Table of Contents

SECTION 1 GENERAL CONSTRUCTION REQUIREMENTS & ADMINISTRATIVE PROVISIONS

101.1.00 AVAILABILITY

101.1.01 Reference to Standards

101.2.00 INTENT

101.2.01 Intent of Public Works Standards

101.2.02 Order of Precedence

101.3.00 SCOPE

101.4.00 DEFINITIONS

101.5.00 CONTROL OF PUBLIC WORKS PROJECTS

101.6.00 DEVELOPMENT PROCESS REQUIREMENTS

101.6.01 Pre-Application Conference

101.6.02 Plan Check and Permits

101.6.03 Plan Check Requirements

101.6.04 Plan Review

101.6.05 Record Drawings, Maps, and Plans Not Guaranteed

101.6.06 Permit and Assurances

101.6.07 Insurance Requirements

101.6.08 Indemnification

101.7.00 CONSTRUCTION PROCEDURAL REQUIREMENTS

101.7.01 General Procedure and Requirements

101.7.02 Testing of Construction

101.7.03 Right of Entry to Work

101.7.04 Suspension of Work

101.7.05 Protection of Existing Facilities

101.7.06 Protection of Property

101.7.07 Surveying and Land Monuments

101.7.08 Railroad Crossings

101.7.09 Criteria for Stream-Road Crossings
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>101.8.00</td>
<td>CONSTRUCTION</td>
<td>34</td>
</tr>
<tr>
<td>101.8.01</td>
<td>Construction Commencement</td>
<td>34</td>
</tr>
<tr>
<td>101.8.02</td>
<td>Scheduling</td>
<td>35</td>
</tr>
<tr>
<td>101.8.03</td>
<td>City Inspection</td>
<td>36</td>
</tr>
<tr>
<td>101.8.04</td>
<td>Change in Plans or Standards</td>
<td>37</td>
</tr>
<tr>
<td>101.8.05</td>
<td>Interferences and Obstructions</td>
<td>37</td>
</tr>
<tr>
<td>101.8.06</td>
<td>Contaminated Soil</td>
<td>37</td>
</tr>
<tr>
<td>101.8.07</td>
<td>Guarantee</td>
<td>38</td>
</tr>
<tr>
<td>101.8.08</td>
<td>Substitution of Materials</td>
<td>38</td>
</tr>
<tr>
<td>101.8.09</td>
<td>Safety Requirements</td>
<td>39</td>
</tr>
<tr>
<td>101.8.10</td>
<td>Traffic Maintenance and Safety</td>
<td>39</td>
</tr>
<tr>
<td>101.8.11</td>
<td>Access for Police, Fire, and Postal Service</td>
<td>40</td>
</tr>
<tr>
<td>101.8.12</td>
<td>Compliance with Applicable Laws</td>
<td>40</td>
</tr>
<tr>
<td>101.8.13</td>
<td>Work in Public Rights-of-Way</td>
<td>41</td>
</tr>
<tr>
<td>101.8.14</td>
<td>Easements</td>
<td>41</td>
</tr>
<tr>
<td>101.8.15</td>
<td>Sanitation</td>
<td>42</td>
</tr>
<tr>
<td>101.8.16</td>
<td>Preservation, Restoration, and Cleanup</td>
<td>42</td>
</tr>
<tr>
<td>101.8.17</td>
<td>Project Closeout</td>
<td>43</td>
</tr>
<tr>
<td>101.9.00</td>
<td>ENVIRONMENTAL PROTECTION, EROSION PREVENTION, AND SEDIMENT CONTROL</td>
<td>45</td>
</tr>
<tr>
<td>101.9.01</td>
<td>Introduction</td>
<td>45</td>
</tr>
<tr>
<td>101.9.02</td>
<td>Contaminated Soils or Hazardous Materials</td>
<td>45</td>
</tr>
<tr>
<td>101.9.03</td>
<td>General Policy</td>
<td>45</td>
</tr>
<tr>
<td>101.9.04</td>
<td>Erosion Prevention and Sediment Control</td>
<td>46</td>
</tr>
<tr>
<td>101.9.05</td>
<td>Maintenance</td>
<td>51</td>
</tr>
<tr>
<td>101.9.06</td>
<td>Inspection</td>
<td>51</td>
</tr>
<tr>
<td>SECTION 2</td>
<td>STREET IMPROVEMENT DESIGN & CONSTRUCTION STANDARDS</td>
<td>52</td>
</tr>
<tr>
<td>201.1.00</td>
<td>ENGINEERING</td>
<td>52</td>
</tr>
<tr>
<td>201.1.01</td>
<td>Introduction</td>
<td>52</td>
</tr>
<tr>
<td>201.1.02</td>
<td>Alternative Design and Construction Standards</td>
<td>52</td>
</tr>
<tr>
<td>201.1.03</td>
<td>General Requirements</td>
<td>52</td>
</tr>
<tr>
<td>201.1.04</td>
<td>Street Plans</td>
<td>53</td>
</tr>
<tr>
<td>201.1.05</td>
<td>Surveying</td>
<td>55</td>
</tr>
<tr>
<td>201.2.00</td>
<td>STREET DESIGN</td>
<td>56</td>
</tr>
<tr>
<td>201.2.01</td>
<td>Subgrade Evaluation</td>
<td>56</td>
</tr>
<tr>
<td>201.2.02</td>
<td>Subsurface Drainage</td>
<td>57</td>
</tr>
<tr>
<td>201.2.03</td>
<td>Structural Section</td>
<td>57</td>
</tr>
<tr>
<td>201.2.04</td>
<td>Asphalt Pavement Design</td>
<td>58</td>
</tr>
<tr>
<td>201.2.05</td>
<td>Portland Cement Concrete Design</td>
<td>58</td>
</tr>
<tr>
<td>201.2.06</td>
<td>Pavement Transition - Portland Cement Concrete to Asphalt</td>
<td>59</td>
</tr>
<tr>
<td>201.2.07</td>
<td>Pavement Overlay Design .. 59</td>
<td></td>
</tr>
<tr>
<td>201.2.08</td>
<td>Horizontal Alignment .. 59</td>
<td></td>
</tr>
<tr>
<td>201.2.09</td>
<td>Vertical Alignment ... 60</td>
<td></td>
</tr>
<tr>
<td>201.2.10</td>
<td>Transitions .. 62</td>
<td></td>
</tr>
<tr>
<td>201.2.11</td>
<td>Superelevation Cross-Sections .. 63</td>
<td></td>
</tr>
<tr>
<td>201.2.12</td>
<td>Intersections .. 63</td>
<td></td>
</tr>
<tr>
<td>201.2.13</td>
<td>Cul-de-Sacs, Eyebrows, Turnarounds ... 64</td>
<td></td>
</tr>
<tr>
<td>201.2.14</td>
<td>Stub Streets .. 65</td>
<td></td>
</tr>
<tr>
<td>201.2.15</td>
<td>Half-Streets .. 65</td>
<td></td>
</tr>
<tr>
<td>201.2.16</td>
<td>Private Streets ... 65</td>
<td></td>
</tr>
<tr>
<td>201.2.17</td>
<td>Raised Medians .. 66</td>
<td></td>
</tr>
<tr>
<td>201.2.18</td>
<td>Transit Turnout Design .. 66</td>
<td></td>
</tr>
<tr>
<td>201.2.19</td>
<td>Sight Distance ... 67</td>
<td></td>
</tr>
<tr>
<td>201.2.20</td>
<td>Driveways .. 68</td>
<td></td>
</tr>
<tr>
<td>201.2.21</td>
<td>Curbs and Grading ... 69</td>
<td></td>
</tr>
<tr>
<td>201.2.22</td>
<td>Sidewalks ... 70</td>
<td></td>
</tr>
<tr>
<td>201.2.23</td>
<td>Bikelanes ... 71</td>
<td></td>
</tr>
<tr>
<td>201.2.24</td>
<td>Guardrails .. 71</td>
<td></td>
</tr>
<tr>
<td>201.2.25</td>
<td>Roadside ditches .. 71</td>
<td></td>
</tr>
<tr>
<td>201.2.26</td>
<td>Utilities .. 71</td>
<td></td>
</tr>
</tbody>
</table>

201.3.00 MATERIAL SPECIFICATIONS ... 72

201.3.01	Granular Fill ... 72
201.3.02	Asphalt Concrete .. 73
201.3.03	Portland Cement Concrete .. 74

201.4.00 CONSTRUCTION SPECIFICATIONS .. 74

201.4.01	General Provisions ... 74
201.4.02	Scheduling .. 74
201.4.03	Environmental Protection, Erosion Prevention, and Sediment Control.... 74
201.4.04	Interferences and Obstructions .. 74
201.4.05	Contaminated Soil or Hazardous Material 74
201.4.06	Trench Excavation, Preparation, and Backfill 74
201.4.07	Steel Plates .. 75
201.4.08	Preservation, Restoration, and Cleanup .. 75

201.5.00 WORKMANSHIP ... 75

201.5.01	Demolition .. 75
201.5.02	Clearing and Grubbing ... 75
201.5.03	Subgrade .. 75
201.5.04	Base and Leveling Course .. 76

201.6.00 CONSTRUCTION PROCEDURE ... 76

201.6.01	Asphalt Pavement ... 76
201.6.02	Portland Cement Concrete Pavement .. 77
201.6.03	Sidewalks .. 77
201.6.04 Weather Conditions ... 78
201.6.05 Protection of Structures ... 78
201.6.06 Excess Materials and Trench Settlement Repair 79
201.6.07 Rock Surfacing ... 79

201.7.00 SURFACE RESTORATION ... 79
 201.7.01 Scope .. 79
 201.7.02 Asphalt Concrete Replacement .. 79
 201.7.03 Asphalt Restoration for Streets Listed on 5-Year Moratorium 80
 201.7.04 Portland Cement Concrete Replacement 80

201.8.00 STREET NAMES AND TRAFFIC CONTROL SIGNAGE AND
 STRIPING .. 81
 201.8.01 Street Name Signs and Posts ... 81
 201.8.02 Traffic Control Signage and Striping 82

201.9.00 LIGHTING .. 82

201.10.00 STREET ACCEPTANCE POLICY ... 82
 201.10.01 Legal Recordings ... 82
 201.10.02 Project Completion .. 83
 201.10.03 Maintenance Period ... 83

SECTION 3 STORMWATER & SURFACE WATER DESIGN AND
 CONSTRUCTION STANDARDS .. 84

301.1.00 ENGINEERING .. 84
 301.1.01 Introduction .. 84
 301.1.02 Alternative Design and Construction Standards 84
 301.1.03 Extension of Public Storm Sewer Systems 84
 301.1.04 Drainage Plans .. 85
 301.1.05 Storm Systems and Fish Passage 87
 301.1.06 Surveying ... 87
 301.1.07 Hydrologic Analysis ... 88

301.2.00 HYDRAULIC ANALYSIS ... 88
 301.2.01 General .. 88
 301.2.02 Hydraulic Design .. 88
 301.2.03 Design Criteria .. 89
 301.2.04 System Design Considerations ... 90
 301.2.05 Review of Downstream System .. 90
 301.2.06 Conveyance System Hydraulic Standards 91
 301.2.07 Catch Basin System Standards ... 92

301.3.00 HYDROLOGY AND HYDRAULICS 92
301.8.00 CULVERT DESIGN STANDARDS ... 125
 301.8.01 Application ... 125
 301.8.02 Hydraulic Design ... 125
 301.8.03 Headwater .. 125
 301.8.04 Inlet ... 126
 301.8.05 Outlets .. 126
 301.8.06 Inlet Control Analysis .. 126
 301.8.07 Outlet Control Analysis ... 126
 301.8.08 Outfall Design Standards ... 126

301.9.00 STORM MANHOLE AND PIPE DESIGN STANDARDS 127
 301.9.01 Manhole Design ... 127
 301.9.02 Storm Pipe Design ... 128
 301.9.03 Distance Between Structures .. 130
 301.9.04 Access ... 130
 301.9.05 Headwalls .. 130
 301.9.06 Trash Racks or Debris Barriers ... 130
 301.9.07 Drain Inlet Design Standards .. 131

301.10.00 MATERIAL AND TECHNICAL SPECIFICATIONS 132
 301.10.01 Manholes and Structures .. 132
 301.10.02 Catch Basins and Inlets ... 137
 301.10.03 Stormwater Pipe and Fittings .. 138

301.11.00 CONSTRUCTION SPECIFICATIONS 144
 301.11.01 General Provisions ... 144
 301.11.02 Scheduling .. 144
 301.11.03 Environmental Protection, Erosion Prevention, Sediment Control ... 144
 301.11.04 Interferences and Obstructions ... 145
 301.11.05 Contaminated Soil or Hazardous Material 145
 301.11.06 Trench Excavation, Preparation, and Backfill 145
 301.11.07 Preservation, Restoration, and Cleanup 145
 301.11.08 Bores ... 145

301.12.00 TESTING PROCEDURES ... 146
 301.12.01 General ... 146
 301.12.02 Line Cleaning .. 146
 301.12.03 Deflection Test for Flexible Pipe 147
 301.12.04 Video Inspection of Gravity Systems 147

301.13.00 WARRANTIES AND ACCEPTANCE 148
 301.13.01 Stormwater and Surface Water Acceptance Policy 148
 301.13.02 Landscaping Inspection for Warranty 148
SECTION 4 SANITARY SEWER DESIGN AND CONSTRUCTION STANDARDS .. 150

401.1.00 ENGINEERING .. 150
401.1.01 Introduction .. 150
401.1.02 General Provisions .. 150
401.1.03 Extension of Public Sanitary Sewer Systems .. 150
401.1.04 Sanitary Plans .. 150
401.1.05 Surveying ... 152
401.1.06 Population Density .. 152
401.1.07 Sewage Flow Determination .. 152
401.1.08 Interceptor Required ... 153
401.1.09 Interference with City Sewer System Prohibited .. 153

401.2.00 SANITARY MANHOLE AND PIPE DESIGN STANDARDS 153
401.2.01 Manhole Design ... 153
401.2.02 Sanitary Pipe Design .. 154
401.2.03 Access ... 157

401.3.00 PUMP STATION DESIGN STANDARDS ... 157
401.3.01 General Provisions .. 157
401.3.02 Report .. 158
401.3.03 Administration ... 159
401.3.04 General Design ... 161
401.3.05 Operation and Maintenance Manual ... 163

401.4.00 MATERIAL AND TECHNICAL SPECIFICATIONS 164
401.4.01 Manholes and Structures .. 164
401.4.02 Gravity Sewer Pipe .. 168
401.4.03 Pressure Mains ... 176

401.5.00 CONSTRUCTION SPECIFICATIONS ... 177
401.5.01 General Provisions .. 177
401.5.02 Scheduling .. 177
401.5.03 Environmental Protection, Erosion Prevention, and Sediment Control.. 177
401.5.04 Interferences and Obstructions ... 178
401.5.05 Contaminated Soil or Hazardous Material .. 178
401.5.06 Trench Excavation, Preparation, and Backfill ... 178
401.5.07 Preservation, Restoration, and Cleanup ... 178
401.5.08 Bores .. 178

401.6.00 TESTING PROCEDURES .. 178
401.6.01 General ... 178
401.6.02 Gravity System Testing .. 179
401.6.03 Manhole Testing .. 185
401.6.04 Pressure Main Testing ... 186
SECTION 5 WATER SYSTEM DESIGN, CONSTRUCTION STANDARDS 189

501.1.00 ENGINEERING ... 189
- 501.1.01 Introduction ... 189
- 501.1.02 Extension of Public Water Systems 189
- 501.1.03 Water Plans ... 189
- 501.1.04 Surveying ... 190

501.2.00 DESIGN GUIDELINES .. 191

501.3.00 OPERATION OF VALVES IN CITY 193

501.4.00 MATERIALS AND TECHNICAL SPECIFICATIONS - DUCTILE
IRON PIPE AND FITTINGS ... 193
- 501.4.01 Joints ... 193
- 501.4.02 Mechanical Joint Fittings .. 193
- 501.4.03 Push-On Ductile Iron Pipe ... 193
- 501.4.04 Flanged Ductile Iron Fittings 193
- 501.4.05 Gaskets ... 194
- 501.4.06 Mechanical Couplings .. 194

501.5.00 CONSTRUCTION SPECIFICATIONS 194
- 501.5.01 General Provisions .. 194
- 501.5.02 Scheduling ... 194
- 501.5.03 Environmental Protection, Erosion Prevention, and Sediment Control .. 194
- 501.5.04 Interferences and Obstructions 194
- 501.5.05 Contaminated Soil or Hazardous Material 195
- 501.5.06 Trench Excavation, Preparation, and Backfill 195
- 501.5.07 Preservation, Restoration, and Cleanup 195

501.6.00 DUCTILE IRON PIPE—INSTALLATION 195
- 501.6.01 Suitable Conditions for Laying Pipe 195
- 501.6.02 Handling ... 195
- 501.6.03 Cleaning Pipe and Fittings ... 195
- 501.6.04 Placing Pipe in Trench .. 197
- 501.6.05 Cutting Pipe .. 197
- 501.6.06 Permissible Deflection of Joints 198
- 501.6.07 Alignment ... 198
- 501.6.08 Anchorage and Restraint .. 198
<table>
<thead>
<tr>
<th>Code</th>
<th>Section Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>501.6.09</td>
<td>Construction of Blow-offs</td>
</tr>
<tr>
<td>501.6.10</td>
<td>Locating Wire Specifications</td>
</tr>
<tr>
<td>501.7.00</td>
<td>VALVES AND VALVE BOXES</td>
</tr>
<tr>
<td>501.7.01</td>
<td>Scope</td>
</tr>
<tr>
<td>501.7.02</td>
<td>Materials</td>
</tr>
<tr>
<td>501.7.03</td>
<td>Workmanship</td>
</tr>
<tr>
<td>501.8.00</td>
<td>FIRE HYDRANTS</td>
</tr>
<tr>
<td>501.8.01</td>
<td>Scope</td>
</tr>
<tr>
<td>501.8.02</td>
<td>Hydrants</td>
</tr>
<tr>
<td>501.8.03</td>
<td>Base Block</td>
</tr>
<tr>
<td>501.8.04</td>
<td>Workmanship</td>
</tr>
<tr>
<td>501.8.05</td>
<td>Location and Position</td>
</tr>
<tr>
<td>501.8.06</td>
<td>Excavation</td>
</tr>
<tr>
<td>501.8.07</td>
<td>Base Rock</td>
</tr>
<tr>
<td>501.8.08</td>
<td>Installation of Hydrants</td>
</tr>
<tr>
<td>501.8.09</td>
<td>Gravel for Drainage</td>
</tr>
<tr>
<td>501.8.10</td>
<td>Thrust Blocking and Restraint</td>
</tr>
<tr>
<td>501.8.11</td>
<td>Thrust Ties</td>
</tr>
<tr>
<td>501.9.00</td>
<td>HYDROSTATIC TESTING AND STERILIZATION OF NEWLY INSTALLED PIPE</td>
</tr>
<tr>
<td>501.9.01</td>
<td>Hydrostatic Testing</td>
</tr>
<tr>
<td>501.9.02</td>
<td>Sterilization</td>
</tr>
<tr>
<td>501.9.03</td>
<td>Point of Application</td>
</tr>
<tr>
<td>501.9.04</td>
<td>Retention Period</td>
</tr>
<tr>
<td>501.9.05</td>
<td>Disposal of Flushing and Sterilizing Water</td>
</tr>
<tr>
<td>501.10.00</td>
<td>WATER SERVICE CONNECTIONS</td>
</tr>
<tr>
<td>501.10.01</td>
<td>Scope</td>
</tr>
<tr>
<td>501.10.02</td>
<td>Hydrostatic Test and Leakage</td>
</tr>
<tr>
<td>501.10.03</td>
<td>Materials</td>
</tr>
<tr>
<td>501.10.04</td>
<td>Workmanship</td>
</tr>
<tr>
<td>501.11.00</td>
<td>WATER LINE ACCEPTANCE POLICY</td>
</tr>
<tr>
<td>501.11.01</td>
<td>Water Line Activation</td>
</tr>
<tr>
<td>501.11.02</td>
<td>Water Line Acceptance</td>
</tr>
<tr>
<td>601.1.00</td>
<td>DEFINITIONS</td>
</tr>
<tr>
<td>601.2.00</td>
<td>MATERIALS</td>
</tr>
<tr>
<td>601.2.01</td>
<td>Trench Foundation</td>
</tr>
</tbody>
</table>
APPENDIX C INFILTRATION REQUIREMENTS, SITE CHARACTERIZATION, SITE SUITABILITY CRITERIA App. 20

C.1.00 INTRODUCTION .. App. 20

C.2.00 SITE CHARACTERIZATION ... App. 20
 C.2.01 Surface Features Characterization .. App. 20
 C.2.02 Subsurface Characterization ... App. 20
 C.2.03 Soil Testing .. App. 20
 C.2.04 Infiltration Rate Determination .. App. 20
 C.2.05 Infiltration Receptor .. App. 20

C.3.00 SITE SUITABILITY CRITERIA ... App. 23
 C.3.01 Setbacks ... App. 23
 C.3.02 Ground Water Drinking Water Protection Areas .. App. 24
 C.3.03 High Vehicle Traffic Areas ... App. 24
 C.3.04 Soil Infiltration Rate/Drawdown Time .. App. 24
 C.3.05 Depth to Bedrock, Water Table, or Impermeable Layer ... App. 24
 C.3.06 Soil Physical and Chemical Suitability for Treatment .. App. 24
 C.3.07 Seepage Analysis and Control ... App. 24
 C.3.08 Impact of Roadway Deicers .. App. 24
 C.3.09 Verification Testing of the Completed Facility ... App. 24

APPENDIX D STORMWATER QUALITY FACILITIES DESIGN App. 27

D.1.00 INTRODUCTION .. App. 27

D.2.00 FILTRATION .. App. 27
 D.2.01 Biofiltration Swale ... App. 27
 D.2.02 Sand Filter .. App. 27

D.3.00 PONDS ... App. 32
 D.3.01 Wet Ponds ... App. 32
 D.3.02 Extended Wet Pond ... App. 32
 D.3.03 Extended Dry Pond ... App. 32

D.4.00 WETLANDS—CONSTRUCTED TREATMENT WETLANDS .. App. 36

D.5.00 INFILTRATION ... App. 38
 D.5.01 Infiltration Trench ... App. 38
 D.5.02 Infiltration Basin ... App. 38

City of Wilsonville
Public Works Standards - 2006

Table of Contents
Page 11
APPENDIX E WATER QUALITY FACILITY LINERS
E.1.00 INTRODUCTION
E.2.00 WATER QUALITY FACILITY LINERS
 E.2.01 General Design Criteria
 E.2.02 Interference With Seasonal Groundwater
E.3.00 WATER QUALITY TREATMENT LINERS
E.4.00 LOW-PERMEABILITY LINER OPTIONS
 E.4.01 Compacted Till Liners
 E.4.02 Clay Liners
 E.4.03 Geomembrane Liners
 E.4.04 Concrete Liners

APPENDIX F City of Wilsonville FORMS
APPENDIX G City of Wilsonville Standard Detail Drawings
Table of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.1</td>
<td>RELATIONSHIP BETWEEN k AND CBR</td>
<td>57</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>DESIGN SPEED / CENTERLINE RADIUS—MINIMUMS</td>
<td>60</td>
</tr>
<tr>
<td>Table 2.3</td>
<td>DESIGN CONTROLS FOR CREST VERTICAL CURVES BASED ON STOPPING SIGHT DISTANCE</td>
<td>61</td>
</tr>
<tr>
<td>Table 2.4</td>
<td>DESIGN CONTROLS FOR SAG VERTICAL CURVES BASED ON STOPPING SIGHT DISTANCE</td>
<td>62</td>
</tr>
<tr>
<td>Table 2.5</td>
<td>MINIMUM TURNING RADII FROM EDGE OF PAVEMENT OR CURB (feet)</td>
<td>64</td>
</tr>
<tr>
<td>Table 2.6</td>
<td>INTERSECTIONAL SIGHT DISTANCE</td>
<td>68</td>
</tr>
<tr>
<td>Table 2.7</td>
<td>GRADATION REQUIREMENTS FOR GRANULAR FILL</td>
<td>73</td>
</tr>
<tr>
<td>Table 2.8</td>
<td>ATMOSPHERIC TEMPERATURE REQUIREMENTS</td>
<td>78</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>RATIONAL METHOD, DERIVING RAINFALL INTENSITIES</td>
<td>93</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>RAINFALL DISTRIBUTION</td>
<td>94</td>
</tr>
<tr>
<td>Table 3.3</td>
<td>DESIGN STORM DISTRIBUTION CHART</td>
<td>95</td>
</tr>
<tr>
<td>Table 3.4</td>
<td>INTAKE FLOW RATE, GRATE ANGLE 30 DEGREES</td>
<td>99</td>
</tr>
<tr>
<td>Table 3.5</td>
<td>CHANNEL PROTECTION, NEW CHANNEL CONSTRUCTION</td>
<td>100</td>
</tr>
<tr>
<td>Table 3.6</td>
<td>ROCK PROTECTION</td>
<td>100</td>
</tr>
<tr>
<td>Table 3.7</td>
<td>BIOFILTRATION SWALE CRITERIA</td>
<td>114</td>
</tr>
<tr>
<td>Table 3.8</td>
<td>SAND FILTER CRITERIA</td>
<td>114</td>
</tr>
<tr>
<td>Table 3.9</td>
<td>WET POND CRITERIA</td>
<td>115</td>
</tr>
<tr>
<td>Table 3.10</td>
<td>EXTENDED WET POND CRITERIA</td>
<td>115</td>
</tr>
<tr>
<td>Table 3.11</td>
<td>CONSTRUCTED TREATMENT WETLANDS CRITERIA</td>
<td>117</td>
</tr>
<tr>
<td>Table 3.12</td>
<td>INFILTRATION TRENCH REQUIREMENTS</td>
<td>118</td>
</tr>
<tr>
<td>Table 3.13</td>
<td>INFILTRATION BASIN REQUIREMENTS</td>
<td>119</td>
</tr>
<tr>
<td>Table 3.14</td>
<td>MINIMUM PIPE COVER</td>
<td>130</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>MINIMUM GRADIENT FOR SANITARY SEWERS</td>
<td>156</td>
</tr>
</tbody>
</table>
Table 4.2. SECURING SEWERS ON SLOPES .. 156
Table 4.3. TEST LOADS FOR CONCRETE PIPES UNDER DIFFERENTIAL LOAD ... 172
Table 4.4. TEST LOADS FOR DUCTILE IRON PIPES UNDER DIFFERENTIAL LOAD ... 172
Table 4.5. AIR TESTING OF CONCRETE PIPE .. 182
Table 4.6. AIR TESTING OF PVC, HDPE, AND DUCTILE IRON PIPE – 1.0 PSIG PRESSURE DROP 1 ... 27
Table 4.7. AIR TESTING OF PVC, HDPE, AND DUCTILE IRON PIPE – 0.5 PSIG PRESSURE DROP 1 ... 27
Table 4.8. VACUUM TESTING OF MANHOLES 186
Table 5.1. MAXIMUM PERMITTED DEFLECTION, 18-FOOT-LONG PIPE ... 198
Table 5.2. RATIO OF HYPOCHLORITE TO WATER 206
Table 5.3. METER BOXES AND COVERS ... 208
Table B.1. PLANTS FOR WET AREAS ... 14
Table B.2. PLANTS FOR MOIST AREAS ... 15
Table B.3. PLANTS FOR DRY AREAS ... 16
Table B.4. WET/MOIST AREA SEED MIX .. 17
Table B.5. DRY AREA SEED MIX ... 17
Table D.1. GRADATION REQUIREMENTS FOR FILTER BED MEDIUM 30
Table D.2. GEOFABRIC MATERIAL SPECIFICATIONS 30
Table D.3. DRAINAGE MATTING MATERIAL SPECIFICATIONS 31
Table E.1. RECOMMENDED LINERS FOR STORMWATER FACILITIES 42
Table E.2. SOIL GRADATION REQUIREMENTS, COMPACTED TILL LINERS ... 44
Table E.3. SPECIFICATIONS FOR SOIL IN CLAY LINERS 45
SECTION 1

GENERAL CONSTRUCTION REQUIREMENTS & ADMINISTRATIVE PROVISIONS

101.1.00 AVAILABILITY

Copies of these “Public Works Standards – 2006” for the City of Wilsonville, Oregon, or any subsection of the standards are available from the Wilsonville Community Development Department, given reasonable notice and payment of current reproduction costs.

The “Public Works Standards” are subject to change (see Section 103.00.c); check the City of Wilsonville Engineering website or with the City of Wilsonville Engineering Division for revisions or updates.

101.1.01 Reference to Standards

The design engineer may, at his or her sole discretion, use the standards by direct reference in the contract documents prepared for the construction of public street, drainage, water, and sewer facilities in the City of Wilsonville. If the design engineer incorporates the City’s standards in that way, the contract documents shall contain the following statements:

a. Material and workmanship shall be in strict accordance with the standard specifications of the City of Wilsonville. No changes from the approved project plans and specifications shall be made without approval of the City’s authorized representative.

b. The standards are in outline form only, and shall not operate to relieve the design engineer of his or her professional responsibilities during project design and construction.

c. These standards represent the minimum requirements for construction in a public right-of-way or public easement to protect the public health, safety and welfare. Any deviation from the standards must be approved, in writing, by the City’s authorized representative.

101.2.00 INTENT

101.2.01 Intent of Public Works Standards

These standards for constructing public facilities in the City of Wilsonville are intended to protect the public health, safety, and welfare by:
a. Setting forth uniform material and workmanship standards.

b. Supplementing and completing the public health and safety requirements of Chapter 4 of the Wilsonville Code.

c. Streamlining the administration and construction of public facilities in the City and minimizing repairs to these public facilities.

Nothing in these standards shall relieve any person or organization from the obligation to comply with the applicable laws, rules, and regulations of any federal, state, and local authority.

101.2.02 Order of Precedence

If there is a conflict between approval documents, the document highest in precedence shall control. The precedence shall be:

First: Permits from other agencies or jurisdictions, as may be required by law.

Second: Land use decision-making authority’s Conditions of Approval.

Third: City of Wilsonville master plans (latest editions): Parks and Recreation Master Plan, Transportation Systems Plan, Storm Water Master Plan, Wastewater Collection System Master Plan, Water System Master Plan.

Note: Permits, Land Use Conditions of Approval, and Master Plans are intended to provide the authority for what public facilities are to be constructed; the below public works detail drawings and standards and the various standards that follow describe how public facilities are to be constructed through the use of the approval component materials, equipment, and methods set forth.

Fourth: City of Wilsonville Standard Detail Drawings.

Fifth: City of Wilsonville Public Works Standards – 2006.

Sixth: City of Wilsonville Planning and Land Development Ordinance.

Seventh: Clean Water Services (CWS) Design and Construction Standards.

Eighth: Oregon Standard Specifications for Construction (current edition) (ODOT, Oregon APWA) and any reference specifications and standard practices adopted by nationally recognized professional societies such as ASCE, AWWA, APWA, ACI, and ASTM.

Ninth: ODOT Pavement Design Guide.

Tenth: Uniform Building Code and City-issued building, mechanical, electrical, and plumbing permits.

Eleventh: Americans with Disabilities Act of 1990.

Twelfth: Plans and details prepared by the design engineer.

Supplemental written agreements, franchise agreements, and approved revision to plans and specifications by the appropriate jurisdictions and conforming to local, state, and federal law will take precedence over documents listed above. Detailed plans shall have precedence over general plans. In any event, the determination of the City Engineer shall be final.
101.3.00 SCOPE

These standards for construction of public facilities in the City of Wilsonville:

a. Cover all public streets, drainage, water, sewer, and appurtenant facilities inside the corporate limits of the City that are to be turned over to the City for maintenance and operation.

b. Relate only to public facilities constructed in the City and should not be confused with building codes, zoning ordinances, and other regulations for which the City has established separate procedures and standards.

c. May be amended or updated periodically by ordinance of the City Council on the recommendation of the City Engineer protect the public health, safety, and welfare.

d. Notwithstanding the foregoing, the City Engineer shall have the authority to modify the Standard Detail Drawings, as provided in Appendix G, as needed to maintain conformance to the periodic changes to national and state design requirements, guidelines, and specifications.

101.4.00 DEFINITIONS

The following definitions apply throughout these standards:

AASHTO: American Association of State Highway and Transportation Officials
AC: Asphaltic concrete
ACI: American Concrete Institute
ACPA: American Concrete Pavement Association
ADA: Americans with Disabilities Act
ADAAG: American with Disabilities Act Accessibility Guidelines and Standards
ADT: Average daily traffic
ANSI: American National Standards Institute
APWA: American Public Works Association
ASTM: American Society for Testing and Materials
AWWA: American Water Works Association
Act of God: Earthquake, flood, cyclone, or other cataclysmic natural phenomenon
Addendum: Written or graphic modification or interpretation of contract documents

Agreement: Written agreement covering performance of work and furnishing of labor and materials in construction of work

Alley: Street or road primarily intended to provide secondary access to road or side of lots or buildings and not intended for normal through vehicular traffic

Applicant: Person, organization, or duly authorized representative identified as such in specifications and in agreement, and referred to throughout contract documents as if singular in number and masculine in gender: means owner or authorized representatives, including parties acting as designated authority for aspects of work

Approve: “Approved,” “approve,” “approval,” or similar words shall mean to give, in writing, limited, conditional, or qualified permission to use material, equipment, or methods, such conditions being in strict compliance with City’s standards; approval will be by the City’s authorized representative

ARCPACS: A federation of certifying boards in agriculture, biology, earth, and environmental sciences. Provides professional certification for soil scientists whose education, experience and career path are in some aspect of the soil science profession and can meet the standards of the ARCPAC program

Authorized representative: Party or parties authorized or employed by applicant to observe, test, or review quality and sufficiency of work performed, materials used, and determine compliance with plans and specification; for the City of Wilsonville, designated authority shall be the City Engineer or one of the City’s authorized representatives

Bid bond: Form of security furnished by contractor, guaranteeing that he/she will enter into a contract in accordance with contract documents if the proposal is accepted

Bidder: Any individual, firm, or corporation formally submitting a proposal for work contemplated, or any part of it, acting directly or through an authorized representative

Bioengineering: A construction methodology used to stabilize and conserve soils through the use of live plants alone or in combination with biodegradable material to produce living, functioning systems that can prevent erosion, control sediment, and provide habitat
BPMP: City of Wilsonville's 1993 Bicycle and Pedestrian Master Plan, or latest edition
CD: Construction documents
CDF: Control density fill
CEC: Cation exchange capacity
CN: Curve number
Certificate of Insurance: Evidence of insurance coverage of the contractor, furnished to the City
Change order: Written order to contractor by City Engineer or the City's representative authorizing addition, deletion, or revision of work within general scope of contract, or adjustment in price or time
City: City of Wilsonville

City Boards and Commissions:

City Council: Five-member governing body responsible for identifying community problems and needs, and establishing policies and goals to address those needs

Development Review Board: Empowered to review and take action on land-use applications; decisions are usually binding, but may be appealed to City Council

Planning Commission: Makes recommendations to City Council regarding City's comprehensive plan, facilities plans, capital improvements program, and planning and zoning ordinances and provide input on traffic-related concerns

Parks & Recreation Advisory Board: Aids in planning and developing present and future parks and recreation in City and advises City Council on policy matters regarding parks and recreation services

City Engineer: Professional Engineer registered in the State of Oregon, designated by the City Manager to carry through with planning, designing, and project supervision of public facilities that will be accepted and owned by the City

Contract: Binding agreement between contractor and applicant covering performance of work and furnishing of labor and materials for construction of public facilities
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contractor</td>
<td>The person or entity that has entered into contract with the applicant; “contractor,” though here used to describe an individual, shall mean contractor, agents, employees, officials, subcontractors, or anyone connected with work set forth on behalf of contractor</td>
</tr>
<tr>
<td>Contract documents:</td>
<td>Agreement, addenda, instructions to bidders, contractor’s proposal, bonds, notice of award, notice to proceed, general provisions, technical provisions, plans, change orders, field orders, and all other modifications of such documents entered into in accordance with contract</td>
</tr>
<tr>
<td>Contract price:</td>
<td>Total amount payable to contractor for work, including all sales, use, and other consumer taxes related to work.</td>
</tr>
<tr>
<td>Contract time:</td>
<td>Number of calendar days allowed contractor to complete work</td>
</tr>
<tr>
<td>Construction maintenance assurance:</td>
<td>A one-year bond for 10% of the cost to construct public improvements</td>
</tr>
<tr>
<td>County road:</td>
<td>Public road incorporated into county roadway system by formal action of Board of County Commissioners; these roads are assigned numbers and county assumes maintenance responsibility</td>
</tr>
<tr>
<td>DEQ:</td>
<td>Oregon Department of Environmental Quality</td>
</tr>
<tr>
<td>Design engineer:</td>
<td>Professional Engineer registered in the State of Oregon responsible for planning, designing, and producing record drawings of public facilities that will be accepted and owned by the City</td>
</tr>
<tr>
<td>Detail Drawings:</td>
<td>Construction drawings produced by the City of Wilsonville providing details of acceptable construction standards for public facilities. Drawings may be periodically updated or changed, as needed, by approval of the City Engineer</td>
</tr>
<tr>
<td>Development:</td>
<td>Development includes new development, redevelopment, and/or partial redevelopment</td>
</tr>
<tr>
<td>Directed, required, etc.:</td>
<td>In these standards, “directed,” “required,” “permitted,” “ordered,” “designated,” or similar words shall mean at the direction, requirement, permission, order, or designation of applicant or City Engineer</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
</tr>
<tr>
<td>EPSC Planning</td>
<td>Erosion Prevention and Sediment Control Planning and Design Manual:</td>
</tr>
<tr>
<td>and Design Manual</td>
<td>Design Manual developed in partnership between CleanWater Services of</td>
</tr>
<tr>
<td></td>
<td>Washington County, Water Environment Services of Clackamas County, City</td>
</tr>
<tr>
<td></td>
<td>of West Linn, ODOT, and Harza Engineering, 2000 or latest edition</td>
</tr>
<tr>
<td>FEMA:</td>
<td>Federal Emergency Management Agency</td>
</tr>
<tr>
<td>FHWA:</td>
<td>Federal Highway Administration</td>
</tr>
<tr>
<td>Field order:</td>
<td>Written order to contractor, approved by applicant, changing work but</td>
</tr>
<tr>
<td></td>
<td>not affecting contract price or time</td>
</tr>
<tr>
<td>Final completion:</td>
<td>Date when project correction list is completed; a 10% maintenance bond</td>
</tr>
<tr>
<td></td>
<td>is submitted in accordance with contract documents, as modified by</td>
</tr>
<tr>
<td></td>
<td>change orders agreed to by parties, or as specified in Section 101.8.17,</td>
</tr>
<tr>
<td></td>
<td>“Project Closeout;” and the City’s authorized representative receives</td>
</tr>
<tr>
<td></td>
<td>confirmation that all easements and legal documents have been recorded</td>
</tr>
<tr>
<td></td>
<td>with the County Recorder</td>
</tr>
<tr>
<td>First party:</td>
<td>Applicant or duly authorized representative</td>
</tr>
<tr>
<td>Grout:</td>
<td>Thin, fast-setting, high-strength, non-shrink mortar used to fill cracks</td>
</tr>
<tr>
<td></td>
<td>and joints in masonry</td>
</tr>
<tr>
<td>HMAC:</td>
<td>Hot mixed asphalt concrete</td>
</tr>
<tr>
<td>ICEA:</td>
<td>Insulated Cable Engineers Association</td>
</tr>
<tr>
<td>Inclement weather:</td>
<td>Weather conditions so extraordinary that previous climatic conditions</td>
</tr>
<tr>
<td></td>
<td>in locality of work give no reasonable warning of them; shall be</td>
</tr>
<tr>
<td></td>
<td>determined by City Engineer</td>
</tr>
<tr>
<td>Indicated, shown,</td>
<td>“Indicated,” “noted,” “shown,” “called for,” or similar words shall</td>
</tr>
<tr>
<td>etc.:</td>
<td>mean indicated, noted, shown, or called for in the contract documents for</td>
</tr>
<tr>
<td></td>
<td>the work referred to</td>
</tr>
<tr>
<td>Intersection:</td>
<td>Area jointed by two or more roads intersecting; for design purposes,</td>
</tr>
<tr>
<td></td>
<td>intersection is not formed by naming two approaches of continuous street</td>
</tr>
<tr>
<td></td>
<td>at curve or other point with different street names</td>
</tr>
<tr>
<td>Landscape maintenance assurance:</td>
<td>A two-year bond for 100% of the cost to install all required landscaping in water quality/quantity facilities and vegetated corridors, plus 100% of the cost to maintain the landscaping in these areas for two years</td>
</tr>
<tr>
<td>Large-diameter pipe:</td>
<td>Pipe with diameter larger than 24 inches</td>
</tr>
</tbody>
</table>
Maintenance Assurance Bond:

Mortar: Plastic building material of cement or lime, sand, and water that hardens in place and is used in masonry or plastering

MUTCD: Manual on Uniform Traffic Control Devices, 2000 or latest edition

NAVD 88: North American Vertical Datum of 1988: the vertical control datum established in 1991 by the National Geodetic Survey

Neighborhood Erosion Control Plan: An approved erosion-prevention and sediment-control plan for multiple lots

NEMA: National Electrical Manufacturers Association

NGVD 29: National Geodetic Vertical Datum of 1929: vertical control datum established for vertical control in the United States by the general adjustment of 1929 (formerly called the “Sea Level Datum of 1929”)

NPSH: Net Positive Suction Head, in association with sanitary sewer pumping units

NRCS: National Resource Conservation Service

Notice to proceed: Written notice given by designated authority to contractor fixing date when contractor shall begin to perform the obligations under contract documents

O&M plan: Operation and maintenance plan for mechanical systems to be operated by the City, or plan designed for stormwater facilities and prepared by the responsible party in the Stormwater Maintenance Covenant and Access Easement

ODFW: Oregon Department of Fish and Wildlife

ODOT: Oregon Department of Transportation

ODOT QPL: Qualified Products List; published twice each year by ODOT’s Construction Section

ODOT SSC: Oregon Department of Transportation Standard Specifications for Construction, 2002 (in association with the Oregon Chapter of the APWA), or latest edition

OSHA: Occupational Safety and Health Administration
“Or equal,” “or approved equal,” or similar words shall mean to possess same performance qualities and characteristics and fulfill utilitarian function without any decrease in quality, durability, or longevity and shall meet with approval of designated authority (no inference is intended that items must be identical in all respects if above conditions are satisfied).

PCA: Portland Cement Association

PCC: Portland cement concrete

Payment bond: Form of security furnished by contractor and their surety guaranteeing payment of all labor, material, equipment, and all other obligations arising from work.

Performance bond: Security furnished by applicant, or such other party acceptable to the City, and their surety guaranteeing complete and faithful performance of all obligations and conditions placed on contractor by contract.

Plans: Plans, profiles, and detailed drawings showing locations, character, dimensions, and details of work to be done.

PRMP: City of Wilsonville’s 1994 Parks and Recreation Master Plan, or latest edition.

Predevelopment: Considered as the natural, unimproved and unaltered state of the land.

Product data: Complete catalog data for manufactured items of equipment and all component parts, including specific performance data, material description and source, rating, capacity, working pressure, material gauge thickness, brand name, catalog numbers, and other necessary information.

Project correction list: Final project inspection to repair checklist, or punch list, compiled after construction of total project is complete, and after all testing is satisfactorily finished.

Proposal: Offer for work made out and submitted on prescribed proposal form and properly signed and guaranteed by bidder.

PUE: Public Utility Easement

Public road: Road dedicated for use by public; for most part maintained by City and funded by road maintenance fee.
Public works facility: Any facility constructed in public right-of-way or public easement that is either immediately or eventually to be taken over by City for maintenance and operation; includes but is not limited to streets, sidewalks, curbs, parking lots, driveways, drainage facilities, water system works, and sanitary sewer systems.

Punch list: Final project inspection to repair checklist, or project correction list, compiled after construction of total project is complete, and after all testing is satisfactorily finished.

Representative: City Engineer or authorized representative.

Reserve strip: A 1-foot-long section at terminus of right-of-way at stub streets, to be provided to City.

Right-of-way: Part of ground provided to or required by City for use in constructing and maintaining public facilities.

Road: Part of right-of-way used for vehicular traffic, including appurtenances, storm drain system, traffic control devices, etc.

SBUH: Santa Barbara Unit Hydrograph.

Sensitive areas: Areas sensitive to environmental degradation, such as existing or created wetlands; rivers, streams, and springs with year round or intermittent flow; and impoundments (natural lakes and ponds). Sensitive areas also include any resource protected within the SROZ.

Shop drawings: Diagrams, drawings, illustrations, brochures, schedules, and all other data submittals required by contractor and furnished by contractor illustrating fabrication, installation, dimensions, and other aspects of work.

Specifications: Directions, requirements, explanations, terms, and provisions in these standards, supplemented by such special conditions as may be necessary pertaining to various features of work to be done, manner and method of performance, and manner and method of measurement and payment; specifications include directions, requirements, and explanations that appear in plans.

SROZ: Significant Resource Overlay Zone: the delineated outer boundary of an identified significant natural resource as defined by Wilsonville’s Development Code.
Standard specifications: Codes, rules, and regulations set forth in City of Wilsonville “Public Works Standards” as adopted by City Council and considered to be the latest issue, with all amendments as of date of these standards.

Standards: Specifications in the “Public Works Standards” adopted for use in City of Wilsonville.

Steel plate: A-36 steel meeting AASHTO H-20 loading specifications.

Stock pile: Temporary staging of construction and/or excavated materials.

Subcontractor: Any individual, firm, or corporation having contract with contractor or with any other subcontractor for performance of part of work.

Substantial completion: In the opinion of the City’s authorized representative, construction is to the point of completion where all facilities are usable for their intended purpose; utilities (storm, sanitary, and water) are tested, approved and connected to public lines, all weather access is completed; roadway striping is completed; street lighting is approved and activated; all fire, life, and safety issues meet code.

Substantial progress: In the opinion of the City’s authorized representative, construction work is proceeding at a rate close to that of the submitted construction timetable.

Traffic coefficient: Number used in determining structural section of street.

TSP: City of Wilsonville’s 2003 Transportation Systems Plan, or latest edition.

TVF&R: Tualatin Valley Fire and Rescue.

USCGS: United States Coast and Geodetic Survey.

Wet-season: For the purpose of monitoring ground water elevations, the “wet-season” is defined as November 1 through April 30.

WQV: Water Quality Volume.

WPWS: Wilsonville “Public Works Standards – 2006”.

Work: Furnishing of all labor, materials, equipment, and other incidentals necessary or convenient to successfully complete project or part of project, and carrying out of all duties and obligations imposed by contract.
Written notice: Written communication delivered in person to individual or to
member of firm or to officer of corporation for whom it is
intended. If delivered or sent by mail to last business address
known to one who gave notice, it shall be duty of each party to
advise other parties to contract of any change in business
address until contract is complete

101.5.00 CONTROL OF PUBLIC WORKS PROJECTS

a. All public system improvements and public works facilities, or improvements
or facilities to become public, shall be designed by a Professional Engineer
registered in the State of Oregon. All public system improvements and public
works facilities shall be designed and constructed in accordance with all
applicable rules and regulations of the City and any City interpretations of
those rules and regulations, including applicable technical guidance manuals,
and in accordance with all applicable federal, state, and local statutes and
rules.

b. Approval of the plans must be made by the City’s authorized representative
before construction is permitted. An authorized representative of the City will
be available for construction observation during construction of the project.

c. At the completion of construction, the design engineer shall submit a
completion certificate to the City stating that all work has been completed in
accordance with the approved project plans and specifications.

d. All surveys for public works facilities shall be performed under the direction
of a Professional Land Surveyor registered in the State of Oregon. All
elevations shall be referenced to a U.S. Coast and Geodetic Survey (USCGS)
datum. A list of acceptable benchmarks is available at the City.

e. Materials and workmanship shall meet or exceed the adopted standards and at
all times shall be subject to the approval of the City’s authorized
representative.

f. On completion of projects to become public works, the applicant or their
design engineer shall submit one complete set of reproducible “record
drawings” (see Section 101.8.17.a, “Project Closeout”) to the City’s
authorized representative for future reference. The drawings shall show any
deviations from the original construction drawings and shall include sufficient
information to accurately locate water, sanitary sewer, and storm sewer
service extensions. No bond will be released until the City’s authorized
representative receives an acceptable set of reproducible record drawings from
the design engineer, with his or her stamp of certification.
g. Before the City accepts a public works project for operation and maintenance, a one-year guarantee on all materials and workmanship incorporated in the project shall be provided to the City on one of the acceptable forms described in Section 101.8.17.b. "Maintenance Assurance."

101.6.00 DEVELOPMENT PROCESS REQUIREMENTS

101.6.01 Pre-Application Conference

The City of Wilsonville will hold a pre-application conference with the applicant (owner/developer), unless otherwise waived by the Planning Director, before formal application for public works permits and review of site design and construction plans. The pre-application process allows the applicant and the City to discuss the proposed project and the standards and regulations that will apply while the project is still in a preliminary stage. Any specific development standards, regulations, or problem areas can thus be discussed before the applicant makes a substantial investment in the project or proceeds with a formal application unaware of the issues.

101.6.02 Plan Check and Permits

a. Plan checks and/or permits are required and issued on all construction projects within public rights-of-way, or easements, which will eventually be maintained and operated by the City of Wilsonville. Any permits required by federal, state, and local governments shall be obtained by the person proposing the improvements.

b. Projects requiring permits shall include, but not necessarily be limited to, improvements or upgrades to streets, sidewalks, curbs, driveway approaches, water systems, sanitary sewer systems, and storm drainage systems. Projects that also require plan checks and permits include all private storm drainage, sanitary sewer, and water systems that will be connected to or that will discharge into a system under the jurisdictional control of the City of Wilsonville.

c. The construction, repair, or replacement of all other utilities located within a public right-of-way or public easement, including, but not exclusively, power, telephone, gas, and cable television, shall be required to submit for plan check and obtain a Utility Construction Permit.

101.6.03 Plan Check Requirements

At the pre-application conference, the applicant will be given a copy of the Community Development Department Plan Review Checklist, which is to be used as a guide during the review of all proposed new, or improvements to, public works facilities.
Along with the items in the plan review checklist, the following requirements shall be met before the City’s authorized representative completes a plan check:

a. Satisfy all requirements of Chapter 4 of the Wilsonville Code and other ordinances and regulations pertaining to construction in the City of Wilsonville.

b. Submit minimum of four copies of stamped and signed detailed plans and specifications produced by a Professional Engineer registered in the State of Oregon.

c. Submit two sets each of stamped and signed design calculations for the water system design, wastewater system design, or storm drainage system design, where applicable or as required.

d. Submit two sets of other applicable utility installation plans, stamped and signed and prepared by the proper authority. The plans shall also be incorporated in the construction plans and specifications.

e. Submit two sets of stamped and signed soil-bearing tests, as required by the City for pavement design, to verify street section designs and alternatives. Soil testing to ascertain the strength of the soil is required for all roads to analyze and design the road structural section. Soil tests are needed on samples of the subgrade material that is expected to be within 3 feet of the planned subgrade elevation. Samples are needed for each 1,000 feet of roadway and for each visually observed soil type. Soil tests are required for a minimum of two locations.

f. A plan check fee must be paid before a plan review will be completed. The amount of the fee will be established by resolution of the City Council.

g. Plans deemed incomplete by the City’s authorized representative may be returned without a full plan review being completed. An explanation will be provided by the City indicating sections of the plans deemed incomplete. Once all items are addressed, plans may be resubmitted for review.

101.6.04 Plan Review

a. If all conditions of the plan check requirements as specified in Section 101.6.03, “Plan Check Requirements,” are met, and no additional information is requested by the City’s authorized representative, a plan review will be completed. The City’s authorized representative will prepare a plan review redline comments list, to be sent to the appropriate permit applicant or responsible party. The list will indicate any deficiencies in the construction plans and specifications. The proper party shall then make the corrections and resubmit the plans and specifications.
b. The plan check fee submitted as per Section 101.6.03.f, “Plan Check Requirements,” covers the City’s first and second plan reviews. An additional plan review fee shall be required for the third, fifth, and every other plan review performed by the City. A partial plan review or plans deemed incomplete as per Section 101.6.03.g, “Plan Check Requirements,” will be considered as a full plan review in respect to the plan check fee. The amount of the additional fee will be established by resolution of the City Council.

c. Once the plans and specifications are approved for construction, the City’s authorized representative shall issue a written notice of plan approval. The written notice of plan approval shall remain in effect for 90 calendar days from the date of approval. If the applicant cannot proceed with the project within the 90-day limit, a 180-calendar-day extension can be applied for. If no substantial progress has been made within the allotted time, no further permit extension will be granted, the permit fee shall be forfeited to the City, and the plan approval will expire. Plans may be resubmitted, subject to payment of new fees.

101.6.05 Record Drawings, Maps, and Plans Not Guaranteed

Record drawings, maps and plans are provided to the City by the Owner/Developer upon completion of development and/or improvement projects within the City. The City does not guarantee the accuracy of measurements, elevations, locations, or other information on such maps and plans. All information should be independently verified by a registered engineer via survey, potholing, or other appropriate means prior to conducting any improvement or development.

101.6.06 Permit and Assurances

a. Before any public construction begins, a letter of credit, performance bond, or cash deposit in form and substance satisfactory to the City’s authorized representative shall be submitted by the applicant as a performance assurance for such construction. The amount of the performance assurance shall be 150% of the design engineer’s estimate or bid total and shall be conditional on the performance of all terms and conditions of the permit and these standards. The guarantee shall include, but not be limited to, restoration of settled fills, trenches, pavement, and surfaces. The amount of the performance assurance for public projects financed by the City shall be 100% of the successful bid amount.

b. When all requirements stipulated here are met and the construction plans are stamped and signed by the City’s authorized representative, a Public Works Permit can be issued on payment of the Public Works Permit fee. The amount of the fee will be established by resolution of the City Council.
c. The Public Works Permit shall be valid for one year from the date of issuance. If time elapses on the permit, the applicant can request, in writing, a permit extension from the City Engineer or the City’s authorized representative. If the request is approved, the permit holder then has 180 calendar days to begin construction on permitted projects and shall show substantial progress during this permit extension, as determined by the City. If no substantial progress is made within the allotted time, no further permit extension will be granted, the permit will expire, and the permit fees will be forfeited to the City. Plans may be resubmitted, subject to payment of new fees. Resubmitted plans shall be reviewed to determine compliance with the Public Works Standards, including any newly approved codes and/or regulations.

101.6.07 Insurance Requirements

The City requires additional assurances from the applicant/contractor including, but not limited to, Certificates of Insurance from insurance companies or entities acceptable to the City and authorized to issue insurance in the State. The Certificate shall specify all of the parties who are Additional Insureds. The contractor shall be responsible for paying all deductibles, self-insured retentions and/or self-insurance included under these provisions. For City financed projects, a Certificate of Insurance shall be executed by the successful bidder and their insurance company prior to the execution of the contract by the applicant (see Appendix G for acceptable form).

101.6.08 Indemnification

The applicant/contractor shall indemnify and hold harmless the City, its officers and employees, from and against all claims, demands, penalties, damages, losses, expenses, including attorney’s fees, and causes of action of any kind or character, including the cost of defense thereof, arising or alleged to have risen in favor of any person on account of personal injury, death, or damage to property arising out of or resulting from, or alleged to have risen out of or resulted from, in whole or in part, any act or omission of the applicant, the applicant’s design engineer, the applicant’s contractor, or anyone directly or indirectly employed by any of them or anyone for whose acts any of them may be liable.

101.7.00 CONSTRUCTION PROCEDURAL REQUIREMENTS

101.7.01 General Procedure and Requirements

a. During the construction period, the City will maintain two sets of approved plans and specifications. The permit holder or contractor shall retain one set of approved, stamped, and signed plans and specifications at the construction site at all times. Any modification to the approved plans shall be first approved, stamped, and signed by the City’s authorized representative.

b. A pre-construction conference with the City’s authorized representative and the applicant, contractor, design engineer, and other parties requested to attend
or having an interest in the project will meet to discuss the project before any construction begins. The pre-construction conference will discuss the role of the City's inspection team and the team's relation to the contractor and applicant.

c. An inspection criteria checklist may be provided to the contractor outlining necessary inspections, if requested. The customary inspections are generally as follows:

1. All underground utilities, including water, sanitary sewers, and storm sewers.

2. All subgrade preparation, fill placement, base rock, and leveling rock.

3. All concrete pours, such as curbs, catch basins, manholes, and cleanouts.

4. Asphalitic or Portland cement concrete pavement.

d. The City's authorized representative shall at all times have access to the project and will make routine inspections. Should any inspection reveal that the construction of the improvements is not proceeding according to the approved plans and the specifications in this document, the City Engineer may order all work stopped, all defective work removed, or both.

e. The contractor shall give the City's authorized representative a minimum of 24 hours' (one working day) advance notice before a required inspection. It is the responsibility of the permit holder or contractor to obtain inspections and approvals for all work installed.

f. Failure to give advance notice to the City's authorized representative for inspections, receive adequate inspections, or violation of other regulations, ordinances, resolutions, rules, and City codes as outlined in these standards can result in one or more of the following, as determined by the City:

1. Stoppage of work until problem is resolved.

2. Suspension of future inspections.

3. Withholding certification of projects as complete, which is required to begin warranty period and eventual City acceptance for maintenance and operation.

4. Citation for violation of the Wilsonville Code and its penalties and provisions.

5. Uncovering or removal of work not inspected.
101.7.02 Testing of Construction

a. The applicant shall be responsible for providing the name of a compaction-testing firm that will be paid by the permit applicant and that will supply the City's authorized representative with the compaction tests needed to certify that the soils, aggregate, and surface materials meet the minimum requirements of these standards. The testing firm hired by the permit applicant shall be required to be under the direct supervision of a Professional Engineer registered in the State of Oregon whose area of expertise is geotechnical engineering.

b. The applicant shall also be responsible for providing the name of a materials-testing firm that will be paid by the permit applicant and that will supply the City's authorized representative with the concrete-strength tests and other materials tests required to certify that the materials meet the minimum requirements of these standards. The testing firm hired by the permit applicant shall be required to be under the direct supervision of a Professional Engineer registered in the State of Oregon.

101.7.03 Right of Entry to Work

Representatives of the City and any federal, state, or local agencies having jurisdiction over the work shall have right of entry to any and all parts of the work at reasonable times. The contractor shall cooperate in all respects with such agencies and shall provide proper facilities for access and inspection.

101.7.04 Suspension of Work

The City Engineer may suspend the work and give written notice to the applicant/contractor of such suspension when the contractor is using material that does not conform to the requirements of the contract documents or when the contractor is improperly performing the work, and neglects or refuses to replace or reconstruct such work. The suspension shall remain in effect until appropriate corrections are made. Review of the City Engineer's decision shall be made, on request, by the City Manager within 48 hours of the initial suspension. Regardless of the decision, the City shall not incur pecuniary liability for an incorrect suspension of work, unless such suspension was a willfully malicious act of the City.

101.7.05 Protection of Existing Facilities

a. The approximate location of underground City water, sewer, and storm drainage facilities are available at the City Engineer's office. The approximate locations of underground power, gas, telephone, and cable facilities are available from the serving utility companies. The location of existing facilities shall be shown on the construction drawings for public works projects.
b. Appropriate and timely notice shall be given to all public and private utility companies in advance of construction, for the purpose of protecting or relocating existing facilities. The exact location of underground facilities shall be verified in advance of public works construction, in cooperation with the public or private utilities involved.

c. When the contractor is physically locating underground utilities in roadways, the Portland cement concrete (PCC) or asphalt concrete (AC) roadway surfaces shall be cored and not square-cut.

d. All existing underground and surface facilities shall be protected from damage or degradation during construction of public works facilities.

e. Any existing facilities not specifically designated for alteration or removal that are damaged or degraded during construction shall be restored or replaced to an "in kind" or better condition at the contractor’s expense.

f. Turf damaged during utility construction shall be replaced with sod in a timely manner acceptable to the City’s authorized representative.

101.7.06 Protection of Property

The contractor shall protect stored materials, cultivated trees and crops, and other items next to proposed construction. Property owners likely to be affected by the construction activities, as determined by the City’s authorized representative shall be notified at least 48 hours in advance of the time construction begins. During construction, no person shall be without access to their place of residence or business for a period exceeding 8 hours, unless the contractor has made special arrangements in writing with the affected person(s).

101.7.07 Surveying and Land Monuments

a. NAVD 88 Datum: All elevations on design plans and record drawings shall be based on NAVD 88 Datum. Each page of the plans and drawings shall state the benchmark datum information. Note that City of Wilsonville control points are based on NGVD 29 datum and that necessary adjustments will need to be made to meet NAVD 88 requirements.

b. Permanent Survey Markers: Before beginning any construction activity, the applicant’s engineer/surveyor shall adequately reference all permanent survey monuments, property corners, stakes, or benchmarks on the subject site, or markers that may be subject to disturbance in the construction area or during the construction of any off-site improvements. It shall be the responsibility of the contractor to protect survey monuments throughout the construction process. The contractor shall not disturb permanent survey monuments without written consent from the City’s authorized representative.
c. **Disturbed, Destroyed, or Lost Monuments:** If any survey monument is disturbed, moved, relocated, or destroyed as a result of construction activity, the contractor shall, at contractor’s cost, retain the services of a Professional Land Surveyor registered in the State of Oregon to restore the monument to its original condition and shall file all documentation required by Oregon law. A copy of the recorded documentation shall be submitted to the City Engineer.

