modifying LPJ­

DGVM (Stich et al., 2003; Gerten et a!., 2004), and shares many of its features. The input

data needed to run the LH model include climate, vegetation, foliar vegetation cover, soil

and atmospheric CO2 concentration (Figure 6.1). The climate data include monthly mean

values of temperature (OC), precipitation (mm), wet-day frequency (days) and percent

cloudiness (%). LH defines the global vegetation into 11 biome types with reference to

the global potential natural vegetation data set (Ramankutty & Foe1y, 1999), of which

seven types are forests (two tropical, three temperate and two boreal) and four are non­

forest (one savanna, one grassland, one shrub land and one tundra) (Table 6.1). The input

vegetation data are used (1) to initialize some biome-related parameters (Table 6.1 &

6.2), (2) to define the phenological characteristics of each predefined biome type as one

of four types, i.e. evergreen, summergreen, raingreen and other, and (3) to specify the

photosynthetic pathway of plants (i.e. C4 vs. C3). The foliar vegetation cover data are

used to calculate biome-specific minimum canopy conductance and the total amount of

interception loss ofprecipitation. The soil data used in LH consists of two layers with

fixed thickness (upper, 50cm; lower, 100cm) and includes parameters such as water

holding capacity in both layers. The CO2 data are used to calculate non-water-stressed

canopy conductance and intercellular CO2 partial pressure (Haxeltine & Prentice, 1996).
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Figure 6.1 A flowchart to describe the process ofLH (LPJ-hydrology) model for
calculating several hydrological variables based on input climate, vegetation, foliar
vegetation cover (FVC), C02 and soil data. PET and ET are short for potential and actual
evapotranspiration, respectively.

Table 6.1 Hydrologically relevant parameters for each predefined biome type

LeL f Wmin CaC Emax Ints

PNV-based biome types (years) (mmls) (mmlday)
Tropical evergreen forest 2.00 0.85 0.00 0.5 7.0 0.02
Tropical deciduous forest 0.50 0.60 0.10 0.5 7.0 0.02
Temperate broadleaf evergreen forest 2.00 0.70 0.00 0.5 5.0 0.02
Temperate needleleaf evergreen forest 4.00 0.70 0.00 0.3 5.0 0.06
Temperature deciduous forest 0.50 0.70 0.10 0.8 5.0 0.02
Boreal evergreen forest 4.00 0.90 0.00 0.3 5.0 0.06
Boreal deciduous forest 2.00 0.83 0.10 0.8 5.0 0.06
Savanna 0.50 0.57 0.20 0.5 7.0 0.01
Grassland 0.50 0.83 0.20 0.5 5.0 0.01
Shrubland 0.50 0.93 0.00 0.8 1.0 0.01
Tundra 0.50 0.93 0.00 0.8 1.0 0.01

LeL -leaf longevity; f -fraction of roots in soil upper layer; W min -minimum water

scalar at which leaves shed by drought deciduous biome; CaC -canopy conductance
component that is not associated with photosynthesis; E max -maximum
evapotranspiration rate; Ints -interception storage parameter. The specific value of each
parameter refers to Sitch et al. (2003) and Kaplan et al. (2002).

LH consists of three main sub-models, i.e. (1) the potential evapotranspiration

model that calculates pseudo-daily photosynthetic active radiation flux, day length and

daily potential ET in each grid cell using input climate data with latitude information, (2)

the summer phenology model that evaluates daily phenology of each specified biome

type, and (3) the coupled water balance model with plant photosynthesis that simulates
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major componens of the water balance among the soil, vegetation and atmosphere,

including surface evaporation, plant transpiration, soil moisture and surface runoff

(Figure 6.1). In the application, to better initialize some important variables such as soil

moisture content and fraction available water in two soil layers, the water balance model

is run twice. Soil moisture of each layer is updated at daily time-steps, updating the

previous day's soil moisture by balancing the amount of water infiltrating into the soil

and that removed from the soil layers through runoff, percolation and actual ET.

The parameterization of LH model

Unlike LPJ, LH does not consider bioclimatic limits that determine whether or not

a biome can survive under the climatic condition prevailing in a particular grid cell at a

particular time because the biome type in a grid cell is specified, not simulated. LH also

ignores the dynamics of vegetation, the competition between different vegetation types,

and the biogeochemical dynamics among soil, vegetation and atmosphere. Consequently,

the biome-related parameters (or attributes) in LH are greatly reduced and can be

classified into two categories: (i) parameters that govern the dynamics of water balance

(Table 6.1), and (ii) parameters necessary for simulating plant photosynthesis (Table 6.2).

The reduction of parameters aims to strengthen LPJ's application to questions such as

how climate change alone will affect the hydrology of a region with known or specified

vegetation.

Parameters that govern the dynamics of the water balance include leaf longevity

(LeL ), the fraction of roots in two soil layers (/), the minimum water scalar value at

which leaves are shed by drought-deciduous biomes (W min ), the canopy conductance

component not associated with photosynthesis ( CaC), the maximum ET rate (E max ),

and the interception storage of vegetation ( Ints). The leaf longevity of each biome type is

used to calculate its leaf area. The fraction of roots in two soil layers (h and /2) affects

relative soil mositure ( wr) that is given by:

wr = WI X h + w2 X /2 (1)

where WI and W2 are the fractions of available water in the upper and lower layer of soil

respectively. The minimum water scalar (W min) adjusts daily drought phenology
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because drought-deciduous plants shed their leaves when their water scalar falls below a

specific threshold. The canopy conductance component ( CaC ) is a part of total non­

water-stressed canopy conductance (gp ) averaged over a grid cell as follows (Haxeltine

& Prentice, 1996):

gp =((l.6x adt /(cax(l.O -1»)/ Dtsec) + CaC

where adt is total daytime net photosynthesis (gC/m2/day); ca is the mole fraction of

atmospheric CO2; 1 is the optimal ratio of intercellular to ambient CO2 concentration;

and Dt sec refers to the length of daylight in seconds.

The maximum daily transpiration rate ( E max) is necessary for simulating the

water supply function (Suppl) through the following expression:

Suppl =E maxx wr x dphen x fvc

(2)

(3)

(4)

where dphen is daily phenology of a biome and fvc is foliar vegetation cover (%) in a

grid cell. The interceptation storage parameter ( Intc ) is used to calculate biome-specific

interception storage (Ints) (Kergoat, 1998) as follows:

Ints =Intc x LAI x dphen x Pr

where LAI is leaf area index and Pr is adjusted daily precipitation.