101.7.08 **Railroad Crossings**

a. Crossings of railroad rights-of-way shall be done in a manner that conforms to the requirements of the railroad having jurisdiction. If any bonds or certificates of insurance protection are required, they shall be furnished by the contractor or applicant to the railroad company concerned, with the City as an additionally named insured.

b. Permits or easements for such crossings shall be obtained by the applicant. All the terms of such permits or easement shall be met by the applicant and contractor. In some locations, the railroad may require casing pipe.

101.7.09 **Criteria for Stream-Road Crossings**

a. Stream crossings shall be avoided whenever possible, whether by roads, utilities, or other development. If streams must be crossed, impacts shall be minimized by preferring bridges to culverts, and by designing bridges and culverts to pass at least the 100-year flood and meet the Oregon Department of Fish and Wildlife (ODFW) *Fish Passage Criteria*, or latest edition.

b. Before any work may be performed in any stream, the method of operation and the schedule of such work shall be approved in writing by the City’s authorized representative. The timing of in-water work shall comply with the guidelines established by the ODFW. Mechanized equipment shall enter streams only when necessary and only within the immediate work area.

c. The contractor shall comply with the regulatory requirements of the Oregon Department of State Lands, ODFW, U.S. Fish and Wildlife Department, U.S. Army Corps of Engineers, National Marine Fisheries Service, and any other state and federal agencies having jurisdiction.

101.8.00 **CONSTRUCTION**

101.8.01 **Construction Commencement**

a. The contractor shall not undertake nor instruct the subcontractor(s) to undertake any portion of the work without notifying the City’s authorized representative 24 hours in advance of beginning work. At the time of this notice to the City, the applicant shall have submitted to the City a performance assurance, construction permit agreement, appropriate plan check and permit fee, certificate of insurance, and any necessary off-site easements.
b. Contractor shall conduct construction activities only during the hours of work guidelines established by the City.

101.8.02 Scheduling

a. **Sequence of Operations:** The contractor shall plan construction work and execute operations with a minimum of interference to the operation of existing City facilities and the traveling public. It may be necessary to do certain parts of the construction work outside normal working hours to avoid undesirable conditions, and it shall be the obligation of the contractor to make this change to the work schedule. Such scheduling, however, is subject to approval of the City’s authorized representative, and does not relieve the contractor from making their work available for inspection.

b. **Progress of Construction**

1. Construction shall proceed in a systematic manner that will result in minimum inconvenience to the public.

2. Contractor shall pothole and verify existing utilities and facilities prior to commencing proposed work.

3. Erosion control measures shall be installed and inspected, as per Section 101.9.06.a, “Inspections,” prior to commencing work.

4. Construction staking for the work being performed shall be completed before the start of excavation. The contractor shall limit their operations to a small work area per crew. At no time shall the trenching equipment be farther than 100 feet ahead of the pipe-laying crews, unless advance written permission is given by the City’s authorized representative.

5. The trench shall be backfilled in conformance to Section 6, “Trench Excavation and Backfill,” so that no section of trench is left open longer than 24 hours. Before the contractor stops construction for the day, trenches located in the right-of-way shall be completely backfilled, unless the trench is covered and with secured Steel Plates.

6. Where Steel Plates are used as a temporary road surface they shall comply with the following:

 (a) Steel Plates shall be A-36 steel meeting AASHTO H-20 loading specifications.

 (b) Steel Plates shall be centered over the cut. No more than \(\frac{1}{2} \) of the plate shall span a trench that has been completely backfilled, or no more that \(\frac{1}{3} \) of the plate shall span a trench that has not been completely backfilled.
c. **Connections:** Connections between existing work and new work shall be made only with approval of the City’s authorized representative. Connections shall be made only after all testing is completed on the new work and it is found to conform in all respects to the requirements of the plans and specifications, unless otherwise approved by the City’s authorized representative. Prior to making connection(s) to existing facilities, contractor shall have all necessary pipe and fittings available and on-site.

d. **Cleanup:** Cleanup of all construction debris, excess excavation, and excess materials and complete restoration of all fences, mailboxes, ditches, culverts, signposts, and similar items shall be completed according to Section 101.8.16, “Preservation, Restoration, and Cleanup.”

101.8.03 City Inspection

a. The City’s authorized representative shall inspect the project as necessary and shall check materials, equipment, and the construction of the project to determine whether the work is proceeding in accordance with the City’s standards. The contractor shall notify the City’s authorized representative at least 24 hours (one working day) to request City inspection. No such inspection, however, shall relieve the contractor of their duties under these standards.

b. The City’s authorized representative shall have the authority to direct replacement of defective material and uncovering work not inspected as required. Material rejected by the City’s authorized representative shall be removed from the job site by the contractor immediately after its rejection and shall not be used on the project.
c. Instructions given by the City’s authorized representative shall be respected and executed by the contractor. The City’s authorized representative, however, shall not have the power to waive the obligations of the contractor to furnish high-quality equipment, supplies, and materials, or to perform good work.

101.8.04 Change in Plans or Standards

The City’s authorized representative shall have the right to make changes in the plans or in these standards to protect the public interest or the normal operations of the City. Such changes shall be made at the sole discretion of the City’s authorized representative and may include, but are not limited to, the allowance of new or different materials for products that are equivalent to, or better than, the products specified in the plans or standards.

101.8.05 Interferences and Obstructions

a. Utility Notification: The contractor shall comply with the rules and regulations of the Oregon Utility Notification Center: OAR 952-001-0010 through 952-001-0090 and ORS 757.993. At least 48 hours’ notice shall be given to all utility offices that may be affected by the construction operation.

b. General: Various obstructions may be encountered during the course of the work. Maps and information regarding underground utilities shall be obtained from the utility owning and operating such utilities, but the location of such utilities is not guaranteed. If the services of any utility are interrupted because of the construction operation, the contractor shall notify the utility owner and the City’s authorized representative immediately.

c. Protection: The contractor shall exercise all due care in protecting existing underground and surface facilities and property along the route of the improvement in compliance with City of Wilsonville Code Chapter 4 and Ordinance 464. This protection shall include, but not be limited to, trees, yards, fences, drainage lines, mailboxes, driveways, shrubs, and lawns. Any existing facilities not specifically designated for alteration or removal that are damaged during construction shall be restored or replaced to an “in kind” or better condition, at the expense of the contractor.

d. Access: The contractor shall maintain access to all mail boxes; access to all property entrances shall be in conformance with Section 101.7.06, “Protection of Property.”

101.8.06 Contaminated Soil

If during construction contaminated soil or with hazardous materials or chemicals are encountered, the Contractor shall follow the procedures specified in Section 101.9.02, “Contaminated Soils or Hazardous Materials.”
101.8.07 Guarantee

a. The applicant/contractor shall furnish high-quality equipment, supplies, and materials and perform the work in accordance with these specifications. Any failure or omission by the City’s authorized representative to condemn any defective equipment, supplies, materials, or work shall not be construed as an acceptance thereof nor release the contractor from their obligations.

b. On notification of any deficiency by the City’s authorized representative, the contractor shall properly reconstruct or replace any defective equipment, supplies, materials, or work at their own cost any time on discovery of the defect during the period of construction and for the full guarantee period after acceptance of the work, and shall indemnify the City from any claims resulting from the defect.

c. The applicant/contractor shall guarantee all materials and equipment furnished and work performed for a minimum period of one year from the date of formal written acceptance by the City’s authorized representative in conformance with Section 101.8.17.b, “Maintenance Assurance.”

d. The applicant/contractor shall further warrant and guarantee for a minimum period of one year from the date of formal written acceptance of the system that the completed system is free from all defects due to faulty materials or workmanship. The applicant/contractor shall promptly make such corrections as may be necessary by reason of such defects, including the repair of any damage to other parts of the system resulting from such defects.

c. If the applicant/contractor, after notice, fails within 10 days to proceed to comply with the terms of this guarantee, the City may have the defects corrected, and the applicant and the applicant’s surety shall be liable for all expense incurred. However, in case of an emergency where, in the opinion of the City Engineer, delay would cause serious loss or damage, repairs may be made without notice being given to the applicant/contractor and the applicant/contractor shall pay the cost thereof.

101.8.08 Substitution of Materials

Whenever any material, article, device, product, fixture, form, type of construction, or process is indicated or specified by patent or proprietary name, by name of manufacturer, or by catalog number, such specifications shall be for the purpose of establishing a standard of quality and facilitating the description of the material or process desired. Such specification is not to be construed as eliminating from competition other products of equal or better quality made by other manufacturers and that are fully suitable in design, and shall be deemed to be followed by the words “or as approved” or “approved equal.” The contractor may, in such cases, submit complete data to the City Engineer for consideration of another material, type, or process that shall be substantially equal in every respect to the one indicated or
specified. Substitute materials shall not be used unless approved in writing by the City's authorized representative.

101.8.09 Safety Requirements

a. The contractor shall at all times conduct work in such a manner as to comply with all Occupational Safety and Health Administration (OSHA) requirements, shall minimize the possibility of accident or injury of any workers or the general public, and shall conduct the work, maintain operations, and provide all reasonable safeguards so as to protect public and private property as well as to protect persons from injury.

b. If in the opinion of the City's authorized representative the contractor is in violation of the above safety practices, the City's authorized representative may issue and post a stop-work order if the contractor, after being informed of such violation, refuses to comply immediately. The City's authorized representative will also notify the State of Oregon Workers' Compensation Division of such action.

c. The City's authorized representative's role is not one of supervision or safety management, but of observation only, as specified in Section 101.8.10.g., "Traffic Maintenance and Safety."

101.8.10 Traffic Maintenance and Safety

a. The contractor shall comply with all rules and regulations of City, county, or state authorities and applicable fire protection and law enforcement agencies regarding the closure of public streets or highways to public traffic. No public road shall be closed to the public except by express permission of the public agency responsible for the road.

b. The contractor shall conduct their operations so as to assure the least possible obstruction to traffic and normal commercial pursuits. Traffic control in work zones shall conform to the Manual on Uniform Traffic Control Devices (MUTCD 2000, or latest edition), published by the Federal Highway Administration, U.S. Department of Transportation.

c. The contractor shall be required to submit a traffic control plan to the appropriate jurisdiction for review and approval before beginning construction.

d. The contractor shall provide and be responsible at all times for flaggers, signs, and other devices not otherwise specified to be furnished by the applicant. The contractor shall erect and maintain all barricades, guards, lights, variable message boards, standard construction signs, warning signs, and detour signs as are necessary to warn and protect the public at all times from injury or damage as a result of work operations on highways, roads.
streets, sidewalks, multi-use paths, or recreational trails affected by such operations.

e. If the applicant or contractor fails to immediately provide the necessary flaggers or to provide, erect, maintain, and remove barricades, guards, lights, variable message boards, standard construction signs, warning signs, and detour signs when so ordered, the City Engineer shall be at liberty, without further notice to the contractor or applicant, to do so and to deduct all costs from the applicant’s/contractor’s performance assurance.

f. When traffic will pass over backfilled trenches before they are paved, the top of the trench shall be maintained with cold patch and shall allow normal vehicular movement to continue. Access driveways shall be provided where needed. Cleanup operations shall follow immediately behind backfilling. The work site shall be kept orderly at all times.

g. The City’s authorized representative’s role is not one of supervision or safety management, but of observation only. Nothing contained in this section or elsewhere in this document shall be interpreted to oblige the City to act in any situation, nor shift the applicant’s responsibility for safety compliance to the City. No responsibility for the safety of the work or for construction means, methods, techniques, sequences, or procedures shall attach to the City by virtue of its action or inaction under this section.

101.8.11 Access for Police, Fire, and Postal Service

a. No closure of a part of a street shall be made without first requesting and receiving approval from the City’s authorized representative. Closure of public streets shall be in conformance with Section 101.8.10.a, “Traffic Maintenance and Safety.” The contractor shall conduct operations so as to cause the least interference with emergency vehicle access.

b. The contractor shall comply with all requirements of the U.S. Postal Service with regard to the location of mailboxes that must be disturbed during construction. Mailboxes may be moved to temporary locations designated by the Postal Service. At the completion of work in each area, the contractor shall replace the mailboxes in their original location and in a condition satisfactory to the Postal Service.

101.8.12 Compliance with Applicable Laws

a. The contractor shall keep fully informed of all local ordinances, including those of Tualatin Valley Fire and Rescue (TVF&R) and state and federal laws and regulations that in any manner affect the work specified here.

b. The contractor shall at all times comply with said ordinances, laws and regulations, and shall protect and indemnify the applicant and his/her officers
and agents against any claim or liability arising from or based on the violation of any such laws, ordinances, or regulations.

c. All permits, licenses, and inspection fees necessary for prosecution and completion of the work shall be secured by the applicant/contractor.

101.8.13 Work in Public Rights-of-Way

b. The contractor shall use every reasonable precaution to safeguard the persons and property of the traveling public. It shall be the sole responsibility of the contractor to furnish, place, and maintain barricades, barriers, lights, flares, danger signals, signs, and security guards as necessary to protect the persons and property of the traveling public. All barricades and obstructions shall be protected at night by signal lights that shall be suitably distributed and kept burning from sunset to sunrise.

c. In the event of interruption to domestic water, sewer, storm drain, or other utility services as a result of accidental breakage, or as the result of being exposed or unsupported, the contractor shall promptly notify the proper authority, cooperate with said authority in restoring the service as promptly as possible, and bear all costs of providing temporary service measures and repairs. In no case shall interruption of any water or utility services be allowed to exist outside working hours, unless prior approval by the City’s authorized representative is received.

d. Work site cleanup shall conform to Section 101.8.16, “Preservation, Restoration, and Cleanup.”

101.8.14 Easements

a. The minimum utility and drainage easements for residential subdivisions shall be as follows:

1. A 6-foot public utility easement along all front lot lines, as shown on approved plans.

2. A 20-foot wide easement with an all-weather surface for maintenance access, as shown on approved plans. Lateral access shall not be greater than 800 feet.

b. Public sanitary, storm sewer, and water lines on private property shall be centered in a permanent easement granted to the City, with a minimum width of 15 feet along its entire length. Such easements, when directed by the City, shall be accompanied by temporary easements granted to the City of adequate
width to allow construction of water, storm, and sanitary sewers. The surveyor shall provide the City with the documents necessary to grant easements. The width of combination easements will be evaluated at the site development permit stage, but in no case shall they be less than 20 feet wide.

101.8.15 Sanitation

Contractors shall provide and maintain adequate sanitary facilities for employees.

101.8.16 Preservation, Restoration, and Cleanup

a. Site Restoration and Cleanup

1. The contractor shall keep the premises clean and orderly at all times during the construction period and leave the project free of rubbish or excess materials of any kind on completing the work. The contractor shall immediately replace mailboxes and signposts disturbed by construction activities.

2. During construction, the contractor shall stockpile the excavated trench materials so as to do the least damage to adjacent lawns, grassed areas, gardens, shrubbery, trees, or fences, regardless of the ownership of these areas. These surfaces shall be left in a condition equivalent to their original condition and free from all rocks, gravel, boulders, or other foreign material.

3. If damaged or altered during construction, existing trenches, drainage ditches, and culverts shall be regraded, and original drainage tiles and sewer laterals shall be repaired expeditiously. Within 500 feet of pipe-laying and backfilling operations in any trench section, the contractor shall rake and drag all disturbed areas and leave them free of rocks, gravel, clay, or any other foreign material and ready, in all respects, for seeding. The finished surface shall conform to the original surface, and shall be free-draining and free from holes, rough spots, or other surface features detrimental to a seeded area.

4. After backfilling the trenches, the contractor shall restore all public and private irrigation and/or utility systems that were destroyed, damaged, or otherwise modified during construction to their original condition.

5. All areas disturbed by the contractor's operations inside dedicated rights-of-way or easements shall be returned to their original condition. Areas outside the easements or rights-of-way that are disturbed by the contractor's operations shall be returned to their original condition.
b. **Street Cleanup**

1. The contractor shall clean spilled soil, mud, rock, gravel, or other foreign material caused by construction operations from all sidewalks, gutters, streets, and roads at the conclusion of each day's operation.

2. Within five days of substantial completion of the project, including all paving, gravel shoulder resurfacing, and/or utility work, the contractor shall thoroughly remove all soil, mud, rock, gravel, and other foreign material from sidewalks, gutters, and paved surfaces.

3. Cleaning shall be by grader and front-end loader, power brushing, vacuuming, and hand labor, unless otherwise approved by the City's authorized representative. If the contractor does not follow these standards, the City may exercise its option to have the street(s) cleaned and bill the contractor for such service.

4. Within five days of final completion of the project, the contractor shall remove all erosion-control materials and thoroughly remove all dirt, mud, rock, gravel, and other foreign material from sidewalks, gutters, and paved surfaces.

c. **Preservation of Irrigation and Drainage Ditches**

1. The contractor shall arrange schedules so that construction will not interfere with the irrigation of cultivated lands or pasturelands. Construction may proceed during the irrigation season provided the contractor constructs, at their own expense, temporary irrigation ditches, turnouts, and miscellaneous structures acceptable to the owner of the land in question that shall permit the land to be irrigated by others during construction.

2. After backfilling the trenches, the contractor shall restore all irrigation and storm drain ditches destroyed, damaged, or otherwise modified during construction to a condition equivalent, in the opinion of the City's authorized representative, to the condition of the ditches before construction. Ditches shall be built in their original locations.

101.8.17 Project Closeout

a. **Project Completion:** At the conclusion of the project, the applicant shall notify the City's authorized representative in writing that the project is ready for final inspection. On receipt of this notice, the City's authorized representative will request the following:

1. **Record Drawings:** At the completion of construction, the design engineer shall perform a record survey. That survey shall be the basis for the preparation of record drawings that will serve as the physical record of
changes made to the approved plans or specifications during construction. Using the record survey as a guide, the appropriate changes shall be made and a complete set of record drawings shall be submitted on approved Mylar™ material (minimum 3-mil thickness) using a photo printing method; Xerox printed drawings are not acceptable. Record drawings must be received before the City's authorized representative issues a project correction list (punch list). Record drawings shall include all work done within the public right-of-way or public easements.

2. **AutoCAD Drawing:** An electronic copy of the record drawings in AutoCAD format (check with City for acceptable versions) shall be submitted to the City's authorized representative on a 3½-inch floppy diskette or compact diskette. Electronic record drawings must be received before the City's authorized representative issues a project correction list.

3. **Final Inspection:** Once the City’s authorized representative receives the Mylar and electronic record drawings, a final inspection of the project will be conducted with representatives from the City, the design engineering firm, and the contractor.

4. **Project Correction List:** After this inspection, a project correction/repair list (punch-list) will be issued by the City’s authorized representative to the applicant and contractor. The project correction/repair list will include any items either damaged or improperly placed during construction, and any item(s) that, in the opinion of the City’s authorized representative, need repair.

5. **Completion:** Contractor shall perform correction/repair work as required on the project correction/repair list. When all items of the project correction list have been completed, and inspected and approved by the City’s authorized representative, and the contractor submits all maintenance and landscape maintenance assurances (see Section 101.8.17.b, “Project Closeout”), the City's authorized representative will consider the project complete and shall so state in writing. At this time, the one-year warranty period will go into effect, on written notice from the Engineering Division.

b. **Maintenance Assurance:** Maintenance assurances shall be required for work to ensure post-construction quality and landscape survivability. Assurances shall be in the form of a letter of commitment, bond, or cash deposit, in form and substance satisfactory to the City.

1. **Construction maintenance assurance:** A one-year bond for 10% of the cost to construct public improvements. Released one year after acceptance of construction and after correction of all defects identified during the maintenance assurance period.
2. **Landscape maintenance assurance**: a two-year bond for 100% of the cost to install all required landscaping in water quality/quantity facilities and vegetated corridors, plus 100% of the cost to maintain the landscaping in these areas for two years. The assurance shall be released two years after acceptance of construction, providing the landscaping meets the 90% survival level (see Section 301.13.02, “Landscape Inspection for Warranty”).

c. **Final Completion**: A project shall meet final completion when the City's authorized representative receives confirmation that all easements and legal documents have been recorded with the County Recorder.

101.9.00 **ENVIRONMENTAL PROTECTION, EROSION PREVENTION, AND SEDIMENT CONTROL**

101.9.01 **Introduction**

This section identifies requirements for erosion prevention and sediment control. The provisions are intended to prevent or reduce adverse impacts to the City's drainage system and water quality. In combination with other federal, state, and local laws and ordinances, the requirements are intended to protect the beneficial uses of state waters.

101.9.02 **Contaminated Soils or Hazardous Materials**

If construction reveals soils contaminated with hazardous materials or chemicals, or if soil is suspected to be contaminated, the contractor shall cease earthwork activity immediately, ensure that no contaminated material is hauled from the site, remove their workforce from the immediate vicinity of the contaminated area (leaving all machinery and equipment), and secure the area from access by the public until an OSHA certified HAZMAT response team has relieved them of that responsibility. The contractor shall immediately notify the City's authorized representative, the design engineer, and the Oregon Department of Environmental Quality (DEQ) of the situation.

101.9.03 **General Policy**

a. **Erosion Prevention Techniques and Measures**

1. The use of erosion prevention techniques shall be emphasized, rather than measures to control sediment. This shall be especially important on construction sites immediately before and during the rainy season. Erosion prevention techniques are designed to protect soil particles from the force of rain and wind so they shall not erode. When land is disturbed at a construction site, the erosion rate accelerates dramatically.

2. Erosion prevention techniques include, but are not limited to, construction scheduling, ground cover, and matting. Sediment control measures are
designed to capture soil particles after they are dislodged and to retain the soil particles on site.

3. Erosion prevention measures include, but are not limited to, silt fences, sediment barriers, and settling basins. Both erosion prevention techniques and sediment control measures have appropriate uses. Studies have shown, however, that sediment control measures are less effective than erosion prevention techniques in preventing soil movement.

4. Permanent vegetation or seeding shall be established only between March 1 through May 15 and September 1 through October 15. If an irrigation system is installed, vegetation or seeding may be established from March 1 through November 15. If an area falls under definition of a wetland, permanent vegetation or seeding shall be established only between March 1 through April 30 and September 1 through October 15 and in a manner satisfying applicable local, state and federal requirements.

5. Permanent vegetation or seeding shall meet the 90% survival level as detailed in Sections 301.13.02.e and 301.13.02.d, “Landscape Inspection for Warranty”.

b. Existing Vegetation

1. Existing vegetation shall be protected and left in place whenever practicable. Work areas shall be carefully located and marked to reduce potential damage to trees and existing vegetation. Trees shall not be used as anchors for stabilizing working equipment. Where required, trees and existing vegetation shall be protected with a non-movable, chain link fence (see Detail No. R-1155 of these standards).

2. Where existing vegetation has been removed, or the original land contours have been disturbed, the site shall be revegetated, and the vegetation established, as soon as practicable.

c. Enforcement

Failure to comply with any provision of this section or with any term of an erosion-prevention and sediment-control permit shall be deemed a violation and subject to enforcement action pursuant to applicable City ordinance and resolutions and orders, including all implementing rules and regulations.

101.9.04 Erosion Prevention and Sediment Control

a. Application and Purpose

1. It is a City requirement to reduce the amount of sediment and other pollutants reaching the public storm and surface water system resulting from development, construction, grading, excavating, clearing, and any
other activity that accelerates erosion, to the limits prescribed in these standards.

2. It is the policy of the City to require temporary and permanent measures for all construction projects to lessen the adverse effects of construction on the environment. All projects shall include properly installed, operated, and maintained temporary and permanent erosion-control measures as provided in these standards or in an approved plan, designed to protect the environment during the term of the project. Compliance with the measures prescribed here or in an approved plan do not lessen the necessity to provide effective and comprehensive erosion prevention and sediment control.

3. Nothing in this section shall relieve any person of the obligation to comply with the regulations or permits of any federal, state, or local authority.

b. Erosion Prohibited

1. Visible or measurable erosion that enters, or is likely to enter, the public or private stormwater and surface water system or other properties is hereby prohibited, and is a violation of these standards. An offsite sedimentation control facility may be utilized if it has been identified and approved in writing by the City’s authorized representative, written approval is obtained from the respective property owner, and a written agreement for rehabilitation of the facility by the applicant or contractor is submitted to the City. The owner of the property or the applicant under a Public Works Permit, together with any person or persons, including but not limited to the contractor or the design engineer causing such erosion, shall be held responsible for violation of the City’s standards.

2. No person shall create physical erosion by dragging, dropping, tracking, or otherwise placing or depositing, or permitting to be deposited, mud, dirt, rock, or other such debris on a public street, or into any part of the public stormwater and surface water system, or into any part of a private stormwater and surface water system that drains or connects to the public stormwater and surface water system. Any such deposited material shall be immediately removed by hand labor or mechanical means. No material shall be washed or flushed into any part of the stormwater and surface water system until all mechanical means to remove the debris are exhausted and preventive sediment filtration is in place.

3. The owner of the property or the applicant under a Public Works Permit, together with any person or persons, including but not limited to the contractor or the design engineer who causes such erosion, shall be held responsible for violation of these Standards.
c. **Erosion-Prevention Techniques and Methods**

The techniques and methods described in the latest edition of the “Erosion Prevention and Sediment Control Planning and Design Manual” may be used to control and prevent erosion in addition to the following procedures:

1. **Gravel Construction Entrance**

 (a) A gravel construction entrance is required. If there is more than one vehicle access point, a gravel construction entrance shall be required at each entrance.

 (b) The responsibility for design and performance of the driveway remains with the applicant. Vehicles or equipment shall not enter a property next to a stream, watercourse, stormwater or surface water facility, or wetlands unless adequate measures are installed to prevent physical erosion into the water or wetland.

2. **Erosion Control**

 (a) During periods of wet weather, disturbed areas of the site and/or stockpiled soil shall be covered by tarps or straw at the end of each day’s operations; all disturbed, unworked areas of the site shall be protected from erosion.

 (b) Temporarily seed disturbed soils and slopes that are not at finished grade and which will be exposed for two months or longer before being disturbed again.

 (c) Where seeding is used for erosion control, Regreen® or equivalent, or sterile wheat shall be used to stabilize slopes until permanent vegetation is established.

 (d) Temporary seeding shall establish a minimum of 70% coverage of the ground surface with uniform healthy plants. If this coverage is not achieved, or if the City determines that it is not effective in stabilizing the soil from erosion, the contractor, at their expense, shall stabilize the area with other temporary stabilization methods as approved by the City’s authorized representative.

 (e) Biodegradable fabrics (Coir/Jute Matting), reinforced turf mats, or straw mulch can be used to stabilize slopes and channels. The fabrics can also be used to hold plugs in place and discourage floating upon inundation. Consult the *Erosion Prevention and Sediment Control (EPSC) Planning and Design Manual* for additional information.

 (f) Permanent vegetation shall be established as outlined in Section 101.9.03.a.4, “Erosion Prevention.”
3. **Bioengineering Techniques**

 (a) Any person performing work in a watercourse or in an environmentally sensitive area (e.g., essential salmonid habitat, wetlands, steep slopes) shall employ bioengineering techniques whenever feasible.

 (b) Bioengineering techniques include, but are not limited to, contour wattling, brush layering or matting, live cuttings, fascines, and stakes.

4. **Sediment filters/barriers**

 (a) Using straw bales as a sediment filter or barrier is not allowed.

 (b) A filter system may not be used on catch basins in public streets as part of erosion-prevention and sediment-control plans for single-family dwellings.

5. **Plastic Sheeting:** Plastic sheeting shall generally not be used as an erosion-control measure for single-family house construction. Plastic sheeting may be used to protect small, highly erodible areas or temporary stockpiles of material. If plastic sheeting is used, the path of concentrated flow from the plastic must be protected.

6. **Protection Measure Removal:** The erosion-prevention and sediment-control measures shall remain in place and be maintained in good condition until all disturbed soil areas are permanently stabilized by installation and establishment of landscaping, grass, or mulching, or are otherwise covered and protected from erosion.

7. **Wet Weather Measures:** On sites where vegetation and ground cover have been removed, vegetative ground cover shall be planted on or before September 1, with the ground cover established by October 15. As an alternative if ground cover is not established by October 15, the open areas shall be protected through the winter with mulch, erosion blankets, or other method(s) approved by the City's authorized representative.

8. **Exceptions to Sediment Barrier Requirements:** Sediment barriers are not required on a site in the following circumstances:

 (a) Where a Neighborhood Erosion Control Plan is in effect, for a maximum of four lots.

 (b) Where there are no concentrated flows and the slope being protected has a grade of less than 2%.
(c) Where flows are collected by using temporary or permanent grading or other means, such that the flows are routed to an approved settling pond, filtering system, or sediment barrier.

(d) Where there are no concentrated flows, where slopes are less than 10%, and where the runoff passes through a grassed area that is either owned by the applicant or where such use is allowed, by written agreement, by the owner of the grassed area. The grass area shall be at least equal in dimension to the project area.

(e) Where the surface is protected by ground cover or matting approved by the City's authorized representative.

d. **Dust Prevention**

During all phases of the work, the contractor shall take precautions to abate any dust nuisance. Dust-prevention measures shall be continuous until final inspection by the City's authorized representative. Dust shall be minimized to the extent practicable, using all measures necessary to accomplish results satisfactory to the City's authorized representative, including, but not limited to:

1. Sprinkling haul and access roads and other exposed dust-producing areas with water.
2. Applying City-approved dust palliatives on access and haul roads.
3. Establishing temporary vegetative cover.
4. Placing wood chips or other effective mulches on vehicle- and pedestrian-use areas.
5. Maintaining proper moisture conditions on all fill surfaces.
6. Prewetting cut and borrow area surfaces.
7. Using covered haul equipment.

e. **Neighborhood Erosion Control Plan**

1. Any individual or group may submit an erosion-prevention and sediment-control plan for multiple lots. Plans shall be submitted to City of Wilsonville for review and approval. This shall be referred to as a “Neighborhood Erosion Control Plan.” In such case, the group of lots will be evaluated as if they were one lot.
2. If an individual lot in a Neighborhood Erosion Control Plan is sold to new owners, the new owners may either join the neighborhood plan (with the approval of the other neighborhood owners), or will need to submit their own erosion control plan if erosion potential still exists on the parcel. If a lot is sold and the new owner does not join the Neighborhood Erosion Control Plan, then the plan must be revised and the new owner must submit an individual plan.

101.9.05 Maintenance

a. The applicant shall maintain the facilities and techniques contained in the approved erosion-prevention and sediment-control plan so they will continue to be effective during the construction phase, post construction phase, establishment of permanent vegetation, or any other permitted activity.

b. If the facilities and techniques approved in an erosion-prevention and sediment-control plan are not effective or sufficient as determined by the City site inspection, the applicant shall submit a revised plan within three working days of written notification by the City’s authorized representative. On approval of the revised plan by the City’s authorized representative, the applicant shall immediately implement the additional facilities and techniques included in the revised plan.

c. In cases where erosion is likely to occur, the City’s authorized representative may require the applicant to install interim control measures before submitting a revised erosion-prevention and sediment-control plan.

101.9.06 Inspection

a. City Initial Inspection: On a site development or any other type of project, the erosion-prevention and sediment-control measures shall be installed before the start of any permitted activity. The applicant shall call the City’s authorized representative for a pre-construction conference before beginning any site clearing or grading.

b. Applicant Inspections: The applicant shall be required to inspect erosion-prevention and sediment-control measures as outlined in the approved Grading and Erosion Control Plan (as required by City’s current erosion control ordinance) and to provide information to the City’s authorized representative. Inspections shall be completed as required by the latest edition of the Erosion Prevention and Sediment Control Planning and Design Manual and the Minimum Erosion Prevention and Sediment Control Plan Monitoring Requirements (see Appendix G). Inspection information is to be maintained on-site and available to City’s authorized representative on request.

c. Final Inspection: A final erosion control inspection shall be required before the sale or conveyance to new property owner(s) or before the removal of erosion-prevention and sediment-control measurements.
SECTION 2

STREET IMPROVEMENT DESIGN
& CONSTRUCTION STANDARDS

201.1.00 ENGINEERING

201.1.01 Introduction

This section outlines design and construction requirements for all public street construction. The provisions and technical specifications herein set forth the requirements of the City of Wilsonville for roadway construction and improvements. Interpretations of such provisions and their application in specific circumstances shall be made by the City’s authorized representative. Refer to Section 1 of the "Public Works Standards" for general provisions and requirements.

201.1.02 Alternative Design and Construction Standards

a. If approved by the Development Review Board and City Engineer, alternative roadway design standards may be substituted for the standards specified herein. Metro’s “2000 Regional Transportation Plan” (RTP) provides street design policies and concepts (such as Green Streets, Livable Streets, and Skinny Streets) that address federal, state, and regional transportation mandates with respect to local implementation of Metro’s “2040 Growth Concept.” While this section provides for the consideration of alternative standards that may conflict with the City’s adopted Fire Prevention Code, it is understood that alternative standards will be considered and applied on a case-by-case basis, with due regard to the Fire Prevention Code. Any requests for substitution must be in writing, stamped by a Professional Engineer registered in the State of Oregon at the time of submittal, and submitted as part of the Land Use process.

b. If approved by the City Engineer, alternative construction standards may be substituted for the standards specified herein. Any requests for substitution must be in writing, stamped by a Professional Engineer registered in the State of Oregon at the time of submittal, and submitted at least three weeks prior to the Engineering Plan Review submittal process.

201.1.03 General Requirements

a. **Functional Classification:** The functional classification of existing and proposed roads is established by the City of Wilsonville’s Transportation Systems Plan (TSP). Where the functional classification of a road is not defined by the TSP, the existing land use and existing operational
characteristics shall be used by the City’s authorized representative to
determine the functional classification of the road in question.

b. **Access**: Access to city, county, and public roads shall conform to the City of Wilsonville TSP.

c. **Width**: The width of the streets shall be in compliance with the City of Wilsonville TSP.

d. **Number of Lanes**: The number of lanes for each class of road is defined by the City of Wilsonville TSP.

e. **Sidewalks and Planter Strips**: Streets shall be provided with sidewalks and planter strips as specified in the City of Wilsonville TSP.

f. **Design Speed**: The posted vehicle speed can be 85% of design speed, unless the road improvement will increase the 85% speed. If road improvement is likely to increase the 85% speed, the design speed will be based on the City Engineer’s recommendation.

201.1.04 Street Plans

a. It is the design engineer’s responsibility to ensure that engineering plans are sufficiently clear and concise to construct the project in proper sequence, using specified methods and materials, with sufficient dimensions to fulfill the intent of the design guidelines in these standards.

b. All elevation on design plans and record drawings shall be based on the applicable NAVD datum specified in Section 101.707.a, “Surveying and Land Monuments.”

c. All engineering street plans shall be stamped by a Professional Engineer registered in the State of Oregon. At a minimum the street plan shall contain the following:

1. At least one sheet showing a plan view of the entire project site. If the project site is sufficiently large that detailed street plans on any given sheet do not encompass the entire project site, then a sheet showing the plan view of the entire site must serve as an index to subsequent detailed plans sheets.

2. A topographic map showing existing conditions for the site, including:

 (a) Existing topography for the site.

 (b) Adjacent streets, including street names.
(c) Existing utilities, including franchised utilities above or below ground and drainage facilities that transport surface water onto, across, or from the project site. Existing drainage pipes, culverts, and channels shall include the invert or flowline elevations.

(d) Existing sensitive areas (e.g., ravines, swales, steep slopes, wells, springs, wetlands, creeks, lakes). For natural drainage features, show direction of flow, drainage hazard areas, and 100-year floodplain boundary (if applicable).

3. Plans for proposed street improvements shall include the following:

(a) Grading and erosion control plan.

(b) Finished grades, showing the extent of cut and fill by existing and proposed contours, profiles, or other designations.

(c) Proposed structures, including roads and road improvements, parking surfaces, building footprints, walkways, landscaped areas, street lighting, public and private utilities, etc.

(d) Signing and striping plan.

(e) Applicable detail drawings.

(f) Existing and proposed easements.

(g) Setbacks from environmentally sensitive areas or resource areas protected within the Significant Resource Overlay Zone (SROZ).

(h) Any proposed phasing of construction. (Note: water quality and quantity facilities must be constructed before completion of any phased construction)

4. Detailed grading and landscape plans will be provided. The plans shall include the following:

(a) Existing ground contours (shaded) and proposed ground contours at a minimum of a 1-foot contour interval. Slopes steeper than 6H:1V shall be identified.

(b) Location of all drainage structures as well as any other piped utilities in vicinity (i.e., at 0.1-foot detail).

(c) Landscape planting plan. Show all sewer laterals, water services, fire hydrants, and street lighting as per Detail No. R-1157 of these standards.
(d) Irrigation plan to achieve the required plant survival rate.

(e) Maintenance access, as applicable.

5. Cross-sections shall be provided for at least the following:

(a) All street sections or amended soil sections, as applicable.

(b) Proposed ditches and swales, including vegetated swales.

201.1.05 Surveying

a. The design engineer shall be responsible for establishing the location of the street by means of reference stakes offset along the centerline. No construction shall be allowed to begin before construction staking. All staking shall be performed by or under the direction of a Professional Land Surveyor registered in the State of Oregon.

b. Reference stakes shall be set at 25-foot station intervals along the centerline. Stakes shall, at a minimum, reference the following:

- Point of Curvature (PC), midpoint, Point of Tangency (PT) for horizontal curves.

- Begin Vertical Curve (BVC) point, low/high point, End Vertical Curve (EVC) point for vertical curves.

- Beginning and ending point of super-elevation.

- Beginning and ending of full super-elevation.

- Centerline of intersecting street.

- PC, midpoint, and PT for curb returns.

- Centerline of access (wheelchair) ramp.

- Centerline of driveways.

- Curb scoring for match into concrete street joints.

c. The design engineer shall also be responsible for identifying easements during construction.
Subgrade Evaluation

a. Subgrade evaluation and recommendations shall be prepared by a Professional Engineer registered in the State of Oregon whose area of expertise is geotechnical engineering and shall be summarized in a Geotechnical Report.

b. Soil testing to obtain the strength of the soil is required for all roads to analyze and design the road structural section. Soil tests are needed on samples of subgrade materials that are expected to be within 3 feet of the planned subgrade elevation. Samples are needed for each 1,000 feet of roadway and for each visually observed soil type. Soil tests are required for at least two locations.

c. The selected design structural strength of the soil must be consistent with subgrade compaction requirements. That is, the strength and compaction moisture content at optimum to slightly over optimum must be specified. The Geotechnical Report shall address subgrade drainage and groundwater considerations for year-round conditions. Recommendations for both dry-weather and wet-weather construction shall be included.

d. Test the subgrade and determine the modulus of subgrade reaction, \(k \), or the resilient modulus (\(M_R \)) to design the street structure. The procedure for determining \(M_R \) is given in AASHTO T-292. Alternately, these soil strength criteria can be based on either the California Bearing Ratio (CBR) or H-veem resistance testing (R-value). The CBR will be determined in accordance with AASHTO T-193, based on the modified proctor (AASHTO T-180). R-values shall be determined at 300-psi exudation pressure in accordance to AASHTO T-190.

1. A correlation of \(M_R \) to CBR is given by the following relationship (Heukelom and Klomp, 1962):

\[
M_R \text{ (psi)} = 1,500 \times CBR
\]

2. A correlation of \(M_R \) to R-value is given by the following relationship (Asphalt Institute, 1982):

\[
M_R \text{ (psi)} = A + B \times \text{(R-value)}
\]

Where \(A = 772 \text{ to } 1,155 \), \(B = 369 \text{ to } 555 \)

3. A correlation of \(M_R \) to R-value for fine-grained soils (R-value \(\leq 20 \)) is given by the following correlation (AASHTO, 1993):

\[
M_R = 1,000 + 555 \times \text{(R-value)}
\]
4. A correlation of CBR to k may be made using Table 2.1.

Table 2.1. RELATIONSHIP BETWEEN k AND CBR

<table>
<thead>
<tr>
<th>CBR Value</th>
<th>Modulus of Subgrade Reaction (k) (psi/ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>100</td>
</tr>
<tr>
<td>5.5</td>
<td>150</td>
</tr>
<tr>
<td>10</td>
<td>200</td>
</tr>
<tr>
<td>20</td>
<td>250</td>
</tr>
<tr>
<td>50</td>
<td>500</td>
</tr>
<tr>
<td>80</td>
<td>710</td>
</tr>
</tbody>
</table>

201.2.02 Subsurface Drainage

Subsurface street drainage must be considered in the design of each street:

a. Subsurface drains shall be designed and constructed according to the recommendations of the Geotechnical Report. In the event that no subsurface drainage is required based on the Geotechnical Report, a transverse perforated drainpipe with a minimum diameter of 4 inches shall be installed below the base rock at the point of each sag vertical curve.

b. The subsurface drains are for the purpose of collecting and conveying subsurface water only, not surface runoff. They are not to be considered part of the storm drainage system for purposes of sizing storm drain pipe.

c. Subsurface drains shall connect and drain into the storm drainage system at catch basins, gutter inlets, manholes, or roadside ditches. Surcharge from the storm drainage system shall not be allowed to back up into the subsurface drains.

d. Alternative subsurface drainage measures may be used if approved by the City's authorized representative.

201.2.03 Structural Section

Streets may be constructed of:

- Full depth AC, or AC with crushed aggregate base and/or treated bases, or
- PCC with cushion course of crushed aggregate.
201.2.04 Asphalt Pavement Design

a. AC pavement shall be designed using nationally recognized procedures: the AASHTO method or the Asphalt Institute method.

b. The wearing surface of AC pavement shall conform to the Oregon Department of Transportation Standard Specifications for Construction (ODOT SSC) Section 00745, “Hot Mixed Asphalt Concrete,” for either Level 2 or Level 3 HMAC, as determined by the City’s authorized representative. Minimum total thickness of AC shall be 4 inches placed in at least two lifts. If the thickness is more than 6 inches, place the asphalt in three lifts. The base courses for AC pavement shall conform to ODOT SSC Section 00745, “Hot Mixed Asphalt Concrete,” for either Level 2 or Level 3 HMAC, as determined by the City’s authorized representative.

c. Pavement thickness design criteria shall be accomplished in accordance with the AASHTO method or the Asphalt Institute method, using soil strength criteria based on either the CBR or R-value (see Section 201.2.01, “Subgrade Evaluation,” City of Wilsonville “Public Works Standards”).

d. AC pavement shall be compacted to a minimum of 92% relative density, based on the theoretical maximum density determined in accordance with American Society for Testing and Materials (ASTM) D-2041 (Rice Gravity).

e. Use a minimum 20-year design period.

201.2.05 Portland Cement Concrete Design

a. At the direction of the City's authorized representative, certain streets may be required to be designed and constructed using PCC.

b. PCC pavement shall be designed using nationally recognized procedures: the PCA method or the AASHTO method.

c. Use a minimum 20-year design period.

d. Minimum thickness of PCC shall be 7 inches.

e. Minimum thickness of crushed rock base shall be 6 inches.

f. PCC for pavement construction shall conform to ODOT Class 4350 – 1½, Structural Concrete or Structural Concrete Option A.

g. Design of concrete joints shall follow the guidelines and requirements outlined in the American Concrete Pavement Association (ACPA) publication, “Design and Construction of Joints for Concrete Streets,” except for the following:
1. Maximum joint spacing shall be 12 feet.

2. Joints shall be designed to be skewed 6:1 when meeting the edge of pavement.

3. For dowelled contraction joints, do not lubricate the dowels.

4. Isolation joints shall be used around manhole covers. Isolation joints shall be circular with a 2-foot spacing from the manhole cover.

h. All castings for manholes in concrete streets shall be standard type.

i. PCC for curbs, sidewalks, and miscellaneous construction shall conform to ODOT Class 3000 – ¾, Commercial Grade Concrete.

201.2.06 Pavement Transition – Portland Cement Concrete to Asphalt

Where PCC paving abuts AC paving, there shall be a lateral transition zone extending 4 feet, with a cross-section designed according to Detail No. R-1090 of these standards.

201.2.07 Pavement Overlay Design

Pavement overlays shall be designed using nationally recognized procedures: the Asphalt Institute method, PCA method, or AASHTO method.

201.2.08 Horizontal Alignment

Alignments shall meet the following requirements:

a. Centerline alignment of improvements should be parallel to the centerline of the right-of-way. The centerline of a proposed street extension shall be aligned with the existing street centerline.

b. Horizontal curves in alignments shall meet the minimum radius requirements shown in Table 2.2, except as noted in c. below.

c. Minimum centerline radius street curves in residential neighborhoods shall be as follows:

1. (a). Residential collectors: 100 feet.
2. (b). Residential streets: 75 feet.
Table 2.2. DESIGN SPEED / CENTERLINE RADIUS—MINIMUMS

<table>
<thead>
<tr>
<th>Major Collector / Arterial Streets / All Rural Roads</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Speed (mph)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>25</td>
</tr>
<tr>
<td>30</td>
</tr>
<tr>
<td>35</td>
</tr>
<tr>
<td>40</td>
</tr>
<tr>
<td>45</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>55</td>
</tr>
<tr>
<td>60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Minor Collector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Speed (mph)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>25</td>
</tr>
<tr>
<td>30</td>
</tr>
<tr>
<td>35</td>
</tr>
</tbody>
</table>

NOTE: * e = rate of superelevation (tan B)
(1) Off right-of-way runoff shall be controlled to prevent concentrated cross-flow in superelevated sections.
(2) Where superelevation is used, street curves shall be designed for a maximum superelevation rate of 0.04.
(3) If terrain dictates sharp curvature, a maximum superelevation of 0.06 is justified if the curve is long enough to provide an adequate superelevation transition.

201.2.09 Vertical Alignment

Alignments shall meet the following requirements:

a. Minimum tangent street gradients shall be 1% along the crown and curb.

b. Maximum street gradients shall be 8% for collector and local streets, and 6% percent for arterial streets. Grades in excess of 8% but not more than 12% may be permitted for short distances and must be approved by the City’s authorized representative on an individual basis.
c. Local streets intersecting with a minor collector or greater functional classification street or streets intended to be posted with a stop sign shall provide a landing that averages 5% gradient or less. Landings are that portion of the street within 20 feet of the edge of the intersecting street at full improvement.

d. Grade changes of more than 1% shall be accomplished with vertical curves.

e. Street grades, intersections, and superelevation transitions shall be designed not to allow concentrations of storm water to flow over the pavement.

f. Offset crowns may be allowed and must be approved by the City's authorized representative on an individual basis.

g. Streets intersected by streets not constructed to full urban standards shall be designed to match both present and future vertical alignments of the intersecting street. The requirements of these standards shall be met for both present and future conditions.

h. Vertical curves shall conform to the values listed in Tables 2.3 and 2.4.

i. Slope easements shall be dedicated or obtained for the purposes of grading outside the right-of-way.

Table 2.3. DESIGN CONTROLS FOR CREST VERTICAL CURVES BASED ON STOPPING SIGHT DISTANCE

<table>
<thead>
<tr>
<th>Design Speed</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>20 – 30</td>
</tr>
<tr>
<td>30</td>
<td>30 – 40</td>
</tr>
<tr>
<td>35</td>
<td>40 – 50</td>
</tr>
<tr>
<td>40</td>
<td>60 – 80</td>
</tr>
<tr>
<td>45</td>
<td>80 – 120</td>
</tr>
<tr>
<td>50</td>
<td>110 – 160</td>
</tr>
<tr>
<td>55</td>
<td>150 – 220</td>
</tr>
</tbody>
</table>

Where: $K = \frac{L}{A}$ feet / percent.

$L =$ length of vertical curve (feet).

$A =$ algebraic difference in grades (percent).
Table 2.4. DESIGN CONTROLS FOR SAG VERTICAL CURVES BASED ON STOPPING SIGHT DISTANCE

<table>
<thead>
<tr>
<th>Design Speed</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>30–40</td>
</tr>
<tr>
<td>30</td>
<td>40–50</td>
</tr>
<tr>
<td>35</td>
<td>50–60</td>
</tr>
<tr>
<td>40</td>
<td>60–70</td>
</tr>
<tr>
<td>45</td>
<td>70–90</td>
</tr>
<tr>
<td>50</td>
<td>90–110</td>
</tr>
<tr>
<td>55</td>
<td>100–130</td>
</tr>
</tbody>
</table>

Where: \(K = \frac{L}{A} \) feet / percent.

L = length of vertical curve (feet).

A = algebraic difference in grades (percent).

Note: Values may be reduced if street lighting is present for sag vertical curves. AASHTO publication, “An Informational Guide for Roadway Lighting” (1984), shall serve as a guide.

201.2.10 Transitions

The following specify the minimum requirements for street transitions:

a. Street width transitions from a narrower width to a wider width shall be designed with a 5:1 taper. Delineators, as approved by the City’s authorized representative, shall be installed to define the configuration.

b. For street width transitions from wider to narrower, the length of the transition taper shall be determined as follows:

\[
L = S \times W, \text{ for } S \geq 45 \text{ mph} \\
L = \frac{W \times S^2}{60}, \text{ for } S \text{ less than } 45 \text{ mph}
\]

Where \(L = \) minimum length of taper (feet).

S = design speed (mph).

W = edge of pavement offset (feet).

c. Delineators, as approved by the City’s authorized representative, shall be installed to define the configuration. Maximum spacing of delineators shall be the numerical value of the design speed, in feet (i.e., a 35-foot spacing for a 35 mph speed).

d. In situations where a tapered transition cannot be provided, a Type III barricade shall be installed at the end of the wider section of the street and a
taper shall be appointed and delineated as approved by the City’s authorized representative. The barricade shall conform to Detail No. R-1145 of these standards; diagonal striping shall slope down in the direction of the taper. If the wider section does not provide an additional travel lane, only a barricade is required without the transition.

201.2.11 **Superelevation Cross-Sections**

a. Design elements for superelevation shall be based on AASHTO design guidelines.

b. Offset crown cross-sections are not acceptable as superelevation sections.

201.2.12 **Intersections**

The following specifies the minimum requirements for intersections:

a. The interior angle at intersecting streets shall be kept as near 90 degrees as possible, unless existing development or topography make it impracticable. Where intersecting streets cannot be kept at right angles, the interior angle shall in no case be less than 75 degrees, unless approved by the City’s authorized representative after consultation with TVF&R. A tangent section shall be carried a minimum of 25 feet each side of intersecting right-of-way lines.

b. Opposing intersections shall be designed so that no offset dangerous to the traveling public is created.

1. Intersections on major arterial streets shall be separated by at least 1000 feet.

2. Intersections on minor arterial streets shall be separated by at least 600 feet.

3. Intersections on collector, residential, and rural streets shall be separated by at least 100 feet.

c. Curb radii at intersections shall be as shown in Table 2.5 for the various function classifications with exceptions subject to approval by the City’s authorized representative. The right-of-way radii at intersections shall be sufficient to maintain at least the same right-of-way-to-curb spacing as the lower classified street.

d. Where Minor Collector and/or Rural Streets carry transit traffic, the radii indicated for Residential Streets shall take precedence.

c. Sidewalk access (wheelchair) ramps conforming to the Americans with Disabilities Act (ADA) Standards for Accessible Design shall be provided at
all corners of all intersections, regardless of curb type, and shall conform to
Section 201.2.22, "Sidewalks," and to Detail No. R-1075 of these standards.

Table 2.5. MINIMUM TURNING RADII FROM EDGE OF
PAVEMENT OR CURB (feet)

<table>
<thead>
<tr>
<th>Street Classification</th>
<th>Major/Minor Arterial Street</th>
<th>Major Collector Street</th>
<th>Minor Collector Street</th>
<th>Residential Street</th>
<th>Rural Street</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major/Minor Arterial Street</td>
<td>55</td>
<td>40</td>
<td>30</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Major Collector Street</td>
<td>40</td>
<td>40</td>
<td>30</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Minor Collector Street</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Residential Street</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Rural Street</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
</tbody>
</table>

201.2.13 Cul-de-Sacs, Eyebrows, Turnarounds

The design engineer's plans must be approved by TVF&R and the City's
authorized representative. The following specifies the minimum requirements for
cul-de-sacs, eyebrows, and turnaround areas. Other turnaround geometries may
be used when conditions warrant and when the City's authorized representative
approves the design and application of its use.

a. Cul-de-sacs and other turnaround areas shall be allowed only on residential
streets and commercial/industrial streets. Cul-de-sacs shall not be more than
200 feet long, unless approved by the Development Review Board. The
length of cul-de-sacs shall be measured along the centerline of the roadway
from the nearside right-of-way of the nearest through-traffic intersecting
street to the farthest point of the cul-de-sac right-of-way.

b. The minimum curb radius for cul-de-sac bulbs shall be 45 feet, and the right-of-way radius shall be sufficient to maintain at least the same right-of-way-to-curb spacing as in the adjacent part of the road.

c. Cul-de-sacs and other turnaround areas shall have a 6-foot public utility
easement extending outside the right-of-way around the cul-de-sac
continuously. The minimum curb radius for transitions into cul-de-sac bulbs
shall be 25 feet. The right-of-way radius shall be sufficient to maintain the
same right-of-way-to-curb spacing as in the adjacent part of the road.

City of Wilsonville
Public Works Standards - 2006
Street Improvement Standards Section 2 Page 64
d. An eyebrow corner may be used on a local street where expected average daily traffic (ADT) counts will not exceed 500 vehicles.

201.2.14 Stub Streets

Stub streets allow for future extensions. A reserve strip at the terminus of the right-of-way shall be provided. The reserve strip shall be at least one foot long and extend the full width of the right-of-way, and be provided to the City. A Type III Street Barricade conforming to Detail No. R-1145 shall be erected at the edge of pavement of the stub street. Additionally, a sign shall be installed stating the street will be extended in the future and to contact the City of Wilsonville Engineering Department (503-682-4960) for further information. Streets 50 feet in length or greater shall provide a garbage/recycling vehicle turn around approved by the City’s authorized representative.

201.2.15 Half-Streets

To allow for reasonable development, half-street improvements may be approved by the Planning Commission and the Development Review Board. Whenever a half-street improvement is approved, it shall conform to the following:

a. Street section design and construction shall be in conformance with these standards

b. Minimum pavement width shall be 24 feet for arterial and collector streets, and 20 feet for residential and rural streets.

c. Intersectional improvements shall be adequate to provide turn lanes.

1. Arterials and collectors: 40 feet paved for 250 feet as measured from centerlines of intersecting streets.

2. Residential and rural: 36 feet paved for 150 feet as measured from centerlines of intersecting streets.

d. A reserve strip at the limits of the right-of-way shall be provided to the City. The reserve strip shall be at least one foot wide and extend the full length of the half street improvement.

201.2.16 Private Streets

Approval for private streets shall come from the Development Review Board and shall meet the requirements of the City of Wilsonville Planning Division and TVF&R. Private streets shall be signed with a blue sign stating, “Not maintained by the City of Wilsonville.”
201.2.17 Raised Medians

The following specify the minimum requirements for raised medians:

a. Raised medians are allowed on certain streets as defined in the City of Wilsonville TSP.

b. Where raised medians are allowed, the following criteria must be met:
 1. Street lighting shall be sufficient to provide illumination of the raised median.
 2. Objects, such as trees, shrubs, signs, light poles, etc., shall not physically or visually interfere with vehicle or pedestrian traffic in the travel way.
 3. The style and design of the raised median shall be site specific. The raised median shall be safe for the design speed. Raised medians shall be designed in conformance with AASHTO guidelines. Design shall consider the use of rolled curbs and appropriate surface loading for emergency vehicle left-turn access. Raised median designs shall be subject to City approval.

201.2.18 Transit Turnout Design

Transit turnouts shall be provided where required by the City of Wilsonville.

a. Transit turnouts shall conform to Detail No. R-1195 of these standards.

b. Transit pad sections shall be a minimum thickness of 9 inches of PCC over 6 inches of compacted base rock.

c. Transit pad shall be reinforced with No. 4 reinforcement steel bar, placed 1-foot on center each way, 2 inches above base rock.

d. Transit pad shall be dowelled into adjacent PCC gutter; dowels spaced 3-feet on center and centered on face of gutter. If adjacent street is PCC, transit pad shall be dowelled into the street as shown in Detail No. R-1095.

e. Minimum concrete specifications shall be 4,000-psi compressive strength and design modulus of rupture (M_R) shall be 525 psi in 28 days. A higher value of M_R shall be allowed if adequately supported by test data.

f. Base rock shall conform to Section 201.3.01, “Granular Fill.”

g. Design of concrete joints shall follow the guidelines and requirements outlined in the ACPA publication, “Design and Construction of Joints for Concrete Streets,” except for the following:
 1. Maximum joint spacing shall be 12 feet.
2. Joints shall be designed to be skewed 6:1 when meeting the edge of pavement.

3. For transit pads adjoining PCC streets, joints shall match street jointing.

4. For doweled contraction joints, do not lubricate the dowels.

5. Isolation joints shall be used around manhole covers. Isolation joints shall be circular with a 2-foot spacing from the manhole cover.

201.2.19 Sight Distance

A clear vision area shall be maintained on each corner of property at the intersection of any two streets, a street and a railroad, or a driveway and a street. Clear vision area shall be in conformance with Section 4.177 of the City Code and this standard. The following specifies the minimum requirements for sight distance for roads that intersect each other, and for driveways that intersect roads:

a. The minimum intersectional sight distances shall be based on the posted speed of the road. The intersectional sight distance shall be

 • Based on an eye height of 3.5 feet and an object height of 2.0 feet above the road.

 • Measured from the center of the drive lane 10 feet from the extended curb line or edge of pavement of the crossroads.

b. No structures, plantings, or other obstructions shall be allowed that would impede visibility between the height of 30 inches and 10 feet, as measured from the top of curb, or in absence of a curb, from the established street centerline elevation.

c. Trees placed in sidewalk planting areas must be located at least 30 feet from the nearest intersection and 10 feet from driveways.

d. Minimum intersectional sight distance for railroad and street intersections shall be in conformance with AASHTO design guidelines.

e. Minimum intersectional sight distance shall be equal to 10 times the posted speed of the road for grades of 3% or less, as shown in Table 2.6. For grades in excess of 3%, sight distances must be adjusted and shall be in conformance with AASHTO design guidelines. For significant road improvement projects, the following intersectional standards shall be met in addition to the AASHTO remaining sight distance standards.
Table 2.6. INTERSECTIONAL SIGHT DISTANCE

<table>
<thead>
<tr>
<th>Design Speed (mph)</th>
<th>Distance Along Crossroads (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>250</td>
</tr>
<tr>
<td>30</td>
<td>300</td>
</tr>
<tr>
<td>35</td>
<td>350</td>
</tr>
<tr>
<td>40</td>
<td>400</td>
</tr>
<tr>
<td>45</td>
<td>450</td>
</tr>
<tr>
<td>50</td>
<td>500</td>
</tr>
</tbody>
</table>

201.2.20 Driveways

The following specifies the minimum requirements for driveways:

a. Driveways shall conform to Detail No. R-1115 or R-1120 of these standards.

b. Driveways shall not be permitted on streets with existing or proposed non-access reserve strips or as set forth in the Planning Code.

c. For commercial or industrial developments, driveway access shall be a minimum of 100 feet from the nearest intersection (as measured from centerline of driveway to near face of curb at intersection), unless otherwise approved in writing by the City’s authorized representative.

d. For residential developments, driveway access from the nearest intersection shall be established by the City of Wilsonville Building and Planning Departments, in coordination with the City’s authorized representative.

e. Access driveways shall have a minimum width of 12 feet for one way traffic and 20 feet for two way traffic. Driveway widths shall meet requirements of TVF&R.

f. Concentrated surface runoff shall not be allowed to flow over commercial driveways or sidewalks.

g. Driveways intersecting with roads shall meet the minimum sight distance requirements as specified in Section 201.2.19, “Sight Distance.”
The following specifies the requirements for curbs and cross-slope grading for streets:

a. **Location and Design:** urban arterial and major collector roads shall include curbs on both sides, except in situations of interim width improvements. Interim designs shall have shoulders and ditches. Nonmountable curbs shall be required on urban arterial and major collector roads.

b. **Shoulders:** rural streets or interim width urban streets shall have 6-foot-wide shoulders next to the street, at 2% cross-slope, and roadside ditches on each side of the shoulder, with a maximum sideslope of 2H:1V. The 6-foot shoulder area may consist of a section of pavement and a section of crushed aggregate. The pavement section shall be a minimum of 2 feet wide and a maximum of 6 feet wide.

c. **Curb Stamping:** newly constructed curbs or replaced curbs shall be stamped with the capitol letters “SS” at the location of each sanitary lateral crossing, the capitol letters “SD” at the location of each storm drain lateral crossing, the capitol letter “W” at the location of each water line crossing, and the capitol letter “C” at the location of each conduit crossing. Letters shall be 3 inches in height and embossed a minimum of 1/8-inch deep.

d. **Root Barriers:** where trees are located within 8 feet of public curbs, the curb shall be protected from root intrusion with a root control barrier system designed by a Professional Landscape Architect registered in the State of Oregon; root control barrier shall be approved by the City’s authorized representative before installation. Generally, the root control system should be installed a minimum of 24 inches deep, with a minimum 20-foot length centered on the root source. Installation of such systems shall be done so as to not disturb the curb or base rock previously installed. Provide landscaping plan showing location of root control barrier system.

e. **Grading, Collector and Arterial Streets:** grading outside the improved areas shall be as follows: Minor collector or higher functional classification shall have a 2% upward grading to the right-of-way line, a 5H:1V upward or downward grading within the public utility easement, and no steeper than \(\frac{1}{2}H:1V \) up or 2H:1V down outside the right-of-way. Retaining walls shall be used if slopes are greater than the \(\frac{1}{2}H:1V \) to a height where the slope is no more than \(\frac{1}{2}H:1V \).

f. **Grading, Residential and Rural Streets:** residential streets and rural roads shall have a 2% upward grading to the right-of-way line, a 5H:1V upward or downward grading within the public utility easement, and no steeper than \(\frac{1}{2}H:1V \) up or 2H:1V down, outside the public utility easement. Retaining
walls shall be used if slopes are greater than the $1\frac{1}{2}H:1V$ to a height where the slope is no more than $1\frac{1}{2}H:1V$.

g. Cross-slope: cross-slope of the street section shall be no less than 2% and no greater than 5%.