Table 6.2 Photosynthetic relevant parameters and leaf area index for predefined biome
types under study

Nmax 1; 1; 1; 1'" LAI

PNV-based biome types (mg/g) (OC) (OC) (OC) (OC)
Tropical Evergreen forest 100.0 2.0 25.0 30.0 55.0 5.2
Tropical deciduous forest 100.0 2.0 25.0 30.0 55.0 4.0
Temperate broadleaf evergreen forest 100.0 -4.0 20.0 30.0 42.0 6.0
Temperate needleleaf evergreen forest 100.0 -4.0 20.0 30.0 42.0 6.7
Temperature deciduous forest 120.0 -4.0 20.0 25.0 38.0 5.1
Boreal evergreen forest 100.0 -4.0 15.0 25.0 38.0 3.5
Boreal deciduous forest 100.0 -4.0 15.0 25.0 38.0 2.7
Savanna 100.0 6.0 20.0 45.0 55.0 2.6
Grassland 100.0 -4.0 10.0 30.0 45.0 2.5
Shrubland 1.0 -4.0 10.0 30.0 45.0 2.2
Tundra 1.0 -4.0 10.0 30.0 45.0 2.5
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N max is the maximum foliar N content; 1; and 1;, are the low and high temperature

limits for CO2 uptake; 1; and Tz are the lower and upper ranges of optimum temperature
for photosynthesis; LAI is leaf area index. The specific value of each parameter except
for LAI refers to Sitch et at. (2003) and Kaplan et at. (2002). The LAI for each PNV­
based biome type refers to the Global Leaf Area Index Data from Field Measurements
compiled at the Oak Ridge National Laboratory Distributed Active Archive Centre
(DAAC) (http://daac.om1.govNEGETATION/lai_des.html) and approximately equals to
the long-tenn mean LAI of the corresponding biome/landcover type in the DAAC LAI
data set.

Parameters needed for simulating plant photosynthesis include the maximum

foliar N content (N max ), the low (1;) and high ( Tz ) temperature limit for CO2 uptake,

and the lower (1;) and upper (1;, ) ranges of optimum temperature for plant

photosynthesis (Table 6.2). These parameters are used to calculate total daytime net

photosynthesis (gC/m2/day) of plant and to convert the daytime net photosynthesis to gas

(mm/m2/day) using an ideal gas equation (Haxeltine & Prentice, 1996), which is later

used to simulate canopy conductance (see equation 2). The specific value of each

parameter refers to both LPl (Sitch et at., 2003) and BIOME4 (Kaplan et at., 2002).

The calculation of major hydrologic variables

The calculation of each hydrologic variable in LH is almost the same as that

described in Gerten et at. (2004). We briefly introduce the calculation of each output

variables (see Figure 6.1) here. Daily PET rate (Eq ) at the regional scale is expressed as:

(5)

where Rn refers to net radiation calculated from latitude, day of the year, sunshine hours

and air temperature; ~ is the rate of the saturation vapor pressure increase with

temperature; rand L are the psychrometric values of air and the latent heat of water

vaporization adjusted by daily temperature, respectively. To avoid abrupt change in the

values of variables such as the ratio ofET and PET in high latitude area, LH assigns daily

Eq a new value 10-6 when the calculated Eq is zero.



99

Actual ET is the aggregation of interception loss, vegetation transpiration, and

evaporation from bare soil. Daily interception loss (Intel) is a product of daily PET (Eg )

and the fraction of day-time ( OJ ) when the canopy is wet as follows:

Intel =Eg x ax (1) (6)

where a is the Priestley-Taylor coefficient with a value 1.32. The value of OJ is related

to the canopy interception storage capacity (see equation 4). Vegetation transpiration is

based on the comparison between an atmosphere-controlled demand function and a plant­

controlled supply function (see equation 3).

Daily evaporation ( Es ) from bare soil is expressed following Huang et al. (1996)

as:

(7)

where wr represents the relative moisture in the upper layer ofthe soil column.

Daily soil water content in both layers at day i is updated taking account of the

water content at previous day, and snowmelt (M;), precipitation, interception loss,

transpiration (E; ), evaporation (E",i ), percolation (PI,i ) through two layers and runoff

( RI .; ) during the current day i:

{
~Wl' =~WI'_I +Pr/,+M, - RI , xET , -E ' -PI' -RI ,

,I ,I ,I I }JI,l" S,l ,I ,I

~W2 ' =~W2 '_] + PI ' - fJ2 ' X ET ' - R2 ' - P2 '
" ,I " " ,I ,I ,I

(8)

where ~Wl.; and ~W2,; are daily changes in soil water content of both layers at day i; fll

and fl2 represent the fractions of water extracted for transpiration from each layer (such

that fll + fl2 =1). The model simulates surface runoff (R] ) and subsurface runoff (R2 )

from the excess of water over field capacity of the upper and the lower soil layer,

respectively. The total runoff in a grid cell is the sum of surface and subsurface runoff.

Model input data

Monthly mean values of temperature (OC), precipitation (mm), percent cloudiness

(%) and wet-day frequency (days) required to run LH are provided by the CRU TS 2.1

data sets developed by the Climatic Research Unit (CRU) at the University of East
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Anglia (U.K.) (Mitchell & Jones, 2005). CRU TS 2.1 was built from a database of

monthly weather-station data that were mostly checked for data inhomogeneities.

Records from different sources were combined into a single database through the World

Meteorological Organization codes attached to the stations. Station anomalies relative to

long-term mean for 1961-1990 were interpolated onto 0.5 degree grid and applied to

published long-term mean values on the same grid (e.g. New et al., 1999). The final

monthly climate grids were constructed for nine climate variables spanning 1901 to 2002

and are available from http://www.cru.uea.ac.uk/.

The global potential natural vegetation (PNV) data (Ramankutty & Foley, 1999)

used to specify input biome type at each grid cell describe the distribution of global

potential natural vegetation types that would most likely exist without human

interventions. The PNV data are grouped into 11 biome types (Table 6.1) at a 0.5 degree

geospatial resolution. The Vegetation Continuous Fields (VCF) data (Hansen et al., 2000,

2003) produced at the University of Maryland

(http://glcf.umiacs.umd.edu/data/vcf/description.shtml) are used to define the foliar

vegetation cover (%) of a PNV-based biome in a grid cell. The VCF data contain

proportional estimates for three vegetative cover types: woody vegetation, herbaceous

vegetation and bare ground. Compared to the traditional classification schemes, the VCF

data depict areas of different land cover and thus show better the percentage (from 0 to

100) of a land cover in a grid cell. The total percentage cover for three vegetation cover

types in a grid cell is 100 percent (Hansen et al., 2000).

The soil data used to run LH were from the derived soil properties data defined in

the FAO world digital soil map (Food & Agriculture Organization, 1995). Annual

atmospheric CO2 concentrations for the period of 1961-2002 were originally from the

Climate Research Group at the University of Illinois at Urbana-Champaign (see

Schlesinger & Malyshev, 2001).

Model validation data

Several different data sets of observed (and simulated using other approaches)

hydrological variables were used to evaluate the performance of the LH model. The soil
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moisture data used to evaluate the LH simulations are the Illinois Soil Moisture (ISM)

data (http://climate.envsci.rutgers.edu/soil_moisture/illinois.html) produced originally by

Hollinger and Isard (1994). The ISM data consist of total soil moisture measured at 19

stations in the state of Illinois (U.S.). In specific, the ISM data set includes measurements

for the top 10 cm of soil, and then for 20 cm layer intervals (e.g., 10-30 cm, 30-50 cm ...)

continuously down to a depth of2 m. The ISM data spanning the interval from January

1981 to June 2004 were calibrated with gravimetric observations. We did not use the first

three years of data (1981, 1982 and 1983) to validate the LH simulations because they

have smaller variability than the rest of data (Hollinger & Isard, 1994). Although ISM

data represent a limited area relative to the size of the 0.5-degree grid cells being used

here, the data do offer the possibility of examining monthly soil-moisture simulations

over a 20-year period.