201.2.22 Sidewalks

The following specifies the requirements for sidewalks:

a. **Location and Design:** The location of sidewalks shall be based on the City of Wilsonville TSP, the City’s Bicycle and Pedestrian Master Plan, and as required by the Planning Department, in accordance to subsection 4.178, “Sidewalk and Pathway Standards,” of the Wilsonville Code.

Sidewalks shall be designed with a minimum width of 5 feet or as designated in the TSP, whichever is greater, exclusive of curb and obstructions. Sidewalk thickness, slope, and location of expansion and contraction joints shall be as specified in Detail No. R-1080 of these standards. Final facility location and design are subject to the approval of the City’s authorized representative. Sidewalk joints in new construction shall be finished with a 3-inch wide shine, or if construction is fill-in work, finish shall match existing pattern.

b. **Easements:** All public-owned pedestrian facilities shall be constructed within a public right-of-way or an easement. All new development or redevelopment shall consider access to adjacent properties in their development plans, especially schools, retail, and commercial areas. Easements shall be provided as necessary for compliance with the ADA Standards for Accessible Design.

c. **Access Ramps:** Access ramps shall be included in the design of sidewalks at all intersections. Access ramp design shall meet the criteria established in the ADA Standards for Accessible Design. On streets classified as collector or above and at intersections that have a major street classification, double access ramps shall be installed. Ramps shall have a smooth transition at the gutterline.

d. **Thickened Design:** At all intersections, adjacent to the curb radius, curb-tight sidewalks and sidewalk ramps shall be constructed with a similar section as shown for a residential driveway (see Detail No. R-1115 of these standards).

e. **Root Barriers:** Where trees are located within 8 feet of public sidewalks, the sidewalk shall be protected from root intrusion with a root control barrier system designed by a Professional Landscape Architect registered in the state of Oregon; root control barrier shall be approved by the City’s authorized representative before installation. Generally, the root control system should be installed a minimum of 24 inches deep, with a minimum 20-foot length.
centered on the root source. Installation of such systems shall be done so as to
not disturb the sidewalk, curb or base rock previously installed. Provide
landscaping plan showing location of root control barrier system.

201.2.23 Bike Lanes

The need for bike lanes shall be determined by the City, based on the TSP. Bike
lanes, bike paths, and multi-use paths shall meet the requirements of the City of
Wilsonville “Public Works Standards,” as described in Appendix A, “Bicycle and
Pedestrian Facilities.”

201.2.24 Guardrails

The following specify the minimum requirements for the location and type of
guardrails:

a. The decision whether to install a guardrail shall be based on information in the
AASHTO publication, “Guide for Selecting, Locating, and Designing Traffic
Barriers,” or most recent edition.

b. Guardrails shall be designed in conformance with AASHTO design guidelines
and constructed according to ODOT SSC Section 00810, “Metal Guardrail.”

201.2.25 Roadside Ditches

Roadside ditches shall be designed in conformance with Section 301.7.03,
“Channel Construction for New Roadside Ditches.”

201.2.26 Utilities

The following specifies the minimum requirements for utilities:

a. Franchised utilities shall be located underground, outside the paved road if
possible, to avoid future cuts in paved roads.

b. A 6-foot wide Public Utility Easement (PUE) shall be required adjacent to
right-of-ways on all frontages to public roadways. PUE’s shall be graded as
per Section 201.2.21, “Curbs and Grading,” from back of curb or sidewalk
unless otherwise approved by the City’s authorized representative. Earthen
berms or any other encroachments are not allowed within a PUE.

c. On all phased (interim) road improvements, the necessary utilities shall be
stubbed across the interim improvement to assure that cuts are not necessary
when the road is expanded to its full width. A 5-year moratorium will
prohibit street cuts on all projects. The moratorium begins when a project is
complete and the warranty begins. Check with the City Engineering Division
for a current list of streets on the 5-year moratorium.
d. Except for sanitary sewers and water mains, underground utilities intended to provide direct service to adjacent properties with future connections shall not be located in the full-width paved section of a street to be constructed. If all service connections are installed and extended beyond the full-width section before the street is paved, franchised utilities can be located in the paved section, if approved by the City’s authorized representative.

c. Underground utilities being constructed along existing paved streets shall not be located under the existing pavement, unless approved by the City’s authorized representative. Underground utilities that must cross an existing paved street shall not be installed by any method that cuts the pavement, unless approved by the City’s authorized representative.

f. Underground utilities shall be buried a minimum depth of 36 inches, measured from finished grade to top of utility.

g. Streetlights shall be located as required to provide proper illumination but shall not physically or visually interfere with vehicle or pedestrian traffic. All installation of streetlights shall be done in accordance with the “Statement of Streetlight Installation Responsibilities,” Option B, by PGE, revised March 1, 2001, or latest edition.

201.3.00 MATERIAL SPECIFICATIONS

201.3.01 Granular Fill

a. Crushed aggregate for base rock, leveling course, and surface replacement shall consist of an aggregate base as specified by the design engineer, with approval of the City’s authorized representative, and shall be in conformance with ODOT SSC Section 02630, “Base Aggregate,” for gradation, fractured faces, and durability. The leveling course shall consist of 3/4”-0” grade crushed aggregate material, and be a minimum thickness of 2 inches when compacted.

b. The aggregate shall consist of uniform-quality, clean, tough, durable fragments of rock or gravel, free from flat, elongated, soft, or disintegrated pieces, and other objectionable matter occurring either free or as a coating on the stone.

c. Gradation requirements of the crushed aggregate shall be as indicated in Table 2.7. Sieve analysis shall be determined according to AASHTO T-27.
Table 2.7. GRADATION REQUIREMENTS FOR GRANULAR FILL

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>2 1/2" - 0</th>
<th>2" - 0</th>
<th>1 1/2" - 0</th>
<th>1" - 0</th>
<th>3/4" - 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 1/2"</td>
<td>95 - 100</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2"</td>
<td>95 - 100</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 1/2"</td>
<td>95 - 100</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 1/4"</td>
<td>55 - 75</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1"</td>
<td>55 - 75</td>
<td></td>
<td>90 - 100</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>3/4"</td>
<td></td>
<td></td>
<td>55 - 75</td>
<td></td>
<td>90 - 100</td>
</tr>
<tr>
<td>1/2"</td>
<td></td>
<td></td>
<td></td>
<td>55 - 75</td>
<td></td>
</tr>
<tr>
<td>3/8"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>55 - 75</td>
</tr>
<tr>
<td>3/4"</td>
<td>30 - 45</td>
<td>30 - 45</td>
<td>35 - 50</td>
<td>40 - 55</td>
<td>40 - 60</td>
</tr>
<tr>
<td>U.S. No. 10 sieve</td>
<td>12 - 27</td>
<td>12 - 27</td>
<td>14 - 30</td>
<td>16 - 33</td>
<td>16 - 36</td>
</tr>
<tr>
<td>U.S. No. 40 sieve</td>
<td>0 - 16</td>
<td>0 - 16</td>
<td>3 - 18</td>
<td>8 - 24</td>
<td>8 - 24</td>
</tr>
<tr>
<td>U.S. No. 200 sieve (wet sieving)</td>
<td>0 - 9</td>
<td>0 - 9</td>
<td>0 - 8</td>
<td>0 - 8</td>
<td>0 - 10</td>
</tr>
</tbody>
</table>

Note: All percentages are by weight. Material passing the U.S. No. 100 sieve shall have a maximum plasticity index of 6 when tested according to AASHTO T-90.

201.3.02 Asphalt Concrete

a. The wearing surface of AC pavement shall conform to ODOT SSC Section 00745, “Hot Mixed Asphalt Concrete” for either Level 2 or Level 3 HMAC, as determined by the City’s authorized representative. The base courses for AC pavement shall conform to ODOT SSC Section 00745, “Hot Mixed Asphalt Concrete,” for either Level 2 or Level 3 HMAC, as determined by the City’s authorized representative.

b. Asphalt cement shall be 85-100 penetration paving asphalt conforming to ASTM D-946.

c. Liquid asphalt for use as a prime coat under AC shall be RC-70 rapid-curing liquid asphalt conforming to AASHTO M-81, or MC-70 medium-curing liquid asphalt conforming to AASHTO M-82.

d. The temperature of the AC during mixing, placement, or while in storage shall not exceed 350°F and shall not be less than 240°F as per ODOT SSC Section 00745.43, “Drying and Heating Aggregates for HMAC.” Asphalt storage shall meet requirements of ODOT SSC Section 00745.45, “HMAC Storage.”
201.3.03 Portland Cement Concrete

a. PCC for concrete pavement shall conform to Section 201.2.05.f.

b. PCC for curbs, sidewalks, and miscellaneous construction shall conform to Section 201.2.05.i.

c. All forms for curbs and sidewalks shall be 2-inch dimensioned lumber, plywood, or metal forms. Forms on the face of the curb shall have no horizontal form joints within 7 inches of the top of the curb. All forms shall be approved by the City’s authorized representative.

d. Reinforcement steel shall conform to ASTM A-615, Grade 40, deformed bars.

201.4.00 CONSTRUCTION SPECIFICATIONS

201.4.01 General Provisions

The specifications in this chapter and any other applicable requirements of the City shall govern the character and quality of material, equipment, installation, and construction procedures for roadway construction or improvements.

201.4.02 Scheduling

The contractor shall plan their construction work in conformance with Section 101.8.02, “Scheduling.”

201.4.03 Environmental Protection, Erosion Prevention, and Sediment Control

The contractor shall take all appropriate measures and precautions to minimize their impact on the environment and control erosion, as outlined in Section 101.9.00, “Environmental Protection, Erosion Prevention, and Sediment Control.”

201.4.04 Interferences and Obstructions

Various obstructions may be encountered during the course of the work. The contractor shall follow the guidelines established in Section 101.8.05, “Interferences and Obstructions.”

201.4.05 Contaminated Soil or Hazardous Material

If during construction contaminated soil or with hazardous materials or chemicals are encountered, the Contractor shall follow the procedures specified in Section 101.9.02, “Contaminated Soils or Hazardous Materials.”

201.4.06 Trench Excavation, Preparation, and Backfill

Trench excavation, preparation, and backfill shall conform to the requirements of Section 6, “Trench Excavation and Backfill.”
201.4.07 **Steel Plates**

Where excavated trenches located in the right-of-way are not backfilled at the end of the construction day, the trench shall be covered with Steel Plates. Use of Steel Plates shall conform to Section 101.8.02.b.5, “Progress of Construction.”

201.4.08 **Preservation, Restoration, and Cleanup**

Cleanup of all construction debris, excess excavation, and excess materials and complete restoration of all fences, mailboxes, ditches, culverts, signposts, and similar items shall be completed according to Section 101.8.16, “Preservation, Restoration, and Cleanup.”

201.5.00 **WORKMANSHIP**

201.5.01 **Demolition**

Debris from the demolition of pavement, sidewalks, curbs, or gutters shall be hauled off site and disposed of in a manner approved by the City’s authorized representative.

201.5.02 **Clearing and Grubbing**

a. Brush shall be cut as near to the ground surface as practicable and removed to a disposal site approved by the City’s authorized representative. Under no condition shall excavated materials be permitted to cover brush before the brush is cleared and disposed of. Ground surface shall be stripped of all organic soil and unsuitable material as recommended in the Geotechnical Report. Stripping operations shall be approved by the City’s authorized representative prior to proceeding with any construction activity.

b. Erosion-prevention and sediment-control measures shall be installed before the start of clearing and grubbing (see Section 101.9.00, “Environmental Protection, Erosion Prevention, and Sediment Control”). The applicant shall call the City’s authorized representative for inspection and approval of all erosion-prevention and sediment-control measures before beginning any site clearing, grubbing, or grading.

201.5.03 **Subgrade**

Subgrade shall be prepared according to the recommendations in the Geotechnical Report and must be approved by the City’s authorized representative. The subgrade shall be compacted to 95% of the maximum dry density, as determined by AASHTO T-180. In periods of dry weather, a proof-roll of the subgrade shall be observed by the City’s authorized representative. Soft areas shall be repaired or replaced.
201.5.04 Base and Leveling Course

Base and leveling course shall consist of crushed aggregate as specified in Section 201.3.01, “Granular Fill.” Base and leveling aggregate material shall be placed and compacted to the required depth of finished pavement and for proper matching with the adjacent existing pavement. Material shall be compacted to 95% of the maximum dry density, as determined by AASHTO T-180. A proof-roll of the base and leveling course shall be observed by the City’s authorized representative. Soft areas shall be repaired or replaced.

201.6.00 CONSTRUCTION PROCEDURE

The geotechnical engineer reserves the right to vary the classes of backfill and the type of resurfacing as best serves the interest of the City, with the approval of the City’s authorized representative.

201.6.01 Asphalt Pavement

a. After the leveling course is compacted, an asphalt prime coat, specified above, shall be applied to the edges of the existing pavement. Also, cast iron manhole frames and cleanout frames shall be tack-coated below grade.

b. Asphalt Concrete

1. Thickness: Minimum total thickness of AC shall be 4 inches placed in at least two lifts. Place AC after the prime coat has set. If the thickness is greater than 6 inches, place the asphalt in three lifts. Spread and level the AC with use of a self-propelled machine or hand tools, depending on the area to be paved. Bring the AC to the proper grade and compact by rolling, or use hand tampers where rolling is not possible. Temperature of the AC material shall be in conformance with Section 201.3.02.d.

2. Placement: Lay the AC mixture in strips of such width as to hold to a practical minimum the number of longitudinal joints required. The longitudinal joints in any layer of pavement shall be offset from those joints in layers below by not less than 6 inches. Joints shall not be located in wheel paths.

3. Compaction: Roll with power rollers capable of providing compression of 350 pounds per linear inch. Begin rolling from the outside edge of the replacement and progress toward the existing surfacing, lapping the existing surface at least half the width of the roller. If the existing surfacing bounds both edges of the replacement, begin rolling at the edges of the replacement, lapping the existing surface at least half the width of the roller and progressing toward the center of the replacement area. Overlap each proceeding track by at least half the width of the roller and make sufficient passes over the entire area to produce the desired result. AC pavement shall be compacted to a
minimum of 92% relative density, based on the theoretical maximum density
determined in accordance with ASTM D-2041, “Rice Gravity.”

4. **Finished surface:** The finished surface of the new compacted paving shall be
flush with the existing surface and shall conform to the grade and crown of the
adjacent pavement.

201.6.02 Portland Cement Concrete Pavement

a. Construction of PCC pavement shall be in conformance with the guidelines in
ODOT SSC Section 00756, “Plain Concrete Pavement.”

b. Construction of concrete joints shall follow the guidelines and requirements
outlined in the ACPA publication, “Design and Construction of Joints for
Concrete Streets,” except for the following:

1. Maximum joint spacing shall be 12 feet.

2. Transverse joints shall be designed to be skewed 6:1 when meeting the
edge of pavement, at the gutterline.

3. For dowelled contraction joints, do not lubricate the dowels.

4. Staking of curb joints shall be required and performed by or under the
direction of a Professional Land Surveyor registered in the State of
Oregon.

5. Isolation joints shall be used around manhole covers. Isolation joints shall
be circular with a 2-foot spacing from the manhole cover.

c. All joints shall be sealed in conformance with the ACPA publication, “Design
and Construction of Joints for Concrete Streets.”

d. The surface finishing and smoothness of PCC surfaces shall follow the
guidelines outlined in ODOT SSC Section 00756.49, “Surface Finishing” and
Section 00756.55, “Surface Tolerance, Testing, and Correction.”

e. At no time shall construction equipment or traffic be allowed on the new
pavement until laboratory tests indicate that at least 90% design strength has
been attained and the City’s authorized representative and the design engineer
agree that the street is ready for traffic and construction loads.

201.6.03 Sidewalks

Construct sidewalks in accordance to Section 201.2.05.i, “Portland Cement
Concrete Design” and Detail No. R-1080 of these standards.
201.6.04 Weather Conditions

a. AC pavement shall not be placed during periods of rainfall, sand or dust storms, or any imminent storms that might adversely affect the finished pavement quality. AC material shall not be applied over frozen surfaces or standing water. AC shall be placed at temperatures not colder that the minimum atmospheric temperatures specified in Table 2.8. Temperature of the AC material shall be in conformance with Section 201.3.02.d.

Table 2.8. ATMOSPHERIC TEMPERATURE REQUIREMENTS

<table>
<thead>
<tr>
<th>Individual Lift Thickness</th>
<th>Atmospheric Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 1½”</td>
<td>60° F</td>
</tr>
<tr>
<td>1½” – 2½”</td>
<td>50° F</td>
</tr>
<tr>
<td>2½” – 3”</td>
<td>40° F</td>
</tr>
</tbody>
</table>

b. PCC pavement shall not be placed during periods of rain or on frozen bases. Placement shall not occur when descending air temperature falls below 40°F, nor shall it resume until ascending air temperature reaches 35°F. The contractor shall protect PCC pavement from weather damage. The contractor shall protect unhardened PCC from precipitation with protective material. If PCC is being placed during cold weather, and the air temperature is forecast to drop below 35°F, the contractor shall prevent the PCC from freezing for at least 7 days.

201.6.05 Protection of Structures

a. Provide whatever protective coverings may be necessary to keep oil or asphalt from splashing on the exposed parts of bridges, culverts, curbs, gutters, posts, guardrails, road signs, and any other structures during paving operations. Remove any oil, asphalt, dirt, or any other undesirable matter from these structures that resulted from the paving operations.

b. Where water valve boxes, manholes, catch basins, or other underground utility appurtenances are situated in the area to be surfaced, the resurfacing shall be level with the top of the existing finished elevation of the appurtenances. If it is evident that an appurtenance does not match the proposed finished grade, notify the proper authority to have the item altered before proceeding with the resurfacing around the obstruction, unless otherwise approved by the City’s authorized representative. Protect all covers during asphalt application.
201.6.06 Excess Materials and Trench Settlement Repair

Contractor shall dispose of excess materials. Contractor shall be responsible for repairing all settlement of pavement over trenches for a 1-year period.

201.6.07 Rock Surfacing

Where gravel shoulders have been disturbed, place 3/4"-0" crushed aggregate backfill (see Section 201.3.01, “Granular Fill”) as surfacing material for the full width of all streets, driveways, parking areas, street shoulders, and other areas disturbed by the construction. Spread the material by “tailgating” and supplement by hand labor when necessary. Level and grade the aggregate to conform to existing grades and surfaces.

201.7.00 SURFACE RESTORATION

201.7.01 Scope

This section covers the work necessary for all required replacement of pavement, curbs, sidewalks, rock surfacing, and drainage facilities that were removed during construction. Replacement pavement and base course thickness design shall conform to current City standards.

201.7.02 Asphalt Concrete Replacement

a. Base, subbase, or subgrade material that has been removed shall be replaced with 3/4"-0" crushed aggregate backfill (see Section 201.3.01, “Granular Fill”) or control density fill (CDF, minimum 28 day compressive strength shall be 200 psi). Bring the trench or excavation to a smooth, even grade at the correct distance below the top of the existing pavement surface so as to provide adequate space for AC pavement. Crushed aggregate trench backfill placed within 3 feet of finished grade shall be compacted to 95% of the maximum dry density, as determined by AASHTO T-180. Crushed aggregate backfill placed below 3 feet of finished grade shall be compacted to 90% of the maximum dry density. Place the leveling course for the full width of the trench where pavement was disturbed, including bituminous surface shoulders.

b. Compact the base rock and leveling course material to 95% of the maximum dry density, as determined by AASHTO T-180. At the conclusion of each day’s operation, the contractor shall patch all trench or excavation areas. Cold-patch asphalt mix may be used as a temporary patch.

c. The contractor shall make a 1-foot T-cut in the existing pavement surrounding a trench or excavation. Trim existing pavement to a straight line to remove any pavement that has been damaged or that is broken and unsound to create a smooth, sound edge for joining the new pavement.
Within 5 days after completion of all paving or utility work, the contractor shall repair all trench or excavation areas with hot-patch asphalt mix and tack and sand all joints and sawcuts. AC pavement shall be compacted to a minimum of 92% relative density, based on the theoretical maximum density determined in accordance with ASTM D-2041, “Rice Gravity.”

1. When the pavement surface has been cored, the area shall be repaired as follows: At the conclusion of each day’s operation, the contractor shall patch all cored areas. Cold-patch asphalt mix may be used as a temporary patch.

2. Within 5 days after completion of all paving or utility work, the contractor shall repair all cored areas with hot-patch asphalt mix.

201.7.03 Asphalt Restoration for Streets Listed on 5-Year Moratorium

When emergencies or special circumstances require access to underground utilities, the City may allow street cuts in streets listed on the 5-year moratorium (see Section 201.2.26.c, “Utilities”). In addition to the repair work outlined in Section 201.7.02, “Asphalt Concrete Replacement,” an additional 1-foot wide, 2-inch grind out around the T-cut perimeter shall be required.

201.7.04 Portland Cement Concrete Replacement

a. Trenching or Excavation in Pavement and Driveways: The City Engineer encourages directional boring under existing concrete streets and discourages trenching or excavation work in streets or driveways. When this is unavoidable, the contractor shall remove and replace all panels that have been cut or damaged. New panels shall be connected with No. 4 reinforcement tie-bars into the adjacent existing panels. Tie-bars shall be epoxied in place using an epoxy bonding agent as provided in the ODOT QPL. Bring the trench to a smooth, even grade at the correct distance below the top of the existing pavement surface so as to provide adequate space for the base, leveling course, and PCC pavement.

b. Coring: When the pavement surface has been cored, the area shall be repaired as follows:

1. Base, subbase, or subgrade material that has been removed shall be replaced with %0” crushed aggregate backfill (see Section 201.3.01, “Granular Fill”) or CDF. Bring to a smooth, even grade at the correct distance below the top of the existing pavement surface so as to provide adequate space for PCC pavement.

2. At the conclusion of each day’s operation, the contractor shall patch all cored areas within roadways with concrete having a minimum 4,000-psi compressive strength at 28 days (concrete with a minimum 3,000-psi compressive strength may be used in driveways).
c. **Surface Smoothness:** The surface smoothness of the replaced pavement shall be such that when a straightedge is laid across the patched area between the edges of the old surfaces and the surface of the new pavement, the new pavement shall not deviate from the straightedge by more than ¼ inch.

d. **Sidewalks and Curbs:** Replace concrete sidewalks and curbs to the same section, width, depth, line, and grade as that removed or damaged. Cut the ends of existing curb to a vertical plane. Before replacing the sections, properly backfill and compact the trench to prevent subsequent settlement.

e. **Catch Basins:** Reinstall catch basins in their original locations and reconnect them to the drainage system in a manner equal to the original. If the existing catch basins are damaged beyond repair by operations, construct new basins of similar size, cross-section, and design as the original.

201.8.00 STREET NAMES AND TRAFFIC CONTROL SIGNAGE AND STRIPING

201.8.01 Street Name Signs and Posts

All newly platted streets shall be signed with the name approved by the Design Review Board (DRB) and the county. Signs are to conform to Detail No. R-1165 and R-1170 and to these City standards, as follows.

a. Posts

 1. **Materials**

 (a) A minimum of 2 x 2-inch x 10-foot, 14-gauge galvanized “quick-punch” or 12-gauge perforated posts, or approved equal, shall be used.

 (b) A 2 x 2-inch x 12-foot, 14-gauge galvanized “quick-punch” or 12-gauge perforated posts, or approved equal, shall be used when a combination of signs is more than 36 inches high.

 (c) Signposts are made of 2-inch square tubing and must be embedded 18 inches into the base.

 2. **Base:** The breakaway post base shall consist of a 2.25 x 2.25 inch (I.D.) x 36-inch galvanized base with a 2.5 x 2.5 inch (I.D.) x 18-inch sleeve placed flush with the base. All sleeves and bases shall be 14-gauge “quick punch” or 12-gauge perforated material, or approved equivalent.

 3. **Fastening:** Drive rivets shall be used to fasten signs onto metal signposts, except for street name signs, which shall be attached by hex nuts. Washers shall be used behind all drive rivets used to affix signs to posts. Two drive rivets at right angles shall be used to fasten the post to the base.
b. Street Name Signs

In business districts and on principal arterials, street name signs shall be placed in diagonally opposite corners so that they will be on the righthand side of the intersection for traffic on the major street. To optimize visibility at signaled intersections, street name signs shall be mounted overhead. In residential districts, at least one street name sign shall be mounted at each intersection. On T-intersections, the street name signs shall be designated at two locations. One street name sign shall be placed at the end of a T-intersection, and the second placed at the righthand corner of the intersecting street. Signs naming both streets shall be installed at each street sign location.

1. **Materials:** On streets with a speed limit of 35 mph or greater, a street name sign shall consist of 8-inch-high, flat, 0.080-inch thick aluminum. On streets with speed limits of less than 35 mph, a street name sign shall consist of 6-inch high, flat, 0.080-inch thick aluminum. The minimum length is 24 inches. The maximum length is 36 inches.

2. **Sheeting:** Both sides of street signs shall be green 3M Scotchlite brand high-intensity reflective sheeting.

3. **Lettering:** Street name signs consist of 3M Scotchlite brand high-intensity white letters on green background. All letters shall be uppercase.

201.8.02 Traffic Control Signage and Striping

Traffic control signing and striping shall be in conformance with Detail No.'s R-1175, R-1180, and R-1185 of these standards and the MUTCD. A “Signage and Striping Plan” shall be included with plan submittals for new street construction and street improvements.

201.9.00 LIGHTING

All installation of streetlights shall be done in accordance with “Statement of Streetlight Installation Responsibilities,” Option B, by PGE, revised March 1, 2001, or latest edition. The warranty for public works projects shall include streetlights.

201.10.00 STREET ACCEPTANCE POLICY

The City of Wilsonville will accept new public street installations or systems built to the “Public Works Standards,” providing that the following conditions are met.

201.10.01 Legal Recordings

All plats are recorded with the County Surveyor, all easements and dedications are recorded with the County Recorder and the Engineering Department receives a reproducible copy of the recorded documents.
201.10.02 Project Completion

After completion of construction of the total project, and after all testing has been satisfactorily completed, project closeout shall proceed as outlined in Section 101.8.17.a, “Project Completion.”

201.10.03 Maintenance Period

a. The Contractor or Applicant shall be responsible for providing Maintenance Assurance for Public Improvements as outlined in Section 101.8.17.b, “Maintenance Assurance.” Public street improvements shall be warranted for a minimum of one year; public landscape improvements shall be warranted for a minimum of two years.

b. At any time during the warranty period, the City’s authorized representative has reason to believe the public street improvements have defects that were the result of faulty workmanship or flaws in construction material, the responsible party shall be required, at that party’s own cost, to repair any faults to the public street improvements deemed necessary by the City’s authorized representative.

c. Before the end of the Construction Maintenance period, the City’s authorized representative shall inspect the project for any remaining deficiencies. If the deficiencies that remain are determined to be the responsibility of the contractor or the applicant, the contractor or applicant shall then make such repairs.

d. The Landscape Maintenance assurance shall be released two years after acceptance of construction, providing the landscaping meets the 90% survival level (see Section 301.13.02, “Landscape Inspection for Warranty”).
SECTION 3

STORMWATER & SURFACE WATER DESIGN AND CONSTRUCTION STANDARDS

301.1.00 ENGINEERING

301.1.01 Introduction

This section outlines design and construction requirements for stormwater and surface water management. The provisions and technical specifications herein set forth the requirements of the City of Wilsonville for constructing stormwater and surface water improvements. Interpretations of such provisions and their application in specific circumstances shall be made by the City’s authorized representative. Refer to Section 1 of the “Public Works Standards” for general provisions and requirements.

Design guidelines established here are consistent with the City of Wilsonville Stormwater Master Plan. These provisions are intended to prevent or reduce adverse impacts to the drainage system and water resources of the Willamette River Basin. In combination with other federal, state, and local laws and ordinances, these requirements are intended to protect the beneficial uses of waters in the Willamette River Basin and inside the Wilsonville city limits.

301.1.02 Alternative Design and Construction Standards

If approved by the City’s authorized representative, alternative construction standards may be substituted for the standards specified herein. Any requests for substitution must be in writing, stamped by a Professional Engineer registered in the State of Oregon at the time of submittal, and submitted at least three weeks prior to the Engineering Plan Review submittal process.

301.1.03 Extension of Public Storm Sewer Systems

Public storm sewer systems shall be extended to the most distant upstream parcel boundary or boundaries to accommodate current and future storm flows entering the property, unless otherwise approved by the City’s authorized representative. Except as otherwise provided, the extension or upsizing of the public stormwater systems to serve any parcel or tract of land shall be done by, and at the expense of, the property owner or permit applicant. The City’s authorized representative may require a storm pipeline that serves or may serve more than one property to be a public system.
301.1.04 Drainage Plans

a. It is the design engineer's responsibility to ensure that engineering plans are sufficiently clear and concise to construct the project in proper sequence, using specified methods and materials, with sufficient dimensions to fulfill the intent of the design guidelines in these standards.

b. All elevation on design plans and record drawings shall be based on the applicable NAVD datum specified in Section 101.7.07.a, “Surveying and Land Monuments.”

c. All engineering drainage plans shall be stamped by a Professional Engineer registered in the State of Oregon. The drainage plan shall contain the following:

1. At least one sheet showing a plan view of the entire project site. If the project site is sufficiently large that detailed drainage plans on any given sheet do not encompass the entire project site, then a sheet showing the plan view of the entire site must serve as an index to subsequent detailed plan sheets.

2. A topographic map showing existing conditions for the site, including:

 (a) Existing topography for the site.

 (b) Adjacent streets, including street names.

 (c) Existing utilities, including franchised utilities located above or below ground and drainage facilities that transport surface water onto, across, or from the project site. Existing drainage pipes, culverts, and channels shall include the invert or flowline elevations.

 (d) Existing sensitive areas (e.g., ravines, swales, steep slopes, wells, springs, wetlands, creeks, lakes). For natural drainage features, show direction of flow, drainage hazard areas, and 100-year floodplain boundary (if applicable).

3. Plans for proposed drainage improvements shall include the following:

 (a) Finished grades, showing the extent of cut and fill by existing and proposed contours, profiles, or other designations.

 (b) Proposed structures, including roads and road improvements, parking surfaces, building footprints, walkways, landscaped areas, etc.

 (c) Proposed utilities, showing exact line and grade of all proposed utilities at crossings with the proposed drainage system.
(d) Applicable detail drawings.

(e) Existing and proposed easements.

(f) Setbacks from environmentally sensitive areas or resource areas protected within the SROZ.

(g) Proposed drainage structures, including pipes, open channels, culverts, ponds, vaults, biofiltration swales, infiltration facilities, outfalls, riprap treatment, energy dissipators, etc.

(h) Plan and profile of drainage conveyance facilities, including the following information: pipe sizes, pipe types and materials, lengths, slopes, type of structure (e.g. Type CG-30 catch basin), location of structures, invert elevations in/out of structures, and top elevations of structures. Notes shall be included for referencing details, cross-sections, profiles, etc.

(i) Any proposed phasing of construction. (Note: water quality and quantity facilities must be constructed before completion of any phased construction)

4. A detailed grading plan shall be provided for all open stormwater quantity or quality control facilities. The plan shall include the following:

(a) Existing ground contours (shaded) and proposed ground contours at a minimum 2-foot contour interval. Slopes steeper than 6H:1V shall be identified.

(b) Location of top and toe of slope.

(c) Limits of embankment designed to impound water.

(d) Location of all drainage structures as well as any other piped utilities in vicinity (0.1-foot detail).

(e) Flow route of the secondary/emergency overflow system (0.1-foot detail).

(f) Maintenance access, as applicable (see Section 301.9.04, “Access”).

5. A detailed landscape plan shall be provided for open stormwater quantity or quality control facilities. The plan shall include the following:

(a) Final ground contours at a minimum 1-foot contour interval.

(b) Location of top and toe of slope.

(c) Maximum water surface elevations.
(d) Location of all drainage structures as well as any other piped utilities in vicinity (screened) (0.1-foot detail).

(e) Limits of areas to receive amended topsoil.

(f) Irrigation plan to achieve the required plant survival rate.

(g) Planting species, locations and densities in accordance with the landscape requirements in Appendix B.

6. Cross-sections shall be provided for at least the following:

(a) Detention/retention ponds (including parking lot ponds and other multiuse facilities), wet ponds, and sediment ponds. Cross-sections shall graphically illustrate the following:

(1) Design maximum water surface for the 2-year, 10-year, and 25-year design storms.

(2) Proposed dead storage water surface (as applicable).

(3) Pavement section or amended soil section, as applicable.

(b) Proposed ditches and swales, including vegetated swales.

301.1.05 Storm Systems and Fish Passage

For pipe systems that convey flows from a stream or through sensitive areas, a local representative of ODFW or other applicable state or federal agency shall be contacted to determine whether fish passage is required and to identify site-specific design criteria. All culverts shall be designed for fish passage in accordance with ODFW’s Fish Passage Criteria, or latest edition, unless exempted by ODFW and the City.

301.1.06 Surveying

a. The design engineer shall be responsible for establishing the location of the sewer using reference stakes offset along the sewer. No construction shall be allowed to begin before construction staking. All staking shall be performed by or under the direction of a Professional Land Surveyor registered in the State of Oregon.

b. Stakes shall locate all public tees, cleanouts, manholes, catch basins, area drains, water quality stations, and pump stations. Maximum spacing for reference stakes is 50 feet. Stakes shall reference cuts or fills to all invert elevations and rim grades. The design engineer shall also be responsible for identifying easements during construction.
301.0 Hydrologic Analysis

The hydrologic analysis shall be consistent with Section 301.3.00, “Hydrology and Hydraulics.” The design engineer may use various computer models or formulas for the hydrograph analysis, but the City’s authorized representative may verify the design flows and volumes based on King County’s SBUH program HYD or as alternatively identified in Section 301.3.00, “Hydrology and Hydraulics.”

301.2.00 HYDRAULIC ANALYSIS

301.2.01 General

The method of hydraulic calculations shall be subject to approval from the City’s authorized representative and shall be consistent with Section 301.3.00, “Hydrology and Hydraulics.”

301.2.02 Hydraulic Design

a. Detention/retention design shall be assessed by dynamic flow routing through the basin. Documentation of the proposed design shall be included in the drainage report. Acceptable analysis programs include:

1. HYD – King County, Washington
2. HEC-1 – U.S. Army Corps of Engineers
3. HEC-HMS – U.S. Army Corps of Engineers
4. SWMM – U.S. Environmental Protection Agency
5. HYDRA – Pizer Incorporated
6. HYDROCAD – HydroCAD Software Solutions
7. Others, as approved

b. Peak runoff rates shall not exceed predevelopment rates for the specific range of storms. Exemptions to the on-site detention requirements may be considered for situations in which properties discharge directly to the Willamette River or to open bodies of water that have no capacity limitations, or areas where detention in downstream reaches could increase peak stormwater flow rates, and other areas or unique circumstances as identified by the City Engineer.

c. A pond overflow system shall provide for discharge of the design storm event without overtopping the pond embankment or exceeding the capacity of the pond.
emergency spillway. Vortex valve discharge control shall be considered to optimize effective pond volume.

d. Provide an emergency spillway sized to pass the 100-year storm event or an approved hydraulic equivalent. The emergency spillway shall be located in existing soils when feasible and armored with riprap embedded in concrete, or other approved erosion protection extending to the toe of the embankment (see Detail No. S-2275 of these standards).

301.2.03 Design Criteria

a. The facility can be a combined water quality/quantity facility, provided that it meets all relevant criteria.

b. Interior sideslopes up to the maximum water surface = 4H:1V.

c. Maximum exterior sideslopes = 2H:1V, unless analyzed for stability by a Professional Engineer registered in the State of Oregon whose area of expertise is geotechnical engineering.

d. If slopes need to be mowed, maximum sideslope = 4H:1V

e. Walls in Water Quality/Quantity Facilities

1. Retaining walls may serve as pond walls if the design is prepared and stamped by a Professional Engineer registered in the State of Oregon and a fence (see Section 301.5.02.b.4) is provided along the top of the wall. At least 25% of the pond perimeter will be vegetated to a maximum side slope of 3:1.

2. Walls that are 4 feet or higher must meet all of the following criteria:

 (a) Be approved by a Professional Engineer registered in the State of Oregon whose area of expertise is structural or geotechnical engineering.

 (b) The City shall not have maintenance responsibility for the wall. The party responsible for maintenance of the walls within the water quantity tract or easement shall be clearly documented in the City’s Stormwater Maintenance Covenant and Access Easement.

f. Overexcavate by a minimum of 20% to allow for sediment deposition.

g. Minimum freeboard = 1 foot from 25-year design water surface elevation.

h. Maximum water storage depth in water quality/quantity facilities for the 100-year storm event shall not exceed 4 feet in depth, unless otherwise approved by the City’s authorized representative. Where design depth exceeds 4 feet,
the facility shall be constructed in conformance with public safety considerations (see Section 301.3.09.c).

i. Provide approved outlet structure(s) for all flows up to the 100-year storm event.

301.2.04 System Design Considerations

Site development improvement projects shall address on-site and off-site drainage concerns, both upstream and downstream of a project, including but not limited to the following:

a. Modifications to the existing on-site storm drainage facilities shall not restrict flows creating backwater onto off-site property to levels greater than the existing situation, unless approved by the impacted off-site property owners and the City’s authorized representative. The off-site property owner(s) shall agree to and sign a permanent easement legally describing the location of the backwater storage and authorizing the use of their property for stormwater drainage and detention/retention purposes. The easement shall be in a form approved by the City.

b. Storm drainage facilities shall be designed and constructed to accommodate all future full buildout flows generated by the proposed development or improvement and all upstream property based on the most recent approved comprehensive land-use plan.

c. The design of storm drainage facilities shall analyze the impact of restrictions downstream of the project site, in accordance with Section 301.2.05, “Review of Downstream System.” Downstream restrictions that create on-site backwater may be required to be removed by the applicant, at the discretion of the City’s authorized representative, or the on-site backwater shall be addressed in the design of the development’s storm system. The removal of downstream obstructions shall not be allowed if removal would create downstream capacity problems.

d. If the projected increase in the surface water runoff from a proposed development will cause or contribute to damage from flooding to existing buildings or dwellings, the downstream stormwater system shall be enlarged to relieve the identified flooding condition before development, or the applicant shall construct an on-site detention/retention facility.

301.2.05 Review of Downstream System

a. The design engineer for each development that establishes or increases the impervious surface area by more than 5,000 square feet shall submit documentation for review and approval by the City’s authorized representative, of the downstream capacity of any existing storm facilities impacted by the proposed development, except for the construction of a
detached single-family dwelling or duplex. The design engineer must perform a two-stage analysis of the drainage system downstream of the development.

1. The analysis shall extend downstream to a point in the drainage system where the additional flow from the proposed development site constitutes 10% or less of the total tributary drainage flow (for example, the analysis point for a 10-acre site would be analyzed to the nearest downstream point with a drainage area of 100 acres).

2. When the additional flow from the proposed development drops to less than 10% of the total tributary drainage flow, the analysis will continue for the lesser of the following:

 (a) One-quarter of a mile; or

 (b) Until the additional flow constitutes less than 5% of the total tributary drainage flow.

b. When the downstream analysis does not continue for at least \(\frac{1}{4} \) mile, the design engineer shall provide a stamped Certification of Investigation stating that he/she has visually investigated the downstream system for at least \(\frac{1}{4} \) mile and is aware of no observable downstream impacts to structures.

301.2.06 **Conveyance System Hydraulic Standards**

a. The conveyance system shall be designed to convey and contain at least the peak runoff for the 25-year design storm.

b. Structures for proposed pipe systems must be demonstrated to provide a minimum of 1 foot of freeboard between the hydraulic grade line and the top of the structure or finish grade above pipe for the 25-year post-development peak rate of runoff.

c. Design surcharge in new pipe systems shall not be allowed if it will cause flooding in a habitable structure, including below-floor crawl spaces.

d. The 25-year design shall be supplemented with an overland conveyance component demonstrating how a 100-year event will be accommodated. The overland component shall not be allowed to flow through or inundate an existing building.

e. Flows in streets during the 25-year event shall not run deeper than 4 inches against the curb or extend more than 2 feet into the travel lane.

f. Open channel systems shall be designed for minimum 1-foot freeboard from bank full, provided that no structures are impacted by the design water surface elevation.
301.2.07 Catch Basin System Standards

Design of catch basins and drain inlets shall follow the specifications provided in Section 301.9.07, "Drain Inlet Design Standards."

a. **Standard Catch Basin System:** All catch basins shall be sumped. The main storm line shall not pass through any catch basins or sumped manholes unless approved by the City’s authorized representative. No more than three catch basins may be connected in a series before connecting to the main storm line. A ditch inlet or field inlet may be connected directly to the end of the main storm line.

b. **Series Catch Basin System:** Unsumped catch basins are allowed, provided that a sumped manhole is constructed below the unsumped catch basins before the flow enters the main storm line. No more than three unsumped catch basins may be constructed above a water quality or stormwater pretreatment manhole. The main storm line may not pass through the catch basins or sumped manholes. No ditch inlet or field inlet may be part of a series of unsumped catch basins.

c. **Flow-through Catch Basin System:** This system is allowed within an arterial or collector road, provided that the mainline storm pipe has a design velocity of at least 3 feet per second. Unsumped catch basins, ditch inlets, and field inlets are allowed to connect directly to the main storm line. An adequately sized water quality manhole is required at the downstream end of the flow-through system.

301.3.00 HYDROLOGY AND HYDRAULICS

301.3.01 Hydrologic Analysis

This section describes acceptable methods of estimating the quantity and characteristics of surface water runoff, as well as the assumptions and data required as input to the methods. These methods shall be used to analyze existing and to design proposed drainage systems and related facilities.

301.3.02 Rational Method

The rational method for analyzing small drainage basins is allowed, with the following limitations:

a. Use it only in predicting a conservative peak flow rate to be used in determining the required capacity for conveyance elements.

b. Drainage subbasin area cannot exceed 25 acres for a single calculation without approval from the City’s authorized representative.
c. The time of concentration shall be five minutes when computed to be less than five minutes.

d. Rainfall intensities shall be from Table 3.1, or an alternative approved by the City’s authorized representative.

e. Rational formula:

\[Q = C \times I \times A \]

Where:
- \(Q \) = Flow in cubic feet per second
- \(C \) = Runoff coefficient (0.9 for paved surfaces)
- \(I \) = Intensity
- \(A \) = Area in acres

Table 3.1. RATIONAL METHOD FOR DERIVING RAINFALL INTENSITIES

<table>
<thead>
<tr>
<th>Time of Concentration (minutes)</th>
<th>Storm Event (year and probability)</th>
<th>2 (50%)</th>
<th>5 (20%)</th>
<th>10 (10%)</th>
<th>25 (4%)</th>
<th>50 (2%)</th>
<th>100 (1%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>1.90</td>
<td>2.50</td>
<td>3.00</td>
<td>3.40</td>
<td>4.00</td>
<td>4.50</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>1.90</td>
<td>2.50</td>
<td>3.00</td>
<td>3.40</td>
<td>4.00</td>
<td>4.50</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>1.30</td>
<td>1.70</td>
<td>2.20</td>
<td>2.50</td>
<td>3.00</td>
<td>3.50</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>1.10</td>
<td>1.40</td>
<td>1.80</td>
<td>2.10</td>
<td>2.50</td>
<td>2.90</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>0.90</td>
<td>1.20</td>
<td>1.50</td>
<td>1.80</td>
<td>2.10</td>
<td>2.40</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>0.75</td>
<td>0.95</td>
<td>1.20</td>
<td>1.40</td>
<td>1.65</td>
<td>1.90</td>
</tr>
<tr>
<td>40</td>
<td></td>
<td>0.60</td>
<td>0.75</td>
<td>1.00</td>
<td>1.15</td>
<td>1.30</td>
<td>1.60</td>
</tr>
<tr>
<td>50</td>
<td></td>
<td>0.55</td>
<td>0.70</td>
<td>0.85</td>
<td>1.00</td>
<td>1.15</td>
<td>1.35</td>
</tr>
<tr>
<td>70</td>
<td></td>
<td>0.45</td>
<td>0.55</td>
<td>0.70</td>
<td>0.82</td>
<td>0.95</td>
<td>1.10</td>
</tr>
<tr>
<td>100</td>
<td></td>
<td>0.40</td>
<td>0.45</td>
<td>0.55</td>
<td>0.67</td>
<td>0.75</td>
<td>0.90</td>
</tr>
<tr>
<td>180 or more</td>
<td></td>
<td>0.35</td>
<td>0.40</td>
<td>0.50</td>
<td>0.60</td>
<td>0.70</td>
<td>0.85</td>
</tr>
</tbody>
</table>

1. Data for east Washington County; data from CleanWater Services.

301.3.03 Unit Hydrograph Methods

a. **Hydrograph Analysis:** To obtain a realistic and consistent hydrologic analysis for each development site, all developments shall use the hydrograph analysis method for drainage planning and design unless otherwise approved in advance by the City’s authorized representative. The physical characteristics of the site and the design storm shall be used to determine the magnitude, volume, and duration of the runoff hydrograph. The Santa
Barbara Urban Hydrograph (SBUH) will be the primary acceptable unit hydrograph method.

The HYD computer program, developed by King County, Washington, in its “Surface Water Design Manual,” January 1990, uses these methods to generate, add, and route hydrographs. The City’s authorized representative may check all hydrologic calculations using the King County HYD program. However, the City will allow the use of the rational method for analysis of drainage basins of 25 acres or less.

b. **Design Storm:** Return frequency and duration specify the design storm event. The design storms shall be based on two parameters:

1. Total rainfall (depth in inches).

2. Rainfall distribution (dimensionless).

c. **Design Storm Distribution:** The total depth of rainfall for storms of 24-hour duration is shown in Table 3.2. The rainfall distribution to be used in the City is the design storm of 24-hour duration based on the standard National Resource Conservation Service (NRCS), formerly known as the Soil Conservation Service (SCS), type IA rainfall distribution using Table 3.3.

<table>
<thead>
<tr>
<th>Recurrence Interval (years)</th>
<th>Total Precipitation Depth (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2.50</td>
</tr>
<tr>
<td>5</td>
<td>3.10</td>
</tr>
<tr>
<td>10</td>
<td>3.45</td>
</tr>
<tr>
<td>25</td>
<td>3.90</td>
</tr>
<tr>
<td>50</td>
<td>4.20</td>
</tr>
<tr>
<td>100</td>
<td>4.50</td>
</tr>
<tr>
<td>Hour</td>
<td>Percent Rainfall</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td>Incremental</td>
</tr>
<tr>
<td>1</td>
<td>2.40</td>
</tr>
<tr>
<td>2</td>
<td>2.60</td>
</tr>
<tr>
<td>3</td>
<td>3.20</td>
</tr>
<tr>
<td>4</td>
<td>3.80</td>
</tr>
<tr>
<td>5</td>
<td>4.44</td>
</tr>
<tr>
<td>6</td>
<td>5.18</td>
</tr>
<tr>
<td>7</td>
<td>6.48</td>
</tr>
<tr>
<td>8</td>
<td>16.44</td>
</tr>
<tr>
<td>9</td>
<td>7.58</td>
</tr>
<tr>
<td>10</td>
<td>5.28</td>
</tr>
<tr>
<td>11</td>
<td>4.96</td>
</tr>
<tr>
<td>12</td>
<td>4.32</td>
</tr>
<tr>
<td>13</td>
<td>4.02</td>
</tr>
<tr>
<td>14</td>
<td>3.42</td>
</tr>
<tr>
<td>15</td>
<td>3.28</td>
</tr>
<tr>
<td>16</td>
<td>3.00</td>
</tr>
<tr>
<td>17</td>
<td>2.80</td>
</tr>
<tr>
<td>18</td>
<td>2.40</td>
</tr>
<tr>
<td>19</td>
<td>2.40</td>
</tr>
<tr>
<td>20</td>
<td>2.40</td>
</tr>
<tr>
<td>21</td>
<td>2.40</td>
</tr>
<tr>
<td>22</td>
<td>2.40</td>
</tr>
<tr>
<td>23</td>
<td>2.40</td>
</tr>
<tr>
<td>24</td>
<td>2.40</td>
</tr>
</tbody>
</table>

d. **Runoff Parameters:** The physical drainage basin characteristics listed below shall be used to develop the runoff hydrograph.

1. **Area**

 (a) To obtain the highest degree of accuracy in hydrograph analysis requires the proper selection of homogeneous basin areas. Significant differences in land use in a given basin must be addressed by dividing the basin area into subbasin areas of similar land use or runoff characteristics. Hydrographs shall be computed for each subbasin area and superimposed to form the total runoff hydrograph for the basin.

 (b) All pervious and impervious areas within a given basin or subbasin shall be analyzed separately. This may be done by either computing separate hydrographs or computing the precipitation excess. The total precipitation excess is then used to develop the runoff hydrograph. By analyzing pervious and impervious areas separately, the cumulative errors associated with averaging these areas are avoided, and the true shape of the runoff hydrograph is better approximated.

2. **Selection of Curve Number**

 (a) The NRCS has developed CN values based on soil type and land use. The combination of these two factors is called the “soil-cover complex.”

 (b) Soil-cover complexes have been assigned to one of four hydrologic soil groups, according to their runoff characteristics. Soil hydrologic groups may be found in Table 14, *Soil Survey of Clackamas County, Oregon* (SCS, November 1985) or Table 13, *Soil Survey of Washington County, Oregon* (SCS July 1982).

 (1) Many factors can affect the CN value for a given land use. For example, the movement of heavy equipment over bare ground may compact the soil so that it has a lower infiltration rate and greater runoff potential.

 (2) CN values can be area-weighted when they apply to pervious areas of similar CN (within 20 CN points). However, high CN areas shall not be combined with low CN areas (unless the low CN areas are less than 15% of the subbasin).

 (3) Antecedent soil moisture values shall be considered. Soil shall be considered to be saturated before the start of a precipitation event.
3. NRCS Curve Number Equations:

(a) The rainfall-runoff equations of the NRCS curve number method relate a land area's runoff depth (precipitation excess) to the precipitation it receives and to its natural storage capacity, as follows:

\[Q_d = \frac{(P_R - 0.2S)^2}{P_R + 0.8S}, \text{ for } P_R > 0.2S \]

and

\[Q_d = 0, \text{ for } P_R < 0.2S \]

where \(Q_d \) = runoff depth in inches over the area.

\(P_R \) = precipitation depth in inches over the area.

\(S \) = potential maximum natural detention/retention, in inches over the area, due to infiltration, storage, etc.

The area's potential maximum detention/retention, \(S \), is related to its curve number, \(CN \):

\[S = \left(\frac{1000}{CN} \right) - 10 \]

The computed runoff represents inches over the tributary area. Therefore, the total volume of runoff is found by multiplying \(Q_d \) by the area (with necessary conversions):

Total runoff volume (cf) = \(Q_d \) (in) \(\times \) A (ac) \(\times \) 3,630 (ft\(^3\)/ac-in)

(b) **Time of Concentration:** Time of concentration \((T_c) \) is the time for runoff to travel from the hydraulically most distant point of the watershed to the point where the hydrograph is to be calculated. Travel time \((T_t) \) is the time it takes water to travel from one location to another in a watershed. \(T_t \) is a component of \(T_c \). \(T_c \) is computed by summing all the travel times for consecutive components of the drainage conveyance system. \(T_c \) influences the shape and peak of the runoff hydrograph.

(1) **Sheet Flow:** Sheet flow is flow over plane surfaces. It usually occurs in the headwater of streams. For sheet flow up to 300 feet, use the kinematics solution below to directly compute \(T_t \):
\[T_i = \frac{(0.93L^{0.6} \times n^{0.3})}{(I^{0.4} \times S^{0.3})} \]

where \(T_i \) = travel time (minutes).

\(n \) = Manning’s effective roughness coefficient for sheet flow.

\(L \) = flow length (feet).

\(I \) = rainfall intensity (inches per hour).

\(S \) = slope of hydraulic grade line (feet per foot [ft/ft])

Sheet flow shall not be used for distances over 300 feet.

(2) **Shallow Concentrated Flow:** For slopes less than 0.005 ft/ft (0.5%), the following equations can be used:

(a) For unpaved surfaces: \(V = 16.1345 (S)^{0.5} \)

(b) For paved surfaces: \(V = 20.3282 (S)^{0.5} \)

where \(V \) = velocity (feet per second).

\(S \) = slope (ft/ft).

(3) **Channel Flow:** A commonly used method of computing average velocity of flow, once it has measurable depth, is the following equation:

\[V = \frac{1.486}{n} \times R^{0.6} \times S^{0.5} \]

where \(V \) = velocity (ft/s).

\(n \) = Manning’s roughness coefficient.

\(S \) = slope of flow path (ft/ft).

\(R \) = area/perimeter.

301.3.04 Water Quality Volume and Flow

The water quality storm is the storm required by regulations to be treated. The storm defines both the volume and rate of runoff.

a. **Water Quality Storm:** Total precipitation of 0.36 inches falling in four hours, with a storm return period of 96 hours.

b. **Water Quality Volume (WQV) is the volume of water that is produced by the water quality storm. WQV is equal to 0.36 inches of rainfall over 100% of the new impervious area:

\[\text{Water quality volume (cf)} = 0.36 \text{(in)} \times \text{area (sf)} \]

12 (in./ft)
c. Water Quality Flow (WQF) is the average design flow anticipated from the water quality storm:

\[
\text{Water quality flow (cfs)} = \frac{\text{Water quality volume (cf)}}{14,400 \text{ sec}}
\]

or

\[
\text{Water quality flow (cfs)} = \frac{0.36 \text{in})(\text{area (sf)}}{12 \text{(in/ft)}(4 \text{ hr})(60 \text{ min/hr})(60 \text{ sec/min})}
\]

301.3.05 Hydraulics

Catch Basins and inlets collect water from an adjacent ditch, gutter line, or pavement and convey the water to a storm sewer or culvert. The inlet systems are to be designed in accordance with the following criteria:

a. **Section 301.9.07, “Drain Inlet Design Standards.”**

b. The following sources shall be used to locate catch basins and inlets:

1. ODOT’s “Hydraulics Manual.”

301.3.06 Area Drains

The maximum acceptable intake flow rate for Type II area drains (see Detail No. S-2110 and S-2115 of these standards) and ditch inlets is shown in **Table 3.4**.

<table>
<thead>
<tr>
<th>Hydraulic Head (ft)</th>
<th>0.5</th>
<th>1.0</th>
<th>1.5</th>
<th>2.0</th>
<th>2.5</th>
<th>3.0</th>
<th>4.0</th>
<th>5.0</th>
<th>7.0</th>
<th>10.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow Rate (cfs)</td>
<td>2.0</td>
<td>5.6</td>
<td>10.3</td>
<td>11.9</td>
<td>13.3</td>
<td>14.6</td>
<td>16.8</td>
<td>18.8</td>
<td>22.3</td>
<td>26.6</td>
</tr>
</tbody>
</table>

1. Measured from bottom of grate to headwater.
2. Cubic feet per second.

301.3.07 Channel Protection

Open channels shall be designed to prevent long-term scouring of the channel. Where rip rap protection is specified, rip rap protection shall be placed over a filter fabric base or a minimum 6-inch thick gravel base. **Table 3.5** provides additional design guidance for the design engineer; however, the design engineer is, as always, responsible for the final design.
Table 3.5. CHANNEL PROTECTION, NEW CHANNEL CONSTRUCTION

<table>
<thead>
<tr>
<th>Velocity at Design Flow (feet per second)</th>
<th>Required Protection</th>
<th>Minimum Height Above Design Water Surface (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greater Than 0 and Less Than or Equal to 5</td>
<td>Vegetation lining</td>
<td>N/A</td>
</tr>
<tr>
<td>5</td>
<td>Bioengineered lining(^1) or ODOT Class 50 riprap(^2)</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>ODOT Class 200 riprap(^2)</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>Slope mattress, etc.(^3)</td>
<td>2</td>
</tr>
</tbody>
</table>

\(^1\)Bioengineered lining allowed for flows between 5 and 8 feet per second.
\(^2\)ODOT riprap class in English units
\(^3\)For high-velocity channels, engineering calculations are to be submitted to the City's authorized representative for review and approval.

301.3.08 Outfall Protection

Storm system outfalls shall be designed to prevent scouring at, or in association with, the outfall discharge and provide velocity reduction before discharge to the receiving channel. Engineered energy-dissipaters shall be required for outfalls with design flow discharge velocities greater than 3 feet per second (fps). Table 3.6 provides design guidance for the design engineer; however, the design engineer is, as always, responsible for the final design.

Table 3.6. ROCK PROTECTION

<table>
<thead>
<tr>
<th>Discharge Velocity at Design Flow (fps)</th>
<th>Required Protection (Minimum Dimension)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Type</td>
</tr>
<tr>
<td>0 to 5</td>
<td>ODOT Class 50 riprap(^1)</td>
</tr>
<tr>
<td>5 to 10</td>
<td>ODOT Class 200 riprap(^1)</td>
</tr>
<tr>
<td>Greater than 10</td>
<td>Designed system(^3)</td>
</tr>
</tbody>
</table>

\(^1\)ODOT riprap class in English units.
\(^2\)Riprap shall be grouted in place (see Detail No. S-2225 or S-2275 of these standards).
\(^3\)For high-velocity outfalls, engineering calculations are to be submitted to the City’s authorized representative for review and approval.
301.3.09 Detention/Retention Facility Protection

a. Stormwater quantity detention/retention facilities and stormwater quality facilities shall be designed to prevent scouring at the inflow structure(s) by use of an engineered energy-dissipating device such as a Swale Inflow Spreader (see Detail No. S-2225 of these standards) or other method approved by the City's authorized representative.

b. The nearest upstream manhole from a stormwater quantity detention/retention pond or swale shall be a stormwater pretreatment manhole conforming to Detail No. S-2050 of these standards.

c. Safety

1. Stormwater facilities shall include a vegetated buffer or a safety bench.

2. Sideslopes in stormwater facilities shall not exceed 4H:1V up to the maximum design water elevation.

3. Stormwater facilities shall be posted with warning signs that prohibit swimming or wading.

4. Where fencing is required by federal, state, and local laws and ordinances for public safety considerations or security reasons, the fencing shall be aesthetically designed. No barbed wire fencing shall be used.

301.3.10 Drainage Report

a. The drainage report shall be on 8½-by-11 paper. Maps shall be folded to 8½-by-11 size unless another format is approved before the report is submitted.

b. The drainage report shall be prepared by and bear the seal and original signature of a Professional Engineer registered in the State of Oregon and shall contain the following information:

1. Cover sheet, including the project name, project tracking number (Planning DB No.), applicant's name, address, and telephone number, design engineer’s name, and date of submittal.

2. Table of contents, with page numbers for each section of the report, including exhibits, appendices, and attachments.

3. Vicinity Map.

4. Project description, specifying type of permit(s) for which the applicant is applying, size and location of the project site, address or parcel number, legal description of the property, and property zoning. Also describe other permits required (e.g., Corps of Engineers 404 fill permit). Describe the
project, including proposed land use, proposed site improvements, proposed construction of impervious surfaces, proposed landscaping, and special circumstances.

5. Existing Conditions

(a) Describe existing site conditions and relevant hydrological conditions, including but not limited to the following:

(1) Project site topography.

(2) Land cover and land use.

(3) Abutting property land cover, land use, and ownership information.

(4) Off-site drainage to the property.

(5) Natural and constructed channels.

(6) Wetlands, creeks, ravines, gullies, steep slopes, springs, and other sensitive areas on or adjacent to the project site.

(b) General soil conditions in the project site, using SCS soil designations.

(c) Points of discharge for existing drainage from the project site.

(d) References to relevant reports, such as basin plans, flood studies, groundwater studies, wetland designations, watershed plans, subbasin master plans, sensitive area designation, environmental assessments, water quality reports, or other relevant documents. Where such reports impose additional conditions on the applicant, those conditions shall be included in the report.

(e) Soils report(s), where applicable.

(f) Hydrologic analysis, pursuant to Section 301.3.01, “Hydrologic Analysis.”

(g) Basin map(s), showing boundaries of project, any off-site contributing drainage basins, on-site drainage basins, approximate locations of all major drainage structures in the basins, and depicting the course of stormwater originating from the subject property and extending to the closest receiving body of water. Reference the source of the topographic base map (e.g., USGS), the scale of the map, and include a north arrow.
(h) Description of drainage basin(s) to which the project site contributes runoff, and identification of the receiving waters for each basin.

6. Developed Conditions

(a) Developed site drainage conditions: Describe the land cover resulting from the proposed project; describe the potential stormwater quantity and quality impacts resulting from the proposed project; describe the proposed methods for collection and conveyance of runoff from the project site, for the control of any increase in stormwater quantity resulting from the development, and for maintaining stormwater quality.

(b) Description of upstream and downstream basins, identifying any sources of runoff to the project site. Description shall be based on field investigation. Any existing drainage or erosion issues upstream that may affect the proposed development shall be noted.

(c) Downstream analysis.

(d) Hydraulic design computations, supporting the design of all proposed stormwater conveyance, quantity and quality control facilities, and verifying the capacity of existing and proposed drainage facilities. These computations may include capacity and backwater analysis required either as part of the proposed drainage design or as part of the downstream drainage investigation, and flood routing computations required for the design of detention/retention storage facilities, for wetland impact analysis, or for floodplain analysis. Include a description of how the stormwater system will function during the water quality storm, 2-year storm, 10-year storm, 25-year storm, and 100-year storm.