Two ET data sets are used to validate the LH-simulated ET at both the global

and the local scales. The local ET in the Everglades of Florida (U.S.) (German, 2000)

was evaluated on the basis of the Bowen-ratio energy budget method (Bowen, 1926) and

is given by:

ET = (Rn - G - W)/[ApwO + B)] (9)

where Rn is net radiation measured by a net radiometer; G is soil heat storage estimated

by measured values of heat flux, soil temperature and soil moisture, together with

estimated values of soil bulk density and particles heat capacity; W refers to storage of

heat in water estimated from measurements of water level and water temperature; A is

the latent heat of vaporization of water; Pw is the density of water (mass per volume); B

is the Bowen ratio, which is expressed as a function of vertical differences of temperature

and vapor pressure in the air:

B = r(tz -t\)/(ez -e\)

where r is a function of air temperature and barometric pressure; t\ and tz are air

temperatures measured at two points with different elevation; e\ and ez are vapor

pressures measured at the same two points. All data needed for the application of the

(10)
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Bowen-ratio method were measured at 15-minute intervals spanning from 1996 to 2000

and at 9 sites ranging from 24.75~ to 26.25~ and from 79.75°W to 81.25°W (German

& Vecchioli, 1996; German, 2000).

The second data set consists of global ET data from Tateishi and Ahn (1996), in

which ET was derived from precipitation (P), soil moisture (SM) and potential

evapotranspiration (PET) in the following way:

{
ET; = ~ + (SMi - SMi _1) if ~ < PET; (11)

ET; =PET; if ~ '? PET;

The Global Runoff Data Centre (GRDC) composite runoff fields (CRF) data set

(Fekete et al., 2002) at global scale were used to evaluate the LH-simulated monthly and

annual runoff. The GRDC CRF data were developed by combining observed river

discharge information with climate-driven water balance model outputs. The observed

information was derived from selected gauging stations available from the World

Meteorological Organization GRDC data archive

(http://www.grdc.sr.unh.edu/html/Data/index.html). These station data were coregistered

to a simulated topological network at a 0.5 degree land grid spatial resolution. The

simulated runoff in each grid cell was multiplied by the ratio of observed to simulated

runoff of the corresponding interstation region from the GRDC data sets. The composite

monthly and annual runoff data are used in this study to evaluate the LH-simulated

monthly and annual runoff at the continental scale.

Results and Discussion

The evaluation of the LH simulations against model validation data

The LH-simulated monthly mean runoff (an average value based on all grid cells

in a continent) for five continents agrees well with the composite monthly runoff (Fekete

et al., 2002) (Figure 6.2). For example, the LH-simulated monthly runoff in Africa

averages about 12.7 mm, which is close to the composite monthly runoff of 17.3 mm

(Figure 6.2d). Although the LH-simulated monthly runoff appears not to be correlated

well with the composite monthly runoff in Oceania (r=0.43, p<0.16), the magnitudes of
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monthly runoff are similar in most months except for January (Figure 6.2e). Given the

big discrepancy of monthly runoff between January and December in the composite, we

argue that the LH-simulated monthly runoff in January appears to be more reasonable

than the composite, largely because the values ofLH-simulated monthly runoff vary

more smoothly from one month to the next, and particularly from December to January.

After aggregating the LH-simulated and the composite annual runoff into 1 degree

latitudinal bands, they agree well (r=0.86, p<O.Ol) (Figure 6.2f), which demonstrates that

LH captures the spatial variation of monthly runoff at the global land surface. However,

LH might still underestimate annual runoff in high latitudes of both the hemispheres as

LPJ does (Gerten et al., 2003) when compared to the composite annual runoff data (if

composite runoff data were not biased). For example, the LH-simulated annual runoff is

smaller than the composite annual runoff when latitude is greater than 20~'il in the

northern hemisphere (Figure 6.2f), which is largely a result of underestimation of spring

and summer runoff in North America (Figure 6.2a) and Eurasia (Figure 6.2c).

When LH-simulated monthly mean soil moisture (an average value based on

simulated monthly soil moisture in all grid cells ranging from -91.25°W to -88.25°W and

from 37.25~ to 42.25~, a spatial extent that approximately matches the extent of

observed soil moisture in lllinois of U.S.) was compared to observed monthly mean soil

moisture at the top 50 cm layer of soil in Illinois of U.S. over the years 1984-2002

(Hollinger et al., 1994), the statistics (r=0.81, p<O.OOl) suggest that LH can accurately

capture the variation of monthly soil moisture (Figure 6.3). The LH-simulated monthly

soil moisture averages 141.1 mm, accounting for 89.4% of the observed monthly soil

moisture (159.0 mm). The root mean square error (RMSE) between the LH-simulated

and observed monthly soil moisture for 228 months is 26.8, which demonstrate that LH

does well in simulating monthly soil moisture in this particular region although it may

underestimate soil moisture in some months.
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As was the case for soil moisture, LH is able to accurately simulate monthly and

annual actual ET (Figure 6.4). For example, the variation of the LH-simulated monthly

ET over the years 1996-1999 corresponds well (r=0.78, p<O.OOI) to that derived from

other measured data in the Everglades of the south Florida (U.S.), and area that ranges

from 24.7S~ to 26.2S~ and from 79.7SoW to 81.2SoW (German & Vecchioli, 1996;

German, 2000) (Figure 6.4a). The average monthly ET is 98.0 mm, approximating 99.6

mm of derived monthly ET. The RMSE is 16.6 for 48 data points, which is less than 17%

of average monthly ET from both simulated and derived values. When compared to

Tateishi and Ahn (1999) global annual ET data, the correlation between aggregated ET

values in 1 degree latitudinal band is as high as 0.99, indicating that LH captures well the

spatial pattern of annual ET at the global scale (Figure 6.4b) with an exception of ET

estimates in the tropics, in which Tateishi and Ahn simulated annual ET are higher than

LH-simulated annual ET.
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Figure 6.4 Comparison between (a) the LH-simulated monthly ET (triangle) and
observed ET (square) over the years 1996-1999 in a region of Florida, ranging from
24.7S~ to 26.2S~ and from 79.7SoW to 81.2SoW (German & Vecchioli, 1996); and
between (b) the LH-simualted annual ET (triangle) and a water-balance model-simulated
annual ET (square) (Tateishi & Ahn, 1999) aggregated into 1 degree latitudinal band.
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Overall, the LH evaluation against both observed and simulated hydrological data

indicate that LH does well in simulating soil moisture, actual ET and runoff at the local to

regional scales. However, because of the spatiotemporal heterogeneity of soil and climate

conditions and the complexity of factors affecting the water balance at the land surface,

further improvements on input soil and climate data and on the model's structure are still

needed for the LH model. For example, the vertical soil profile in the LH model includes

only two layers, which are not enough to describe the detailed physical dynamics of soil

moisture within the soil profile. In addition, the LH model ignores the impacts of human

activities such as land-use change and irrigation on the hydrologic cycle, which can cause

the LH-simulated data not to perfectly match the observed.