(e) Operation and maintenance manual, required for privately owned and maintained stormwater quantity and quality control facilities. The manual will be an attachment to the City’s Stormwater Maintenance Covenant and Access Easement.

(f) Appendices shall include necessary technical information.

301.4.00 WATER QUANTITY FACILITY DESIGN

301.4.01 Mitigation Requirement for Quantity

Each new development is responsible for mitigating its impacts on the public stormwater system. The City’s authorized representative shall determine which of the following techniques may be used to satisfy this requirement. Mitigation requirements shall meet applicable federal, state, and local standards and regulations.
a. Construction of permanent on-site stormwater quantity detention/retention facilities, designed in accordance with Section 301.5.00, “Water Quality Facility Design.”

b. Enlargement or improvement of the downstream conveyance system shall be done in accordance with Section 301.5.00, “Water Quality Facility Design.”

301.4.02 Criteria for Requiring On-Site Detention/Retention

On-site facilities shall be constructed when any of the following conditions exist:

a. The proposed development establishes or increases the impervious surface area by more than 5,000 square feet. Development includes new development, redevelopment, and/or partial redevelopment.

b. There is an identified downstream deficiency, and detention/retention rather than conveyance system enlargement is determined to be the more effective solution.

c. There is an identified regional detention/retention site within the boundary of the development.

d. A site within the boundary of the development would qualify as a regional detention/retention site under the criteria or capital plan adopted by the City.

e. Water quantity facilities are required by City-adopted stormwater master plans or adopted subbasin master plans.

301.4.03 Water Quantity Facility Design Criteria

a. When required, stormwater quantity on-site detention/retention facilities shall be designed to capture runoff so the post-development runoff rates from the site do not exceed the predevelopment runoff rates, based on a 2- through 25-year, 24-hour return storm. Specifically, the 2-, 10-, and 25-year post-development runoff rates shall not exceed their respective 2-, 10-, and 25-year predevelopment runoff rates; unless other criteria are identified in an adopted stormwater master plan or subbasin master plan.

b. Water quantity facilities shall be designed to include inlet energy dissipation (in conformance with section 301.3.09.a) and a sediment forebay. The sediment forebay shall consist of an area in which heavier sediments can accumulate and receive periodic maintenance to remove these sediments. The forebay size shall be engineered with respect to the anticipated flow rate, and have a durable surface, such as concrete or rock, suitable for periodic maintenance. A minimum size of 20 square feet of water area is anticipated. Some type of barrier shall separate the forebay area from the main area of the water quantity facility. The invert of the incoming storm drain pipe shall be set at or above the top of the forebay barrier elevation and shall consider the
pipe wall thickness. Pond inlets with a drainage area of less than one third-acre (1/3 AC) may not require a sediment forebay.

c. Water quantity facilities shall be designed to allow for proper functioning with full sediment accumulation as allowed in Section 301.6.06.b.2. “Sediment Management/Pollutant Control. Requirements.”

d. When required because of an identified downstream deficiency, stormwater quantity on-site detention/retention facilities shall be designed so the peak runoff rates will not exceed predevelopment rates for the range of storms that cause the downstream deficiency.

e. The average, wet-season groundwater elevation shall be determined for the proposed stormwater quantity facility. Groundwater elevation may be established through measurements at existing wells, installation of piezometer(s), or other methods approved by the City’s authorized representative. The facility shall be designed to exclude detention/retention capacity below the established wet-season groundwater elevation.

f. Water quantity facilities in which water is in direct contact with the soil must be lined with either a low permeability liner or a treatment liner when the soil does not have properties which reduce the risk of groundwater contamination from stormwater runoff that may infiltrate in the facility. Liners shall be designed in accordance with Appendix E. “Water Quality Facility Liners.”

g. Construction of on-site detention/retention facility shall not be allowed as an option if such a facility would have an adverse effect on receiving waters in the basin or subbasin in the event of flooding, or would increase the chance or severity of flooding problems downstream of the site.

h. No water quantity facility shall be built in a public easement or right-of-way unless approved by the City’s authorized representative, or be located in an area designed or used for vehicular parking.

i. Vegetation shall be planted in accordance with Appendix B. “Landscape Requirements.”

j. Water Quantity Facilities shall be constructed in conformance with Section 301.2.03.

k. Water Quantity Facilities shall be constructed in conformance with public safety considerations (see Section 301.3.09.e).

l. Stormwater quantity facilities shall be protected in conformance with Section 301.3.09, “Detention/Retention Facility Protection.”

m. Access roads to stormwater facilities shall be in conformance with Section 301.4.04, “Access Road Design.”
301.4.04 Access Road Design

Access roads are for maintenance and inspection purposes. All-weather access shall be provided for the entire perimeter of the stormwater facility, unless otherwise approved by the City's authorized representative. At a minimum, access shall be provided for maintenance and inspection of the inflow and outflow structures of the facility. The following criteria are the minimum City requirements:

a. Three inches of Class C AC; over 8 inches of ¾”-0” compacted crushed aggregate; over firm subgrade. Crushed aggregate and subgrade shall be compacted to 95% of maximum dry density, as determined by AASHTO T-180.

or

The design engineer may submit a certified road design capable of supporting a 30-ton maintenance vehicle in all weather conditions.

b. The plan shall include design of strengthened sidewalk sections where maintenance vehicles will cross.

c. Maximum grade: 15% with a maximum 3% cross-slope.

d. Minimum width: 15 feet on straight runs and curves. Curves shall be designed with a minimum 40-foot interior radius.

e. A 2-foot wide gravel shoulder shall be provided on the facility side of the access road.

f. Access shall extend to within 10 feet of all control structures, unless otherwise approved by the City’s authorized representative.

g. If fencing is required for public safety or security reasons (see Section 301.3.09.c.4), the fence shall include a 12-foot-wide lockable gate for maintenance access.

301.4.05 Flood Management Design Standards

a. Purpose: The purpose of these standards is to reduce the risk of flooding, prevent or reduce the risk to human life and property, and maintain the functions and values of floodplains, such as allowing for the storage and conveyance of stream flows through existing and natural flood conveyance systems.

b. Flood Management Areas Defined: Flood management areas shall include, but are not limited to, the following:
1. Land identified within the 100-year floodplain and floodway, as shown on the Federal Emergency Management Agency (FEMA) flood insurance maps.

2. Land identified in updated flood studies or any other authoritative data documenting flood elevations, as approved by the City. The design engineer shall use the most recent and technically accurate information available to determine flood areas.

c. **Flood Plain Delineation:** In areas of the City where the 100-yr flood plain has not been defined as per Section 301.4.05.b, “Flood Management Areas Defined,” the City Engineer may require a study to delineate the 100-yr flood plain prior to development of a site to access the potential impact to upstream or downstream properties.

d. **Design Criteria:** Design and construction of improvements within the 100-yr flood plain shall be in conformance with these Standards, Section 4.172, “Flood Plain Regulations” of the Wilsonville City Code, and all applicable federal, state, and local statutes and rules governing floodplains and flood hazard areas.

1. All fill placed in a floodplain shall be balanced with an equal amount of removed soil material and shall not decrease the floodplain storage capacity at any stage of a flood (2-, 10-, 25-, or 100-year event). No net fill in any floodplain is allowed except when all of the following conditions are met:

 (a) When an area has received special protection from floodplain improvement projects that lower the floodplain or otherwise protect affected properties.

 (b) Where the exceptions comply with adopted master plans, watershed management plans, or subbasin plans, if any.

 (c) When all required permits and approvals have been obtained in compliance with FEMA rules and other local, state, and federal laws regarding fill in floodplains.

2. Large areas may not be excavated to gain a small amount of fill in a floodplain. Excavation areas shall not exceed the fill areas by more than 50% of the square footage, unless approved by the City’s authorized representative.

3. Any excavation dug below the winter low-water elevation shall not count toward compensating for fill, because those areas would be full of water in the winter and not available to hold stormwater after a rain. Winter low-water elevation is defined as the water surface elevation during the winter when it has not rained for at least three days, and the flows resulting from
storms have receded. The elevation can be determined from records, studies, or field observation. Any fill placed above the 100-year floodplain will not count toward the fill volume.

4. The excavated area must be designed to drain if it is an area identified to be dry in the summer, e.g., if it is used for a park or mowed in the summer. Excavated areas identified to remain wet in the summer, such as a constructed wetland, shall be designed not to drain. For areas that are to drain, the lowest elevation shall be at least 6 inches above the winter low-water elevation, and sloped to drain. Slopes of 1% will be allowed in areas of less than 1,000 square feet.

5. Excavation to balance a fill shall be on the same parcel as the fill unless it is not reasonable or practicable to do so. In such cases, the excavation shall be in the same drainage basin, within points of constriction on the conveyance system, if any, as near as practical to the fill site, and shall be constructed as a part of the same development project.

6. Temporary fills permitted during construction shall be removed at the completion of construction and before the close of the in-stream work window, as defined by the ODFW or federal, state, or other local authority.

7. Excavation and fill required for the construction of detention/retention facilities or other facilities, such as levees, shall be specifically designed to reduce or mitigate flood impacts. Levees shall not be used to create vacant buildable land.

8. Excavation and fill required to restore or enhance floodplains, riparian areas, wetlands, uplands, and streams, including but not limited to the planting of vegetation and daylighting of existing storm pipes, shall be permitted as long as the design complies with applicable federal, state, and local standards.

9. The floodplain may not be modified to increase water velocities such that streambank erosion will be increased, unless the streambanks are protected to prevent the increased erosion.

10. Uncontained areas of hazardous materials, as defined by the Oregon DEQ, are prohibited in flood management areas.

11. Any proposed work within, or modification to, a floodway must be certified by a Professional Engineer registered in the State of Oregon as to how it conforms to these standards and FEMA regulations.

12. For streams, creeks, rivers, and other watercourses where the floodway has not been identified, the entire floodplain shall be treated as a floodway unless a study has been prepared by a Professional Engineer registered in
the State of Oregon and approved by the City’s authorized representative to define the floodway limits for a stream section.

301.5.00 WATER QUALITY FACILITY DESIGN

This section describes methods of designing water quality facilities. Water quality facilities are designed to remove pollutants from stormwater runoff. The pollutants of concern include, but are not limited to, sand, silt, and other suspended solids; metals such as copper, lead, and zinc; nutrients such as nitrogen and phosphorus; certain bacteria and viruses; and organics such as oil, grease, petroleum hydrocarbons, and pesticides. Methods of removing pollutants include sedimentation or settling, filtration, plant uptake, ion exchange, adsorption, and bacterial decomposition. Floatable pollutants such as oil, debris, and scum can be removed with separators.

301.5.01 Water Quality Facility Design Standards

a. Purpose: New development and other activities that create new impervious surfaces or increase the amount of stormwater runoff or pollution leaving the site are required to construct or fund permanent water quality facilities to reduce contaminants entering the stormwater and surface water system. Water quality volume and flow shall be determined as described in Section 301.3.04, “Water Quality Volume and Flow.”

b. Criteria for requiring construction of water quality facility

A water quality facility shall be constructed on site unless, in the judgment of the City’s authorized representative, any of the following conditions exist:

1. The site location, size, gradient, topography, soils, or presence of an SROZ make it impractical or ineffective to construct an on-site facility.

2. The subbasin has a more effective, existing regional site designed to incorporate the development or which has the capacity to treat the site stormwater.

3. The development is for construction of one- or two-family (duplex) dwellings on existing lots of record which will establish or create less than 5,000 square feet of impervious surface.

c. Design standards

1. Stormwater quality facilities shall be designed to remove 70% of the total suspended solids (TSS) from the runoff of 100% of the newly constructed impervious surfaces. Impervious surfaces shall include pavement, gravel roads, buildings, public and private roadways, and all other surfaces with similar runoff characteristics.
2. The removal efficiency standard for TSS specifies only the design requirements. It is not intended as a basis for performance evaluation or compliance determination of a stormwater quality control facility installed or constructed pursuant to this section.

3. If an on-site water quality facility cannot be constructed to treat the runoff from the development’s impervious surface, then with the approval of the City’s authorized representative, an on- or off-site water quality facility may be designed to treat runoff from an equivalent area of adjacent untreated impervious surfaces. The water quality facility shall meet all applicable requirements of these standards.

4. Water quality facilities shall be designed for a dry weather storm event totaling 0.36 inches of precipitation falling in four hours, with an average storm return period of 96 hours.

5. Water quality facilities shall be sized for impervious area, as outlined in Section 301.5.01.d, “Impervious Area Used in Design,” below.

6. Water quality facilities shall be designed to include inlet energy dissipation and a sediment forebay in conformance to Section 301.4.03.b.

7. Water quality facilities shall be designed to allow for proper functioning with full sediment accumulation as allowed in Section 301.6.06.b.2, “Sediment Management/Pollutant Control, Requirements.”

8. Water quality facilities shall be constructed as part of the development’s public improvements.

9. Other design options for meeting the requirements of this section may be considered by the City’s authorized representative for approval, as referenced in Section 301.1.02, “Alternative Design and Construction Standards.”

10. Water quality facilities in which water is in direct contact with the soil must be lined with either a low permeability liner or a treatment liner when the soil does not have properties which reduce the risk of groundwater contamination from stormwater runoff that may infiltrate in the facility. Liners shall be designed in accordance with Appendix E, “Water Quality Facility Liners.”

11. Water Quantity Facilities shall be constructed in conformance with Section 301.2.03.

12. Stormwater quality facilities shall be protected in conformance with Section 301.3.09, “Detention/Retention Facility Protection.”
d. Impervious area used in design

1. Water quality facilities are required when proposed development establishes or increases the impervious surface area by more than 5,000 square feet. Development includes new development, redevelopment, and/or partial redevelopment.

2. For single-family and duplex residential subdivisions, water quality facilities shall be sized for all impervious areas created by the subdivision, including all residences on individual lots at the current rate of 2,750 square feet of impervious surface area per dwelling unit.

3. For all developments other than single-family and duplex dwellings, including rowhouses and condominiums, the sizing of water quality facilities shall be based on the impervious area to be created by the development, including structures and all roads and impervious areas. Impervious surfaces shall be based on building permits, construction plans, or other appropriate methods of measurement deemed reliable by the City’s authorized representative.

4. The City encourages design initiatives that reduce the effective impervious area. For developments other than single-family and duplex dwellings, a smaller water quality facility may be possible.

301.5.02 General Requirements

a. No water quality facility shall be built in a public easement or right-of-way, unless approved by the City’s authorized representative

b. Vegetation shall be planted in accordance with Appendix B, “Landscape Requirements.”

c. Safety of stormwater quality facilities shall be in conformance with Section 301.3.09, “Detention/Retention Facility Protection.”

301.5.03 Access Road

Access roads to stormwater quality facilities shall be in conformance with Section 301.4.04, “Access Road Design.”

301.5.04 Water Quality Treatment Methods

Methods used for water quality treatment facilities form several general categories:

a. Pretreatment Devices: Pretreatment often must be provided for filtration and infiltration facilities to protect them from clogging or to protect groundwater.
Appropriate pretreatment devices include a pre settling basin, wet pond or vault, water quality manhole, or oil/water separator.

b. **Filtration:** Filtration entails capturing and temporarily storing stormwater and then passing it through a filter bed of sand, organic matter, soil, or other acceptable treatment media. Specific media such as activated carbon or zeolite can remove hydrocarbons and soluble metals.

c. **Ponds:** Ponds treat stormwater by settling particulates during quiescent conditions (sedimentation), by biological uptake, and by vegetative filtration. Ponds may be single-purpose facilities, providing only stormwater treatment, or they may be combined with a detention pond or vault to also control flow.

d. **Wetlands:** Constructed wetlands, like natural wetlands, remove pollutants through sedimentation, filtration, and biologic processes. Wetlands typically have shallower water than ponds. They may also incorporate small permanent pools and extended detention storage.

e. **Infiltration:** Infiltration refers to the use of the filtration, adsorption, and biological decomposition properties of soils to remove pollutants. Infiltration can provide multiple benefits, including pollutant removal, peak flow control, groundwater recharge, and flood control. Groundwater protection issues must be evaluated when considering infiltration facilities. The DEQ has identified drywells, sumps, and other infiltration-type facilities that inject untreated stormwater below the ground surface as Class V injection wells under the federal underground injection control program.

f. **SROZ:** With approval of the City’s authorized representative, certain water quality treatment facilities may be allowed within SROZ resource areas. However, natural SROZ’s are not acceptable as a method for water quality treatment.

301.5.05 Pretreatment Devices – Water Quality Manholes

a. Hydraulic criteria

1. Minimum design flow = water quality flow.

2. An upstream flow splitter may be used to bypass conveyance flows in excess of the Water Quality flow.

b. Design criteria

1. Shall be required immediately upstream of all detention/retention facilities, all water quality treatment facilities, or any release point to a natural drainage.
2. Shall conform to Detail No. S-2050, “Stormwater Pretreatment Manhole,” or an equivalent detail approved by the City’s authorized representative.

3. Minimum manhole diameter shall be 60 inches.

4. Sump depth shall be no deeper than 5 feet from invert to bottom of sump, unless approved by City’s authorized representative.

5. Volume of sump shall be 20 cubic feet per 1.0 cfs of flow into the water quality manhole, up to the 25-year flow. Flow calculations shall include the effect of an upstream flow splitter.

6. Maintain a 3-foot clear access zone between the inside structure wall and the interior outlet structure.

7. Orient access to structure in a clear zone.

301.5.06 Proprietary Pretreatment Devices

a. Proprietary pretreatment devices are permitted on a case-by-case basis, with approval of the City’s authorized representative.

b. The devices shall be sized in accordance with the manufacturer’s recommendations. However, the minimum treatment flow must be the water quality flow.

c. Technical submittals from the manufacturer are required, including hydraulic design criteria, particulate removal efficiency, and maintenance requirements and schedule.

301.5.07 Filtration

a. Biofiltration Swale

Biofiltration swales are vegetated open channels that trap pollutants through filtration. General design requirements for biofiltration swales are given in Table 3.7. For more specific design criteria refer to Appendix D.2.01, “Biofiltration Swale.”
Table 3.7. BIOFILTRATION SWALE CRITERIA

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area to be served</td>
<td>Less than 10 acres</td>
</tr>
<tr>
<td>Soils requirements (NRCS classification)</td>
<td>A, B, C, or D (A and B may require liners in certain circumstances)</td>
</tr>
<tr>
<td>Maximum ground slopes</td>
<td>10H:1V</td>
</tr>
<tr>
<td>Maximum maintained sideslopes</td>
<td>4H:1V</td>
</tr>
<tr>
<td>Water application rate</td>
<td>Peak flow rate from water quality flow</td>
</tr>
</tbody>
</table>

Table 3.8. SAND FILTER CRITERIA

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum area to be served</td>
<td>80 acres</td>
</tr>
<tr>
<td>Soils requirements (NRCS classification)</td>
<td>A, B, C, or D with limitations</td>
</tr>
<tr>
<td>Maximum ground slope</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Maximum maintained sideslope</td>
<td>4H:1V</td>
</tr>
<tr>
<td>Water application rate</td>
<td>2,000 sq ft of filter per cfs of design flow</td>
</tr>
</tbody>
</table>

b. Sand Filter

Sand filters are a layer of sand in a sedimentation chamber used to trap pollutants. The water runs into an underdrain system that conveys the filtered stormwater to the discharge point. General design requirements for sand filters are given in Table 3.8. For more specific design criteria refer to Appendix D.2.02, “Sand Filter.”

301.5.08 Ponds

Inlet and outlet structures constructed in stormwater ponds shall follow the guidelines provided in Sections 301.8.04, “Inlets,” and 301.8.05, “Outlets.”

Ponds safety shall be in conformance with Section 301.3.09.c, “Safety.”
a. Wet Ponds

Wet ponds are constructed ponds with a permanent pool of water (called pool storage or dead storage). Pollutants are removed from stormwater by gravitational settling, biologic processes, and vegetative filtration. General design requirements for wet ponds are given in Table 3.9. For more specific design criteria refer to Appendix D.3.01, “Wet Ponds.”

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area to be served</td>
<td>2 to 150 acres</td>
</tr>
<tr>
<td>Soils requirements (NRCS classification)</td>
<td>C, D (A and B with liners)</td>
</tr>
<tr>
<td>Maximum ground slopes</td>
<td>10H:1V</td>
</tr>
<tr>
<td>Maximum maintained sideslopes</td>
<td>4H:1V</td>
</tr>
</tbody>
</table>

b. Extended Wet Pond

Extended wet ponds are constructed ponds that have both a permanent pool of water and extended detention above the permanent pool. General design requirements for extended wet ponds are given in Table 3.10. For more specific design criteria refer to Appendix D.3.02, “Extended Wet Pond.”

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area to be served</td>
<td>3 to 150 acres</td>
</tr>
<tr>
<td>Soils requirements (NRCS classification)</td>
<td>C, D (A and B with liners)</td>
</tr>
<tr>
<td>Maximum ground slopes</td>
<td>8 percent</td>
</tr>
<tr>
<td>Maximum maintained sideslopes</td>
<td>4H:1V</td>
</tr>
</tbody>
</table>

c. Extended Dry Pond

Extended dry ponds are designed to drain completely between storm events. This allows the pond to detain stormwater runoff longer than a standard detention pond and provides some treatment for water quality.
Dry ponds alone seldom meet the design TSS removal requirements established in Section 301.5.01.e, “Water Quality Facility Design Standards,” and shall be considered only when combined with other water quality facilities. For more specific design criteria refer to Appendix D.3.03, “Extended Dry Pond.”

301.5.09 Wetlands – Constructed Treatment Wetlands

Constructed treatment wetlands remove pollutants through several processes, including sedimentation, filtration, and biologic uptake. When enough volume is provided, constructed treatment wetlands can also provide a significant level of flow control. General design requirements for constructed treatment wetlands are given in Table 3.11. For more specific design criteria refer to Appendix D, “Stormwater Quality Facilities – Design Criteria.” Inlet and outlet structures constructed in wetland areas shall follow the guidelines provided in Sections 301.8.04, “Inlets,” and 301.8.05, “Outlets.”
Table 3.11. CONSTRUCTED TREATMENT WETLANDS CRITERIA

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area to be served</td>
<td>No less than 10 acres</td>
</tr>
<tr>
<td>Soils requirements (NRCS classification)</td>
<td>C, D (A and B with liners)</td>
</tr>
<tr>
<td>Maximum ground slopes</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Maximum maintained sideslopes</td>
<td>5H:1V</td>
</tr>
</tbody>
</table>

301.5.10 Infiltration

a. A first step in siting and designing infiltration treatment facilities is to conduct a characterization study. Information gathered during initial geotechnical investigations can be used for the site characterization. Key data and issues to be characterized include the following:

1. Surface features.
2. Subsurface features.
3. Infiltration rate determination.
4. Soil testing.
5. Infiltration receptor.

b. Site suitability criteria must also be considered for siting infiltration treatment systems, as follows:

1. Setbacks.
2. Groundwater protection areas.
3. High vehicle traffic areas.
4. Soil infiltration rate/drawdown time.
5. Depth to bedrock, water table, or impermeable layer.
7. Seepage analysis and control.
8. Cold climate and impact of roadway deicers.
9. Verification testing of the completed facility.

Note: Refer to Appendix C for a detailed description of site characterization and site suitability criteria. All infiltration systems shall comply with the requirements of the Oregon DEQ UIC (Underground Injection Control) Program.

c. Infiltration Trench

1. An infiltration trench is a shallow trench in permeable soil that is backfilled with sand and coarse stone and lined with filter fabric. The trench surface may be covered with grating, stone, gabion, sand, or a grassed cover with a surface inlet. General design requirements for infiltration trenches are given in Table 3.12. For more specific design criteria refer to Appendix D.5.01, “Infiltration Trench.”

Table 3.12. INFILTRATION TRENCH REQUIREMENTS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum area to be served</td>
<td>1 acre per trench</td>
</tr>
<tr>
<td>Soils requirements (NRCS classification)</td>
<td>A or B only for publically maintained facilities; C soils may be used for privately owned facilities if drawdown standards are met.</td>
</tr>
<tr>
<td>Maximum ground slopes:</td>
<td>5 percent</td>
</tr>
<tr>
<td>Soil test requirement</td>
<td>ASTM D 3385</td>
</tr>
</tbody>
</table>

b. Infiltration Basin

1. An infiltration basin is a depression created by excavation, berms, or small dams to provide for short-term ponding of surface water until it percolates into the soil. General design requirements for infiltration basins are given in Table 3.13. For more specific design criteria refer to Appendix D.5.02, “Infiltration Basin.”
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum area to be served</td>
<td>50 acres</td>
</tr>
<tr>
<td>Soils requirements (NRCS classification)</td>
<td>A or B only for publicly maintained facilities; C soils may be used for privately owned facilities if drawdown standards are met</td>
</tr>
<tr>
<td>Maximum ground slopes</td>
<td>5%</td>
</tr>
<tr>
<td>Maximum maintained sideslopes</td>
<td>4H:1V</td>
</tr>
<tr>
<td>Soil test requirement</td>
<td>ASTM D 3385</td>
</tr>
</tbody>
</table>

301.5.11 Compost Filters

Compost stormwater filters or CSFs, work by percolating stormwater through compost, which traps particulates and adsorbs dissolved materials such as metals and nutrients. Compost filters may be considered as a part of a private water quality treatment facility, but will not be allowed as part of a publicly maintained water quality treatment facility.

301.5.12 Other Water Quality Treatment Facilities

The use of other forms of water quality treatment is allowed with the approval of the City’s authorized representative. However, the applicant must provide evidence of the ability of the facility to meet the City’s design standards criteria and long-term maintenance requirements. Grass swales will not be allowed.

Information, recommendations, and specific design criteria for facility liners can be found in Appendix E, “Water Quality Facility Liners.”

301.6.00 OPERATION AND MAINTENANCE REQUIREMENTS

This section describes operation and maintenance requirements that are generally applicable to all private stormwater facilities. The person designated as the responsible party in the Stormwater Maintenance Covenant and Access Easement shall be responsible for operation and maintenance of private stormwater facilities. An operation and maintenance plan (O&M plan) shall be prepared by the responsible party for the stormwater facility and shall be submitted to the City of Wilsonville Environmental Services Division for review and approval. Maintenance activities shall be documented annually by sending a report of what was completed to the City of Wilsonville Environmental Services Division, by May 1st of each year.
301.6.01 Inspection Program

a. Routine facility inspection will provide three major benefits:
 1. Development of a condition history.
 2. Improved scheduling efficiency.
 3. Preventive maintenance opportunities.

b. Inspection records shall be used to:
 1. Determine where special maintenance conditions exist.
 2. Determine optimal frequencies for future inspection and maintenance.
 3. Generate scheduled and unscheduled (i.e., repair) work orders.
 4. Assure facility operation and aesthetics.

301.6.02 Requirements

a. The applicant shall be responsible for having inspections conducted, maintaining stormwater facilities, and submitting yearly reports documenting inspection and maintenance activities to the City of Wilsonville Environmental Services Division.

b. Inspect the facility, with the record drawing plans in hand, on a quarterly basis for the first two years, and a minimum of semiannually thereafter. Inspections may be required more frequently, depending on site-specific conditions.

c. All required inspections and any maintenance activities performed shall be documented in the annual report as required by the City’s “Stormwater Maintenance Covenant and Access Easement.”

d. Inspection reports shall be in a format and accuracy approved by the City of Wilsonville Environmental Services Division. Inspection reports shall be stamped by a Professional Engineer registered in the State of Oregon and shall be submitted to the City by May 1st of each year.

e. The applicant shall keep inspection records to track the progressive development of the system over time. The inspection records shall include:
 1. General condition of vegetative area(s), predominant plant species, distribution, and success rate (where applicable).
 2. Sediment condition and depth in forebay (or other pretreatment structure), treatment facility, bench planting zones, and other sediment-removal components.
3. Water elevations and other observations (sheen, smell, etc.).

4. Condition of the inlet, outlet, and overflow structures and devices, diversion structures, trash-removal devices, risers, spillway, embankments, and remaining storage capacity.

5. Unscheduled maintenance needs.

6. Components that do not meet the performance criteria and require immediate maintenance.

7. Common problem areas, solutions, and general observations.

8. Aesthetic conditions.

301.6.03 Structures

Applicant shall be responsible for maintaining all facility structures in good working order. Stormwater facility structures include, but are not limited to, the following: stormwater pipes, stormwater manholes, sand/oil separators, monitoring manholes, flow control devices, energy dissipaters, headwalls, trash grates, underground detention facilities, catch basins, ditch inlets, area drains, clean-outs, access roads, safety fences, sediment fences, and biofiltration bags. Maintenance may consist of cleaning, repairing, and/or replacing structures or portions of structures as needed to maintain their functional purpose.

301.6.04 Planting Bed Soils

a. In areas where greater than 10% of planting bed vegetation has died, have soil tested as recommended by a Professional Landscape Architect registered in the State of Oregon.

b. Amend soil as per recommendations of a Professional Landscape Architect registered in the State of Oregon; if needed redesign plantings to correct problems, and reestablish soil coverage.

301.6.05 Vegetation Management

a. Vegetated stormwater facilities may require a number of control practices during their initial 2-year period in order to meet the requirements for establishing healthy vegetation.

b. Requirements

1. Maintain plantings for a period of two years after the date of final construction approval by the City’s authorized representative. During the establishment period, remove undesired vegetation with minimal (or preferably no) use of toxic herbicides and pesticides at least three times in
year 1, and once or twice in the summer of year 2, unless otherwise approved by the City’s authorized representative. Replace plants that die during this period as per recommendations and planting time frame given in Appendix B.2.00, “Landscape Guidelines.”

2. At the end of the two-year warranty period, healthy plant establishment shall be achieved for at least 90% of the vegetation (see Section 301.13.02, “Landscape Inspection for Warranty,” for landscape survival criteria). The O&M plan shall specify the long-term maintenance schedule after the warranty period.

3. Selectively irrigate if necessary during the establishment period, during times of drought, or until the vegetation becomes established. It is preferred that the facility be designed to sustain its function without a permanent irrigation system.

4. Replenish mulch at least annually, and specify the mulching schedule in the O&M plan. Mulching shall be done to retain topsoil, heat, and moisture, and to inhibit weed growth. Use temporary fencing to protect seedlings from foraging animals.

5. Schedule maintenance outside sensitive wildlife and vegetation seasons. Minimize plant disturbance during maintenance activities.

6. Do not use fertilizers, herbicides, or pesticides for vegetation maintenance, unless it is specifically called for in the O&M plan.

7. Use replacement plants that conform to the initial planting plan and to Appendix B, “Landscape Requirements.”

301.6.06 Sediment Management/Pollutant Control

a. Sediment and other pollutants that degrade water quality will accumulate in stormwater facilities. The contractor shall remove all accumulated pollutants and sediment to maintain proper facility operation. Periodic testing will help determine appropriate sediment-removal schedules.

b. Requirements:

1. Place a sediment marker (see Detail No. S-2260 of these standards) in the forebay or in an area not likely to be damaged by incoming storm flows and where it can be easily seen by maintenance personnel.
2. Remove sediment when accumulations reach 1 foot in depth, 50% of the designed sediment storage depth, or if sediment accumulation inhibits facility operation. The 50% full capacity shall be identified and marked on sediment marker during facility construction.

3. Test sediment before removing it if the stormwater facility serves a commercial/industrial site or a multifamily structure or development. Sediment shall be tested according to protocol established in the O&M plan, and any additional information resulting from site-specific conditions and use. Testing could include parameters such as oil and grease, heavy metals (lead, zinc, and cadmium), nutrients (e.g., phosphorus), and organics such as pesticides that may accumulate. Testing must be site specific if a commercial/industrial discharger is being served; City of Wilsonville reserves the right to require testing of specific contaminants. Applicant shall provide the test results to the City of Wilsonville Environmental Services Division prior to excavation and disposal of sediment.

4. Dispose of sediments at the time of excavation in a manner meeting applicable state and federal requirements. If sediment disposal requires special handling, disposal documentation shall be provided to the City of Wilsonville Environmental Services Division.

5. Investigate and control, or report the pollutant source, if sediment or other pollutants are accumulating more rapidly than assumed when the O&M plan was formulated. Direct pollution-control complaints to the City of Wilsonville Environmental Services Division.

301.6.07 Insect/Vector Control

a. Standing water associated with some types of treatment systems can attract insects.

b. The following measures shall be the primary methods of insect control. The method are not presented in order of implementation, but one or all of these methods shall be used before considering any other measures:

1. Install predacious bird and bat nesting boxes.

2. Change the water level of ponds every four days or so to disrupt the larval development cycle of mosquitoes.

3. Stock ponds and other permanent water facilities with fish or other predatory species.

4. Use mosquito larvicide, such as Bacillus thurengensis or Altoside® formulations, only if absolutely necessary. Any pesticide or larvicide shall be applied by a licensed individual.
c. Additional assistance with vector monitoring and control may be obtained from the local vector control office.

301.6.08 Access and Safety

O&M programs shall provide for safe and efficient access to a facility and shall be in compliance with Section 101.8.09, “Safety Requirements.” The following are general requirements; specific conditions may require site-specific modifications:

a. Secure easements necessary to provide facility and maintenance access (if applicable).

b. Use only trained and certified personnel to access confined spaces.

c. Maintain ingress/egress routes to design standards, in a manner that allows efficient maintenance of the facility.

d. Ensure that fencing is in good repair.

301.7.00 CONSTRUCTED CHANNEL DESIGN STANDARDS

301.7.01 Application

This section applies to open channels constructed to convey runoff to the existing public stormwater and surface water conveyance system. For work in existing stream channels, applicant shall follow the recommendation and requirements set forth in ODFW’s Fish Passage Criteria, or latest edition, or an equivalent study or guideline approved by the City’s authorized representative. The applicant shall comply with all applicable requirements of the Army Corps of Engineers and Oregon Department of State Lands for construction activities that may impact wetlands or waterways. Development that regrades existing roadside ditches or constructs new roadside ditches shall meet applicable City codes and standards.

301.7.02 Channel Design

a. Channel design shall be in accordance with Section 301.3.00, “Hydrology and Hydraulics.”

b. Vegetation-lined channels shall be used whenever practicable, as determined by the City’s authorized representative. Rock-lined channels shall be used only where a vegetative lining will not provide adequate protection from erosion. Channels shall be protected in conformance with Section 301.3.07, “Channel protection.”

c. Constructed open channels shall be sized to pass the required flows and have sideslopes no steeper than 2H:1V. Any proposed constructed channel
improvement that does not meet these requirements shall be piped, unless an exception is approved by the City's authorized representative.

d. Normal maximum depth for open channels constructed adjacent to roadways shall be 2 feet.

e. No protruding pipes, culverts, utilities, or other structures will be allowed that reduce or hinder the flow characteristics of the channel. Channels and connections shall be designed to prevent scouring. All pipe connections shall match sideslopes, incorporate a headwall, and be designed with an energy dissipater device (see Sections 301.3.07, "Channel Protection," and 301.3.08, "Outfall Protection").

301.7.03 Channel Construction for New Roadside Ditches

Roadside ditches shall be constructed in conformance with ODOT SSC Section 00330, “Earthwork.”

301.8.00 CULVERT DESIGN STANDARDS

301.8.01 Application

a. Culverts provide for passage of water under or through obstructions placed across streams and drainageways. Culverts shall be designed to pass the required flows without compromising public safety or causing new or additional flooding.

b. For pipe systems or culverts that convey flows from a stream or through sensitive areas, a local representative of ODFW or other applicable state or federal agency shall be contacted to determine whether fish passage is required and to identify site-specific design criteria. Additionally, ODFW may require fish passage accommodations on any stream that has a history or the potential for fish production.

c. All culverts shall be designed for fish passage in accordance with ODFW’s Fish Passage Criteria, or latest edition, unless otherwise exempted by ODFW and the City.

301.8.02 Hydraulic Design

Culverts shall be designed to safely pass the 25-year flow.

301.8.03 Headwater

a. For new culverts 18 inches in diameter or less, the maximum allowable design storm event headwater elevation (measured from the inlet invert) shall not exceed two times the pipe diameter or three times the pipe diameter with a
seepage collar, unless an exception is approved by the City’s authorized representative.

b. For new culverts larger than 18 inches in diameter, the maximum allowable design storm event headwater elevation (measured from the inlet invert) shall not exceed 1.5 times the pipe diameter, unless an exception is approved by the City’s authorized representative.

c. The maximum headwater elevation of a design storm event for new culverts shall be at least 1 foot lower than the road or parking lot subgrade

301.8.04 Inlet

The embankment around the culvert inlet shall be protected from erosion by lining around the inlet with rock, bioengineering, or other protection approved by the City’s authorized representative. The lining shall extend upstream of the culvert a minimum of 10 feet, be designed to provide a smooth transition for water flow into the culvert, and shall be as high as the designed headwater elevation. Trash racks or debris barriers shall follow the design requirements of Section 301.9.06, “Trash Racks or Debris Barriers.”

301.8.05 Outlets

The receiving channel of the outlet shall be protected from erosion by rock lining, bioengineering, or other energy dissipating devices (Section 301.3.07, “Channel Protection,” and Section 301.3.08, “Outfall Protection”) as approved by the City’s authorized representative.

301.8.06 Inlet Control Analysis

The headwater depth for pipes under inlet control shall be determined using the nomographs as provided in Detail No. S-2205 and S-2210 of these standards, the ODOT “Hydraulics Manual,” or a modeling method consistent with FHWA’s HY8 software.

301.8.07 Outlet Control Analysis

The headwater depth for pipes under outlet control shall be determined using the nomographs as provided in Detail No. S-2220 of these standards, the ODOT “Hydraulics Manual”, or a modeling method consistent with FHWA’s HY8 software.

301.8.08 Outfall Design Standards

a. Outfalls shall be above the mean low-water level, unless an exception is approved by the City’s authorized representative. All outfalls shall be provided with a rock splash pad or other approved erosion-control measure. Erosion protection at outfalls shall be designed in accordance with the
guidelines in Section 301.3.08, “Outfall Protection,” unless exceptions are approved by the City’s authorized representative.

b. Mechanisms that reduce velocity before water discharges from an outfall are required. The dissipaters shall be designed using published references such as FHWA’s “Hydraulic Design of Energy Dissipaters for Culverts and Channels,” the ODOT “Hydraulics Manual”, and others. Design references shall be cited in the construction plan submittal.

c. Non-erosive stormwater flow velocities shall be maintained for the entire overland flow from the energy dissipating device to the receiving public waterway. The City’s authorized representative shall approve structures and/or methods to maintain non-erosive flow velocities prior to construction or installation.

301.9.00 STORM MANHOLE AND PIPE DESIGN STANDARDS

301.9.01 Manhole Design

a. Manholes shall be provided at least every 400 feet, unless otherwise approved by the City’s authorized representative. Manholes shall be located at every grade change, change in pipe size, and change in alignment. Unless an exception is approved by the City, manhole lids placed within the paved right-of-way shall have a minimum of 5 feet of clearance from the edge of a curb or gutter and shall not be in a wheel path of the traveled way (see street detail drawings of these standards).

b. When a manhole is 5 feet or less deep, a flat-top or shallow manhole shall be used, as shown in Detail No. S-2030 of these standards. Flat-top manholes shall be designed to be installed at an elevation to permit construction of the full street section, allowing for the design gradients.

c. All manholes shall be a minimum of 48 inches in diameter.

d. Suburban style manholes frames shall not be used in PCC streets.

e. Detail(s) shall be submitted with the plans where pipes into or out of a manhole are larger than 24 inches or where more than four mainline connections are made. The manufacturer or design engineer shall provide the City’s authorized representative with supporting calculations, stamped by a Professional Engineer registered in the State of Oregon, documenting the structural integrity of the manhole.

f. Connections to an existing manhole, elevation of the existing ledge, location of steps, and elevations of existing inlets and outlets shall be submitted with the plans.
g. All precast manhole bases shall have smooth, clean openings at the design inlets and outlet points. Openings shall not be sawcut or broken out.

h. All manhole bases shall be properly channelized. No more than three side laterals are allowed to be connected to a manhole, unless an exception is approved by the City’s authorized representative. There shall be a minimum of 8 inches separating connections, measured from the outside diameter of the core holes.

i. All manholes shall have inlets at a minimum 90-degree angle in relation to the outlet, as measured from the center of the manhole base.

j. Manholes shall have a minimum freefall of 0.20 feet and a maximum freefall of 1.5 feet.

k. Drop manholes: The maximum inside drop in a manhole shall be 18 inches. When more than 18 inches of drop exists, an outside drop manhole shall be used. Outside drops shall be constructed of ductile iron pipe (see Detail No. S-2040 of these standards).

l. An oversize curb inlet manhole as shown in Detail No. S-2090 of these standards may be used in lieu of a manhole, as required by Section 301.9.01.a, when approved as part of a flow-through system. Oversized gutter or curb and gutter catch basins will be allowed in lieu of manholes, with approval of the City’s authorized representative.

m. Water Quality Manhole Design: Refer to Section 301.5.05, “Pretreatment Devices - Water Quality Manholes.”

301.9.02 Storm Pipe Design

a. Pipe size: The design size shall be based on hydraulic calculations provided by the design engineer. The minimum diameter of public storm pipe is identified below:

1. Pipe from the catch basin to the mainline in the public right-of-way shall be nominal 10-inch-diameter pipe.

2. Mainline pipe shall be nominal 12-inch-diameter pipe.

3. Storm pipes located out of a public street right-of-way, with no reasonable need to be extended, and with roof drains or area drains connected, shall be a minimum 10-inch-diameter pipe.

b. Location: Storm sewers, wherever possible, shall be installed behind and parallel to the face of curb on either side of the street as indicated in the street detail drawings of these standards. All storm sewer locations shall be approved by the City’s authorized representative. Storm drain inlets shall be
designed as per Sections 301.2.07, “Catch Basin System Standards” and
301.9.07, “Drain Inlet Design Standards.”

c. **Easements:** When it is not possible or practical to install the sewer line in a
dedicated public street, a minimum 15-foot public pipeline easement shall be
provided. Sewer lines shall be located in the center of the easement, unless an
exception is approved by the City’s authorized representative. The centerline
of the pipe shall be at least 7½ feet from an easement side line.

d. **Alignment:** Public storm pipe shall be laid on a straight alignment and at
uniform grade, unless an exception is approved by the City’s authorized
representative.

e. **Connections:** Lateral connections on new construction work shall be done
using manufactured tees installed at surveyed locations. Lateral connections
to existing storm lines may be done using either saddle tees as per Section
401.4.02.b.5(a), or by using Inserta Tee®, as per Section 401.4.02.b.5(c).
Laterals shall be of same material as main.

f. **Laterals:** Storm laterals shall be provided with a cleanout installed at the
public right-of-way or easement as shown in Detail No. S-2175 of these
standards. Cleanouts shall not be installed in the driveway or sidewalk, unless
approved by the City’s authorized representative.

g. **Curb Marking:** Newly constructed curbs or replaced curbs shall be stamped
with the capital letters “SD” at the location of each storm lateral crossing.
Letters shall be 3 inches in height and embossed a minimum of ½-inch deep.

h. **Locating Wire and Tape:** Storm laterals and mains shall have tracer wire
(12-gauge with white THHN insulation) installed beside the pipe and plastic
cautions tape installed 1-foot above the pipe crown as shown in Detail No. S-
2175 of these standards. Surface locating wire at right-of-way cleanouts; tape
shall be tied off to the 2 x 4 marker.

i. **Grade:** All storm lines shall have sufficient slope to maintain a minimum
flow velocity of 3 feet per second when flowing full.

j. **Steep Slopes:** Where soil conditions warrant it, storm pipes on slopes in
excess of 20% gradient shall be secured with approved anchor walls as shown
in Detail No. S-2195 of these standards. Spacing for anchors shall be as
shown in **Table 4.2**.

k. **Pipe Cover:** Minimum pipe cover shall be in compliance with this section,
unless an exception is approved by the City’s authorized representative. In
paved areas, pipe cover shall be measured from the finished grade to the upper
surface of the pipe barrel; the pipe bell shall not intrude into the base rock. In
areas without pavement, the pipe cover shall be measured from the finish
grade to the upper surface of the pipe barrel. Minimum cover requirements are shown in Table 3.14.

Table 3.14. MINIMUM PIPE COVER

<table>
<thead>
<tr>
<th>Type of Pipe</th>
<th>Cover (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other Pipe Materials</td>
<td>36</td>
</tr>
<tr>
<td>Nonreinforced</td>
<td>36</td>
</tr>
<tr>
<td>RCP Class III</td>
<td>36</td>
</tr>
<tr>
<td>RCP Class IV</td>
<td>24</td>
</tr>
<tr>
<td>RCP Class V</td>
<td>12</td>
</tr>
<tr>
<td>AWWA C-900</td>
<td>12</td>
</tr>
<tr>
<td>AWWA C-905</td>
<td>12</td>
</tr>
<tr>
<td>Ductile Iron</td>
<td>12</td>
</tr>
</tbody>
</table>

301.9.03 Distance Between Structures

The maximum distance between structures, such as manholes, area drains, and catch basins, but excluding cleanouts, for 10-inch and larger pipe shall be 400 feet.

301.9.04 Access

Access roads are for maintenance and inspection purposes. All-weather access shall be provided to every manhole. Access roads shall be constructed as per Section 301.4.04, “Access Road Design.”

301.9.05 Headwalls

Pipe end protection shall be required where pipe material other than concrete or ductile iron is exposed in the design of an outlet or inlet pipe or where required to stabilize a slope. Details of all headwalls and end protection shall be included in the construction drawings.

301.9.06 Trash Racks or Debris Barriers

Trash racks or debris barriers are required by the City on inlets for pipe or culvert systems greater than 18 inches in diameter. The design engineer shall submit the trash rack/debris barrier system design to the City’s authorized representative for approval.
301.9.07 Drain Inlet Design Standards

All inlets and catch basins shall be designed to accept a 10-year storm event. Grates shall be designed, as far as practical, to avoid failure due to accumulation of debris.

a. Design Criteria

1. Precast and poured-in-place-catch basins and curb inlets are allowed.

2. All catch basins shall be constructed with an 18-inch minimum sump unless they are part of a series or a flow-through catch basin system, and approved by the City’s authorized representative.

3. A main storm line shall not pass through a sumped catch basin.

4. Avoid placing curb inlets along curb radius at street intersections.

5. Spacing of catch basins shall be determined by the capacity of each to pass a 10-year storm event. In addition, catch basins shall be installed just before the upstream curb radius at all intersections.

6. Catch basins, except for CG-48 (curb inlet), shall be a maximum depth of 6 feet from the top of grate to the flowline of the lowest pipe invert. When depth from top of grate to flowline is greater than 5 feet, catch basins shall be oversized and have steps installed.

7. Between the inlet and the mainline or mainline structure, the maximum length of pipeline shall be 40 feet for 10-inch pipe and 60 feet for 12-inch pipe, unless additional length is required to cross the street right-of-way.

8. Tee connections may be used in street right-of-way only with approval of the City’s authorized representative. The lateral shall be no larger than 50% the diameter of the main line, unless otherwise approved by the City’s authorized representative. The connecting catch basin shall be oversized.

b. Area Drains and Ditch Inlets

1. The standard area drain shall be as shown in Detail No. S-2105 or S-2110 and S-2115 of these standards, and the ditch inlet shall be as shown in Detail No. S-2120 and S-2125 of these standards, unless an exception is approved by the City’s authorized representative.

2. Area drains in rear or sideyards shall not be sumped. Ditch inlets shall be equipped with an 18-inch sump unless the inlets are part of a flow-through system.
3. A main storm line shall not pass through an area drain or a ditch inlet.

4. Area drains or ditch inlets may be located at the upper terminus of a main storm line, may connect to the main storm line at a manhole, or may connect to the main storm line through a tee when the lateral is no larger than 50% of the diameter of the main line.

301.10.00 MATERIAL AND TECHNICAL SPECIFICATIONS

301.10.01 Manholes and Structures

a. General

Manholes shall be constructed at locations shown on the plans or as required by the City’s authorized representative. The maximum distance between manholes shall be 400 feet, unless otherwise approved by the City’s authorized representative. All manholes shall be a minimum of 48 inches in diameter. When a manhole is less than 5 feet deep, a shallow or flat-top manhole shall be used, as shown in Detail No. S-2025 or Detail No. S-2030 of these standards. Flat-top manholes shall be installed at an elevation to allow for construction of the full street section, allowing for the design gradients.

b. Materials

1. Aggregate and Cement: Aggregate shall meet the standards set forth in ODOT SSC Section 02690, “PCC Aggregates”; Portland cement shall meet the standards set forth in ODOT SSC Section 02010, “Portland Cement.”

2. Concrete: PCC for poured in place manholes and structures shall conform to ODOT Class 3000 – 1½, Commercial Grade Concrete. Slump shall be between 2 and 4 inches.

3. Manhole Frames and Covers:

(a) Casting shall be of new material, tough, close-grained gray iron conforming to ASTM A-48, Class 30, and shall be smooth and clean, free of blisters, blowholes, and all defects. Bearing surfaces shall be planed or ground to ensure flat, true surfaces. Covers shall be true and set within rings at all points.

(b) Rings shall be grouted in place and made watertight with a high-strength, non-shrink grout meeting ODOT SSC Section 02440.50(b), “Non-Shrink Grout,” such as Alcrete Twenty Minute Fast Setting Grout®, or approved equal. Unused grout shall be discarded after 20 minutes and shall not be used. Rings shall not be brought to grade with lumber.
(c) Frames and covers shall be standard or suburban, depending on the manhole location and as approved by the City’s authorized representative. Suburban style manhole frames shall not be installed in PCC streets.

(d) Manholes installed outside of paved street or sidewalk areas shall be installed with a tamperproof frame and cover as shown in Detail No. S-2060 of these standards.

4. **Manhole Types:** Manholes shall be one of the following types or equal.

 (a) **Precast 48-Inch-Diameter Manholes:** Materials shall conform to the requirements of ASTM C-478. Minimum wall thickness shall be 5 inches. Cones shall be eccentric. Before precast manhole sections of any size are delivered to the job site, the sections shall meet the permeability test requirements of ASTM C-14.

 (b) **Precast Large-Diameter (60-inch or larger) Manholes:** Materials shall conform to the requirements of ASTM C-478.

 (c) **Cast-in-Place Large-Diameter Manholes:** Aggregate shall meet the standards set forth in ODOT SSC Section 02690, “PCC Aggregates”; Portland cement shall meet the standards set forth in ODOT SSC Section 02010, “Portland Cement.”

 (d) **Precast Bases:** Precast base sections or manhole bases shall be used, except over existing pipe where poured-in-place bases shall be used (see Section 301.10.01.c.5). Precast manhole bases shall be inspected and approved by the City’s authorized representative prior to installation. Where prescast bases are not channelized, the contractor shall construct smooth channels to connect the flow from inlet pipe(s) to outlet pipe.

5. **Pipe Stubouts for Future Sewer Connections:** Pipe stubouts shall be the same type as approved for use in the lateral, main, or trunk sewer construction. Strength classifications shall be the same class as in adjacent trenches. Where two different classes of pipe exist at a manhole, the higher-strength pipe shall govern strength classification. Connect stubouts to manholes as specified in Section 301.10.01.d.1, “Connection to Existing Manholes.” Rubber-gasketed, watertight plugs shall be furnished with each stubout and shall be adequately braced against air test pressures.

6. **Gaskets:** Manhole sections shall be installed with either preformed rubber gaskets or plastic gaskets. Rubber gaskets shall conform to ASTM C-443. Plastic gaskets shall be Kent-seal No. 2 or Ram Neck, or approved equal, and shall meet all requirements of ASTM C-990.
7. **Manhole Steps**: Steps shall be required and shall be constructed as specified and shown in Detail No. S-2080 of these standards, unless otherwise approved by the City’s authorized representative. When pipe is 24 inches in diameter or smaller, steps shall be located as indicated in Detail No. S-2065 of these standards. For pipe larger than 24 inches in diameter, steps shall be located over a bench as coordinated with the City’s authorized representative. Maximum drop from rim to first step shall be 27 inches.

c. **Workmanship**

1. **Foundation Stabilization**: If, in the opinion of the geotechnical engineer or the City’s authorized representative, unstable subgrade material exists that will not support the manhole or other structure, the contractor shall excavate below grade and backfill with foundation-stabilization material approved by the City’s authorized representative.

2. **Pipe Connections**: All rigid pipes entering or leaving the manhole shall be provided with flexible joints within 1 foot of the manhole structure and shall be placed on firmly compacted bedding. Special care shall be taken to see that the openings through which pipes enter the structure are completely watertight. All flexible pipe shall be connected to manholes according to the manufacturer’s recommendations.

3. **Flexible Joints**: Where the last joint of the line laid up to the manhole is more than 1 foot from the manhole base, a 6-inch concrete encasement shall be constructed around the entire pipe, from the manhole base to within 1 foot of the pipe joint, at the discretion of the City’s authorized representative. The pipe encasement shall be constructed integrally with the manhole base. Pipes laid out of the manhole shall be shortened to ensure that the first flexible joint is no more than 1 foot from the manhole base.

4. **Manhole Connections**: The contractor shall connect sewer pipe to manholes as specified in Section 3.01.10.01.d, “Types of Connections.”

5. **Concrete Bases (Poured-in-Place)**: Poured-in-place bases shall be used over existing pipelines. The contractor shall remove water from the excavated area, provide a minimum 8-inch-thick layer of compacted 3/4"-0" crushed aggregate for a base, and construct the concrete base so that the first precast manhole section has a uniform bearing throughout the full circumference. There shall be a minimum of 8 inches of concrete between the compacted gravel and the lowest invert of the manhole. The contractor shall deposit sufficient concrete on the base to assure a watertight seal between base and manhole wall. Twenty-four hours shall be allowed to elapse before the remaining manhole sections are placed on
the base, unless otherwise approved by the City’s authorized representative.

6. **Drop Manholes**

 (a) The maximum inside drop in a manhole shall be 18 inches. See Section 301.10.01.d.3, “Shallow Inside Drop Manhole,” for construction of this connection.

 (b) When more than 18 inches feet of drop exists, an outside drop manhole shall be used. Outside drop manholes shall use ductile iron pipe (see Detail No. S-2040 of these standards).

7. **Placing Manhole Section:** The contractor shall clean the end of each section of foreign material. Manholes shall be installed with either watertight rubber o-rings or preformed plastic gaskets in conformance with the manufacturers’ recommendations. If plastic gaskets are used, the inside seams shall be grouted with a high-strength, non-shrink grout meeting ODOT SSC Section 02440.50(b), “Non-Shrink Grout,” such as Alcrete Twenty Minute Fast Setting Grout®, or approved equal. Unused grout shall be discarded after 20 minutes and shall not be used. Manholes will be visually inspected for water leakage by the City’s authorized representative. Any leakage observed shall be repaired at the contractor’s expense, and the manhole re-inspected.

8. **Manhole Inverts:** The contractor shall construct manhole inverts in conformance with Detail No. S-2005 or S-2010 of these standards. Inverts shall have smooth transitions to ensure an unobstructed flow through the manhole. The contractor shall remove all sharp edges or rough sections that tend to obstruct flow.

9. **Manhole Stubouts:** The contractor shall install stubouts from manholes for sewer extensions, as shown in these standards or as required by the City’s authorized representative. A watertight flexible connection shall be used for pipe sizes 6 inches through 18 inches in all new manholes. The contractor shall construct invert channels in accordance with Detail No. S-2005 or S-2010 of these standards. The minimum length of stubouts in existing manholes shall be 12 inches outside the manhole wall. Pipes shall be grouted in precast walls or the manhole base to create a watertight seal around the pipes. The contractor shall add compacted base rock, as specified in these standards, to undisturbed earth under all stubouts.

10. **Manhole Extensions, Rings, and Covers:** The contractor shall install rings and covers on top of manholes to positively prevent all infiltration of surface water or groundwater into manholes. Rings shall be set in a bed of high-strength, non-shrink grout meeting ODOT SSC Section 02440.50(b), “Non-Shrink Grout,” such as Alcrete Twenty Minute Fast Setting Grout®,
or approved equal, with the grout carried over the flange of the ring, and shall be set so that tops of covers are flush with the surface of the adjoining pavement, or 1 foot above natural ground, unless otherwise directed by the City’s authorized representative. Unused grout shall be discarded after 20 minutes and shall not be used. Total thickness of grade rings shall not exceed 12 inches; rings shall be grouted watertight. Drop from rim to first manhole step shall not exceed 27 inches. In designated floodplain areas, all manholes shall be at an elevation of at least 2 feet greater than the 100-year storm event.

d. Types of Connections

1. **Connection to Existing Manholes:** The contractor shall connect sewers to existing manholes at the locations shown on the plans. Contractor shall submit a plan for diversion control and receive written approval from the City’s authorized representative before proceeding with construction. The contractor shall provide all diversion facilities, and shall perform all work necessary to maintain sewage flow in existing sewers while connections are being made to the manholes. Connections to existing manholes shall be core-drilled, and the bases shall be grouted as necessary to allow a smooth flow into and through the existing manholes.

2. **Manholes Over Existing Sewers:** The contractor shall construct manholes over existing operating sewer lines at the locations shown on the plans. The contractor shall construct a poured-in place base under the existing sewer and the precast sections as specified. The contractor shall not cut into any existing lines until the new manhole(s) are grouted and the new lines are balled, flushed, and deflection tested and all portions of the stormline have been approved and accepted by the City’s authorized representative. After acceptance, the contractor shall sawcut into the existing line; cut edges of concrete pipe shall be covered with grout and troweled smooth; with ductile iron or plastic pipe, grout shall be applied up to cutout and troweled smooth.

3. **Shallow Inside Drop Manhole:** Where the invert of the connecting pipe is above the manhole shelf and less that 18 inches above the outlet, an inside drop shall be constructed utilizing Portland cement concrete as shown in Detail No. S-2040 of these standards. The stormwater entering the manhole shall follow a smooth concrete channel transitioning evenly from the invert of the inlet pipe into the main channel. Stormwater shall not be allowed to fall freely to the manhole base.
301.10.02 Catch Basins and Inlets

a. Materials

1. Aggregate, Cement, and Concrete: These materials shall meet the requirements of Section 301.10.01.b, “Manholes and Structures, Materials.”

2. Frames, Grates, and Covers: All materials shall be flat bar steel (standard grade), cast iron or ductile iron complying with the requirements of ASTM A-36, A-663, or A-709. Drainage grate inlets in paved roadways shall meet the requirements in Appendix A.2.02.b, “Drainage Grates.”

7. Forms: All exterior surfaces shall be formed with steel or plywood. Other surfaces shall be formed with matched boards, plywood, or other approved material. Trench walls, rock, or earth will not be acceptable as form material.

8. Metal Reinforcement: All metal reinforcement shall conform to the requirements of ASTM A-615, Grade 60, deformed bars.

9. Precast Concrete Units: All precast units shall conform to the same requirements as manholes (ASTM C-478).

b. Workmanship

1. Excavation and backfill shall conform to the requirements of Section 301.10.01.c, “Workmanship.”

2. Bedding: The contractor shall remove all water and debris from the excavation area, and shall install an 8-inch-minimum layer of compacted \(\frac{3}{4} - 0" \) crushed aggregate for a base.

3. Cast-in-Place: Cast-in-place catch basins shall have a minimum of 6 inches of concrete between the compacted crushed aggregate and the lowest invert. The forms used for cast-in-place catch basins shall be tight and well-braced. The storm pipe material shall extend into the poured concrete of the catch basin. All corners shall be chamfered. Immediately after placement, the concrete shall be consolidated with an approved vibrator. The top surface shall be screed, and exposed surfaces shall be troweled to a smooth finish, free from marks or irregularities. After forms are removed, the contractor shall patch any defects in the concrete with approved material.

4. Precast: After the base is prepared, the contractor shall set the precast catch basin to the proper line and grade. The storm pipe material being used shall connect to the precast catch basin.
5. Inverts,Stubouts, and Sections: Contractor shall clean the ends of all pipes and sections that contact the catch basin. All inverts, stubouts, and sections shall be installed according to Detail No. S-2085, S-2090, S-2095, or S-2120 of these standards, using a high-strength, non-shrink grout meeting ODOT SSC Section 02440.50(b), “Non-Shrink Grout,” such as Alcrete Twenty Minute Fast Setting Grout®, or approved equal, making sure all sharp edges or rough sections are removed, to prevent obstruction of the flow. Unused grout shall be discarded after 20 minutes and shall not be used.

6. Catch Basin Steps: All catch basins deeper than 5 feet, measured from the top of the frame to the flowline, shall be oversized and have steps.

301.10.03 Stormwater Pipe and Fittings

a. General

The materials used shall be adequate to carry anticipated dead and live loads within the deflection limits specified by the manufacturer. All pipe and culverts shall have a minimum design service life of 75 years. Joints shall be gasketed, unless otherwise approved by the City’s authorized representative.

b. Materials

Materials shall be the following types or approved equal:

1. Concrete Pipe (NRCP/RCP)

 (a) Non-reinforced concrete pipe shall conform to requirements of ASTM C-14. Unless otherwise specified, pipe shall conform to Class 3 design requirements.

 (b) Reinforced concrete, non-pressure pipe shall conform to the requirements of ASTM C-76 or C-655 and shall be of the class specified. Unless otherwise specified, pipe shall meet the design requirements of Wall B. Reinforced concrete low-head pressure pipe shall conform to the requirements of ASTM C-361.

 (c) Gaskets shall conform to the requirements of ASTM C-443.

 (d) All steam-cured concrete pipe must be at least seven days old before it can be used. If the pipe has not been steam-cured, it must not be used before it has cured for 28 days.

 (e) Fittings shall be manufactured integrally and be of a class at least equal to that of the adjacent pipe. Field taps shall be machine-drilled.
(f) Mortar used shall be standard nonshrink premixed mortar conforming to ASTM C-387 or in a proportion of one part Type II Portland cement to two parts clean, well-graded sand that will pass a \(\frac{1}{4} \)-inch screen. Mortar mixed for longer than 30 minutes shall not be used.

2. Ductile Iron Pipe (D.I.)

(a) Ductile iron pipe shall conform to the requirements of American Water Works Association (AWWA) C-151 or American National Standards Institute (ANSI) A21.51, cement lined push-on joint. The minimum thickness class shall be Class 50 (up through 12-inch diameter pipe) and Class 51 (for 14-inch diameter and larger pipe).

(b) Fittings shall be mechanical or push-on. Mechanical joint ductile iron fittings shall conform to AWWA C-110. Push-on joint fittings shall be gray iron, with body thickness and radii of curvature conforming to ANSI A-21.10. Rubber gasket joints shall conform to AWWA C-111/ANSI A-21.11.

3. Polyvinyl Chloride Pipe (PVC)

(a) PVC pipe shall conform to the applicable portions of the following specifications: ASTM D-3034, ASTM D-2729, ASTM D-1784, ASTM D-1785, ASTM F-679, ASTM F-794, AWWA C-900, and AWWA C-905.

(b) PVC fittings shall conform to the applicable portions of the following specifications: ASTM D-3034, ASTM D-2729, ASTM D-1785, ASTM D-2466, and ASTM D-2467. Fitting joints shall be the same as the pipe joints. Threaded connections shall conform to the requirements of ASTM D-2464 for schedule 80 pipe.

(c) A2000 (PVC): All A2000 PVC pipe and fittings shall conform to ASTM F-949 specifications.

(d) PVC rib: PVC rib pipe and fittings shall be made of PVC, as defined in ASTM D-1784. The pipe stiffness shall correspond with the series, in accordance with ASTM D-2412. Series 46 and 28 are allowed. Gaskets shall conform to ASTM F-477.

4. Corrugated polyethylene (CPP): Corrugated polyethylene pipe, double wall, and fittings shall be made of polyethylene compounds that conform with the physical requirements of Type III, Category 3, 4 or 5, P23, P33, P34, Class C, with the applicable requirements defined in ASTM D-1248. Spiral pipe is not acceptable. Corrugated polyethylene pipe shall conform to AASHTO M-294 specifications.
5. **Corrugated Aluminum (CAP) and Corrugated Aluminum Pipe Arches (CAPA)**

(a) Corrugated aluminum pipe and fittings shall conform to the requirements of AASHTO M-196 and AASHTO M-197.

(b) The connecting bands shall conform to the requirements of AASHTO M-196, except that the minimum width of bands for 12-inch and larger pipe shall be 12 inches. The minimum width for pipes less than 12 inches shall be 7 inches. The base metal of the connecting bands shall be the same base metal as that of the pipe. The gauge of the connecting bands may be two standard-use thicknesses lighter than that used for the pipe, but not less than 0.060 inch thick. The band couplers shall be connected with stainless steel bolts not less than 0.5 inch in diameter.

(c) Corrugated aluminum pipe shall not be placed in a ditch in direct contact with hydrating Portland cement or lime.

6. **Fittings**

(a) General

(1) Manufactured tee fittings shall be provided in the sewer main for side sewers. Fittings shall be of sufficient strength to withstand all handling and load stresses encountered.

(2) Fittings shall be of the same materials as the pipe. Material joining the fittings shall be of the same material as the pipe.

(3) Material joining the fittings to the pipe shall be free from cracks and shall adhere tightly to each joining surface.

(4) All fittings shall be capped or plugged, and shall be gasketed with the same gasket material as the pipe joint, fitted with an approved mechanical stopper, or have an integrally cast knockout lug. The plug shall be able to withstand all test pressures without leaking. When later removed, the plug shall permit continuation of piping with jointing similar to joints in the installed line.

(b) Mechanical Couplings: Mechanical couplings shall be wrought steel. Installation procedures must meet the manufacturers’ recommendations.

7. **Line Tap Saddle**

All saddles approved for sanitary sewer tap installation (see Section 401.4.02.b.5) shall be allowed on storm taps, except the following:
(a) DFW/HPI saddle—an elastomeric polyvinyl chloride saddle with steel-reinforced edges and stainless-steel bands, series 300. This saddle is allowed on PVC, clay, IPS, concrete, asbestos cement, and PE pipe.

(b) Saddles installed on corrugated aluminum pipe shall be fabricated and installed using stainless-steel nuts and bolts. Bolts and nuts shall conform to AWWA C-111/ANSI A21.11.

c. Workmanship

1. Line and Grade

 (a) Survey control hubs for both line and grade shall be provided by the design engineer in a manner consistent with accepted practice. The contractor shall establish line and grade for pipe by the use of lasers or by transferring the cut from the offset stakes to the trench at a maximum of 50-foot intervals to maintain the line and grade.

 (b) Variance from the established line and grade shall not be greater than \(\frac{1}{4} \) inch for grade and \(\frac{1}{2} \) inch for line, provided that such variation does not result in a level or reverse-sloping invert.

 (c) The contractor shall check line and grade as necessary. If the limits prescribed in these standards are not met, the work shall be immediately stopped, the City’s authorized representative notified, and the cause remedied before proceeding with the work.

 (c) Variation in the invert elevation between adjoining ends of pipe, due to nonconcentricity of joining surface and pipe interior surfaces, shall not exceed 1/64 per inch of pipe diameter, or \(\frac{1}{2} \) inch maximum.

 (d) Tee stations shall be staked as specified in Section 3.1.06, “Surveying,” to enable the contractor to install services at the correct property location.

2. Pipe Handling

 (a) The contractor shall unload pipe only by approved means. Pipe shall not be unloaded by dropping it to the ground and pipe shall not be dropped or dumped into trenches.

 (b) The contractor shall inspect all pipe and fittings before lowering them into trenches to ensure that no cracked, broken, or otherwise defective materials are used.
(c) The contractor shall clean the ends of pipe thoroughly, remove foreign matter and dirt from inside the pipe, and keep it clean during laying and joining.

(d) The contractor shall lower the pipe into the trench in such a manner as to avoid any physical damage to the pipe.

(e) The contractor shall remove all damaged pipe from the job site.

3. Foreign Material

(a) The contractor shall take all necessary precautions to prevent excavated or other foreign material from entering the pipe during the laying operation.

(b) At all times, when laying operations are not in progress, the contractor shall use a mechanical plug at the open end of the last laid section of pipe to prevent entry of foreign material or creep of the gasketed joints.

4. Pipe Laying

(a) Pipe laying shall proceed upgrade, with the spigot ends pointing in the direction of flow.

(b) After a section of pipe is lowered into the prepared trench, the contractor shall clean the end of the pipe to be joined, the inside of the joint, and the rubber ring (if required) immediately before joining the pipe.

(c) At the location of each joint, dig bell (joint) holes of ample dimensions in the bottom of the trench and at the sides, where necessary, to permit the joint to be made properly.

(d) The joint shall be assembled according to the recommendations of the manufacturer. The contractor shall provide all special tools and appliances required for the joint assembly. After the joint is made, the pipe shall be checked for alignment and grade.

(e) The trench bottom shall form a continuous and uniform bearing and support for the pipe at every point between joints.

(f) Do not lay pipe in water or when, in the opinion of the City’s authorized representative, trench conditions are unsuitable.

5. Movable Shield: When pipe is laid in a movable trench shield, the contractor shall take all necessary precautions to prevent the pipe joints from pulling apart when the shield is moved ahead. The bottom of the
shield shall not extend below the springline of the pipe without recompacting the pipe zone.

6. Cutting Pipe: When cutting or machining the pipe is necessary, the contractor shall use only the tools and methods recommended by the pipe manufacturer and approved by the City’s authorized representative. The contractor shall cut ductile iron pipe using a method approved by the City’s authorized representative; all burrs or rough edges shall be removed before joining pipe. The contractor shall not flame-cut the pipe.

7. Transition Fittings: Connections of service branches to existing sewers shall be made watertight. Transition couplings between dissimilar pipe materials shall be made using approved commercial adapters with stainless steel bands such as Fernco, Caulder, or equal.

(a) PVC couplers or adapters shall meet the specifications for ASTM D-3034, SDR 35 pipe fittings.

(b) Ductile iron transition couplings shall be manufactured from ductile iron conforming to ASTM A-536, grade 65-45-12, for center and end rings. Rubber gaskets, bolts, and nuts shall conform to AWWA C-111/ANSI A21.11.

8. Concrete Closure Collars

(a) The contractor shall pour closure collars against undisturbed earth, remove all water from the excavation, and construct suitable forms to obtain shapes that will provide full bearing surfaces against undisturbed earth, as indicated in Detail No. S-2190 of these standards.

(b) Closure collars shall be used only when approved by the City’s authorized representative, and then only to make connections between dissimilar pipe or where standard rubber-gasketed joints are impractical.

(c) Before the closure collars are installed, the contractor shall wash the pipe to remove all loose material and soil from the surface where they will be placed.

9. Pipe Zone Material: The contractor shall install pipe zone material uniformly on both sides of the pipe, up to the springline of the pipe. Material shall be placed in lifts not exceeding 6 inches. Material shall be well worked with hand tools to ensure proper support in the haunching area.
10. **Line Taps**

(a) Line taps shall be core-drilled unless otherwise approved by the City’s authorized representative. Core-drilled holes shall be made using a cylinder-style hole saw for plastic pipe material only, or a diamond core bit for concrete and ductile iron pipes.

(b) Line tap connections to existing storm lines may be done using either saddle tees as per Section 401.4.02.b.5(a), or by using Inserta Tee™ as per Section 401.4.02.b.5(c).

(c) Line taps shall be centered on the spring line of the pipe being tapped.

(d) The area around the saddle installation site shall be cleaned and free of all rough edges before installing the saddle.

(e) While installing the saddle, no rock, dirt, or debris shall be allowed to enter the main sewer line from the core hole.

(f) The contractor shall install ¾"-0" crushed aggregate in the pipe zone around the line tap, from 6 inches below the pipe to 12 inches above the pipe.

(g) Laterals shall have tracer wire (12-gauge with white THNN insulation) installed beside the pipe and plastic caution tape installed 1-foot above the pipe crown as shown in Detail No. S-2175 of these standards.

301.11.00 **CONSTRUCTION SPECIFICATIONS**

301.11.01 **General Provisions**

The specifications outlined here, together with the standards established by the Oregon DEQ, the U.S. Environmental Protection Agency, and any other applicable requirements of the City, shall govern the character and quality of material, equipment, installation, and construction procedures for gravity-flow portions of public storm systems.

301.11.02 **Scheduling**

The contractor shall plan their construction work in conformance with Section 101.8.02, “Scheduling.”

301.11.03 **Environmental Protection, Erosion Prevention, and Sediment Control**

The contractor shall take all appropriate measures and precautions to minimize the work’s impact on the environment and shall control erosion, as outlined in Section 101.9.00, “Environmental Protection, Erosion Prevention, and Sediment Control.”
301.11.04 Interferences and Obstructions

Various obstructions may be encountered during the course of the work. The contractor shall follow the guidelines established in Section 101.8.05, “Interferences and Obstructions.”

301.11.05 Contaminated Soil or Hazardous Material

If during construction contaminated soil or with hazardous materials or chemicals are encountered, the Contractor shall follow the procedures specified in Section 101.9.02, “Contaminated Soils or Hazardous Materials.”

301.11.06 Trench Excavation, Preparation, and Backfill

Trench excavation, preparation, and backfill shall conform to the requirements of Section 6, “Trench Excavation and Backfill.”

301.11.07 Preservation, Restoration, and Cleanup

a. **Cleanup:** Cleanup of all construction debris, excess excavation, and excess materials and complete restoration of all fences, mailboxes, ditches, culverts, signposts, and similar items shall be completed according to Section 101.8.16, “Preservation, Restoration, and Cleanup.”

b. **Preservation of Drainage Ditches:** After backfilling the trenches, the contractor shall restore all public and private storm drain ditches that were destroyed, damaged, or otherwise modified during construction to the condition of the ditch before construction. Ditches shall be built in their original locations unless otherwise redesigned as part of the project.

301.11.08 Bores

a. General

The carrier pipe in all bores shall be installed inside a steel case, unless otherwise approved by the City’s authorized representative (see Detail No. S-2165 of these standards).

b. Installation

1. **Casing:** The casing shall be smooth steel of a size to permit proper construction to the required line and grade. The steel casing shall be fabricated in sections for field-welded joints. The casing wall thickness shall be a minimum of 1/4 inch for pipe diameters of 6 to 12 inches and shall be a minimum of 5/16 inch for pipe diameters of 15 to 24 inches, or in accordance with the requirements of the jurisdiction of the right-of-way.
2. **Pipe Supports**: The sewer pipe shall be continuously supported on three sides by pipe supports, except at joints. Pipe supports shall be No. 2 HDPE plastic block, or approved equal. Strapping and hardware shall be stainless steel.

3. **Placing Fill in Casing**: The annular space shall be completely filled between the casing and pipe with lean grout or sand to prevent pipe flotation.

4. **Concrete Seals and Fill**: After the storm pipe is tested and approved, concrete plugs shall be poured at each end of the casing. The annular space between the casing and pipe shall be completely filled with lean grout or sand to prevent pipe flotation.

c. **Railroad Crossings**

Prior to beginning any under-track work, applicant shall obtain proper permit(s) from ODOT or present owner of railroad line and written approval of plans from user(s) of railroad line. Install the pipe by tunneling, jacking, boring or similar methods, approved by the Railroad. Install the pipe to the lines and grades established and backfill completely all voids around the installation with specified material, to the satisfaction of the railroad.

301.12.00 **TESTING PROCEDURES**

301.12.01 **General**

a. The contractor shall furnish all necessary testing equipment and perform the tests in a manner satisfactory to the City's authorized representative.

b. All gravity storm systems shall be inspected and tested after backfill has passed the required compaction test(s) based on AASHTO T-180 and roadway base rock has been placed, compacted, and approved. All details of testing procedures shall be subject to approval of the City's authorized representative.

c. If repair work is required on a section of the system, that portion of the system shall be retested.

d. All testing shall be completed and accepted by the City's authorized representative before paving of overlying roadways will be permitted.

301.12.02 **Line Cleaning**

Before testing and City inspection of the system, the contractor shall ball and flush and clean all parts of the system. The contractor shall remove all accumulated construction debris, rocks, gravel, sand, silt, and other foreign material from the system at or near the closest downstream manhole. If
necessary, the contractor shall use mechanical rodding, bucketing or vactor equipment. When the City’s authorized representative inspects the system, any foreign matter still present shall be flushed and removed from the system.

Contractor shall provide screening; no material shall be flushed into the downstream city sewer system.

301.12.03 Deflection Test for Flexible Pipe

Storm systems constructed of flexible pipe shall be deflection-tested by pulling an approved mandrel through the completed pipeline. The diameter of the mandrel shall be 95% of the nominal pipe diameter, unless otherwise specified by the City’s authorized representative. The mandrel shall be a rigid, nonadjustable, odd-numbered-leg (9 legs minimum) mandrel having an effective length of not less than its nominal diameter. Testing shall be done manhole-to-manhole and after the line is completely balled and flushed with water, and after compaction tests of backfill are completed and accepted. The contractor shall be required to locate and repair any sections that fail the test and to retest those sections. All repairs shall follow and be in compliance with the manufacturer’s recommendations.

301.12.04 Video Inspection of Gravity Systems

All storm systems shall be video-inspected and approved prior to City acceptance. Video inspection shall take place after trench backfill and compaction has been completed and accepted, and channels have been poured in manholes. All pipes shall be thoroughly flushed immediately prior to the video inspection; only that water remaining from flushing shall be present in the system. The camera shall have the ability to tilt up to 90 degrees and rotate 360 degrees on the axis of travel. An inspection of all lateral connections shall be conducted using the tilt capabilities of the camera. A 1-inch target ball shall be placed in front of the camera. Observed sags must be less than 0.5 inch.

The City’s authorized representative shall be notified and shall be present during video-inspection of the system, unless otherwise approved by the City’s authorized representative. A copy of the video and a written video inspection report, on a City-approved form, shall be supplied to the City’s authorized representative. The video shall be recorded in color and in VHS or CD format. Video shall include a visual footage meter recording. Problems revealed during the inspection shall be noted on the video and in the written report. After repairs have been made, the line shall be re-inspected and re-tested. If excessive foreign material, in the opinion of the City’s authorized representative, is encountered during video inspection, the line shall be balled and flushed and re-video inspected.
WARRANTIES AND ACCEPTANCE

301.13.01 Stormwater and Surface Water Acceptance Policy

The City of Wilsonville will accept new stormwater and surface water installations or systems built to the “Public Works Standards,” providing that the following conditions are met.

a. Dedication of any required easements or rights-of-way have been recorded with the County Recorder and the Engineering Department receives a reproducible copy of the recorded documents.

b. After completion of construction of the total project, and after all testing has been satisfactorily completed, project closeout shall proceed as outlined in Section 101.8.17.a, “Project Completion.”

c. The Contractor or Applicant shall be responsible for providing Maintenance Assurance for Public Improvements as outlined in Section 101.8.17.b, “Maintenance Assurance.” Public storm improvements shall be warranted for a minimum of one year; public landscape improvements shall be warranted for a minimum of two years.

d. At any time during the warranty period, the City’s authorized representative has reason to believe the public stormwater improvements have defects that were the result of faulty workmanship or flaws in construction material, the responsible party shall be required, at that party’s own cost, to video-inspect the sewer line and repair any problems or faults revealed during video inspection by replacing those sections. The video inspection shall be done during the winter, if possible, or during the wet weather months, to identify all leaks.

e. Before the end of the Construction Maintenance period, the City's authorized representative shall inspect the project for any remaining deficiencies. If the deficiencies that remain are determined to be the responsibility of the contractor or the applicant, the contractor or applicant shall then make such repairs.

f. The Landscape Maintenance assurance shall be released two years after acceptance of construction, providing the landscaping meets the 90% survival level (see Section 301.13.02, “Landscape Inspection for Warranty”).

301.13.02 Landscaping Inspection for Warranty

a. The City’s authorized representative shall inspect the condition of all landscaping located within the public right-of-way and/or the water quality/quantity facility at the end of the first year of the post-construction period. The City’s authorized representative shall provide an interim inspection report to the applicant with a specific summary of any deficiencies.
Failure of the City to provide the interim report shall not release the applicant from the responsibility for providing established landscaping at the end of the two-year landscaping maintenance period.

b. If at any time during the warranty period the landscaping falls below the 90% survival level, the applicant shall reinstall all deficient planting at the next appropriate planting opportunity. The two-year maintenance period shall begin anew from the date of replanting.

c. The 90% survival level shall meet the following criteria:

1. In the opinion of the City’s authorized representative, landscaping is established and healthy.

2. Each plant group (trees, shrubs, herbaceous, and aquatics) shall meet the 90% survival level.

3. Each planting zone (wet, moist, and dry) shall meet the 90% survival level.

d. Areal coverage shall meet the 90% survival level.
SECTION 4

SANITARY SEWER DESIGN AND CONSTRUCTION STANDARDS

401.1.00 ENGINEERING

401.1.01 Introduction

This chapter outlines design and construction requirements for all public sanitary sewers. The provisions and technical specifications herein set forth the requirements of the City of Wilsonville for constructing sanitary sewer improvements. Interpretations of such provisions and their application in specific circumstances shall be made by the City’s authorized representative. Refer to Section 1 of the “Public Works Standards” for general provisions and requirements.

A map may be required that shows the drainage basin in which the project is located. The map shall show the major basin that is consistent with the City’s current Wastewater Collection System Master Plan, and any applicable amendments and updates to it.

401.1.02 General Provisions

Along with the provisions established in Section 101.5.00, “Control of Public Works Projects,” all sanitary sewers shall be designed and constructed so as to conform to the requirements of the Oregon state plumbing laws and rules of the Oregon DEQ. Except as otherwise provided, the extension of the public sewerage facilities to serve any parcel or tract of land shall be done by, and at the expense of, the property owner, although the City reserves the right to perform the work or cause it to be performed and bill the owner for the cost of the work or to pursue special assessment proceedings. Public sewer extensions shall extend to the most distant parcel boundary, to facilitate future extension, unless otherwise approved by the City’s authorized representative.

401.1.03 Extension of Public Sanitary Sewer Systems

Except as otherwise provided, the extension or upsizing of the public sanitary systems to serve any parcel or tract of land shall be done by, and at the expense of, the property owner or permit applicant. The City’s authorized representative may require a sewer pipeline that serves or may serve more than one property to be a public system.

401.1.04 Sanitary Plans

a. It is the design engineer’s responsibility to ensure that engineering plans are sufficiently clear and concise to construct the project in proper sequence,
using specified methods and materials, with sufficient dimensions to fulfill the intent of the design guidelines contained in these standards.

b. All elevation on design plans and record drawings shall be based on the applicable NAVD datum specified in Section 101.7.07.a, “Surveying and Land Monuments.”

c. All engineering sanitary plans shall be stamped by a Professional Engineer registered in the State of Oregon. The sanitary plan shall contain the following:

1. At least one sheet shall show a plan view of the entire project site. If the project site is sufficiently large that detailed sanitary plans on any given sheet do not encompass the entire project site, then a sheet showing the plan view of the entire site must serve as an index to subsequent detailed plan sheets.

2. A topographic map showing existing conditions for the site, including the following:

 (a) Existing topography for the site.

 (b) Adjacent streets, including street names.

 (c) Existing utilities, including franchised utilities located above or below ground. Existing drainage pipes, culverts, and channels shall include the invert or flowline elevations.

 (d) Existing environmentally sensitive areas (e.g., ravines, swales, steep slopes, wells, springs, wetlands, creeks, lakes). For natural drainage features, show direction of flow, drainage hazard areas, and 100-year floodplain boundary (if applicable).

3. Plans for proposed sanitary improvements shall include the following:

 (a) Finished grades, showing the extent of cut and fill by existing and proposed contours, profiles, or other designations.

 (b) Proposed structures, including roads and road improvements, parking surfaces, building footprints, walkways, landscape areas, etc.

 (c) Proposed utilities, showing exact line and grade of all proposed utilities at crossings with the proposed sanitary system.

 (d) Applicable detail drawings.

 (e) Existing and proposed easements.

 (f) Setbacks from environmentally sensitive areas r resource areas protected within the SROZ.
(g) Proposed sanitary structures.

(h) Maintenance access, as applicable (see Section 401.2.03, “Access”).

(i) Plan and profile of sanitary systems, including the following information: pipe sizes, pipe types and materials, lengths, slopes, type of structure, location of structures, invert elevations in/out of structures, and top elevations of structures. Notes shall be included for referencing details, cross-sections, profiles, etc.

(j) Any proposed phasing of construction.

401.1.05 Surveying

a. The design engineer shall be responsible for establishing the location of the sewer by means of reference stakes offset along the sewer. No construction shall be allowed to begin before construction staking. All staking shall be performed by or under the direction of a Professional Land Surveyor registered in the State of Oregon.

b. Stakes shall locate all public tees, cleanouts, manholes, water line crossings, and pump stations. Maximum spacing for reference stakes is 50 feet. Stakes shall reference cuts or fills to all invert elevations and rim grades. The design engineer shall also be responsible for identifying easements during construction.

401.1.06 Population Density

Population density figures shall be obtained from the most recent information available for use by the zoning or planning department of the City of Wilsonville. If those figures vary from those of the applicable master plan estimates, the difference must be noted in the design calculation.

401.1.07 Sewage Flow Determination

a. When required by the City’s authorized representative, the design engineer shall prove to the City that all necessary methods of determining present and future capacity of the sanitary sewer have been considered. For flow variations and peaking factor, accepted flow design practice must be employed. A factor must be used, and the method used to obtain the factor must coincide with the method used in the City’s Sanitary Sewer Master Plan. Infiltration and inflow must be represented in flow calculations in the design of the sanitary system.

b. Sewage flows must reflect any reasonably anticipated increase due to the development of the drainage basin upstream of the project being considered. Design engineers are cautioned not to specify sewers of sizes that are obviously larger than necessary to achieve satisfactory carrying capacity, but which are specified to meet grade requirements.
401.1.08 **Interceptor Required**

Grease, oil, and sand interceptors shall be required when, in the opinion of the City's authorized representative or Building Official, they are necessary for the proper handling of wastewater containing fats, wax, grease, sand, or oils, whether emulsified or not, and containing any products or substances that may solidify or become viscous at temperatures of between 32° and 150°F (0° to 65°C). Any discharger of such wastewater shall be required to install, use, maintain, and keep in good working condition an interceptor—a device designed and installed so as to adjust, separate, and retain deleterious, hazardous, or undesirable matter from sewage, and to permit normal sewage or liquid wastes to discharge into the disposal terminal.

401.1.09 **Interference with City Sewer System Prohibited**

No person shall block, obstruct, or interfere with any portion of the City sanitary sewer system without a plan being submitted and approved by the City’s authorized representative. This prohibition includes, but is not limited to, the obstruction of the flow of sewage from, and to any point within, the City sewer system.

401.2.00 **SANITARY MANHOLE AND PIPE DESIGN STANDARDS**

401.2.01 **Manhole Design**

a. Manholes shall be provided at least every 400 feet, unless otherwise approved by the City’s authorized representative. Manholes shall be located at every grade change, change in pipe size, and change in alignment. Manhole lids shall be centered in the roadway as indicated in the street detail drawings of these standards unless an exception is approved by the City’s authorized representative.

b. When a manhole is 5 feet or less deep, a flat-top or shallow manhole shall be used, as shown in Detail No. S-2030 of these standards. Flat-top manholes shall be designed to be installed at an elevation to permit construction of the full street section, allowing for the design gradients.

c. All manholes shall be a minimum of 48 inches in diameter.

d. Suburban style manholes frames shall not be used in PCC streets.

e. Detail(s) shall be submitted with the plans where pipes into or out of a manhole are larger than 24 inches or where more than four mainline connections are made. The manufacturer or design engineer shall provide the City’s authorized representative with supporting calculations, stamped by a Professional Engineer registered in the State of Oregon, documenting the structural integrity of the manhole.
f. Connections to an existing manhole, elevation of the existing ledge, location of steps, and elevations of existing inlets and outlets shall be submitted with the plans.

g. All precast manhole bases shall have smooth, clean openings at the design inlets and outlet points. Openings shall not be sawcut or broken out.

h. All manhole bases shall be properly channelized. No more than three side laterals are allowed to be connected to a manhole, unless an exception is approved by the City’s authorized representative. There shall be a minimum of 8 inches separating connections, measured from the outside diameter of the core holes.

i. All manholes shall have inlets at a minimum 90-degree angle in relation to the outlet, as measured from the center of the manhole base.

j. Manholes shall have a minimum freefall of 0.20 feet and a maximum freefall of 1.5 feet.

k. Drop manholes: The maximum inside drop in a manhole shall be 18 inches. When more than 18 inches of drop exists, an outside drop manhole shall be used. Outside drops shall be constructed of ductile iron pipe (see Detail No. S-2040 of these standards).

l. The contractor shall supply the City with manhole cover inserts, such as Southwestern Packing & Seals Rainstopper®, or approved equal, for all public manholes. For public manholes located in natural or landscaped areas or in residential streets, the contractor shall supply manhole cover inserts made of durable plastic. For public manholes located in arterial and collector streets, the contractor shall supply manhole cover inserts made of stainless steel.

401.2.02 Sanitary Pipe Design

a. **Pipe size:** No public sanitary sewer shall be less than 8 inches in diameter, unless otherwise specified by the City’s authorized representative. Side sewers shall be either 6-inch or 4-inch inside diameter, as required by the City. All side sewer pipes shall be polyvinyl chloride (PVC) and shall conform to ASTM D-3034.

b. **Location:** Sanitary sewers, wherever possible, shall be installed near the centerline of the public right-of-way. Sanitary pipe shall be located not closer than 5 feet to face of curb, unless an exception is approved by the City’s authorized representative. In any event, all sewer locations shall be approved by the City’s authorized representative.

c. **Easements:** When it is not possible or practical to install the sewer line in a dedicated public street, a minimum 15-foot public pipeline easement shall be provided. Sewer lines shall be located in the center of the easement, unless an
exception is approved by the City’s authorized representative. The centerline of the pipe shall be at least 7½ feet from an easement side line.

d. **Alignment:** Public sanitary pipe shall be laid on a straight alignment and at uniform grade, unless an exception is approved by the City’s authorized representative.

c. **Connections:** Lateral connections on new construction work shall be done using manufactured tees installed at surveyed locations. Lateral connections to existing sanitary lines may be done using either saddle tees as per Section 401.4.02.b.5(a), or by using Inserta Tee® as per Section 401.4.02.b.5(c). Laterals shall be of same material as main.

d. **Laterals:** Sanitary laterals shall be provided with a cleanout installed at the public right-of-way or easement as shown in Detail No. S-2175 of these standards. Cleanouts shall not be installed in the driveway or sidewalk, unless approved by the City’s authorized representative.

g. **Curb Marking:** Newly constructed curbs or replaced curbs shall be stamped with the capitol letter “SS” at the location of each sanitary lateral crossing. Letters shall be 3 inches in height and embossed a minimum of ¼-inch deep.

h. **Locating Wire and Tape:** Sanitary mains and laterals shall have tracer wire (12-gauge with green THNN insulation) installed beside the pipe and plastic caution tape installed 1-foot above the pipe crown as shown in Detail No. S-2175 of these standards. Surface locating wire at right-of-way cleanouts; tape shall be tied off to the 2 x 4 marker.

i. **Grade:** All sanitary sewers shall be laid on a grade that will produce a mean velocity of at least 2 feet per second when flowing full or half-full. The minimum grades for various sizes of pipe are listed in **Table 4.1.**
Table 4.1. MINIMUM GRADIENT FOR SANITARY SEWERS

<table>
<thead>
<tr>
<th>Inside Pipe Diameter (inches)</th>
<th>Grade (%) (feet per 100 feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sanitary Laterals</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1.00</td>
</tr>
<tr>
<td>6</td>
<td>0.60</td>
</tr>
<tr>
<td>Sanitary Mains</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.40</td>
</tr>
<tr>
<td>10</td>
<td>0.28</td>
</tr>
<tr>
<td>12</td>
<td>0.22</td>
</tr>
<tr>
<td>15</td>
<td>0.15</td>
</tr>
<tr>
<td>18</td>
<td>0.12</td>
</tr>
<tr>
<td>21</td>
<td>0.10</td>
</tr>
<tr>
<td>24</td>
<td>0.08</td>
</tr>
<tr>
<td>27</td>
<td>0.07</td>
</tr>
<tr>
<td>30</td>
<td>0.06</td>
</tr>
</tbody>
</table>

j. **Steep Slopes:** Sewers pipes on slopes in excess of 20% gradient shall be secured with approved concrete anchor walls as shown in Detail No. S-2195 of these standards. Spacing for anchors shall be as shown in Table 4.2.

Table 4.2. SECURING SEWERS ON SLOPES

<table>
<thead>
<tr>
<th>Minimum Anchor Spacing</th>
<th>Grade (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sewer Gradient >20%</td>
<td>Center to Center (feet)</td>
</tr>
<tr>
<td><35</td>
<td>35</td>
</tr>
<tr>
<td>35-50</td>
<td>25</td>
</tr>
<tr>
<td>>50</td>
<td>15 (or concrete encasement)</td>
</tr>
</tbody>
</table>

k. **Pipe Cover:** All sanitary sewers shall have a minimum of 5 feet of cover over the top of the sewer pipe to finish grade. When such minimum cover is not possible, ductile iron pipe, AWWA C-900, or concrete encasement or other material approved by the City's authorized representative shall be used.

l. **Sewer in Vicinity of Water Supplies:** No existing or proposed pressured sanitary sewer shall be permitted within 100 feet of any well, spring, or other source of domestic water supply. No existing or proposed gravity sewer line shall be permitted within 50 feet of any well, spring, or other source of domestic water supply.
m. Water and Sewer Lines

1. Sanitary sewers and domestic water lines shall not be laid in the same trench. Parallel water and sewer lines shall be at least 10 feet apart horizontally (see Detail No S-2150 of these standards).

2. When there is less than 18 inches of vertical clearance between water and sewer, and when physical conditions render that spacing impossible or impractical, then class 50 ductile iron pipe with watertight joints, C-900 PVC pipe, concrete encasement, or pipe approved by the City’s authorized representative shall be required.

3. Wherever it is necessary for sewer and water lines to cross each other, the crossing shall be at an angle of approximately 90 degrees. The sewer line shall be located 18 inches or more below the water line or shall be constructed of pipe material approved by the City’s authorized representative for a distance of 10 feet on both sides of the water line.

401.2.03 Access

Access roads are for maintenance and inspection purposes. All-weather access shall be provided to every manhole. Access roads shall be constructed as per Section 301.4.04, “Access Road Design.”

401.3.00 PUMP STATION DESIGN STANDARDS

401.3.01 General Provisions

a. Applicability

These standards are applicable to the construction, installation, or modification of any wastewater pump station system requiring a City of Wilsonville Public Works Permit.

b. Scope

Pursuant to the City of Wilsonville Development Code Section (February 2004) 4.262.04 Sanitary Sewers:

In order to accomplish the orderly and desirable development of land within the corporate limits of the City and to limit the costs associated with the operation and maintenance of wastewater pump stations borne by the City, the City Engineer deems it reasonable and necessary to restrict the installation of wastewater pump stations. Therefore, wastewater pump stations will not be allowed in areas: where gravity sewer service is programmed for construction in an applicable capital improvement plan, where improvements are recommended in the City of Wilsonville Wastewater Collection System Master Plan, or where sewers are available within three thousand (3,000) feet.
Temporary pump stations will be allowed in areas where future development will require extension of gravity sewers and the City’s authorized representative determines that the temporary station is economically justified. Design life must be less than ten (10) years, as determined in the preliminary engineering report, and have a capacity of less than four hundred (400) gallons per minute (gpm).

Permanent pump stations will be allowed in areas where future development does not require extending gravity sewers, as determined in the preliminary engineering report and the applicable, if any, master plan for the area.

c. **Variance**

When engineering justification satisfactory to the City’s authorized representative is provided substantially demonstrating that variation from the design standards or siting criteria will result in either: at least equivalent effectiveness while significantly reducing costs, or improved effectiveness, such a variation from design standards or siting criteria may be accepted by the City’s authorized representative.

d. **Reviewing Authority**

The Oregon Department of Environmental Quality is the final reviewing authority. All plans and specifications for a wastewater pump station shall be reviewed and approved by the Oregon Department of Environmental Quality (DEQ). The basis for review by DEQ review engineers is Oregon Administrative Rule 340 Division 52 (OAR340-52), Review of Plans and Specifications. To that extent, all plans and specifications shall follow the guidelines and criteria set forth in the Oregon Standards for Design and Construction of Wastewater Pump Stations, May 2001. The standards in this Wastewater Pump Station Design Standards chapter of the Public Works Standards are developed as supplemental standards to address local needs, preferences, and existing equipment. Conflicts between the City’s established standards and DEQ guidelines shall be resolved by first following that standard or guideline which is more stringent and/or specific; second, by determination of the City’s authorized representative as to which standard or guideline is advantageous to or in the best interests of the City.

401.3.02 **General Requirements**

a. **Administration**

The design engineer in charge must be registered in the State of Oregon and have had previous experience designing similar facilities, including mechanical, electrical, telemetry, and control systems. The engineer’s qualifications shall be submitted prior to initiation of study and shall be acceptable to the City’s authorized representative. An authorized representative of the City will be available for construction observation during construction of the project. The design engineer of the pump station shall
provide startup services. Provisions for maintenance of temporary pump stations may be required.

b. **Flood Protection**

The station’s electrical and mechanical equipment, which would be permanently damaged by flooding, shall be located at an elevation that is not subject to a one hundred (100) year flood or shall otherwise be adequately protected against damage from the one hundred (100) year flood. The station shall be designed to remain operational and accessible during the twenty-five (25) year flood. In the absence of official records to establish one hundred (100) year and twenty-five (25) year flood elevations, the best available local information shall be used.

c. **Siting**

Pump stations shall be located as far as practical from present or proposed built-up residential areas and off the traffic way of streets and alleys. Noise control, odor control, station architectural design and other aesthetic items shall be taken into consideration and reviewed by the Design Review Board. Sites for stations shall be of sufficient size for future expansion or addition, if applicable.

d. **Safety**

It is the design engineer’s responsibility to ensure that the Occupational Safety and Health Administration (OSHA), the National Electrical Code, and all other applicable building and construction codes and requirements are met during construction. Adequate provision shall be made to protect construction and, subsequently, maintenance and operation personnel from hazards. Equipment and training for confined space entry in accordance with OSHA and regulatory agency requirements shall be provided for all wastewater pumping stations.

401.3.03 Preliminary Engineering Report

A preliminary engineering report prepared by the design engineer as a basis for design for all wastewater pumping stations shall be submitted to the City’s authorized representative for review and approval. The preliminary engineering report shall include, but is not limited to, the following information:

a. **Service Area Study**

1. Population: Present and future population and/or industrial/commercial usage projections. Present, design and ultimate flows of all areas that could be served.

2. Land Use: Type of land use, zoning and comprehensive plan designations.
b. Design Characteristics

3. Average and peak flow calculations, unit flows and peaking factors and infiltration/inflow allowances for present and future design conditions.

4. Wet well configuration and size.

5. Number, type, capacity, motor horsepower and Net Positive Suction Head (NPSH) requirements of proposed pumping units. Motor shall be protected from over-current, over-temperature and voltage imbalance. Pumping units shall be duplex.

6. System head curve and head computations for design conditions of pumping system. (Future pumping capacity requirements shall be considered in sizing pumping equipment.)

7. System head calculations shall include the size and length of force main static head, all dynamic losses and assumed “c” (friction) factor. Force main shall be a minimum of four (4) inch diameter.

8. Calculations showing flotation potential and ballasting, if necessary.

9. Description of primary and back-up power sources. All wastewater pump stations shall be supplied with a back-up or alternate power source.

10. Other hydraulic computations shall include, but not limited to, pump cycling time, wet well capacity, flushing velocity and surge analysis.

c. Preliminary Plans

Shall be in conformance with Section 401.1.04, “Sanitary Plans,” and, in addition, shall show the following:

1. A contour map of the proposed site, service area, and force main.

2. Proposed pump station, including structure, site layout, landscaping street connection, and provisions for future pumps, if necessary.

3. Existing pump station, if applicable.

4. The 100-year flood plain elevation at the site.

5. Maximum elevation of wastewater in the collection system and wet well in the event of a power failure for the estimated duration of the power outage.

6. Worst case overflow drainage pattern and receiving stream.

7. Process and Instrumentation diagrams for electrical and control systems.
8. Force main with both plan and profile views to the connection at the receiving location.

401.3.04 Design Criteria

a. General

1. The pump station shall be designed to maintain the liquid level of a wet well by automatically starting and stopping pumping operation as required by wet well conditions.

2. The pump station shall have a firm capacity to pump the peak hourly and peak instantaneous flows associated with the 5-year, 24-hour storm intensity (see Table 3.2, Rainfall Distribution) of its service area, without overflows from the station or its collection system.

3. Design shall be consistent with EPA Class I reliability standards for mechanical and electrical components and alarms.

4. Pumping systems shall be duplex with pump sequencing and each pump sized in excess of the expected maximum flow.

5. Aboveground pump stations shall be required unless otherwise approved.

6. The wet well shall have sufficient volume to provide a holding period of 10 minutes between pump operating cycles at maximum design pump station flow. The floor shall be sloped for proper installation and function of the pumps inlets. Influent flow shall enter the wet well above the pump operating level.

7. All-weather access for vehicles shall be provided. The site shall be fenced and the fence shall be six (6) feet high. Landscaping shall be provided that adequately obscure the site from view.

8. A remote telemetry unit shall be installed and integrated with the city’s programmable logic controller/SCADA system. Local control shall be provided in case of telemetry failure. All appropriate alarms shall be wired and tested for accuracy before they are accepted.

9. The pump station shall be provided with potable water for wet well washdown. Water shall be metered, at or above finish grade and provided with a reduced principle (rp) backflow device (If outside, a heated enclosure for the rp shall be supplied.)

10. Sufficient back up power to operate the station in case of power outage shall be supplied.

11. Exterior and interior lighting and convenience outlets shall be provided.
12. Adequate piping, valves, and appurtenances for isolation and removal of equipment shall be provided. Capability for bypass pumping shall be provided.

13. Pumps shall be sized to pass a minimum of a three (3) inch sphere. Pump suction, discharge, and force mains shall be at least four (4) inches diameter.

14. Suitable shutoff and check valves shall be placed on the discharge line of each pump. The check valve shall be located between the pump and the shutoff valve. Check valves shall be suitable for the material being handled, and shall be placed on the discharge line in a horizontal position. All shutoff and check valves shall be operable and accessible from floor level. Swing check valves shall have outside levers.

15. Federal and State OSHA regulations and guidelines, and any other relevant state, federal and local safety regulations and guidelines shall be followed and adhered to.

b. Above Ground Pump Station

1. The above ground pumping station shall be an enclosure housing a duplex, skid mounted, auto-start station utilizing two electric-motor driven, self-priming centrifugal pumps, motor control panel, system piping, two level control systems and a natural gas standby engine (in addition to back-up electric power.). The pump station shall be a Gorman-Rupp base mounted package pump station.

2. A load-test-certified electric hoist and trolley, or approved equal, shall be provided in the pump room. Overhead crane hoist and other installed equipment shall have adequate horizontal and vertical clearance to allow for lifting and moving motors and pump equipment to the station doors using the monorail.

3. The level control system shall consist of a duplex pump air bubbler wastewater level sensing system with a backup submersible pressure transducer or ultrasonic level sensor. Provision shall be made to automatically/manually alternate the bubbler air pumps. The level control system shall be capable of sensing and activating controls at four (4) wet well levels.

4. The pump station enclosure shall be supplied with adequate ventilation and a thermostatically controlled electric heater. The heater shall be sufficient to prevent the freezing of the pumps and piping within the pump station enclosure at an outside temperature of minus twenty (20) degrees F.
5. The pump equipment compartment shall be above grade or offset and effectively isolated from the wet well to prevent humid and corrosive wastewater gases from entering the equipment compartment.

6. Wet well access shall not be through the equipment compartment.

7. Valving shall not be located in the wet well.

c. **Submersible Pumps**

1. Submersible pumps and motors shall be designed specifically for wastewater use, including totally submerged operation during a portion of the pump cycle.

2. Submersible pumps shall be readily removable and replaceable without de-watering the wet well or disconnecting any piping in the wet well.

3. Valves for submersible pumps shall be located in a separate valve chamber. Accumulated water shall drain to the wet well. Wastewater and gases from the wet well shall be prevented from entering the valve chamber.

4. Electrical supply, power, control, alarm circuits, and lines shall be designed to provide strain relief and to allow for disconnection and de-energizing outside the wet well. Terminals and connectors shall be protected from corrosion by location outside the wet well. All penetrations of the wet well shall be watertight. All conduits shall be sealed to prevent gases from entering outside cabinets and equipment from the wet well.

5. The motor control center shall be located outside of the wet well and protected by conduit seals to prevent gases from the wet well from entering the control cabinet.

6. A stainless steel rail and mounted hoist shall be provided for access to and servicing of the pumps and backup-generator or motor.

401.3.05 **Operation and Maintenance Manual**

Three copies of an operation and maintenance manual shall be provided and shall contain the following information:

a. Component description, with both simplified and detailed system schematics.

b. Operation information, including startup, normal, and emergency operation and instructions on common problems.

c. Maintenance information, including records, lubrication, and scheduling requirements and information on local representatives.

d. Safety.
401.4.00 MATERIAL AND TECHNICAL SPECIFICATIONS

401.4.01 Manholes and Structures

a. General

Manholes shall be constructed at locations shown on the plans, or as required by the City’s authorized representative. The maximum distance between manholes shall be 400 feet, unless otherwise approved by the City’s authorized representative. All manholes shall be a minimum of 48 inches in diameter. When a manhole is less than 5 feet deep, a shallow or flat-top manhole shall be used, as shown in Detail No. S-2025 or Detail No. S-2030 of these standards. Flat-top manholes shall be installed at an elevation to permit construction of the full street section, allowing for the design gradients.

b. Materials

1. Aggregate and Cement: Aggregate shall meet the standards set forth in ODOT SSC Section 02690, “PCC Aggregates”; Portland cement shall meet the standards set forth in ODOT SSC Section 02010, “Portland Cement.”

2. Concrete: PCC for poured in place manholes and structures shall conform to ODOT Class 3000 – 1½, Commercial Grade Concrete. Slump shall be between 2 and 4 inches.

3. Manhole Frames and Covers:

 (a) Casting shall be of new material, tough, close-grained gray iron conforming to ASTM A-48, Class 30, and shall be smooth and clean, free of blisters, blowholes, and all defects. Bearing surfaces shall be planed or ground to ensure flat, true surfaces. Covers shall be true and set within rings at all points.

 (b) Rings shall be grouted in place and made watertight with a high-strength, non-shrink grout meeting ODOT SSC Section 02440.50(b), “Non-Shrink Grout,” such as Alcrete Twenty Minute Fast Setting Grout®, or approved equal. Unused grout shall be discarded after 20 minutes and shall not be used. Rings shall not be brought to grade with lumber.

 (c) Frames and covers shall be standard or suburban, depending on the manhole location and as approved by the City’s authorized representative. Suburban style manhole frames shall not be installed in PCC streets.
(d) Manholes installed outside of paved street or sidewalk areas shall be
installed with a tamperproof frame and cover as shown in Detail No.
S-2060 of these standards.

4. **Manhole Types:** Manholes shall be one of the following types or equal.

 (a) **Precast 48-Inch-Diameter Manholes:** Materials shall conform to the
 requirements of ASTM C-478. Minimum wall thickness shall be
 5 inches. Cones shall be eccentric. Before precast manhole sections
 of any size are delivered to the job site, the sections shall meet the
 permeability test requirements of ASTM C-14.

 (b) **Precast Large-Diameter (60-inch or larger) Manholes:** Materials
 shall conform to the requirements of ASTM C-478.

 (c) **Cast-in-Place Large-Diameter Manholes:** Aggregate shall meet the
 standards set forth in ODOT SSC Section 02690, “PCC Aggregates”;
 Portland cement shall meet the standards set forth in ODOT SSC
 Section 02010, “Portland Cement.”

 (d) **Precast Bases:** Precast base sections or manhole bases shall be used,
 except over existing pipe, where poured-in-place bases shall be used
 (see Section 401.4.01.c.5). Precast manhole bases shall be inspected
 and approved by the City’s authorized representative prior to
 installation. Where precast bases are not channelized, the contractor
 shall construct smooth channels to connect the flow from inlet pipe(s)
 to outlet pipe.

5. **Pipe Stubouts for Future Sewer Connections:** Pipe stubouts shall be
 the same type as approved for use in the lateral, main, or trunk sewer
 construction. Strength classifications shall be the same class as in adjacent
 trenches. Where two different classes of pipe exist at a manhole, the
 higher-strength pipe shall govern strength classification. Connect stubouts
 to manholes as specified in Section 401.4.01.d.1, “Connection to Existing
 Manholes.” Rubber-gasketed, watertight plugs shall be furnished with
 each stubout and shall be adequately braced against air test pressures.

6. **Gaskets:** Manhole sections shall be installed with either preformed
 rubber gaskets or plastic gaskets. Rubber gaskets shall conform to ASTM
 C-443. Plastic gaskets shall be Kent-seal No. 2 or Ram Neck, or approved
 equal, and shall meet all requirements of ASTM C-990.

7. **Manhole Steps:** Steps shall be required and shall be constructed as
 specified and shown in Detail No. S-2080 of these standards, unless
 otherwise approved by the City’s authorized representative. When pipe is
 24 inches in diameter or smaller, steps shall be located as indicated in
 Detail No. S-2065 of these standards. For pipe larger than 24 inches in
 diameter, steps shall be located over a bench as coordinated with the
city’s authorized representative. Maximum drop from rim to first step shall be 27 inches.

c. Workmanship

1. Foundation Stabilization: If, in the opinion of the geotechnical engineer or the city’s authorized representative, unstable subgrade material exists that will not support the manhole or other structure, the contractor shall excavate below grade and backfill with foundation-stabilization material approved by the city’s authorized representative.

2. Pipe Connections: All rigid pipes entering or leaving the manhole shall be provided with flexible joints within 1 foot of the manhole structure and shall be placed on firmly compacted bedding. Special care shall be taken to see that the openings through which pipes enter the structure are completely watertight. All flexible pipe shall be connected to manholes according to the manufacturers’ recommendations.

3. Flexible Joints: Where the last joint of the line laid up to the manhole is more than 1 foot from the manhole base, a 6-inch concrete encasement shall be constructed around the entire pipe, from the manhole base to within 1 foot of the pipe joint, at the discretion of the city’s authorized representative. The pipe encasement shall be constructed integrally with the manhole base. Pipes laid out of the manhole shall be shortened to ensure that the first flexible joint is no more than 1 foot from the manhole base.

4. Manhole Connections: The contractor shall connect sewer pipe to manholes as specified in Section 401.4.01.d, “Types of Connections.”

5. Concrete Bases (Poured-in-Place): Poured-in-place bases shall be used over existing pipelines. The contractor shall remove water from the excavated area, provide a minimum 8-inch-thick layer of compacted ¾”-0” crushed aggregate for a base, and construct the concrete base so that the first precast manhole section has a uniform bearing throughout the full circumference. There shall be a minimum of 8 inches of concrete between the compacted gravel and the lowest invert of the manhole. The contractor shall deposit sufficient concrete on the base to assure a watertight seal between base and manhole wall. Twenty-four hours shall be allowed to elapse before the remaining manhole sections are placed on the base, unless otherwise approved by the city’s authorized representative.

6. Drop Manholes

(a) The maximum inside drop in a manhole shall be 18 inches. See Section 401.4.01.d.3, “Shallow Inside Drop Manhole,” for construction of this connection.
When more than 18 inches of drop exists, an outside drop manhole shall be used. Outside drop manholes shall use ductile iron pipe (see Detail No. S-2040 of these standards).

7. **Placing Manhole Section:** The contractor shall clean the end of each sections of foreign material. Manholes shall be installed with either watertight rubber o-rings or preformed plastic gaskets in conformance with the manufacturers’ recommendations. If plastic gaskets are used, the inside seams shall be grouted with a high-strength, non-shrink grout meeting ODOT SSC Section 02440.50(b), “Non-Shrink Grout,” such as Alcrete Twenty Minute Fast Setting Grout®, or approved equal. Unused grout shall be discarded after 20 minutes and shall not be used. Manholes will be visually inspected for water leakage by the City’s authorized representative. Any leakage observed shall be repaired at the contractor’s expense, and the manhole re-inspected.

8. **Manhole Inverts:** The contractor shall construct manhole inverts in conformance with Detail No. S-2005 or S-2010 of these standards. Inverts shall have smooth transitions to ensure an unobstructed flow through the manhole. The contractor shall remove all sharp edges or rough sections that tend to obstruct flow.

9. **Manhole Stubouts:** The contractor shall install stubouts from manholes for sewer extensions, as shown in these standards or as required by the City’s authorized representative. A watertight flexible connection shall be used for pipe sizes 6 inches through 18 inches in all new manholes. The contractor shall construct invert channels in accordance with Detail No. S-2005 or S-2010 of these standards. The minimum length of stubouts in existing manholes shall be 12 inches outside the manhole wall. Pipes shall be grouted in precast walls or the manhole base to create a watertight seal around the pipes. The contractor shall install compacted base rock, as specified in these standards, to undisturbed earth under all stubouts.

10. **Manhole Extensions, Rings, and Covers:** The contractor shall install rings and covers on top of manholes to positively prevent all infiltration of surface water or groundwater into manholes. Rings shall be set in a bed of high-strength, non-shrink grout meeting ODOT SSC Section 02440.50(b), “Non-Shrink Grout,” such as Alcrete Twenty Minute Fast Setting Grout®, or approved equal, with the grout carried over the flange of the ring, and shall be set so that tops of covers are flush with the surface of the adjoining pavement, or 1 foot above the natural ground, unless otherwise directed by the City’s authorized representative. Unused grout shall be discarded after 20 minutes and shall not be used. Total thickness of grade rings shall not exceed 12 inches; rings shall be grouted watertight. Drop from rim to first manhole step shall not exceed 27 inches. In designated floodplain areas, all manholes shall be at an elevation of at least 2 feet greater than the 100-year storm event.
d. Types of Connections

1. **Connection to Existing Manholes:** The contractor shall connect sewers to existing manholes at the locations shown on the plans. Contractor shall submit a plan for diversion control and receive written approval from the City’s authorized representative before proceeding with construction. The contractor shall provide all diversion facilities, and shall perform all work necessary to maintain sewage flow in existing sewers while connections are being made to the manholes. Connections to existing manholes shall be core-drilled, and the bases shall be grouted as necessary to allow a smooth flow into and through the existing manholes.

2. **Manholes Over Existing Sewers:** The contractor shall construct manholes over existing operating sewer lines at the locations shown on the plans. The contractor shall construct a poured-in-place base under the existing sewer and the precast sections as specified. The contractor shall not cut into any existing lines until the new manhole(s) are grouted and pressure tested, the new lines are balled, flushed, deflection tested, and pressure tested, and all portions of the sewer have been approved and accepted by the City’s authorized representative. After acceptance, the contractor shall sawcut into the existing line; cut edges of concrete pipe shall be covered with grout and troweled smooth; with ductile iron or plastic pipe, grout shall be applied up to cutout and troweled smooth.

3. **Shallow Inside Drop Manhole:** Where the invert of the connecting pipe is above the manhole shelf and less than 18 inches above the outlet, an inside drop shall be constructed utilizing Portland cement concrete as shown in Detail No. S-2040 of these standards. The sewage entering the manhole shall follow a smooth concrete channel transitioning evenly from the invert of the inlet pipe into the main channel. Sewage shall not be allowed to fall freely to the manhole base.

401.4.02 *Gravity Sewer Pipe*

a. General

Sanitary sewer pipe shall have flexible gasket joints. Joints on all fittings shall be the same as the joints used on the pipe. Caps or plugs shall be furnished with each fitting, outlet, or stub, as required, and shall have the same type of gasket or joint as the pipe.

b. Materials

Materials shall be the following types or approved equal:
1. Concrete Pipe (NRCP/RCP)

(a) Non-reinforced concrete pipe shall conform to requirements of ASTM C-14. Unless otherwise specified, pipe shall conform to Class 3 design requirements.

(b) Reinforced concrete, nonpressure pipe shall conform to the requirements of ASTM C-76 or C-655 and shall be of the class specified. Unless otherwise specified, pipe shall meet the design requirements of Wall B. Reinforced concrete low-head-pressure pipe shall conform to the requirements of ASTM C-361.

(c) Gaskets shall conform to the requirements of ASTM C-443.

(d) All steam-cured concrete pipe must be at least seven days old before it can be used. If the pipe has not been steam-cured, it must not be used before it has cured for 28 days.

(e) Fittings shall be manufactured integrally and be of a class at least equal to that of the adjacent pipe. Field taps shall be machine-drilled.

(f) Mortar used shall be standard nonshrink premixed mortar conforming to ASTM C-387 or in a proportion of one part Type II Portland cement to two parts clean, well-graded sand that will pass a 3/8-inch screen. Mortar mixed for longer than 30 minutes shall not be used.

2. Ductile Iron Pipe (D.I.)

(a) Ductile iron pipe shall conform to the requirements of AWWA C-151/ANSI A21.51, cement lined push-on joint. The minimum thickness class shall be Class 50 (up through 12-inch diameter pipe) and Class 51 (for 14-inch diameter and larger pipe).

(b) Fittings shall be mechanical or push-on. Mechanical joint ductile iron fittings shall conform to AWWA C-110. Push-on joint fittings shall be gray iron, with body thickness and radii of curvature conforming to ANSI A-21.10. Rubber gasket joints shall conform to AWWA C-111/ANSI A-21.11.

3. Polyvinyl Chloride Pipe (PVC)

(a) PVC pipe shall conform to the applicable portions of the following specifications: ASTM D-3034, ASTM D-2729, ASTM D-1784, ASTM D-1785, ASTM F-679, ASTM F-794, AWWA C-900, and AWWA C-905.

(b) PVC fittings shall conform to the applicable portions of the following specifications: ASTM D-3034, ASTM D-2729, ASTM D-1785, ASTM D-2466, and ASTM D-2467. Fitting joints shall be the same as
the pipe joints. Threaded connections shall conform to the requirements of ASTM D-2464 for schedule 80 pipe.

4. Fittings

(a) General

(1) Manufactured tee fittings shall be provided in the sewer main for side sewers. Fittings shall be of sufficient strength to withstand all handling and load stresses encountered.

(2) Fittings shall be of the same materials as the pipe. Material joining the fittings shall be of the same material as the pipe.

(3) Material joining the fittings to the pipe shall be free from cracks and shall adhere tightly to each joining surface.

(4) All fittings shall be capped or plugged, and shall be gasketed with the same gasket material as the pipe joint, fitted with an approved mechanical stopper, or have an integrally cast knockout lug. The plug shall be able to withstand all test pressures without leaking. When later removed, the plug shall permit continuation of piping with jointing similar to joints in the installed line.

(b) Mechanical Couplings: Mechanical couplings shall be wrought steel. Installation procedures must meet the manufacturers' recommendations.

5. Line Tap Saddle

(a) PVC Tee Saddle: manufactured in accordance with ASTM D-3034 with minimum cell classification of 12454B-C or 12364-C as defined in ASTM D-1784. Elastomeric seals shall meet ASTM F-477 specifications; locate seals at both the lead and skirt ends of the saddle. Saddles shall be banded to pipe with #316 Stainless Steel bands, 9/16-inch wide. This saddle is allowed on PVC, clay, IPS, concrete, asbestos cement, and PE pipe.

(b) Romac Style "CB" Saddle shall be made of casting of ductile iron, which meets ASTM A-536, grade 65-45-12. Rubber gaskets shall conform to AWWA C-111/ANSI A21.11. The band shall be stainless steel with Teflon coated nuts and bolts. This saddle is not allowed on plastic pipe except C-900.

(c) Inserta Tee®, or approved equal: hub adaptor shall be manufactured in accordance with ASTM D-3034; elastomeric seals shall meet ASTM F-477 specifications. This connection is allowed only on thick wall pipe material, e.g., concrete, ductile iron, rib type plastic. Connection point shall be core drilled; hole diameter shall be cut to manufacturer's
specifications. Hub adaptor shall be connected to rubber sleeve with
#316 Stainless Steel band (9/16-inch wide), screw, and housing.
Inserta Tee® connection shall have a gasketed bell for use with
sanitary sewers.

c. Proof Tests

The intent of this requirement is to prequalify a joint system, components of
which meet the joint requirements, as to the watertightness capability of the
joint system. The proof test shall be understood to apply to sanitary sewers
that are to be tested for watertightness before acceptance. Material and test
equipment for proof-testing shall be provided by the manufacturer. When
approved, internal hydrostatic pressure may be applied by a suitable joint
tester. Each pipe material and joint assembly shall be subject to the following
three proof tests, at the discretion of the City’s authorized representative:

1. **Pipe in Straight Alignment:** No less than three or more than five pipes
selected from stock by the City’s authorized representative shall be
assembled according to the manufacturers’ installation instructions, with
the ends suitably plugged and restrained against internal pressure. The
pipe shall be subjected to 10-psi hydrostatic pressure for 10 minutes. Free
movement of water through the pipe joint wall shall be grounds for
rejecting the pipe.

2. **Pipe in Maximum Deflected Position:** A test section is described below
for each pipe material. The pipe shall be subjected to 10-psi hydrostatic
pressure for 10 minutes. Free movement of water through the pipe joint or
pipe wall shall be grounds for rejecting the pipe.

3. **Joints Under Differential Load:** The test section shall be supported on
blocks or otherwise, as described below for each pipe material. There
shall be no visible leakage when the stressed joint is subjected to 10-psi
internal hydrostatic pressure for 10 minutes.

 (a) **Concrete Pipe:** For a deflected position, a position ½ inch wider than
 the fully compressed position shall be created on one side of the
 outside perimeter. For a differential load, one pipe shall be supported
 so that it is suspended freely between the adjacent pipe, bearing only
 on the joints. In addition to the weight of the suspended pipe, a test
 load shall be added, as shown in Table 4-3.
Table 4.3. TEST LOADS FOR CONCRETE PIPES UNDER DIFFERENTIAL LOAD

<table>
<thead>
<tr>
<th>Pipe Size (inches)</th>
<th>Load per Foot, Laying Length Up to 4 Feet (pounds)</th>
<th>Total Load, Pipe 4 Feet and Over (pounds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sanitary Laterals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>650</td>
<td>2,600</td>
</tr>
<tr>
<td>6</td>
<td>1,000</td>
<td>4,000</td>
</tr>
<tr>
<td>Sanitary Mains</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1,300</td>
<td>5,200</td>
</tr>
<tr>
<td>10</td>
<td>1,400</td>
<td>5,600</td>
</tr>
<tr>
<td>12</td>
<td>1,500</td>
<td>6,000</td>
</tr>
<tr>
<td>15</td>
<td>1,850</td>
<td>7,400</td>
</tr>
<tr>
<td>18</td>
<td>2,200</td>
<td>8,000</td>
</tr>
<tr>
<td>21</td>
<td>2,500</td>
<td>10,000</td>
</tr>
<tr>
<td>24 and over</td>
<td>2,750</td>
<td>11,000</td>
</tr>
</tbody>
</table>

(b) Ductile Iron Pipe: For the deflected position, a position ½ inch wider than the fully compressed section shall be created on one side of the outside perimeter. For a differential load, one of the pipes shall be supported so that it is suspended freely between the adjacent pipe, and bearing only on the joints. A force shall be applied along a longitudinal distance of 12 inches beside one of the joints, as specified in Table 4-4.