The application of the LH simulations in China

The spatial patterns and climate sensitivity of soil moisture and ET in China

When the LH-simulated annual soil moisture and actual ET for China were

mapped at the 0.5-degree grid-cell resolution over China as a whole (Figure 6.5a & b),

annual soil moisture is around 76.2 mm and tends to decrease from the southeast to the

northwest China (Figure 6.5a). The simulated annual mean soil moisture in the top 50 em

layer shows two distinct maxima, in southern and northeast China, with generally lower

values in the interior and northwest. Annual soil moisture has the lowest value of 28.3

mm in west China, which is about 73.6 mm lower than that in the Tibetan Plateau of

China. Similar to annual soil moisture, annul actual ET decreases from the southeast to

the northwest China. In south China, annual actual ET was over 800 mm, a value of 600

mm higher than actual ET in west China (less than 200 mm). In other regions, annual ET

varied from 600 mm to 400 mm in northeast and north China, and from 400 mm in

southeast comer to 200 mm in northwest comer of the Tibetan Plateau (Figure 6.5b).

The spatial patterns of annual soil moisture and ET in China depend highly on the

spatial patterns of annual temperature (Figure 6.5c) and precipitation (Figure 6.5d). Our

results show that annual soil moisture tends to increase with increasing annual

precipitation but decrease with increasing annual mean temperature (Figure 6.6a). When
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temperature remains constant, an increase of 100 mm in annual precipitation will increase

annual soil moisture by 10 mm. In contrast, when precipitation remains constant, an

increase of temperature by 1 Celsius degree will decrease soil moisture by 2.05 mm. In

contrast to annual soil moisture, annual actual ET tended to increase with the increase in

both annual temperature and precipitation (Figure 6.6b). The reason is that higher

temperature and precipitation will greatly increase surface water evaporation thus

increasing actual ET. Because temperature and precipitation are both higher in southeast

China and lower in northwest China (Figure 6.5c & d), annual soil moisture and actual

ET tend to decrease from the southeast to the northwest China.
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Figure 6.5 The spatial patterns ofthe LH-simulated 30-yrs (1961-1990) (a) annual mean
soil moisture at the top 50cm layer of soil and (b) annual mean actual evapotranspiration
in China, and the 30-yrs (1961-1990) (c) annual mean temperature and (d) precipitation
in China. The stippled areas in (a) and (c) are desert and the white areas stand for either
water or cities.
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Figure 6.6 The relationship of (a) annual soil moisture (mm) and (b) annual actual
evapotranspiration (mm) with annual mean temperature and precipitation over the whole
China

In more detail, our results show that when annual precipitation is less than 500

mm, annual soil moisture and actual ET are neither negatively or positively correlated

with annual temperature respectively (Figure 6.6a & b). This pattern indicates that the

controls of temperature on soil moisture and actual ET highly depend on the availability

of water. In areas where annual precipitation is less than 500 mm, annual temperature

does not play an important role in controlling the state of soil moisture and actual ET

because ofthe limitation of water. In other words, annual precipitation plays a more

important role in controlling soil moisture and actual ET in areas where annual

precipitation is less than 500 mm. These areas are mainly distributed in west China and

the northern comer ofthe Tibetan Plateau (Figure 6.5d). In contrast, in areas annual

precipitation is more than 500 mm, such as in south China and in the southern comer of

the Tibetan Plateau (Figure 6.5d), annual temperature and precipitation jointly control the

dynamics of soil moisture and actual ET at the land surface.

The temporal variation and climate sensitivity of soil moisture and ET in China

The annual variation of soil moisture and ET over the years 1961-2002

When the standardized (z-score) values of annual soil moisture and actual ET

were plotted against time (Figure 6.7), they show that annual soil moisture tended to
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decrease at a rate of 0.02 mm/yr (r=-0.27, p<0.08) in north China over the years 1961­

2002 (Figure 6.7b). In contrast, annual soil moisture shows an increase at a rate of 0.03

mm/yr (r=0.32, p<0.04) in south China over the research period (Figure 6.7c). In other

regions and over the whole of China, the linear trend of annual soil moisture variation

was not significant over the years 1961-2002 (Figure 6.7a, d, e & f). Compared to annual

soil moisture, annual actual ET tended to increase at a rate of 0.04 mm/yr (FO.52,

p<O.OI) in south China (Figure 6.7c) and at a rate of 0.03 mm/yr (F0.31, p<0.05) in the

Tibetan Plateau (Figure 6.7e). In other regions, the linear trend of annual actual ET

variation was non-significant.
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Figure 6.7 The variation of standardized (z-score) annual soil moisture (dashed blackish
line) and evapotranspiration (ET) (dashed bluish line) over the years 1961-2002. The
solid blackish and bluish lines are the plotted regression lines for soil moisture and ET
respectively.
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The sensitivity of soil moisture and ET to the variation of temperature

By allowing temperature to vary while other input climate and C02 variables were

held constant (at the monthly average for 1961-1990) for the purpose of separating the

direct effects of temperature on soil moisture and ET from others, the results suggest that

the observed temperature increases from 1961 to 2002 consistently decrease annual soil

moisture but increase actual ET in all regions. However, when other input variables were

allowed to vary (a more realistic simulation), the negative relationship between the

variation of temperature and soil moisture was significant only in west China (Figure

6.8d), in which temperature increase (annual temperature increased at a rate of 0.03 °C/yr

(r=0.60, p<O.O1) over the years 1961-2002 in west China) decreased annual soil moisture

at a rate of 2.18 mm/yr (r=0.33, p<0.04). Further statistics suggest that surface water

evaporation was not correlated with the temperature increase (r=-0.07, p=0.66) and had

no increasing trend over the research period, indicating that other factors also played an

important role in declining soil moisture in west China. For example, annual precipitation

did not increase in west China over the years 1961-2002 (Figure 6.7d), suggesting that

surface water evaporation under higher temperature condition was constrained by the

limitation of water. In other regions, the non-significant relationship between temperature

increase and the variation of soil moisture indicated that water was sufficient for a

temperature-induced increase in surface water evaporation in all regions (Figure 6.7).

When temperature and other input data are allowed to vary, annual actual ET was

significantly and positively correlated with temperature variation in south China (Figure

6.8i) and in the Tibetan Plateau of China (Figure 6.8k). In these regions, temperature

increase increased annual actual ET at a rate of22.8 mmlyr (r=OA3, p<O.Ol) in south

China and at a rate of 12.2 mm/yr (r=0.37, p<0.02) in the Tibetan Plateau of China. The

increase in annual actual ET resulted mainly from the increase in surface evaporation. For

example, surface evaporation in south China increased at a rate 0.29 mmlyr (r=0.35,

p<O.IO) in south China as a result of temperature increase from 1961 to 2002. In addition,

annual precipitation increased at a rate of2.02 mm/yr (r=0.27, p<0.09) in south China

over the research period (Figure 6.7c), indicating that surface water evaporation under



111

higher temperature condition was not limited by the availability of water. However, in

northeast, north and west China (Figure 6.8g, h & j), annual actual ET was not

significantly correlated with the temperature increase, largely because annual

precipitation had no increasing trend over the years 1961-2002 (Figure6.7a, b & d). As a

result, the temperature increase tended to augment soil water stress on plants by

increasing potential ET in north, northeast and west China. For example, the Priestley­

Taylor soil moisture index (a ratio of actual to potential ET) was negatively correlated

with temperature increase in northeast (r=-0.23, p<0.15), north (r=-0.23, p<0.14) and

west China (r=-0.25, p<O.ll).
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Figure 6.8 The impacts of annual mean temperature variation on soil moisture (circle)
and actual ET (triangle) in different regions of China. The solid lines are the regression
lines between temperature and each of soil moisture and ET respectively.

The sensitivity of soil moisture and ET to the variation of precipitation

The results indicate that annual soil moisture and actual ET are positively and

linearly correlated with precipitation in all regions (Figure 6.9), reflecting the fact that

soils will tend to become saturated and actual ET will likely equal potential ET when

water is sufficient. For example, an increase of 1 cm in annual precipitation will increase
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soil moisture by 0.12 mm (r=0.92, p<O.Ol), and annual actual ET by 0.88 mm (r=0.99,

p<O.Ol) in west China. However, because ofthe spatiotempora1 heterogeneity of annual

precipitation, the strength of such a linear and positive relationship between two

hydrologic variables and the variation of annual precipitation varied from one region to

another. For example, the statistics suggest that annual actual ET was more sensitive to

the variation of annual precipitation in west, north and northeast China (r>0.90, p<O.Ol)

(Figure 6.9a, b & d) than that in south China (r=0.69, p<O.Ol) (Figure 6.9c) and in the

Tibetan Plateau of China (r=0.72, p<O.Ol) (Figure 6.ge), indicating that water was

comparatively more limiting in north, northeast and west China than in south China and

in the Tibetan Plateau of China. For example, as stated before, annual precipitation

showed an increase in south China (Figure 6.7c) over the study period but did not show

an increase in north, northeast and west China (Figure 6.7a, b & d). Over China as a

whole, annual soil moisture and actual ET were both positively correlated with the

variation of precipitation (r=0.82, p<O.O1) (Figure 6.9f).
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Figure 6.9 The impacts of annual precipitation variation on soil moisture (circle) and
actual ET (triangle) in different regions of China and in the whole China. The solid and
dashed lines are the regression lines between precipitation and each of soil moisture and
ET respectively.
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The sensitivity of soil moisture and ET to increase in CO2 concentration

To analyze the effects of changes in atmospheric CO2concentration on soil

moisture and actual ET in China, we designed three experiments with different C02

concentrations: (i) the reference experiment in which atmospheric CO2concentrations

increased from 315.20 ppm in 1961 to 374.45 ppm in 2002; (ii) a low C02 experiment in

which atmospheric CO2concentration was held constant at 300.82 ppm, the value of the

atmospheric C02 concentration in 1930; and (iii) a high CO2experiment in which

atmospheric C02 concentration was held constant at 520.00 ppm, the projected value of

the atmospheric C02 concentration in 2050. In all three experiments, the input climate

data used to run LH were the observed data that from 1961 to 2002.

Figure 6.10 shows the impacts of changes in atmospheric CO2 concentration on

actual ET and soil moisture in China under three experiments. Compared to the reference

experiment, the low CO2experiment increases annual actual ET while the high CO2

experiment decreases it in all five regions (Figure 6.10a, b, c, d, e & 0, indicating that a

higher C02 concentration is likely to induce the stomatal closure of plants thus

decreasing actual ET by reducing plant transpiration. For example, annual plant

transpiration in south China decreases on an average by 32.7 mm under the high CO2

concentration experiment while it increases on an average by 10.8 mm under the low CO2

concentration experiment. As a result, annual actual ET in south China decreases on an

average by 31.2 mm under the high CO2concentration experiment while it increases on

an average by 10.3 mm under the low C02 concentration experiment (Figure 6.10c).

However, the impacts of both the low and high CO2experiments on actual ET are more

discernible in northeast and south China (Figure 6.lOa & c) than in the north, west and

the Tibetan Plateau of China (Figure 6.1 Ob, d & e), partially because precipitation is

relatively higher in the former areas than in the later (Figure 6.5d).

The impacts of shifts in atmospheric CO2concentration on actual ET eventually

affect the state of soil moisture at the land surface. For example, annual soil moisture

increases on an average by 3.4 mm in northeast China (Figure 6. 10g) and by 3.1 mm in

south China (Figure 6.1 Oi) as a result of higher CO2concentration-induced decrease in
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actual ET. Because the impacts of shifts in atmospheric CO2 concentration on actual ET

are more discernible in south and northeast China than in west, north and the Tibetan

Plateau of China, the resulting changes in soil moisture under both the low and high CO2

experiments in relation to the reference experiments are also more remarkable in areas

where water is less limiting such as in south China (Figure 6.1Oi) than in areas where

water is more limiting such as in west China (Figure 6. 1OJ).
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Figure 6.10 The impacts of shifts in atmospheric CO2 concentration on actual ETand
soil moisture in different regions of China under three experiments.

Conclusion

This study developed a stand-alone regional water-balance model (LH) based on

the LP1-DGVM, and used it to examine how the historical climate and atmospheric CO2

variations influenced soil moisture and actual ET in China. The results indicate that:
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(1) By specifying vegetation as an input variable and by incorporating satellite­

based foliar vegetation cover data for specified vegetation, the LH model can accurately

simulate terrestrial soil moisture and actual ET at the regional to global scales. Therefore,

it is not only a useful tool for studying the hydrologic cycle at the land surface but also

expands the application ofLPJ dynamic global vegetation model.

(2) The model results show that annual soil moisture in the top 50 em layer of soil

has the highest value (about 117 mm) in south China and the lowest value (about 28.3

mm) in west China. Similar to soil moisture, annual ET was over 800 mm in south China,

about 600 mm higher than annual ET in west China (less than 200 mm). Over China as a

whole, both soil moisture and ET tended to decrease from the southeast to the northwest

China, a pattern that highly depends on the spatial variation of temperature and

precipitation in China. Temporally, soil moisture showed a decrease in north China but

an increase in south China over the years 1961-2002. In contrast, annual actual ET

showed an increase in both south China and the Tibetan Plateau of China.

(3) Temperature increase tended to decrease annual soil moisture in west China

and increase annual actual ET in both south China and the Tibetan Plateau of China over

the years 1961-2002. Unlike the temperature, annual soil moisture and actual ET were

positively and linearly correlated with the variation of precipitation in all five regions

over the years 1961-2002. However, the strength of such positive relationship was

stronger in west, north and northeast China than that in south China and the Tibetan

Plateau of China, largely because water is comparatively more limiting in west, north and

northeast China than in south China and in the Tibetan Plateau.

(4) An increase in atmospheric CO2 concentrations tends to decrease actual ET

and in tum increase soil moisture. However, the impacts of changes in atmospheric CO2

concentration are more discernible in south and northeast China where precipitation is

higher than in north, west and the Tibetan Plateau of China where precipitation is low.
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CHAPTER VII

CONCLUSION

The literature synthesis presented in Chapter II indicated that vegetation models

have progressed from static to dynamic and to current coupled multi-objective models.

However, the accuracy of model results is subject to various limitations, including the

structure, assumption and parameterization of a model, the data used to run a model and

to evaluate model results, the potential weakness of map comparison approaches for

model evaluation, and the scaling issues in model simulation. To address these

limitations, the potential strategies include (1) the development of structural and coupled

dynamic vegetation models that can include as many of the factors as possible that have

important roles in vegetation's structure and function, and in the cycling of carbon,

nitrogen and water in terrestrial vegetation, (2) the improvement of model input and

validation data, and (3) the promotion of the approaches for model evaluation and for

analyzing the sensitivity and uncertainty of model results.