Table 4.4. TEST LOADS FOR DUCTILE IRON PIPES UNDER DIFFERENTIAL LOAD

<table>
<thead>
<tr>
<th>Pipe Size (inches)</th>
<th>Load (pounds)</th>
<th>Pipe Size (inches)</th>
<th>Load (pounds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>600</td>
<td>15</td>
<td>3,700</td>
</tr>
<tr>
<td>6</td>
<td>900</td>
<td>18</td>
<td>4,400</td>
</tr>
<tr>
<td>8</td>
<td>1,200</td>
<td>21</td>
<td>5,000</td>
</tr>
<tr>
<td>10</td>
<td>1,500</td>
<td>24 and over</td>
<td>5,500</td>
</tr>
<tr>
<td>12</td>
<td>1,800</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

(c) PVC Pipe: For the deflected position, two 12½-foot lengths shall be joined, then deflected along an arc of 720-foot radius (0.11 feet offset at the end of each length from a tangent at the joint). For a differential load, two lengths shall be joined and uniformly supported for at least 2 feet on both sides of the joint and the adjacent pipe to 95 percent of its vertical diameter.
d. Workmanship

1. Line and Grade

(a) Survey control hubs for both line and grade shall be provided by the design engineer in a manner consistent with accepted practices. The contractor shall establish line and grade for pipe by the use of lasers or by transferring the cut from the offset stakes to the trench at a maximum of 50-foot intervals, to maintain the line and grade.

(b) Variance from the established line and grade shall not be greater than \(\frac{1}{4} \) inch for grade and \(\frac{1}{2} \) inch for line, provided that such variation does not result in a level or reverse-sloping invert.

(c) The contractor shall check line and grade as necessary. If the limits prescribed in these standards are not met, the work shall be immediately stopped, the City’s authorized representative notified, and the cause remedied before proceeding with the work.

(d) Variation in the invert elevation between adjoining ends of pipe, due to nonconcentricity of joining surface and pipe interior surfaces, shall not exceed \(\frac{1}{64} \) per inch of pipe diameter, or \(\frac{1}{2} \) inch maximum.

(e) Tee stations shall be staked as specified in Section 401.1.05, “Surveying,” to enable the contractor to install services at the correct property location.

2. Pipe Handling

(a) The contractor shall unload pipe only by approved means. Pipe shall not be unloaded by dropping it to the ground and shall not be dropped or dumped into trenches.

(b) The contractor shall inspect all pipe and fittings before lowering them into trenches to ensure that no cracked, broken, or otherwise defective materials are used.

(c) The contractor shall clean the ends of pipe thoroughly, remove foreign matter and dirt from inside the pipe, and keep it clean during laying and joining.

(d) The contractor shall lower the pipe into the trench in such a manner as to avoid any physical damage to the pipe.

(e) The contractor shall remove all damaged pipe from the job site.
3. **Tying In**

(a) The contractor shall not break into an existing sewer line until just before the project is finalized and the manhole has been tested and approved by the City’s authorized representative.

(b) When a contractor ties into a “live” line, the contractor shall keep the new line plugged at the downstream end of the construction to prevent groundwater from entering the City’s sewage system.

4. **Foreign Material**

(a) The contractor shall take all necessary precautions to prevent excavated or other foreign material from entering the pipe during the laying operation.

(b) At all times, when laying operations are not in progress, the contractor shall use a mechanical plug at the open end of the last laid section of pipe, to prevent entry of foreign material or creep of the gasketed joints.

5. **Pipe Laying**

(a) Pipe laying shall proceed upgrade, with the spigot ends pointing in the direction of flow.

(b) After a section of pipe is lowered into the prepared trench, the contractor shall clean the end of the pipe to be joined, the inside of the joint, and the rubber ring (if required) immediately before joining the pipe.

(c) At the location of each joint, dig bell (joint) holes of ample dimensions in the bottom of the trench and at the sides, where necessary, to permit the joint to be made properly.

(d) The joint shall be assembled according to the recommendations of the manufacturer. The contractor shall provide all special tools and appliances required for the jointing assembly. After the joint is made, the pipe shall be checked for alignment and grade.

(e) The trench bottom shall form a continuous and uniform bearing and support for the pipe at every point between joints.

(f) Do not lay pipe in water or when, in the opinion of the City’s authorized representative, trench conditions are unsuitable.

6. **Movable Shield:** When pipe is laid in a movable trench shield, the contractor shall take all necessary precautions to prevent the pipe joints from pulling apart when the shield is moved ahead. The bottom of the
shield shall not extend below the springline of the pipe without recompressing the pipe zone.

7. **Cutting Pipe:** When cutting or machining the pipe is necessary, the contractor shall use only the tools and methods recommended by the pipe manufacturer and approved by the City’s authorized representative. The contractor shall cut ductile iron pipe using a method approved by the City’s authorized representative; all burrs or rough edges shall be removed before joining pipe. The contractor shall not flame-cut the pipe.

8. **Transition Fittings:** When joining different types of pipes, the contractor shall use approved ridged fittings. Flexible fittings such as Fernco, Caulder, or approved equal may be considered upon approval of the City’s authorized representative; flexible fittings may require additional support under the coupling. Bell type couplings are considered flexible.

 (a) Shear ring/ridge transition couplings meeting the ASTM C-564 or equal shall be used.

 (b) PVC couplers or adapters shall meet the specifications for ASTM D-3034, SDR 35 pipe fittings.

 (c) Ductile iron transition couplings shall be manufactured from ductile iron conforming to ASTM A-536, grade 65-45-12, for center and end rings. Rubber gaskets, bolts, and nuts shall conform to AWWA C-111/ANSI A21.11.

9. **Concrete Closure Collars**

 (a) The contractor shall pour closure collars against undisturbed earth, remove all water from the excavation, and construct suitable forms to create shapes that will provide full bearing surfaces against undisturbed earth, as indicated in Detail No. S-2190 of these standards.

 (b) Closure collars shall be used only when approved by the City’s authorized representative, and then only to make connections between dissimilar pipe or where standard rubber-gasketed joints are impractical.

 (c) Before the closure collars are installed, the contractor shall wash the pipe to remove all loose material and soil from the surface where they will be placed.

10. **Pipe Zone Material:** The contractor shall install pipe zone material uniformly on both sides of the pipe, up to the springline of the pipe. Material shall be placed in lifts not exceeding 6 inches Material shall be well worked with hand tools to ensure proper support in the haunching area.
11. Line Taps

(a) Line taps shall be core drilled unless approved otherwise by the City’s authorized representative. Core drilled holes shall be done using a cylinder-style hole saw for only plastic pipe material or a diamond core bit for concrete and D.I. pipes.

(b) Line tap connections to existing sanitary lines may be done using either saddle tees as per Section 401.4.02.b.5(a), or by using Inserta Tee® as per Section 401.4.02.b.5(c).

(c) Line taps shall be centered on the spring line of the pipe being tapped.

(d) The area around the saddle installation site shall be cleaned and free of all rough edges before installing the saddle.

(e) While installing the saddle, no rock, dirt, or debris shall be allowed to enter the main sewer line from the core hole.

(f) The contractor shall install ¾”-0” crushed aggregate in the pipe zone around the line tap, from 6 inches below the pipe to 12 inches above the pipe.

(g) Laterals shall have tracer wire (12-gauge with green THNN insulation) installed beside the pipe and plastic caution tape installed 1-foot above the pipe crown as shown in Detail No. S-2175 of these standards.

401.4.03 Pressure Mains

a. General Provisions

These specifications, together with all other applicable requirements of federal, state, and local law, shall govern the character and quality of material, equipment, installation, and construction procedures for pressurized sanitary sewer work.

b. Materials

1. **Ductile Iron Pipe**: Ductile iron pipe shall be lined with cement mortar and seal-coated and shall conform to applicable portions of the following specifications: ASTM A-536, AWWA C-104/ANSI A21.4, AWWA C-111/ANSI A21.11, and AWWA C-151/ANSI A21.51.

2. **PVC Pipe**: PVC pipe with diameters of 4 inches through 12 inches shall conform to the requirements of AWWA C-900. Joints shall be elastomeric gasketed and shall conform to the requirements of ASTM D-3139.

3. **High Density Polyethylene Pipe (HDPE)**: HDPE pipe with diameters of 4 inches through 63 inches shall conform to the requirements of AWWA
C-906. Joints shall be joined by thermal heat fusion and shall conform to the requirements of ASTM D-2683 for socket-type fittings, ASTM D-3261 for butt-type fittings, or ASTM F-1055 for electrofusion-type fittings.

c. Workmanship and Pipe Installation

(a) All pipe shall be laid to the specified lines and grades. The minimum depth of the pipe cover shall be as specified in Section 401.2.02.j, "Sanitary Pipe Design, Pipe Cover." Pipes shall not be deflected either horizontally or vertically beyond the limits established and recommended by the pipe manufacturer.

(b) Pipeline shall be laid to a grade that results in the minimum number of high points, based on terrain and economic considerations. Abrupt transitions and sharp peaks shall be avoided.

(c) All tees, elbows, or other fittings shall be produced by the pipe manufacturer and shall be properly braced, anchored, or blocked.

(d) Automatic air and vacuum release valves with a bleed-off port shall be installed at all high points or locations in the pipeline where air pockets would be expected to accumulate. Valves shall be installed in a vault, as shown in Detail No. W-3060 of these standards, so as to provide accessibility for service and repair. Sumps shall be required for holding excess liquid discharged from the bleed-off port.

401.5.00 CONSTRUCTION SPECIFICATIONS

401.5.01 General Provisions

The specifications detailed here, together with the standards established by the Oregon DEQ, the U.S. Environmental Protection Agency, and any other applicable requirements of the City, shall govern the character and quality of material, equipment, installation, and construction procedures for mainline sanitary sewer work of gravity-flow systems.

401.5.02 Scheduling

The contractor shall plan their construction work in conformance with Section 101.8.02, “Scheduling.”

401.5.03 Environmental Protection, Erosion Prevention, and Sediment Control

The contractor shall take all appropriate measures and precautions to minimize the work’s impact on the environment and shall control erosion, as outlined in Section 101.9.00, “Environmental Protection, Erosion Prevention, and Sediment Control.”
401.5.04 Interferences and Obstructions

Various obstructions may be encountered during the course of the work. The contractor shall follow the guidelines established in Section 101.8.05, “Interferences and Obstructions.”

401.5.05 Contaminated Soil or Hazardous Material

If during construction contaminated soil or with hazardous materials or chemicals are encountered, the Contractor shall follow the procedures specified in Section 101.9.02, “Contaminated Soils or Hazardous Materials.”

401.5.06 Trench Excavation, Preparation, and Backfill

Trench excavation, preparation, and backfill shall conform to the requirements of Section 6, “Trench Excavation and Backfill.”

401.5.07 Preservation, Restoration, and Cleanup

Cleanup of all construction debris, excess excavation, and excess materials and complete restoration of all fences, mailboxes, ditches, culverts, signposts, and similar items shall be completed according to Section 101.8.16, “Preservation, Restoration, and Cleanup.”

401.5.08 Bores

Bores shall conform to the requirements of Section 301.11.08, “Bores.”

401.6.00 TESTING PROCEDURES

401.6.01 General

a. Testing Order: Sanitary systems and appurtenances shall pass a deflection test and an air test before acceptance, and shall be free of visible leakage. Information about air testing may be obtained from the City’s authorized representative. Individual joints on pipe 54 inches in diameter or larger may be tested by an approved joint-testing device. All details of testing procedure shall be subject to approval of the City’s authorized representative. Testing of sanitary systems shall be conducted in the following order.

1. Deflection testing of pipelines.

2. Air pressure testing of pipelines.

3. Video-inspection of pipelines.

4. Vacuum testing of manholes

b. If repair work is required on a section of the system, that portion of the system shall be retested in the testing order given above.
c. Deflection testing, air pressure testing, and video-inspection shall be done only after backfill has passed the required compaction test(s) based on AASHTO T-180 and roadway base rock has been placed, compacted, and approved.

d. The sanitary system must pass deflection testing, air pressure testing, and video-inspection before paving of overlying roadways will be permitted.

e. Vacuum testing of manholes shall be performed only after paving is completed and approved.

401.6.02 Gravity System Testing

a. Cleaning Before Test: Before testing and City inspection of the system, the contractor shall ball and flush and clean all parts of the system. The contractor shall remove all accumulated construction debris, rocks, gravel, sand, silt, and other foreign material from the system at or near the closest downstream manhole. If necessary, the contractor shall use mechanical rodding, bucketing or vactor equipment. When the City’s authorized representative inspects the system, any foreign matter still present shall be flushed and removed from the system. Contractor shall provide screening; no material shall be flushed into the downstream city sewer system.

b. Test Equipment: The contractor shall furnish all necessary test equipment and perform the tests in a manner satisfactory to the City’s authorized representative. Any arrangement of test equipment shall be permitted that will provide observable and accurate measurements of air leakage under the specified conditions. Gauges for air testing shall be calibrated with a standardized test gauge.

c. Deflection Test for Flexible Pipe: Sanitary sewers constructed of flexible pipe shall be deflection-tested by pulling an approved mandrel through the completed pipeline. The diameter of the mandrel shall be 95% of the nominal pipe diameter, unless otherwise specified by the City’s authorized representative. The mandrel shall be a rigid, nonadjustable, odd-numbered leg (9 legs minimum) mandrel having an effective length of not less than its nominal diameter. Testing shall be done manhole-to-manhole and after the line has been completely balled and flushed with water, and after compaction tests of backfill have been completed and accepted. The contractor will be required to locate and repair any sections that fail the test and to retest those sections. All repairs shall follow, and be in compliance with, the manufacturer’s recommendations.

d. Air Pressure Testing

1. General: After the system is complete, including service connections and backfilling, the contractor shall conduct a low-pressure air test. The contractor shall provide all equipment and personnel for the test. The method, equipment, and personnel shall be subject to approval of the
City’s authorized representative. The City’s authorized representative may, at any time, require a calibration check of the instrument used. The pressure gauge shall have minimum divisions of 0.10 psi and an accuracy of 0.0625 psi (one ounce per square inch). All air shall pass through one control panel.

2. **Safety Precautions:** All plugs used to close the sewer for the air test must be capable of resisting the internal pressures and must be securely braced. All air-testing equipment must be placed above ground. No one shall be permitted to enter a manhole or trench where a plugged line is under pressure. All pressure must be released before the plugs are removed. The testing equipment must include a pressure-relief device designed to relieve pressure in the line under test at 10 psi or less, and must allow continuous monitoring to avoid excessive test pressure. The contractor shall use care to prevent the air inlet from flooding with infiltrated groundwater. The contractor shall inject air at the upper plug if possible. Only qualified personnel shall be permitted to conduct the test.

3. **Method:** Air testing shall be by the time pressure drop method, as follows:

 (a) Clean the lines to be tested and remove all debris.

 (b) Wet the lines before testing (optional).

 (c) Plug all open ends with suitable test plugs; brace each plug securely.

 (d) Check the average height of groundwater over the line. Add air slowly to the section of the system being tested until the internal air pressure is 3.5 psi higher than the average pressure of groundwater (0.433 psi for each foot of average water depth over the line).

 (e) After the internal test pressure is reached, allow at least two minutes for the air temperature to stabilize, adding only the amount of air required to maintain pressure.

 (f) After the temperature stabilization period, disconnect the air supply.

 (g) Determine and record the time (in seconds) required for the internal air pressure to drop from 3.5 psi to 2.5 psi.

 (h) Compare the time recorded in step (g) above with the time required, as determined below.

4. **Passing test:** A passing test shall be based on meeting or exceeding the requirements below. The test method depends on the type of pipe material. If a line fails to meet the requirements, the contractor shall repair or replace all defective materials or workmanship.

 (a) Concrete pipe
Air pressure drop method: The tested section, when tested by the air pressure drop method, will be acceptable if the time required for the pressure to drop from 3.5 psi to 2.5 psi is not less than the time \(T \) in seconds (Table 4.5) computed by the following formula:

\[
T = \frac{K}{C}
\]

where

\[
K = 0.011 \times d' \times L
\]

\[
C = 1 \text{ or } 0.0003882 \times dL, \text{ whichever is greater.}
\]

\[d = \text{ inside diameter of pipe (inches).}\]

\[L = \text{ length of pipe (feet).}\]

(b) PVC, HDPE, and ductile iron pipe

The minimum duration for the prescribed low-pressure exfiltration pressure drop between two consecutive manholes shall not be less than that shown in Tables 4.6 or 4.7. The tables list test duration values for pressure drops of 1.0 psi and 0.5 psi in excess of groundwater pressure above the top of the sewer pipe. Values accommodate both an allowable average loss per unit of surface area and an allowable maximum total leakage rate.

(c) Record the diameter (inches), length (feet), end manhole number, time, pressure drop, and groundwater level of the test on an inspection form. The form shall become part of the permanent record for the project.
Table 4.5. AIR TESTING OF CONCRETE PIPE

<table>
<thead>
<tr>
<th>Pipe Diameter (inches)</th>
<th>4.0</th>
<th>6.0</th>
<th>8.0</th>
<th>10.0</th>
<th>12.0</th>
<th>15.0</th>
<th>18.0</th>
<th>21.0</th>
<th>24.0</th>
<th>30.0</th>
<th>36.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pipe Length (ft)</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1.8</td>
<td>4.0</td>
<td>7.0</td>
<td>11.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>3.5</td>
<td>7.9</td>
<td>14.1</td>
<td>22.0</td>
<td>31.7</td>
<td>49.5</td>
<td>71.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>11.9</td>
<td>21.1</td>
<td>33.0</td>
<td>47.5</td>
<td>74.3</td>
<td>106.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td>15.8</td>
<td>28.2</td>
<td>44.0</td>
<td>63.4</td>
<td>99.0</td>
<td>142.6</td>
<td>194.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td>19.8</td>
<td>35.2</td>
<td>55.0</td>
<td>79.2</td>
<td>123.8</td>
<td>178.2</td>
<td>242.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td>23.8</td>
<td>42.2</td>
<td>66.0</td>
<td>95.0</td>
<td>148.5</td>
<td>213.8</td>
<td>291.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
<td>27.7</td>
<td>49.3</td>
<td>77.0</td>
<td>110.9</td>
<td>173.3</td>
<td>249.5</td>
<td>339.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td>31.7</td>
<td>56.3</td>
<td>88.0</td>
<td>126.7</td>
<td>198.0</td>
<td>285.1</td>
<td>388.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
<td>35.6</td>
<td>63.4</td>
<td>99.0</td>
<td>142.6</td>
<td>222.8</td>
<td>320.8</td>
<td>436.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td>39.6</td>
<td>70.4</td>
<td>110.0</td>
<td>158.4</td>
<td>247.5</td>
<td>356.4</td>
<td>485.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td></td>
<td>43.6</td>
<td>77.4</td>
<td>121.0</td>
<td>174.2</td>
<td>272.3</td>
<td>392.0</td>
<td>533.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td></td>
<td>47.5</td>
<td>84.5</td>
<td>132.0</td>
<td>190.1</td>
<td>297.0</td>
<td>427.7</td>
<td>582.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>130</td>
<td></td>
<td>51.5</td>
<td>91.5</td>
<td>143.0</td>
<td>205.9</td>
<td>321.8</td>
<td>463.3</td>
<td>595.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>140</td>
<td></td>
<td>55.4</td>
<td>98.6</td>
<td>154.0</td>
<td>221.8</td>
<td>346.5</td>
<td>499.0</td>
<td>680.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td></td>
<td>59.4</td>
<td>105.6</td>
<td>165.0</td>
<td>237.6</td>
<td>371.3</td>
<td>510.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>160</td>
<td></td>
<td>63.4</td>
<td>112.6</td>
<td>176.0</td>
<td>253.4</td>
<td>396.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>170</td>
<td></td>
<td>67.3</td>
<td>119.7</td>
<td>187.0</td>
<td>269.3</td>
<td>420.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>180</td>
<td></td>
<td>71.3</td>
<td>126.7</td>
<td>198.0</td>
<td>285.1</td>
<td>425.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>190</td>
<td></td>
<td>75.2</td>
<td>133.8</td>
<td>209.0</td>
<td>301.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td></td>
<td>79.2</td>
<td>140.8</td>
<td>220.0</td>
<td>316.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>210</td>
<td></td>
<td>83.2</td>
<td>147.8</td>
<td>231.0</td>
<td>332.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>220</td>
<td></td>
<td>87.1</td>
<td>154.9</td>
<td>242.0</td>
<td>340.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>230</td>
<td></td>
<td>91.1</td>
<td>161.9</td>
<td>253.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>240</td>
<td></td>
<td>95.0</td>
<td>169.0</td>
<td>264.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>250</td>
<td></td>
<td>99.0</td>
<td>176.0</td>
<td>275.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>260</td>
<td></td>
<td>103.0</td>
<td>183.0</td>
<td>283.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>270</td>
<td></td>
<td>106.9</td>
<td>190.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>280</td>
<td></td>
<td>110.9</td>
<td>197.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>290</td>
<td></td>
<td>114.8</td>
<td>204.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>300</td>
<td></td>
<td>118.8</td>
<td>211.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>310</td>
<td></td>
<td>122.8</td>
<td>218.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>320</td>
<td></td>
<td>126.7</td>
<td>225.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>330</td>
<td></td>
<td>130.7</td>
<td>226.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>340</td>
<td></td>
<td>134.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>350</td>
<td></td>
<td>138.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>360</td>
<td></td>
<td>142.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>370</td>
<td></td>
<td>146.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>380</td>
<td></td>
<td>150.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>390</td>
<td></td>
<td>154.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400</td>
<td></td>
<td>158.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>410</td>
<td></td>
<td>162.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>420</td>
<td></td>
<td>166.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>430</td>
<td></td>
<td></td>
<td>170.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>440</td>
<td></td>
</tr>
<tr>
<td>450</td>
<td></td>
</tr>
<tr>
<td>460</td>
<td></td>
</tr>
<tr>
<td>470</td>
<td></td>
</tr>
<tr>
<td>480</td>
<td></td>
</tr>
<tr>
<td>490</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td></td>
</tr>
</tbody>
</table>

City of Wilsonville
Public Works Standards - 2006

Sanitary Sewer Standards
Section 4 Page 182
Specification Time Required for a 1.0 psig Pressure Drop for Size and Length of Pipe

Indicated for \(Q = 0.0015 \)

<table>
<thead>
<tr>
<th>Pipe Diameter (inches)</th>
<th>Minimum Time (min:sec)</th>
<th>Length for Minimum Time (feet)</th>
<th>Time for Longer Length (sec)</th>
<th>Specified Minimum for Length (L) Shown (min:sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3:46</td>
<td>597</td>
<td>0.380L</td>
<td>3:46</td>
</tr>
<tr>
<td>6</td>
<td>5:40</td>
<td>398</td>
<td>0.854L</td>
<td>5:40</td>
</tr>
<tr>
<td>8</td>
<td>7:34</td>
<td>298</td>
<td>1.520L</td>
<td>7:34</td>
</tr>
<tr>
<td>10</td>
<td>9:26</td>
<td>239</td>
<td>2.374L</td>
<td>9:26</td>
</tr>
<tr>
<td>12</td>
<td>11:20</td>
<td>199</td>
<td>3.416L</td>
<td>11:20</td>
</tr>
<tr>
<td>15</td>
<td>14:10</td>
<td>159</td>
<td>5.342L</td>
<td>14:10</td>
</tr>
<tr>
<td>18</td>
<td>17:00</td>
<td>133</td>
<td>7.692L</td>
<td>17:00</td>
</tr>
<tr>
<td>21</td>
<td>19:50</td>
<td>114</td>
<td>10.470L</td>
<td>19:50</td>
</tr>
<tr>
<td>27</td>
<td>25:30</td>
<td>88</td>
<td>17.306L</td>
<td>25:30</td>
</tr>
<tr>
<td>30</td>
<td>28:20</td>
<td>80</td>
<td>21.366L</td>
<td>28:20</td>
</tr>
<tr>
<td>33</td>
<td>31:10</td>
<td>72</td>
<td>25.852L</td>
<td>31:10</td>
</tr>
<tr>
<td>36</td>
<td>34:00</td>
<td>66</td>
<td>30.768L</td>
<td>34:00</td>
</tr>
<tr>
<td>42</td>
<td>39:34</td>
<td>57</td>
<td>41.883L</td>
<td>39:34</td>
</tr>
<tr>
<td>48</td>
<td>45:34</td>
<td>50</td>
<td>54.705L</td>
<td>45:34</td>
</tr>
</tbody>
</table>

\(Q \) is the allowable leakage rate in cubic ft/min/ft\(^2\) of inside surface area of pipe.

Table 4.6. AIR TESTING OF PVC, HDPE, AND DUCTILE IRON PIPE – 1.0 PSIG PRESSURE DROP

1. Data from the UNI-Bell\(^{\text{®}}\) PVC Pipe Association.
Table 4.7. AIR TESTING OF PVC, HDPE, AND DUCTILE IRON PIPE – 0.5 PSIG PRESSURE DROP¹.

Specification Time Required for a 0.5 psig Pressure Drop for Size and Length of Pipe Indicated for Q = 0.0015*

<table>
<thead>
<tr>
<th>Pipe Diameter (inches)</th>
<th>Minimum Time (min:sec)</th>
<th>Length for Minimum Time (feet)</th>
<th>Time for Longer Length (sec)</th>
<th>Specified Minimum for Length (L) Shown (min:sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>100 ft</td>
<td>150 ft</td>
</tr>
<tr>
<td>4</td>
<td>1:53</td>
<td>597</td>
<td>0.190L</td>
<td>1:53</td>
</tr>
<tr>
<td>6</td>
<td>2:50</td>
<td>398</td>
<td>0.427L</td>
<td>2:50</td>
</tr>
<tr>
<td>12</td>
<td>5:40</td>
<td>199</td>
<td>1.709L</td>
<td>5:40</td>
</tr>
<tr>
<td>15</td>
<td>7:05</td>
<td>159</td>
<td>2.671L</td>
<td>7:05</td>
</tr>
<tr>
<td>36</td>
<td>17:00</td>
<td>66</td>
<td>15.364L</td>
<td>25:39</td>
</tr>
</tbody>
</table>

*Q is the allowable leakage rate in cubic ft/minute² of inside surface area of pipe.

¹ Data from the UNI-Bell® PVC Pipe Association.
e. **Video Inspection of Gravity Systems:** All sanitary systems shall be video-inspected and approved prior to City acceptance. Video inspection shall take place after trench backfill and compaction has been completed and accepted, and channels have been poured in manholes. All pipes shall be thoroughly flushed immediately prior to the video inspection; only that water remaining from flushing shall be present in the system. The camera shall have the ability to tilt up to 90 degrees and rotate 360 degrees on the axis of travel. An inspection of all lateral connections shall be conducted using the tilt capabilities of the camera. A 1-inch target ball shall be placed in front of the camera. Observed sags must be less than 0.5 inch.

The City’s authorized representative shall be notified and shall be present during video-inspection of the system, unless otherwise approved by the City’s authorized representative. A copy of the video and a written video inspection report, on a City-approved form, shall be supplied to the City’s authorized representative. The video shall be recorded in color and in VHS or CD format. Video shall include a visual footage meter recording. Problems revealed during the inspection shall be noted on the video and in the written report. After repairs have been made, the line shall be re-inspected and re-tested. If excessive foreign material, in the opinion of the City’s authorized representative, is encountered during video inspection, the line shall be balled and flushed and re-video inspected.

401.6.03 **Manhole Testing**

Sanitary sewer manholes shall be tested for acceptance after the trench is backfilled, compaction requirements are met, the road base rock is installed and the street paved, and chimney seals or concrete manhole closure collars are installed. If the manholes pass the tests but the castings were disturbed by construction and must be reinstalled, the manholes shall be retested.

a. **Vacuum Testing:** All manholes being constructed or rehabilitated shall be vacuum-tested. The test shall consist of plugging all inlets and outlets. The test head shall be placed at the inside of the top of the cone, and shall include grade rings and casting. The seal shall be inflated in accordance with the manufacturer’s recommendations. A vacuum of 10 inches of mercury shall be drawn and the vacuum pump shut off. With the valves closed, the time shall be measured for the vacuum to drop to 9 inches. The manhole shall pass if the time for the vacuum reading to drop to 9 inches meets or exceed the values listed in Table 4-8. The contractor shall repair all manholes that fail to pass the vacuum test; manholes shall be retested to verify the repair.
Table 4.8. VACUUM TESTING OF MANHOLES

<table>
<thead>
<tr>
<th>Depth of Manhole (feet)</th>
<th>Diameter of Manhole</th>
<th>Allowable Time (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>48 Inch</td>
<td>60 Inch</td>
</tr>
<tr>
<td>8</td>
<td>20</td>
<td>26</td>
</tr>
<tr>
<td>10</td>
<td>25</td>
<td>33</td>
</tr>
<tr>
<td>12</td>
<td>30</td>
<td>39</td>
</tr>
<tr>
<td>14</td>
<td>35</td>
<td>46</td>
</tr>
<tr>
<td>16</td>
<td>40</td>
<td>52</td>
</tr>
<tr>
<td>18</td>
<td>45</td>
<td>59</td>
</tr>
<tr>
<td>20</td>
<td>50</td>
<td>65</td>
</tr>
<tr>
<td>22</td>
<td>55</td>
<td>72</td>
</tr>
<tr>
<td>24</td>
<td>59</td>
<td>78</td>
</tr>
<tr>
<td>26</td>
<td>64</td>
<td>85</td>
</tr>
<tr>
<td>28</td>
<td>69</td>
<td>91</td>
</tr>
<tr>
<td>30</td>
<td>74</td>
<td>98</td>
</tr>
</tbody>
</table>

b. **Hydrostatic Testing:** When, in the opinion of the City’s authorized representative, the groundwater table is too low to visually detect leaks, manholes may be hydrostatically tested. The test shall consist of plugging all inlets and outlets, then filling the manhole with water to a height determined by the City’s authorized representative. Leakage in each manhole shall not exceed 0.2 gallons per hour per foot of head above the invert. Leakage will be determined by refilling to the rim using a calibrated or known volume container. A manhole may be filled 24 hours before the test, if desired, to permit normal absorption into the pipe walls to take place. The contractor shall repair all manholes that fail to pass the leakage test; manholes shall be retested to verify the repair.

401.6.04 **Pressure Main Testing**

Field testing of the force main and appurtenances shall be completed by a hydrostatic test that meets the following requirements. Contractor shall be responsible for making all necessary provisions for conveying water to the points of use and for disposal of the test water, including temporary taps and plugs.

a. Prior to the start of the hydrostatic test, all trenching shall be backfilled, compacted, and accepted per the requirements of Chapter 6, “Trench Excavation and Backfill.”

b. When concrete thrust blocks are used, the hydrostatic test shall be conducted after at least five days elapse from when the concrete thrust blocking was
installed. If high-early cement is used for the concrete thrust blocking, the
time may be cut by two days.

c. Seal pipe ends and secure pipe with temporary thrust restraint, as required, to
maintain line and grade and to prevent damage.

d. Fill the test section with water and allow it to stand at two-thirds of the test
pressure for a minimum of 12 hours. All air shall be purged from the pipeline
before it is checked for leaks or pressure or acceptance tests are performed on
the system.

e. Furnish all equipment and materials and perform testing in conformance with
Section 501.9.01. “Hydrostatic Testing.”

f. If a large amount of water is required to increase the pressure during testing,
entrapped air, leakage at joints, or a broken pipe can be suspected. In such
cases, tests shall be discontinued until the source of trouble is identified and
corrected.

g. Visible leaks in the wetwell and vaults shall be eliminated regardless of the
leakage amount.

401.7.00 SANITARY SEWER LINE ACCEPTANCE POLICY

The City of Wilsonville will accept new sanitary installations or systems built to
the “Public Works Standards,” providing that the following conditions are met.

401.7.01 Legal Recordings

Dedication of any required easements or rights-of-way have been recorded with
the County Recorder and the Engineering Department receives a reproducible
copy of the recorded documents.

401.7.02 Project Completion

After completion of construction of the total project, and after all testing has been
satisfactorily completed, project closeout shall proceed as outlined in Section
101.8.17.a, “Project Completion.”

401.7.03 Maintenance Period

a. The Contractor or Applicant shall be responsible for providing Maintenance
Assurance for Public Improvements as outlined in Section 101.8.17.b,
“Maintenance Assurance.” Public sanitary improvements shall be warranted
for a minimum of one year; public landscape improvements shall be
warranted for a minimum of two years.
b. At any time during the warranty period, the City’s authorized representative has reason to believe the public sanitary improvements have defects that were the result of faulty workmanship or flaws in construction material, the responsible party shall be required, at that party’s own cost, to video-inspect the sewer line and repair any problems or faults revealed during video inspection by replacing those sections. The video inspection shall be done during the winter, if possible, or during the wet weather months, to identify all leaks.

c. Before the end of the Construction Maintenance period, the City’s authorized representative shall inspect the project for any remaining deficiencies. If the deficiencies that remain are determined to be the responsibility of the contractor or the applicant, the contractor or applicant shall then make such repairs.

d. The Landscape Maintenance assurance shall be released two years after acceptance of construction, providing the landscaping meets the 90% survival level (see Section 301.13.02, “Landscape Inspection for Warranty”).
SECTION 5
WATER SYSTEM DESIGN
AND CONSTRUCTION STANDARDS

501.1.00 ENGINEERING

501.1.01 Introduction

This section outlines design and construction requirements for all public water system improvements. These provisions and technical specifications set forth the requirements of the City of Wilsonville for constructing water system improvements. Interpretations of such provisions and their application in specific circumstances shall be made by the City’s authorized representative. Refer to Section 1 of the “Public Works Standards” for general provisions and requirements.

501.1.02 Extension of Public Water Systems

Except as otherwise provided, the extension or upsizing of the public water systems to serve any parcel or tract of land shall be done by, and at the expense of, the property owner or permit applicant.

501.1.03 Water Plans

a. It is the design engineer’s responsibility to ensure that engineering plans are sufficiently clear and concise to construct the project in proper sequence, using specified methods and materials, with sufficient dimensions to fulfill the intent of the design guidelines in these standards.

b. All elevation on design plans and record drawings shall be based on the applicable NAVD datum specified in Section 101.7.07.a, “Surveying and Land Monuments.”

c. All engineering water plans shall be stamped by a Professional Engineer registered in the State of Oregon. Water plans shall contain the following:

1. At least one sheet shall show a plan view of the entire project site. If the project site is sufficiently large that detailed water plans on any given sheet do not encompass the entire project site, then a sheet showing the plan view of the entire site must serve as an index to subsequent detailed plan sheets.

2. A topographic map showing existing conditions for the site, including the following:
(a) Existing topography for the site.

(b) Adjacent streets, including street names.

(c) Existing utilities, including franchised utilities above or below ground and drainage facilities that transport surface water onto, across, or from the project site. Existing drainage pipes, culverts, and channels shall include the invert or flowline elevations.

(d) Existing environmentally sensitive areas (e.g., ravines, swales, steep slopes, wells, springs, wetlands, creeks, lakes, etc.). For natural drainage features, show direction of flow, drainage hazard areas, and 100-year floodplain boundary (if applicable).

3. Plans for proposed water improvements shall include the following:

(a) Finished grades, showing the extent of cut and fill by existing and proposed contours, profiles, or other designations.

(b) Proposed structures, including roads and road improvements, parking surfaces, building footprints, walkways, landscape areas, etc.

(c) Proposed utilities, showing exact line and grade of all proposed utilities at crossings with the proposed water system.

(d) Applicable detail drawings.

(e) Existing and proposed easements.

(f) Setbacks from environmentally sensitive areas or resource areas protected within the SROZ.

(g) Plan and profile of water facilities, including pipe sizes, pipe types and materials, lengths, valve types, bends, tees, wyes, reducers, and location of thrust blocks. Notes shall be included for referencing details, cross-sections, profiles, etc.

(h) Any proposed phasing of construction.

501.1.04 Surveying

a. The design engineer shall be responsible for establishing the location of the water line by means of reference stakes offset along the centerline of the water line. No construction shall be allowed to begin before construction staking. All staking shall be performed by or under the direction of a Professional Land Surveyor registered in the State of Oregon.
b. Stakes shall locate all public tees, crosses, bends, fire hydrants, blowoffs, isolation valves, vaults, and booster pump stations. Maximum spacing for reference stakes is 50 feet. Stakes shall reference cuts and fills to the finished grade of the ground, asphalt, or concrete surface at that location to maintain minimum cover requirement. The design engineer shall also be responsible for identifying easements during construction.

501.2.00 DESIGN GUIDELINES

The following is intended only as a guide for the design of water system improvements. All designs shall conform to the latest adopted revision of the Oregon State Health Division Administrative Rules, Chapter 333, “Public Water Systems,” except where the City’s standards exceed those of the state. An approved water system capable of supplying the required fire flow for fire protection shall be provided to all premises on which buildings are to be constructed. For areas of single-family residential, the required fire flow shall be a minimum of 1,500 gallons per minute (gpm) while maintaining a minimum residual pressure of 20 pounds per square inch (psi); for all other areas the required fire flow shall be a minimum of 3,000 gpm while maintaining a minimum residual pressure of 20 psi. The City’s authorized representative may require modifications for a particular project. In general, the following guidelines should be followed:

a. Water lines are considered public, and are subject to these standards, up to the backflow prevention device or to the backside of the residential water meter. Beyond such point the contractor shall follow National Fire Protection Association (NFPA) standards and Unified Plumbing Code (UPC) guidelines and be under the jurisdiction of City of Wilsonville Building Department.

b. All pipe shall be ductile iron (D.I.) pipe, or approved equal. All water mains 12” or less shall be minimum class 52 ductile iron. All water mains 18” or greater shall be minimum class 51 ductile iron.

c. Fittings shall be mechanical joint, unless otherwise specified.

d. Where water lines are planned in the vicinity of sanitary sewer lines, design engineer and contractor shall follow guidelines established in Section 402.02.1, “Water and Sewer Lines.”

e. Minimum-size mains shall be 8 inches; all water mains shall be sized at 8, 12, 18, or 24 inches or as approved by the City’s authorized representative. With prior approval of the City’s authorized representative, 4-inch or 6-inch lines may be permitted provided there is no possibility of future extensions; 4-inch lines shall be limited to runs of less than 300 feet and no more than eight services.

f. No fire hydrant shall be connected to a main of less than 8 inches diameter.
g. Water mains will normally be placed on the south and east side of the street, outside the wheelpath, and located as indicated in the street detail drawings of these standards.

h. Dead-end mains will not normally be allowed, but when they are permitted, they shall be for lines to be extended in the future and a blowoff assembly will be required.

i. Main extensions will be required to continue to the boundaries of new subdivisions.

j. Valves shall be located at intersections whenever possible. In general, sufficient valves shall be provided to permit shutting down any section of the line, but not to exceed 800 feet.

k. Valves shall be required on all branches of tees and crosses on mainline intersections. At service line connections, valves shall be required at the service line connection only.

l. Valves shall be flanged by mechanical joint; valves shall be flanged to all tees and crosses.

m. Mechanical joint fittings at all valves and bends shall be restrained by a joint restraint system such as Megalug® retainers, or approved equal.

n. Valves 18 inches and larger shall be butterfly valves.

o. Valves shall be installed a minimum of 3 feet off face of curb.

p. Automatic air and vacuum release valves with a bleed-off port shall be installed at all high points or locations in the pipeline where air pockets would be expected to accumulate. Valves shall be installed as indicated in Detail No. W-3060 of these standards.

q. Fire hydrants shall be located in compliance with TVF&R fire prevention ordinance.

r. Easements: When it is not possible or practical to install the main in a dedicated public street, a minimum 15-foot public pipeline easement shall be provided. Water mains shall be located in the center of the easement, unless an exception is approved by the City’s authorized representative. The centerline of the pipe shall be at least 7½ feet from an easement side line.

s. The engineer for the project should meet with the City Engineering Division before design to discuss the size of mains and any other matters specific to the project.
501.3.00 OPERATION OF VALVES IN CITY

Contractor shall request City operation of valves at least 24 hours in advance. At no time shall the contractor undertake to close off or open valves or take any other action that would affect the operation of the existing water system.

501.4.00 MATERIALS AND TECHNICAL REQUIREMENTS - DUCTILE IRON PIPE AND FITTINGS

501.4.01 Joints

a. Pipe joints shall be push-on joints, except where specifically shown or detailed otherwise.

1. Fitting joints shall be mechanical joint ends, except where specifically shown or detailed otherwise.

2. All valves joined to tees and crosses shall be flanged by mechanical joint.

501.4.02 Mechanical Joint Fittings

Mechanical joint D.I. fittings shall conform to the latest revision of AWWA C-110/ANSI A21.10 and shall be of a class at least equal to that of the adjacent pipe. Bolts and nuts shall conform to AWWA C-111/ANSI A21.11. Mortar lining for fittings shall be the same thickness specified for pipe.

501.4.03 Push-On Ductile Iron Pipe

Push-on joint D.I. pipe shall be cement mortar lined and shall conform to AWWA C-104/ANSI A21.4, AWWA C-111/ANSI A21.11, and AWWA C-151/ANSI A21.51 as manufactured by U.S. Pipe and Foundry Company, Pacific States Cast Iron Company, American Ductile Iron Pipe, or approved equal. All water mains 12” or less shall be minimum class 52 ductile iron. All water mains 18” or greater shall be minimum class 51 ductile iron. Rubber ring gaskets shall conform to Section 501.4.05, “Gaskets,” and shall be furnished with the pipe. A nontoxic vegetable soap lubricant (meeting the requirements of AWWA C-111/ANSI A21.11) shall be supplied with the pipe in sufficient quantities for installing the pipe furnished.

501.4.04 Flanged Ductile Iron Fittings

Flanged fittings shall conform to ANSI/WWA C-207 Class D or ANSI B16.5 150-lb class for pressure ratings up to 150 psi, and either ANSI/WWA C-207 Class E or ANSI B 16.5 150-lb class for pressure ratings between 150 psi and 275 psi. Flanges shall have flat faces and attached with bolt holes straddling the vertical axis of the pipe. Bolts and nuts shall conform to AWWA C-111/ANSI A21.11. The fittings shall be cement-mortar lined to same thickness specified for pipe.
501.4.05 Gaskets

a. **Locking gaskets:** When available for the specified D.I. pipe size, locking rubber gaskets (such as Romac GripRing™, U.S. Steel Field Lok 350®, American Fast-Grip®, or approved equal) conforming to AWWA C-111/ANSI A21.11 shall be used (for bell ends).

b. **Flanged gaskets:** Gaskets shall be suitable for the specified pipe sizes and pressures. Flanged gaskets shall be full-cut, with holes to pass bolts. Gasket material shall be free from corrosive alkali or acid ingredients.

501.4.06 Mechanical Couplings

Mechanical couplings, clamps, or sleeves, not part of the pipe itself, shall be D.I. or steel with rubber rings or gaskets. Gaskets, bolts, and nuts shall conform to AWWA C-111/ANSI A21.11. Couplings, clamps, or sleeves shall be Dresser®, or approved equal.

501.5.00 CONSTRUCTION SPECIFICATIONS

501.5.01 General Provisions

All installation and testing of water system improvements shall conform to the latest adopted revision of the Oregon Health Division Administrative Rules, Chapter 333, “Public Water Systems,” except where the City’s provisions exceed those of the state.

501.5.02 Scheduling

a. The contractor shall plan their construction work in conformance with Section 101.8.02, “Scheduling.”

b. Newly installed water lines shall not be placed in service until necessary testing and sterilization are complete and system has been approved by the City’s authorized representative.

501.5.03 Environmental Protection, Erosion Prevention, and Sediment Control

The contractor shall take all appropriate measures and precautions to minimize their impact on the environment and control erosion, as outlined in Section 101.9.00, “Environmental Protection, Erosion Prevention, and Sediment Control.”

501.5.04 Interferences and Obstructions

Various obstructions may be encountered during the course of the work. The contractor shall follow the guidelines established in Section 101.8.05, “Interferences and Obstructions.”
501.5.05 Contaminated Soil or Hazardous Material

If during construction contaminated soil or with hazardous materials or chemicals are encountered, the Contractor shall follow the procedures specified in Section 101.9.02, “Contaminated Soils or Hazardous Materials.”

501.5.06 Trench Excavation, Preparation, and Backfill

Trench excavation, preparation, and backfill shall conform to the requirements of Section 6, “Trench Excavation and Backfill.”

501.5.07 Preservation, Restoration, and Cleanup

Cleanup of all construction debris, excess excavation, and excess materials and complete restoration of all fences, mailboxes, ditches, culverts, signposts, and similar items shall be completed according to Section 101.8.16, “Preservation, Restoration, and Cleanup.”

501.6.00 DUCTILE IRON PIPE—INSTALLATION

501.6.01 Suitable Conditions for Laying Pipe

a. Provide and maintain ample means and devices at all times to remove and dispose of water seepage and runoff entering the trench excavation during the process of pipe laying.

b. Do not lay pipe in water or when, in the opinion of the City’s authorized representative, trench conditions are unsuitable.

501.6.02 Handling

a. Distributing Pipe: Distribute material on the job from cars, trucks, or storage yard no faster than it can be used to good advantage. In general, distribute no more than one week’s supply of material in advance of the laying.

b. Handling Pipe and Fittings: Provide and use proper implements, tools, and facilities for safe and proper work. Lower all pipe, fittings, and appurtenances into the trench, piece by piece, by means of a crane, sling, or other suitable tool or equipment, to prevent damage to the pipeline materials and protective coatings and linings. Do not drop or dump pipeline materials into the trench.

501.6.03 Cleaning Pipe and Fittings

a. Remove all lumps, blisters, and excess coating from the bell and spigot ends of each pipe. Wire-brush the outside of the spigot and the inside of the bell and wipe them clean, dry, and free from oil and grease before the pipe is laid.
b. Wipe clean all dirt, grease, and foreign matter from the ends of mechanical joint and rubber gasket joint pipe and fittings.
501.6.04 Placing Pipe in Trench

Pipe Bells/Joints

a. At the location of each joint, dig bell (joint) holes of ample dimensions in the bottom of the trench and at the sides, where necessary, to permit the joint to be made properly and to permit easy visual inspection of the entire joint.

b. Unless otherwise directed, lay pipe with the bell end facing in the direction of the laying.

c. For lines on steep slopes, face bells upgrade only.

 1. Do not allow foreign material to enter the pipe while it is being placed in the trench.

 2. Lay and join pipe with push-on type joints in strict accordance with the manufacturer’s recommendations. Provide all special tools and devices, such as jacks, chokers, and similar items required for the installation. Lubricant for the pipe gaskets shall be furnished by the pipe manufacturer, and no substitutes shall be permitted under any circumstances.

 3. After the first length of push-on joint pipe is installed in the trench, secure the pipe in place with approved backfill material that is tamped under and along the spring line to prevent movement. Keep the ends clear of backfill. After each section is joined, place backfill as specified to prevent movement.

 4. Mechanical joint fittings vary slightly with different manufacturers. Install the furnished fittings in accordance with the manufacturer’s recommendations. In general, the procedure shall be as specified here. Clean the ends of the fittings of all dirt, mud, and foreign matter by washing with water and scrubbing with a wire brush. When the ends of the fittings are clean, slip the gland and gasket on the plain end of the pipe. If necessary, lubricate the end of the pipe to ease sliding the gasket in place. Then guide the fitting onto the spigot of the laid pipe.

501.6.05 Cutting Pipe

a. Cut pipe for inserting valves, fittings, or closure pieces in a neat and workmanlike manner, without damaging the pipe or lining and leaving a smooth end at right angles to the axis of the pipe.

b. The contractor shall cut ductile iron pipe using a method approved by the City’s authorized representative; all burrs or rough edges shall be removed before joining pipe. The contractor shall not flame-cut the pipe.

c. Dress cut ends of push-on joint pipe by beveling with a heavy file or grinder, or as recommended by the manufacturer.
501.6.06 Permissible Deflection of Joints

Wherever it is necessary to deflect the pipe from a straight line either in a vertical or horizontal plane, to avoid obstructions, or where long-radius curves are permitted, the amount of deflection allowed shall not exceed the values shown in Table 5.1 or the manufacturer’s recommendations, whichever is less.

Table 5.1. MAXIMUM PERMITTED DEFLECTION, 18-FOOT-LONG PIPE

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4° - 09'</td>
<td>15</td>
<td>3°</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>3° - 33'</td>
<td>13</td>
<td>3°</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>2° - 40'</td>
<td>10</td>
<td>3°</td>
<td>10</td>
</tr>
<tr>
<td>12</td>
<td>2° - 40'</td>
<td>10</td>
<td>3°</td>
<td>10</td>
</tr>
</tbody>
</table>

Note: Maximum deflection shall be whichever is less, the value shown in the table or that recommended by the pipe manufacturer.

1 Safe deflection shown is for 150 psi of pressure. For higher pressure, reduce tabulated deflection 10% for each 150 psi of added pressure.

501.6.07 Alignment

Pipelines intended to be straight shall not deviate from the straight line at any joint in excess of 1 inch horizontally or 1 inch vertically.

501.6.08 Anchorage and Restraint

All pipelines 4 inches in diameter or larger shall be secured with a suitable mechanical joint restraint system (such as Megalug®, RomaGrip™, or approved equals) at all tees, plugs, caps, and bends, and at other locations where unbalanced forces exist. Where required, provide thrust blocking as specified in Section 501.09.10, “Thrust Blocking and Restraint.” Gaskets shall be installed in accordance with Section 501.4.05, “Gaskets.”

501.6.09 Construction of Blow-offs

Blow-offs shall be constructed as shown in Detail No. W-3050 or W-3055 of these standards. Straddle blocks shall be constructed of reinforced concrete; the concrete mix shall be commercially produced and have a compressive strength of not less than 3,000 psi at 28 days, unless otherwise approved by the City’s authorized representative. Blow-offs shall not be flushed or pressurized until a minimum of 7 days after concrete is installed. If high-early cement is used for the straddle block, the time may be cut by two days.
501.6.10 Locating Wire Specifications

Install tracer wire (12-gauge with blue THNN insulation) beside the pipe and plastic caution tape 1-foot above the pipe crown. Wire shall surface at all fire hydrants, valve boxes, and blowoffs.

501.7.00 VALVES AND VALVE BOXES

501.7.01 Scope

This section covers the work necessary for furnishing and installing gate valves, butterfly valves, and valve boxes, complete.

501.7.02 Materials

a. Gate Valves:

1. Resilient-seated gate valves, sized 3 inches through 12 inches, shall conform to AWWA Standard C-509 or C-515. The manufacturer's name, the model, and the year of manufacture are to be cast on each valve.

2. Valve ends are to be flanged or mechanical joint by flanged, as shown on the plans, and conform to AWWA C-111 and ANSI Class 125. Buried service valves shall open with a counterclockwise rotation of a 2-inch operating nut.

3. All internal parts shall be accessible without removing the body from the line. The one-piece wedge shall be completely encapsulated by resilient material. The resilient sealing material shall be permanently bonded to the wedge with a rubber tearing bond meeting the requirements of ASTM D-429.

4. Nonrising stems (NRS) shall be cast bronze with integral collars in compliance with AWWA C-509 or C-515. The NRS shall have two O-ring seals above the thrust collar and one below. The two top O-rings are to be field replaceable (in the full open position) without removing the valve from service. Low-friction thrust bearings shall be placed above and below the stem collar. The stem nut shall be bronze and independent of the wedge.

5. Outside screw and yoke valves shall have a bronze stem attached to the disc assembly. An adjustable follower gland shall be incorporated to compress braided packing and seal the stem.

6. The waterway in the seat area shall be smooth, unobstructed, and free of cavities. The cast iron body and bonnet shall be fully coated, both interior and exterior, with a fusion-bonded, heat-cured thermo setting material meeting all the application and performance requirements of AWWA C-550.

7. Gate valves shall meet the testing requirements as presented in AWWA C-509 and C-515.
b. **Butterfly Valves:**

1. Butterfly valves shall be the rubber-seated type, suitable for direct-burial service. They shall withstand 150 psi working pressure and a 150 psi pressure differential across the valve. Except as noted, the butterfly valve shall conform to AWWA C-504 for Class 150B.

2. Valve ends are to be flanged or flanged by mechanical joint, as shown on the plans, and conform to AWWA C-111 and ANSI Class 125.

3. All joint accessories shall be furnished with valves.

4. Valves shall be equipped with an iron body and 304 stainless-steel circular shaft. Shaft and disc seals shall be designed for a bottle-tight seal. The valve disc shall be cast iron with stainless-steel edge with acrylonitrile-butadiene (NBR) seat.

5. The butterfly valve shall be furnished with a totally enclosed, integral valve operator design to withstand a minimum of 300 foot-pound input torque without damage to the valve or operator. Operators shall be fully gasketed and greased-packed and designed to withstand submersion in water to a pressure of 10 psi. Valves shall open with a counterclockwise rotation of a 2-inch operating nut. A minimum of 30 turns of the operating nut shall be required to move the disc from a fully opened position to a fully closed position.

6. Butterfly valves shall meet the testing requirements as presented in AWWA C-504.

c. **Extension Stems for Valve Operators:**

1. Where the depth of the operating nut is more than 3 feet, operating extensions shall be provided to bring the operating nut to a point 18 inches below the surface of the ground or pavement (see Detail No. W-3015 of these Standards).

2. Where the depth of the operating nut is more than 6 feet, install a second rock guard plate equidistant between the first rock guard plate and the 2" operating nut.

3. The extension shall be constructed of solid steel rod and approved by the City’s authorized representative. Cut extensions to the proper length so the valve box does not ride on the extension when set at grade.
501.7.03 Workmanship

a. Valves:

1. Valves shall be installed in accordance with Detail No. W-3020 of these standards. Valves shall be flanged by mechanical joint; valves shall be flanged to all tees and crosses.

2. Before installation, the valves shall be thoroughly cleaned of all foreign material. Valves shall be inspected for proper operation, both opening and closing, and to verify that the valves seat properly.

3. Valves shall be installed so that the stems are vertical, unless otherwise directed.

4. Jointing shall conform to AWWA C-600 or AWWA C-603, whichever applies. Joints shall be tested with the adjacent pipeline. If joints leak under test, valves shall be disconnected and reconnected, and the valve or the pipeline or both shall be retested.

b. Valve Boxes:

1. Valve boxes shall be installed in conformance with Detail No. W-3020 of these standards.

2. Center the valve boxes and set plumb over the wrench nuts of the valves. Set valve boxes so they do not transmit shock or stress to the valves. Set the valve box covers flush with the surface of the finished pavement, as shown in Detail No. W-3020 of these standards or to another level as may be required.

3. Where the depth of the operating nut is more than 3 feet, operating extensions shall be provided in accordance to Section 501.7.02.c.

4. Valve boxes shall be the two-piece sliding type, cast iron with 6½ inch shaft, and shall be Vancouver-style of appropriate length for the installation, or as approved. The letter W shall be cast into the top of the lid. Extension pieces, if required, shall be the manufacturer’s standard type for use with the valve box.

5. Backfill shall be the same as specified for the adjacent pipe. Place backfill around the valve boxes and thoroughly compact it to a density equal to that specified for the adjacent trench and in such a manner that will not damage or displace the valve box from the proper alignment or grade. Misaligned valve boxes shall be excavated, plumbed, and backfilled at the contractor’s expense.

6. In non-paved areas, the valve box shall be set in a concrete collar as shown in Detail No. W-3020 of these standards.
501.8.00 FIRE HYDRANTS

501.8.01 Scope

This section covers the work necessary for furnishing and installing the fire hydrants, complete. Fire hydrants shall be installed as shown in Detail No. W-3040 of these standards.

501.8.02 Hydrants

a. Hydrants shall have a nominal 5¼-inch main valve opening with 6-inch bottom connections. The main valve shall be equipped with O-ring seals and shall open when turned left or counterclockwise.

b. The operating nut shall be a 1½-inch national standard pentagon nut.

c. Hydrants shall be equipped with two 2½-inch hose nozzles and one 4½-inch pumper nozzle with a Storz HPHA50–45NH permanent hydrant adapter.

d. Hydrants shall conform to AWWA C-502 and to the City’s standards. The normal depth of bury shall be 4 feet. Nozzle threads shall be American National Standard. The inlet connection shall be mechanical joint, restrained by a mechanical joint restraint system such as Megalug®, or approved equal.

e. Hydrants shall be Mueller Centurion, Waterous Pacer, or approved equal.

f. Hydrants shall be painted with Miller Paint Acrinamel #7323 Safety Yellow, Rust-Oleum #7645 Industrial Low V.O.C. Equipment Enamel Yellow, or approved equal.

501.8.03 Base Block

The base block shall be solid precast concrete pier block with nominal dimensions of 8-inch thickness and 12-inch-square base.

501.8.04 Workmanship

Construction and installation shall conform to these standards and to the provisions of AWWA C-600, except where otherwise specified.

501.8.05 Location and Position

a. Fire hydrants shall be located in compliance with TVF&R requirements. Locate as shown, or as directed, to provide complete accessibility and to minimize the possibility of damage from vehicles or injury to pedestrians. The maximum distance from a TVF&R approved driving surface to a fire hydrant is 15 feet. Improperly located hydrants shall be disconnected and relocated at the contractor’s expense.
b. When the hydrant is placed behind the curb or sidewalk, set the hydrant barrel so that no part of the pumper or hose nozzle cap is less than 24 inches from the face of the curb or the backside of the sidewalk.

c. Set all hydrants plum and nozzles parallel with the curb, or at right angles to it. With the pumper nozzle facing the curb, set hydrants so that the safety flange is at least 3 inches and at most 6 inches above the finished ground or sidewalk level, to clear bolts and nuts.

d. Install an approved blue bi-directional, reflecterized button in the center of the near travel lane using an approved fast-setting bonding agent.

501.8.06 Excavation

Do not carry excavation below the subbase grade. Refill over excavated areas with gravel and compact the fill to create a firm foundation.

501.8.07 Base Rock

Place base rock on a firm, level subbase or subgrade to assure uniform support.

501.8.08 Installation of Hydrants

Place the hydrant carefully on the base block to prevent the base block from breaking. After the hydrant is in place and is connected to the pipeline, place temporary blocks to maintain the hydrant in a plumb position during subsequent work.

501.8.09 Gravel for Drainage

Gravel for drainage shall be washed 1½” – ¾” aggregate or graded river gravel free of organic matter, sand, loam, clay, or other small particles that will restrict water flow through the gravel. Place gravel around the base block and hydrant bottom after the hydrant is blocked in place. Top of gravel shall be not less than 6 inches above the hydrant drain opening. Do not connect the drainage system to the sewer.

501.8.10 Thrust Blocking and Restraint

a. Fire hydrants shall be secured by thrust blocking. Provide reaction or thrust blocking, as shown in Detail No. W-3040 of these standards, or as directed. Place blocking between the undisturbed ground and the fitting to be anchored. Blocking bearing surface shall be as shown in Detail No. W-3000 of these standards.

b. Place the blocking so that the pipe and fitting joints will be accessible to repairs by wrapping all joints and fittings in new plastic sheeting (minimum 8 mil thickness).
c. The concrete mix shall be commercially produced and have a compressive strength of not less than 3,000 psi at 28 days, unless otherwise approved by the City’s authorized representative.

d. Fire hydrant laterals shall be secured with a mechanical joint restraint system such as Megalug®️, RomaGrip™️️, or approved equals.

501.8.11 Thrust Ties

Thrust ties may be used with concrete thrust blocking, with prior approval of the City’s authorized representative, when the top of the existing ground behind the fire hydrant is less than 2 feet above the top of the hydrant base or where unsuitable ground prevents proper anchorage.

501.9.00 HYDROSTATIC TESTING AND STERILIZATION OF NEWLY INSTALLED PIPE

501.9.01 Hydrostatic Testing

a. Contractor shall make pressure and leakage tests on all newly laid pipe; follow the procedures specified in AWWA C-600, Section 5.2, “Hydrostatic Testing.” Contractor shall furnish all necessary equipment and material, make all taps in the pipes as required, and conduct the tests. The City’s authorized representative will monitor the tests and assure that all taps are installed and service pipe extended.

b. Furnish the following equipment and materials for the tests:

<table>
<thead>
<tr>
<th>Amount</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Pressure gauges</td>
</tr>
<tr>
<td>1</td>
<td>Hydraulic force pump approved by the City’s authorized representative</td>
</tr>
<tr>
<td>1</td>
<td>Suitable hose and suction, as required</td>
</tr>
</tbody>
</table>

c. Conduct the tests after the trench is backfilled or partially backfilled with the joints left exposed for inspection, or when completely backfilled, as permitted by the City’s authorized representative. Where any section of pipe has concrete thrust blocking, do not take the pressure tests until at least five days elapse after the concrete thrust blocking is installed. If high-early cement is used for the concrete thrust blocking, the time may be cut by two days.

d. Conduct pressure tests in the following manner, unless otherwise approved by the City’s authorized representative. After the trench is backfilled or partially backfilled as specified here, fill the pipe with water, expelling all air during the filling. The minimum test pressure shall be 150 psi. For lines working with
operating pressures in excess of 100 psi, the minimum test pressure shall be 1¼ times the operating pressure at the point of testing, however, test pressure shall not exceed pipe or thrust-restraint design pressures. The duration of each pressure test shall be 2 hours, unless otherwise directed by the City’s authorized representative.

1. **Procedure:** Fill the pipe with water and apply the specified test pressure by pumping, if necessary. Then valve off the pump and hold the pressure in the line for the test period. Test pressure shall not vary by more than ±5 psi for the duration of the test. At the end of the test period, operate the pump until the test pressure is again attained. The pump suction shall be in a barrel or similar device, or metered so that the amount of water required to restore the test pressure can be measured accurately.