Through a sequence of experiments, Chapter III confirmed that the accuracy

assessment of model results is sensitive to input climate data, to the selection of observed

validation data, and to the choice of map comparison approaches. These sensitivities can

result from the difference in vegetation tolerances of different types to climate change,

the variation of monthly-mean climatologies of different length, the temporal mismatches

between the data used to run a model and that used to evaluate model results, and the

strength or weakness of different comparison approaches used to compare simulated and

observed vegetation. Therefore, in model-based research, researcher must consider these

particular factors that may lead to the uncertainty of model results. For example, the

results of Chapter III indicated that the use of a 30-year monthly-mean climatology from

the years immediately preceding the time that the observed data are recorded produces
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the best simulation by BIOME4 of the current vegetation for Asia. The results of this

study can help model users in designing experimental protocols for simulating vegetation.

As mentioned above, existing approaches for comparing or evaluating model

results have their own strength and weakness. A correct comparison or evaluation

requires that the weakness of selected approach be minimized. Chapter IV developed the

01 index for quantifying the agreement between two simulation results. Two model

simulations could be similar in most grid cells but distinct from each other in just a few,

producing outliers that could unduly affect the agreement analysis of two model results if

the correlation coefficient is used for such an analysis, owing to the well-known

sensitivity of the correlation coefficient to outliers and influential data. In contrast,

chapter IV demonstrated that the 01 index is more resistant to outliers and influential

data. As a result, it can in some cases quantify the agreement between two simulation

results more robustly than the correlation coefficient. In addition, the results of this study

indicated that the 01 index provides researchers with multiple and flexible ways to

compare two simulations results.

NPP is a key component in soil-vegetation-atmosphere systems and affects the

cycling of carbon, water and nutrients between the biosphere and the atmosphere. Because

the rates of photosynthesis and respiration ofplants are sensitive to changes in environmental

conditions, climate change can trigger changes in terrestrial NPP. Therefore, the climate

sensitivity of terrestrial NPP has implications for understanding various feedbacks in soil­

vegetation-atmosphere systems. Chapter V modified an empirical model to analyze the

effects ofhistorical climate variation on terrestrial NPP in China. The results of this study

indicated that the sensitivity ofterrestrial NPP in China to the historical climate variation

differed from one region to another because of the spatial heterogeneity ofprevailing climate

conditions and human activities among different regions. In more detail, the results of this

study revealed that the variability ofNPP in the north-west arid zone and in the Tibetan

Plateau frigid zone of China was mainly correlated with climatic variation. In contrast,

climatic variation and human activities jointly controlled the NPP dynamics in the east

monsoon zone ofChina.
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Soil moisture and actual evapotranspiration (ET) are two other key components of

soil-vegetation-atmosphere systems and influence many important processes linking the

biosphere and the atmosphere. Dynamic vegetation models of high sophistication have

illustrated their general ability to simulate various mechanisms, such as water balance, in

soil-vegetation-atmosphere systems. However, they still may not correctly simulate

vegetation at the regional scale because of their inadequacy in incorporating important

factors controlling terrestrial vegetation, and so simulations of the surface water balance

will be only as good as the vegetation simulations. Also, the results from such

applications should also be sensitive to the direct and indirect effects of C02 in order to

correctly simulate the relative importance of climate and atmospheric composition on

hydrological processes. To address these issues, Chapter VI developed the LH model

that used prescribed (as opposed to simulated) vegetation and CO2 (along with the usual

soils and climate data). This model was developed by modifying LPJ dynamic global

vegetation model, and was applied as a case study for China. The evaluation of the LH

model using observed data sets demonstrated that LH can accurately simulate soil

moisture, actual ET and surface runoff at the land surface. The results of this study also

indicated that the spatial pattern of soil moisture and actual ET in China decreases

spatially from the southeast to the northwest China, a pattern that matches the spatial

pattern of temperature and precipitation change in China. In depth, the study shows that

the impacts of temperature on soil moisture and actual ET are confined to annul

precipitation. In areas where annual precipitation is less than 500 mm, the effects of

changes in annual temperature on soil moisture and actual ET are negligible. Increase in

atmospheric CO2concentration tends to decrease actual ET by inducing stomatal closure,

thus increasing soil moisture.
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APPENDIX A

THE ALGEBRA OF THE OPPOSITE AND IDENTITY (01) INDEX

Assume that a and b refer to two sets of time-series simulations. Let vector ai,j

and bi'i (i =1,2, ... ,m; j =1,2 ... ,n) be the simulated anomalies of an ecological variable

in grid cell i at time-step j, where m and n are the total numbers of grid cells and

time-steps respectively. Let ci,i be the vector sum of ai,j and bi,i' and ai,i be the acute

angle between the vector sum c.. and the identity axis. Thus, the magnitude of c.. and
',J ',J

the acute angle a . are calculated through the following equations:
',J

Ic. ·1 = la.. 1
2 +Ib..12 i = 1,2, ... ,m; J' = 1,2, ... ,n',J ',J ',J

(1)

fJ · . - 45.0
' •.1

45.0 - fJ· .
1,.1

Ai + 45.0

135.0-fJ· .1,.1

45.0

0.0

if a..b. . > 0 & la··1 > lb. ·11•.1 1,.1 1,.1 1,.1

if a.b. . > 0 & la. ·1:::; lb. ·11,.1 1,.1 ' •.1 I,J

if a .b. . < 0 & la. ·1 < lb. ·11,./ J,.I 1,.1 1•.1

if ab . < 0 & la. ·1 ~ Ib ·11• ./ 1 • ./ 1• .1 1,.1

if!a.. !=O&!b.!*O or \a.. j*O&lb··I=oI,J ' •.1 1,./ ' •.1

if la ·1 =0 & Ib ·1 =01•./ ' •./

i =1,2, ... ,m (2)

j=1,2, ... ,n

where Pi,i =cos-
1
(Ibi,i I/lci,.i I) ,and laJ and Ibi,il are the magnitudes of vector ai,i and

bi'i respectively. The "if expression" in equation 2 suggests that the calculation of ai,i

depends on both the directions and magnitudes of vector a. . and b. ..
',J ',J

Given that all resultant vectors c.. (i = 1,2, ... ,m; j = 1,2, ... ,n) start from the
',J

same tail (the origin in the Cartesian plane) with the direction determined by the acute

angle ai,.i' we can put them in a tr~nsformed coordinate plane for further analysis (see an

example in Figure 1 below).
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Opposite Axis

11.',11231
,.,. .. ,

-- ,
,,

_ /11.',112)

Identity Axis

Figure A.1 An example: using a transfonned coordinate plane for integrating three
resultant vectors c.. (J' =1,2,3) in gn'd cell i. c.. is the vector sum of a. . and b..

',J ',J ',J ',J

(J' =1,2,3). a. . and b. . represents the simulated anomalies of an "ecological variable in
'.J ',J

the grid cell i and at time-step j respectively. ,,1,;,(12) is the vector sum of c;,J and C;,2'

and 0;,(12) is the acute angle between the vector sum ,,1,;,(12) and the identity axis. ,,1,;,(123) is

the vector sum of C;,I' C;,2 and C;,3' and 0;,(123) is the acute angle between the vector sum

,,1,;,(123) and the identity axis.

Let vector A; be the vector sum of all vectors C;,j (j =1,2, ... ,n) in grid cell i

and 0; be the angle between the vector sum A; and the identity axis. By the Pythagorean

Theorem, the magnitude of A; and 8; are expressed by the following equations:

n n

1,,1,.1= ("Ic. ·Icosa .)2+("lc.. Isina.. )2 i=1,2, ... ,m
I L...J ',) I,} L...J I,} I,l

j=1 j=1

n n

0. =tan-I ("Ic. ·1 sina. .1"lc. ·1 cos a.. ) i =1,2, ... ,m
I L...J I,} I,} L...J I,} I,J

j=1 .i=1

In theory, the size of 8; reflects the integrated difference between two sets of

simulated anomalies in grid cell i and at all time. Thus, the opposite and identity (01)

index of two simulations results in grid cell i and at all time is defined as:

01; =1- 0; 190.0° i =1,2, ... ,m

(3)

(4)

(5)



121

To analyze the overall agreement between two simulation results, let vector A be

the vector sum of all vectors Ci,j (i =1,2, .. " m; j =1,2, ... ,n) and B be the angle between

the vector sum A and the identity axis, According to the Pythagorean Theorem again, the

magnitude of A and the acute angle B are expressed as:

m n m n

IAI = (""Ic. ·Icosa.. )2 +(""Ic.. Isina.. )2L..L.. 1,./ ' •./ L..L.. ' ../ 1,./
i=! j=1 i=1 j=1

m n m n

B= tan-I (" "Ic. ·Isina. .1" "Ic. ·Icosa.. )L..L.. 1,./ 1,./ L..L.. 1,./ 1,./
i=1 j=1 i=1 j=l

(6)

(7)

Similarly, the size of B reflects the overall difference between two sets of

simulated anomalies in the whole study area or in a given biome (when m represents the

number of grid cells for a given biome) and at all time. Thus, the overall 01 (001) index

of two simulation results is defined as:

001 =1- B190.0°

The equation 6 and 7 can be transformed into the following expressions by

keeping the time-step j variable:

m m

IAjl = (LICi,j Icosai.j)2 + (Lhjlsinai,j)2 j =1,2, ... ,n
i=! i=1

m m

B. = tan-1("Ic. ·Isina.. l"lc. ·Icosa.. ) J' = 1,2, ... ,n./ L.. 1,./ 1,./ L.. 1,./ 1,./
i=l i=l

(8)

(9)

(10)

where A./. is the vector sum of all vectors c.. (i=1,2, ... ,m) at time j, B. refers to the
1,./ ./

angle between the vector sum A,. and the identity axis. The size of B. reflects the
./ ./

difference between two sets of simulated anomalies at time-step j. Correspondingly, the

01 index of two simulation results at time-step j is defined as:

Olj =1-Bj I90.0° j=1,2, ... ,n (11)
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FORTRAN90 subroutine for calculating the 01 index at a grid cell and at all
time for equation 5

Subroutine OUndex(N,X,Y,OI,R)
! the meanings of input,output and local variables::
! n--the number of data points (or time-steps) in each of compared datasets
! x--input datasets x or simulated time-series values from one model
! y--input datasets y or simulated time-series values from another model or observation
! Ol-the opposite and identity index
! R--Pearson correlation coefficient
! xl--the length of the vector sum based on dataset x
! yl--the lenght of the vector sum based on dataset y
! xmean--the mean of dataset x
! ymean--the mean of dataset y

dev1--the deviation of each individual value in dataset x from xmean
dev2--the deviation of each individual value in dataset y from ymean
angle--the acute anagle between the final vector sum and the defined identity axis
magnitude--the length of the vector sum of two compared anomalies
degree--the acute anagle between the vector sum of two compared anomlies and the
defined identity axis

Implicit none
! input variables
integer,intent(in) :: n
real*4,intent(in),dimension(n) :: x,y
! output variables
real*4,intent(out) :: OI,R
! local variables
integer :: i,j,m,yr,status
real*4,allocatable,dimension(:):: degree,magnitude,dev1 ,dev2
real*4 :: xmean,ymean,xl,yl,angle
! local variables used to calculate Pearson's coefficient
real,dimension(n) :: xdevydev,Sxdev,Sydev
real :: Sxdevydev,SSxdev,SSydev

allocate(degree(n),stat=status); allocate(magnitude(n),stat=status)
allocate(dev1(n),stat=status); allocate(dev2(n),stat=status)
xmean=sum(x)/(n*1.0); ymean=sum(y)/(n*1.0)

! Calculating the acute angel between two compared anomlies
do yr=1,n

dev1 (yr)=(X(yr)-xmean)
dev2(yr)=(Y(yr)-ymean)
magnitude(yr)=sqrt(dev1 (yr)**2+dev2(yr)**2)

if (dev2(yr).ne.0.0.and.dev1 (yr).ne.O.O) then
if (dev1 (yr)*dev2(yr).gt.0.0 .and. abs(dev1 (yr)).gt.abs(dev2(yr))) then

degree(yr)=acosd(abs(dev2(yr))/magnitude(yr))-45.0
elseif(dev1 (yr)*dev2(yr).gt.0.0 .and. abs(dev1 (yr)).le.abs(dev2(yr))) then

degree(yr)=45.0-acosd(abs(dev2(yr))/magnitude(yr))
elseif(dev1 (yr)*dev2(yr).1t.0.0 .and. abs(dev1 (yr)).It.abs(dev2(yr))) then

degree(yr)=acosd(abs(dev2(yr))/magnitude(yr))+45.0
elseif(dev1 (yr)*dev2(yr).1t.0.0 .and. abs(dev1 (yr)).ge.abs(dev2(yr))) then
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degree(yr)=135.0-acosd(abs(dev2(yr))/magnitude(yr))
endif

elseif(dev2(yr).eq.O.O.and.dev1 (yr).eq.O.O) then
degree(yr)=O.O

else
degree(yr)=45.0

endif
enddo

! Calculating the mangitude of the final vector sum from two compared datasets X and Y
xl=O.O;yl=O.O
do i=1,n

xl=cosd(degree(i))*magnitude(i)+xl
yl=sind(degree(i))*magnitude(i)+yl

enddo

! Calculating the acuate angle between the final vector sum and the defined identity axis
If(xl.eq.O .and. yl.ne.O ) then

angle=90
elseif(xl.ne.O .and.yl.eq.O) then

angle=O
elseif(xl.ne.O..and.yl.ne.O) then

angle=atand(yl/xl)
endif
! Calcualting the 01 index
01=1-angle/90.0

! Calculate Pearson's correlation coefficient (r)
Sxdevydev=O.O; SSxdev=O.O; SSydev=O.O
do i=1 ,n

xdevydev(i) = dev1 (i)*dev2(i)
Sxdevydev = Sxdevydev+xdevydev(i)
Sxdev(i) = dev1 (i)**2
Sydev(i) = dev2(i)**2
SSxdev = SSxdev+Sxdev(i)
SSydev = SSydev+Sydev(i)

enddo
r=Sxdevydev/sqrt(SSxdev*SSydev)

deallocate(degree,stat=status)
deallocate(magnitude,stat=status)
deallocate(dev1,stat=status)
deallocate(dev2,stat=status)

end subroutine OUndex

l\Iote: To calculate the overall 01 index for a given biome or plant functional type (see equation 8
in S1), the user need to modify the dimesion of relatvant vriables from one to two. Please feel free
to contact the author by gtang1 @uoregon.edu for any question, comment and requirement.
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APPENDIXB