2. **Leakage:** Leakage shall be defined as the quantity of water necessary to restore the specified test pressure at the end of the test period. No pipe installation will be accepted if the leakage is greater than the number of gallons per hour, as determined by the following formula:

\[
L = \frac{SD(P)^{1/2}}{133,200}
\]

where
- \(L\) = allowable leakage (gallons per hour).
- \(S\) = length of pipe to be tested (feet).
- \(D\) = nominal diameter of pipe (inches).
- \(P\) = average test pressure during the leakage test (psi).

3. **Correction of Excessive Leakage:** Should any test of laid pipe disclose leakage greater than that allowed, locate and repair the defective joints or pipe until leakage in a subsequent test is within the specified allowance.

501.9.02 Sterilization

Pipeline intended to carry potable water shall be sterilized before it is placed in service. Disinfection by chlorination for pipelines shall be accomplished according to AWWA C-651, as modified or expanded below, and City requirements. Disinfection of water-storage facilities, water treatment plants, and wells shall be accomplished according to the appropriate sections of AWWA C-652, AWWA C-653, and AWWA C-654.

a. **Flushing:** Before sterilizing, flush all foreign matter from the pipeline. Contractor shall provide hoses, temporary pipes, ditches, etc., as required to dispose of flushing water without damaging adjacent properties. Flushing velocities shall be at least 2.5 feet per second (fps). For large-diameter pipe that is impractical or impossible to flush at 2.5 fps, clean the pipeline in place from the inside by brushing and sweeping, then flush the line at a lower velocity.
b. **Sterilizing Mixture:**

1. Sterilizing mixture shall be a chlorine-water solution having a free chlorine residual of 40 to 50 parts per million (ppm). The sterilizing mixture shall be prepared by injecting (a) a liquid chlorine-water mixture or (b) a calcium sodium hypochlorite and water mixture into the pipeline at a measured rate, while fresh water is allowed to flow through the pipeline at a measured rate so that the chlorine-water solution is of the specified strength.

2. The liquid chlorine-water mixture shall be applied by means of an approved solution-feed chlorinating device. Chlorinating devices for feeding solutions of the chlorine itself must provide a means of preventing the backflow of water.

3. If the calcium hypochlorite procedure is used, first mix the dry powder with water to make a thick paste, then thin to approximately a 1% solution (10,000 ppm chlorine). If the sodium hypochlorite procedure is used, dilute the liquid with water to obtain a 1% solution. Add the 1% solution to water to obtain a final sterilizing solution of 40 to 50 ppm. Table 5.2 shows the correct proportions of hypochlorite to water.

<table>
<thead>
<tr>
<th>Product</th>
<th>Quantity</th>
<th>Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium hypochlorite<sup>1</sup> (65%-70% Cl)</td>
<td>1 lb</td>
<td>7.5 gal</td>
</tr>
<tr>
<td>Sodium hypochlorite<sup>2</sup> (5.2% Cl)</td>
<td>1 gal</td>
<td>4.25 gal</td>
</tr>
</tbody>
</table>

¹ Comparable to commercial products known as HTH®, Perchloron®, and Pittchlor®.

² Liquid laundry bleach, such as Clorox® or Purex®.

501.9.03 **Point of Application**

a. Inject the chlorine mixture into the pipeline to be treated at the beginning of the line through a corporation stop or a suitable tap in the top of the pipeline. Water from the existing system or other approved source shall be controlled to flow slowly into the newly laid pipeline during the application of chlorine. The proportion of the flow rate of the chlorine mixture to the rate of water entering the pipe shall be such that the combined mixture shall contain 40 to 50 ppm of free available chlorine.

b. Valves shall be manipulated so that the strong chlorine solution in the line being treated will not flow back into the line supplying the water. Use check-valves if necessary.
c. Operate all valves, hydrants, and other appurtenances during sterilization to assure that the sterilizing mixture is dispersed into all parts of the line, including dead ends, new services, and similar areas that otherwise may not receive the treated water.

d. Do not place the concentrated quantities of commercial sterilizer in the line before it is filled with water.

e. After chlorination, flush the water from the line (see Section 501.7.05) until the water through the line is equal chemically and bacteriologically to the permanent source of supply.

NOTE: When testing and sterilizing procedures are complete, remove the testing corporation stop and replace it with a threaded brass plug.

NOTE: The practice of adding a small amount of chlorine powder or tablets at each joint as the main is being laid is not an acceptable method of chlorinating a pipeline. The procedure does not permit preliminary flushing, nor does it distribute chlorine uniformly.

501.9.04 Retention Period

Treated water shall be retained in the pipeline long enough to destroy all non-sporforming bacteria. With proper flushing and the specified solution strength, 24 hours is adequate. At the end of the 24-hour period, the sterilizing mixture shall have a strength of at least 10 ppm of chlorine.

501.9.05 Disposal of Flushing and Sterilizing Water

a. Dispose of flushing and sterilizing water in an approved manner. If the volume and chlorine concentration is such as to pose a hazard to the City’s Wastewater Treatment Plant operation, the sterilizing water shall be metered into the system. Notify the City of Wilsonville Environmental Services Division 24 hours before disposing of sterilizing water into the City sanitary system.

b. Do not allow sterilizing water to flow into a waterway or storm line without reducing the chlorine to a safe level via adequate dilution or another neutralizing method, as approved by the City’s authorized representative.

c. City Water staff will obtain water samples for microbiological analysis 48 hours after the contractor flushes the water line. Contractor shall request the City Water staff to sample lines at least 24 hours in advance. Applicant shall reimburse the City for the cost of collecting and testing each water sample. Fee for water collection and testing is provided on the Engineering Department’s Project Permit.
501.10.00 WATER SERVICE CONNECTIONS

501.10.01 Scope

The work includes trench excavation and backfill, furnishing and installing service saddles, corporation or valves, meter vaults or boxes, meters, service connection piping, fittings, and appurtenances within the designated limits, testing, flushing, and other incidental work as required for a complete installation.

501.10.02 Hydrostatic Test and Leakage

Test service connections and service connection pipe in conjunction with the main, as detailed in Section 501.9.00, “Hydrostatic Testing of Newly Installed Pipe.”

501.10.03 Materials

a. Service lines: ¾- and 1-inch: Corporation stops for ¾-inch (single service) and 1-inch copper service lines shall have AWWA thread inlet and compression connect outlet and shall be Mueller®.

b. Service lines: larger than 1-inch: All service lines greater than 1 inch in size shall attach to water main using a service saddle and compression couplings.

c. Meter Boxes and Covers: Generally, meter boxes and covers are installed in landscape areas and shall be of the type indicated in Table 5.3, Pedestrian Rated, or approved equal. Occasionally, with the approval of the City’s Authorized Representative, installation of meter boxes in driveway areas may be allowed. In these cases, meter boxes and covers shall be of the type indicated in Table 5.3, Traffic Rated, or approved equal. All boxes shall be ordered with a 3” x 6” mouse hole precut into one end of the box.

Table 5.3. METER BOXES AND COVERS

<table>
<thead>
<tr>
<th>Service Line</th>
<th>Pedestrian Rated</th>
<th>Traffic Rated</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Meter Box</td>
<td>Meter Cover</td>
</tr>
<tr>
<td>¾-inch and 1-inch</td>
<td>Armorcast No. P6001868x12</td>
<td>Armorcast No. A6001866 H1</td>
</tr>
</tbody>
</table>

d. Corporation Stops: 1-inch corporation stops shall be Mueller H-15008 (110 Compression) for direct taps or Mueller H-15028 (110 Compression) for saddle
taps; Mueller H-15000 (Flare) for direct taps or Mueller H-15025 (Flare) for saddle taps.

e. **Angle Valves:** Mueller H-14255 angle curb stop. Ford No. KV23-444W for 3/4-inch and 1-inch line. Mueller No. 14276 or 14277, Ford No. FV 23-777W for 1 1/2-inch and 2-inch line.

f. **Copper Tube:** Copper tube used for 3/4-inch to 1-inch service connections shall be soft temper Type K, conforming to ASTM B-88. Copper pipe used for 1 1/2-inch to 2-inch service connections shall be (hard) drawn temper Type K, conforming to ASTM B-88.

501.10.04 Workmanship

a. **Trench Excavation, Preparation, and Backfill:** Trench excavation, preparation, and backfill shall conform to the requirements of Section 6, "Trench Excavation and Backfill." Backfill material in the trench to within 6 inches of service connection pipe or line. Cover over pipe shall be as indicated in Detail No. S-2140 of these standards.

b. **Connection to Main:** Service connections shall be installed as shown in Detail No. W-3030 or W-3035 of these standards. Taps shall be made in the pipe by experienced workmen, using tools in good repair, with proper adapters for the size of pipe being tapped. Line taps shall be 30° above the horizontal for 3/4" or 1" service connections, and centered on the spring line of the pipe being tapped for 1 1/2" or 2" service connections. Tap shall be made no closer than 18 inches from the outside edge of the sleeve to the beginning of the bell flare or end of the MJ fitting. The City’s authorized representative shall be notified and shall be present during tapping of City water main, unless otherwise approved by the City’s authorized representative.

c. **Copper Tubing:** The copper tubing shall be cut with square ends, reamed, cleaned, and made up tightly. Care shall be taken to prevent the tube from kinking or buckling on short radius bends. Kinked or buckled sections of copper tube shall be cut and the tube spliced with the proper brass fittings, at the contractor’s expense.

d. **Installation of Meters and Meter Boxes:**

1. Meters and meter boxes or vaults shall be installed as shown in Detail No. W-3030 or W-3035 of these standards, or as directed by the City’s authorized representative.

2. City of Wilsonville Water Division shall install all meters 2 inches in diameter or less. Meters larger than 2 inches in diameter shall be installed by the contractor under the supervision of City of Wilsonville Water Division.
3. Meters shall not be installed until the entire water system is ready for operation, the system has been tested and approved, and water meter permit(s) have been obtained from the City of Wilsonville Building Division.

4. The remainder of the service connection, excluding the meter, may be installed at any time during or after construction of the main. Before the meter is connected, the angle valve shall be opened and the service line flushed of all foreign materials, and shall be properly tested and chlorinated.

5. The finish grade of the completed meter enclosure shall allow a minimum of 6 inches and a maximum of 12 inches of clearance from the top of the meter to the meter box. Meter boxes or vaults shall be set or constructed plumb, with the top set horizontally. Lightly compacted earth backfill shall be placed inside the meter boxes to the bottom of the meter stop. Grade adjustments of the meter boxes or vaults shall be made by using standard extension sections for the specified box or vault. Backfill around meter vaults shall be as specified for adjoining pipe. Provide adequate space to allow for sidewalk installation. Under no circumstances shall meter boxes be placed in the sidewalk.

6. Depending on the elevation difference between the meter and the main line water system working pressure, the City may require a backflow-prevention valve and/or a pressure reducing valve on the customer side of the meter, at the meter box. Installation shall be approved by the City’s authorized representative.

501.11.00 WATER LINE ACCEPTANCE POLICY

501.11.01 Water Line Activation

The City of Wilsonville will provide water to the project when the following are complete.

a. Compliance with these standards.

b. Installation of the materials and workmanship as described herein.

c. Successful hydrostatic pressure tests, as witnessed and approved by the City’s authorized representative.

d. Adequate flushing and chlorination of mains.

e. Approval by an Oregon Health Division certified water quality laboratory of samples taken for bacteriological examination.
501.11.02 Water Line Acceptance

The City of Wilsonville will accept new water installations or systems built to the “Public Works Standards,” provided that the following conditions are met.

a. Dedication of any required easements or rights-of-way have been recorded with the County Recorder and the Engineering Department receives a reproducible copy of the recorded documents.

b. After completion of construction of the total project, and after all testing has been satisfactorily completed, project closeout shall proceed as outlined in Section 101.8.17.a, “Project Completion.”

c. The Contractor or Applicant shall be responsible for providing Maintenance Assurance for Public Improvements as outlined in Section 101.8.17.b, “Maintenance Assurance.” Public water improvements shall be warranted for a minimum of one year; public landscape improvements shall be warranted for a minimum of two years.

d. At any time during the warranty period, the City’s authorized representative has reason to believe the public water improvements have defects that were the result of faulty workmanship or flaws in construction material, the responsible party shall be required, at that party’s own cost, to repair any faults to the public water improvements deemed necessary by the City’s authorized representative.

e. Before the end of the Construction Maintenance period, the City’s authorized representative shall inspect the project for any remaining deficiencies. If the deficiencies that remain are determined to be the responsibility of the contractor or the applicant, the contractor or applicant shall then make such repairs.

f. The Landscape Maintenance assurance shall be released two years after acceptance of construction, providing the landscaping meets the 90% survival level (see Section 301.13.02, “Landscape Inspection for Warranty”)
SECTION 6
TRENCH EXCAVATION AND BACKFILL

601.1.00 DEFINITIONS

a. Trench Excavation: Trench excavation is the removal of all material encountered in a trench to the depths shown on the plans or as directed by the City’s authorized representative. Trench excavation shall be classified as either common or rock excavation.

1. “Common excavation” is defined as the removal of all material that is not classified as rock excavation. The term “rock excavation” shall be understood to indicate a method of removal and not a geological formation.

2. “Rock excavation” is defined as the removal of material that cannot, in the City Engineer’s judgment, be reasonably excavated with equipment comparable in machine weight and rated horsepower to a hydraulic hoe excavator with a minimum weight of 45,000 pounds and a net horsepower rating of 130 to 140. Rock excavation is also the removal of material by drilling and blasting (see Section 601.3.01.i, “Explosives.” for blasting restrictions) or power-operated rock-breaking equipment. Boulders or concrete pieces larger than $\frac{1}{2}$ cubic yard encountered in the trench excavation shall be classified as rock excavation if removing them requires any of the above excavation methods, in the opinion of the City’s authorized representative.

b. Trench Foundation: The bottom of the trench on which the pipe bedding will lie. The trench foundation supports the pipe bedding.

c. Pipe Bedding: The furnishing and placing of specified materials on the trench foundation to uniformly support the barrel of the pipe, from the trench foundation to the spring line of the pipe.

d. Pipe Zone: The full width of the trench, from 12 inches above the top outside surface of the barrel of the pipe to the spring line of the pipe.

e. Spring Line: Halfway up the sides of the pipe (horizontal centerline) when the pipe is laid on the pipe bedding.

f. Haunch: That portion of the pipe below the spring line.

g. Trench Backfill: The furnishing, placing, and compacting of material in the trench between the top of the pipe zone material and the bottom of the pavement base rock, ground surface, or surface materials.
h. **Native Material**: Earth, gravel, rock, or other common material free of humus, organic matter, vegetative matter, frozen material, clods, sticks, and debris, isolated points or areas, or larger stones that would fracture or dent the structure or subject it to undue stress.

601.2.00 **MATERIALS**

601.2.01 **Trench Foundation**

Trench foundation (as defined in Section 601.1.00.b) shall be native material in all areas except where groundwater or other conditions exist and, in the opinion of the City’s authorized representative, the native material cannot support the bedding and pipe. Under those conditions, geotextile fabrics approved by the City’s authorized representative shall be installed, or the unsuitable material shall be removed, as determined by the City’s authorized representative, and the trench backfilled with Class B backfill.

601.2.02 **Pipe Area**

a. **Pipe Bedding**: Pipe bedding material shall be Class B backfill, uniformly graded from coarse to fine, or as approved by the City’s authorized representative.

b. **Pipe Zone**: The pipe zone material shall consist of Class B backfill.

601.2.03 **Trench Backfill**

Above the pipe zone, trench backfill will be divided into the following classifications (from ODOT SSC):

a. **Class A Backfill**: Class A backfill shall be native or common material, which in the opinion of the City’s authorized representative meets the characteristics required for the specific surface loading. Selected trench fill material shall contain no frozen soil, gravel, or cobbles larger than 6 inches in diameter, and shall be free of organic or other deleterious material.

b. **Class B Backfill**: Class B backfill shall be ¾”-0” granular grade crushed aggregate material, unless otherwise approved by the City’s authorized representative. The aggregate shall conform to the following:

1. The aggregate shall consist of uniform-quality, clean, tough, durable fragments of rock or gravel and shall be free of flat, elongated, soft, or disintegrated pieces, or other objectionable matter occurring either free or as a coating on the stone.

2. The aggregate shall meet the requirements for fractured faces and durability as specified in ODOT SSC Section 02630.10 “Dense-Graded Aggregate.”
3. Gradation and plasticity index requirements of the crushed aggregate shall be as shown for ³⁄₄"-0" rock in *Table 2.7. “Gradation Requirements of Granular Backfill.”*

4. Class B backfill material shall be approved by the City’s authorized representative prior to placement.

601.3.00 **CONSTRUCTION**

601.3.01 **Excavation**

a. **Clearing and Grubbing:** When clearing the right-of-way is necessary, clearing shall be completed before the start of trenching. Clearing and grubbing shall follow the procedures outlined in Section 201.5.02, “Clearing and Grubbing.” Under no condition shall excavated materials be permitted to cover brush before the brush is cleared and disposed of. Excavated material shall be stockpiled where and so it does not create a hazard to pedestrian or vehicular traffic; nor shall it interfere with the function of existing drainage facilities.

b. **Erosion Control:** The contractor shall be responsible for erosion prevention and sediment control on the jobsite and shall use appropriate prevention measures as outlined in Section 101.9.04, “Erosion Prevention and Sediment Control.” The contractor shall maintain the erosion-prevention and sediment-control facilities as specified in Section 101.9.05, “Maintenance.”

c. **Interferences and Obstructions:** Various obstructions may be encountered during the course of the work. The contractor shall follow the guidelines established in Section 101.8.05, “Interferences and Obstructions.”

d. **Contaminated Soils:** If during construction contaminated soil or with hazardous materials or chemicals are encountered, the Contractor shall follow the procedures specified in Section 101.9.02, “Contaminated Soils or Hazardous Materials.”

e. **Open Trench Limit**

 1. Construction shall proceed in a systematic manner that will result in minimum inconvenience to the public. Construction staking for the work being performed shall be completed before the start of excavation.

 2. The contractor shall limit their operations to a small work area per crew. The length of the excavated trench shall always be kept to a minimum. At no time shall the trenching equipment be farther than 100 feet ahead of the pipe-laying crews, unless advance written permission is given by the City’s authorized representative.
3. The trench shall be backfilled so that no section of trench is left open longer than 24 hours. Before the contractor stops construction for the day, trenches located in the right-of-way shall be completely backfilled, unless the trench is covered with Steel Plates. Use of Steel Plates shall conform to Section 101.8.02.b.5, “Progress of Construction.”

f. Trench Width

1. The trench width at the surface of the ground shall be kept to the minimum necessary to safely install the pipe. All aspects of excavation, trenching, and shoring shall meet current OSHA standards and regulations. In all cases, trenches must be wide enough to allow for shoring and to permit proper joining of the pipe and backfilling and compaction of material along the sides of the pipe.

2. Trench width in the pipe zone must provide a minimum clear working space outside the maximum outside diameter of the pipe. Minimum clear working space shall be 6 inches for pipe up to 12-inch interior diameter; for pipe greater than 12-inch interior diameter the minimum clear working space shall be $\frac{1}{2}$ the inside pipe diameter up to a maximum of 24 inches (see Table A in Detail No. S-2140 or Detail No. S-2145 of these standards). Excavation for manholes and other structures shall be wide enough to provide at least 12 inches between the structure’s surface and the sides of the excavation or shoring.

3. Maximum width of the trench at the top of the pipe shall be 12 to 24 inches plus the width of the pipe bell. When required by the project design, the maximum trench width shall be shown on the plans.

4. If the contractor exceeds the maximum trench width shown on the plans without written authorization, the contractor shall be required to contact the design engineer or the geotechnical engineer and obtain written approval allowing installation of the pipe as specified, or contractor shall provide, at their cost, pipe of a higher strength designation, a higher class of bedding, or both, as recommended by the design engineer or the geotechnical engineer, and approved by the City’s authorized representative.

5. The contractor shall confine the top width of the trench to right-of-ways or easements. If circumstances require extending the width of the trench beyond the right-of-way or easement boundary, the applicant shall obtain written agreements with the affected property owner(s), and provide them to the City’s authorized representative before commencing excavation.
g. **Grading**

1. The bottom of the trench shall be graded to the line and grade to which the pipe is to be laid, with proper allowance for pipe thickness and bedding material, or for greater base when specified or indicated. Before laying each section of the pipe, check the aggregate grade and correct any irregularities.

2. The trench bottom shall form a continuous and uniform bearing surface and support the pipe on solid and undisturbed ground at every point between bell holes, except that the grade may be disturbed for removing lifting tackle.

h. **Rock Excavation**

1. Where the bottom of the trench encounters ledge rock, boulders, or large stones that meet the definition of “rock excavation,” rock excavation shall be performed to create six inches of clearance on each side and below all pipe and accessories.

2. Excavations below subgrade in rock shall be backfilled to subgrade with Class B backfill material and compacted to not less than 90% of its maximum dry density as determined by AASHTO T-180.

i. **Explosives**

Explosives shall not be used in the City of Wilsonville without prior written approval from the City Engineer.

601.3.02 **Installation** (see trench detail drawing of these standards)

a. **Shoring**

1. The contractor shall provide all materials, labor, and equipment necessary to adequately shore trenches to protect the work, existing property, utilities, pavement, etc., and to provide safe working conditions in the trench.

2. Cribbing or sheeting that extends below the spring line of rigid pipe or below the crown elevation of flexible pipe shall be left in place, unless a satisfactory means can be demonstrated for reconsolidating bedding or side support that would be disturbed by removing the cribbing or sheeting.

3. If a movable box is used instead of cribbing or sheeting and the bottom cannot be kept above the spring line of the crown elevation of the flexible pipe, the bedding or side support shall be carefully reconsolidated behind the movable box before backfill is placed.
4. The use of horizontal strutting below the barrel of pipe, or the use of pipe as support for trench bracing, will not be permitted.

b. **Dewatering**

 a. The contractor shall provide and maintain ample means and devices for promptly removing and disposing of all water entering the trench excavation while the trench is prepared for pipe laying, during the laying of the pipe, and until the backfill is placed and compaction is complete.

 b. Groundwater shall be controlled to keep it from softening the bottom of the excavation. Dewatering systems shall be designed and operated to prevent removal of the natural soils and to keep the groundwater level outside the excavation from being reduced to an extent that would damage or endanger adjacent structures or property.

 c. Dewatering systems shall be discharged to a stormwater detention/retention facility unless otherwise approved by the City's authorized representative.

c. **Grade:** The contractor shall excavate the trench a minimum of 6 inches plus the pipe wall thickness below the specified pipe grade, or as established by the geotechnical engineer. The subgrade on which the bedding is to be placed shall be firm, undisturbed, and true to grade.

d. **Trench Foundation**

 1. When in the judgment of the geotechnical engineer or the City's authorized representative, the existing material in the bottom of the trench is unsuitable to support the pipe, the contractor shall excavate below the pipe, as directed.

 2. The contractor shall backfill the trench to the subgrade of the pipe bedding with Class B backfill material over the full width of the trench, and shall compact in layers not exceeding 6 inches deep.

 3. Fill material shall be compacted to not less than 90% of its maximum dry density, as determined by AASHTO T-180.

e. **Pipe Bedding**

 1. Class B backfill material shall be placed under all pipes.

 2. Pipe bedding consists of leveling the bottom of the trench on the top of the foundation material and placing bedding material to the horizontal centerline of the pipe, unless otherwise specified.
3. Granular base shall be placed in the trench to a depth of 6 inches, loose, for the full width of the trench. The contractor shall spread the bedding smoothly to the proper grade so the pipe is uniformly supported along the barrel.

4. The contractor shall excavate bell holes at each joint to permit proper assembly and inspection of the entire joint. Bedding under the pipe shall provide firm, unyielding support along the entire pipe length.

5. Contractor shall be aware of the importance in proper placement and compaction of backfill material placed below the spring line of the pipe (haunch area). Proper backfilling ensures that adequate stability and support is provided to the pipe during final backfilling of the pipe zone. Backfill material shall be worked under the haunches by hand.

f. Backfill in Pipe Zone

1. After the pipe is in place and ready for backfilling, place Class B backfill to a minimum depth of 12 inches over the top of the pipe. The material shall be placed at approximately the same rate on each side of the pipe, so that the elevation of the aggregate on each side of the pipe is always equal.

2. Particular attention shall be given to the backfilling and tamping procedure to assure that there are no unfilled or noncompacted areas under the pipe.

g. Trench Backfill

1. Backfill shall be placed in the trench in such a way as to not permit material to freefall until the top of the pipe is covered by at least 2 feet of material. Under no circumstances shall the contractor allow sharp, heavy objects to drop directly onto the pipe or pipe zone material around the pipe.

2. If the required compaction density cannot be obtained, the contractor shall remove the backfill from the trench and recompact. The process shall be repeated until the contractor establishes a procedure that will provide the required density. The contractor will then be permitted to proceed with backfilling and compacting the rest of the pipeline under the approved compaction procedure.

3. Within the public right-of-way, trench backfill shall consist of granular fill meeting the requirements of Section 201.3.01, “Granular Fill.”

h. Native or Select (Class A) Backfill

1. Backfill the entire depth of the trench above the pipe zone with excavated trench materials placed in 12-inch layers. Remove all cobbles and stones
2 inches in diameter and larger from material used for backfill in the upper 12 inches of the trench.

2. Compact each layer using mechanical tampers or vibratory compactors to 85% of its maximum dry density, as determined by AASHTO T-180. Bring the fill to the required surface grade, and compact so that no settlement will occur.

i. **Granular Backfill**

1. Granular backfill material shall meet the requirements of Section 201.3.01, “Granular Fill.” Granular backfill shall be tested at a minimum of every 200 feet of trench length and at depths specified by the City’s authorized representative.

2. The aggregate backfill within 2 feet of base grade shall be compacted to not less than 95% of its maximum dry density, as determined by AASHTO T-180. Backfill placed more than 2 feet from base grade shall be compacted to not less than 90% of its maximum dry density.
APPENDIX A

BICYCLE AND PEDESTRIAN FACILITIES

A.1.00 INTRODUCTION

The purpose of this appendix is to outline the design and construction requirements for bicycle and pedestrian improvements in the City of Wilsonville. The City regards facilities for bicyclists and pedestrians as important parts of the overall transportation system and not just recreational facilities, and shall continue to improve and expand pedestrian and bicycle facilities, with a focus on improved connectivity between major activity centers while minimizing conflicts with other modes of transportation.

Bicycle and pedestrian facilities are addressed in the City of Wilsonville’s TSP, the 1993 Bicycle and Pedestrian Master Plan (BPMP), and the 1994 Parks and Recreation Master Plan (PRMP).

A.1.01 Bicycle and Pedestrian Facility System

To encourage bicycling and walking in the City, it is critical to provide safe and convenient systems that connect residential, commercial, and industrial destinations. Therefore, major and minor collector and arterial street design shall include bicycle facilities on or near the streets. Sidewalks shall be provided on (preferred) or near all streets. The multi-use path system shall be expanded to provide off-street pathways and trails for convenience, safety, and recreation. Finally, the citywide bicycle and pedestrian facility system shall connect with existing and potential routes outside of the City limits. To this end, the City shall continue to coordinate with other cities, counties, the state, and Metro to further a regional approach to bicycle and pedestrian issues.

A.1.02 Playground Facilities

A.2.00 DESIGN OF BICYCLE AND PEDESTRIAN FACILITIES

A.2.01 General Design, Location, and Easement Requirements

a. Design: The design of all bicycle and pedestrian facilities within the City of Wilsonville shall be in conformance with applicable AASHTO, ODOT, and ADA requirements and standards, as provided in the 1999 AASHTO publication, “Guide for the Development of Bicycle Facilities,” the 1995 ODOT publication, “Oregon Bicycle and Pedestrian Plan,” and ADAAG guidelines, or latest editions. Any deviation from the AASHTO, ODOT, ADA, or City standards shall require written approval from the City Engineer.
b. **Location:** Bicycle and pedestrian facilities shall be installed on the basis of the City of Wilsonville’s TSP, BPMP, and PRMP. In case of conflict, however, the BPMP takes precedence in matters dealing with off-street facilities.

c. **Right-of-Way and Easements**

1. All public-owned bicycle facilities shall be constructed within a public right-of-way or easement. When a bicycle facility must be constructed outside the public right-of-way, an appropriate easement shall be granted to the City for construction and maintenance of the facility; the location and width of the easement shall be approved by the City’s authorized representative. A temporary construction easement may also be required.

2. All new development or redevelopment within the City shall provide an easement to access adjacent streets, neighborhoods, and properties, especially schools, retail, and commercial areas. The intent of the easements is to reduce the length of travel to desired destinations from residential areas, thereby promoting bicycle/pedestrian travel.

A.2.02 On-Street Design Standards

a. **Design Standards:** On-street standards for different situations are described below. It is recommended that bicycle lanes be the preferred facility design. Other facility designs should be used only if the bicycle lane cannot be constructed to the standard because of physical constraints. The alternative standards are listed in order of preference.

1. **Bicycle Lane**

 (a) Bicycle lanes shall always be one-way facilities and carry bicycle traffic in the same direction as adjacent motor vehicle traffic.

 (b) The design shall include 12-foot minimum travel lanes for motor vehicles with 5- to 6-foot paved shoulders, or 5-foot paved lanes where on-street parking is allowed that are striped, marked, and signed as bicycle lanes.

 (c) There shall be a minimum clear riding zone of 4-feet if there is a longitudinal joint between asphalt pavement and concrete gutter. Additional widths are recommended where substantial truck traffic is present, on grades, or where motor vehicle speeds exceed 35 miles per hour.

 (d) This shall be the basic standard applied to bicycle lanes on all arterial and collector streets in the city. Bicycles lanes shall not exceed 6 feet in width.

2. **Shoulder Bikeway:** This design includes a 12-foot minimum travel lane for motor vehicles with 5- to 6-foot paved shoulders that are striped but not marked as a bicycle lane. This should only be used in rural situations when it is
determined by the City’s authorized representative that a marked bicycle lane is inappropriate.

3. **Shared Roadway:** This design features 14- to 16-foot travel lane widths for both motor vehicles and bicycles. This standard should be applied to all arterial and collector streets only when sufficient pavement width is not available for a separate bicycle lane. On arterial and collector streets, bicycle route signage is required to alert motorists to the potential presence of bicyclists.

b. **Drainage Grates**

1. Drainage grate inlets and utility covers are potential problems for bicyclists. When a new roadway is designed, all such grates and covers shall be kept out of bicyclists’ expected path.

2. On new construction, curb inlets shall be used wherever possible to completely eliminate the exposure of bicyclists to grate inlets.

3. Grates and utility covers shall be adjusted flush with the surface, including after a roadway is resurfaced.

4. Grates shall be identified with a pavement marking, as indicated by the MUTCD, Part 9, or latest edition. Drainage grate inlets shall be bicycle-safe (as required by ORS 810.150) and hydraulically efficient.

c. **Railroad Crossings**

1. Railroad-highway/multi-use path grade crossings should meet at right angles. The greater the approach angle deviates from 90°, the greater the potential for a bicyclist’s wheel to be trapped in the railroad flangeway.

2. Where the crossing angle is less than 45°, consideration shall be given to widening the outside lane, shoulder, or bicycle lane to allow bicyclists adequate room to cross the tracks close to a 90° angle.

3. In the case of multi-use path crossings, centerline stripes shall be provided to encourage a right-angle approach. Where these options are not possible, commercially available compressible flangeway fillers shall be installed.

4. The roadway approach shall be at the same elevation as the rails.

5. Warning signs and pavement markings shall be installed in accordance with the MUTCD, Part 9.

A.2.03 **Off-Street Design Standards**

Standards for off-street facilities are as follows:
a. **Bicycle/Pedestrian (Multi-use) Path:** Multi-use paths are facilities on exclusive rights-of-way or easements. These facilities are physically separated from the roadway and are designed to exclude motor vehicle traffic, except at crossings. Separation shall be obtained by a barrier or by a minimum of 5 feet of open space. It is the City’s policy not to illuminate multi-use paths.

1. **Width of Multi-use Paths:** Paths shall have a minimum width of 10 feet for two-way multi-use traffic and 12 feet where high multi-use traffic is expected. In addition, a minimum 2-foot clear distance on both sides of the path is required, although a 3-foot side clear distance is preferred. The maximum gradient for side clear areas shall be 6H:1V.

2. **Overhead Vertical Clearance:** Overhead vertical clearance shall be a minimum of 8 feet. However, vertical clearance shall be a minimum of 10 feet where vehicular traffic is expected and in under-crossings or tunnels.

3. **Horizontal Curves and Sight Distance**

 (a) Multi-use path horizontal curves shall have a minimum 35-foot centerline curve radius.

 (b) Corner sight distance shall be a minimum of 25 feet.

 (c) When substandard radius curves must be used on multi-use paths because of right-of-way, topographical, or other considerations, standard curve warning signs and supplemental pavement markings shall be installed in accordance with the MUTCD, Part 9. The negative effects of substandard curves can be partially offset by widening the pavement through the curve and removing objects that impair sight distance.

4. **Drainage:** The minimum pavement cross slope shall be 2%. Curves shall be banked with the low side on the inside of the curve. Paths constructed along hillsides shall have an interceptor ditch of suitable dimension on the uphill side.

5. **Super-elevation Rate:** For most multi-use path applications, the super-elevation rate (i.e., a raised elevation of one side of the path) will vary from a minimum of 2% (the minimum necessary to encourage adequate drainage) to a maximum of 5% percent (beyond which maneuvering difficulties by slow bicyclists and adult tricyclists might be expected). The minimum super-elevation rate of 2% will be adequate for most conditions and will simplify construction.

6. **Grade**

 (a) Grades on multi-use paths shall be kept to a minimum, especially long inclines, and are recommended to be no greater than 5%.

 (b) Where terrain dictates, grades over 5% and less than 500 feet in length are acceptable only when consideration has been given to sight distance and...
stopping distances. In areas of generally steep terrain, it may be desirable to meander path alignments to attain reasonable grades for steep slope ascent.

(c) In no case shall a “down-hill” approach grade of the intersection of a multi-use path to a sidewalk or street exceed 5% for the last 50 feet unless provisions have been made to provide satisfactory sight vision between the two intersecting facilities.

(d) Grade changes on pathways shall provide for a minimum pedal clearance of 6 inches. If use by pedestrians is expected, ADA requirements must be met.

7. Structures

(a) Multi-use paths constructed along hillsides or next to drainage ditches steeper than 3H:1V shall be protected with an approved handrail system in conformance with Detail No. R-1150 of these standards.

(b) Bridges designed exclusively for bicycle and pedestrian traffic shall be designed for pedestrian live loadings. Bridge width shall be the total of the path width plus the side clear distances (see Section A.2.02.a.1). Bridge decks shall be designed with bicycle safe expansion joints. Decking boards shall be placed transverse to the direction of normal bike travel and shall be coated with a nonskid surfacing material approved by the City's Public Works Department.

(c) Where gravel driveways cross the path, a 5-foot paved apron shall be provided to minimize the transfer of gravel to the pathway.

8. Pavement Design

(a) Subgrades shall be sterilized with a suitable non-environmentally hazardous herbicide that is approved by the City of Wilsonville Public Works Operations Division, in cooperation with the Environmental Services Division, to prevent subsequent intrusion of hardy weeds, vines, or other plant material into or upheaving through path surfaces.

(b) Additional asphalt, base rock, and subgrade reinforcement shall be provided in path sections projected to bear heavy maintenance vehicle traffic. No less than one additional inch of asphalt shall be provided in these areas.

(c) The wearing surface of AC pavement shall conform to ODOT SSC Section 00745, “Hot Mixed Asphalt Concrete” for Level 1 HMAC. Pavement design shall be a minimum of 3 inches of AC pavement over a 4-inch thick base consisting of 3/4”-0” crushed aggregate backfill, meeting requirements of Section 201.3.01, “Granular Fill.” Base rock shall be compacted to 95% of the maximum dry density as determined by AASHTO T-180. Base rock shall be placed over a firm subgrade stripped as per Section 201.5.02, “Clearing and Grubbing.”
(d) PCC pavement shall be an acceptable path surface alternative. The surface shall be cross-broomed and crack-control joints shall be saw-cut, not troweled. Minimum design thickness shall be 4 inches of PCC over a 4-inch base consisting of 3/4"-0" crushed aggregate backfill, meeting requirements of Section 201.3.01, “Granular Fill.” Base rock shall be compacted to 95% of the maximum dry density as determined by AASHTO T-180. Base rock shall be placed over a firm subgrade stripped as per Section 201.5.02, “Clearing and Grubbing.”

(e) Location of expansion and contraction joints in PCC multi-use paths shall be as specified in Detail No. R-1080 of these standards. All expansion joints, paving joints, driveway intersections, and railroad crossings shall be designed to maintain a smooth riding surface.

(f) Pathways shall be protected from root intrusion as per Section 201.2.22.d, “Root Barriers.”

9. Public Easements and Rights-of-Way: The City, through the development application process, may require the granting of a public easement for multi-use paths. Where it is deemed to be in the best interests of the City, a dedication of right-of-way may be required in lieu of an easement. Bike path easements and rights-of-way shall be no less than 15 feet wide, or wider as determined by the City in accordance with the following:

a) Where terrain dictates cut or fill sections to meet path design requirements, additional width shall be required only to the extent necessary for sideslopes.

b) Where utility needs, drainage requirements or independent bike paths create multi-use opportunities, additional width shall be required only to the extent necessary for the multi-use.

b. Recreational Trail: This is an ADA accessible surface with a usable width of 3 to 12 feet conforming to the ADA Standards for Accessible Design requirements. It is the City’s policy not to illuminate recreational trails.

c. Landscaping

1. Landscaping shall be provided along multi-use paths and recreational trails. Selection of trees, shrubs, and ground cover should include low-maintenance varieties that are drought tolerant and require little pruning. Shrubs should be low growing (under 3 feet at mature height). Location and placement of plant materials should not result in growth over or onto the path surface.

2. All proposed plant materials shall be approved by the City of Wilsonville. All landscaping, signs, and other potential obstructions shall be set back a minimum of 1 foot from the edge of the pathway surface. No exposed rock shall be permitted within 2 feet of the pathway surface. All exposed earth within 2 feet of
the pathway surface shall be planted with grass, sod, or covered with 2" of barkdust.

3. A number of important design considerations should be reviewed when selecting materials and planning planting schemes. Trees are of primary concern regarding location and variety. Specifically, placement and selection of trees should evaluate the following:

(a) Tree rooting characteristics - to avoid potential path surface upheaval.

(b) Tree size - trees shall be of satisfactory caliper to permit a minimum vertical clearance of 8 feet to the lowest branch. The clearance shall be a minimum of 10 feet where vehicular traffic is expected.

(c) Tree placement - to avoid creating hiding areas or permitting foliage to block path lighting, trees shall be located a minimum of 10 feet from path lighting fixtures.

d. Root Control: Pathways shall be protected from root intrusion as per Section 201.2.22.d, "Root Barriers."

A.2.04 Sidewalks

a. The location, design, and construction of sidewalks shall be in conformance with Section 201.2.22, "Sidewalks," and Detail No. R-1080 of these standards.

b. Special Design Standards: The physical environment shall be enhanced to encourage bicycling and walking by following these standards:

1. Minimum sidewalk width shall be in conformance with Section 4.178(.01) of the Wilsonville Code.

2. Issues should be addressed to encourage walking by providing a more pleasant environment. Urban design features to provide pedestrian amenities such as street trees, furniture, kiosks, trash receptacles, directional signage, and bicycle amenities such as bike racks, shall be provided when required by the City.

3. Pedestrian facilities shall be consistent with the ADA Standards for Accessible Design.

A.2.05 Signing and Marking

a. All pathways and bicycle route shall be clearly identified and posted with signs are a common method for identifying bicycle routes. Signing and marking of bikeways are important in providing safety to users and shall be in conformance with the MUTCD, Part 9.

b. On multi-use paths, adequate signing and marking shall be used to alert users to potential hazards and to convey regulatory messages to bicyclists, pedestrians, and
motorists at highway intersections. In addition, guide signs, such as to dictate directions, destinations, distances, route numbers, and names of crossing streets, shall be used in the same manner as they are used on highways.

c. On multi-use path areas where limited sight vision or curves exist, or where heavy volumes of bicycles or nighttime riding is expected, a 4-inch wide yellow centerline stripe shall be used. Four-inch wide white edge lines (or fog lines) shall be used where nighttime bicycle traffic is expected. Skid-resistant pavement marking materials shall be used over materials that become slippery when wet.

A.3.00 TRAFFIC CONTROL

a. At intersections where bicycle traffic exists or is anticipated, bicycles shall be considered in the timing of the traffic signal cycle, as well as the traffic detection device.

b. To check the clearance interval, a bicyclist’s speed of 10 miles per hour and a perception/reaction/braking time of 2.5 seconds shall be used. Detectors for traffic-actuated signals shall be sensitive to bicycles and shall be located in the bicyclist’s expected path, including left-turn lanes. Where programmed visibility signal heads are used, they shall be checked to ensure that they are visible to bicyclists who are properly positioned on the road.

c. The MUTCD, Part 9, and the Oregon Supplement shall be consulted for guidance on signs and pavement markings. Where bicyclists are expected to use different patterns than motorists, direction signing shall be used to advise bicyclists of this special routing. At intersections, bicyclists proceeding straight through and motorist turning right must cross paths. It is recommended to use striping and signing configurations that encourage these crossings in advance of the intersection, in a merging fashion.

A.4.00 SUPPORT FACILITIES

In addition to improving public facilities and routes to connect destinations, the City requires basic design considerations for bicyclists and pedestrians when they arrive at their destination. City requirements for the following support facilities can be found in the BPMP and City zoning code:

- On-site Bicycle and Pedestrian Circulation for all New Developments.
- Bicycle and Pedestrian Paths.
- Bicycle Parking Requirements.
- Bicycle Lockers or Other Secure Parking Facilities
- Locational Standards for Bicycle Parking.
APPENDIX B

LANDSCAPE REQUIREMENTS:
STORM WATER QUALITY AND QUANTITY FACILITIES

B.1.00 INTRODUCTION

a. Successful revegetation is critical to the function of water quality and quantity facilities, and vegetated corridors. Plantings improve water quality and provide habitat and aesthetic benefits.

b. The purpose of this appendix is to assist design professionals and the development community in successfully planning, designing, and implementing landscape plans for water quality and quantity facilities and vegetated corridors. The information should not be used simply as a boilerplate applied to all sites. Instead, it should be used to guide design decisions to promote successful planting efforts. Each design will be unique and must consider the individual opportunities and constraints offered by each site.

B.2.00 LANDSCAPE GUIDELINES

The designer must consider four major components while developing landscape plans for water quality and quantity facilities: hydrology, soils, plant materials, and maintenance.

Understanding the future hydrologic conditions at the treatment facility is critical to designing a successful planting plan. Identifying and correcting poor soil conditions and selecting and placing appropriate plant materials are also substantially important for planting success. Finally, landscape design and planting plans should not interfere with a facility’s engineering function or create maintenance problems. These four components are discussed in detail below:

B.2.01 Hydrology

a. Varying hydrologic conditions complicate landscape design. Water levels change seasonally and also with local storm events. Treatment facilities are often inundated during the wet season and early growing season, but then dry out during the summer. These conditions must be understood and accounted for in the planting plan. Selected plants must be adapted to variable moisture regimes.

b. Construction documents prepared by a Landscape Architect registered in the State of Oregon are required. Construction documents detail the design and provide good control; good control assures the project is installed as designed.
Proper installation provides predictable hydrologic conditions and thus increases the chances for successful planting.

B.2.02 Soil

a. Plants require appropriate soil conditions to grow. On completion of earthwork, the landscape contractor is commonly left with soils that are high in clay or minerals and devoid of topsoil and organic material, or soils high in noxious weed content.

b. Site preparation is necessary to improve the soil and remove undesirable plant materials and seeds. Before planting, clearing and grubbing (see Section 201.5.02, “Clearing and Grubbing”) may be required to remove rhizomes and seed banks where noxious weeds are present. Topsoil should be stripped and stockpiled for reuse whenever possible, but noxious weed conditions may require that topsoil is stripped and removed from the site.

c. Where topsoil has been removed, is not adequate, or does not exist, scarify the subgrade and import 4 inches of topsoil, unless noted otherwise. Imported topsoil should be tested for the following characteristics to assure it will provide a good growing medium for the selected plants:

1. Texture—relative proportions of soil separates (sand, silt, and clay).
2. Fertility—nutrient content and fertility status of the soil.
3. Microbial—presence of microbial organisms in the soil.

d. Incorporate 2 inches of garden compost into imported topsoil. Where topsoil is present and is weed free, incorporate 2 inches of garden compost into the top 4 inches of the native soil. Incorporate other amendments, conditioners, and bio-amendments as needed to provide a soil capable of supporting the specified plants. Traditional fertilization techniques (applying N-P-K) are detrimental to the soil and should be avoided when using native plants.

B.2.03 Plant Materials

a. Plant selection must consider soil types, hydrologic conditions, and shade requirements. Dense planting with small stock is preferred to sparse planting with large stock. Native plant stock is recommended because many species are adapted to hydrologic conditions common in water treatment facilities and generally require minimal maintenance. Ornamental stock can be useful for blending treatment facilities into surrounding landscapes, but is discouraged in areas that will not receive additional maintenance.

b. Plantings shall be installed between February 1 and May 1 or between October 1 and November 15. When plantings must be installed outside these
times, additional measures may be needed to assure survival. Additional considerations for preparing planting plans include:

1. Plant Massing: Plantings should be placed in-groups ranging from three to seven of the same species to encourage massing. Groupings may be larger, depending on the size of the facility. Groupings of different species can be placed next to each other, as long as the species are appropriate for the given hydrologic conditions.

2. Plant quantities shall comply with the following minimum acceptable design standard:

 (a) Evergreen trees: 3 per 1000 square feet, minimum height 6 feet.

 (b) Deciduous trees: 2 per 1000 square feet, minimum caliper 1 to 1-1/2 inch at 2 feet above base.

 (c) Shrubs: 30 per 1000 square feet, minimum container 1 gallon or equivalent.

 (d) Wetland plants: 1 per 2 square feet of pond emergent plant zone.

3. Planting Restrictions

 (a) Do not place deep rooting trees and shrubs (e.g., willow) on top of pipe alignments.

 (b) Falling leaves will fill the pond and clog drainage structures. However, it is desirable to place trees, particularly evergreens, next to the south and west perimeter of standing water, to provide shade and thereby reduce water temperatures.

4. Seeding: Seed mixes and application rates for wet, moist, and dry zones are provided in Tables B.4 and B.5. Alternative mixes may be approved by the City.

5. Mulching: Trees, shrubs, and groundcovers shall be adequately mulched with an appropriate material (e.g., compost, bark dust) to retain moisture and discourage weed growth around newly installed plant material.

B.2.04 Maintenance

Providing a low maintenance planting design should be a goal for every facility. However, all treatment facilities will require some degree of maintenance to help assure that facilities function as designed. Third parties (e.g., volunteer groups, homeowner associations) can provide additional maintenance if a more refined aesthetic is desired. The following maintenance issues should be addressed during project design and through the maintenance period:
a. Access: Access roads shall be provided as outlined in Section 301.4.04, “Access Road Design.”

b. Irrigation: A method for irrigation shall be installed and used during the plant establishment period, unless a natural water source is available and is an approved substitute by the City. Watering shall be provided to assure survival through the dry season.

c. Weed Control: The removal of noxious weeds including Himalayan blackberry (Rubus discolor), reed canarygrass (Phalaris arundinacea), teasel (Dipsacus fullonum), Canada thistle (Cirsium arvense), and others will be necessary through the maintenance period, or until a healthy stand of desirable vegetation is established.

d. Plant Replacement: Plants that fail to meet the acceptance criteria must be replaced during the maintenance period (see Section 301.13.02, “Landscaping Inspection for Warranty – Stormwater Quality/Quantity Facilities”). Before replacing a plant, the cause for loss shall be determined. On determining the cause, correct the problem (e.g., amend soil, provide wildlife protection, modify species selection) and then replace the plant(s).

e. Erosion Control: Where seeding is used for erosion control, refer to Section 101.9.04, “Erosion Prevention and Sediment Control.”

f. Wildlife Protection: Appropriate measures shall be taken to discourage wildlife browsing. Biodegradable plastic mesh tubing, or other substitute approved by the City, shall be placed around individual trees and shrubs to prevent browsing by wildlife, including beaver, nutria, deer, mice, and voles.

B.3.00 RECOMMENDED PLANT SPECIES

a. This section outlines commonly available native plants suited for various hydrologic regimes and illustrates typical planting schemes for water quality and quantity facilities, and vegetated corridors. The schemes provide a foundation from which to begin planting design, but they may require modification in response to individual site characteristics. Consulting a professional landscape architect, ecologist, or horticulturist knowledgeable about native plants and water quality and quantity facility design is highly recommended when preparing planting plans.

e. Water quality facilities and vegetated corridors generally feature three types of planting zones with respect to hydrology during the growing season:

1. Wet (standing or flowing water/nearly constant saturation; anaerobic soils).

2. Moist (periodically saturated; anaerobic and/or aerobic soils).
3. Dry (infrequent inundation/saturation, if any; aerobic soils).

f. Open water, typically 3 feet or more deep, is also common in treatment facilities, particularly in forebays and extended wet ponds. These areas are rarely vegetated, except by floating aquatics that generally volunteer on their own.

d. Specific plant sizes may be required as part of the development approval process, but shall not be less than three to five gallon container stock for trees; one gallon container stock for shrubs; and conservation plugs for emergents. Live stakes shall be used for willow plantings. Live stakes may be used for other species that take readily from cuttings (e.g., Douglas spirea, red-osier dogwood). Conservation plugs are also known as leach tubes and styro-blocks. They typically have soil intact around deeply developed roots systems. They are the preferred alternative for most emergent stock. Rhizomes, tubers, bare root, and potted stock are also acceptable, but they may require additional planting quantities and higher densities to achieve design intent. Plant size and stock may be tailored to meet availability issues and the individual requirements of each site.

e. Tables B.1, B.2, and B.3 list commonly available plants for wet, moist, and dry zones, respectively. The zones are used later in the planting schemes to depict different planting zones within the different water treatment facilities. Plants other than those listed in the following tables may be used with City approval.
Table B.1. PLANTS FOR WET AREAS

<table>
<thead>
<tr>
<th>Botanical Name</th>
<th>Common Name</th>
<th>Spacing</th>
<th>Preferred Light</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trees</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salix sp.</td>
<td>Willow species</td>
<td>3-5' O.C.</td>
<td>Sun, part shade</td>
<td></td>
</tr>
<tr>
<td>Shrubs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cornus sericca</td>
<td>Red-osier dogwood</td>
<td>3-4' O.C.</td>
<td>Sun, part shade</td>
<td>Highly adaptable</td>
</tr>
<tr>
<td>Spirea douglasii</td>
<td>Douglas spirea</td>
<td>2-3' O.C.</td>
<td>Sun</td>
<td>Tolerates prolonged inundation</td>
</tr>
<tr>
<td>Herbaceous</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alisma plantago-aquatica</td>
<td>Water plantain</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beckmannia syzigachne</td>
<td>American sloughgrass</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bidens cernua</td>
<td>Nodding beggar's tick</td>
<td>1-2' O.C.</td>
<td>Sun</td>
<td></td>
</tr>
<tr>
<td>Bromus carinatus</td>
<td>California bromegrass</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carex densa</td>
<td>Dense sedge</td>
<td>12' O.C.</td>
<td>Sun</td>
<td>Tolerates variable water regimes</td>
</tr>
<tr>
<td>Carex comosa</td>
<td>Beared sedge</td>
<td>12' O.C.</td>
<td>Sun</td>
<td>Tolerates variable water regimes</td>
</tr>
<tr>
<td>Carex obnupta</td>
<td>Slough sedge</td>
<td>12' O.C.</td>
<td>Shade or part shade; will tolerate sun</td>
<td></td>
</tr>
<tr>
<td>Carex stipata</td>
<td>Sawbeak sedge</td>
<td>12' O.C.</td>
<td>Part shade</td>
<td></td>
</tr>
<tr>
<td>Deschampsia caespitosa</td>
<td>Tufted hairgrass</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deschampsia caespitosa</td>
<td>Tufted hairgrass</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eleocharis spp.</td>
<td>Spikerushes</td>
<td>12' O.C.</td>
<td>Sun</td>
<td>Tolerate prolonged inundation</td>
</tr>
<tr>
<td>Elymus glaucus</td>
<td>Blue wildrye</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Festuca rubra v. rubra</td>
<td>Native red fescue</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iris tenax</td>
<td>Oregon iris</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Juncus effuses</td>
<td>Soft rush</td>
<td>12' O.C.</td>
<td>Sun</td>
<td></td>
</tr>
<tr>
<td>Juncus ensifolius</td>
<td>Daggerleaf rush</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Juncus acuminatus</td>
<td>Tapertip rush</td>
<td>12' O.C.</td>
<td>Sun</td>
<td></td>
</tr>
<tr>
<td>Juncus oxymeris</td>
<td>Pointed rush</td>
<td>12' O.C.</td>
<td>Sun</td>
<td></td>
</tr>
<tr>
<td>Lysichitum americanum</td>
<td>Skunk cabbage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sagittaria laifolia</td>
<td>Wapato</td>
<td>12' O.C.</td>
<td>Sun</td>
<td>Favors prolonged inundation (to 6")</td>
</tr>
<tr>
<td>Scirpus acutus</td>
<td>Hardstem bulrush</td>
<td>18-24’ O.C.</td>
<td>Sun</td>
<td>Favors prolonged inundation</td>
</tr>
<tr>
<td>Scirpus microcarpus</td>
<td>Small-fruited bulrush</td>
<td>12’ O.C.</td>
<td>Sun, part shade</td>
<td>Tolerates prolonged inundation (to 6")</td>
</tr>
<tr>
<td>Scirpus tabernaemontanii</td>
<td>Softstem bulrush</td>
<td>18-24’ O.C.</td>
<td>Sun</td>
<td>Favors prolonged inundation</td>
</tr>
<tr>
<td>Sparganium emersum</td>
<td>Simplestem bur reed</td>
<td>12-18’ O.C.</td>
<td>Sun, part shade</td>
<td></td>
</tr>
<tr>
<td>Aquatics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nuphar luteum ssp.</td>
<td>Pond lily</td>
<td>3' O.C.</td>
<td>Sun</td>
<td></td>
</tr>
</tbody>
</table>
Table B.2. PLANTS FOR MOIST AREAS

<table>
<thead>
<tr>
<th>Botanical Name</th>
<th>Common Name</th>
<th>Spacing</th>
<th>Preferred Light</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trees</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alnus rubra</td>
<td>Red alder</td>
<td>6-10' O.C.</td>
<td>Sun</td>
<td>Highly adaptable; nitrogen fixer</td>
</tr>
<tr>
<td>Acer macrophyllum</td>
<td>Big leaf maple</td>
<td>12-18' O.C.</td>
<td>Sun</td>
<td></td>
</tr>
<tr>
<td>Cornus stolonifera</td>
<td>Redtwig dogwood</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crataegus douglasii</td>
<td>Black hawthorn</td>
<td>6-10' O.C.</td>
<td>Sun</td>
<td></td>
</tr>
<tr>
<td>Fraxinus latifolia</td>
<td>Oregon ash</td>
<td>10-15' O.C.</td>
<td>Sun, part shade</td>
<td></td>
</tr>
<tr>
<td>Thuja plicata</td>
<td>Western red cedar</td>
<td>12-18' O.C.</td>
<td>Park shade, shade</td>
<td></td>
</tr>
<tr>
<td>Shrubs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acer circinatum</td>
<td>Vine maple</td>
<td>10 O.C.</td>
<td>Part sun, shade</td>
<td></td>
</tr>
<tr>
<td>Lonicera involucrata</td>
<td>Twinberry</td>
<td>5' O.C.</td>
<td>Part shade</td>
<td>Tolerates fluctuating water table</td>
</tr>
<tr>
<td>Oemleria cerasiformis</td>
<td>Indian plum</td>
<td>5-8' O.C.</td>
<td>Shade</td>
<td></td>
</tr>
<tr>
<td>Physocarpus capitatus</td>
<td>Pacific ninebark</td>
<td>5-8' O.C.</td>
<td>Part shade</td>
<td></td>
</tr>
<tr>
<td>Rosa nutkana</td>
<td>Nootka rose</td>
<td>5' O.C.</td>
<td>Sun</td>
<td></td>
</tr>
<tr>
<td>Rosa pisocarpa</td>
<td>Swamp rose</td>
<td>5' O.C.</td>
<td>Part shade</td>
<td></td>
</tr>
<tr>
<td>Rubus spectabilis</td>
<td>Salmonberry</td>
<td>5' O.C.</td>
<td>Sun, part shade</td>
<td>Prefers slightly drier soils</td>
</tr>
<tr>
<td>Sambucus racemosa</td>
<td>Red elderberry</td>
<td>5-8' O.C.</td>
<td>Part shade</td>
<td></td>
</tr>
<tr>
<td>Symphoricarpos albus</td>
<td>Snowberry</td>
<td>5' O.C.</td>
<td>Sun, shade</td>
<td>Prefers well drained soils</td>
</tr>
<tr>
<td>Herbaceous</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aster chilensis ssp.</td>
<td>Common California aster</td>
<td>3' O.C.</td>
<td>Sun</td>
<td></td>
</tr>
<tr>
<td>Hallii</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aster subspicatus</td>
<td>Douglas's aster</td>
<td>3' O.C.</td>
<td>Sun</td>
<td></td>
</tr>
<tr>
<td>Camassia quamash ssp.</td>
<td>Common camas</td>
<td>12'' O.C.</td>
<td>Part shade</td>
<td>Bulb; prefers drier soil</td>
</tr>
<tr>
<td>Carex aperta</td>
<td>Columbia sedge</td>
<td>12'' O.C.</td>
<td>Sun</td>
<td></td>
</tr>
<tr>
<td>Carex deweyana</td>
<td>Dewey's sedge</td>
<td>12'' O.C.</td>
<td>Sun, part shade</td>
<td></td>
</tr>
<tr>
<td>Carex obnupta</td>
<td>Slough sedge</td>
<td>12'' O.C.</td>
<td>Part shade</td>
<td></td>
</tr>
<tr>
<td>Carex stipata</td>
<td>Sawbeak sedge</td>
<td>12'' O.C.</td>
<td>Part shade</td>
<td></td>
</tr>
<tr>
<td>Gualtheria shallon</td>
<td>Salal</td>
<td>3-4' O.C.</td>
<td>Part shade, shade</td>
<td>Prefers moist, well-drained soils</td>
</tr>
<tr>
<td>Juncus tenuis</td>
<td>Slender rush</td>
<td>12'' O.C.</td>
<td>Sun</td>
<td></td>
</tr>
<tr>
<td>Juncus patens</td>
<td>Spreading rush</td>
<td>1-2' O.C.</td>
<td>Sun</td>
<td></td>
</tr>
<tr>
<td>Polystichum munitum</td>
<td>Sword fern</td>
<td>3-4' O.C.</td>
<td>Part sun, shade</td>
<td>Prefers moist, well-drained soils</td>
</tr>
<tr>
<td>Scirpus microcarpus</td>
<td>Small-fruited bulrush</td>
<td>12'' O.C.</td>
<td>Sun, part shade</td>
<td>Prefers moister soils</td>
</tr>
</tbody>
</table>
Table B.3. PLANTS FOR DRY AREAS

<table>
<thead>
<tr>
<th>Botanical Name</th>
<th>Common Name</th>
<th>Spacing</th>
<th>Preferred Light</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trees</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alnus rubra</td>
<td>Red alder</td>
<td>6-10' O.C.</td>
<td>Sun</td>
<td>Highly adaptable; nitrogen fixer</td>
</tr>
<tr>
<td>Corylus cornuta</td>
<td>Hazelnut</td>
<td>6-10' O.C.</td>
<td>Sun</td>
<td></td>
</tr>
<tr>
<td>Prunus emarginata</td>
<td>Bitter cherry</td>
<td>6-10' O.C.</td>
<td>Sun</td>
<td>Shade intolerant</td>
</tr>
<tr>
<td>Quercus garryana</td>
<td>Oregon white oak</td>
<td>10-15' O.C.</td>
<td>Sun</td>
<td></td>
</tr>
<tr>
<td>Pseudotsuga menziesii</td>
<td>Douglas fir</td>
<td>10-15' O.C.</td>
<td>Sun, part shade</td>
<td></td>
</tr>
<tr>
<td>Shrubs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amelanchier alnifolia</td>
<td>Western</td>
<td>5' O.C.</td>
<td>Sun, part shade</td>
<td></td>
</tr>
<tr>
<td>Corylus cornuta</td>
<td>Oceanspray</td>
<td>9' O.C.</td>
<td>Sun, part shade</td>
<td></td>
</tr>
<tr>
<td>Prunus emarginata</td>
<td>Red flowering</td>
<td>6' O.C.</td>
<td>Sun, part shade</td>
<td></td>
</tr>
<tr>
<td>Rosa gymnocarpa</td>
<td>Baldpore rose</td>
<td>6' O.C.</td>
<td>Sun</td>
<td></td>
</tr>
<tr>
<td>Rubus parviflorus</td>
<td>Thimbleberry</td>
<td>5' O.C.</td>
<td>Part shade</td>
<td></td>
</tr>
<tr>
<td>Sambucus racemosa</td>
<td>Red elderberry</td>
<td>5' O.C.</td>
<td>Part shade</td>
<td></td>
</tr>
<tr>
<td>Symphoricarpos albus</td>
<td>Snowberry</td>
<td>5' O.C.</td>
<td>Sun/shade</td>
<td></td>
</tr>
<tr>
<td>Herbaceous</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Achillea millefolium</td>
<td>Western yarrow</td>
<td>12-18" O.C.</td>
<td>Sun</td>
<td>1 lb/acre</td>
</tr>
<tr>
<td>Arctostaphylos uva-ursi</td>
<td>Kinnikinnick</td>
<td></td>
<td>Sun/shade</td>
<td></td>
</tr>
<tr>
<td>Bromus carinatus</td>
<td>Native California brome</td>
<td></td>
<td>Sun</td>
<td>10 lb/acre</td>
</tr>
<tr>
<td>Elymus glaucus</td>
<td>Blue wildrye</td>
<td></td>
<td>Sun</td>
<td>9 lb/acre</td>
</tr>
<tr>
<td>Festuca rubra v. rubra</td>
<td>Native red fescue</td>
<td></td>
<td>Sun</td>
<td></td>
</tr>
<tr>
<td>Fragaria vesca</td>
<td>Wood strawberry</td>
<td>1' O.C.</td>
<td>Part shade</td>
<td>8 lb/acre</td>
</tr>
<tr>
<td>Gaultheria shallon</td>
<td>Salal</td>
<td>3-4' O.C.</td>
<td>Part shade</td>
<td>Prefers moist, well-drained soils</td>
</tr>
<tr>
<td>Lupinus bicolor</td>
<td>Two-color lupine</td>
<td></td>
<td>Sun</td>
<td>8 lb/acre</td>
</tr>
<tr>
<td>Lupinus latifolius</td>
<td>Broadleaf lupine</td>
<td></td>
<td>Sun</td>
<td></td>
</tr>
<tr>
<td>Lupinus polyphyllus</td>
<td>Large-leaved lupine</td>
<td></td>
<td>Sun</td>
<td>8 lb/acre</td>
</tr>
<tr>
<td>Mahonia aquifolium</td>
<td>Tall Oregon grape</td>
<td>4-6' O.C.</td>
<td>Sun, part shade</td>
<td></td>
</tr>
<tr>
<td>Mahonia nervosa</td>
<td>Cascade Oregon grape</td>
<td>3-4' O.C.</td>
<td>Sun, part shade</td>
<td></td>
</tr>
<tr>
<td>Mahonia repens</td>
<td>Creeping Oregon grape</td>
<td>2-3' O.C.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solidago canadensis</td>
<td>Canada goldenrod</td>
<td></td>
<td>Sun</td>
<td>2 lb/acre</td>
</tr>
</tbody>
</table>

B.4.00 SEED MIXES

The seed mixes indicated in Tables B.4 and B.5 shall be used to overseed in water quality and quantity treatment facilities, and vegetated corridors. One seed mix is prescribed for use in wet and moist zones, and one for dry zones.

City of Wilsonville
Public Works Standards - 2006
Alternative mixes may be approved by the City. Broadcast application is
discouraged to prevent wind drift of the smaller, native seeds. Lower rates may be
used in areas where seeding is intended to augment other plantings (e.g. the
bottom of water quality swales).

Table B.4. WET/MOIST AREA SEED MIX

<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>Common Name</th>
<th>% Mixture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elymus glaucus</td>
<td>Blue Wildrye</td>
<td>47</td>
</tr>
<tr>
<td>Hordeum brachyantherum</td>
<td>Meadow Barley</td>
<td>40</td>
</tr>
<tr>
<td>Deschampsia caespitosa</td>
<td>Tufted Hairgrass</td>
<td>10</td>
</tr>
<tr>
<td>Glyceria occidentalis</td>
<td>Western Mannagrass</td>
<td>2</td>
</tr>
<tr>
<td>Beckmannia syzigachne</td>
<td>American Sloughgrass</td>
<td>1</td>
</tr>
</tbody>
</table>

*Pro Time 840 Native Wetland Mix. Application rate: 20 – 40 lbs/acre

Table B.5. DRY AREA SEED MIX

<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>Common Name</th>
<th>% Mixture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elymus glaucus</td>
<td>Blue Wildrye</td>
<td>60</td>
</tr>
<tr>
<td>Hordeum brachyantherum</td>
<td>Meadow Barley</td>
<td>30</td>
</tr>
<tr>
<td>Bromus carinatus</td>
<td>Native California Brome</td>
<td>10</td>
</tr>
</tbody>
</table>

*Pro Time 400 Native Grass Mix. Application rate: 15 – 30 lbs/acre

B.5.00 PLANTING SCHEMES

The following schemes provide general recommendations for plant placement in
water quality facilities and buffers. These are guidelines only; planting plans
must be individually tailored to unique conditions at each site. The City’s Storm
Water Master Plan (2001) also provides guidance for species selection and
spacing.

B.5.01 Water Quality Swale

Water quality swales should generally be vegetated with emergents in the swale
bottom, with emergents, groundcovers, and shrubs on the sideslopes, and with
groundcovers, shrubs, and trees on the adjacent dry areas. Typically, the swale
bottom is wet, the lower 8 to 12 inches of the sideslopes are moist, and areas 12
inches above the bottom of the swale are dry.

B.5.02 Extended Dry Pond/Extended Wet Pond

Extended dry ponds and extended wet ponds should be vegetated similarly to
water quality swales. Emergents should be placed in the pond bottom, emergents,
groundcovers, and shrubs on the sideslopes, and groundcovers, shrubs, and trees on the adjacent dry areas. The hydrologic planting zones will vary in the facilities, but typically, wet areas occur at or below the permanent pool elevation, moist areas occur between the permanent pool elevation and maximum pool elevation, and dry areas occur above the maximum pool elevation.

B.5.03 Constructed Wetland

Constructed wetlands should feature dense emergent plantings in the wet zones, which are typically composed of deep and shallow emergent areas. Floating aquatics and emergents capable of surviving extended or permanent inundation may also be placed in the permanent pool areas. The moist zones should be planted with emergents, groundcovers, shrubs, and trees, and the dry zones with groundcovers, shrubs, and trees.

B.5.04 Vegetated Corridors

Three types of vegetated corridors are described below: headwater forests, riparian forests, and forested wetlands. Upland and wetland habitats are present in all three types; local topography and drainage patterns dictate where the habitats occur.

a. **Headwater Forest:** Headwater forests are densely wooded and wet throughout most of the year. Steep valley slopes prone to landslides drain the top of the watershed to the stream below. Perennial to intermittent flows may occur, depending on local conditions. Channels range from shallow to deeply entrenched, with rock and large woody debris common throughout. A mixture of wetland and upland species may occur in this community, depending on local drainage and topography. The headwater forest should be planted with 200 trees per acre (three species min.), 300 shrubs per acre (four species min.), and 1,000 emergents per acre (two species min.).

b. **Riparian Forest:** Riparian forests are moderately to densely wooded floodplains beside a stream. Landscape character ranges from flat with open floodplain to moderately steep with U-shaped valleys and upland terraces. They are frequently inundated during the rainy season and moist to dry during the summer. Hydrologic conditions vary. Channels with large woody debris are typically moderately to deeply incised with flat floodplains. Wetland species are the norm, but upland species do occur where microtopography allows. The riparian forest should be planted with 170 trees per acre (two species min.), 300 shrubs per acre (four species min.), and 2,000 emergents per acre (three species min.).

c. **Forested Wetland:** Forested wetlands are densely wooded, wet in the winter, and frequently dry out in the summer. The landscape is flat to gently rolling and may be perched above the stream in some areas. Frequently flooded with low-velocity overbank flows or rainwater results in shallow groundwater.
interaction or surface water influence into June in normal rainfall years. Stream channels range from shallow to deeply entrenched, depending on local conditions. A natural levee is common along the stream. The forested wetland should be planted with 200 trees per acre (two species min.), 300 shrubs per acre (three species min.), and 4,000 emergents per acre (three species min.).
APPENDIX C

INfiltration requirements, site characterization, and site suitability criteria

C.1.00 INTRODUCTION

a. This appendix specifies the site characterization and site suitability criteria that must be considered for siting infiltration treatment facilities.

b. For infiltration treatment facilities site selection and design decisions, a geotechnical and hydrogeologic report shall be prepared by a qualified engineer with geotechnical and hydrogeologic experience. A comparable professional, acceptable to the City, may also conduct the work if it is under the seal of a Professional Engineer registered in the State of Oregon. The design engineer shall utilize a team of certified or registered professionals in soil science, hydrogeology, geology, and other related fields. A member of this design team shall be considered/designated the site professional (as referenced in this Appendix C).

C.2.00 SITE CHARACTERIZATION

Applicant shall conduct a site characterization study prior to siting and designing infiltration treatment facilities. Information gathered during initial geotechnical investigations shall be used for the site characterization. Key data and issues to be characterized include, but are not limited to, the following.

C.2.01 Surface Features Characterization

a. Topography within 500 feet of the proposed facility. The plan shall show existing ground contours (shaded) and proposed ground contours at a minimum 2-foot contour interval. Slopes steeper than 6H:1V shall be identified.

b. Anticipated site use (residential, commercial, or industrial).

c. Location of water supply wells within 500 feet of proposed facility.

d. Location of ground water protection areas and/or 1-, 5-, and 10-year time of travel zones for municipal well protection areas.

e. A description of local site geology, including soil or rock units likely to be encountered, the groundwater regime, and geologic history of the site.

f. Site location relative to identified flood plain or floodway.
g. Site location relative to surface water features, such as waterways, wetlands, etc.

C.2.02 Subsurface Characterization

a. Subsurface explorations (test holes or test pits) shall be performed to a depth of at least five times the maximum design depth of ponded water proposed for the infiltration treatment facility.

b. Continuous sampling (representative samples from each soil type and/or unit) to a depth below the base of the infiltration facility of 2.5 times the maximum design ponded water depth, but not less than 6 feet.

1. For basins, at least one test pit or test hole per 5,000 square feet of basin infiltrating surface (in no case less than two per basin).

2. For trenches, at least one test pit or test hole per 50 feet of trench length (in no case less than two per trench).

c. Prepare detailed logs for each test pit or test hole and a map showing the location of the test pits or test holes. Logs must include at a minimum, depth of pit or hole, soil descriptions, depth to water, presence of stratification.

C.2.03 Soil Testing

Soil characterization for each soil unit (soils of the same texture, color, density, compaction, consolidation and permeability) encountered should include:

a. Grain-size distribution (ASTM D-422 or AASHTO T-311).

b. Textural class (USDA).

c. Percent clay content (include type of clay, if known) as determined by hydrometer testing (ASTM D-422 or AASHTO T-88).

d. Cation exchange capacity (CEC) and organic matter content for each soil type and strata. Where distinct changes in soil properties occur, to a depth below the base of the infiltration treatment facility of at least 2.5 times the maximum design water depth, but not less than 6 feet. Consider if soils are already contaminated, thus diminishing pollutant sorptive capacity.

e. For soils with low CEC and organic content, deeper characterization of soils may be required by the City (refer to Section D.3.00, “Site Suitability Criteria”).

f. Color/mottling.

g. Variations and nature of stratification.
C.2.04 Infiltration Rate Determination

1. Determine the representative infiltration rate of the unsaturated vadose zone based on field infiltration tests and grain size/texture determinations. Field infiltration rates shall be determined using infiltration test methods as presented in the King County Surface Water Design Manual or comparable reference; infiltration testing shall be done in the soil stratum at the design elevation of the bottom of the infiltration facility.

2. Site testing shall be performed to verify infiltration rate estimates based on soil size distribution and/or texture. As a minimum, one soil grain-size distribution analysis (ASTM D-422 or AASHTO T-311) per soil stratum in each test hole shall be performed within 2.5 times of the maximum design water depth, but not less than 6 feet.

3. The infiltration rate is needed for routing and sizing purposes and for classifying the soil for treatment adequacy.

C.2.05 Infiltration Receptor

Infiltration receptor (unsaturated and saturated soil receiving the stormwater) characterization shall include:

a. Installation of ground water monitoring wells, unless the highest ground water level is known to be at least 50 feet below the proposed infiltration facility. Use at least three wells per infiltration treatment facility, or three hydraulically connected surface and ground water features. This will establish a three dimensional relationship for the ground water table. The monitoring wells will:

1. Monitor the seasonal ground water levels at site through a minimum of one wet-season.

2. Consider the potential for both unconfined and confined aquifers, or confining units, at the site that may influence the proposed infiltration facility as well as the ground water gradient. Other approaches to determine ground water levels at the proposed site could be considered if pre-approved by the City Engineer or the City’s authorized representative.

3. Determine the ambient ground water quality, if there is a concern identified by the City.

b. Estimate the volumetric water holding capacity of the infiltration receptor soil. This is the soil layer below the infiltration treatment facility and above the seasonal high-water mark, bedrock, hardpan, or other low permeability layer. This analysis should be conducted at a conservatively high infiltration rate based on vadose zone porosity, and the water quality runoff volume to be infiltrated. Along with an analysis of ground water movement, this will be
used in determining volumetric limitations that would adversely affect drawdown.

c. Depth to ground water table and to bedrock/impermeable layers.

d. Seasonal variation of ground water table based on recorded well water levels and observed mottling.

e. Existing ground water flow direction and gradient.

f. Lateral extent of infiltration receptor.

g. Horizontal hydraulic conductivity of the saturated zone to assess the aquifer’s ability to laterally transport the infiltrated water.

h. Impact of the infiltration rate and volume at the project site on ground water mounding, flow direction, and water table; and the discharge point or area of the infiltrating water. A ground water mounding analysis shall be conducted at all sites where the depth to seasonal ground water table or low permeability stratum is less than 15 feet and the runoff to the infiltration treatment facility is from more than one acre. The site professional can consider conducting an aquifer test or slug test and the type of ground water mounding analysis necessary at the site.

C.3.00 SITE SUITABILITY CRITERIA

This section specifies the site suitability criteria that must be considered for siting infiltration treatment facilities. When a site investigation reveals that any of the nine applicable criteria cannot be met, appropriate mitigation measures must be implemented so that the infiltration treatment facility will not pose a threat to safety, health, and the environment.

C.3.01 Setbacks

Setback requirements shall be in compliance with City regulations, uniform building code requirements, and/or state regulations. Also evaluate on-site and off-site structural stability due to extended subgrade saturation and/or head loading of the permeable layer, including the potential impacts to downgradient properties, especially on hills with known side-hill seeps.

The following setbacks are provided as guidance.

a. From drinking water wells, septic tanks or drainfields, and springs used for public drinking water supplies. Infiltration treatment facilities upgradient of drinking water supplies and within 1, 5 and 10-year time of travel zones must comply with Oregon Health Division requirements.
b. From building foundations (a minimum of 20 feet downslope and 100 feet upslope).

c. From the top of slopes steeper than 10% (setback a minimum of 50 feet from crest of slope)

C.3.02 Ground Water Drinking Water Protection Areas

A site shall be deemed not suitable if the infiltrated stormwater will be in violation of OAR 340-044-0014.

C.3.03 High Vehicle Traffic Areas

Infiltration treatment facilities may be considered for runoff from areas of industrial activity and the high vehicle traffic areas described below, if appropriate pretreatment (including oil removal) is provided to ensure that groundwater quality standards will not be violated and that the infiltration treatment facility will not be adversely affected.

High Vehicle Traffic Areas are defined as:

a. Commercial or industrial sites subject to an expected ADT ≥ 100 vehicles/1,000 square feet gross building (trip generation); and

b. Road intersections with an ADT of $\geq 25,000$ on the main roadway, or $\geq 15,000$ on any intersecting roadway.

C.3.04 Soil Infiltration Rate/Drawdown Time

a. Infiltration rates short-term and long-term:

1. For treatment purposes the short-term soil infiltration rate should be 2.4 in./hour, or less, to a depth of 2.5 times the maximum design pond water depth, or a minimum of 6 feet below the base of the infiltration treatment facility. This infiltration rate is also typical for soil textures that possess sufficient physical and chemical properties for adequate treatment, particularly for soluble pollutant removal (see criteria # 6, soil and physical and chemical suitability for treatment). It is comparable to the textures represented by Hydrologic Groups B and C. Long-term infiltration rates up to 2.0 inches/hour can also be considered, if the infiltration receptor is not a sole-source aquifer, and in the judgment of the site professional, the treatment soil has characteristics comparable to those specified in criteria #6 to adequately control the target pollutants.

2. The long-term infiltration rate should also be used for maximum drawdown time and routing calculations.
b. Drawdown time:

It is necessary to empty the maximum ponded depth (water quality volume) from the infiltration basin within 24 hours from the completion of inflow to the storage pond in order to meet the following objectives:

1. Restore hydraulic capacity to receive runoff from a new storm.
3. Aerate vegetation and soil to keep the vegetation healthy.
4. Enhance the biodegradation of pollutants and organics in the soil.

C.3.05 Depth to Bedrock, Water Table, or Impermeable Layer

The base of all infiltration basins or trench systems shall be ≥ 5 feet above the seasonal high-water mark, bedrock (or hardpan) or other low permeability layer. A minimum separation of 3 feet may be considered if the ground water mounding analysis, volumetric receptor capacity, and the design of the overflow and/or bypass structures are judged by the site professional to be adequate to prevent overtopping and to meet the site suitability criteria specified in this section.

C.3.06 Soil Physical and Chemical Suitability for Treatment

The soil texture and design infiltration rates should be considered along with the physical and chemical characteristics specified below to determine if the soil is adequate for removing the target pollutants. The following soil properties must be carefully considered in making such a determination:

a. CEC of the treatment soil must be ≥ 5 millequivalents (meq) CEC/100 g dry soil (USEPA Method 9081). Consider empirical testing of soil sorption capacity, if practicable. Ensure that soil CEC is sufficient for expected pollutant loadings, particularly heavy metals. Lower CEC content may be considered if it is based on a soil loading capacity determination for the target pollutants that is accepted by the City Engineer or the City’s authorized representative.

b. Depth of soil used for infiltration treatment must be a minimum of 18 inches.

c. Organic content of the treatment soil as determined by ASTM D-2974: Organic matter can increase the sorptive capacity of the soil for some pollutants. The site professional should evaluate whether the organic matter content is sufficient for control of the target pollutant(s).

d. Waste fill materials should not be used as infiltration media nor should such media be placed over uncontrolled or non-engineered fill soils.
e. Engineered soils may be used to meet the design criteria in this section. Field performance evaluation(s), using acceptable protocols, would be needed to determine feasibility, and acceptability by the City Engineer or the City’s authorized representative.

C.3.07 **Seepage Analysis and Control**

Determine whether there would be any adverse effects caused by seepage zones on nearby building foundations, basements, roads, parking lots or sloping sites.

C.3.08 **Impact of Roadway Deicers**

Potential impact of roadway deicers on potable water wells must be considered in the siting determination. Mitigation measures must be implemented if infiltration of roadway deicers can cause a violation of ground water quality standards.

C.3.09 **Verification Testing of the Completed Facility**

Verification testing of the completed full-scale infiltration treatment facility is recommended to confirm that the design infiltration parameters are adequate to manage the design volume and meet the pollutant capture objectives of the infiltrating soil. The site professional should determine the duration and frequency of the verification testing program for the potentially impacted ground water. The ground water monitoring wells installed during site characterization may be used for this purpose. Long-term in-situ drawdown and water quality monitoring for a two-year period, would be preferable.
APPENDIX D

STORMWATER QUALITY FACILITIES DESIGN

D.1.00 INTRODUCTION

The purpose of this appendix is to outline the design and construction guidelines for water quality facilities in the City of Wilsonville. These guidelines may be used to comply with the water quality facility design standards in Section 301.5.00, “Water Quality Facility Design.” It is the responsibility of the design engineer to determine the appropriate design criteria that ensures compliance with the City of Wilsonville design standards, in combination with other federal, state, and local laws and ordinances.

Safety of stormwater quantity facilities shall be in conformance with Section 301.3.09.c, “Safety.”

D.2.00 FILTRATION

D.2.01 Biofiltration Swale

a. Hydraulic design criteria

1. Design storm = water quality storm
2. Minimum hydraulic residence time = 9 minutes.
3. Maximum water design depth = 0.5 feet.
4. Minimum freeboard = 1.0 foot (for facilities not protected from high flows).
5. Manning n value = 0.24.
6. Maximum velocity = 2.0 feet per second based on 25-year flow.

b. Design criteria

1. Provide an energy dissipater at the entrance to the swale as per Section 301.3.08, “Outfall Protection,” or a swale inflow spreader as shown in Detail No. S-2225 of these standards. It shall be designed to reduce velocities and spread the flow across the treatment cross-section.
2. Intermediate flow spreaders may be required.
3. Minimum length = 100 feet.
4. Minimum slope = 0.5%.

5. Minimum bottom width = 2 feet.

6. Maximum treatment depth (measured from top of gravel) = 0.5 feet.

7. Maximum sideslope:

 (1) In treatment area = 4H:IV

 (2) Above treatment area = 3H:IV

8. Use 2"-3/4" gap-graded river aggregate placed 2½ to 3 inches deep on jute matting placed over 6 inches of topsoil, or use another base-stabilization method approved by the City’s authorized representative. Extend river aggregate, jute, and topsoil to top of treatment area.

9. If the swale slope is less than 1.5%, an underdrain shall be installed using a perforated pipe, or equivalent. Amend the soil if necessary to allow effective percolation of water to the underdrain. Underdrains can be made of 6 inch diameter Schedule 40 PVC perforated pipe with 6 inches of drain gravel over the pipe. The gravel and pipe must be enclosed by geotextile fabric. Slopes greater than 2.5% need check dams (riprap) at vertical drops of 12-15 inches.

10. Retaining walls are not allowed in the treatment area.

11. Provide an approved outlet structure for all flows.

12. All exposed areas shall be protected with jute matting or an alternative approved by the City’s authorized representative.

13. Plant vegetation consistent with the requirements of Appendix B, "Landscape Requirements, Water Quality and Quantity Facilities."

D.2.02 Sand Filter

a. Design Criteria

1. The design of sand filters is based on Darcy’s Law¹:

 \[A = \frac{Q}{k \times i} \]

 where

 - \(A \) = area of sand filter.
 - \(Q \) = peak flow rate (from hydrograph).
 - \(k \) = sand permeability (3.5 feet/day).

¹A safety factor of 2 is applied to the equation.
\[i = \text{hydraulic gradient (see below).} \]
\[i = \frac{h + L}{L} \]

where \(h \) = height of water column over sand filter.
\(L \) = thickness of sand filter.

2. No drainage shall be allowed directly to the filter; it must first go through a catch basin, inlet, sedimentation manhole, or similar large debris collection device.

3. The sand filter shall infiltrate the entire water quality volume without overflow.

4. The drawdown period for sand filters shall not exceed 24 hours.

5. The sand filter shall consist of an inlet structure, a sand bed, underdrain piping, and a basin liner. Criteria for these components are given below.

b. Inlet Structure

The inlet structure shall spread the flow of incoming water uniformly across the surface of the filter medium during all anticipated flow conditions. At a minimum, the inflow spreader shall meet the requirements as provided in Section 301.3.08, “Outfall Protection,” or the swale inflow spreader as shown in Detail No. S-2225 of these standards. It shall be designed to reduce velocities and spread the flow across the treatment cross-section. Flow shall be spread in a manner that prevents roiling or otherwise disturbing the filter medium.

c. Sand Bed—Filter Medium

1. The length-to-width ratio shall be 2:1 or greater.

2. The sand bed configuration may be either of the two configurations as shown in Detail No. S-2270 of these standards. All depths shown are final compacted depths. The effects of consolidation and compaction must be taken into account when placing medium materials. The surface of the filter medium shall be level.

3. The filter bed medium shall consist of clean, medium to fine sand, with no organics, frozen pieces, or other deleterious materials. Sand used as a filter medium shall be certified by a certified testing laboratory as meeting or exceeding the gradation requirements in Table D.1. Sieve analysis shall be determined according to AASHTO T-27.
Table D.1. GRADATION REQUIREMENTS FOR FILTER BED MEDIUM

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>Percent Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/8-inch</td>
<td>100</td>
</tr>
<tr>
<td>No. 4</td>
<td>95-100</td>
</tr>
<tr>
<td>No. 8</td>
<td>80-100</td>
</tr>
<tr>
<td>No. 16</td>
<td>45-85</td>
</tr>
<tr>
<td>No. 30</td>
<td>15-60</td>
</tr>
<tr>
<td>No. 50</td>
<td>3-15</td>
</tr>
<tr>
<td>No. 100</td>
<td>< 4</td>
</tr>
</tbody>
</table>

d. Sand Bed With Gravel Filter (see Detail No. S-2270 of these standards)

1. The top layer shall be a minimum of 18 inches of sand meeting gradation requirements of Table D.1.

2. The sand shall be placed over a non-woven geofabric material, meeting the specifications provided in Table D.2, covering a layer of 1/2- to 2-inch washed drain rock. The finished depth of this drain rock shall be sufficient to provide a minimum of 2 inches of cover over the underdrain piping system.

3. No gravel is required below the underdrain piping system.

Table D.2. GEOFABRIC MATERIAL SPECIFICATIONS

<table>
<thead>
<tr>
<th>Property</th>
<th>Test Method</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit Weight</td>
<td>--</td>
<td>8 oz/sq (minimum)</td>
</tr>
<tr>
<td>Filtration Rate</td>
<td>--</td>
<td>0.08 inch/sec (minimum)</td>
</tr>
<tr>
<td>Puncture Strength</td>
<td>ASTM D-751 (modified)</td>
<td>125 lb (minimum)</td>
</tr>
<tr>
<td>Mullen Burst Strength</td>
<td>ASTM D-751</td>
<td>400 psi (minimum)</td>
</tr>
<tr>
<td>Tensile Strength</td>
<td>ASTM D-1682</td>
<td>200 lb (minimum)</td>
</tr>
<tr>
<td>Equivalent Opening Size</td>
<td>US Standard Sieve</td>
<td>80-120</td>
</tr>
</tbody>
</table>

e. Sand Bed Using Trench Design (see Detail No. S-2270 of these standards)

1. The top layer shall be a minimum of 12 inches of sand meeting gradation requirements of Table D.1.
2. The sand shall be placed over a non-woven geofabric material, meeting the specifications provided in Table D.2, covering a layer of ½- to 2-inch washed drain rock. The finished depth of this drain rock shall be sufficient to provide a minimum of 2 inches of cover over the underdrain piping system.

3. The piping and gravel shall be underlain with drainage matting meeting the specifications provided in Table D.3.

Table D.3. DRAINAGE MATTING MATERIAL SPECIFICATIONS

<table>
<thead>
<tr>
<th>Property</th>
<th>Test Method</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit Weight</td>
<td></td>
<td>20 oz/SY</td>
</tr>
<tr>
<td>Flow Rate (fabric)</td>
<td>ASTM D-2434</td>
<td>180 gpm/SF (minimum)</td>
</tr>
<tr>
<td>Permeability</td>
<td></td>
<td>0.124 cm/sec</td>
</tr>
<tr>
<td>Grab Strength (fabric)</td>
<td>ASTM D-1682</td>
<td>Dry Lg 90, Dry Wd 70, Wet Lg 95, Wet Wd 70</td>
</tr>
<tr>
<td>Puncture Strength (fabric)</td>
<td>COE CW-02215</td>
<td>42 (minimum)</td>
</tr>
<tr>
<td>Mullen Burst Strength</td>
<td>ASTM D-117</td>
<td>140 psi (minimum)</td>
</tr>
<tr>
<td>Equivalent Opening Size</td>
<td>US Standard Sieve</td>
<td>80 – 120</td>
</tr>
<tr>
<td>Flow Rate (drainage core)</td>
<td>Drexel Universal Test Method</td>
<td>14 gpm/ft. width</td>
</tr>
</tbody>
</table>

f. Underdrain Piping

1. The underdrain piping system shall consist of appropriately sized perforated pipes (minimum 4-inch diameter). The pipe used in this system shall be schedule 40 polyvinyl chloride (PVC) material, or an approved equal. Flexible perforated pipe will not be approved. Lateral spacing shall not exceed 10 feet.

2. The underdrain laterals shall be placed with positive gravity drainage to the collector pipe

3. The collector pipe shall have a minimum 1% grade toward the discharge point.

4. All laterals and collector pipe shall have cleanouts installed, accessible from the surface without removing or disturbing filter media.
g. Basin Liner

1. An impermeable liner is required for all sand filter systems. The liner shall comply with the requirements provided in Appendix E, “Water Quality Facility Liners.”

2. Geomembrane liners shall meet the requirements provided in Section E.4.03, “Geomembrane Liners.” They shall be placed on a smooth, compacted bed of sand, minimum 6 inches thick, graded as necessary to facilitate the hydraulic performance designed into the facility.

D.3.00 PONDS

D.3.01 Wet Ponds

a. Hydraulic design criteria

1. Permanent pool volume = 0.55 × WQV (Water Quality Volume).

2. Minimum water quality detention/retention volume = 1.0 × WQV.

3. Water quality drawdown time = 48 hours.

4. To calculate orifice size, use the following equation:

\[D = 24 \times \left(\frac{Q}{\pi C_D (2gH) \, h} \right)^{0.5} \]

where
- \(D \) = orifice diameter (inches).
- \(Q \) (cfs) = WQV(cf)/(48 hr × 60 min/hr × 60 sec/min).
- \(C_D \) = orifice coefficient (0.62 for square-edged entrance).
- \(g \) = gravitational constant (32.2 ft/sec²).
- \(H \) = permanent detention height (feet) to orifice centerline.

5. Maximum depth of permanent pool = 6 feet.

6. Maximum depth of water quality pool (not including permanent pool) = 2.5 feet.

7. Provide an emergency spillway sized to pass the 100-year storm event or an approved hydraulic equivalent. The emergency spillway shall be located in existing soils when feasible and shall be armored with riprap embedded in concrete, or other approved erosion protection extending to the toe of the embankment (see Detail No. S-2275 of these standards).
8. Provide for a basin dewatering system with a 24-hour maximum drawdown time.

b. Design Criteria

1. The pond configuration, as well as the inlet and outlet locations, shall maximize water travel time through the facility.

2. The pond shall be designed using the following surface-area-to-depth relationship (for the volume required by a permanent pool):

 70% of the surface area @ 2- to 6-foot depth

 30% of the surface area @ 0- to 2-foot depth

 The maximum depth of the permanent pool shall be 6 feet. The 0-to-2-foot depth shall be distributed evenly around the perimeter of the pond.

3. The facility shall be divided into at least two cells. The first cell (forebay) shall contain approximately 10% of the design surface area.

4. The construction of wet ponds and maintenance accessibility shall be in conformance with Section 301.2.03, “Design Criteria,” Section 301.3.09, “Detention/Retention Facility Protection,” and Section 301.4.04, “Access Road Design.”

5. The slopes in the treatment and surrounding areas of the pond shall be 3H:1V or flatter, unless approved by the City’s authorized representative. **Note:** If steeper slopes are desired, the site shall be fenced as described in Section 301.5.02.b.4, “Fencing.” The applicant shall provide calculations and geotechnical data indicating adequate slope stability. Calculations and data shall be provided from a Professional Engineer registered in the State of Oregon whose area of expertise is geotechnical engineering.

6. The average length-to-width ratio shall be at least 3:1. This ratio is critical to prevent “short-circuiting,” where water passes directly through the facility without being detained for any time.

7. If a riser pipe outlet is used, it shall be protected by a trash rack and antivortex plate. If an orifice plate is used, it shall be protected with a trash rack with at least 10 square feet of open surface area. In either case, the rack must be hinged or easily removable to allow for cleaning. The rack shall be adequately secured to prevent it from being removed or opened when maintenance is not in progress.
c. Dead Storage

1. The dead (permanent) storage volume, V_{pond}, is equivalent to the post-development runoff.

2. Calculating runoff volume using the SBUH method can be approximated by the following equation:

$$V = 25.9 \times A \times \% I + 27.7 \times A$$

where $V =$ runoff volume (cubic feet).

$A =$ total contributing land area (acres).

$\% I =$ percent of land area that is impervious (i.e., if the land is 20% impervious, enter 20 in the equation)

D.3.02 Extended Wet Pond

a. Hydraulic design criteria

1. Permanent pool volume $= 0.55 \times WQV$.

2. Minimum water quality detention/retention volume $= 1.0 \times WQV$.

3. Water quality drawdown time $= 48$ hours.

4. To calculate orifice size, use the following equation:

$$D = 24 \times \left[\frac{(Q / (\pi C_d [2gH]^{0.5}))}{0.5} \right]$$

where $D =$ orifice diameter (inches).

Q (cfs) $= WQV$(cf)/(48 hr $\times 60$ min/hr $\times 60$ sec/min).

$C_d =$ orifice coefficient (0.62 for square-edged entrance).

$g =$ gravitational constant (32.2 ft/sec²).

$H =$ $\frac{3}{8}$ temporary detention height (feet) to orifice centerline.

5. Maximum depth of permanent pool $= 2$ feet.

6. Maximum depth of water quality pool (not including permanent pool) $= 2.5$ feet.

7. Provide an emergency spillway sized to pass the 100-year storm event or an approved hydraulic equivalent. The emergency spillway shall be located in existing soils when feasible and shall be armored with riprap.
embedded in concrete, or other approved erosion protection extending to the toe of the embankment (see Detail No. S-2275 of these standards).

8. Provide for a basin dewatering system with a 24-hour maximum drawdown time.

b. Design criteria

1. Minimum of two cells, with the first cell (forebay) at least 10% of the design surface area. The forebay shall also constitute 20% of the treatment volume. Where space limits multicell design, use one cell with a forebay at the inlet to settle sediments and distribute flow across the wet pond.

2. Maximum sideslopes in basin treatment area = 3H:IV

3. Overexcavate by a minimum of 20% to allow for sediment deposition.

4. Minimum freeboard = 1 foot from 25-year design water surface elevation.

5. Retaining walls are not allowed in the treatment area.

6. Provide an approved outlet structure for all flows.

7. The construction of wet ponds and maintenance accessibility shall be in conformance with Section 301.2.03, “Design Criteria,” Section 301.3.09, “Detention/Retention Facility Protection,” and Section 301.4.04, “Access Road Design.”

D.3.03 Extended Dry Pond

a. Hydraulic design criteria

1. Permanent pool depth = 0.4 feet.

2. Permanent pool is to cover the entire bottom of the basin.

3. Minimum water quality detention/retention volume = 1.0 \times WQV.

4. Water quality drawdown time = 48 hours.

5. To calculate orifice size, use the following equation:

\[D = 24 \times \left[\frac{Q}{(\pi C_d [2gH]^{0.5})} \right]^{0.5} \]

where \(D \) = orifice diameter (inches),

\(Q \) (cfs) = \(WQV/(48 \text{ hr} \times 60 \text{ min/hr} \times 60 \text{ sec/min}) \).
Cd = orifice coefficient (0.62 for square-edged entrance).

\(g = \) gravitational constant (32.2 \(\text{ft/} \text{sec}^2 \)).

\(H = \) \(\frac{3}{2} \) temporary detention height (feet) to orifice centerline.

6. Maximum depth of water quality pool (not including permanent pool) = 4 feet.

7. Provide an emergency spillway sized to pass the 100-year storm event or an approved hydraulic equivalent. The emergency spillway shall be located in existing soils when feasible and armored with riprap embedded in concrete, or other approved erosion protection extending to the toe of the embankment (see Detail No. S-2275 of these standards).

b. Design criteria

1. Minimum of two cells, with the first cell (forebay) at least 10% of the design surface area. The forebay shall also constitute 20% of the treatment volume. Where space limits multicell design, use one cell with a forebay at the inlet to settle sediments and distribute flow across the wet pond.

2. Minimum bottom width = 4 feet

3. Maximum sideslope in basin treatment area = 4H:IV.

4. Minimum freeboard = 1 foot from 25-year design water surface elevation.

5. Retaining walls are not allowed in the treatment area.

6. An approved outlet structure shall be provided for all flows.

7. The construction of dry ponds and maintenance accessibility shall be in conformance with Section 301.2.03, “Design Criteria,” Section 301.3.09, “Detention/Retention Facility Protection,” and Section 301.4.04, “Access Road Design.”

D.4.00 WETLANDS – CONSTRUCTED TREATMENT WETLANDS

a. Hydraulic design criteria

1. Permanent pool volume = 0.55 \(\times \) WQV.

2. Water quality detention/retention volume = 1.0 \(\times \) WQV.

3. Water quality drawdown time = 48 hours.
4. To calculate orifice size, use the following equation:

\[D = 24 \times \left[\left(\frac{Q}{\pi C_d [2gH]^{0.5}} \right) \right]^{0.5} \]

where

- \(D \) = orifice diameter (inches).
- \(Q \) (cfs) = \(\frac{WQV(cf)}{(48 \text{ hr} \times 60 \text{ min/hr} \times 60 \text{ sec/min})} \).
- \(C_d \) = orifice coefficient (0.62 for square-edged entrance).
- \(g \) = gravitational constant (32.2 ft/sec\(^2\)).
- \(H \) = \(\frac{2}{3} \) temporary detention height (feet) to orifice centerline.

5. Maximum depth of permanent pool = 2.5 feet.

6. Maximum velocity through the wetland should average less than 0.01 feet per second for the water quality flow. Design should distribute flow uniformly across the wetland.

7. Provide an emergency spillway sized to pass the 100-year storm event or an approved hydraulic equivalent. The emergency spillway shall be located in existing soils when feasible and shall be armored with riprap embedded in concrete, or other approved erosion protection extending to the toe of the embankment (see Detail No. S-2275 of these standards).

8. Provide for a basin dewatering system with a 24-hour maximum drawdown time.

b. Design Criteria

1. Minimum of two cells, with the first cell (forebay) at least 10% of the surface area. The forebay shall also constitute 20% of the treatment volume. Where space limits multicell design, use one cell with a forebay at the inlet to settle sediments and distribute flow across the wet pond.

2. Permanent pool depth to be spatially varied throughout wetland.

3. Provide a perimeter zone 10 to 20 feet wide that is inundated during storms.

4. Maximum sideslopes for wetland planting = 5H:IV.

5. Maximum sideslopes for nonwetland planting = 3H:IV.

6. Overexcavate by a minimum of 20% to allow for sediment deposition.

7. Minimum freeboard = 1 foot from 25-year design water surface elevation.

8. Retaining walls are not allowed in the treatment area.
8. The construction of wetlands and maintenance accessibility shall be in conformance with Section 301.3.09, "Detention/Retention Facility Protection," and Section 301.4.04, "Access Road Design."

9. Provide an approved outlet structure for all flows.

D.5.00 INFILTRATION

D.5.01 Infiltration Trench

Design criteria

a. The design of infiltration trenches is based on Darcy’s Law:\(^{2}

\[A = 2.0 \times Q \div (f \times i) \]

Where \(A = \) area of trench bottom (square feet).
\(Q = \) design flow rate (cfs).
\(f = \) infiltration rate of soil or infiltration media (ft/sec).
\(i = \) hydraulic gradient (see below).

\[i = \frac{h + L}{L} \]

where \(h = \) height of water column over infiltration media.
\(L = \) distance from surface to bottom of trench

b. The infiltration trench shall infiltrate the entire water quality storm without overflow.

c. Infiltration facilities shall not be accepted in soils with a tested infiltration rate of less than 0.50 inches per hour.

d. There shall be no less than 3 feet of undisturbed depth of infiltration medium between the bottom of the facility and any impervious layer (hardpan, solid rock, high groundwater levels, etc.).

e. Drawdown time (time for the trench to empty water from the water quality storm) shall not exceed 24 hours.

f. Infiltration trenches shall meet the following setback requirements for downstream slopes: minimum of 100 feet from slopes of 16%; add 5 feet of setback for each additional percent of slope up to 30%; 200-foot setback for slopes of 30%; infiltration trenches shall not be used where slopes exceed 30%.

\(^{2}\) A safety factor of 2 is applied to the equation.
g. All infiltration trenches shall have an overflow installed that is capable of transporting the design capacity of the water delivery system through the facility to an approved stormwater receiving system if the facility infiltration capacity is exceeded. An approved stormwater receiving system is a stream, lake, or pond, or a storm sewer or drainage ditch. Overflows shall be designed with appropriate erosion-control devices.

h. Each trench shall have one slotted observation pipe (4-inch) that extends to the bottom of the trench, at a point approximately halfway along the trench. The observation pipe shall have a threaded or hinged cap or plug.

i. Drain medium shall have filter fabric between the medium and native soils or backfill meeting specifications established in Table D.2.

j. Infiltration areas shall be clearly marked before site work begins to avoid soil disturbance during construction. No vehicular construction traffic, except that specifically used to construct the facility, shall be allowed within 10 feet of infiltration trench areas.

k. An certified soils scientist (ARCPACS certification), or suitably trained person working under the supervision of a Professional Engineer registered in the State of Oregon, shall inspect the soil after the system is excavated and before trenches are filled with drain medium, to confirm that soils remain in suitable condition to perform at anticipated infiltration rates.

D.5.02 Infiltration Basin

Design criteria

a. The design of infiltration trenches is based on Darcy’s Law\(^3\):

\[
A = 2.0 \times Q \div (f \times i)
\]

Where

- \(A \) = area of trench bottom (square feet).
- \(Q \) = design flow rate (cfs).
- \(f \) = infiltration rate of soil or infiltration media (ft/sec).
- \(i \) = hydraulic gradient (see below).

\[
i = \frac{(h + L)}{L}
\]

where

- \(h \) = height of water column over infiltration media.
- \(L \) = distance from surface to bottom of trench

b. The infiltration basin shall infiltrate the entire water quality storm without overflow.

\(^3\) A safety factor of 2 is applied to the equation.
c. Infiltration basins shall meet the following setback requirements for
downstream slopes: minimum of 100 feet from slopes of 10%; add 5 feet of
setback for each additional percent of slope up to 30%; 200-foot setback for
slopes of 30%; infiltration trenches shall not be used where slopes exceed
30%.

d. All infiltration basins shall have an overflow installed that is capable of
transporting the design capacity of the water delivery system through the
facility to an approved stormwater receiving system if the facility infiltration
capacity is exceeded. An approved stormwater receiving system is a stream,
lake, or pond, or a storm sewer or drainage ditch. Overflows shall be designed
with appropriate erosion-control devices.

e. Any imported drain medium shall have filter fabric between the medium and
native soils or backfill.

f. Two staff gauges shall be installed, at opposite ends of the bottom of the
basin, to enable maintenance staff to measure the depth of accumulated silts.

g. Infiltration areas shall be clearly marked before site work begins to avoid soil
disturbance during construction. No vehicular traffic, except that specifically
used to construct the facility, shall be allowed within 10 feet of infiltration
basin areas.

h. A certified soils scientist (ARCPACS certification), or suitably trained person
working under the supervision of a Professional Engineer registered in the
State of Oregon, shall inspect the soil after the system is excavated and before
the basin is filled with drain medium, to confirm that soils remain in suitable
condition to accept anticipated infiltration.

i. Infiltration facilities shall not be accepted in soils with a tested infiltration rate
of less than 0.50 inches per hour.

j. There shall be no less than 3 feet of undisturbed depth of infiltration medium
between the bottom of the facility and any impervious layer (hardpan, solid
rock, high groundwater levels, etc.).

k. Drawdown time (time for the basin to empty water from the water quality
design storm) shall not exceed 24 hours.
E.1.00 INTRODUCTION

The purpose of this appendix is to provide guidelines for the design and construction of water quality facilities in the City of Wilsonville.

E.2.00 WATER QUALITY FACILITY LINERS

Liners are intended to reduce the likelihood that pollutants in stormwater will reach groundwater when water quality facilities are constructed. In addition to groundwater protection considerations, some facility types require permanent water for proper functioning. An example is the first cell of a wet pond.

Treatment liners amend the soil with materials that treat stormwater before it reaches more freely draining soils. The liners have slow rates of infiltration, generally less than 2.4 inches per hour (1.7×10^{-5} centimeters per second [cm/s]), but not as slow as low-permeability liners. Treatment liners may use in-place native soils or imported soils. Low-permeability liners reduce infiltration to a very slow rate, generally less than 0.02 inches per hour (1.4×10^{-5} cm/s).

These types of liners should be used for industrial or commercial sites that have a potential for high pollutant loading in stormwater runoff. Low-permeability liners may be fashioned from compacted till, clay, geomembrane, or concrete. Till liners are preferred because of their general resilience and ease of maintenance.

E.2.01 General Design Criteria

a. **Table E.1** shows recommendations for the type of liner generally best suited for use with various water quality facilities.

b. Liners shall be evenly placed over the bottom or sides of the treatment area of the facility, as shown in **Table E.1**. Areas above the treatment volume that are required to pass flows greater than the water quality flow (or volume) need not be lined. However, the lining must extend to the top of the interior sideslope and be anchored, if it cannot be permanently secured by other means.
<table>
<thead>
<tr>
<th>Type of Facility</th>
<th>Area to Be Lined</th>
<th>Recommended Liner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presettling basin</td>
<td>Bottom and sides</td>
<td>Low-permeability liner or treatment liner. (If basin will intercept seasonal high groundwater table, treatment liner is recommended.)</td>
</tr>
<tr>
<td>Wet pond</td>
<td>First cell: bottom and sides to water quality design water surface</td>
<td>Low-permeability liner or treatment liner. (If wet pond will intercept seasonal high groundwater table, treatment liner is recommended.)</td>
</tr>
<tr>
<td></td>
<td>Second cell: bottom and sides to water quality design water surface</td>
<td>Treatment liner</td>
</tr>
<tr>
<td>Combined detention/water quality facility</td>
<td>First cell: bottom and sides to water quality design water surface</td>
<td>Low-permeability liner or treatment liner. (If facility will intercept seasonal high groundwater table, treatment liner is recommended.)</td>
</tr>
<tr>
<td></td>
<td>Second cell: bottom and sides to water quality design water surface</td>
<td>Treatment liner</td>
</tr>
<tr>
<td>Constructed treatment wetland</td>
<td>Bottom and sides, both cells</td>
<td>Low-permeability liner. (If facility will intercept seasonal high groundwater table, treatment liner is recommended.)</td>
</tr>
<tr>
<td>Sand filtration basin</td>
<td>Basin sides only</td>
<td>Treatment liner</td>
</tr>
<tr>
<td>Sand filter vault</td>
<td>Not applicable</td>
<td>No liner needed</td>
</tr>
<tr>
<td>Media filter (in vault)</td>
<td>Not applicable</td>
<td>No liner needed</td>
</tr>
<tr>
<td>Wet vault</td>
<td>Not applicable</td>
<td>No liner needed</td>
</tr>
</tbody>
</table>

c. For low-permeability liners, the following criteria apply:

1. Where the seasonal high groundwater elevation is likely to contact a low-permeability liner, liner buoyancy may be a concern. A low-permeability liner shall not be used unless evaluated and recommended by a Professional Engineer registered in the State of Oregon whose area of expertise is geotechnical engineering.
2. Where the design calls for grass to be planted over a low-permeability liner, a minimum of 6 inches of good topsoil or compost-amended native soil (2 inches compost tilled into 6 inches native till soil) must be placed over the liner in the area to be planted; 12 inches of cover is preferred.

E.2.02 Interference With Seasonal Groundwater

If a treatment liner will be below the seasonal high-water level, the liner’s pollutant-removal performance must be evaluated by a qualified professional, and the liner’s placement must be found as protective as if the liner were above the level of the groundwater. A qualified professional shall be either a Professional Engineer registered in the State of Oregon whose area of expertise is geotechnical engineering, a Certified Engineering Geologist registered in the State of Oregon, or a Professional Hydrogeologist registered in the State of Oregon.

See Sections E.3.00, below, and E.4.00 for more specific design criteria for treatment liners and low-permeability liners.

E.3.00 WATER QUALITY TREATMENT LINERS

Design Criteria

a. A 2-foot-thick layer of soil with a minimum organic content of 5% and a minimum CEC of 5 milliequivalents/100 grams can be used as a treatment layer beneath a water quality or quantity facility.

b. To demonstrate that in-place soils meet the above criteria, one sample per 1,000 square feet of facility area shall be tested. Each sample shall be a composite of subsamples taken throughout the depth of the treatment layer (usually 2 to 6 feet below the expected facility invert).

c. Typically, sidewall seepage is not a concern if the seepage flows through the same stratum as the bottom of the stormwater facility. However, if the treatment soil is an engineered soil or has very low permeability, the potential to bypass the treatment soil through the sidewalls may be significant. In those cases, the stormwater facility sidewalls should be lined with at least 18 inches of treatment soil, as described above, to prevent untreated seepage. This lesser soil thickness is based on unsaturated flow as a result of alternating wet and dry periods.

d. Organic content shall be measured on a dry-weight basis using ASTM D-2974.

e. CEC shall be tested using EPA laboratory method 9081.
f. Certification that imported soil meets the organic content and CEC criteria above shall be provided to the local approval authority by a soils-testing laboratory.

g. Animal manures used in treatment soil layers must be sterilized because of the potential for bacterial contamination of groundwater.

E.4.00 LOW-PERMEABILITY LINER OPTIONS

This section specifies the design criteria for four low-permeability liner options: compacted till liners, clay liners, geomembrane liners, and concrete liners.

E.4.01 Compacted Till Liners

a. Liner thickness shall be 18 inches after compaction.

b. Soil shall be compacted to 95% of the maximum dry density, as determined by AASHTO T-180.

c. A different depth and density sufficient to retard the infiltration rate to 2.4×10^{-3} inches per minute (1×10^{-6} cm/s) may also be used instead of Criteria 1 and 2.

d. Soil should be placed in 6-inch lifts.

e. Gradation requirements of the soil shall be as indicated in Table E.2. Sieve analysis shall be determined according to AASHTO T-27.

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>Percent Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-inch</td>
<td>100</td>
</tr>
<tr>
<td>4-inch</td>
<td>90</td>
</tr>
<tr>
<td>No. 4</td>
<td>70-100</td>
</tr>
<tr>
<td>No. 200</td>
<td>20</td>
</tr>
</tbody>
</table>

E.4.02 Clay Liners

a. Liner thickness shall be 12 inches.

b. Clay shall be compacted to 95% of the maximum dry density, as determined by AASHTO T-180.
c. A different depth and density sufficient to retard the infiltration rate to 2.4×10^{-5} inches per minute (1×10^{-6} cm/s) may also be used instead of the above criteria.

d. The slope of clay liners must be restricted to 3H: IV for all areas requiring soil cover. Otherwise, the soil layer must be stabilized by another method so that soil does not slip into the facility. Any alternative soil-stabilization method must take maintenance access into consideration.

e. Where clay liners form the sides of ponds, the interior should not be steeper than 4H:1V, irrespective of fencing. This restriction is to ensure that anyone falling into the pond can climb out.

f. Specification requirements of the clay soil shall be as indicated in Table E.3.

Table E.3. SPECIFICATIONS FOR SOIL IN CLAY LINERS

<table>
<thead>
<tr>
<th>Property</th>
<th>Test Method</th>
<th>Unit</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permeability</td>
<td>ASTM D-2434</td>
<td>cm/sec</td>
<td>1×10^{-6}</td>
</tr>
<tr>
<td>Plasticity Index of Clay</td>
<td>ASTM D-423 & D-424</td>
<td>percent</td>
<td>Not less than 15</td>
</tr>
<tr>
<td>Liquid Limit of Clay</td>
<td>ASTM D-2216</td>
<td>percent</td>
<td>Not less than 30</td>
</tr>
<tr>
<td>Clay Particles Passing</td>
<td>ASTM D-422</td>
<td>percent</td>
<td>Not less than 30</td>
</tr>
<tr>
<td>Clay Compaction</td>
<td>ASTM D-2216</td>
<td>percent</td>
<td>95% of Max. Dry Density, AASHTO T-99</td>
</tr>
</tbody>
</table>

E.4.03 Geomembrane Liners

a. Geomembrane liners shall be ultraviolet (UV) light resistant and have a minimum thickness of 30 mils. A thickness of 40 mils shall be used in areas of maintenance access or where heavy machinery must operate over the membrane.

b. Geomembranes shall be bedded according to the manufacturer's recommendations.

c. Liners shall be installed so that they can be covered with 12 inches of top dressing forming the bottom and sides of the water quality facility, except for liner sand filters. Top dressing shall consist of 6 inches of crushed aggregate covered with 6 inches of native soil. The aggregate layer is to mark the location of the liner for future maintenance. As an alternative to crushed
aggregate, 12 inches of native soil may be used if orange plastic safety fencing or another highly-visible, continuous marker is embedded 6 inches above the membrane.

d. If possible, liners should be of a contrasting color so that maintenance workers are aware of any areas where a liner may become exposed when maintaining the facility.

e. Geomembrane liners shall not be used on slopes steeper than 5H:1V to prevent the top dressing material from slipping. Textured liners may be used on slopes up to 3H:1V, provided that a Professional Engineer registered in the State of Oregon, whose area of expertise is geotechnical engineering, recommends that the top dressing will be stable for all site conditions, including maintenance.

E.4.04 Concrete Liners

a. Portland cement liners are allowed irrespective of facility size, and shotcrete may be used on slopes. However, specifications must be developed by a Professional Engineer registered in the State of Oregon who certifies the liner against cracking or losing water retention ability under expected conditions of operation, including facility maintenance operations. Maintenance equipment can weigh up to 80,000 pounds when fully loaded.

b. AC may not be used for liners because of its permeability to organic pollutants.

c. If grass is to be grown over a concrete liner, slopes must be no steeper than 5H: IV to prevent the top dressing from slipping.
MINIMUM EROSION PREVENTION AND SEDIMENT CONTROL
MONITORING REQUIREMENTS

All Sites

1. A person with knowledge and experience in construction storm water controls and management practices shall conduct the inspections. The Grading and Erosion Control Plan shall identify the person(s) and/or title of the personnel that will conduct the inspections and provide a contact phone number for such person(s).

Active Sites

2. Frequency of inspections shall be daily during storm water runoff or snowmelt runoff and at least once every seven (7) calendar days and within 24 hours after any storm event of greater than 0.5 inches of rain per 24-hour period.

Inactive Sites

3. During inactive periods of greater than seven (7) consecutive calendar days, inspections shall only be required once every two (2) weeks.

4. Prior to discontinuing activities at the site, any exposed area shall be stabilized to prevent erosion. Stabilization may occur by applying appropriate cover (mulch, erosion control blanket, soil tackifier, etc.) or establishing adequate vegetative cover.

5. When a site is inaccessible due to adverse weather conditions, inspections shall not be required. Adverse weather condition shall be recorded on the inspection sheet.

6. Prior to leaving an inactive site or in anticipation of site inaccessibility, existing erosion and sediment control measures shall be inspected to ensure that they are in working order. Any necessary maintenance or repair shall be made prior to leaving the site.

Written Records

7. All visual inspections must document the following information:

 a. Inspection date, inspector’s name, weather conditions, and rainfall amount for past 24 hours (inches). (Rainfall information can be obtained from the nearest weather recording station.)

 b. List observations of all BMPs: erosion and sediment controls, chemical and waste controls, locations where vehicles enter and exit the site, status of areas that employ temporary or final stabilization control, soil stockpile area, and non-stormwater controls.

 c. At representative discharge location(s) from the construction site conduct observation and document the quality of the discharge for any turbidity, color,
sheen, or floating materials. If possible, in the receiving stream, observe and
record color and turbidity or clarity upstream and downstream within 30 feet of
the discharge from the site. For example, a sheen or floating material could be
noted as present/absent, if observation is yes, it could indicate concern about a
possible spill and/or leakage from vehicles or materials storage. For turbidity and
color an observation would describe any apparent color and the clarity of the
discharge, and any apparent difference in comparison with the receiving stream.

d. If significant amounts of sediment are leaving the property, briefly explain the
corrective measures taken to reduce the discharge and/or clean it up and describe
efforts to prevent future releases. The EPSC Plan shall be amended accordingly.

e. If a site is inaccessible due to inclement weather the inspection shall include
observations at a relevant discharge point or downstream location, if practical.

8. All inspection records for an active site shall be kept on-site or be maintained
with the permittee, and shall made available to the City’s authorized
representative upon request.

9. A written record of inspections for an inactive site shall be maintained with
the permittee and made available to the City’s authorized representative upon
request.

10. Retention of all inspection records shall be for a period of one year from
project completion.
CERTIFICATE OF INSURANCE

This Certificate of Insurance is issued to the terms, conditions and coverage of
Policy No. _______________ issued to ____________________________
at ____________________________

by ____________________________ Date of Expiration __________________________________

This Certificate of Insurance is not intended to affirmatively or negatively alter, extend or rescind
any of the existing terms, conditions or coverage of the above-mentioned policy.

<table>
<thead>
<tr>
<th>TYPE OF INSURANCE</th>
<th>LIMITS OF LIABILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EACH OCCURRENCE</td>
</tr>
<tr>
<td>GENERAL LIABILITY</td>
<td>Bodily Injury</td>
</tr>
<tr>
<td>Comprehensive Form</td>
<td></td>
</tr>
<tr>
<td>Manufacturer's & Contractor's Property</td>
<td>Property Damage</td>
</tr>
<tr>
<td>Liability Broadform</td>
<td></td>
</tr>
<tr>
<td>Contractor's Property Damage</td>
<td></td>
</tr>
<tr>
<td>Owner & Contractor's Protective Blanket</td>
<td>Bodily Injury &</td>
</tr>
<tr>
<td>Contractual Product/Completed Operations</td>
<td>Property Damage</td>
</tr>
<tr>
<td></td>
<td>Combined</td>
</tr>
<tr>
<td>Automotive</td>
<td>Personal Injury</td>
</tr>
<tr>
<td>Automotive</td>
<td>Bodily Injury &</td>
</tr>
<tr>
<td>Comprehensive Form</td>
<td>Property Damage</td>
</tr>
<tr>
<td></td>
<td>Combined</td>
</tr>
<tr>
<td>Excess Liability</td>
<td>Bodily Injury &</td>
</tr>
<tr>
<td>Umbrella Form</td>
<td>Property Damage</td>
</tr>
<tr>
<td></td>
<td>Combined</td>
</tr>
<tr>
<td>WORKER'S COMPENSATION</td>
<td>Statutory</td>
</tr>
</tbody>
</table>

DATE: ____________________________

SIGNATURE: ____________________________

Note: A standard certificate of insurance form such as the Accord form may be substituted
for this form.

-End-
PERMIT NUMBER: ___________________

9. FEE SUMMARY:

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL PLAN CHECK FEE</td>
<td></td>
</tr>
<tr>
<td>BALANCE PLAN CHECK DUE</td>
<td></td>
</tr>
<tr>
<td>PUBLIC WORKS PERMIT FEE</td>
<td></td>
</tr>
<tr>
<td>TITLE FEE</td>
<td></td>
</tr>
<tr>
<td>MANHOLE INSERT FEE</td>
<td></td>
</tr>
<tr>
<td>STREET SIGN FEE</td>
<td></td>
</tr>
<tr>
<td>TOTAL FEES DUE</td>
<td></td>
</tr>
<tr>
<td>ADDITIONAL FEES PAID</td>
<td></td>
</tr>
</tbody>
</table>

9. FEE SUMMARY:

PROJECT COSTS:

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>A). WATER SYSTEM:</td>
<td></td>
</tr>
<tr>
<td>B). WASTEWATER SYSTEM:</td>
<td></td>
</tr>
<tr>
<td>C). STORMWATER SYSTEM:</td>
<td></td>
</tr>
<tr>
<td>D). ROADWAY AREA:</td>
<td></td>
</tr>
<tr>
<td>E). STREET LIGHTS:</td>
<td></td>
</tr>
<tr>
<td>F). OTHER:</td>
<td></td>
</tr>
</tbody>
</table>

PERMIT ISSUED

I ________________ do hereby agree by my signature below to assure that myself and all subcontractors under my direction and working on the above project shall have a valid City business license and hereby agree to forfeit all fines and penalties for failure of same. Such forfeiture will be withheld from my payment or retainage or added to the total cost of the permit. I have read and understand the City’s “Public Work Standards”.

ENGINEERING DEPARTMENT/DATE ____________________

CONTRACTOR/DATE ____________________

11. CONSTRUCTION WORK HOURS

Pacific Standard Time
Monday - Friday: 7:00 am to 8:00 pm
Saturday: 9:00 am to 6:00 pm

Daylight Savings Time
Monday - Friday: 7:00 am to 9:00 pm
Saturday: 9:00 am to 7:00 pm

No noise originating on construction, demolition, and/or grading are allowed before or after the times listed, or at any time on Sunday, without the written consent of the Building Official or City Engineer, and may be subject to citation.
TRACKING FOR EASEMENTS AND ROW DEDICATIONS

(name: this may not be the same as owner/developer)

Name of Grantor

Mailing Address

City, State, Zip

Contact Person and Telephone #

Project Name

County

Tax Lot, Section, Township, Range

CITY Contact Person

Type of Easement: (drop down)
(Drainage, Pipeline, PUE, Sidewalk, Sidewalk and PUE, Slope, Street Dedication, Deed of Deduction, Conservation, Stormwater Maintenance Covenant, Temporary Construction)

Type of Ownership: (drop down)
(Partnership, Limited Partnership, Corporation, Individual, Limited Liability Company)

<table>
<thead>
<tr>
<th>DATE</th>
<th>ACTION/COMMENTS</th>
<th>BY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Completed document and Preliminary Title Report received</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Legal description verified</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Location and map verified</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other Action taken</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Document sent to Legal Dept. for review</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Legal Dept. signs “Approved as to Form”</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Legal Dept. “Approved as to Legal Description”</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mayor/City Manager signs off:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>City Recorder signs off:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Original document sent for recording</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Notify or send copy of transmittal letter to Engineering)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Recording Number and Date</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Copy of recorded document sent to: Engineering Economic Development Director</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Original document placed in Vault, File Date</td>
<td></td>
</tr>
</tbody>
</table>