CONIPARISON BETWEEN THE 01 INDEX AND THE CORRELATION

COEFFICIENT

The basic concepts underlying the 01 index and the Pearson correlation

coefficient are somewhat similar, because both are based on the means of two datasets

and the deviation of each value in the two datasets from these means. Taking the 001

index (see equation 2) as an example, let a. . and b. . be the deviations of A. J' and B,. J'
t,J I,} I"

from the means of datasets A and B , respectively. Let point P (Figure 2) be a random

sample of the points (ai •j , bi •j ) derived from datasets A and B . The coordinates ofP are

OL=ai,j and LP=bi,J' Let the perpendicular distance PM be denoted by di.j , and the

acute angle between OP and the line b. . = a. . be denoted by a ,' J' • Thus, it is seen thatIJ IJ ,

(Jackson, 1924):

(b .. -a.. )d = I,J I,J

i,j .fi (12)

Because of the fact that: OP = ~a;'j + bi~j = !ci,j I ' where \ci,j 1 is the magnitude of

vector c.. ,whichisthevectorsumofa.. and b.. ; PM=lc. ·I*sina.. =d.. andI,J I,J I,J I,J I,J l,J

OM = Ic. ·1 *cosa.. = ~Op2 _d2
. = ~a~. +b2

. _d2
. • Thus, the equation 8 can be

I,J I,J I,J I,J I,J I,J

transformed into the following expression:

001 =l-tan-l(~~d .. /~~~a2. +b~. -d~.)/90.00L..J L..J I,J L..J L..J I,J l,J l,J
i=l j=l i=1 j=l

By introducing equation 12, the equation 13 can be further transformed into:

m n m n

001 =1-tart-1(""(b.. -a.. )/""(b.. +a.. ))/90.0°L..J L..J I,J I,J L..J L..J I,J I,J
i=l j=l i=l j=l

(13)

(14)

According to Jackson (1924), the correlation (r) is mathematically expressed as:



r=

m n

l-(LL(bi,j -ai,)2/(2m* n))
i=1 j=l

m n

-l+(LL(bi,j +ai,j)2/(2m*n))
i=l j=1

a..b.. <0
.,J 1,J

125

(15)

0.50
o~

1.0
(a)

Identity Axis c 0045
(b) 0' 0.8

c 0 0",0

.g 'fi; 0040 qf 0.6 .....
ttl '> 'b~ c

.;::
~ 0.35 OA'~ttl 0/0>
~0.30

~o ~
"0 0.2 ~<1J ~ !"..... u
~ ~ 0.25 ~ 0.0 C
:::l « ",,<I 0
E • -0.2 'fi;
Vi /~ .~ 0.20 .-.. ..

// <1J • . . .. Qj

.0/' ~ 0.15 • -, -004 g
'/Y'// OJ • . ·1 u

~ 0.10 -0.6
/ /0

/ i5 0.05 ;1lP -0.8
/

L
,;S

0 -1.0

Simulated Variation 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
01 Index

Figure B.t (a): For any point P, the 01 index depends on the measure of the acute angle
a and the correlation is associated with the perpendicular distance PM. (b): the
relationship (as shown by the dashed line) between the 01 index and the correlation, and
the relationship (as shown by the solid black curve) between the 01 index and the
difference in the averaged deviations of two compared datasets from their corresponding
means. Each data point in (b) is based on two sets of data points that are randomly
created with values between 0 and 1. The number of data points in each dataset is 16.



126

APPENDIXC

SELECTED NPP INVENTORY DATA FOR DETERMINING THE Cmax

IN EACH BlOME

Table C.l Description of selected NPP inventory data for determining the cmax in each of

biomes

Biome types Data sources Location Data description cmax

Tropical forest Zheng et aI., (2003) Asia NPP for multi-biomes 0.67
Temperate forest Zheng et aI., (2003) Asia NPP for multi-biomes 0.56
Boreal forest Zheng et aI., (2003) Asia NPP for multi-biomes 0.82

Temperate Togtohyn & Ojima, Mongolia NPP grassland for 1982-1990
herbaceous (1996) China NPP grassland for 1980-19890.46

Xiao & Ojima, (1996) China NPP grassland for 1981-1990
Xiao & Ojima, (1999)

Tropical Pandey & Singh, (1997)India NPP grassland for 1986-19890.64
herbaceous

Data sources:

Pandey, C.B. & Singh, J.S. (1997) NPP Grassland: Vindhyan, India, 1986-1989. Data set.
Available on-line [http://www.daac.omI.gov] from Oak Ridge National Laboratory
Distributed Active Archive Center, Oak Ridge, Tennessee, U.S.A.

Togtohyn, C. & Ojima, D. (1996) NPP Grassland: Tumentsogt, Mongolia, 1982-1990.
Data set. Available on-line [http://www.daac.omI.gov] from Oak Ridge National
Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, U.S.A.

Xiao, X.M. & Ojima, D. (1999) NPP Grassland: Tumugi, China, 1981-1990. Data set.
Available on-line [http://www.daac.omI.gov] from Oak Ridge National Laboratory
Distributed Active Archive Center, Oak Ridge, Tennessee, U.S.A.

Xiao, X.M., Chen, D., Peng, Y.M., Cui, X.Y. & Ojima, D.S. (1996) Observation and
modeling of plant biomass of meadow steppe in Tumugi, Xingan league, Inner
Mongolia, China. Plant Ecology, 127, 191-201.

Zheng, D.L., Prince, S.D. & Wright, R. (2003) Terrestrial net primary production
estimates for 0.5 degree grid cells from field observations-a contribution to global
biogeochemical modeling. Global Change Biology, 9,46-64.
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APPENDIXD

THE LOW AND HIGH TEMPERATURE LIMITS FOR CO2 UPTAKE

AND THE OPTIMUM PHOTOSYNTHETICAL TEMPERATURE

Table D.I The temperature limits for CO2 uptake and the temperature optimum for
photosynthesis

PFTs simulated by LPJ
Tropical broad-leaved evergreen woody (TrBE)
Tropical broad-leaved raingreen woody (TrBR)
Temperate needle-leaved evergreen woody (TeNE)
Temperate broad-leaved evergreen woody (TeBE)
Temperate broad-leaved summergreen woody (TeBS)
Boreal needle-leaved evergreen woody (BoNE)
Boreal needle-leaved summergreen woody (BoNS)
Boreal broad-leaved summergreen woody (BoBS)
Temperate herbaceous (TeH)
Tropical herbaceous (TrH)

2.0 25.0 30.0 55.0
2.0 25.0 30.0 55.0
-4.0 20.0 30.0 42.0
-4.0 20.0 30.0 42.0
-4.0 20.0 25.0 38.0
-4.0 15.0 25.0 38.0
-4.0 15.0 25.0 38.0
-4.0 15.0 25.0 38.0
-4.0 10.0 30.0 45.0
6.0 20.0 45.0 55.0

Data source: Sitch, S., Smith, R, Prentice, I.C., Ameth, A., Bondeau, A., Cramer, W.,
Kaplan, J.O., Levis, S., Lucht, W., Sykes, M.T., Thonicke, K. & Venevsky, S. (2003)
Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the
LPJ Dynamic Global Vegetation Model. Global Change Biology, 9, 161-185.
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